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SUMMARY

This thesis presents a comprehensive series of studies aimed at improving early sepsis

prediction for ICU patients using advanced machine learning frameworks and algorithms.

In chapter 1, we introduce the background of early sepsis prediction problems, challenges

of existing machine learning approaches applied in this scenario, and the motivations of

utilizing Multi-armed Bandit (MAB) and Conformal Prediction in our studies.

The �rst study introducedOnAI-Comp, a novel multi-armed bandit-based framework

where a group of AI experts competes, and the best-performing expert is selected for each

patient. This approach enables adaptive decision-making and predicts the sepsis onset time

by leveraging the diversity of expert models and incorporating patient-speci�c contexts.

The second study developedSepsyn-OLCP, a reinforcement learning algorithm inte-

grated with conformal prediction to ensure the reliability of its predictions. By combining

the robustness of gap-based bandits with the statistical guarantees of conformal prediction,

this method delivers predictions that are not only accurate but also trustworthy, addressing

a critical need in high-stakes healthcare applications.

The third study advanced the state of the art by proposingNeuroSep-CP-LCB, a

cutting-edge algorithm that fuses neural network-based contextual bandits with conformal

prediction methodologies. This approach employs neural networks to approximate the re-

ward function with high �delity, allowing for more nuanced and data-driven decisions. The

integration of conformal prediction provides calibrated prediction intervals, ensuring the

trustworthiness of the results. By incorporating principles of contextual bandits, the algo-

rithm ef�ciently balances exploration and exploitation, ensuring optimal decision-making

under uncertainty.

These studies contribute to the �eld of predictive modeling for sepsis, offering frame-

works and algorithms that prioritize both predictive accuracy and reliability, crucial for

critical care environments.

xv



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 The Urgent Need for Early Sepsis Prediction Models

Sepsis is a“life-threatening organ dysfunction”caused by the dysfunctional host response

to infection-causing organ failure, tissue damage, or death [1, 2]. Germs can cause an

infection after they get into a person's body. If that infection is not stopped, it can cause

sepsis. most cases of sepsis are caused by bacterial infections. Other infections, including

viral infections such as COVID-19, can also result in sepsis. Among critically ill patients in

the intensive care unit (ICU), sepsis is a signi�cant cause of morbidity and mortality [3, 4].

Based on a recent epidemiological report [5], sepsis has resulted in up to a �fth of all global

deaths in 2017, and the heaviest burden fell amongst low-resourced countries. Groups

such as immunocompromised, children under the age of 5, and the elderly composed the

majority of the deaths reported.

Up till now, sepsis still remains an expensive and common life-threatening condition

with signi�cant mortality, and the �nancial costs of sepsis have increased signi�cantly ev-

ery year. It is estimated by the Centers for Disease Control and Prevention that at least 1.7

million adults develop sepsis in the United States each year and one-third of the deaths in a

hospital are related to sepsis1. From 2012 to 2018, the number of fee-for-service bene�cia-

ries with sepsis-related inpatient hospital admission (IHA) rose from 811,644 to 1,136,889

[6]. On average, only approximately 70% of the patients diagnosed with severe sepsis can

survive. However, 50% of sepsis survivors will suffer from post-sepsis syndrome. Unless

a cure for sepsis is found, early sepsis detection and treatment still remain an essential

solution for septic patients to survive and avoid disability caused by sepsis2.

1https://www.cdc.gov/sepsis/clinicaltools/index.html
2https://www.sepsis.org/sepsis-basics/what-is-sepsis/

1



Sepsis progresses rapidly, often leading to irreversible organ damage or death if not

treated promptly. The effective intervention window for sepsis treatment is narrow, making

early and accurate predictions crucial for improving outcomes. Existing clinical approaches

rely heavily on identifying symptoms after sepsis has already progressed, leaving a critical

gap in the ability to detect and treat the condition in its earliest stages. This delay not only

exacerbates the clinical severity of sepsis but also increases the economic burden on public

healthcare systems when prolonged hospitalizations and intensive care become necessary.

Given the high stakes in healthcare problems, developing predictive models capable

of predicting sepsis onset time before severe symptoms is paramount. Such models can

aid clinicians in initiating timely interventions, tailoring treatments to individual patients,

and potentially saving countless lives. Machine learning can address this urgent need by

leveraging big clinical data to provide real-time actionable insights. By bridging the gap

between observation and intervention, early sepsis prediction models have the potential to

transform critical care, reduce mortality, and alleviate the long-term impact of sepsis on

our society.

1.2 Machine Learning for Early Sepsis Prediction

Machine learning and deep learning techniques have been widely applied to improve early

sepsis predictions [7, 8]. Recently, in order to improve the modeling strategies of early

sepsis prediction before clinical recognition of sepsis, PhysioNet held an international

challenge [2]. The majority of the dataset has come from structured data derived from cy-

tokine/biomarker data [9, 10], electronic medical records (EMR) [11, 12, 13], and bed-side

monitoring [14, 15, 16]. The team that won �rst place in the challenge applied XGBoost

Learning and Bayesian Optimization to build an Explainable Arti�cial-intelligence Sepsis

Predictor (EASP) [17, 18]. Another team applied a recurrent neural network (RNN) to

solve the sepsis prediction problem [19].

Machine learning methods have long been used to improve predictions for sepsis [7, 8].

2



Indeed, a recent international challenge [2] was conducted to improve modeling strategies

and prediction times before clinical recognition of sepsis. A major source of data for sepsis

prediction has come from structured data derived from electronic medical records (EMR)

[11, 12, 13], bed-side monitoring [14, 15, 16], or cytokine/biomarker data [9, 10].

In [20], S. Nemati et al. proposed an interpretable machine learning model based on Ar-

ti�cial Intelligence Sepsis Expert (AISE) for Sepsis prediction in ICUs. In [21], Q. Mao et

al. applied a machine learning-based algorithm using only six vital signs to detect and pre-

dict three sepsis-related gold standards. Their experiments were based on a mixed-ward ret-

rospective dataset. M. Yang et al. [17, 18] proposed an Explainable Arti�cial-intelligence

Sepsis Predictor (EASP) applying XGBoost Learning and Bayesian Optimization, which

had won �rst place in the PhysioNet/Computing in Cardiology Challenge 2019 [2]. In

[19], T. Vicar et al. solved the sepsis prediction problem using a recurrent neural network

(RNN).

