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SUMMARY

Whenever a new sensor or system comes online, engineers and analysts responsible

for processing the measured data turn �rst to methods that are tried and true on existing

systems. This is a natural, if not wholly logical approach, and is exactly what has happened

in the advent of hyperspectral imagery (HSI) exploitation.However, a closer look at the

assumptions made by the approaches published in the literature has not been undertaken.

This thesis analyzes three key aspects of HSI exploitation:statistical data modeling,

covariance estimation from training data, and dimension reduction. These items are part of

standard processing schemes, and it is worthwhile to understand and quantify the impact

that various assumptions for these items have on target detectability and detection statistics.

First, the accuracy and applicability of the standard Gaussian (i.e., Normal) model is

evaluated, and it is shown that the elliptically contouredt-distribution (EC-t) sometimes of-

fers a better statistical model for HSI data. A �nite mixtureapproach for EC-t is developed

in which all parameters are estimated simultaneously without a priori information. Then

the effects of making a poor covariance estimate are shown byincluding target samples in

the training data. Multiple test cases with ground targets are explored. They show that the

magnitude of the deleterious effect of covariance contamination on detection statistics de-

pends on algorithm type and target signal characteristics.Next, the two most widely used

dimension reduction approaches are tested. It is demonstrated that, in many cases, signi�-

cant dimension reduction can be achieved with only a minor loss in detection performance.

In addition, a concise development of key HSI detection algorithms is presented, and

the state-of-the-art in adaptive detectors is benchmarkedfor land mine targets. Methods for

detection and identi�cation of airborne gases using hyperspectral imagery are discussed,

and this application is highlighted as an excellent opportunity for future work.

xiii



CHAPTER 1

INTRODUCTION

Since the �rst �ight of NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS)

instrument 20 years ago, interest in algorithms for exploitation of hyperspectral imaging

(HSI) data has grown by leaps and bounds. A variety of sensorshave been built to satisfy

the research interests of both commercial and government sponsors, and practicioners from

all over the world have shifted their attention to this new form of remote sensing. The ability

of this new technology to discriminate spectral signals (i.e., targets) of interest is intriguing

to a wide audience: academia, commercial industry, and the military alike. As a passive

technique hyperspectral imaging offers the advantage of not being detectable by the objects

or adversaries being sensed, and requires electronics thatconsume relatively little power.

To illustrate the variety of applications for HSI, �gure 1 breaks down common spectral

exploitation tasks and their region of support, from visible to long-wave infrared (LWIR).

It is clear that there is tremendous utility across a wide spectral region, and as such there is

a real need for robust algorithms in exploitation tasks suchas target detection.

1.1 Research Overview

This thesis presents a series of analyses on various aspectson the signal processing chain

for hyperspectral image data. Target detection is by far themost common HSI exploitation

task. This research pokes and prods standard assumptions ofthe adaptive detection problem

in order to gain both a qualitative and quantitative feel fortheir accuracy and importance

in maintaining the overall �delity of the �nal information product – the detection statistic.

Along the way, a few peripheral but altogether relevant and interesting items are discussed,

such as detecting land mines and hazardous airborne gases.
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Figure 1: A breakdown of common spectral data exploitation tasks and their regions of
support, from visible to LWIR.

Speci�cally, this thesis is organized as follows:

Chapter 2 presents a brief background of hyperspectral imaging, frames the problem of

adaptive detection, and outlines key similarities and differences between HSI and

radar.

Chapter 3 discusses statistical modeling of spectral data and ways tomeasure to goodness-

of-�t of statistical models. A scheme for simultaneously estimating all the parameters

of an EC-t �nite mixture model is covered in detail. Results show that the elliptically

contouredt-distribution offers a valid modeling alternative to thosebased on Normal

distributions.

Chapter 4 provides a direct, concise treatment of algorithms for target detection in hy-

perspectral imaging. A signal processing perspective, something rarely found in the
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remote sensing literature, is taken in the description of signal models and perfor-

mance evaluation for state-of-the-art algorithms.

Chapter 5 evaluates the set of detectors presented in Chapter 4 for multiple, real-world

data sets. Land mines, one of the most dif�cult ground targets to detect passively, are

the backdrop for this evaluation.

Chapter 6 further explores some of the algorithms presented in Chapter4, but this time

applied to the task of detecting airborne gases and chemicalplumes. Other, non-

algorithmic methods for identifying a gas specimen are alsopresented.

Chapter 7 provides an analysis of the deleterious effect of covariance estimate contamina-

tion. Qualitative (e.g., visual) and quantitative (e.g., empirical) results clearly show

that poor training data including target-like samples can have a signi�cant impact on

detection results.

Chapter 8 offers analysis of the impact that the most widely-used dimension reduction

methods have on detector output. Reducing dimensionality isa common pre-processing

step, yet very little is known on the impact that dimension reduction transformations

have on target detectability and detection performance.

Chapter 9 concludes the thesis with a summary of contributions and future work.

3



CHAPTER 2

BACKGROUND

2.1 Review of Hyperspectral Imaging

Generally speaking, electro-optical (E-O) remote sensinginvolves the acquisition of in-

formation about a scene or object without making physical contact with it. Hyperspectral

imagers are a class of E-O imaging spectroscopy sensors in which the waveband of in-

terest is divided into hundreds of contiguous narrow bands (i.e., image channels) for the

purpose of signature analysis. Figure 2 shows the concept ofhyperspectral imaging. Hy-

perspectral imagers offer high spectral resolution that preserves important aspects of the

spectrum (i.e., the shape of narrow absorption bands) and makes it possible to differenti-

ate distinct materials on the ground. The basic principle isthat materials re�ect, absorb,

and emit electromagnetic radiation in ways characteristicof their molecular composition

and shape [1], [2], [3], [4]. The spatially and spectrally sampled information is typically

visualized as a `data cube', whose face is a function of the spatial coordinates and whose

depth is a function of spectral band (i.e., wavelength). In the wavelength dimension, each

image pixel is a vector that provides a spectrum characterizing the materials within the

pixel. Conversely, the data in each band corresponds to a narrowband image of the surface

covered by the �eld of view of the sensor. Progress in multi-channel (i.e., spectral band)

imaging has been evolutionary, with the width and number of channels steadily improving

as the quality of focal plane technology has increased [5].

Many commercial and a signi�cant number of government-funded hyperspectral im-

agers operate in the re�ective regime of the electromagnetic spectrum. Ranging from

4



Figure 2: Concept of hyperspectral imaging illustrated for a pushbroom sensor.

approximately 0.4-2.5� m (400-2500 nm), this portion of the spectrum covers the visi-

ble through short-wave infrared (SWIR) wavelengths. Hyperspectral imaging systems de-

signed for the emissive regime, also called the thermal or long-wave IR region, typically

operate in the range from 7-14� m. These sensors are less prevalent in the commercial

and academic research communities than in government sincethey require more sensitive

optics and complicated electronics that are more costly.

While the concept of hyperspectral imaging is straightforward, there are a number

of practical considerations that must be dealt with in �elding a hyperspectral sensor and

processing its data. Although not the focus of this research, it is worth mentioning that

environmental factors play an enormous role. Atmospheric effects such as absorption and

5



scattering are chief among these. Also, viewing angle, secondary illumination, and shad-

owing come into play. Spatial and spectral resolution trade-offs are constantly considered

by system engineers [6]. From a signal processing perspective, the spectral variability

exhibited by a given material (largely resulting from surface roughness) is probably the

greatest challenge for algorithm developers.

2.2 Framework for Adaptive Detection

Despite its lifespan of only 30 years, the area of adaptive array signal processing has a rich

history. This is evident from the bodies of literature and numerous conferences devoted

to the topic, as well as from technologies spawned or furthered by successes in the �eld.

Speci�cally, the contemporary formulations of adaptive array detection trace their roots

back to Reed, Mallett, and Brennan [7] and later to Kelly. Theseindividuals (along with

a few others) were instrumental not only in formalizing thisarea of signal processing, but

also in making it more widely known and popular with those outside a narrow community

of researchers tackling problems for the defense establishment. Of particular interest to

this thesis is the Generalized Likelihood Ratio Test approach taken by Kelly and a series

of detection statistics that resulted. The problem statement offered by Kelly is summarized

below.

Adaptive array detection considers the problem of determining signal presence in a

singleL � 1 array observationx. The radar community refers tox as a `snapshot' or the

primary data vector. In the case of multi-channel (e.g., hyperspectral) imaging, the sample

is a pixel vector. This primary data vector has an unknown covariance denoted by� , which,

at times, may also be scaled by a known constant� . Essentially, it is desired to declare the

observation as one of two things:

H0 : x = v

H1 : x = Sa+ v;

6



either the primary data vector consists of interference only (i.e., background1 plus noise),

represented by null hypothesisH0, or it consists of signal plus noise, represented by hy-

pothesisH1. When the target signal is not present in the case ofH0, there is still other

signal energy measured. However, it is not of interest and isincluded along with the ad-

ditive noise, together denoted byv, such that it encapsulates both noise and background.

When the target signal is present in the primary data vector inthe case ofH1, the signal

model consists of anL � P matrixS, multiplied by an unknown vector of target signal para-

metersa, plus an additive noise termv. The matrixScan be thought of as a system transfer

function. This is analogous to the radar world, whereS contains the steering vectors for

multiple pulses of radar echo returns. In the case of hyperspectral detection,Scontains the

a priori information available about the target. As the number of columns ofS decreases

(i.e., dimension of target subspace), the information on the target increases. This is to say

that there is less variability in the target signal model. Infact, for a deterministic target

P = 1, and since there is only a single column, the target is represented bys.

This detection problem has two unknowns,� anda. To accommodate the ignorance

of these `nuisance' parameters, it is assumed that a secondary data set (i.e., a training set)

is available. Training data is assumed to be independent andidentically distributed (i.i.d.)

to the test data. In denoting the training data withN samples asX = [ x1jx2j : : : jxN ], it is

assumed that each pixel vectorxi contains background only and shares the same covariance

as the primary data vector. As such, the determination on signal presence will not be made

on observing the primary data vectorx alone, but rather based on the totality of the data

summarized byX and the primary data vector. Under both hypotheses, it is assumed that

N � L.

1The term `background' is frequently used in the HSI literature and is synonymous with the term clutter
in the radar literature. Both systems collect measurementsthat contain unwanted energy. Data collected by
hyperspectral sensors is ultimately still an image, and as such those samples (e.g., pixels) containing anything
other than the target signal of interest are called background. While the term interference is really more apt
since it means anything that is not wanted, the term background is more popular in the HSI literature, and we
may use the terms interchangeably.
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An important quantity that dominates the detection schemesdiscussed in this thesis is

the covariance matrix, also referred to as the sample covariance. Throughout this docu-

ment, a known quantity such as the covariance is simply denoted by� , whereas an esti-

mated quantity, such as the maximum likelihood (ML) estimate of the covariance matrix,

is denoted bŷ� . Of course, for the Normal case, this is

�̂ =
1
N

NX

n=1

(xn � �̂ )(xn � �̂ )T ; (1)

and �̂ is the ML estimate of the mean of the data set. Keeping with standard notation,

boldface upper-case letters and symbols are matrices and boldface lower-case letters and

symbols are vectors.

2.3 Hyperspectral vs. Radar

Spawned by research and development successes in the mid 1970s and late 1980s, a sig-

ni�cant body of work now exists in the area of radar array processing, including adaptive

detection. This research was motivated by the need for more accurate and robust radar tar-

get detection, driven by the production of increasingly more capable radar systems. Despite

the maturation of other remote sensing technologies in recent years, however, the majority

of publications on detection algorithm development withinthe statistical signal processing

community are still focused on radar.

One theme of this thesis is to revisit the classic adaptive detection problem developed

for radar array processing and apply it to hyperspectral imaging. While key parallels exist

that make this a promising proposition, a number of important items must be addressed

to successfully employ adaptive detection concepts to HSI.Some items have already been

discussed in the literature; others have not.

Many of these differences are a direct result of the remote sensing phenomenology.

Radar is an active system, illuminating the target with coherent pulses. HSI is a passive

technique, relying on incoherent solar illumination from the sun to provide energy in the
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scene. Radar transmitters are instruments that send out electromagnetic pulses in a well-

de�ned, controlled fashion. For this reason, radar signalscan be, and often are, constructed

to be zero mean. Data measured by hyperspectral sensors are electro-optical signals that are

the result of many complicated interactions solar radiatedenergy has with the atmosphere

and ground. These signals are decidedly not zero mean. Another major difference is that

radar data are complex, while HSI data are real valued. Further, even though it is not a

requirement of the adaptive detection structures developed for radar, the literature is dom-

inated by work where both the dimensionality of the problem and the number of samples

are small. On the contrary, HSI data sets often contain many hundred thousand samples

and are of a dimension in the hundreds.

When considered together, these factors amount to substantial and signi�cant differ-

ences in processing hyperspectral imaging data for adaptive detection. Table 1 offers a

concise summary of these differences.

Table 1: Key differences between radar and hyperspectral for adaptive detection.

HSI RADAR

natural illumination man made illumination

incoherent energy coherent energy

passive technique active technique

electro-optical electro-magnetic

many pixel vectors few snapshots

high dimensionality (100's) low dimensionality (10's)

real-valued complex-valued

never zero-mean almost always zero-mean
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CHAPTER 3

STATISTICAL DATA MODELING AND PARAMETER
ESTIMATION

For this thesis, research has been conducted in a number of areas related to multivari-

ate statistical analysis. First, existing statistical models for hyperspectral imaging data of

different types were evaluated for goodness-of-�t using both traditional and contemporary

metrics. As a result, it was con�rmed that models based on a Normal distribution can be

inaccurate. We then showed that densities from the family ofelliptically contoured (EC)

distributions can lead to more accurate models with smallerresidual error, speci�cally mod-

els based on the elliptically contouredt (EC-t) distribution. Two automated techniques for

generating models based on a mixture of EC-t distributions were developed, both of which

are novel in that they require no manual manipulation of parameters during the process.

Also they do not require any a priori information.

3.1 Measuring Goodness-of-�t for Statistical Data Models

A statistical test in which the validity of one hypothesis istested without speci�cation of

an alternative hypothesis is called a goodness-of-�t test.The general procedure consists

of de�ning a test statistic, which is some function of the data measuring the distance be-

tween the hypothesis and the data (in fact, the `badness-of-�t'), and then calculating the

probability of obtaining data that have a still larger valueof this test statistic than the value

observed, assuming the hypothesis is true. For the case of modeling hyperspectral imaging

data, goodness-of-�t tests are used to see whether a group ofpixels X = [ x1jx2j : : : jxN ]

matches a theoretical distribution such as the multivariate Normal. If so, algorithms can be

designed with signi�cant assumptions and can take advantage of desirable statistical prop-

erties. Goodness-of-�t tests can be employed on a variety ofdistributions for a given data

set, quickly providing the residual error from the model to the data. The distribution that
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yields the smallest residual error is the best �t.

