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Abstract
This paper describes a technique for using magnetic mo-
tion capture data to determine the joint parameters of an
articulated hierarchy. This technique makes it possible
to determine the limb lengths, joint locations, and sen-
sor placement for a human subject without external mea-
surements. Instead, the joint parameters are inferred with
high accuracy from the motion data acquired during the
capture session. The parameters are computed by per-
forming a linear least squares fit of a revolute joint model
to the input data. A hierarchical structure can also be
determined in situations where the topology of the artic-
ulated model is not known. We present the results of run-
ning the algorithm on human motion capture data, as well
as validation results obtained with data from a simulation
and a wooden linkage of known dimensions.

Keywords: Animation, Motion Capture, Kinematics, Pa-
rameter Estimation, Joint Locations, Articulated Figure,
Articulated Hierarchy.

1 Introduction
Motion capture has proven to be an extremely useful
technique for animating human and human-like charac-
ters. Because the basic motion is specified in real-time
by the subject being captured, motion capture provides
a unique solution for applications where animations with
the characteristic qualities of human motion must be gen-
erated quickly. Real-time capture techniques can be used
to create immersive virtual environments for entertain-
ment and training applications. Motion capture data re-
tains many of the subtle elements of a performer’s style
making possible digital performances where the motion
capture subject’s unique style is recognizable in the final
product.

Although motion capture has many advantages and
commercial systems are improving rapidly, the technol-
ogy also has some drawbacks. Both optical and magnetic
systems suffer from sensor noise and require careful cal-
ibration [7]. Additionally, measurements of the subject

Figure 1:Test subject and generated model.The image
shows a subject wearing the motion capture equipment
during a capture session with the skeletal model gener-
ated automatically from the acquired motion capture data
superimposed. The chest and pelvis sensors are on the
subject’s back.

such as limb lengths or the offsets between the sensors
and the joints are often required. This information is usu-
ally gathered by measuring the subject in a reference pose
but this hand measurement is tedious and prone to error.
It is also impractical for such applications as location-
based entertainment, where the delay and physical con-
tact with a technician would be unacceptable.

1



The algorithm described in this paper addresses this
problem by computing the joint locations for an artic-
ulated hierarchy automatically from the global transfor-
mation matrices of the individual bodies. We take motion
data acquired with a magnetic system and determine both
the locations of the subject’s joints and the sensor loca-
tions relative to the joints without any external measure-
ment. The technique does not impose any constraints on
the sensor positions beyond those necessary for accurate
capture, nor does it require the subject to pose in any par-
ticular configuration. The only requirement on the data is
that it must exercise all degrees of freedom of the joints
for the technique to return an unambiguous answer. Fig-
ure 1 shows a human subject wearing magnetic motion
capture sensors and the skeletal model that was generated
from the motion data in an automatic fashion.

Intuitively, the algorithm proceeds by examining the
sequences of transformation data generated by pairs of
sensors and determines a pair of points, one in the co-
ordinate system of each sensor, that remain colocated
throughout the sequence. If the two sensors were attached
to a pair of objects that were joined by a revolute joint,
then a single point, the center of the joint, will fulfill this
criteria. Errors such as sensor noise and the fact that hu-
man joints are not perfect revolute joints, will prevent an
exact solution. The algorithm solves for a best fit solution
and computes the residual error that describes how well
two bodies “fit” together. This metric makes it possible to
infer the body hierarchy directly from the motion data by
building a minimum spanning tree treating the residuals
as edge weights between the body parts.

In the following sections, we describe related work in
the fields of biomechanics and robotics and our method
for computing the joint locations from motion data. We
present the results of processing human motion capture
data, as well as validation results using data from a simu-
lation and from a wooden linkage of known dimensions.

2 Background
The problem of determining a system’s kinematic pa-
rameters from the motion of the system has been widely
studied in the fields of biomechanics [18, 19] and
robotics [12]. Biomechanicists are interested in this prob-
lem because the joints play a critical role in understanding
both the mechanics of the human body and the dynamics
of human motion. However, human joints are not ideal
revolute joints and therefore do not have a fixed center
of rotation. Even joints like the hip which are relatively
close approximations to mechanical ball and socket joints
have laxity and variations due to joint loading that cause
changes in the center of rotation during movement. In-
stead, the parameter that is often measured in biomechan-

ics is the instantaneous center of rotation, which is de-
fined as the point of zero velocity during infinitesimally
small motions of a rigid body.

To compute the instantaneous center of rotation,
biomechanists put markers on each limb and use mea-
surements from different configurations of the limbs. To
reduce the error in this measurement, multiple markers
are used on each joint and a least squares fit is used
to filter the redundant marker data [4]. Spiegelman and
Woo [21] proposed a method for planar motions, and this
was extended to general motion by Veldpauset al. [24].
The latter algorithm uses multiple markers on a body
measured at two instants in time to establish the center of
rotation. Because of practical limitations on the number
of markers that can be used, algorithms have been devel-
oped to calculate the optimal placement of these mark-
ers [6, 11].