1.3 Challenges of Existing Machine Learning Methods

While existing machine learning approaches have incorporated rich clinical and physiolog-

ical aspects of the disorder and demonstrated substantial promise in improving early sepsis

prediction, most of these algorithms use retrospective observational data [22]. In other

words, the events to be studied had already occurred before the data collection started, ne-

glecting valuable information from the new data. We can summarize the signi�cant chal-

lenges that persist in existing machine learning approaches when applied in high-stakes

clinical environments as follows:

Uncertainty in Predictions: Traditional machine learning models used in early sepsis

prediction often provide point estimates without quantifying the uncertainty associated with

their predictions. This limitation is particularly concerning in critical care settings, such as

ICUs, where the consequences of incorrect or overly con�dent predictions can be dire.
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For instance, a false negative prediction could delay necessary interventions, while a false

positive may lead to unnecessary treatments, which could be life-threatening to patients or

waste public healthcare resources.

Lack of Distribution-Free Guarantees: Furthermore, most existing models rely on strong

distributional or modeling assumptions to quantify uncertainty, which may not hold in real-

world ICU datasets. This results in uncertainty estimates that are unreliable or invalid

when applied to unseen or out-of-distribution data, limiting their trustworthiness in clinical

decision-making.

Challenges in Adaptability and Generalization: In real-world scenarios, clinical data

is often heterogeneous and continuously evolving, making it challenging to maintain model

accuracy and reliability across different patient populations or hospital settings. We must

retrain the models if we want to take advantage of the new data. However, retraining models

with new data can be computationally expensive and time-consuming, further complicating

their deployment in time-critical ICU environments.

To solve the aforementioned challenges, one opportunity may rest in integrating online

learning-based frameworks, such as theMulti-armed Bandit (MAB) algorithm, to aug-

ment observational learning with interactive and adaptive training. In terms of quantifying

the uncertainty associated with predictions,Conformal Prediction is a strong and feasible

methodology [23].

1.4 Motivation for Incorporating Multi-armed Bandit

Speci�cally, the Multi-Armed Bandit (MAB) problem (or Bandit problem) can be de�ned

as [24]: “A sequential allocation problem de�ned by a set of actions. At each time step, a

unit resource is allocated to an action and some observable payoff is obtained. The goal is

to maximize the total payoff obtained in a sequence of allocations.”One interesting thing

is that the original motivation to study MAB problems came from a clinical application
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in which one must decide which treatment policy to adopt for each patient [24, 25]. The

payoff gained at each round (i.e., time step) is usually de�ned asreward. At each round, a

parameter calledregret is used to evaluate the performance of the algorithm. Speci�cally,

regret is de�ned as the gap between the optimal reward and the actual reward gained.

In an early sepsis prediction problem, timely and accurate decision-making is crucial

to improve patient outcomes. Traditional machine learning models often rely on static

datasets and may need to adapt better to the dynamic and uncertain nature of clinical en-

vironments. The Multi-Armed Bandit framework empowers healthcare professionals by

offering a robust solution to this challenge. It balances exploring new treatment strategies

with exploiting known effective ones, giving professionals more control over patient care.

Based on the nature of MAB, the motivations for leveraging MAB in early sepsis prediction

problems can be summarized as follows:

• Adaptive Decision-Making [26]: The MAB framework is inherently designed for

sequential decision-making under uncertainty. In the context of early sepsis predic-

tion problems, patient conditions can evolve rapidly. The MAB algorithms, with their

adaptability, continuously learn from incoming patient data, allowing for dynamic

adjustments to treatment strategies. This adaptability reassures healthcare profes-

sionals of the effectiveness of MAB in dynamic clinical environments.

• Balancing Exploration and Exploitation: A critical aspect of sepsis management

is determining the most effective treatment while considering potential alternatives.

MAB algorithms address this by balancing exploration (testing new or less certain

treatments) with exploitation (applying known effective treatments). This balance

optimizes patient care over time, ensuring the long-term bene�ts of using MAB in

sepsis management.

• Personalized Treatment Strategies [27]:Sepsis manifests differently across pa-

tients, in�uenced by age, comorbidities, and genetic predispositions, .etc. MAB
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models can incorporate contextual information to tailor treatment decisions to in-

dividual patient pro�les, enhancing the personalization of care.

• Real-Time Learning and Adaptation: The MAB framework supports online learn-

ing, enabling models to update their knowledge base as new data becomes available.

This real-time learning model is indispensable in critical care settings, where timely

interventions can signi�cantly impact patient outcomes.

By integrating MAB algorithms into early sepsis prediction models, healthcare providers

can develop systems that are not only more responsive to the complexities of sepsis but also

capable of delivering personalized and timely interventions, ultimately improving patient

survival rates and reducing the burden of sepsis-related complications.

1.5 Motivation for Incorporating Conformal Prediction

Conformal prediction provides a user-friendly paradigm for generating uncertainty sets or

prediction intervals that are statistically valid in a distribution-free sense. Unlike traditional

uncertainty quanti�cation methods, conformal prediction makes no strong distributional

or model-speci�c assumptions, enabling its application across diverse and heterogeneous

datasets. This feature is particularly crucial in early sepsis prediction, where patient data

can vary widely across ICU settings. The motivations for leveraging conformal prediction

in early sepsis prediction problem can be summarized as follows:

• Trustworthiness and Reliability: By guaranteeing that the generated prediction in-

tervals contain the true label with a user-speci�ed probability (e.g., 90%), conformal

prediction ensures reliability in high-stakes scenarios. This statistical rigor is vital for

early sepsis prediction, allowing clinicians to make decisions based on trustworthy

model outputs and reducing the risk of model failures in critical care.

• Flexibility with Any Pre-Trained Model: Conformal prediction can be seamlessly

applied to any pre-trained model, including neural networks, without requiring ad-
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ditional assumptions or signi�cant modi�cations to the underlying algorithm. This

�exibility makes it a practical choice for enhancing existing sepsis prediction frame-

works, such as those using recurrent neural networks (RNNs) or gradient-boosted

decision trees.

• Ease of Use and General Applicability:The conformal prediction framework is in-

tuitive and straightforward, making it accessible to researchers and clinicians alike.

Its generality allows it to be applied to a wide range of problems, from computer vi-

sion and natural language processing to medical diagnostics and reinforcement learn-

ing. In the context of sepsis prediction, this ease of use facilitates its integration into

real-world clinical work�ows, supporting the adoption of AI-driven tools in ICUs.