The Mahalanobis distance is a familiar quadratic term and isde�ned for the Normal

distribution as

� = ( x � � )T � � 1(x � � ): (2)

According to [8] the distribution of the estimated Mahalanobis distancê� (using ML esti-

mates for the mean and covariance) is well-modeled using a Chi-Square distribution when

the underlying data are multivariate Normal.

As such, goodness-of-�t tests can be used to evaluate how well the univariate statistic

�̂ follows a theoretical curve. To test data that supposedly follow a Normal distribution,

we compare�̂ to a Chi-Square. This is a powerful approach, since goodness-of-�t tests

for multivariate distributions are naturally more complicated and since the Mahalanobis

distance is a familiar quantity that can be easily computed using equation (2).

3.1.1 Kolmogorov-Smirnov Test

Given a data sety and computing its empirical cumulative distribution function Fd(y), the

Kolmogorov-Smirnov test [9] is

D = max
i

jFd(yi ) � F (yi )j; (3)

whereF (yi ) is the cumulative distribution function (cdf) under test atpointi . The Kolmogorov-

Smirnov test compares the empirical cdf of the given data setwith that of a known cdf by

computing the maxmimum difference between the theoreticalcdf and the empirical cdf

(ecdf) for all points iny. The result of the testD is the maximum difference between the

two values at all points in the data set.

A closer examination of the Kolmogorov-Smirnov test reveals a possible weakness

for the goal of paying careful attention to the tails of the distribution when measuring

goodness-of-�t. At the tails of the distribution, the values are small, so even though the dif-

ference between the theoretical cdf and the ecdf of the data at a given point in the tail may

berelativelyvery large – and therefore signi�cant to target detection because precious false

11



alarm probability (PF A ) depends largely on the tails – it is quite possible that the magnitude

of a difference between two values at a given point in the mainbody of the distribution may

be larger, despite being relatively insigni�cant.

3.1.2 Chi-Square Test

An alternative to the Kolmogorov-Smirnov test is the Chi-Square test. It has the attractive

feature of being applicable to any univariate distributionfor which the cumulative distribu-

tion function can be calculated. For a given distribution, the Chi-Square test [10] compares

the actual number of observations in an interval to the givennumber of observations in the

same interval. Here,K equiprobable intervals are used to cover the univariate probability

density function (pdf) for the given distribution, and eachof these intervals has a proba-

bility of 1=K . For the number of intervalsK , the number of expected data points in each

intervalC, and the number of actual data points in thei th intervalGi , the Chi-Square test

is

D =
KX

i =1

(Gi � C)2

C
: (4)

Each of the intervals represents a region of equiprobability and the test gives equal

weight to each of theK intervals. Recall, however, that the tails of a Normal distribution

are regions of low probability. As such, the tail of the distribution is covered by only a

few intervals, while the main body of the distribution is covered by several intervals. This

means that the Chi-Square test tends to reliably match the main body of the given data set

with the distribution under test, but offers a poor evaluation of the tails. Again, this is not

very desirable for a goodness-of-�t test whose ultimate application (e.g., target detection)

cares about the tails of the background distribution.

3.1.3 Exceedance Metric

Recognizing the limitations of the previous tests in measuring goodness-of-�t for situations

where the tails of the distribution are important, Marden [11] was the �rst in the remote

sensing literature to identify a test that properly evaluates the �t of the tails of the empirical
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distribution. Called the Exceedance metric, it compares theexceedance curve of the given

data with that of a theoretical distribution. The function for probability of exceedanceE(y)

for a cdfF (y) is

E(y) = 1 � F (y): (5)

The inverse of the exceedance function is then

E � 1(P) = f y : 1 � F (y) = Pg (6)

which is the value ofy where the exceedance curve evaluates toP. If we take the inverse

of the exceedance curve of the proposed distribution at thei th point we haveE � 1(Pi ). The

inverse of the exceedance curve of the actual data isE � 1
n (Pi ) and is evaluated at the point

yi , where1 � F (yi ) = Pi . The pointsPi areK equally log-spaced steps on the probability

axis of the exceedance curves. Together these terms are usedto construct the Exceedance

metric

D =
KX

i =1

j[E � 1
n (Pi ) � E � 1(Pi )]j: (7)

When trying to show the shape of the tails of a distribution, exceedance curves prove to be

quite useful. Compared with other tests, the Exceedance metric as a goodness-of-�t test

does a better job of modeling the tails of a distribution.

3.1.4 Other Variants and Modi�cations

It is possible to modify the Chi-Square test so that it uses only a desired fraction of the

upper part of the data set, for example 10%. This correspondsto the upper tail of the

distribution and assumes that the distribution is one-sided. Similar to the description in

Section 3.1.2, the modi�ed Chi-Square test divides the data set's tail into K equiprobable

intervals, where each interval has a probability of0:1=K (in the case of 10%). Each interval

then has a corresponding number of data pointsC, which is constant, and the number of

actual data points in each intervalGi is computed. Goodness-of-�t is computed using

equation (4) as before.
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A modi�cation of the Kolmogorov-Smirnov (K-S) test, which tries to give more weight

to the tails of the distribution, is the Anderson-Darling test. The K-S test is distribution free

in the sense that the critical values do not depend on the speci�c distribution being tested.

The Anderson-Darling test makes use of the speci�c distribution in calculating critical

values. This has the advantage of allowing a more sensitive test and the disadvantage that

critical values must be calculated for each distribution.

Certainly, the three goodness-of-�t tests presented here donot constitute an exhaustive

set. Over the years, minor modi�cations have been made to fundamental tests and vari-

ations may or may not work better in a speci�c application of goodness-of-�t testing or

model-�tting. However, the general approaches taken by theKolmogorov-Smirnov, Chi-

Square, and Exceedance tests are representative of fundamental goodness-of-�t techniques.

A comprehensive treatment of goodness-of-�t techniques can be found in [12].

3.1.5 Results for Normal

Data collected by the Airborne Hyperspectral Imager (AHI) [13], a long-wave IR spectrum

sensor built and operated by the University of Hawaii, was used to assess the accuracy of the

multivariate Normal distribution in modeling hyperspectral data. As discussed above, the

Mahalanobis distance� of a Normal random vectorx follows a Chi-Square distribution.

However, as the Exceedance metric in Figure 3 clearly shows,the data do not come close

to following the� 2 curve. Tests on other data sets from the visible/short-waveIR spectrum

show similar results; the Normal often does a poor job of �tting hyperspectral imaging

data.
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Figure 3: Exceedance metric goodness-of-�t test for the Normal distribution.
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Figure 4: Exceedance metric goodness-of-�t test for the EC-t distribution.
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3.1.6 Results for Elliptically Contoured t

After testing a number of different distributions, the elliptically contouredt distribution

offered the best �t on all the data sets tested. The family of EC distributions includes the

Normal as a special case, as well as the Weibull, K, Cauchy and others [14]. All of these

distributions share the familiar symmetry of the Normal distribution and are characterized

by their contours of equiprobability [15]. One of the thingsthat makes the EC-t a good

match for hyperspectral data is a third parameter, the degrees of freedom [16]. This para-

meter can be used to tune the tails of the distribution so thatit nicely matches the heavier

tails exhibited by HSI data.

Certainly, thet and others in the family of EC distributions are not the only alternative

for dealing with long, heavy tails not handled by the Normal.The family of (symmetric)

alpha-stable distributions also has shown promise in modeling heavy-tailed radar clutter

[17]. However, many of the distributions in the alpha-stable family have in�nite variance

and/or do not have closed-form expressions for their moments. Further, statistical inference

of the type we are concerned with in adaptive detection is extremely complicated for the

alpha-stable family [18]. As such, the EC-t is a more practical alternative for this research.

The reason it is important to accurately model the tails of the background distribution in

target detection is related to false alarm performance and constant false alarm rate (CFAR)

operation. Threshold selection, an important task in the overall detection process, is pred-

icated on the background distribution. In CFAR operation, the tail of the background dis-

tribution is used to integrate out a constant value and the threshold is set at the point where

that value is achieved.

Figure 4 again shows an Exceedance metric goodness-of-�t test for the Mahalanobis

distance, but this time the data is from the AVIRIS sensor [19]in the re�ective regime, and

the Chi-Square curve representing the Normal model is joinedby anF distribution curve

representing an EC-t model. Clearly, theF curve, which characterizes the quadratic term

(i.e., Mahalanobis distance) of the EC-t distribution, is a much better �t for hyperspectral
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imaging data.

3.2 Finite Mixtures

Hyperspectral images are inherently spectrally inhomogeneous. Even though many hyper-

spectral imaging sensors have a narrow �eld of view, the altitudes from which the data are

collected dictate that the imaged scenes contain many different physical materials. For ex-

ample, at an altitude of 705 km, each pixel captured by the Hyperion satellite hyperspectral

imager [20] covers 30 meters of ground on a side.

As indicated in Section 2.1, HSI sensors are employed because of their ability to dif-

ferentiate one material from another by spectral properties. In ground cover classi�cation,

the goal is to create a thematic map, or simply a color-coded image that represents what

material is present at each pixel location. The variabilityof each material type must be �rst

characterized, using either probabilistic or geometric constructs. When applying a decision

rule in the classi�cation procedure, the results will be valid and useful if the class de�ni-

tions are accurate. Similar logic applies for target detection applications; the background

data must be modeled accurately so the response of these pixels is well-separated from

target pixels in the output detection statistic.

Since inhomogeneity of the data reduces the robustness of spectral models, accurately

representing the variability present in the data is important.

Parameterized models are popular, with the simplest being the univariate Normal dis-

tribution. As seen in Section 3.1.5, very rarely does a single Normal distribution accurately

characterize the variability of data collected by operational hyperspectral imaging sensors.

Instead, mixtures of distributions have shown promise to more precisely model the data

than a single distribution [21] [22]. Intuitively, this mixture approach to data modeling

has appeal since it can be thought of as combining individualprobability density func-

tions (pdfs) to get a multi-modal pdf; one mode is assumed foreach class of spectrally

homogeneous material present in the image. Without a priorispectral information about
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the materials present, and spatial information on the fraction of the image each material

covers, directly specifying parameters for each componentof a mixture model is dif�cult.

In many if not most remote sensing scenarios, such a priori information is not available,

and parameters for a mixture model must be estimated from thedata.

As such, a reasonable probabilistic model for spectral datais provided by the mixture

density

f (x) =
KX

i =1

� i f (x; � i ): (8)

This is known as a �nite-mixture model and has been espoused by many authors for a num-

ber of different statistical contexts, in particular [23] [24]. The key assumptions driving

the use of �nite-mixture models in hyperspectral image analysis are that unique materials

exhibit a representative spectrum and that the inter-classspectral variability of different

materials can be used to separate an entire scene into multiple homogeneous classes. These

groups of pixels can then, in turn, be accurately characterized by a single uni-modal multi-

variate pdf. Each mode of the mixed pdf corresponds to a unique material and, in combina-

tion, account for the spectral variability of the entire inhomogeneous scene within a single

function.

3.3 Parameter Estimation for EC-t Mixture Models

The two major items to be addressed in constructing such a mixture model are the form for

each pdf component in the mixture and the method for estimating all the parameters of each

component's distribution. The �rst issue has been chosen based on preliminary research

�ndings presented in Section 3.1.6; that is, EC-t densities will be used. The second issue

is discussed in this section.

When trying to compute maximum likelihood estimates, a number of methods can be

employed. Newton-Raphson, quasi-Newton, and modi�ed-Newton are all Newton-type

methods that can be used to �nd maximum likelihood estimates. However, these methods
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can quickly become quite complicated for many estimation problems and a stable alterna-

tive is required. An iterative approach that is widely applicable to the computation of ML

estimates is the Expectation-Maximization algorithm. This algorithm has demonstrated its

utility in a variety of so-called incomplete data problems.On each iteration of the EM

algorithm there are two steps: called the expectation step (E step) and the maximization

step (M step). Because of these two steps, Dempster et al. so named the algorithm `EM' in

their paper [25].

3.3.1 Expectation-Maximization

The EM algorithm augments the observed dataYobs (i.e., incomplete data) to the larger

Yaug (i.e., complete data). Starting with an initial value	 (0) 2 	 , it then �nds 	 � , a

stationary point ofL(	 jYobs), by iterating the following two steps for(j = 0; 1; 2; : : :)

iterations:

E step – impute the augmented data (log-)likelihoodL(	 jYaug) by

Q(	 j	 (j )) = E[L(	 jYaug)jYobs; 	 (j ) ]; (9)

M step – determine	 (j +1) by maximizing the imputed (log-)likelihoodQ(	 j	 (j ))

Q(	 (j +1) j	 (j )) � Q(	 j	 (j )) 8 	 2 	 : (10)

Again, the idea is to selectYaug such that	 (j +1) is easy to compute, thereby providing

a simple, stable algorithm.

Here, EM is used to estimate four parameters, the weight of each component in the

mixture and three parameters for each pdf. The ellipticallycontouredt distribution also

has a parameter that controls the shape of its tail, in addition to the well-known mean and

covariance parameters of the Normal. The degree of freedom parameter speci�es the rate

of decay for the tails of thet distribution and allows for heavier tails to accommodate

hyperspectral data.
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Recall thatx is anL-dimensional column vector representing a pixel in the hyperspec-

tral image and� is the set of parameters for the multivariate uni-modal pdff L , also of

dimensionL. Both� and� range fromi = 1 : : : K , whereK is the number of components

in the mixture model, and the� i are mixture weights (i.e., priors) for each component. A

unity sum is enforced for the mixture weights,
P K

i =1 � i = 1. The entire set of parameters

(collection of all� 's and� 's) for the mixture model is denoted by	 . The multivariatet

density is

f L (x; � ; C; � ) =
�[ L + �

2 ]

�[ �
2 ](�� )

L
2

jCj �
1
2 [1 +

1
L

(x � � )T C� 1(x � � )]� L + �
2 (11)

f L (x; � i ) � tL (x; � i ; � i ; � i )

whereL is the length ofx, � is the dof, �
� � 2C = � is the covariance matrix, and� is the

mean vector. Not to be confused with the covariance matrix, unbolded� is the Gamma

function in equation (11).

Once the number of componentsK is set, the next step is determining how to initialize

the mixture model. For ML estimation using EM, initialization is extremely important to

�nding the global maximum of the likelihood function in addition to rate of convergence.