We are primarily concerned with creating animation
rather than scientific studies of human motion, and as
a result our goals differ from those of researchers in
the biomechanics community. In particular, because the
recorded motion will be used to drive an articulated skele-
ton, we need joint centers that are a reasonable approxi-
mation over the entire sequence of motion as opposed to
an instantaneous joint center that is more accurate but de-
scribes only a single instant of motion.

The biomechanical literature also provides insight into
the errors inherent in a joint estimation system and pro-
vides an upper bound on the accuracy that we can ex-
pect. Because the joints of the human body are not rev-
olute, the articulated models used in animation are an in-
herent approximation of human kinematics. Using five
male subjects with pins inserted in their tibia and femur,
Lafortuneet al. [14] found that during a normal walk cy-
cle the joint center of the knee compressed and pulled
apart by an average of7 mm, moved front-to-back by
14.3 mm, and side-to-side by5.6 mm. Another source
of error arises because we cannot attach the markers di-
rectly to the bone. Instead, they are attached to the skin
or clothing of the subject. Ronsky and Nigg reported up
to 3 cm of skin movement over the tibia during ground
contact in running [17].

Roboticists are also interested in similar questions be-
cause they need to calibrate physical devices. An artic-
ulated robot may be built to precise specifications, but
there will be differences between the nominal parameters
and those of the actual unit. Furthermore, because a robot
is made of physical materials that are subject to various
types of deformation, there may be additional degrees of
freedom in the actual unit that were not part of the de-
sign specification. Both of these types of differences can
have a significant effect on the accuracy of the unit and
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compensating for them often requires that they be mea-
sured [12]. Taking these measurements directly can be
extremely difficult so researchers have developed various
automatic calibration techniques.

The calibration techniques that are relevant to the re-
search presented here infer these parameters indirectly
by measuring the motion of the actual robot. Some of
these techniques require that the robot perform specific
actions such as exercising each joint in isolation [26, 16]
or that it assume a particular set of configurations [13, 3],
and are therefore not easily adapted for use with human
performers. Other methods allow calibration from an ar-
bitrary set of configurations but focus explicitly on the
relationship between the control parameters and the end-
effector. Although our technique fits into the general
framework described by Karan and Vukobratovic for es-
timating linear kinematic parameters from arbitrary mo-
tion [12], the techniques are not identical because of dif-
ferences in the goals and constraints of animation versus
robotics. In particular, we are interested in information
about the entire body rather than only the person’s end-
effectors. We also can take advantage of the position and
orientation information provided by the magnetic motion
sensors whereas robotic calibration methods are gener-
ally limited to the information provided by joint sensors
(that may themselves be part of the set of parameters be-
ing calibrated) and position markers on the end-effector.

3 Methods
For a system ofm rigid bodies, letT i→j be the trans-
formation from thei-th body’s coordinate system to the
coordinate system of thej-th body (i, j ∈ [0..m − 1]).
The indexω 6∈ [0..m − 1], is used to indicate the world
coordinate system so thatT i→ω is the global transforma-
tion from thei-th body’s coordinate system to the world
coordinate system.

A transformation,T i→j , consists of an additive, length
3 vector component,ti→j , and a multiplicative,3 × 3
matrix component,Ri→j . We will refer to ti→j as the
translational component ofT i→j , and toRi→j as the ro-
tational component ofT i→j , although in generalRi→j

may be any invertible3× 3 matrix transformation.
A point, xi, expressed in thei-th coordinate system

may then be transformed to thej-th coordinate system
by

xj = Ri→jxi + ti→j . (1)

A transformation from thei-th coordinate system to
the j-th coordinate system may be inverted so that
givenT i→j , T j→i may be computed by

Rj→i = (Ri→j)−1 (2)

tj→i = (Ri→j)−1(−ti→j), (3)

Torso (Root)

Pelvis

Head

Upper Arm

Lower Arm

Hand

Upper Leg

Lower Leg

Foot

Figure 2: Example of an articulated hierarchy that
could be used to model a human figure. The torso is the
root body and the grey arrows indicate the outboard di-
rection. For rendering, the skeleton model shown here
would be replaced with more realistic graphical model.

where(·)−1 indicates matrix inverse.
The subsequent algorithms require the global transfor-

mations of them rigid bodies,T i→ω , as input. If the
available data is in the form of relative or hierarchical
transformations, they may be converted to global form by
compositing the transformations. GivenT i→j andT j→q
with i, j, q ∈ [ω, 0..m− 1], thenT i→q is computed by