By incorporating conformal prediction, this thesis aims to enhance the reliability, inter-

pretability, and adaptability of sepsis prediction models, addressing the critical challenges

of uncertainty quanti�cation and model trustworthiness. This approach ensures that pre-

dictive systems can provide actionable insights in dynamic and high-stakes environments,

ultimately improving patient outcomes and clinical decision-making.

1.6 Thesis Outline and Contributions

The �nal goal of this dissertation is to signi�cantly advance the �eld of healthcare by solv-

ing the early sepsis detection task. We aim to explore the feasibility of applying different

machine learning, reinforcement learning, and deep learning technologies to the early sep-

sis prediction problem, potentially saving countless lives in the future.

In chapter 2, we proposeOnAI-Comp, an online learning-based framework that selects

the expected best-performing AI clinician among a group of well-trained AI clinicians.

OnAI-Comp can leverage the advantages of different AI clinicians and achieve better per-

formance than individual AI clinicians.

Inspired by OnAI-Comp, we proposeSepsyn-OLCP, a gap-bandit-based online learn-
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ing framework with conformal prediction guarantee in chapter 3 for early sepsis prediction.

Sepsyn-OLCP improves the trustworthiness and reliability of the online learning frame-

work while maintaining the adaptive decision-making strategy.

To further approximate the reward function in an online learning framework with high

�delity, we proposedNeuroSep-CP-LCBin chapter 4, which utilizes an over-parameterized

neural network to approximate the reward function and conformal prediction algorithm to

ensure prediction reliability under a stochastic contextual bandit setting.
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CHAPTER 2

ONAI-COMP: AN ONLINE AI EXPERTS COMPETING FRAMEWORK FOR

EARLY SEPSIS PREDICTION

2.1 Introduction

In this chapter1, we proposed an online learning-based early sepsis prediction framework

where a group of Arti�cial Intelligence (AI) experts compete for the best prediction results.

The problem is formulated under a Multi-armed Bandit (MAB) setting. Each AI expert is

modeled as an arm in the MAB setting. The experimental results demonstrate that our

method can converge to the optimal strategy in the long run.

2.2 Problem Formulation

The framework is based on an MAB (i.e.,K -armed bandit) model. We have a group of AI

experts (i.e., arms in MAB setting)f 1; 2; � � � ; K g2. We run the system forT rounds. When

arm (i.e., AI expert)i is selected (i.e., win the competition) successively at each round, it

yields rewardsRi; 1; Ri; 2; � � � ; Ri;T (a series of random variables). Usually,Ri; 1; Ri; 2; � � � ; Ri;T

are assumed to be drawn independent and identically distributed (i.i.d) from an unknown

law of unknown expectation� i [29], which is not consistent with real-world applications.

For example, the rewards gained at roundt � 1 andt from the same patient are probably

correlated. For example, the cardio output at the moment might be correlated with the mea-

surement we gained one hour ago. Therefore, the rewards for each arm are not assumed to

be i.i.d.. Instead, the following weaker assumption [29] is what only needs to be satis�ed3.

1Part of this chapter is from [28].
2The expert can also be a human expert or a clinical decision system based on both human and AI. Without

loss of generosity, we treat all experts as AI experts throughout this proposal.
3The assumptionRi;t 2 [0; 1] is easy to be satis�ed by normalization.
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Assumption 1.For81 � i � K and81 � t � T, we assume

E[Ri;t jRi; 1; Ri; 1; � � � ; Ri;t � 1] = � i andRi;t 2 [0; 1]: (2.1)

Note that for81 � i; j � K and81 � s; t � T, Ri;t andRj;s might be dependent. Most

applications can guarantee this very weak assumption. In addition, decision made by each

AI expert will not be impacted by the decisions made by other experts since each expert

makes its own decision individually instead of by collaboration.

2.3 System Overview

The entire decision process at each round can be treated as an AI expert competing system,

where the expert with the highest score will win the game and be elected as the expert

whose prediction results will be considered the most reliable by the system. The system

consists of the following components (see Fig. Figure 2.1):

Figure 2.1: System Overview.

• Patient. A group of patientsf P1; P2; � � � ; Pt ; � � � ; PT g arrive sequentially at the hos-

pital. t 2 f 1; 2; � � � Tg andt is associated with a unique timestamp. For simplicity,

the patient arriving at each round is considered unique, even if the patient is the same

person.
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• AI Expert. A group of AI expertsEK = f E1; E2; � � � ; EK g provide ML as a Service

(MLaS) aiming to help clinicians analyze EMRs. In this system, we assume that

there areK AI experts. Each AI expert is pre-trained using the same training dataset.

• Trusted third party (TTP). A TTP can be an entity (e.g., a hospital) that has hired

K experts to solve the early sepsis prediction task.

In this proposal, all the objects in Fig. Figure 2.1 are assumed to be benign and observe a

certain protocol to protect the sensitive information from patients. However, components

in the system might be attacked by external malicious attackers. So, a TTP should provide

all EMRs during the online learning process and of�ine training.

2.4 Proposed Methodology

Reward. At the end of each round, the system calculates a reward based on the perfor-

mance of AI experts, which is evaluated by a utility function. For a speci�c expertEk , let

r t be the reward calculated at roundt anduk(t) be the utility score AI expertEk achieves

at roundt. We calculater t asr t = max1� k� K uk(t); which is the maximum utility score

received by AI experts at roundt.

Let tpredict be the speci�c round associated with the �rst hour during whichEk reports

sepsis, andtsepsis be the round associated with the �rst hour during which patientPt devel-

ops sepsis. Iftpredict 2 [tsepsis � � early ; tsepsis + � late ], expertEk is quali�ed for positive

rewards. Herein, we set� early = 12; � late = 3. � early and� late are based on the pa-

rameters provided by the Physionet sepsis challenge [2]. We used the same parameters so

that we could apply the standard evaluation function provided by Physionet. There are four

different scenarios: false negative (FN), false positive (FP), true positive (TP), and true

negative (TN). Similar to [2], we de�neuk(t) as follows:

11



uk (t) =

8
>>>>>>>><

>>>>>>>>:

0 FN for sepsis patientPt

0 FP for non-sepsis patientPt

1 TN for non-sepsis patientPt

jtsepsis � tpredict j
� early + � late

TP for sepsis patientPt

(2.2)

Regret. At each round, based on the afterward feedback from the patients, the system

calculates the difference between the optimal strategy and the selected strategy called re-

gret. In this work, we evaluate the performance by average regret (AR). Speci�cally, we

denote� T as the AR up till roundT:

� T =
1
T

TX

t=1

(roptimal � r t ); (2.3)

whereroptimal is the reward the expected optimal strategy achieves. This work formalizes

all the parameters so thatroptimal = 1.