This is because EM ensures �nding a maximum of the likelihoodfunction using equations

(9) and (10), but since the function often has multiple maxima (i.e., many peaks), there is

no guarantee that the root found is the global maximum (i.e.,tallest peak).

We useK randomly chosen pixels to seed the segmentation process, one for each mix-

ture component. Random seeding is a simple mechanism and indeed not optimal, but

choosing random pixels as a starting point actually has a number of practical advantages

over Euclidean distance metrics or spectral angle measuresfor initialization. While using

the centroids found by pre-clustering the data may or may notlead to starting points that

are nearer to the global maximum in the likelihood space, such operations require addi-

tional computation. They are also randomly initialized themselves, and as such ultimately

provide no certainty that the initialization will be close to the global maximum.
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Given the dataX for N number of pixels, the objective is to estimate the mixture model

parameters	 = [ � 1; � 2; : : : ; � K ; � 1; � 2; : : : ; � K ; � 1; � 2; : : : ; � K ; � 1; � 2; : : : ; � K ]. Seeking

ML estimates for	 , the pixel likelihood function is used:

L(xn ; 	 ) =
KX

k=1

� k f k(xn ; � k ; � k ; � k): (12)

The data likelihood function is then

L(X; 	 ) =
NY

n=1

L(xn ; 	 ): (13)

Since the likelihood space is complicated and unfriendly tothe application of brute force

to directly solve equation (13), the use of the EM technique is practical to �nd	̂ .

Once the statistics for each component of the model	̂
(0)
i have been initialized, the

expectation step is executed. Here, the posterior probability P is computed for thei th

component at thej th iteration by

Pi (xn ; 	̂
(j )
i ) =

�̂ i f i (xn ; �̂ i ; �̂ i ; �̂ i )

L(xn ; 	̂
(j )
i )

: (14)

This posterior computes the probability that thenth pixel is a member of thei th data clus-

ter1. At each iteration, maximization is the second half of EM. Here, the parameter esti-

mates are updated according to the posterior just computed in equation (14). The mean,

covariance, and mixture weights are respectively updated by

�̂ (j +1)
i =

P N
n=1 xnPi (xn ; 	̂

(j )
i )

P N
n=1 Pi (xn ; 	̂

(j )
i )

(15)

�̂
(j +1)
i =

P N
n=1 (xn � �̂ (j +1)

i )(xn � �̂ (j +1)
i )T Pi (xn ; 	̂

(j )
i )

P N
n=1 Pi (xn ; 	̂

(j )
i )

(16)

�̂ (j +1)
i =

P N
n=1 Pi (xn ; 	̂

(j )
i )

N
: (17)

1To be precise, each component of the model is a pdf. The term cluster refers to a set of data samples that
is the result of using the model to assign each sample to one and only one cluster. Further, these pixel sets are
naturally grouped together (i.e., “clustered”) in spectral space.
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To �nd the ML estimate of the dof� , as with the other parameters, a derivative (e.g., a

“root”) of the likelihood function is located:

dL(X; 	̂ )
d�

= 0: (18)

Unlike the other parameters, however, expanding the left side of equation (18) results in a

nonlinear expression. It turns out that� (j +1)
i is a solution of

�  (
1
2

� (j )
i )+ log(

1
2

� (j )
i )+1+

�
1
N

NX

n=1

(log u(j )
n � u(j )

n )
�

+  (
� (j )

i + L
2

) � log(
� (j )

i + L
2

) = 0

(19)

whereu(j )
n is

u(j )
n =

� (j )
i + L

� (j )
i + [( xn � �̂ (j )

i )� � 1(xn � �̂ (j )
i )T ]

(20)

and is the Digamma function in equation (19),

 (x) =
d�( x)=dx

�( x)
: (21)

3.3.1.1 Solving for the Degrees of Freedom Numerically

While there are no references to the use of full, automatict mixtures with unknown dof in

the remote sensing literature, it has been noted in the statistics literature [26] that the con-

vergence of EM can be slow for unknown� . This is due to the need for a one-dimensional

search in determining� at each iteration. Unfortunately, there is no way around this, and

numerical optimization of equation (19) is required to �nd asolution. Newton-Raphson

and similar gradient or steepest-descent methods are oftenused to solve nonlinear equa-

tions numerically. However, Newton-Raphson can be very sensitive to its starting point.

Given that, for the �rst few iterations especially (becauseof random seeding) the estimate

of � (j � 1) for each cluster is extremely inaccurate, it is highly likely that it will make a poor

starting point for the search and an optimum may not be found.

Instead, the bisection method is employed, a fundamental approach that ensures that a

solution will be found. An equationf (w) = 0 , wherew is a real continuous function, has
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at least one root in the interval[wl ; wu] if f (wl )f (wu) < 0. Beginning with an interval that

is large enough to ensure that it contains at least one solution, the binary search begins by

halving the interval:

wm =
wl + wu

2
: (22)

The function is then evaluated at the boundaries to determine in which half interval the

solution lies.

f (wl )f (wm ) < 0 ! [wl ; wm ] (23)

f (wl )f (wm ) > 0 ! [wm ; wu] (24)

f (wl )f (wm ) = 0 ! wm (25)

The boundaries are reset to the appropriate interval and thefunction is evaluated again, with

the recursion ending when the product is exactly zero or whenthe interval is suf�ciently

small (i.e.,wu � wl < � ).

Overall, the EM algorithm stops when a maximum in the likelihood space is found	 � .

Once the complete data likelihood no longer increases aftereach iteration, the procedure

terminates and the current parameter estimates for each cluster are recorded. Each cluster

now represents a spectrally homogeneous class and is one of theK components of the �nal

mixture model. The assignment of each pixel to one of the model components is actually

determined by applying themaximum a posteriori(MAP) rule:

max
i

f Pi (xn ; 	̂ i )g ) zi;n = 1; (26)

wherez is an indicator variable withzi;n set to 1 when pixeln belongs to clusteri , and 0

otherwise.

Our initial trials using this approach were published in [27].

3.3.2 Stochastic Expectation-Maximization

In some applications of the EM algorithm, the E step is complicated and does not yield

a closed-form solution to the computation of conditional expectation of the complete data
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(log-)likelihood. One way to get around this problem is to resort to numerical integration.

However, in some situations, especially when the complete data density does not belong to

the exponential family, numerical integration over the missing data density does not always

preserve the function [28]. Thus, executing the E step by a Monte Carlo process may be a

viable and attractive alternative. Such a method was introduced in [29]. An EM algorithm,

where the E step is executed by Monte Carlo, is known as a Monte Carlo EM (MCEM)

algorithm. It applies whether the ML or MAP estimate is beingsought.

Even before the MCEM algorithm, others considered a modi�ed version of the EM

algorithm in the context of computing the ML estimate of parameters for �nite-mixture

models. It was called the Stochastic EM (SEM) algorithm [30]and it is the same as the

MCEM algorithm with M = 1.

However, with the SEM algorithm, the current posterior probabilities are calculated

using a Stochastic E step, wherein a single draw is made from the current conditional dis-

tribution ofz given the observed datax. Because of the assumption of independence of the

complete data observations, this is done by conducting a draw for each j(j = 1; 2; : : :).

That is, a drawz(j )
n is made from the multivariate distribution with the number of categories

having probabilities speci�ed by equation (14). This effectively assigns each observation

outright to one of the components of the mixture. The M step then consists of �nding the

ML estimate of the parameter vector as if the observations were deterministically classi-

�ed according toz. This contrasts with the EM algorithm, where these computations are

weighted with respect toall components of the mixture according to the current posterior

probabilities. Note that with the SEM algorithm, there is only one Monte Carlo sample

taken, so M = 1 always. This algorithm prevents the sequence from staying near an un-

stable stationary point of the likelihood function. It alsothen avoids the cases of slow

convergence observed in some uses of the EM algorithm, such as in the mixture problem

considered here.

As before, initializing	 (0) is necessary to seed the moments and mixture weights for
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each component. For SEM this is uniformly random. But in this case,K is not �xed before

initialization; instead, it is an initial guess that will bere�ned along with the estimation of

weights and density parameters.

Now, 	 = [ K; � 1; � 2; : : : ; � K ; � 1; � 2; : : : ; � K ; � 1; � 2; : : : ; � K ; � 1; � 2; : : : ; � K ].

The �rst step in SEM stands for stochastic (or perhaps more appropriately segmenta-

tion), where equation (26) is used to assign cluster membership.

Next is the maximization step, which occurs in three parts. The cardinality of each

cluster is computed by
KX

i =1

C(j )
i = N (27)

whereC(j )
i is a count of the pixels in clusteri . This clustering is done in an attempt to

encourage larger increases in equation (13), with the hope of moving out of a path toward

a local maximum and onto a path to the global maximum.

The mean, covariance, and mixture weights are respectivelycomputed using the car-

dinality of the current cluster rather than all pixels (where xn;i is thenth pixel of thei th

cluster)

�̂ (j +1)
i =

1

C(j )
i

C ( j )
iX

n=1

xn;i (28)

�̂
(j +1)
i =

1

C(j )
i

C ( j )
iX

n=1

(xn;i � �̂ (j +1)
i )(xn;i � �̂ (j +1)

i )T (29)

�̂ (j +1)
i =

C(j )
i

N
: (30)

The third part of the M step is when each component is checked to see if its contribution

to the overall mixture is signi�cant enough. Before initialization, a constraint is set that all

mixture components must satisfy. At each iteration, the mixture weights�̂ (j +1)
i must be

greater than a minimum� . If

�̂ (j +1)
i < �; (31)

the number of mixture components is decreased by one,K = K � 1. If only a tiny fraction

of the scene is being represented by a given component, not only is it not statistically

25



signi�cant, but it is not worth the computational burden of keeping the component in the

model. Finally, the E step in SEM is computed the same as in equation (14).

3.4 Finite Mixture Modeling Results for EM and SEM

Our preliminary experiments using the SEM technique in comparison with EM were pub-

lished in [31]. Figures 6 and 8 offer goodness-of-�t resultsfrom these experiments using

EM and SEM, respectively. The value of� exhibited by the data can be gleaned from read-

ing the plot in �gures 6 and 8, and this value should be compared with the value of� est

shown in the legend. For example, in �gure 6, the dark blue line in the plot is the actual

value of � for the data in cluster 7. This line is almost directly on top of the theoretical

dashed black line for� = 10. Looking at the� est value in the legend of �gure 6 shows an

estimated dof value of 10.3. This means that our estimate using the EM technique is close

to the actual value. For this data set, both parameter estimation techniques were reasonably

accurate in estimating the appropriate value for� and ultimately modeling the tails of the

data.

The data was collected by the AVIRIS sensor at Camp Pendleton, alarge U.S. Marine

Corps base in California. Figure 5 shows an RGB image of the scene. Both models were

initialized withK = 9 components. However, the result using the SEM technique hadonly

K = 6 components. The associated cluster images are shown in Figures 7 and 9, where

the assignment of pixels can be seen to be different for the SEM case of only six clusters.

Camp Pendleton 7
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Figure 5: RGB image of Camp Pendleton, scene 7.
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Figure 6: Exceedance metric for EC-t mixture model using EM technique.
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Figure 7: Cluster image generated from EC-t mixture model using EM technique.
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Figure 8: Exceedance metric for EC-t mixture model using SEM technique.
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Figure 9: Cluster image generated from EC-t mixture model using SEM technique.
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We published a more in-depth treatment of the entire problemin [32], including statis-

tical analysis of the estimation process and use of a different goodness-of-�t test. In this

work, AVIRIS data from Fort Hood, Texas was tested. RGB images of Fort Hood scenes 1

and 8 can be seen in �gures 10 and 11, respectively.
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Figure 10: RGB image of Fort Hood, scene 1.

50 100 150 200 250 300 350 400 450 500 550

50

100

150

200

250

300

350

400

450

500

Figure 11: RGB image of Fort Hood, scene 8.

For Fort Hood scene 1, the results can be seen graphically in �gures 12, 14(a), and 15.

For Fort Hood scene 8, the results can be seen graphically in �gures 13, 14(b), and 16.
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These results show that using the K-S goodness-of-�t test, the EC-t did a reasonably good

job at modeling the data. It is not perfect, however. Figures12(a), 15(d), and 16(b) all

show data with notable deviation from the model, despite using the EC-t distribution.

As such, our conclusion is that EC-t models offer a viable and tractable alternative for

hyperspectral imagery. Such a modeling approach is well-advised for HSI data exhibiting

heavy tails. The EC-t approach is not a panacea for all ills, however. The added complex-

ity of deviating from the simpler Normal models should be considered, especially if the

residual model error using the EC-t is only marginally smaller.
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Figure 12: K-S test for Fort Hood 1 using EM:L = 15, K = 11.
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Figure 13: K-S test for Fort Hood 8 using EM:L = 15, K = 14.

On the topic of parameter estimation, there is more of a clearcut result. Table 4 syn-

thesizes tables 2 and 3, and compares EM with SEM. Table 4 shows that EM requires al-

most an order of magnitude more iterations to achieve a fractionally larger improvement in

log[L c(	 )], equation (13). Further, EM must start and end with the same number of model

components, forcing the user to be very con�dent in his model-order selection. SEM re-

duces the degree of certainty required in the initial numberof model components. The only

drawback with SEM is that is does not guarantee an absolute increase in data log-likelihood

at each iteration. Still, it appears that SEM is clearly a �neparameter estimation choice for

many HSI data scenarios.
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Table 2: Selected analysis of EM results for Fort Hood data.

Scene Fort Hood 1 Fort Hood 8

Log-likelihood: mean 20688878 23413725

Log-likelihood: std dev 3158 9259

Log-likelihood: maximum 20693077 23426014

Iterations: mean 864 590

Iterations: std dev 282 61

Iterations: at maximumlog[L c(	 )] 913 535

Table 3: Selected analysis of SEM results for Fort Hood data.

Scene Fort Hood 1 Fort Hood 8

Log-likelihood: mean 20870657 23563042

Log-likelihood: std dev 159182 41594

Log-likelihood: maximum 21073599 23607418

Iterations: mean 132 143

Iterations: std dev 46.1 39

Iterations: at maximumlog[L c(	 )] 88 103

Components: mean 4.8 9.3

Components: std dev 1.3 0.8

Components: at maximumlog[L c(	 )] 7 10

Table 4: Comparison of EM and SEM results for Fort Hood data.