Ri→q = Rj→qRi→j (4)

ti→q = Rj→qti→j + tj→q . (5)

Because in general the bodies are in motion with re-
spect to each other and the world coordinate system, the
transformations between coordinate systems change over
time. We will assume that the motion data is sampled at
n discrete moments in time called frames, and useT i→jk

to refer to the value ofT i→j at framek ∈ [0..n − 1].
The rotational and translational components ofT i→jk are
Ri→j
k andti→jk respectively.
An articulated hierarchy is described by the topologi-

cal information indicating which bodies are connected to
each other, and by geometric information indicating the
locations of the connecting joints. The topological infor-
mation takes the form of a tree1 with a single body located

1We discuss the topological cycles created by loop joints in Section 5.
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Figure 3:Joint diagram showing the location of the ro-
tary joint between bodiesi andj = P (i). The location of
the joint is defined by a vector displacement,ci, relative
to the coordinate system of bodyi, and a second vector
displacement,li, in the coordinate system of bodyj.

at its root and all other bodies appearing as nodes within
the tree as shown in figure 2. When referring to direc-
tions relative to the arrangement of the tree, theinboard
direction is towards the root, and theoutboarddirection
is away from the root. Thus for a joint connecting two
bodies,i andj, the parent body,j, is the inboard body
and the child,i, is the outboard body. Similarly, a joint
which connects a body to its parent is that body’s inboard
joint and a joint connecting the body to one of its children
is an outboard joint. All bodies have at most one inboard
joint but may have multiple outboard joints.

The hierarchy’s topology is defined using a mapping
function,P (·), that maps each body to its parent body so
thatP (i) = j will imply that thej-th body is the imme-
diate parent of thei-th body in the hierarchical tree. The
object,τ ∈ [0..m − 1], with P (τ) = ω is the root ob-
ject. To simplify discussion, we will temporarily assume
thatP (·) is knowna priori. Later, in Section 3.3, we will
show howP (·) may be inferred when only theT i→ω ’s
are known.

The geometry of the articulated hierarchy is deter-
mined by specifying the location of each joint in the co-
ordinate frames of both its inboard body and its outboard
body. Because each body has a single inboard joint, we
will index the joints so that thei-th joint is the inboard
joint of thei-th body as shown in figure 3.

Let ci refer to the location of thei-th joint in the
i-th body’s (the joint’s outboard body) coordinate system,
and letli refer to the location of thei-th joint in theP (i)-
th body’s (the inboard body’s) coordinate system (see fig-
ure 3). The transformation of equation (1) that goes from
the i-th coordinate system to its parent’s,P (i), coordi-
nate system can then be re-expressed in terms of the joint
locations,ci andli, and the rotation at the joint,Ri→P (i),

so that

xP (i) = Ri→P (i)
k (xi − ci) + li (6)

= Ri→P (i)
k xi −Ri→P (i)

k ci + li. (7)

3.1 Finding Joint Locations
The general transformation given by equation (1) applies
to any arbitrary hierarchy of bodies. When the bodies
are connected by rotary joints, the relative motion of
two connected bodies must satisfy a constraint that pre-
vents the joint between them from coming apart. Com-
paring equation (6) with equation (1) shows that while
rotational terms are the same, the translational term of
equation (1) has been replaced with the constrained term,
−Ri→P (i)

k ci + li. Using equation (6) to transform the
location ofci to theP (i)-th coordinate system will iden-
tically yield li, and equation (6) naturally enforces the
constraint that the joint stay together.

Although the input transformations for each of the
body parts do not contain any explicit information about
joint constraints, if the motion was created by an artic-
ulated system then it should be possible to express the
same transformations hierarchically using equation (6)
and an appropriate choice ofci and li for each of the
joints. Thus for each pair of parent and child bodies,
i 6= τ andj = P (i), there should be aci and li such
that equation (1) and equation (6) become equivalent and

Ri→P (i)
k xi + ti→P (i)

k =

Ri→P (i)
k xi −Ri→P (i)

k ci + li (8)

for all k ∈ [0..n−1]. After canceling the common terms,
equation (8) becomes

ti→P (i)
k = −Ri→P (i)

k ci + li (9)

for all k ∈ [0..n − 1]. Later, it will be more convenient
to work with the global transformations. By applying
T P (i)→ω to both sides of equation (9) and simplifying
the result, we get

Ri→ω
k ci + ti→ωk = RP (i)→ω

k li + tP (i)→ω
k (10)

for all k ∈ [0..n− 1]. Equation (10) has a consistent geo-
metric interpretation: the location of the joint in the out-
board coordinate system,ci, and the location of the joint
in the inboard coordinate system,li, should transform to
the same location in the world coordinate system; in other
words, the joint should stay together.