Upper con�dence bound (UCB). For each roundt, we keep a UCB for each expert

given by:

UCB j (t) = �̂ j (t) +

s
� log(t)
N j (t)

; (2.4)

where�̂ j (t) is the empirical average utility score achieved by expertE j , N j (t) is the num-

ber of times expertE j has been selected up till roundt, and� is a constant. For each round,

the expert with the highest UCB is selected.

The �rst term in Equation 2.4 is the average empirical utility score received by expert

j up till round t, which can evaluate the performance of expert j based on the exploitation

of all historical data related to expert j. So, the �rst term is associated with the exploitation

process, in which the experts with higher empirical performance (in terms of utility score)

are selected.

The second term in Equation 2.4 represents the uncertainty caused by the exploration

of expert j. Speci�cally, the less expert j has been selected before round t (i.e., the smaller

12



N j (t) is), the more probable it will be selected at round t. The expert with the highest

UCB value will be selected at each round. So, the second term is related to the exploration

process, i.e., the experts that have not been fully exploited are chosen. In this way, the

system can strike a better balance between exploitation and exploration. In this way, we

could strike a balance between exploitation and exploration. In addition, the information

from the new data is utilized to calculate UCB values.

Algorithm 1: OnAI-Comp.
Input: t; Pt ; K; EK

Output: N (t); ~� (t); AR
1 Initialization: ;
2 t  1;
3 for j 2 f 1; 2; � � � ; K g do
4 �̂ j (t)  0;

5 for t = 1; 2; � � � ; n do
6 Patient data fed to each AI expert;
7 All AI experts provide their predictions;
8 for j 2 f 1; 2; � � � ; K g do
9 uj (t)  Get Utility (t; Pt ; E j );

10 Updatehat mu(t; �̂ j (t); uj (t));
11 UpdateUCB(t; �; �̂ j (t); N j (t));

12 j �  arg maxm UCBm (t);
13 N j � (t)  N j � (t � 1) + 1;
14 r t  uj �

(t);
15 N (t)  f N1(t); N2(t); � � � ; NK (t)g;
16 ~� (t)  f �̂ 1(t); �̂ 2(t); � � � ; �̂ K (t)g;
17 Calculate AR based on Equation 2.3;

Algorithm 2: Get Utility( t; Pt ; E j ).
Input: t; Pt ; E j

Output: uj (t)
1 Calculate the utility score based on Equation 2.2;
2 return uj (t);
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Algorithm 3: Updatehat mu(t; �̂ j (t); uj (t)).

Input: t; �̂ j (t); uj (t)
Output: Updated�̂ j (t)

1 �̂ j (t)  (t � 1)�̂ j (t � 1)+ u j (t )
t ;

Algorithm 4: UpdateUCB(t; �; �̂ j (t); N j (t)).

Input: t; �; �̂ j (t); N j (t)
Output: UpdatedUCB j (t)

1 UCB j (t)  �̂ j (t) +
q

� log( t )
N j (t ) ;

2.4.1 Work�ow.

As shown in Alg. algorithm 1, the work�ow can be split into following steps: (1) At each

round, the TTP processes and feeds the information of the current patient to all AI experts.

(2) The experts predict the risk of developing sepsis. (3) The TTP selectsE j � (i.e., the

optimal expert) and shares the predictions ofE j � with clinicians to assist them with the

�nal decision. (4) The TTP receives the true predicted labels to calculate utility scores and

update all variables (i.e.,N (t); ~� (t), UCBs). (5) The TTP calculates the reward and AR.

Then, go back to step 1.

2.4.2 RegretAnalysis

We denote� i as the expected reward received by expertE i , � � = max1� i � K � i , and� is the

same constant as that in Equation 2.4. Following the similar steps in [29], we have:

Lemma 1. For 81 � i � K , the upper bound of the expected number of times expert

E i is selected up till roundt is:

E[N i (t)] �
4� log(t)

� 2
i

+ 1 +
� 2

3
; (2.5)
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where� i = � � � � i . Furthermore, we can rewrite the expected AR afterT rounds as:

E[
TX

i =1

� i ] =
KX

j =1

� j E[N j (T)]: (2.6)

Thus, we have:

Theorem 1 (AR Upper Bound). For 8K > 1, the expected regret afterT rounds of

OnAI-Comp is bounded as follows:

E[
TX

i =1

� i ] �

"

4�
KX

j =1

�
log(T)

� j

� #

+
�

1 +
� 2

3

�  
KX

j

� j

!

: (2.7)

Theorem 1 shows that the bound of expected AR is depends onT and� i . Intuitively,

the �rst term of Equation 2.7 is caused by uncertainty of the exploration process, while the

second term is due to regrets gained in the exploitation process.

2.5 Experimental Results

Table 2.1: Feature Selection.

Feature Description
HR Heart rate (beats per minute)

O2Sat Pulse oximetry (%)
Temp Temperature (Deg C)
SBP Systolic BP (mm Hg)
MAP Mean arterial pressure (mm Hg)
DBP Diastolic BP (mm Hg)
Resp Respiration rate (breaths per minute)

EtCO2 End-tidal carbon dioxide (mm Hg)
Glucose Serum glucose (mg/dL)

Age Years (100 for patients 90 or above)
Gender Female (0) or Male (1)
Unit1 Administrative identi�er for ICU unit (MICU)
Unit2 Administrative identi�er for ICU unit (SICU)

ICULOS ICU length-of-stay (hours since ICU admission)
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In this section, the experimental results of OnAI-Comp are demonstrated4. We use

the dataset from 2019 PhysioNet Computing Cardiology Challenge [2], which follows the

Sepsis-3 guidelines [1]. The dataset contains EMRs of ICU patients from three different

hospital systems. The records of each patient are stored separately in a .psv �le. The patient

information is recorded on an hourly basis. The system will know if a patient has developed

sepsis during the ICU stay after the patient leaves ICU. The utility score is calculated based

on Equation 2.2, and the strategy will be adapted before the next episode.

Figure 2.2: Comparison with the Of�ine Model.

