Organizational Unit:
School of Computational Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Scalable Data Mining via Constrained Low Rank Approximation
    (Georgia Institute of Technology, 2022-08-01) Eswar, Srinivas
    Matrix and tensor approximation methods are recognised as foundational tools for modern data analytics. Their strength lies in their long history of rigorous and principled theoretical foundations, judicious formulations via various constraints, along with the availability of fast computer programs. Multiple Constrained Low Rank Approximation (CLRA) formulations exist for various commonly encountered tasks like clustering, dimensionality reduction, anomaly detection, amongst others. The primary challenge in modern data analytics is the sheer volume of data to be analysed, often requiring multiple machines to just hold the dataset in memory. This dissertation presents CLRA as a key enabler of scalable data mining in distributed-memory parallel machines. Nonnegative Matrix Factorisation (NMF) is the primary CLRA method studied in this dissertation. NMF imposes nonnegativity constraints on the factor matrices and is a well studied formulation known for its simplicity, interpretability, and clustering prowess. The major bottleneck in most NMF algorithms is a distributed matrix-multiplication kernel. We develop the Parallel Low rank Approximation with Nonnegativity Constraints (PLANC) software package, building on the earlier MPI-FAUN library, which includes an efficient matrix-multiplication kernel tailored to the CLRA case. It employs carefully designed parallel algorithms and data distributions to avoid unnecessary computation and communication. We extend PLANC to include several optimised Nonnegative Least-Squares (NLS) solvers and symmetric constraints, effectively employing the optimised matrix-multiplication kernel. We develop a parallel inexact Gauss-Newton algorithm for Symmetric Nonnegative Matrix Factorisation (SymNMF). In particular PLANC is able to efficiently utilise second-order information when imposing symmetry constraints without incurring the prohibitive memory and computational costs associated with these methods. We are able to observe 70% efficiency while scaling up these methods. We develop new parallel algorithms for fusing and analysing data with multiple modalities in the Joint Nonnegative Matrix Factorisation (JointNMF) context. JointNMF is capable of knowledge discovery when both feature-data and data-data information is present in a data source. We extend PLANC to handle this case of simultaneously approximating two different large input matrices and study the various trade-offs encountered in the bottleneck matrix-multiplication kernel. We show that these ideas translate naturally to the multilinear setting when data is presented in the form of a tensor. A bottleneck computation analogous to the matrix-multiply, the Matricised-Tensor Times Khatri-Rao Product (MTTKRP) kernel, is implemented. We conclude by describing some avenues for future research which extend the work and ideas in this dissertation. In particular, we consider the notion of structured sparsity, where the user has some control over the nonzero pattern, which appears in computations for various tasks like cross-validation, working with missing values, robust CLRA models, and in the semi-supervised setting.
  • Item
    Interactive Visual Text Analytics
    (Georgia Institute of Technology, 2020-12-07) Kim, Hannah
    Human-in-the-Loop machine learning leverages both human and machine intelligence to build a smarter model. Even with the advances in machine learning techniques, results generated by automated models can be of poor quality or do not always match users' judgment or context. To this end, keeping human in the loop via right interfaces to steer the underlying model can be highly beneficial. Prior research in machine learning and visual analytics has focused on either improving model performances or developing interactive interfaces without carefully considering the other side. In this dissertation, we design and develop interactive systems that tightly integrate algorithms, visualizations, and user interactions, focusing on improving interactivity, scalability, and interpretability of the underlying models. Specifically, we present three visual analytics systems to explore and interact with large-scale text data. First, we present interactive hierarchical topic modeling for multi-scale analysis of large-scale documents. Second, we introduce interactive search space reduction to discover relevant subset of documents with high recall for focused analyses. Lastly, we propose interactive exploration and debiasing of word embeddings.
  • Item
    Scalable and distributed constrained low rank approximations
    (Georgia Institute of Technology, 2016-04-15) Kannan, Ramakrishnan
    Low rank approximation is the problem of finding two low rank factors W and H such that the rank(WH) << rank(A) and A ≈ WH. These low rank factors W and H can be constrained for meaningful physical interpretation and referred as Constrained Low Rank Approximation (CLRA). Like most of the constrained optimization problem, performing CLRA can be computationally expensive than its unconstrained counterpart. A widely used CLRA is the Non-negative Matrix Factorization (NMF) which enforces non-negativity constraints in each of its low rank factors W and H. In this thesis, I focus on scalable/distributed CLRA algorithms for constraints such as boundedness and non-negativity for large real world matrices that includes text, High Definition (HD) video, social networks and recommender systems. First, I begin with the Bounded Matrix Low Rank Approximation (BMA) which imposes a lower and an upper bound on every element of the lower rank matrix. BMA is more challenging than NMF as it imposes bounds on the product WH rather than on each of the low rank factors W and H. For very large input matrices, we extend our BMA algorithm to Block BMA that can scale to a large number of processors. In applications, such as HD video, where the input matrix to be factored is extremely large, distributed computation is inevitable and the network communication becomes a major performance bottleneck. Towards this end, we propose a novel distributed Communication Avoiding NMF (CANMF) algorithm that communicates only the right low rank factor to its neighboring machine. Finally, a general distributed HPC- NMF framework that uses HPC techniques in communication intensive NMF operations and suitable for broader class of NMF algorithms.
