Organizational Unit:
School of Computational Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 1 of 1
  • Item
    On Computation and Application of Optimal Transport
    (Georgia Institute of Technology, 2021-07-28) Xie, Yujia
    The Optimal Transport (OT) problem naturally arises in various machine learning problems, where one needs to align data from multiple sources. For example, the training data and application scenarios oftentimes have a domain gap, e.g., the training data is annotated photos collected in the daytime, yet the application scenario is in dark hours. In this case, we need to align the two datasets, so that the annotation information can be shared across them. During my Ph.D. study, I propose scalable algorithms for efficient OT computation, and its novel applications in end-to-end learning. For OT computation, I consider both discrete cases and continuous cases. For the discrete cases, I develop an Inexact Proximal point method for exact Optimal Transport problem (IPOT) with the proximal operator approximately evaluated at each iteration using projections to the probability simplex. The algorithm (a) converges to exact Wasserstein distance with theoretical guarantee and robust regularization parameter selection, (b) alleviates numerical stability issue, (c) has similar computational complexity to Sinkhorn, and (d) avoids the shrinking problem when apply to generative models. Furthermore, a new algorithm is proposed based on IPOT to obtain sharper Wasserstein barycenter. For the continuous cases, I propose an implicit generative learning-based framework called SPOT (Scalable Push-forward of Optimal Transport). Specifically, we approximate the optimal transport plan by a pushforward of a reference distribution, and cast the optimal transport problem into a minimax problem. We then can solve OT problems efficiently using primal dual stochastic gradient-type algorithms. To explore the connections between OT and end-to-end learning, I developed a differentiable top-k operator, and a differentiable permutation step. For the top-k operation, i.e., finding the k largest or smallest elements from a collection of scores, is an important model component used in information retrieval, machine learning, and data mining. However, if the top-k operation is implemented in an algorithmic way, e.g., using bubble algorithm, the resulting model cannot be trained in an end-to-end way using prevalent gradient descent algorithms. This is because these implementations typically involve swapping indices, whose gradient cannot be computed. Moreover, the corresponding mapping from the input scores to the indicator vector of whether this element belongs to the top-k set is essentially discontinuous. To address the issue, we propose a smoothed approximation, namely the SOFT (Scalable Optimal transport-based diFferenTiable) top-k operator. Specifically, our SOFT top-k operator approximates the output of the top-k operation as the solution of an Entropic Optimal Transport (EOT) problem. The gradient of the SOFT operator can then be efficiently approximated based on the optimality conditions of EOT problem. We apply the proposed operator to the k-nearest neighbors and beam search algorithms, and demonstrate improved performance. For the differentiable permutation step, I connect optimal transport to a variant of regression problem, where the correspondence between input and output data is not available. Such shuffled data is commonly observed in many real-world problems. Taking flow cytometry as an example, the measuring instruments may not be able to maintain the correspondence between the samples and the measurements. Due to the combinatorial nature of the problem, most existing methods are only applicable when the sample size is small, and limited to linear regression models. To overcome such bottlenecks, we propose a new computational framework -- ROBOT -- for the shuffled regression problem, which is applicable to large data and complex nonlinear models. Specifically, we reformulate the regression without correspondence as a continuous optimization problem. Then by exploiting the interaction between the regression model and the data correspondence, we develop a hypergradient approach based on differentiable programming techniques. Such a hypergradient approach essentially views the data correspondence as an operator of the regression, and therefore allows us to find a better descent direction for the model parameter by differentiating through the data correspondence. ROBOT can be further extended to the inexact correspondence setting, where there may not be an exact alignment between the input and output data. Thorough numerical experiments show that ROBOT achieves better performance than existing methods in both linear and nonlinear regression tasks, including real-world applications such as flow cytometry and multi-object tracking.