The dataset consists of the EMRs from 40,336 patients, and each record has more than

40 features. The selected features are shown in Table 2.1. We set up four AI expert can-

didates: Random Forest (RF), Support Vector Machine (SVC), XGBoost5 (XGB) [17, 18],

and Logistic Regression (LR). For a fair comparison, a random guess (RG) is included as

4Part of this chapter is from [28].
5https://github.com/Meicheng-SEU/EASP
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Figure 2.3: Average Regret. (a) Average regret gained by a different number of experts. (b)
Average regret gained by different expert combinations.

a dumb expert.� (see Equation 2.4) is set as 2. We have open-sourced our code6.

2.5.1 ComprehensiveRegretAnalysis

To evaluate the performance comprehensively, OnAI-Comp is implemented using different

combinations of AI experts (see Figure 2.2 and Figure 2.3). As shown in Figure 2.3 and

Figure 2.2, OnAI-Comp always converges to the optimal strategy in the long run. However,

there is usually a “cold start” problem initially. As shown in Figure 2.3, the LR+RF+SVC

expert combination has a lower AR than XGB+RF+SVC. This might be caused by the fact

that expert XGB [17], who won �rst place in the challenge, has better performance than

expert LR. Thus, we can conclude that with better-trained AI experts in the candidate list, it

is possible to achieve lower AR. In addition, we provide the average regret and cumulative

regret of all expert combinations in Table 2.2 and Table 2.3, respectively. As shown in

Table 2.2, OnAI-Comp can converge within the �rst 500 episodes/steps.

As shown in Table 2.2), after adding RG to XGB+RF+LR+SVC, we can end up with

a lower AR. Thus, adding an inferior expert to the candidates might result in lower AR. A

possible reason might be that �nding the optimal expert with a bad-behavior expert in the

candidates is easier. However, adding RG might cause a severe “cold start” problem (see

TABLE Table 2.2 and Table 2.3).
6https://github.com/Annie983284450-1/OnAI-Comp
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Table 2.2: Average Regret of Different Expert Combinations.

Experts round = 10 round = 50 round = 100 round = 200 round = 500 round = 1000 round = 1500 round = 2000
XGB 0.1818 0.2431 0.1941 0.1821 0.1960 0.2080 0.2097 0.2105

RG+LR 0.131 0.123 0.1207 0.094 0.0892 0.0928 0.0915 0.0922
RG+SVC 0.1295 0.1019 0.1193 0.0961 0.0855 0.0931 0.0907 0.0906
RG+XGB 0.1974 0.1607 0.1317 0.1402 0.1633 0.1823 0.1876 0.1916
RG+RF 0.0521 0.1466 0.1003 0.0829 0.0778 0.0847 0.0861 0.0871

XGB+RF 0 0.0902 0.099 0.0826 0.0814 0.0885 0.0883 0.0898
XGB+LR 0 0.0902 0.099 0.0826 0.0814 0.0885 0.0883 0.0898

XGB+SVC 0 0.0902 0.099 0.0826 0.0814 0.0885 0.0881 0.0895
RF+LR 0 0.0980 0.1089 0.0896 0.0878 0.0949 0.0939 0.0945

RF+SVC 0 0.0980 0.1089 0.0896 0.0878 0.0949 0.0938 0.0944
LR+SVC 0 0.0980 0.1089 0.0896 0.0878 0.0949 0.0938 0.0944

RG+XGB+RF 0.1019 0.1654 0.1457 0.1123 0.0936 0.0918 0.089 0.0887
RG+XGB+LR 0.1126 0.1442 0.1227 0.0943 0.0811 0.0881 0.0872 0.0886

RG+XGB+SVC 0.0917 0.0963 0.0984 0.0874 0.0804 0.0869 0.0855 0.0865
RG+RF+SVC 0.1325 0.1443 0.1380 0.1000 0.0885 0.0947 0.0919 0.0915
RG+RF+LR 0 7380 0.0865 0.0965 0.0766 0.0824 0.087 0.0868 0.0886

RG+LR+SVC 0 9140 0.1308 0.1185 0.0891 0.0834 0.0897 0.0896 0.0911
XGB+RF+LR 0 0.1137 0.1149 0.0915 0.0870 0.0931 0.0913 0.0921

XGB+RF+SVC 0 0.1137 0.1149 0.0915 0.0870 0.0931 0.0915 0.0921
XGB+LR+SVC 0 0.1137 0.1149 0.0915 0.0870 0.0931 0.0915 0.0921
RF+LR+SVC 0 0.0980 0.1089 0.0896 0.0878 0.0949 0.0938 0.0944

RG+XGB+RF+SVC 0.1922 0.1819 0.1368 0.1065 0.0938 0.0939 0.0915 0.0918
RG+XGB+RF+LR 0.2026 0.1766 0.1438 0.1149 0.095 0.0965 0.0926 0.0926

RG+XGB+LR+SVC 0.1559 0.1653 0.1374 0.1068 0.0871 0.0923 0.0904 0.0904
RG+RF+LR+SVC 0.0762 0.1426 0.1402 0.1085 0.0955 0.0955 0.0944 0.0940

XGB+RF+LR+SVC 0 0.1176 0.1287 0.0985 0.0894 0.0937 0.0922 0.0927
RG+XGB+RF+LR+SVC 0.0322 0.1217 0.1283 0.1030 0.0898 0.0905 0.0879 0.0884

Comparison with the individual of�ine model

To evaluate the effectiveness of our online model, we compare OnAI-Comp with the best

standalone of�ine AI expert [17] in our AI expert list. For a fair comparison, we imple-

mented all the experiments in an online environment. As shown in Figure 2.2, OnAI-Comp

outperforms the standalone XGB model even though OnAI-Comp only added two AI ex-

perts, which are not optimized and designed for early sepsis prediction. One of them is

the dumb RG, and the other is called from the standard python scikit-learn7 library. This

might be caused by the fact that RG can promote the exploration process in MAB setting.

Meanwhile, adding more AI experts does not guarantee better performance. This might

be because we do more unnecessary exploration when we have more AI candidates, espe-

cially when those AI experts are not optimized for early sepsis prediction. From Figure 2.2,

we can conclude that our proposed model performs better than existing standalone of�ine

models. Given that the AI experts used in this study are either random guesses or called

7https://scikit-learn.org/stable/
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Table 2.3: Cumulative Regret of Different Expert Combinations.

