# Georgia Design in-situ and ex-situ formed coatings to increase the stability of FeF<sub>3</sub> Na-Ion cathodes

Zifei Sun, Peilin Lu, Wenbin Fu, Baichuan Wang, Alexandre Magasinski, Yawei Zhang and Prof. Gleb Yushin\*

Georgia Institute of Technology | Department of Chemistry and Biochemistry, Department of Materials Science and Engineering | 771 Ferst Drive NW Atlanta, GA 30332 USA yushin@gatech.edu; www.nano-tech.gatech.edu

#### MOTIVATION

- Sodium-ion batteries(NIBs) as a potential alternative to lithium-ion batteries have attracted great attention due to their low cost and high abundance.
- Iron trifluoride (FeF<sub>3</sub>) has been explored enthusiastically due to its low cost, great abundance and high theoretical capacity (712mAh/g).
- However, FeF<sub>3</sub> tends to dissolve during charging and discharging. Further input needs to improve the stability of FeF<sub>3</sub>-based cathode materials.
- Herein, we designed in-situ formed protective layers by electrode and electrolyte interaction and ex-situ formed protective layers by atomic layer deposition (ALD) technique.

## ELECTRODE FABRICATION

Electrospinning is used to synthesize FeF<sub>3</sub>-Carbon nanofibers (CNFs).



- This approach increases the electrical conductivity and ionic conductivity.
- Conformal alumina (Al<sub>2</sub>O<sub>3</sub>) ALD coatings are deposited at the surface of cathodes.

## CHARACTERIZATION OF DESIGNED COATINGS

- A in-situ formed protective coating called cathode electrolyte interphase (CEI) was successfully fabricated by the electrochemical reaction.
- XPS of B<sub>1s</sub> spectra shows the existence of B-F and B-O bonds inside of CEI.







Quantum mechanics reveal the CEI was initiated by the Na<sup>+</sup>mediated dimerization of electrolyte salt (NaDFOB). Further oligomerization would proceed through analogous steps.







Al<sub>2</sub>O<sub>3</sub> was selected as the ALD coating layers and deposited on the cathode surface for ex-situ formed protective layers.







ELECTROCHEMICAL PERFORMANCE

In-situ formed coatings improved the cycling stability of FeF<sub>3</sub> in the first 120 cycles.



Ex-situ formed coatings improved the cycling stability of FeF<sub>3</sub> in the first 120 cycles and 15 ALD Al<sub>2</sub>O<sub>3</sub> coatings performed the best when comparing coatings with other ALD cycles.

## CONCLUSION

- In-situ formed protective coatings were successfully designed and showed good performance to improve the cycling performance.
- In-situ coatings were formed by polymerization of DFOB anion during cycling.
- Ex-situ coatings were successfully fabricated by ALD technique.
- 15 ALD cycles for Al<sub>2</sub>O<sub>3</sub> coatings exhibited the best cycling performance among coatings with other ALD cycles.

# ACKNOWLEDGEMENTS

Most of this work was supported by US AFOSR (PM Dr. "Les" Lee ) with minor funding provided by NSF, ARO and Sila Nanotechnologies, Inc. Nanocomp has provided the carbon nanotube fabric used in a variety of projects.

Disclosure: A nanowire patent has been licensed to Sila Nanotechnologies, Inc.; G. Yushin is a cofounder, BOD member and stock holder of Sila.



### REFERENCE

[1] Z. Sun, W. Fu, M. Liu, P. Lu, E. Zhao, A. Magasinski, M. Liu, S. Luo, J. McDaniel, G. Yushin, Journal of Materials Chemistry, 2020, 8, 4091.

[2] W. Fu, E. Zhao, Z. Sun, X. Ren, A. Magasinski, G. Yushin, Advanced Functional Materials 2018, 28, 1801711.

[3] E. Zhao, O. Borodin, X. Gao, D. Lei, Y. Xiao, X. Ren, W. Fu, A. Magasinski, K. Turcheniuk, G. Yushin, *Advanced Energy Materials* **2018**, 8, 1800721.