  • Item
    Nonnegative matrix factorization for clustering
    (Georgia Institute of Technology, 2014-07-01) Kuang, Da
    This dissertation shows that nonnegative matrix factorization (NMF) can be extended to a general and efficient clustering method. Clustering is one of the fundamental tasks in machine learning. It is useful for unsupervised knowledge discovery in a variety of applications such as text mining and genomic analysis. NMF is a dimension reduction method that approximates a nonnegative matrix by the product of two lower rank nonnegative matrices, and has shown great promise as a clustering method when a data set is represented as a nonnegative data matrix. However, challenges in the widespread use of NMF as a clustering method lie in its correctness and efficiency: First, we need to know why and when NMF could detect the true clusters and guarantee to deliver good clustering quality; second, existing algorithms for computing NMF are expensive and often take longer time than other clustering methods. We show that the original NMF can be improved from both aspects in the context of clustering. Our new NMF-based clustering methods can achieve better clustering quality and run orders of magnitude faster than the original NMF and other clustering methods. Like other clustering methods, NMF places an implicit assumption on the cluster structure. Thus, the success of NMF as a clustering method depends on whether the representation of data in a vector space satisfies that assumption. Our approach to extending the original NMF to a general clustering method is to switch from the vector space representation of data points to a graph representation. The new formulation, called Symmetric NMF, takes a pairwise similarity matrix as an input and can be viewed as a graph clustering method. We evaluate this method on document clustering and image segmentation problems and find that it achieves better clustering accuracy. In addition, for the original NMF, it is difficult but important to choose the right number of clusters. We show that the widely-used consensus NMF in genomic analysis for choosing the number of clusters have critical flaws and can produce misleading results. We propose a variation of the prediction strength measure arising from statistical inference to evaluate the stability of clusters and select the right number of clusters. Our measure shows promising performances in artificial simulation experiments. Large-scale applications bring substantial efficiency challenges to existing algorithms for computing NMF. An important example is topic modeling where users want to uncover the major themes in a large text collection. Our strategy of accelerating NMF-based clustering is to design algorithms that better suit the computer architecture as well as exploit the computing power of parallel platforms such as the graphic processing units (GPUs). A key observation is that applying rank-2 NMF that partitions a data set into two clusters in a recursive manner is much faster than applying the original NMF to obtain a flat clustering. We take advantage of a special property of rank-2 NMF and design an algorithm that runs faster than existing algorithms due to continuous memory access. Combined with a criterion to stop the recursion, our hierarchical clustering algorithm runs significantly faster and achieves even better clustering quality than existing methods. Another bottleneck of NMF algorithms, which is also a common bottleneck in many other machine learning applications, is to multiply a large sparse data matrix with a tall-and-skinny dense matrix. We use the GPUs to accelerate this routine for sparse matrices with an irregular sparsity structure. Overall, our algorithm shows significant improvement over popular topic modeling methods such as latent Dirichlet allocation, and runs more than 100 times faster on data sets with millions of documents.
  • Item
    Integration of computational methods and visual analytics for large-scale high-dimensional data
    (Georgia Institute of Technology, 2013-07-02) Choo, Jae gul
    With the increasing amount of collected data, large-scale high-dimensional data analysis is becoming essential in many areas. These data can be analyzed either by using fully computational methods or by leveraging human capabilities via interactive visualization. However, each method has its drawbacks. While a fully computational method can deal with large amounts of data, it lacks depth in its understanding of the data, which is critical to the analysis. With the interactive visualization method, the user can give a deeper insight on the data but suffers when large amounts of data need to be analyzed. Even with an apparent need for these two approaches to be integrated, little progress has been made. As ways to tackle this problem, computational methods have to be re-designed both theoretically and algorithmically, and the visual analytics system has to expose these computational methods to users so that they can choose the proper algorithms and settings. To achieve an appropriate integration between computational methods and visual analytics, the thesis focuses on essential computational methods for visualization, such as dimension reduction and clustering, and it presents fundamental development of computational methods as well as visual analytic systems involving newly developed methods. The contributions of the thesis include (1) the two-stage dimension reduction framework that better handles significant information loss in visualization of high-dimensional data, (2) efficient parametric updating of computational methods for fast and smooth user interactions, and (3) an iteration-wise integration framework of computational methods in real-time visual analytics. The latter parts of the thesis focus on the development of visual analytics systems involving the presented computational methods, such as (1) Testbed: an interactive visual testbed system for various dimension reduction and clustering methods, (2) iVisClassifier: an interactive visual classification system using supervised dimension reduction, and (3) VisIRR: an interactive visual information retrieval and recommender system for large-scale document data.