Experts round = 10 round = 50 round = 100 round = 200 round = 500 round = 1000 round = 1500 round = 2000
XGB 2.000 12.4000 19.6000 36.6000 98.2000 208.2000 314.8000 421.2000

RG+LR 1.441 6.2746 12.1922 18.8946 44.6685 92.9025 137.2798 184.5152
RG+SVC 1.4247 5.1945 12.0459 19.3167 42.8533 93.1598 136.1482 181.3200
RG+XGB 2.1714 8.1932 13.2985 28.1738 81.7912 182.4437 281.5643 383.4118
RG+RF 0.5727 7.4768 10.1285 16.6660 38.9590 84.7379 129.1850 174.3307

XGB+RF 0 4.6000 10.0000 16.6000 40.8000 88.6000 132.6000 179.6000
XGB+LR 0 4.6000 10.000 16.6000 40.8000 88.6000 132.6000 179.6000

XGB+SVC 0 4.600 10.000 16.6000 40.8000 88.6000 132.2000 179.0000
RF+LR 0 5.0000 11.0000 18.0000 44.0000 95.0000 141.0000 189.0000

RF+SVC 0 5.0000 11.0000 18.0000 44.0000 95.0000 140.8000 188.8000
LR+SVC 0 5.0000 11.0000 18.0000 44.0000 95.0000 140.8000 188.8000

RG+XGB+RF 1.1208 8.4329 14.7169 22.5649 46.9066 91.9052 133.5326 177.4717
RG+XGB+LR 1.2388 7.3562 12.3912 18.9492 40.619 88.1966 130.8845 177.3592

RG+XGB+SVC 1.0092 4.9128 9.9349 17.5769 40.2651 87.0092 128.3862 173.0308
RG+RF+LR 0.8121 4.4132 9.7481 15.3888 41.2942 87.0731 130.2903 177.3375

RG+RF+SVC 1.4572 7.3571 13.9346 20.0921 44.3526 94.7887 138.0153 183.0098
RG+LR+SVC 1.0058 6.6719 11.9658 17.9054 41.7606 89.7950 134.4917 182.2353
XGB+RF+LR 0 5.8000 11.6000 18.4000 43.6000 93.2000 137.0000 184.2000

XGB+RF+SVC 0 5.8000 11.6000 18.4000 43.6000 93.2000 137.4000 184.2000
XGB+LR+SVC 0 5.8000 11.6000 18.4000 43.6000 93.2000 137.4000 184.2000
RF+LR+SVC 0 5.0000 11.0000 18.0000 44.0000 95.0000 140.8000 188.8000

RG+XGB+RF+SVC 2.1145 9.2749 13.8171 21.4056 46.9877 93.9972 137.2963 183.7677
RG+XGB+RF+LR 2.2281 9.0083 14.527 23.0924 47.5925 96.5607 139.0171 185.3276

RG+XGB+LR+SVC 1.7146 8.4278 13.8764 21.4658 43.6148 92.3832 135.6365 180.9075
RG+RF+LR+SVC 0.8380 7.2735 14.1578 21.8025 47.8366 95.6304 141.7602 188.0392

XGB+RF+LR+SVC 0 6.0000 13.0000 19.8000 44.8000 93.8000 138.4000 185.4000
RG+XGB+RF+LR+SVC 0.3542 6.2084 12.9557 20.7061 44.9708 90.5720 131.9569 176.9695

from standard Python libraries, the performance of OnAI-Comp can be guaranteed if we

use more advanced models.

Impact of the number of AI Experts

To evaluate the impact of the number of AI experts on performance, we compared different

combinations of AI experts (see Figure 2.3 (a)). First, we made two experts (i.e., SVC and

RF) as the primary candidates. Then, we increased the number of experts by adding new

experts to the candidate list. We observe that if we add one expert, AR decreases and con-

verges faster than the combination of two experts. Even though the difference in AR seems

negligible, such a tiny improvement, corresponding to several minutes earlier prediction of

sepsis, is crucial for saving the lives of septic patients. However, we should choose experts

wisely becausesometimesadding an inferior expert (e.g., RG) might increase regret (see

TABLE Table 2.2 and Table 2.3).
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2.5.2 Model Interpretation

It is not feasible to interpret the overall system using the existing technologies. At each

execution time, we could only interpret one AI expert. We overcome this challenge by

having each AI expert interpret their prediction, allowing the clinician to infer whether the

model is reliable based on the interpretation. In this chapter, we only interpreted RF.

Figure 2.4: Impact of Features over Time. (a) Patient #000967 (Septic Patient). The black
vertical line marks the hour the patient developed sepsis, and the blue vertical line marks
the hour the septic symptoms end. (b) Patient #000013 (Non-septic Patient).

Figure 2.5: Impact of Features within a Particular Hour (RF). (a) Patient #000967 (ICUOS
= 36). (b) Patient #000013 (ICUOS = 13).

2.6 Discussion, Limitations, and Conclusion

In this chapter, we demonstrated the feasibility of an online learning framework to predict

sepsis using an application of contextual experts consisting of several pre-trained of�ine
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models. The current results suggest that not only can the OnAI-Comp framework outper-

form the top-achieving of�ine models, but it can also serve to incorporate dynamic infor-

mation from the real world with incremental improvements in predictions and contextual

awareness of critically ill patients.

The experiments further demonstrate that the OnAI-Comp framework appropriately

incorporates information found in new data arrivals without retraining an of�ine model.

By dynamically optimizing the online model, we can surpass the performance of of�ine

algorithms alone. Moreover, the resultant model can be easily interpreted if the AI experts

can interpret it. Indeed, these �ndings also suggest that OnAI-Comp can be developed as

an alternative to of�ine models, where performance generalization is not achieved.

There are two limitations to OnAI-Comp. First, most AI experts we use in this work

are traditional ML models and serve as a pilot demonstration of feasibility; thus, they may

be able to demonstrate further improvements with adaptive learning algorithms. We plan to

incorporate more advanced deep learning RNN-based models such as the Long short-term

memory (LSTM) model [30]. In addition, as shown in the previous chapter though the

proposed framework can converge to the optimal strategy in the long run, it suffers from

the cold start problem. Thus, the patients visiting the system during the early rounds might

get bad detection results. A possible solution is to silence the results from the early stage

and merely use them for training the online module. After the framework converges to the

optimal strategy, the clinicians can take advantage of the online learning module.