Equation (10) can be rewritten in matrix form as

Qi→P (i)
k ui = di→P (i)

k . (11)
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wheredi→P (i)
k is the length3 vector given by

di→P (i)
k = −(ti→ωk − tP (i)→ω

k ), (12)

ui is the length6 vector

ui =
[

ci
li

]
, (13)

andQi→j
k is the3× 6 matrix

Qi→j
k =

[
(Ri→ω

k ) (−RP (i)→ω
k )

]
. (14)

Assembling equation (11) into a single linear system
of equations gives for all0..n− 1 frames



Qi→P (i)
0

...
Qi→P (i)
k

...
Qi→P (i)
n−1


[

ci
li

]
=



di→P (i)
0

...
di→P (i)
k

...
di→P (i)
n−1


. (15)

The matrix ofQ’s we will denote byQ̂ and is3n × 6;
the matrix ofd’s is 3n × 1. The linear system of equa-
tions (15) can be used to solve for the joint location pa-
rameters,ci andli.

Unless the input motion data consists of only two
frames of motion,̂Q will have more rows than columns
and the system will, in general, be over-constrained.
Nonetheless, if the motion was generated by an articu-
lated model, then an exact solution will exist. Realisti-
cally, limited sensor precision and other sources of error
will prevent an exact solution, so a best fit solution must
be found instead.

Despite the fact that the system will be over-
constrained, it may be simultaneously under-constrained
if the input motions do not span the space of rotations. In
particular, if two bodies connected by a joint do not rotate
with respect to each other, or if they do so but only about
a single axis, then there will be no unique answer. In the
case where they are motionless with respect to each other
then any location in space would be a solution. Similarly,
if their relative rotations are about a single axis, then any
point on that axis could serve as the joint’s location. For
reasons of numerical accuracy, in either of these cases the
desired solution is chosen to be the one closest to the ori-
gin of the inboard and outboard body coordinate frames.

The technique of solving for a least squares solution
using singular value decomposition is well suited for this
type of problem [20]. The matrix̂Q, is decomposed into
the product of three matrices

Q̂ = UWV>, (16)

whereU andV are orthogonal matrices, andW is the
diagonal matrix of singular values of̂Q. Equation (15)
can then be solved by

[
ci
li

]
= VW−1U>



di→P (i)
0

...

di→P (i)
k

...

di→P (i)
n−1


. (17)

BecauseW is diagonal, computing its inverse is triv-
ially accomplished by settingW−1 to a diagonal ma-
trix whose elements are the reciprocals of those inW.
If the system is under- or nearly under-constrained, then
some of the diagonal elements ofW will be zero or near
zero, and the corresponding columns ofV are directions
in which the input data has not constrained the joint lo-
cation. When this occurs, the corresponding elements of
W−1 should be set to zero, and the indices noted for later
use in Section 3.2.

The algorithm for computing the singular value de-
composition is beyond the scope of this paper. It is com-
monly discussed in many scientific computing texts, and
most numerical analysis packages contain an implemen-
tation of the algorithm (see for example [2] and [20]).
Other least squares methods, such as solving the “normal
equations,” may be easier to implement and slightly faster
but they are less robust, which is particularly important if
the system is under- or nearly under-constrained. When
under-constrained, many less robust least squares tech-
niques will be unable to handle the resulting singular ma-
trix and fail with an exception. Worse, if the system is
nearly under-constrained then otherwise small numerical
errors in the data may drive the joint location for a single-
axis joint to an undesirably distant location along the axis.

Once a solution has been determined, how well the so-
lution fits the input data may be measured by computing
the residual vector to equation (15):



ei→P (i)
0

...
ei→P (i)
k

...
ei→P (i)
n−1


=



Qi→P (i)
0

...
Qi→P (i)
k

...
Qi→P (i)
n−1


[

ci
li

]
−



di→P (i)
0

...
di→P (i)
k

...
di→P (i)
n−1


.

(18)

The vectoreik is the translation difference between the
input data and the value given by equation (6) at framek
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for a givenci andli. The average error distance,

εi =

√∑n−1
k=0 ‖ ei→P (i)

k ‖2

n
, (19)

gives a measure of the overall quality for the fit of the
joint.

3.2 Single-Axis Joints
If a joint rotates about two or more non-parallel axes,
there will be enough information to resolve the location
of the joint center as described above. As mentioned pre-
viously, however, if the joint rotates about a single axis
then a unique joint center does not exist, and our algo-
rithm will only return a point on the line representing the
axis of rotation.