Scene FH 1 FH 8

Max log-likelihood, EM> SEM in value 0.88% 0.64%

Max log-likelihood, EM> SEM in num. iterations 1037% 519%

Mean log-likelihood, EM> SEM in value 1.81% 0.77%

Mean log-likelihood, EM> SEM in num. iterations 655% 414%
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Figure 14: SEM cluster images for Fort Hood 1 (a),L = 15, K init = 11, K end = 4, and
Fort Hood 8 (b),L = 15, K init = 14, K end = 13.
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Figure 15: K-S test for Fort Hood 1 using SEM:L = 15, K init = 11, K end = 4,� = 0:01.
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Figure 16: K-S test for Fort Hood 8 using SEM:L = 15, K init = 14, K end = 13, � = 0:01.
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CHAPTER 4

A CONCISE DEVELOPMENT OF HSI DETECTION
ALGORITHMS

Despite years of research into exploitation of hyperspectral imagery, the remote sens-

ing literature lacks references on the comprehensive development of target detection algo-

rithms. This chapter is a synthesis of items in detection theory textbooks, combined with

conference and journal papers on individual detection schemes, and my own additions of

theory and explanation to unify the discussion and keep it concise. The detection statis-

tics presented in this chapter provide a foundation from which to conduct experiments and

analyses on both synthetic and measured data.

Throughout this thesis, the focus is on detection algorithms that exploit only spectral

information. It will become clear from the concepts presented in this chapter, and the ex-

periments in later chapters, that it is necessary for the target spectrum to be distinguishable

from the background spectrum in order for a detector to be effective. The degree of spectral

contrast between target and background is a determining factor in the utility of hyperspec-

tral imagery for target detection – along with fundamental factors such as SNR.

4.1 Detection Algorithm Design

As mentioned brie�y in Section 2.2, the task of a detection algorithm is to decide if a

signal of interest exists in a pixel under test, based solelyon the observed spectrum vector

x. The optimum decision strategy is to maximize the probability of detection (PD ) while

keeping the probability of false alarm (PF A ) under a �xed value. This is known as the

Neyman-Pearson criterion and is embodied in the likelihoodratio test

�( x) =
f (xjH1 = target signal present)
f (xjH0 = target signal absent)

? H 0
H 1

�; (32)
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where the probability of observingx under the null hypothesis isf (xjH0), and the probabil-

ity of observingx under the alternative hypothesis isf (xjH1). The desiredPF A is achieved

by setting the threshold� to appropriately include only a set amount of false alarms. Figure

17 illustrates this concept. Determining (32) requires knowledge of the conditional proba-

bilities (pdfs), and these are estimated from the data. When this approach is taken, signal

models are used that lead to the construction of practical (although suboptimal) detectors.

Figure 17: Illustration of detection and thresholding.

4.1.1 A Note on ROC Curves for HSI

Receiver operating characteristic (ROC) curves are typically employed in the evaluation of

detector performance. ROC curves plot thePD versusPF A as a function of the threshold

� . If assumptions are made about the pdfs under the two hypotheses, theoretical ROC

curves can be generated. However, we are forced to use measured data toestimatethe

density functions. This makes performance evaluation of detection algorithms challenging

due to the limitations imposed by a small amount of target data – typically less than102
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target pixels exist in a data set of105 background pixels. An estimate ofPD values for

a ROC curve using only 100 target pixels is not robust. As a result the establishment of

accurate ROC curves on real data sets is quite dif�cult, and �gure 18 highlights differences

between theory and practice. Indeed, it is well known that asa rule of thumb the minimum

number of N samples used to estimate a probability P should beat least 10/P, or better

yet 100/P [33]. Monte Carlo techniques are suitable for theoretical comparison, and such

results are presented in Section 5.5.

Figure 18: Receiver Operating Characteristic (ROC) elements.

4.2 Covariance-based Detectors

Unfortunately, as alluded to above, practical situations prevent the conditional densities

from being known due to a lack of perfect a priori knowledge ofthe background and target

signal parameters,� . As such, a standard approach is to replace the unknown parameters

with their ML estimates,̂� . While there is no optimality associated with the Generalized

Likelihood Ratio, it has proven widely effective in many applications

� GLR (x) =
f (x; �̂ 1jH1)

f (x; �̂ 0jH0)
: (33)
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Parametric signal models are needed to design target detectors based on the Generalized

Likelihood Ratio (GLR) approach. For the case when we can safely assume that, aside

from noise, the target �lls the entire pixel (i.e., there areno other interfering signals in

our measurement), algorithm performance is primarily a function of background and target

variability. As noted above, the detection problem is formulated as a binary hypothesis test

of target presence.

Here it is assumed both classes can be well-characterized bymultivariate Normal dis-

tributions1. Since the background and target are different physical materials they have

different means and covariances. This leads to a non-lineardecision boundary in spectral

measurement space and a quadratic detector.

In the special case when the two classes can be described by a common covariance ma-

trix (i.e., � 0 = � 1 � � ), the detection statistic becomes linear. In the signal processing (i.e.,

radar and communications) literature, this is known as the matched �lter, whereas in the

pattern classi�cation literature this is called Fisher's linear discriminant. For hyperspectral

imaging, the case of equal covariance for target and background rarely happens.

When the target of interest is at most the same size as the spatial extent of a pixel,

and possibly smaller, any remaining background that �lls the pixel becomes an interfering

signal. Figure 19 is a simple illustration of this notion. The nature of sub-pixel targets

leads to a replacement signal model, and physically speaking we expect the target fraction

of the pixel (� t ) and the background fraction of the pixel (� b) to sum to one. Further,

we expect physical conditions dictate that there is no negative fraction of either class, i.e.,

� t , � b > 0. However, enforcing the sum-to-unity and non-negativity constraints make

algorithm development challenging, and most of the literature stays away from the fully-

constrained approach.

1Detectors using EC-t background models have exactly the same functional form, and only differ from
their Normal counterparts in distribution of the output statistic. See [34] and [35] for details. As such, this
treatment is relevant for all EC distributions, including thet and Normal.
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Full pixel target

Sub-pixel target

Figure 19: Illustration of a scene with full and sub-pixel targets.

In practice a set of simpler assumptions are used. First and most important is the exis-

tence of a linear mixing model,

x = � ts+ � bb; (34)

whereb is a background spectrum ands is a deterministic target spectrum – meaning it

shows no variability in theshapeof its spectral signature, only amplitude variability. If

the target is not deterministic, we assume it lies in a linearsubspace whose dimension is at

mostd (whered � L, the number of spectral bands). In the extreme case, the target signal

is represented by the sum
dX

k=1

� t (k)s(k) : (35)

Next we assume the background component of each pixel is randomly distributed according

to a multidimensional Normal distribution of dimensiond, i.e.,b � Nd(0; � ). One reason

this component of the signal model is assumed random is in order to account forall forms of

interference, including sensor noise, etc. Finally, we do not enforce the unity and additivity

constraints. This now yields an additive, rather than replacement, signal model

H0 : x = b;

H1 : x = Sa+ b; (36)
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where the pixel is distributed under the two hypotheses as

H0 : x � N (0; � )

H1 : x � N (Sa; � ): (37)

As touched upon earlier, one key difference between HSI and radar data is that it is

real and non-negative. This means that HSI data will never bezero-mean, and prior to

processing we must remove the estimated background mean from the entire data cube as

well as the target signature.

In the mid 1980's, Kelly used the above linear model for radardata and applied the GLR

approach in order to develop what is commonly referred to as the Generalized Likelihood

Ratio Test (GLRT) [36], [37]

DK (x) =
xT �̂

� 1
S(ST �̂

� 1
S)� 1ST �̂

� 1
x

N + xT �̂
� 1

x
? � K : (38)

We denote this detector with a subscriptK to identify it as Kelly's algorithm, because in

the literature there are now many detectors that employ the GLR approach. We will simply

refer to it as the GLRT from here on.

In the early 1990's another algorithm surfaced called the Adaptive Matched Filter

(AMF) [38]. It takes the form

DAMF (x) =
xT �̂

� 1
S(ST �̂

� 1
S)� 1ST �̂

� 1
x

N + sT �̂
� 1

s
? � AMF : (39)

In the mid to late 1990's it was noted that a key aspect implicit in the structure of equa-

tions (38) and (39) is their assumption of equality for the background covariance matrix

under theH0 andH1 hypotheses. Physically speaking, this would mean that despite differ-

ent amounts of background being present in each pixel underH0 andH1, the background

covariance is still the same. Clearly, for sub-pixel targetsthis is not intuitive. Instead,

the following hypotheses incorporate a minor adjustment toaccount for the difference in

background fraction of each pixel:

H0 : x = � b;
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H1 : x = Sa+ � b: (40)

Now the pixel distributions are as

H0 : x � N (0; � 2� )

H1 : x � N (Sa; � 2� ): (41)

By making this adjustment we acknowledge that the training data used to generate the

estimatê� has the same structure for its covariance matrix as the pixelunder testx, but the

magnitudes of the variance values differ. The fraction of the pixel that is �lled by the target

has a direct bearing on� .

Employing the modi�ed model in (40), the Adaptive Cosine Estimator (ACE) algorithm

[39] has the form

DACE (x) =
xT �̂

� 1
S(ST �̂

� 1
S)� 1ST �̂

� 1
x

xT �̂
� 1

x
? � ACE : (42)

The number of pixelsN no longer appears in the denominator as it did for Kelly's statistic

in (38).

For each of these detectors, the theoretical signal-to-noise (SNR) ratio is

SNR0 = ( Sa)T �̂
� 1

(Sa): (43)

We can rewrite these three detectors for the case where we have a deterministic target

signatures. Respectively for GLRT, AMF, and ACE, [40] they are

DK (x) =
(sT �̂

� 1
x)2

(sT �̂
� 1

s)(1 + 1
N xT �̂

� 1
x)

? � K ; (44)

DAMF (x) =
(sT �̂

� 1
x)2

(sT �̂
� 1

s)
? � AMF ; (45)

DACE (x) =
(sT �̂

� 1
x)2

(sT �̂
� 1

s)(xT �̂
� 1

x)
? � ACE ; (46)

Radar engineers will notice no magnitude signs in these expressions because HSI data are

real, not complex valued.
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When using a prede�ned spectral library or target database, often the algorithms using

s are utilized. When experimental data or new target info is being utilized, typically the

versions withS are used.

4.3 Subspace-based Detectors

As a contrast to these three covariance-based detectors, wealso examine subspace-based

algorithms.

The Orthogonal Subspace Projector (OSP) [41] was designed for HSI applications and

is motivated by some basic concepts of multidimensional Euclidean geometry. The back-

ground variability is determined from the data and is modelled as a set of vectors that make

up the matrixB. Assuming the three coef�cient vectors,a, ab;0, andab;1 are unknown con-

stants, we differentiate between the background under the two hypotheses:ab;0 andab;1.

This leads to a decision structure that is

H0 : x = Bab;0 + w;

H1 : x = Sa+ Bab;1 + w; (47)

wherew is a random term for additive noise of unknown variance� 2
w , i.e.,w � N (0; � 2

w I ).

The OSP algorithm can be thought of in two parts. First, the test pixel x is projected

onto the subspace orthogonal to the background by the operator P?
B x. If we were to take

the 2-norm of this quantity we would have the Euclidean distance from the test pixel to

the background free subspace. This quantity is then multiplied by the target signatures,

making the OSP detector

DOSP (x) = sT P?
B x ? � OSP : (48)

The projection matrix onto the column space of the background B is computed as

PB = B(BT B)� 1BT (49)

and its orthogonal complement is

P?
B = I � PB : (50)
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Those familiar with least squares theory will recognize(BT B)� 1BT as the pseudoinverse of

B. Also, equation (50) is sometimes referred to as a signal blocking matrix in the array

processing literature.

It is also possible to obtain an expression for a subspace version of the GLRT [42]. This

detector takes the same approach as in Section 4.2, but uses ageometric method rather than

a probabilistic method to model spectral variability.

D(x)GLRT SB =
xT P?

B x
xT P?

SB x
? � SB : (51)

The notation[SB] refers to a combined subspace of target plus background, which

spans the space between our signal of interest and that whichwe believe to interfere with

it. The geometric concepts of the subspace algorithms are depicted in �gure 20 for three

dimensions, speci�cally the subspace GLRT.

Figure 20: 3-d geometric interpretation of the subspace GLRT detector.

Some algorithm developers prefer to notice that the 2-norm,kP?
B xk, is the Euclidean

distance from the pixel under test to the background subspace – line segment TB in �gure

20. Similarly, line segment TC in �gure 20 is the distance from the test pixel to the com-

bined subspacekP?
SB xk. These terms appear in the numerator and denominator of equation

(51), respectively. As such, the subspace GLRT can be rewritten in a 2-norm format as

D(x)GLRT SB =
kP?

B xk2

kP?
SB xk2

? � SB : (52)

In some survey papers, the subspace GLRT is referred to as a “cosine” detector, however,
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thereciprocalof equation (51) is actually acos2 function. That is,

1=D(x)GLRT SB = cos2 �: (53)

There is a popular monotonic function of equation (51) that is known in the statistical

literature as the F-statistic,

D(x)GLRT SB =
xT P?

B x � xT P?
SB x

xT P?
SB x

: (54)

It is called the F-statistic because the detector output is distributed as a noncentral F-

distribution, where the noncentrality parameter is given by SNR0. For the subspace GLRT

this quantity is computed as

SNR0 =
(Sa)T P?

B (Sa)
� 2

w
=

jjP?
B (Sa)jj 2

� 2
w

: (55)

What makes the subspace GLRT desirable is that it maximizes SNR for any distribution of

w and can operate in constant false alarm rate (CFAR) mode for Normal noise.

4.4 Anomaly Detection

Finally, it is not uncommon in operational scenarios for thetarget to be ill-de�ned. Some-

times there is simply not enough information about the target, or in the case of wide-area

reconnaissance, there may not be a prede�ned target at all (just the desire to look for “ob-

jects of interest”). When this lack of a priori target info occurs, we go back to the linear

matched �lter approach. But instead of using the mean of the target class (� 1) in our

equation, we use the pixel under test,x. That is,

DMF (x) = ( � 1 � � 0)T � � 1(x � � 0) ? � MF (56)

becomes

DAD (x) = ( x � � 0)T � � 1(x � � 0) ? � AD : (57)

Those familiar with the statistical literature will recognize (57) as the Mahalanobis distance

of the pixel under test to the background mean. Equation (57)is called the anomaly detector

(AD) in HSI literature and is given a full treatment for hyperspectral imaging in [43] .
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It is worth noting that while anomaly detection might seem uninteresting from a re-

search standpoint, it is a practical approach that can be used in an operational mission.

This can be useful for operating in areas where spectral libraries are sparse or unreliable.
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CHAPTER 5

EVALUATION OF ADAPTIVE DETECTORS FOR
GROUND TARGETS

Now that a series of detection algorithms have been presented, attention is turned to

evaluating which of these detectors are the best performers. In this thesis, the target of

interest used for this benchmarking process is the land mine.