In conclusion, an online learning-based expert selection framework for early sepsis

prediction is demonstrated. The proposed model can be extended to other applications as

long as the utility score and each expert is normalized appropriately. The experimental

results show that the proposed model converges to the optimal strategy in the long run.
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CHAPTER 3

SEPSYN-OLCP: AN ONLINE LEARNING-BASED FRAMEWORK FOR EARLY

SEPSIS PREDICTION WITH UNCERTAINTY QUANTIFICATION USING

CONFORMAL PREDICTION

OnAI-Comp utilizes the standard multi-armed bandit framework with an upper con�dence

bound (UCB) approach to balance exploration and exploitation. While effective, its pre-

dictions do not explicitly account for uncertainty quanti�cation. This chapter introduces an

Online Learning-based Framework for Early Sepsis Prediction with Conformal Prediction

Guarantee (Sepsyn-OLCP). Sepsyn-OLCP integrates conformal prediction into the bandit

framework, using leave-one-out techniques to derive reliable, patient-speci�c uncertainty

estimates. This ensures that predictions are accurate and accompanied by con�dence levels,

making the system more robust and interpretable for clinical use. We will �rst introduce

the basics ofconformal predictionand thebest arm identi�cationmethodologies, which

are the theoretical foundations of our problem formulation.

3.1 Conformal Prediction

Conformal prediction, also known as conformal inference [23, 31, 32, 33, 34], provides

a straightforward method to generate prediction sets applicable to any model. We will

explain conformal prediction with a concise and practical example involving ICU patient

classi�cation (septic or non-septic). The general approach of conformal prediction can be

summarized as follows.

We start with a well-trained predictive model, such as a random forest classi�er, which

we denote aŝf . Using this �tted modelf̂ , we construct a set of possible labels for the

classi�er utilizing a small set of additional data, the so-called calibration data. This process

is calledcalibration step[23].
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Speci�cally, suppose we have the physiological features, demographics, and lab values

of patients in the ICU as input and a binary label indicating if the patient is septic hourly

for all the electrical healthcare records (EHRs). The classi�er outputs estimated probabil-

ities (softmax scores) for each class:f̂ (x) 2 [0; 1]K , whereK = 2 if it is for a binary

classi�cation problem. We prepare a group of i.i.d. patient features and classes (septic

or non-septic labels on an hourly basis) unseen during training,(x1; y1); : : : ; (xn ; yn ) as

calibration data, wheren is a moderate number, for example,n = 1; 000. Using the well-

trained classi�erf̂ and the calibration datasetf (x i ; yi )gn
i =1 , we aim to construct a prediction

setC(X test) � f 1; : : : ; K g that satis�es:

1 � � � P(Ytest 2 C(X test)) � 1 � � +
1

n + 1
; (3.1)

in which (X test; Ytest) is from the same distribution as the calibration set and� is the self-

de�ned error rate.

Note that conformal prediction is not limited to softmax outputs and classi�cation prob-

lems. Actually, conformal prediction can be used to transform any uncertainty heuristic

measure from any model to a rigorous uncertainty measure. The underlying problem can

be discrete/continuous or classi�cation/regression. Following the similar steps in [23], now

we outline the steps in conformal prediction for any inputx and outputy (can be continuous

or discrete) as follows:

1. De�ne a heuristic measure of uncertainty using the well-trained/�tted model.

2. De�ne the score functionscore(x; y) 2 R such that the larger scores can indicate

poorer agreement between inputx and outputy.)

3. Computêq as the(n+1)(1 � � )
n quantile of the calibration scores:

score1 = score(X 1; Y1); : : : ; scoren = score(X n ; Yn ):
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4. Use the quantilêq to form the prediction setsX test for new examples:

C(X test) = f y : score(X test; y) � q̂g:

By following the aforementioned steps, the validity property in Equation 3.1 will be

satis�ed regardless of the score function and distribution of the data. The score function

might be uninformative and the data distribution might be unknown. Formally, we state the

coverage guarantee in the following theorem.

Theorem 1(Conformal coverage guarantee [35]). Supposef (x i ; yi )gi =1 ;:::;n and(X test ; Ytest ) =

f (x j ; yj )gj = n+1 ;:::;n + n1) are i.i.d. and de�neq̂ as the(n+1)(1 � � )
n quantile of the calibration

scores andC(X test) = f y : score(X test; y) � q̂g. Then the following holds:

P(Ytest 2 C(X test )) � 1 � �:

Proof. See [35].

3.1.1 ConformalPredictionwith AdaptivePredictionSets

The conformal prediction method introduced in section 3.1 producesC(X test ) with the

smallest mean width [36]. However, it tends to overcover easy subgroups and undercover

complex subgroups. To solve this problem, Angelopoulos and Bates proposed adaptive

prediction sets (APS) utilizing the Oracle algorithm in [23].

Oracle Algorithm

The oracle algorithm is described as follows:

f � 1(x); : : : ; � k(x)g; wherek = sup

(

k0 :
k0X

j =1

f̂ � j (x)(X test ) < 1 � �

)

+ 1: (3.2)
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Speci�cally in Equation 3.2:

• f � i (x)gk
i =1 are class labels or indices of class labels.

• We denote� (x) as a permutation of the class labelsf 1; : : : ; K g, whereK is the total

number of classes. This permutation is based on sorting the predicted probabilities

f̂ (X test ) ( which is obtained from the well-trained model, e.g., neural network or

ridge regression) for each class, from most likely to least likely. For example,� 1(x)

is the class with the highest probability, and� 2(x) is the second highest, and so on.

• The termk = sup
n

k0 :
P k0

j =1 f̂ � j (x)(X test ) < 1 � �
o

+ 1 �nds the largestk0 such

that the sum of the topk0predicted probabilitieŝf � j (x)(X test ) is still less than1 � � .

This ensures that enough classes will be included in the prediction sets to cover as

much total probability mass as possible, but not exceeding1 � � .

• The+1 ensures that an extra class is added after the sum reaches or exceeds1 � � ,

so that the prediction set will not be too small and miss the true label.

Because the predicted probabilitieŝf � j (x)(X test ) is not perfect, one of the biggest prob-

lems with the oracle algorithm is that it can fail in practice. The predicted probabilities

f̂ � j (x)(X test ) are only a heuristic of the actual class probabilities, which means that the pre-

diction sets of the oracle algorithm might not consistently achieve the expected coverage,

i.e., the true label may not be in the prediction sets with guaranteed probability.