We are able to detect that a joint is a single-axis joint
and to determine that axis from the input data by exam-
ining the singular values of̂Q from equation (15). If one
of the singular values of̂Q is near zero, i.e., if̂Q is rank
deficient, then that joint is a single-axis joint, or at least
in the input motion it rotates only about a single axis. The
first three components of the corresponding column vec-
tor of V from the singular value decomposition are the
joint axis in the inboard coordinate frame, and the second
three are the axis in the outboard coordinate frame

If the original motion only rotated about the one axis
then, it seems reasonable that this constraint be repre-
sented. If this is not the desired case, then the joint loca-
tion determined by equation (15) can be used for general
rotations and if the results are incorrect then the user may
adjust the location along the axis.

3.3 Determining the Body Hierarchy
In the previous sections, we have assumed that the hierar-
chical relationship between the bodies given by the parent
function,P (·), is known. In some instances, however, it
may be desirable to determine a suitable hierarchy au-
tomatically by inferring it from the input transformation
matrices. Our algorithm does this by finding the parent
function that minimizes the sum of theεi’s for all the
joints in the hierarchy.

The problem of finding the optimal hierarchy is equiva-
lent to finding a minimal spanning tree. Each body can be
thought of as a node, joints are the edges between them,
and the joint fit error,εi, is the weight of the edge. The
hierarchy can then be determined by evaluating the joint
error between all pairs of bodies, selecting a root node,τ ,
and then constructing the minimal spanning tree. See [5]
for example algorithms. Because the main computational
cost for this process is likely to be the evaluation of the
joint fit errors, not that the joint fit error for the edge im-
plied byP (i) = j and byP (j) = i are the same.

3.4 Removing the Residual
Once we have determined the locations of the joints, we
can use this information to construct a model that approx-
imates the dimensions of the subject. This model can then
be used to play back the original motion data. Unless the
residual errors on the joint fits were all near zero, the mo-
tion will cause the joints of the model to move apart from
each other during playback in a fashion that is typical of
unconstrained motion capture data. If, however, we use
the inferred joint locations to create an articulated model
with kinematic joint constraints and then play back the
motion through this model the joints will stay together.
Playing back motion capture data by applying only the
rotations to an articulated model is common practice; the
difference here is that the model itself has been generated
from the motion data. Essentially, we have projected the
motion data onto a parametric model and then used the fit
to discard the residual.

4 Results
The technique described above was tested on a rigid body
dynamic simulation of a human containing 48 degrees of
freedom. The simulation was an active simulation sim-
ilar to the ones described by Hodginset al. [10], and
was moved so that all the degrees of freedom were exer-
cised. The algorithm correctly computed the limb lengths
within the limits of numerical precision (errors less than
10−6 m) and determined the correct hierarchy.

Our method was next tested in a magnetic motion cap-
ture environment. Magnetic motion capture systems are
frequently noisy, and our Ascension system [1] has a res-
olution of about4 mm. To establish a baseline for the
amount of noise present in the environment, two sensors
were rigidly attached56.5 cm apart and moved through
the capture space. The results of this experiment are
shown in figure 4. There is a scale factor in converting
from units the motion capture system reports to centime-
ters, and we calculated this scale factor based on the mean
of this data set.

To test the algorithm on something less complicated
than biological joints, we constructed a wooden mechan-
ical linkage with five three-degree-of-freedom revolute
joints. The linkage is shown in figure 5. Six sets of
data were captured in which all the degrees of freedom
were exercised. Before Set 6 was captured, the marker
positions were moved to evaluate the robustness of the
method to changes in marker locations. The results are
shown in Table 1 along with the measured values of the
joint-to-joint distances. The maximum error across all
trials is1.1 cm and the hierarchy was computed correctly
for each of the trials. Another way of evaluating the fit
is to examine the residual vectors from the least squares
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Figure 4: Calibration data showing the distance be-
tween two markers attached rigidly to one another and
moved through the capture space. If the sensors are not
moved, then the data is much less noisy. The data is
scaled to have a mean of56.5 cm, and the standard de-
viation is0.7 cm.
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Figure 5: Wooden mechanical linkage.(A) Labels in-
dicate the terms that we used to refer to the body parts,
and purple circles highlight the joint locations. (B) The
motion capture sensors (highlighted green squares) have
been attached to the linkage. (C) The model computed
automatically from the motion data using our algorithm.
The joints are shown with blue spheres, and the sensors
with green cubes. Links between joints are indicated with
grey cylinders.

process. The norms of the residual vectors for the best
fit (Set 1, Right Shoulder) and the worst fit (Set 6, Left
Shoulder) are shown in figures 6 and 7, respectively. The
right-hand graph has an asymmetric distribution because
it is the distribution of an absolute value. We regard these
results as very good because the error is on the order of
the resolution of the sensors.