5.1 Introduction to Land Mines

Land mines are among the smallest and most dif�cult ground targets facing developers of

imagery exploitation algorithms. Almost as ubiquitous as they are powerful, land mines

remain an issue for today's military ground forces despite their introduction more than

60 years ago in the World Wars of the �rst half of the twentiethcentury. What's more,

leftover mines and other unexploded ordinance (UXO) have also become a serious civilian

problem. When these items are forgotten about or inadvertently moved (due mostly to

natural phenomenon such as weather), they become a serious risk to unwitting civilians

living in the area. The task of addressing this issue, known as `humanitarian demining',

has received increased attention in recent years [44], [45], [46].

A variety of electro-optical and radar sensors have been tested and evaluated for the

detection of land mines, especially buried mines. In this chapter hyperspectral imaging

sensors are considered for land mine detection. By looking attwo different portions of

the infrared spectrum – re�ective (i.e., visible-SWIR) and emissive (i.e., LWIR) – for both

buried and surface mines, we seek to evaluate the performance of previously developed

detection algorithms. This study is novel in the sense that multiple test sites, multiple

sensors, and multiple targets are used in comparing detector performance – an “apples to

apples” comparison of algorithms is made for each target case.
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5.2 Mine Detection Using Hyperspectral Imaging

In the summer of 1995, DARPA sponsored a series of experimentsknown as the Hyper-

spectral Mine Detection program. This activity is considered the impetus for the last ten

years of research in mine detection using HSI sensors [47], which continues today. Two

elementary, yet important, �ndings of these initial experiments are as follows:

1. Recent disturbances of the ground surface usually can be observed as a localized tex-

ture change in the surface, which can be detected by a broadband IR sensor. However,

such single band approaches suffer severely from false alarms caused by vegetation

and/or rocks.

2. The act of burying a mine will bring to the surface some subsurface material that can

be seen as a spectral “scar.”

The �rst item is the motivation for using hyperspectral, rather than single band or mul-

tispectral sensors in the mine detection application. The second item con�rms the idea that

the presence of a localized difference between a land mine and its surroundings, caused by

the mine itself or the emplacement of the mine, can be used as the key detection feature –

a land mine target signature.

A surface-laid land mine produces a signature that is a direct result of the mine's size,

shape, composite material, and thermal properties. The background objects (i.e., clutter)

such as rocks, grass, and dirt surrounding the mine have inherently different properties.

When viewed in the thermal IR region these properties manifest themselves as an apparent

temperature contrast. Speci�cally, it is dif�cult to make sweeping characterizations about

the thermal contrast between a land mine and its background because mines come in a

variety compositions, sizes, and shapes – metal vs. plastic, diameter of inches vs. feet, thin

discs vs. cube shapes. It is also important to note that observed target signatures change

with atmospheric (diurnal) conditions; time of day and location are important factors [48].
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On the other hand, the signature of a buried land mine is not due as much to the features

of the mine itself, but rather the impact the mine (and the process of its emplacement) has

on the background. Target signatures for buried mines are the result of of an apparent

contrast between the temperature of the surface soil above the mine and the temperature of

the surface soil surrounding the mine. This contrast comes from a complicated interplay

of events, but it can be generalized by two effects. First is asurface effect of disturbing

the soil directly above the mine during its burial, which changes the soil's density and

lowers its conductivity. Second is the volume effect of the existence of a thermal mass (i.e.,

buried mine) in the soil. The volume of soil directly above the buried mine does not heat

up and cool down at the same rate as the surrounding soil thanks to the presence of the

mine's thermal mass. Naturally, this effect is greater at shallower depths and lesser as time

passes from initial emplacement [49] (i.e., the distribution of soil in the vicinity of the mine

becomes more consistent and soil properties even out).

The bottom line is that the phenomenology of target signatures for mines are quite dif-

ferent – visible/near IR/SWIR vs. LWIR sensors, and surface vs.buried mines. However,

from an algorithm and signal processing standpoint it is enough to know that signatures

can be developed throughout the infrared regime for variousmine scenarios.

5.3 Experiments for HSI Mine Detection

Tests were made on a variety of measured data with actual targets so that a realistic com-

parison could be made. It is worth noting, however, that great strides have recently been

made in synthetic data generation including high �delity land mine scenes [50].

The �rst set of data used in our tests was collected by a sensorin the re�ective regime,

which we call Sensor X. Sensor X measures 256 �ne spectral channels ranging from0:4 �

2:35�m , each nominally8nm wide. This is a popular regime for many HSI sensors used in

environmental remote sensing since the waveband covers thevisible, near infrared (NIR),

and short-wave infrared (SWIR). The data were collected in November 2002 at a test range
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consisting of forest, grassy meadows, and dirt roads. A �eldof short grass and a dirt area

are the two scenes on which we focus our tests.

The second data set was collected in April 2003 by the University of Hawaii's Airborne

Hyperspectral Imager (AHI) [51], a long-wave infrared (LWIR)sensor that measures 256

bands in the range of7:0 � 11:5�m . An optional, but popular, pre-processing option for

AHI data includes discarding fringe bands at the beginning and end of the spectral region

(bands 1-10 and 211-256). The remaining 210 bands are binnedby three to yield 70 �nal

spectral channels, each about50nm wide. This sort of pre-processing is done to improve

the SNR and reduce the computational burden. As noted earlier, the phenomenology in

the LWIR region is very different from the vis-SWIR region, which makes this AHI data

very useful for trend comparison with results from Sensor X.In addition, the LWIR scene

is a desert terrain that is very different from the other scenes while sharing the same mine

types.

Two mine types were studied. Mine type 1 is a plastic-cased land mine that is square

shaped and on the order of one foot on a side. Mine type 2 is a metal mine that is circular

with roughly the same diameter. When buried, the mines were placed at a depth of a few

inches. The ground sample distance (GSD, referring to the spatial extent covered by a

pixel) of the two sensors are different, with Sensor X havinga slightly better GSD in these

data sets. It is fair to say that these targets occupy either slightly more or slightly less than

a single pixel, depending on platform altitude. The AMF, GLRT, and ACE algorithms are

all capable of detecting sub-pixel targets.

In processing the data, two straightforward thresholding techniques were used. After

computing the detection statistic for all �ve algorithms, the �rst threshold applied was one

that achieved a constant false alarm rate (CFAR). While not an optimal strategy such as

Neyman-Pearson, CFAR operation has proven useful in radar and a number of other detec-

tion tasks. The second thresholding scheme guarantees100%detection. This is possible

because ground truth is available for each scene; that is, the location of each of the targets
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in the image is known. By examining the detector output for alltarget pixels and �nding

the lowest value, we can ensurePD = 1 by setting the threshold to this lowest target value.

Counting the number of false alarms that result from this threshold choice allows us to

calculate a false alarm rate.

5.4 Performance Comparison

Figures 21 - 24 show results from our tests. In each �gure, part (a) plots the number of

detected targets using a CFAR thresholding scheme. For all test cases, this value was set to

10� 4. The dashed line near the top of the chart indicates the number of possible detections

(i.e., total mines of that type) in each scene. For example, in �gure 21(a) there were 13

mines in the dirt area and 11 mines in the short grass area. Part (b) of each �gure uses the

100%detection thresholding scheme. These charts can be read as the algorithm being able

to achieve a false alarm rate of “10 to the . . . ” using the y-axis value. For example, in

�gure 21(b) the ACE algorithm is able to achieve a false alarm rate of10� 4 in the dirt area

while still detecting all targets.

There are a number of different perspectives from which we can draw interesting con-

clusions from these results.

With regards to the �rst choice of threshold selection, CFAR at 10� 4, the anomaly

detector failed to detect a single mine. The OSP algorithm also did poorly, detecting zero

mines in �ve of eight CFAR test cases – and the other three caseshad only a few detections.

The AMF and GLRT algorithms performed similarly to each other in CFAR mode. At a

level of 10� 4 these two detectors found about half the targets in the scene. The ACE

algorithm performed well in all CFAR tests, �nding all mines in the scene in three of eight

cases.

In the trials where threshold selection for100%detection was used, the anomaly de-

tector again had the worst performance. A false alarm rate ofabout10� 1 was seen when

no signature information (anomaly detection) was used. TheOSP compared a bit more
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favorably with the other three algorithms in the100%detection setting, with false alarm

rates between10� 1 and10� 2. The AMF, GLRT, and ACE algorithms had false alarm rates

that went from10� 2 in the worst cases to better than10� 4 in the best cases.
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Figure 21: Vis-SWIR, buried mines: (a) mine type 1, constant false alarm rate detection;
(b) mine type 2, 100% detection.

Upon further review of the covariance-based detectors, thereason for their performance

similarity becomes clear. WhenN is large (i.e., many background pixels), the second

term in the denominator of Kelly's algorithm (44) becomes negligible. That is, asN !

1 , the termf ( 1
N )xT �̂

� 1
xg ! 0. In the case of many background pixels, which often

happens in HSI detection, the GLRT devolves into the AMF. Conversely, when there are

52



AD AMF GLRT ACE OSP
0

1

2

3

4

5

6

7

8

9

N
um

be
r 

of
 m

in
es

 d
et

ec
te

d

Sensor X, mine type 2, surface, CFAR = 10-4

dirt area
short grass

(a)

AD AMF GLRT ACE OSP

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Lo
g 10

 (
F

al
se

 A
la

rm
 R

at
e)

Sensor X, mine type 2, surface, P
D

 = 1

dirt area
short grass

(b)

Figure 22: Vis-SWIR, surface mines: (a) mine type 2, constant false alarmrate detection;
(b) mine type 2, 100% detection.

few background pixels, the normalization of the second denominator term byN becomes

meaningless and the GLRT behaves like the ACE. What's more, thesuperior performance

of ACE in most of our test cases is directly related to it's elegant property of scale invariance

[39]. Simply put, this means that the training data and test data may be scaled differently

without altering the detecting statistics. However, for the detection statistics of the AMF

and GLRT to remain unchanged, the training and test data mustbe scaled identically.

When looking at the SWIR versus LWIR regimes, the results were mostly as expected.

In the LWIR, the AHI sensor was able to detect more buried mines than surface mines. This
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Figure 23: LWIR, buried mines: (a) mine type 2, constant false alarm rate detection; (b)
mine type 2, 100% detection.

is due to the thermal nature of the spectral signature, whichis not based on the mine itself,

but rather on the effect it's emplacement and presence in theground has on the surface.

Also, the AMF, GLRT, and ACE algorithms in the LWIR region detected at least half the

mines (both surface and buried) in all cases. On the other hand, Sensor X, operating in the

visible-SWIR bands, performed better on surface mines. Thisis due to the fact that spectral

characteristics of the mine's composite material are readily observed since the target is at

least �ush (if not slightly protruding from the ground) surface. It was somewhat surprising

that Sensor X also did reasonably well in detecting buried mines.
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Figure 24: LWIR, surface mines: (a) mine type 2, constant false alarm ratedetection; (b)
mine type 2, 100% detection.

The AHI sensor collected data at an arid test site, where eachrun was over essentially

the same desert clutter scene. The primary difference between runs was the altitude at

which the instrument was �own. In �gure 23, the minor difference in performance in part

(a) between runs is likely a function of platform altitude and thus ground sample distance.

Run 2349 was made at 700 feet while run 1946 was made at 1400 feet. This change means

a larger GSD (worse spatial resolution) for run 1946. Generally speaking this translates

into fewer pixels on target – including the case where the mine is now a sub-pixel target. In

�gure 24 the altitude for both runs was 700 feet and the performance in part (a) was almost
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the same.

The Sensor X data used in these tests was collected at a woodland test range, and two

different sites were examined. The short grass area proved to be a tougher setting than the

dirt area for both buried and surface mines. For both CFAR and100%detection threshold

schemes, most cases showed more mines detected in the dirt area.

5.5 Theoretical Performance

As a contrast to the results using real data presented earlier in this chapter, theoretical ROC

curves were generated for the matched �lter and Kelly's GLRT. Monte Carlo simulations

were used assuming Normal statistics similar to those seen in many AVIRIS data sets.

Figure 25: Theoretical ROC for matched �lter detector on sub-pixel targets.

Figure 25 shows expected performance for subpixel targets using the matched �lter.

There are three levels of fractional �ll for the target material, 100%, 50%, and 10%. As

expected, there is a 3 dB difference between a pixel exactly �lled with target and half-

�lled with target. The one-tenth pixel target yields a 10 dB lower SNR than a full pixel

target. In order to achieve aPD = 0:5 for a PF A = 10� 6, the matched �lter requires
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13.5 dB SNR. This translates to a �ll fraction of approximately 40%. It is fair to say that

for sole source exploitation of hyperspectral imagery, subpixel targets are very dif�cult to

detect. Realistically, data consumers should expect poor results for targets that �ll less than

half a pixel. This underscores the need for sensors with highresolutionbothspatially and

spectrally.

Figure 26: Theoretical ROC for GLRT detector on targets of varying dimensionality and
with varying training support.

Figure 26 shows the expected performance for the GLRT under avariety of training

conditions, assumingL = 144 measured spectral bands. The dimensionality of the target

(going fromP = 1 in the case ofs, to P = 5 in the case ofS) is varied, representing the

increased degree of variability asP increases. The number of training samples also varies,

highlighting the impact of theN term in the denominator of equation (38). For a target

s with only amplitude variability (P = 1), a 2 dB increase in SNR is required to achieve

PD = 0:5 at PF A = 10� 5 when the number of training samples is reduced from 5000 to

1000. This is intuitive since a smaller number of samples used to calculate an estimate

means it will be less accurate than an estimate of the same quantity that used a larger
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number of samples. For the same number of 5000 training samples, a 1 dB increase in SNR

is required to achievePD = 0:5 at PF A = 10� 5 when the target dimensionality increases

from P = 1 to P = 5. Note that the blue curve for the linear matched �lter at the left of the

�gure represents a sort of upper bound for GLRT performance,and the red curve at the right

represents a sort of lower bound (anomaly detection – no signature). An interesting point to

note is that while training support has a signi�cant impact on detection performance, HSI

collection efforts rarely lack background samples. Instead, the more frequent condition is

a lack of certainty in the target signature. The use of a span of vectors (S) to characterize

the target is common. The GLRT showed only a minor reduction in detection performance

for a target with a 5-dimensional signal template versus a 1-dimensional signal.
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CHAPTER 6

DETECTION AND IDENTIFICATION OF AIRBORNE
GASES USING HSI

In addition to ground-focused hyperspectral exploitationtasks such as environmental

assessment of ground cover or detection of military targetsas seen in Chapter 5, there

are other interesting applications. Atmospheric monitoring is a relatively new task for

HSI sensors. While most atmospheric monitoring applications require long wave infrared

(LWIR) hyperspectral imagery, many traditional HSI applications use data in the re�ective

regime (visible-SWIR).