The best test case, of course, is to verify that we can
estimate the limb lengths of people. This task is more
difficult because human joints are not simple mechanical
linkages. To provide a basis for comparison, we mea-
sured the limb lengths of our test subjects. As mentioned

previously, this process is inexact and prone to error, but
it does provide a plausible estimate with which to com-
pare. We measured limb lengths from bony landmark to
bony landmark to provide repeatability and consistency
to our measurements. For example, the upper leg of the
subjects was measured as the distance from the top of the
greater trochanter of the femur to the lateral condyle of
the tibia. Because the head of the femur extends upward
and inward into the innominate, it is clear that this mea-
surement is inaccurate by a few centimeters. Nonethe-
less, as the greater trochanter is the only palpable area at
the upper end of the femur, this measurement is the best
available. This difficulty in obtaining accurate hand mea-
surements is on of the primary reasons that we chose to
develop our automatic technique.

Our test subjects performed two different sets of mo-
tions for capture. The first set we refer to as the “exercise”
set, and it consists of the subjects attempting to move ev-
ery joint essentially in isolation, to generate a full range
of motion for each joint. Thus the routine consists of a
set of discrete motions such as rolling the head around
on the neck, bending at the waist, high-stepping, lifting
one leg and waving it about, lifting the arms and waving
them about, bending the elbows and the wrists, etc. This
exercise set mimics the way we gathered data for the me-
chanical linkage. The second set of motions captured are
referred to as the “walk” sets, and consists of the subjects
trying to move as many degrees of freedom at once as
they can in a walk motion. This routine is perhaps best
described as a “chicken” walk, consisting of highly ex-
aggerated leg movements coupled with bending the waist
and waving the arms about.

A male test subject performed the two different types
of motion and they were processed with the algorithm.
The results of the limb length calculations are shown in
Tables 2 and 3. As expected, the residual errors for a
human are much larger than for the mechanical linkage.
A representative example is shown in figure 8. For this
subject, the maximum difference between measured and
calculated values is4.1 cm, and occurs at the left up-
per arm during one of the exercise sets. The mean of
the differences between calculated and measured values
is less than one centimeter for every limb except the up-
per arms, where it is1.4 and 2.2 cm for the right and
left arms, respectively. The algorithm consistently finds
a longer length for the left upper arm than what we mea-
sured, and it is possible that the difference is due to an
error in the value measured by hand. However, the shoul-
der joint is poorly approximated by a revolute joint: an
accurate biomechanical rigid-body model would have at
least seven degrees of freedom [23, 22]. Thus, it is not
surprising that the worst fit occurs on the shoulder.
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Meas. Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Neck — Left Shoulder 39.0 39.4 38.8 39.8 39.1 39.1 40.1
Neck — Right Shoulder 39.7 39.8 39.8 40.3 40.0 39.9 40.3
Between Shoulders 34.3 34.3 33.7 34.5 34.3 34.3 34.8
Right Upper Arm 28.6 29.2 29.0 28.8 28.9 29.0 29.1
Left Upper Arm 31.4 31.5 31.7 31.9 31.5 31.1 31.2

∆ 1 ∆ 2 ∆ 3 ∆ 4 ∆ 5 ∆ 6
Neck — Left Shoulder -0.4 0.2 -0.8 -0.1 -0.1 -1.1
Neck — Right Shoulder -0.1 -0.1 -0.6 -0.3 -0.2 -0.6
Between Shoulders 0.0 0.6 -0.2 0.0 0.0 -0.5
Right Upper Arm -0.6 -0.4 -0.2 -0.3 -0.4 -0.5
Left Upper Arm -0.1 -0.3 -0.5 -0.1 0.3 0.2

Table 1:A comparisonof measurements and calculated limb lengths for six data sets of the mechanical linkage. The
units are cm and the columns labeled∆ show the difference in measured and calculated values. Joint names follow
the analogy with human physiology used in figure 5(A).
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Figure 6:Residual errors of the right shoulder joint for the data from Set 1 for the mechanical linkage (table 1). In
the left graph, the magnitude of the residual vector is shown. In the right graph, the distribution of the frequency of
the magnitudes is shown.
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Figure 7:Residual errors of the left shoulder joint for the data from Set 6 for the mechanical linkage (table 1). In
the left graph, the magnitude of the residual vector is shown. In the right graph, the distribution of the frequency of
the magnitudes is shown.
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The same motions were repeated with a female test
subject and the results are shown in Table 4. The largest
difference between calculated and measured values is
2.4 cm and again occurs for the the left upper arm. The
algorithm also finds a longer length for the left upper
arm than we measured. The maximum error is less than
that for the male test subject, but there is less consistency
among the results for the female test subject. The mean
of the differences between the calculated and measured
values is greater than one centimeter for the right lower
leg, left upper leg, and left upper arm.

The system also computed a hierarchy for each of the
trials. For all of the “exercise” trials for both the male
and female subject the computed hierarchy was correct.
However, the results from the “walk” data were less sat-
isfactory. Out of the five “walk” trials, for three of them
the algorithm improperly made one of the upper legs a
child of the other, instead of the pelvis. We believe that
this occurred because the pelvis sensor is mounted on the
system’s battery pack worn on the subject’s hip. Rotating
the thigh upwards causes motion in this sensor that could
have contributed to the error. The limb length results we
have reported are, of course, for the correct hierarchy as-
signments.

In addition to the joint measurements we have re-
ported, our algorithm determines information for joints,
such as between the chest and pelvis, that model the
bending of the torso but which are gross approximations
to the way the spine bends. Our algorithm reports limb
lengths for these joints within the torso, and they are gen-
erally consistent with the dimensions of the torsos of the
subjects. However, because we have no reasonable way
measuring these lengths for comparison, we have omitted
them from our presentation of the results. The locations
computed for these joints can be seen in figure 1 and the
animations that accompany this paper.

Finally, it is worth noting that the current process is
quite fast. On an SGI O2 with a 195 MHz R10000 pro-
cessor, it takes less than 4 seconds to process 45 seconds
of motion data for 16 sensors with the hierarchy spec-
ified, and less than 14 seconds when the hierarchy was
not specified.

5 Discussion and Conclusions
This paper presents an automatic method for computing
the limb lengths, joint locations, and sensor placement
from magnetic motion capture data. The method pro-
duces results accurate to the resolution of the sensors for
data that was recorded from a mechanical device con-
structed with revolute joints. For data recorded from a
human subject, the accuracy of the results is consistent
with the estimates in the biomechanics literature for the

error introduced by approximating human joints as rev-
olute and assuming that the skin does not move with re-
spect to the bone.

In a production animation environment, measuring and
calibrating a performer is one of the most tedious and ex-
pensive parts of the process. Because this algorithm runs
very quickly, it provides a rapid way to accomplish the
calibration for magnetic motion capture systems. Detect-
ing marker slippage or correcting for marker slippage are
additional complications in the motion capture pipeline.
By looking for large changes in the joint residual, this
technique provides a rapid way of determining if a marker
slipped during a particular recorded segment and allow-
ing the segment to be performed again while the subject
is still suited with sensors.

The parameters computed by this method can be used
to create a digital version of a particular performer by
matching a graphical model to the proportions of the mo-
tion capture subject. The process does not require the
subject to assume a particular pose or perform specific
actions other than to fully exercise their joints. There-
fore, the method could be incorporated into applications
where explicit calibration is infeasible. A cleverly dis-
guised “exercise” routine could be part of the pre-show
portion of a location-based entertainment experience, for
example.

The algorithm would also be of use in applications
where the problem is fitting data to a graphical model
with different dimensions than the motion capture sub-
ject. The algorithm presented here could be used in a
pre-processing step to provide the best-fit limb lengths
for the data and modify the data to have constant limb
lengths. Then constraint-based techniques could be ap-
plied to adapt the resulting motion to the new dimensions
of the graphical character.

We used magnetic motion capture data in our work be-
cause we had that type of system available, but the tech-
nique should work with optical data as well. Many optical
systems use techniques similar to those described by [17]
to fit a transformation matrix to several position mark-
ers attached to a single limb. This transformation matrix
provides translation and orientation data for each body
part; our algorithm can then be applied to the data just
as it was applied to data from the magnetic system. The
noise properties of optical data are different from mag-
netic data, however, which may affect the quality of the
fit.

Passive optical systems often have problems with
marker identification because occlusion causes markers
to appear to swap. For example, when the hand passes
in front of the hip during walking, the marker on the
hand and the one on the hip may become confused. If
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Meas. Exer. 1 Exer. 2 Exer. 3 Exer. 4 ∆ 1 ∆ 2 ∆ 3 ∆ 4

Right Lower Leg 40.0 40.8 40.9 42.2 42.5 -0.8 -0.9 -2.2 -2.5
Left Lower Leg 40.3 37.3 38.4 41.2 41.5 3.0 1.9 -0.9 -1.2
Right Upper Leg 41.6 41.5 42.1 42.9 42.2 0.1 -0.5 -1.3 -0.6
Left Upper Leg 43.2 41.4 41.8 43.2 43.0 1.8 1.4 0.0 0.2
Right Lower Arm 27.0 26.3 26.7 27.7 27.0 0.7 0.3 -0.7 0.0
Left Lower Arm 26.7 26.5 27.0 26.7 27.1 0.1 -0.3 -0.1 -0.4
Right Upper Arm 29.5 32.1 31.3 29.3 28.8 -2.6 -1.8 0.2 0.7
Left Upper Arm 29.5 33.7 32.9 30.1 29.9 -4.1 -3.4 -0.6 -0.4

Table 2:A comparisonof measurements and calculated limb lengths for four data sets of a male test subject attempting
to exercise each degree of freedom essentially in isolation. The units are cm and the columns labeled∆ show the
difference in measured and calculated values for the appropriate set.