HSI data analysis for gas plumes presents a set of problems different from those the

remote sensing algorithm development community face with terrestrial data. Terrestrial

objects and airborne gases differ in the way the underlying environment impacts the target

observation. In the case of data with terrestrial targets, it is typically assumed that the

intervening atmosphere (air between the sensor and ground)varies little throughout the

scene, and that temperatures of observed objects vary slowly over the image. This is not the

case for LWIR sensing of airborne industrial gas plumes. The radiance of the ground below

the plume changes signi�cantly over the scene, which impacts the observed composition

of the plume in different pixels. Put another way, ground targets arelooked at, whereas

gas plumes arelooked through. Much also depends on gas concentration and its optical

thickness. This means spectral contrast (i.e., target detectability) depends not only on gas

concentration, but also on composition of background material on the ground underneath

the gas in a given pixel.

Identi�cation or detection of hazardous gases using standoff sensors with a wide cov-

erage area is a desirable capability. Often, the gases of interest are colorless, possibly

odorless, have no set spatial structure once released, and may be released from a point that
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is hard for humans to reach (i.e., high elevation, remote location, prohibited area, danger-

ous setting, etc.). Under these circumstances, gases make challenging targets to detect.

Hyperspectral imaging sensors provide the ability for moreprecise identi�cation of gas

plumes than previously possible, and also give users the ability to determine spatial extent

of release over a wide area. Conceptually, the consumers of HSI data in this context are

many; including regulatory enforcement and homeland security of�cials.

The work in this chapter seeks to �ll in gaps between other references on this topic

and perhaps unify some key exploitation concepts. Messinger [52] uses synthetic data and

applies only standard PCA and standard matched �ltering to detect gas plumes. O'Donnell

et. al [53] again use only synthetic data and apply a signature-based detection algorithm

built on the principle of maximum distance between spectra in order to create linearly

independent basis vectors for the necessary subspace (i.e., projection pursuit). In a report

by Young [54], real data collected with the SEABASS sensor were used. However, in that

work different gases are sought. Also, only standard PCA and standard matched �ltering

are applied.

6.1 Collection of LWIR Hyperspectral Data

Once again, the Airborne Hyperspectral Imager (AHI) was utilized for data collection. AHI

was �own over central Texas in April 2004 as part of an EPA scienti�c investigation. The

�ight lines used in this work were collected over petrochemical and energy facilities, and

we took three scenes from the data (labeled scenes A-C). Note that these images have not

been roll-corrected. This was done deliberately to demonstrate that compensating for plat-

form motion is not a prerequisite for non-literal HSI exploitation such as this case. RGB

images from an on-board VNIR color linescan camera can be seen for the three scenes in

�gure 27. On collection dates of April 19-20, the sensor was �own in the afternoon lo-

cal time under high scattered clouds, moderate winds, high humidity (90 + %), and warm

temperatures (avg.82� F ). From a platform altitude of� 2000 feet, the �ight geome-

try as a function of AHI's instantaneous �eld of view (IFOV) yielded a pixel size that is
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asymmetric. In the along-track direction, ground sample distance (GSD) was� 1 feet, and

cross-track GSD was� 4 feet.

(c)(b)(a)

Figure 27: VNIR linescanner RGB images for three AHI scenes: (a) scene A (b) scene B
(c) scene C.

6.2 A Note on Signatures for Gas Plumes

Inherent in this discussion is the notion that we can de�ne a target “signature”, a spectral

response that uniquely represents our material of interest. Unlike ground targets whose

signature depends solely on re�ectance in the SWIR, gas plumescan be identi�ed by either

emission or absorption features in the LWIR. At the emission source, a noticeable feature

comes from the hot gas hitting the outside air. Further away from the emission source, a

key signature feature can come from the plume cooling to meetambient air temperature.

Laboratory spectra are often used as references for signature-based detection algo-

rithms, and data collected in the �eld must be compensated for the modulation of the inter-

vening atmosphere between the sensor and the scene. While this is a very important aspect
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of hyperspectral data processing, we assume in this thesis that all data has been properly

calibrated at the sensor and that a robust compensation approach has been applied. For

the AHI sensor a discussion of calibration can be found in [55]. Examples of atmospheric

compensation routines for the LWIR include MODTRAN [56] and ISAC [57].

6.3 Signature-based Gas Detection

As a representative of the set of detectors that use a target signal template, the subspace

GLRT was applied for two different ef�uent compounds. The subspace GLRT detection

approach differs from the approach most often taken in the LWIR gas detection literature

– matched �ltering. The matched �lter is both simple and straightforward, and is even op-

timal under the right circumstances [33]. However, its application must be made with care

for hyperspectral detection. Recall that the linear matched�lter makes two key assump-

tions. First is that the variability present in the target and background classes are exactly

equal, meaning they share a common covariance matrix. Second, the target signal must be

deterministic. Practical conditions prevent both of thesethings from being true in almost

all HSI operating scenarios, which is one reason why subspace-based algorithms such as

equation (51) are often a better choice. Schaum revisits matched �ltering for HSI in [58]

and discusses some of these points in detail for hyperspectral target detection.

The subspace GLRT detector was applied to scene C using a target signature for ben-

zene. From the RGB image in �gure 27(c), it is clear this is a section of a petrochemical

facility. Figure 28(a) shows the results from the subspace GLRT and part (b) of that same

�gure shows the anomaly detector result. As indicated in �gure 28(c), red indicates a high

value of the detection statistic (target present), and white indicates a low value (target ab-

sent). Clearly, the anomaly detector (AD) in �gure 28(b) found many pixels of interest,

however, these are very likely to be false alarms since they are an exhaust stack and cool-

ing fans. The pipe junctions detected in �gure 28(a) are muchmore likely to be fugitive

emission sources, since this facility does pipe benzene between areas of processing and
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storage.

The same two algorithms were run for scene A using an ethyleneglycol target signature.

Again, the subspace GLRT outperformed the AD. Figure 29(b) shows the anomaly detector

had a much higher average value throughout the scene, as indicated by the greenish and

blueish pixels that dominate the image. Figure 29(a), on theother hand, shows the subspace

GLRT �nding all �ve of the vents in the holding area as well as the �ame tower in the

upper-right corner. Not only do these detection results agree with gases identi�ed in an

initial screening of this data [59], but both of these gases are known to be present at the site

under study [60] – either as recognized leaks or noted fugitive emissions. While this is not

de�nitive ground truth, these results are certainly plausible and in agreement with visual

analysis of the scene.

(a) (b)

low high

example threshold, h

(c)

Figure 28: Subspace GLRT vs. Anomaly Detector, benzene, scene C: (a) Subspace GLRT,
(b) Anomaly Detector, (c) color scale.
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(a) (b)

Figure 29: Subspace GLRT vs. Anomaly Detector, ethylene glycol, sceneA: (a) Subspace
GLRT (b) Anomaly Detector.

6.4 HSI Gas Exploitation Without Signatures

Target detection implies there is a de�ned material of interest that is being sought. However,

there are other methods by which a user can search for materials of interest in a hyperspec-

tral image cube. On the whole these techniques are more supervised and less automated in

nature than signature-based or even anomaly detection algorithms. As such, more iteration

and hands-on visual analysis are typically required for accurate interpretation.

6.4.1 Principal Components Analysis

The Karhunen-Loeve transform (KLT) is a well-known technique from signal processing

used to obtain a new decorrelated signal that retains as muchenergy from the original sig-

nal as possible while only using a few components. The KLT is de�ned for continuous

signals and its discrete-time counterpart is the principalcomponents transform, known in

the remote sensing literature as principal components analysis (PCA) [61]. The transform

identi�es orthogonal axes by way of an eigendecomposition of the data covariance matrix.

The magnitude of the resulting ordered eigenvalues indicates the variability (energy) resid-

ing in the data along the component parallel to the corresponding eigenvector [62]. This

becomes useful in dimension reduction for remotely sensed data because selecting only a

few of the �rst basis components from the transformed space means the user can operate on
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a greatly reduced data set that retains most all of the energyin the original data. Of course,

this is in a statistical sense since PCA takes a wholly statistical interpretation of the data.

The data are pre-multiplied by the selected PC vectors and the transform rotates the data

into a new spectral space. This is done to optimize a squared-error criterion of (x � � 0).

Standard PCA assumes no noise in the signal model and uses all data in the scene.

A different �avor of PC transform was published in [63]. In the maximum noise fraction

(MNF) version of PCA, additive observation noise is assumed and as such requires an

estimate of the noise covariance. The criterion used for optimization in MNF is signal-to-

noise ratio (SNR), and the basis vectors selected are the left-hand eigenvectors of the noise

covariance� data covariance product. That is, the bases are taken from

�̂ w �̂ 0 (58)

where the selected eigenvectors optimize the ratio

xT �̂ wx

xT �̂ 0x
; (59)

where�̂ w is the estimated noise covariance matrix and�̂ 0 is the estimated data covariance.

It is worth noting that the resulting component vectors do not form an orthogonal basis as

is the case for PCA. However, in the case of MNF, the componentsare ordered in terms of

decreasing SNR. Even though the MNF formulation was realizedby a different approach, it

yields a mathematically equivalent result as noise-adjusted principal components (NAPC)

[64].

PCA was applied to scene A in an attempt to identify the small ethylene glycol con-

centrations. Figure 30(a) shows an RGB composite of principal components 1, 2, and 3,

respectively. Parts (b) - (d) of the same �gure show the same 3components individually in

grayscale. Figure 30(a) seems to display possible ethyleneglycol locations in a dark green,

and parts (b) and (d) similarly show good contrast for these same locations. When MNF

was applied to scene A in �gure 31, the resulting RGB compositeof the �rst 3 components

in part (a) shows some of the same contrast for the vents, but not for the �ame tower. Only
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the �rst MNF component shows any contrast on an individual basis. Figures 32 and 33,

respectively, show results of PCA and MNF applied to scene B. Plume-like structures are

weakly visible in the RGB images of �gures 32 - 33(a).

(a) (b)

(c) (d)

Figure 30: PCA images, scene A: (a) RGB of all 3 components (b) component 1 (c)
component 2 (d) component 3.

66



(a) (b)

(c) (d)

Figure 31: MNF images, scene A: (a) RGB of all 3 components (b) component 1(c)
component 2 (d) component 3.
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(a) (b)

(c) (d)

Figure 32: PCA images, scene B: (a) RGB of all 3 components (b) component 1 (c)
component 2 (d) component 3.
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(a) (b)

(c) (d)

Figure 33: MNF images, scene B: (a) RGB of all 3 components (b) component 1 (c)
component 2 (d) component 3.
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6.4.2 Visualization Using 3-Band Composites and Scatter Plots

Data collected outside the visible spectrum is dif�cult to present in color format since our

eyes are accustomed to the natural re�ectance properties ofeveryday materials (i.e., we

expect dirt to be brown and grass to be green). Since there is no “right” or “wrong” way

to choose color combinations for multi-band IR imagery, it is intuitive to seek color com-

binations that highlight speci�c spectral features of our material of interest and make the

target visually distinguishable. This approach has been taken for volcanic sulfur dioxide

(SO2) plumes in [65], choosing a combination that makes SO2 gas appear yellow. Judi-

ciously selecting the red, green, and blue color planes to show bands that have distinct

emission/absorption lines can make trace gases stand out ina bright color.

Once a favorite 3-band RGB combination has been found, another way to determine

the number of pixels containing a material of interest is to generate a 3-d scatter plot. By

counting the number of samples that exist in a certain regionof the RGB colorspace (a box

in three dimensions), a user can quantitatively assess the spatial extent of a gas plume. Also,

a qualitative evaluation can be made as to how pure these target pixels are: the brighter a

pixel is in the RGB composite, the further it will be towards anextreme in the 3-d RGB

colorcube.

Figure 34(b) shows the fourth principal component for sceneB in which the two sus-

pected SO2 plumes are clearly visible near the top of the stacks. Figure34(a) shows an

RGB composite using bands R=89, B=175, and G=55 for scene B. This was done in an

attempt to highlight the8:6�m SO2 absorption feature in the color pink. While the areas

of pink might be dif�cult to see in the composite image of �gure 34(a), the pink pixels are

clearly visible in a 3-d scatter plot of the image. Figure 35(a) begins by illustrating the

RGB colorspace, which is a cube in three dimensions, showing where pixels of a certain

color are located. Parts (b) - (d) of �gure 35 offer differentangles of the 3-d scatter plot and

allow the user to easily see the number of bright pink pixels in the image. Note the tight

cluster of pixels along the edge of the box in parts (b) and (d)of �gure 35; this indicates an
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optically thicker, more consistent concentration of SO2 gas. Further, it is easy to notice the

pixels that are darker pink and lie closer to the main clusterof dark pixels which represent

the background. Such pixels are likely to be part of a gas plume that is optically thin, which

means more of the terrestrial background was captured in thespectral measurement.

(a)

1

2

3

4

5

(b)

Figure 34: Scene B, SO2 analysis (a) RGB image using 9.2-10.7-8.6�m bands (b) principal
component 4.

6.5 Comments on Airborne Gas Targets

If there is adequate and accurate information to specify a target signature, then a signature-

based detection algorithm such as the subspace GLRT is a goodchoice for gas detection.

Anomaly detection may be all that is possible under certain circumstances; however, it

should be used in conjunction with other target identi�cation methods since the AD is

prone to high false alarm rates. In the LWIR, anomaly detectors�nd “hot” objects that may

or may not have spectral similarity to the material of interest.

Traditionally, PCA and MNF are used for dimension reduction as will be discussed in

Chapter 8, but they are also useful for visually identifying the dominant image components.

Again, these components are not guaranteed to be a gas plume or any other object of in-

terest, yet spectral transformations are a helpful tool in gaining a perspective on the key
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Figure 35: Scene B, SO2 RGB image using 9.2-10.7-8.6�m bands: (a) 3-d RGB col-
orspace, (b)-(d) 3-d scatter plots from various view angles.

constituents in a scene.

RGB composite images using well-chosen 3-band combinationsoffer a way to make a

speci�c gas stand out visually. This method of interpretation is good for gases with very

distinct absorption/emission lines. Plotting that RGB dataas a 3-d scatter plot can also be

valuable visualization tool. It allows a user to make a roughquantitative estimate of the

number of pixels in a gas plume and also helps to qualitatively assess the changing optical

thickness of the gas in the scene.