Meas. Walk 1 Walk 2 Walk 3 ∆ 1 ∆ 2 ∆ 3

Right Lower Leg 40.0 40.7 40.3 38.9 -0.6 -0.3 1.1
Left Lower Leg 40.3 40.8 38.9 39.8 -0.4 1.4 0.5
Right Upper Leg 41.6 40.7 40.6 42.6 0.9 1.0 -1.0
Left Upper Leg 43.2 45.1 42.7 43.1 -1.9 0.5 0.1
Right Lower Arm 27.0 27.3 27.5 25.8 -0.3 -0.5 1.2
Left Lower Arm 26.7 26.2 24.9 25.6 0.5 1.7 1.0
Right Upper Arm 29.5 31 31.1 32.7 -1.4 -1.6 -3.2
Left Upper Arm 29.5 32.3 32.3 30.8 -2.7 -2.7 -1.3

Table 3:A comparisonof measurements and calculated limb lengths for three data sets of a male test subject attempt-
ing to exercise all degrees of freedom simultaneously. The units are cm and the columns labeled∆ show the difference
in measured and calculated values for the appropriate set.

Meas. Exer. 1 Walk 1 Walk 2 ∆e 1 ∆w 1 ∆w 2

Right Lower Leg 36.8 39.1 38.0 38.1 -2.3 -1.2 -1.3
Left Lower Leg 36.5 37.6 37.0 37.4 -1.1 -0.5 -0.9
Right Upper Leg 42.2 42.9 43.3 42.2 -0.7 -1.1 0.0
Left Upper Leg 41.9 42.4 44.1 42.9 -0.5 -2.2 -1.0
Right Lower Arm 24.8 25.5 25.3 22.4 -0.7 -0.5 2.3
Left Lower Arm 24.8 25.1 24.8 23.0 -0.3 0.0 1.8
Right Upper Arm 27.6 27.5 27.5 28.7 0.2 0.1 -1.0
Left Upper Arm 27.6 28.5 30.0 29.0 -0.9 -2.4 -1.3

Table 4:A comparison of measurements and calculated limb lengths for four data sets of a female test subject. The
column labeled “Exercise” denotes a performance attempting to exercise each degree of freedom in isolation, while
the columns labeled “Walk” denote a performance attempting to exercise all degrees of freedom simultaneously. The
units are cm and the columns labeled∆ show the difference in measured and calculated values for the appropriate set.
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Figure 8: Residual errors of the left shoulder for the data from Walk 2 of the male test subject (table 3). In the
left graph, the magnitude of the residual vector is shown. In the right graph, the distribution of the frequency of the
magnitudes is shown. The scale of the residual vectors is larger than that of the residual vectors for figures 6 and 7.

this happens, the marker locations may change relatively
smoothly but the joint center of the inboard and outboard
bodies for each marker will change discontinuously. This
error should be identifiable when the data is processed,
allowing the markers to be disambiguated.

For relatively clean data, this algorithm can be used
to extract the hierarchy automatically. Specifying the hi-
erarchy is not burdensome for magnetic motion capture
data because the markers are uniquely identified by the
system. However, automatic identification of the hierar-
chy might be useful in situations where the connections
between objects are dynamic such as pairs dancing or a
subject manipulating an instrumented object.

We have assumed that the hierarchy is a strict tree and
does not contain any cycles or loop joints such as the
closed chain that is created when the hands are clasped
together. If the hierarchy is knowna priori then the loca-
tion of a loop joint is found just as it is for any other joint.
If the hierarchy is not known, then the method of Sec-
tion 3.3 will not find cycles and the hierarchy it returns
will be missing the additional joints required to close the
loops. This problem could be detected by informing the
user that a joint fit with a low error was not used in build-
ing the tree.

The algorithm we have described is statistically equiv-
alent to fitting a parameterized model to a distribution.
The revolute joint model that is commonly used for skele-
tal animation is linear, but more complex models that ex-
plicitly model the errors introduced by the non-revolute
nature of the joints, the slippage of skin, or the noise
distribution seen in the magnetic setup would be non-
linear. Non-linear models have been used in the robotics
literature to model elastic deformation of robot limb seg-
ments, joints that do not have a fixed center of rota-
tion, and dynamic variation due to system inertial prop-
erties [15, 8, 25, 9, 12]. Reconstructing the motion based

on the joint locations, as described in Section 3.4, is a
first step towards identifying the components of the mo-
tion that are due to actual motion and those that are due to
errors. The addition of more sophisticated models would
allow us to separate the components of the data that are
attributable to the motion of the subject from the com-
ponents that are due to other sources. This separation
would possibly allow very accurate data to emerge even
from systems where the sensors are only loosely attached
to the subject.
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