This chapter's investigation into airborne gases as targets offers a contrast to ground-

based objects for hyperspectral image detection. Obviously, the results here are preliminary

and this application is rich for follow-on work in the area ofalgorithm development. As

yet, there is no single, simple technique for consistent andaccurate gas plume detection.
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Applying signature-based detection algorithms is a valid approach, but only when the gas

signature is well-de�ned for the scene of interest.
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CHAPTER 7

EFFECTS OF COVARIANCE CONTAMINATION IN
ADAPTIVE DETECTION

7.1 The Problem of Contaminated Covariance Estimates

One practical constraint that comes into play for timely hyperspectral target detection is the

quality of training data. Adaptive detectors require a secondary i.i.d. data set, training data,

which is used to estimate the covariance of interference against which the target signal is

being sought. However, in many cases of actual operation of HSI sensors, proper training

data is not available. Sometimes archived data is used or thetest data is carved into two

pieces, where one part is used for training and the other for test. Either way, it is highly

likely that target or target-like samples are unwittingly included amongst the background

data that is used to estimate a spectral covariance. In the radar literature this is referred

to as self-nulling. This contamination of the covariance matrix is obviously in violation

of a key assumption (i.e., i.i.d.) under which adaptive detectors are developed. Moreover,

engineering intuition leads us to assume that it is also detrimental to the detection statistic

output. In this chapter we investigate the impact that covariance contamination has on a set

of adaptive detectors for hyperspectral imaging and the general detectability of targets.

7.2 Performance Comparison

Actual hyperspectral imaging data were used in our experiments, not simulations. Scenes

in the images are mostly a desert terrain. The data was collected by Sensor X in the re�ec-

tive regime and Airborne Hyperspectral Imager (AHI) in the emissive regime. The scenes

used for these experiments all have accompanying ground truth. This means we have a

priori signatures for the targets of interest, and knowledge of the number and location of

target pixels in the hyperspectral images. For each data set, the background covariance was
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�rst computed by removing all targets and target-like samples, thus leaving only interfer-

ence. Then the covariance was again estimated using the entire data set that included a

speci�ed number of target-bearing samples. Detection statistics were computed using the

contaminated covariance and the uncontaminated covariance estimate for each target type

in all four scenes.

Three different ground targets whose spectral signatures are similar to the background,

as measured by spectral angle, were chosen. The same targets(denoted as targets 1, 2, and

3) are in all four scenes, except for target 3 that is not present in scene 4. Evaluating three

detectors in four scenes gives us 12 test cases. The SNR in dB is given for each of the

targets in tables 5-8. Note that each of the targets has a relatively low SNR value, with nine

of the 11 targets being less than 2 dB.

In addition to a low SNR value, another factor that makes a given target dif�cult to

detect using a hyperspectral sensor is how spectrally similar it is to the background against

which it is being sought. One way of determining spectral similarity between two spectra of

lengthL is by measuring the angle between the spectra in anL-dimensional vector space.

The spectral angle mapper (SAM), while simple to compute, has demonstrated widespread

utility and continues to be part of HSI algorithm research [66]. Spectral angle is computed

for two spectra, vectorssandb, as

� (s; b) = arccos

 
hs; bi

kskkbk

!

; (60)

whereh�; �i is the dot product andk � k is the 2-norm.

Spectrally similar targets are of keen interest since they present HSI detection algo-

rithms with only a small amount of spectral contrast, which makes them dif�cult to detect.

Tables 5-8 also show the spectral angle between the mean background spectra and the par-

ticular target signatures for each scene. Ideally for detection, a target would have a spectral

response that is very different from the background and thusbe orthogonal. In three di-

mensions, it is easy to visualize that a90� angle between the target and background vectors

would be ideal. Targets that are nearly orthogonal are called `well-separated.' The angles
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for all targets used in this study are very small, with all butone of eleven being separated

from the background by less than1� . Illustrating this point is �gure 36, which depicts the

spectral angle between target 3 and the background in scene 3. Considering these small

angles, and the modest SNR of these targets, it is reasonableto consider these targets dif�-

cult.

Band 1

AHI scene 3

Band 2

B
a
n
d
 3

background mean
target 3 signature

Figure 36: Three dimensional vector space illustration of small spectral angle between
target 3 and background in AHI scene 3.

Another reason for using these targets is experimental control. The high degree of

spectral similarity for the targets chosen assures us that the experiments are not overly

in�uenced by one or two target samples that are extraordinarily different from the back-

ground. Instead, these target pixels are only slightly different from the mean background

pixel. This allows us to illustrate that covariance contamination, even with only a few

samples that are not very different from typical interference, has a signi�cant impact on

adaptive detection output.

Tables 5-8 show the number of target and background pixels for each scene. In all
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scenes, target pixels account for no more than a fraction of1% of total samples. Figure

37 shows the results of our experiments. For each scene, three detection statistics (AMF,

GLRT, ACE) are evaluated separately for the target set. At each target, the value of the

detection statistic using a contaminated covariance is plotted on the left and stands next to

the value of the detection statistic using a proper, uncontaminated covariance on the right.

Above each pair is the value of how much greater the uncontaminated detector output is

with respect to the contaminated output. These differencesrange from only a few percent

to over 50% in some cases. It can be seen that, as expected, different targets in different

backgrounds display varying degrees of a reduced response.This change also varies with

algorithm type.

Table 5: Target info for AHI scene 1 with 145445 background pixels.

Item Num. Pixels Spectral Angle SNR

target 1 26 � = 0:85� 3.63

target 2 8 � = 0:47� 2.48

target 3 30 � = 0:23� 1.81

Table 6: Target info for AHI scene 2 with 128250 background pixels.

Item Num. Pixels Spectral Angle SNR

target 1 44 � = 0:55� 1.77

target 2 42 � = 0:65� 1.88

target 3 23 � = 0:70� 1.61

Table 7: Target info for AHI scene 3 with 161222 background pixels.

Item Num. Pixels Spectral Angle SNR

target 1 45 � = 0:77� 1.70

target 2 56 � = 0:55� 1.57

target 3 29 � = 1:13� 1.58
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Table 8: Target info for AHI scene 4 with 116790 background pixels.

Item Num. Pixels Spectral Angle SNR

target 1 19 � = 0:91� 1.71

target 2 24 � = 0:76� 1.73

Figure 38 graphically shows the structure and composition of residual contamination in

covariance matrices for two Sensor X data sets. In part (a) for one scene and part (c) for

another scene, the residual error from target contamination of the background covariance

estimate is shown as a color-scaled image. The �rst spectralbands (0:35�m ) are in the

lower left corner, and the last spectral bands (2:4�m ) are in the upper right corner of the

image. Parts (b) and (d) of �gure 38 show the 3-d structure of the residual error due to

covariance contamination. Overall, this �gure shows that contamination most severely

affects the visible and NIR bands in the re�ective regime.

The results shown in �gures 37 and 38 are averages. This meansthe percent change

in �gure 37, and the residual error graphically shown in �gure 38, is the average reduction

over all target pixels. The maximum degradation found is as follows for each scene. AHI,

scene 4: 3.14 dB. AHI, scene 1: 2.53 dB. Sensor X, run 6300: 1.77 dB. Sensor X, run

5700: 1.85 dB.

7.3 Detector Robustness to Covariance Contamination

Even using ground targets with low SNR and high spectral similarity with the background,

it is clear that popular adaptive detectors are negatively impacted when only a few target

samples are included in the estimate of the interference covariance. We �rst reported this

�nding in [67]. This result seems to be consistent with otherstudies done from a theo-

retical perspective on similar topics [68], [69]. The Adaptive Matched Filter, Generalized

Likelihood Ratio Test, and Adaptive Coherence Estimator all use a maximum likelihood

(ML) estimate of the background covariance matrix to characterize interference. Figure 37

shows that among these three detection statistics, the ACE algorithm is the most robust to
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covariance contamination. The performance of ACE was the least affected for all targets in

all test cases, typically on the order of a 10-15% reduction in detector output when the co-

variance is contaminated. Separately, the response of the AMF and GLRT algorithms was

very similar, for both contaminated and uncontaminated estimates. This is due to the fact

that for a large number of samples, which is often the case in HSI (e.g., 100000-250000+

pixels), the contribution of the termxT �̂
� 1

x in the denominator of equation (38) is neg-

ligible and the statistic becomes more like equation (39) asN ! 1 . Clearly, whichever

algorithm is used, data consumers should expect a reductionin detector output for target

samples when the interference covariance is contaminated.
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Figure 37: Detection statistic output using contaminated covarianceestimate (left, blue)
and uncontaminated estimate (right, red) for AHI data.
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Figure 38: Graphical presentation of residual covariance error (clean - contaminated) for
Sensor X. Run 6300: (a) and (b). Run 5700: (c) and (d).

81



CHAPTER 8

IMPACT OF DIMENSION REDUCTION ON
DETECTOR OUTPUT

Whatever the application, those responsible for �elding hyperspectral sensors and exploit-

ing HSI data face a set of similar challenges. Chief among these issues are the storage,

transfer, and computer processing of large �les generated by hyperspectral sensors. Opera-

tional instruments on airborne platforms, such as unmannedair vehicles (UAVs), airplanes,

and helicopters, are being designed to have small form factors – leaving little room for

large on-board storage capability. Communications links ontactical platforms have limited

bandwidth for real-time data transmission. The same can be said for scienti�c platforms

such as NASA's EO-1 satellite, which carries the Hyperion hyperspectral imager. Ground

stations and other processing centers frequently rely on commerical off-the-shelf (COTS)

computer workstations for digital data computations, and such hardware struggles to yield

exploitation results in real-time or even near real-time for full HSI data cubes.

To deal with these constraints, dimension reduction is often performed at some point

in the image chain of TCPED: tasking! collection! processing! exploitation! dis-

semination. Generally speaking, thanks to numerous narrowimage channels, a signi�cant

amount of spectral redundancy exists in HSI data. Some levelof signal compression or di-

mension reduction is appropriate. Careful attention must begiven, however, to the impact

that such pre-processing operations can have on exploitation algorithms. In this chapter,

we seek to characterize and quantify the impact that the two most widely-used dimension

reduction techniques have on adaptive detection statistics. We again do this for the case

of dif�cult targets – signals of interest that are spectrally very similar to the background

against which these targets are being sought.
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8.1 Brief Survey of Techniques for HSI Data Reduction

There are a number of dimension reduction techniques for hyperspectral imaging data that

have appeared in the literature. One of those worth noting that will not be covered in this

thesis is [70], where wavelet spectral analysis is employedfor automated dimensionality

reduction of pixel vectors. Projection pursuit – related tothe geometry of convex sets – is

discussed in [71], where the authors claim to �nd image features that can be used to unmix

pixel vectors into a smaller data set.

Utilizing similar concepts of convexity, the N-FINDR algorithm [72] �nds the set of

pixels with the largest possible volume by “in�ating” a simplex within the data. The in-

put for the algorithm is the full image cube, with no previouspre-processing. A random

set of vectors is initially selected. In order to re�ne the initial estimate of endmembers,

every pixel in the image must be evaluated in terms of pixel purity likelihood or nearly

pure statehood. To achieve this, the volume is calculated for every pixel in the place of

each endmember. A trial volume is calculated for every pixelin each endmember posi-

tion by replacing that endmember and �nding the volume. If the replacement results in a

volume increase, the pixel replaces the endmember. This procedure is repeated until there

are no more replacements of endmembers. Once the pure pixelsare found, their spectra

can be used to unmix the original image. This produces a set ofimages that show the

abundance of each endmember. While the endmember determination step of N-FINDR

has been optimized and can be executed rapidly, the computational performance of the

algorithm depends on the accuracy of the initial random selection of endmembers.

Another successful approach has been the pixel purity index(PPI) [73], which is again

based on the geometry of convex sets [74]. PPI considers spectral pixels as vectors in an

L-dimensional space (where L is the number of spectral bands). The algorithm proceeds

by generating a large number of random vectors, also called “skewers” [75], through the

dataset. Every data point is projected onto each skewer, along which the position of each
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point is recorded for every skewer. The data points that correspond to extrema in the direc-

tion of a skewer are identi�ed and placed on a list. As more skewers are generated the list

grows, and the number of times a given pixel is placed on this list is also tallied. The pixels

with the highest tallies are considered the purest ones, since a pixel count provides a “pixel

purity index.”

8.1.1 PC-based Transforms for Dimension Reduction

The principal component (PC) transform (also called PCA as in Chapter 6) is arguably

the most popular dimension reduction technique for hyperspectral image processing. As

indicated in Section 6.4.1, the PC transform is the discretecounterpart of the continuous

Karhunen-Loeve transform (KLT). In HSI exploitation, PCA offers a straightforward ap-

proach for computation and is optimal in a statistical senseof preserving a maximal amount

of the variability (i.e., energy) present in the original data. PCA does not take into account

any information about noise or the target signal of interestin the case of detection applica-

tions. On the other hand, the Minimum Noise Fraction (MNF) version of PCA does use a

statistical estimate of noise in order to produce new data vectors who elements are ordered

in terms of SNR. This, too, was covered in Section 6.4.1, and the utility of PC tranforms in

various applications is covered in [76].

8.1.2 A Note on Data Reduction vs. Dimension Reduction

To be clear, the notion of data reduction refers to any transformation that results in fewer

(supposedly representative) pixels or in an HSI cube with a smaller number of elements

per image pixel vector. PCA and MNF are truly focused on the elimination of spectral

redundancy (i.e., reducing dimensionality) in the image signal, whereas PPI and N-FINDR

attempt to generate reduced data sets by way of endmember determination. As such, the ob-

jective functions are obviously different. Nonetheless, all the techniques mentioned above

are widely used during pre-processing and prior to the application of detection algorithms.

Our initial investigations into the impact of PCA on adaptivedetection statistics were
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published in [77]. In the next section, the detectability oftargets is analyzed for both PCA

and MNF dimension reduction.

8.2 Performance Comparison

Data from AHI and Sensor X were once again used to empiricallyanalyze the effects of

PCA and MNF dimension reduction. All 256 Sensor X bands were used and 70 �nal AHI

bands were used. The fact that this is actual data and ground truth is available for these

scenes makes these measurements well-suited to algorithmic experiments.

Target detectability is a function of SNR and spectral contrast. As discussed in Chapter

7, targets with similar spectral characteristics as the background exhibit a small spectral

angle when the target and background mean are viewed as vectors in Euclidean band space.

As discussed in Section 7.2, spectral angle is computed by equation (60). This simple

quantity has demonstrated its utility and proven effectivein not only in HSI detection, but

also classi�cation [78], [79]. In order to narrow our investigation to focus on the impact

that dimension reduction has on SNR, we use targets with modest spectral angle but high

SNR. For these particular tests, tables 9 and 10 describe the data involved.

To be precise, the listed SNR throughout this thesis is a �rst-order approximation com-

puted using the Mahalanobis distance,

SNR = 10 log10(�̂) ; (61)

where for each pixel vectorx

�̂ = ( x � �̂ )T �̂
� 1

(x � �̂ ): (62)

In equation (62), the estimated covariance of the background is denoted bŷ� and the es-

timated background mean iŝ� . Recall that the maximum likelihood (ML) estimates are,

respectively,

�̂ =
1
N

NX

n=1

(xn � �̂ )(xn � �̂ )T ; (63)
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�̂ =
1
N

NX

n=1

xn : (64)

Table 9: Number of target and background pixels for dimension reduction tests.

Sensor Description Target Background

Sensor X run 6300: grassland target A = 29 121690

Sensor X run 1068: dirt area target A = 30 125580

AHI run 0769: desert target D = 30 145445

AHI run 2349: desert target D = 31 142887

Table 10: SNR and spectral angle between targets and mean background for dimension
reduction tests.

Sensor Description Spectral Angle SNR

Sensor X run 6300: grassland target A:� = 13:29� 16.77

Sensor X run 1068: dirt area target A:� = 14:58� 16.87

AHI run 0769: desert target D:� = 1:92� 23.69

AHI run 2349: desert target D:� = 2:44� 22.83

Figure 39 shows the effects of dimension reduction on targetdetectability for the four

test cases. In each part of the �gure, the red curve plots the SNR as a function of number of

principal components used for the MNF transform. The blue curve in each �gure plots the

SNR as a function of number of principal components used for the standard PCA transform.

A few things are clear from these results. First, the MNF transform preserves more

target SNR when only a few principal components are used. That is to say that when

10 or fewer dimensions are retained, the MNF transform produced a smaller reduction in

target SNR in the new (reduced) data set. For moderate levelsof dimensionality reduction,

between 10 and 50 principal components of the original data,there was no clear winner.

In fact, standard PCA often performed better in preserving target SNR than MNF at these

reduction levels. While the results for moderate reduction levels were inconclusive, this

suggests an interesting point. When a moderate number of components are used, typically

accounting for99 + % of the original energy, it seems that speci�cs of the target signature
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really dictate which objective function (i.e., transform)is more effective. As expected,

when more components are used, the preserved SNR approachesthe original SNR of the

target in the full data cube. For more than 50 principal components, there was little, if any,

difference between PCA and MNF for any of our test cases.
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Figure 39: Target detectability for dimension reduced data: (a) AHI, scene 1; (b) AHI,
scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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Looking at detector output for reduced data, results mirrored what was seen in terms of

target SNR performance. As fewer principal components wereused to create a dimension

reduced data set, detector output went down. Also, data reduced using the MNF transform

has slightly higher detection statistics than data reducedusing standard PCA for extreme

levels of dimension reduction. Figures 40 - 43 make comparisons on an algorithm by

algorithm basis, showing PCA and MNF results side by side for each scene. Again MNF

is in red and PCA is colored blue. The �gures plot detector output – normalized and scaled

to be between 1-100 – as a function of principal components used.

Similar to the results for land mines in Chapter 5 and airbornegases in Chapter 6,

the ACE algorithm was a superior performer followed by the subspace GLRT. Despite a

slightly higher SNR, the targets in the Sensor X scenes proveddif�cult due to their limited

spectral contrast (i.e., small spectral angle).
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Figure 40: Matched �lter detector output for dimension reduced data: (a) AHI, scene 1;
(b) AHI, scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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Figure 41: GLRT detector output for dimension reduced data: (a) AHI, scene 1; (b) AHI,
scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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Figure 42: ACE detector output for dimension reduced data: (a) AHI, scene 1; (b) AHI,
scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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Figure 43: Subspace GLRT detector output for dimension reduced data: (a) AHI, scene 1;
(b) AHI, scene 4; (c) Sensor X, run 1068; (d) Sensor X, run 6300.
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8.3 Detector Robustness to Data Reduction

In this chapter we have evaluated the impact that two principal components transforms have

on target detection performance in hyperspectral imaging,and empirically quanti�ed the

change in detection statistic output and target detectability that results for a wide variety of

captured energy levels.

Detection performance for reduced data was dependent on algorithm, and this result

seems to be consistent with other studies done from a different perspective on similar topics

[80], [81]. But a few new and interesting trends can be gleanedfrom our experiments.

Intuitively, it may be expected that detector output would increase and decrease pro-

portional to the number of principal components included inthe reduced data. However,

this wasn't always the case in our experiments. For example,�gure 40(a) shows that the

output for eight components was more than half the output for15 components. Yet the out-

put for 30 components was almost exactly double that of 15 components. In �gure 41(c),

the detection statistic computed for 60 principal components was only35%of that for 120

components. Likewise, the value for 120 components was only30%of the value computed

using 256 components. This type of inconsistency was seen inboth data regimes, SWIR

and LWIR, as well as in different detectors, including the matched �lter and GLRT. The

ACE algorithm in �gure 42 is reasonably indicative. Part (a) shows that for 70 principal

components the detection value is roughly 42, and for eight components the value is about

six. That means for almost nine times the number of spectral bands, the detector output

is about seven times greater. This sometimes nonlinear proportionality is the same for the

PCA and MNF transforms.

As such, it is dif�cult to proclaim any sort of “optimal” level of dimension reduction.

A suitable level of detector output must be determined on an individual basis per speci�c

target and scene characteristics.

The number of target pixels relative to the total number of pixels in the scene is an-

other important factor. With only a small number of pixels present that follow a particular
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spectral signature (i.e., target), dimension reduction transforms such as PCA are likely to

discard their contribution to the reduced image if a small portion of the overall image vari-

ability is present in those samples. This fact has direct implication for HSI exploitation

tasks such as wide-area detection and reconnaissance, where the targets are often dif�cult

and/or sparse.
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CHAPTER 9

CONCLUSIONS

In this research, a series of pre-processing steps for the exploitation of hyperspectral imag-

ing (HSI) data were investigated. Traditional assumptionsfor statistical data modeling,

covariance estimation from training data, and dimensionality reduction were evaluated to

see what happens when assumptions for these items are variedor violated altogether.

First, background was provided on the history and use of HSI in remote sensing. Adap-

tive detection was highlighted as a primary application forHSI sensing, and parallels were

drawn between target detectors for radar and HSI systems.

Then the task of statistically modeling HSI data was coveredin detail. The common

choice of modeling data using Normal distributions was shown to be insuf�cient in some

cases. As such, a �nite mixture modeling approach was developed for elliptically con-

touredt (EC-t) distributions. Assuming no a priori knowledge, two parameter estimation

techniques were presented to simultaneously estimate all unknown parameters from the

data. Results demonstrated that EC-t mixtures can be an accurate and attractive alternative

to Normal models in many data sets, but it is not a silver bullet solution to the statistical data

modeling problem. The Stochastic Expectation-Maximization (SEM) parameter estimation

technique proved quite valuable, and seems well-suited to this and similar situations.

A concise treatment of adaptive detectors for HSI was given,covering algorithms that

use both structured and unstructured approaches for characterizing the background. In

experiments on both SWIR and LWIR data, the Adaptive Coherence Estimator (ACE) al-

gorithm was consistently the best performer. It's propertyof scale invariance allowed the

ACE to detect both full and sub-pixel land mine targets [82] more robustly than other algo-

rithms. Such scale invariance may be why the ACE detector was less prone to the effects of
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shadowing and secondary illumination differences in test and training data. All in all, it is

apparent that land mines are dif�cult targets to detect passively, and HSI can play a unique

role in mine detection.

Next, attention was given to non-terrestrial targets, speci�cally airborne gas plumes.

Signature-based algorithms performed better than genericanomaly detection [83]. How-

ever, it was noted that gases are dif�cult specimens to generate precise target signatures

for, and anomaly detection may be used frequently in practice. Other methods for gas

identi�cation were discussed, including three-dimensional scatter plots and special RGB

composites of carefully chosen bands that highlight distinct emission/absorption features.

The issue of covariance contamination was then addressed, and the problems for target

detection associated with poor training data were made clear. Including target samples in

background covariance estimates is known as covariance contamination, and its negative

impact on detector output was quanti�ed experimentally using multiple data sets. Also the

structure and magnitude of residual error in the covariancematrix itself was illustrated.

Reduction in performance due to covariance contamination was shown to depend largely

on algorithm type, with the ACE again showing the most resiliency. Bands in the visible

and near infrared (NIR) were the most prone to contamination error. Despite the feeling

of many in the remote sensing community that inclusion of target pixels in training data

is not a problem for HSI detection scenarios, the results presented in chapter 7 show that

covariance contamination can be a very real problem and leads to noticeable performance

degradation.

Finally, the topic of dimension reduction was investigated. This is a widely used step

in pre-processing hyperspectral imagery, and is done to reduce computational complexity

for exploitation algorithms and reduce �le size for data storage. Yet most HSI practicioners

believe that dimension reduction greatly reduces detectoroutput, and only tolerate this to

speed up execution. After a brief overview of other data reduction and endmember de-

termination methods, two types of principal components (PC)transofrms were discussed.
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Standard PCA and minimum noise fraction (MNF) PCA were used on real data sets to

quantify the impact that dimension reduction has on target detectability. The MNF trans-

forms the data into new spectral axes ordered by decreasing SNR, and this had a profound

impact on target detectability for cases of extreme dimensionality reduction. MNF pre-

served target SNR better than PCA for extreme dimension reduction. Standard PCA does

not take noise into account, and rotates the data to a new set of orthogonal axes that place

a maximal amount of variability (i.e., energy) from the original image signal into the �rst

few rotated bands. For moderate dimension reduction, PCA andMNF had the same impact

on target detectability and ultimately detector output. Surprisingly to some, the results of

chapter 8 demonstrate that signi�cant dimension reductioncan be achieved with a minimal

impact on target detectability.

9.1 Contributions

Contributions of the thesis include the following:

� Extension of a �nite-mixture model using elliptically contouredt distributions to

accommodate heavy-tailed hyperspectral imaging data.

� Development of methods for simultaneously estimating the parameters of an EC-t

mixture model (including dof) using the Expectation-Maximization and Stochastic

Expectation-Maximization algorithms.

� An empirical analysis of the performance characteristics of �ve state-of-the-art adap-

tive detection algorithms for both re�ective and emissive HSI data. These detectors

were originally designed for radar systems and have only recently been applied to

HSI exploitation.

� A fair, “apples to apples” comparison of hyperspectral detection algorithms for land

mines. These results are the only performance benchmark of their kind in the litera-

ture for mine detection using HSI.
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� Utility assessment of principal component-based transforms for use in special RGB

composite images to help visually identify gas plumes in hyperspectral imagery.

� Development of a three-dimensional scatter plot approach for qualitatively evaluating

the concentration and quantitatively evaluating the abundance of gas plumes in HSI

data. This is based on a �exible, but judicious selection of spectral bands for RGB

color planes to highlight a distinct emission/absorption feature of the gas specimen.

� An experimental, quantitative analysis of the deleteriousimpact that covariance con-

tamination has on adaptive detection performance. Even forrelatively weak targets

with limited spectral contrast, a signi�cant reduction in detector output was demon-

strated for multiple data sets.

� An evaluation of the effect dimension reduction techniqueshave on target detectabil-

ity. The Minimum Noise Fraction (MNF) transform maintains target detectability

better than does standard PCA in the cases of extreme dimension reduction. Consid-

erable dimension reduction is possible without a noticeable loss in detection perfor-

mance.

� Fully automated software implementations of the discussedmodeling, detection, and

dimension reduction algorithms.

9.2 Future Work

Algorithms that assume a priori info As the name implies, adaptive detectors all require

a secondary data set to train the algorithm on what not to lookfor in the scene. While

this has been a practical and successful approach to date, theoretical work is possible

for HSI in which additional a priori information is assumed.In such cases, Bayesian

inference can be brought to bear on this problem. Despite thefact it is unlikely

that complete a priori information would be available for many HSI exploitation

scenarios, it is an interesting theoretical exercise for a novel sensor application.
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Non-terrestrial targets In this thesis an initial investigation was performed on detection

of airborne gases, and results showed some limited success.To date, the majority of

HSI detection work has focused on ground targets. While this is an important ap-

plication, there is tremendous potential in exploiting hyperspectral imagery to detect

and classify scenes with airborne materials of interest. The emissive regime is where

most of this work will be done, and detection work in the LWIR for airborne targets

will require a deeper understanding of the atmospheric physics involved. However,

with bio-terrorism and homeland security a growing source of both concern and fund-

ing, it would be foolish to ignore airborne gas targets for HSI.

Inclusion of Morphology A fundamental assumption made in all the detection work pre-

sented in this thesis is that only spectral information was used in determining tar-

get signal presence. But as the spatial resolution of HSI sensors improves, there

is a better opportunity to include spatial structure and shape information of targets

in a decision process. Classical image processing techniques including image seg-

mentation and edge detection might play a role in introducing morphology into the

hyperspectral target detection procedure.

Signature phenomenology and band selectionSelecting the “best” bands to support the

exploitation of a particular signature is not currently done. If band selection is done

in such a way that takes into account the unique properties ofthe target signature and

background – rather than simply a statistical generality ofthe entire data cube – there

is opportunity for a major bene�t. This thesis talked brie�yabout the vastly different

nature of target signatures for buried vs. surface land mines. These differences are

largely dependent on the spectral regime in which the data incollected, SWIR vs.

LWIR. Signature phenomenology can play a larger role in band selection.

Data fusion All the work in this thesis, as well as the vast majority of HSIexploitation
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work in the literature, is based upon sole source data. That is, detection or classi�ca-

tion results are based on the processing output from a singlehyperspectral imaging

sensor. This is valid in order to assess the utility of HSI in general, however, it is

unlikely that for many applications the end user will be ableto rely solely upon the

information product of an HSI sensor with high con�dence. Assuch, it makes sense

to look at novel ways of fusing the data collected from multiple remote sensors (e.g.,

synthetic aperture radar (SAR), broadband IR imagers, high resolution panchromatic

cameras, etc.) in order to produce a more con�dent and accurate detection result.

Each of these sensors have algorithms that are developed in a“stovepipe” fashion,

and do not take into account the features made available by other sensors for detec-

tion and estimation.

9.3 Concluding Remarks

In this work, we have attempted to answer two dif�cult questions: “Are typical assumptions

for HSI exploitation useful and valid?” and “What happens if you change or violate these

assumptions?” Although these questions are somewhat subjective and depend on the spe-

ci�c exploitation scenario, it has been shown that target detection depends very much on

assumptions made in problem formulation and choices made during pre-processing. There

may never be a suf�cient level of agreement among the remote sensing community as to

which steps are best taken for detecting targets, but through the models and analysis pre-

sented here, a series of guideposts have been developed thatcan hopefully be used toward

making sound decisions in the performance prediction and exploitation of hyperspectral

imaging data.
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