Conformal prediction can be used to give a more rigorous uncertainty guarantee to

address the limitations of the oracle algorithm. The core idea is to create a prediction

set based on the distribution of the conformity or nonconformity scores, measuring how

“unusual” a label is compared to what the model expects.
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Score Function

We de�ne the score function using the oracle algorithm as follows:

score(x; y) =
kX

j =1

f̂ � j (x)(x); y = � k(x): (3.3)

Speci�cally, this means:

• For each possibley = � k(x), i.e., thek-th most likely class, the score function

score(x; y) is the sum of predicted probabilities for� 1(x); : : : ; � k(x), i.e., the topk

classes.

• The score functionscore(x; y) evaluates the probability mass accumulated by the top

k classes. The accumulation stops when the true class is included in the sum.

This is a greedy approach where classes are added to the set, starting from the most likely

one, until the true class is included in the prediction set. This method utilizes the softmax

outputs of all classes instead of just using the true class.

Quantile and Prediction Set

To proceed with the prediction set construction, as in all conformal procedures, we compute

the quantilêq as:

q̂ = Quantile(score1; score2; : : : ; scoren ;
(n + 1)(1 � � )

n
); (3.4)

wherescore1; score2; : : : ; scoren are the scores from the training dataset. Finally, we can

form the prediction setf y : score(x; y) � q̂g as:

C(x) = f � 1(x); : : : ; � k(x)g; wherek = sup

(

k0 :
k0X

j =1

f̂ (x)� j (x) < q̂

)

+ 1: (3.5)

Speci�cally,
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• Similar to that in the oracle algorithm, classes are added to the set until the sum

of their predicted probabilities is just below the quantileq̂. +1 is for ensuring the

prediction set is not too small.

• The setC(x) is guaranteed to include the true class with probability1 � � , which

makes it more reliable than the heuristic-based oracle algorithm.

3.2 Best Arm Identi�cation

3.2.1 RelatedWorks

The problem ofbest arm(s) identi�cation[37, 38, 39, 40, 41] in the stochastic multi-armed

bandit setting has garnered signi�cant attention in recent years. In a standard multi-armed

bandit problem [29], the ultimate goal is to maximize the sum of rewards in the long run.

However, in the best arm identi�cation problem, the performance is evaluated based on the

quality of the arm(s) identi�ed after the exploration phase. In the best arm identi�cation

setting, a forecaster repeatedly selects arms during the exploration phase and observes re-

wards drawn from a reward distribution (probably unknown). After the exploration phase,

the forecaster must provide the best arm policy.

This abstract problem has numerous practical applications. For example, consider a

third trusted party (e.g., a healthcare data center) holding electrical healthcare records

(EHRs). The third trusted party (TTP) provides AI-powered healthcare data analytics to

hospitals or clinicians. Suppose that this TTP hasK different well-trained AI models (or

AI clinicians) for disease diagnoses. The TTP needs to identify the best-performing AI

models before launching them to the market.

To achieve the aforementioned goal, the TTP set up a testing phase, where potential

customers (e.g., clinicians) will evaluate each AI clinician by providing scores (i.e., re-

wards). The TTP's objective is to determine which AI clinician will most likely give the

most accurate and reliable diagnoses once launched. The TTP focuses on the best arm
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identi�cation rather than maximizing the accumulated rewards during the test phase.

There are two main streams of settings in the existing best arm identi�cation problem

research. One is the �xed budget setting, the other is the �xed con�dence setting. Next, we

will introduce the state-of-art works in these two settings.

In a �xed con�dence setting [42, 39], the forecaster aims to minimize the number of

roundsT required to achieve a certain con�dence of the selected arms' quality. Take the

the aforementioned healthcare AI as an example, the TTP needs to keep enrolling clinical

experts in the test stage until it is, e.g., 98% con�dent that the best AI clinician has been

identi�ed.

There are a plethora of related works focusing on the �xed con�dence setting. In [42],

both the con�dence and the maximum number of roundsT are �xed. Maron and Moore

proposedHoeffding Races, an elimination algorithm that progressively discards subopti-

mal arms with adequate con�dence. Even-Dar et al. [39] developed a method for �nding

an� -optimal arm in the MAB problem withO
�

n
" 2 log

�
1
�

��
arm pulls, matching the theoret-

ical lower bound. They proposed action elimination techniques in Reinforcement Learning

(RL) algorithms that focus on eliminating actions with low probabilities of being optimal,

signi�cantly reducing the search space and learning time. Mnih et al. [43] later proposed

an improved method using Bernstein concentration inequalities to account for the empirical

variance of each arm, further re�ning the stopping condition in this setting.

In a �xed budget setting [38, 39], we assume that the forecaster knows the number of

rounds of the exploration phase in advance and that this number is �xed. The ultimate

objective is to maximize the probability of obtaining the best-performing arm(s).

In the aforementioned AI-powered healthcare data analytics scenario, the TTP solves

the length of the test phase prior (e.g., the TTP enrolls a �xed number of customers) and

de�nes a strategy to choose which AI-powered clinician to be shown to the customers (e.g.,

hospitals, clinicians) so that the �nal selected AI model is the best model with the highest

probability to provide accurate and reliable diagnoses.
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There are plethora of related works that focus on �xed budget setting. In [37], Audibert

et al. proposedUCB-E, a strategy based on upper con�dence bounds (UCBs), to solve the

�xed budget best arm identi�cation problem. However, the optimal parameterization of

UCB-E is highly correlated to a measure of the problem complexity. Audibert et al. also

proposedSuccessive Rejectsin [37], an elimination algorithm dividing the budget in phases

and discarding one arm in each phase. Both UCB-E and Successive Rejects demonstrated

their ability to achieve the optimal probability of returning the best arm(s).

The multi-bandit best arm identi�cation problem (i.e., the best arm identi�cation prob-

lem under the multi-bandit setting) is discussed in [44] for developing personalized clinical

treatment. In [45], Gabillon et al. proposedUGapE, a uni�ed Gap-based Exploration algo-

rithm. UGapE prioritizes arms whose expected reward is close to the best arm in the same

bandit, focusing on smaller gaps.

In [46], Bubeck et al. address the challenge of identifying the topm arms in a multi-

armed bandit setting. It introduces theSuccessive Accepts and Rejects(SAR) algorithm,

which iteratively accepts good arms and rejects bad ones, extending the complexity analysis

to handle multiple identi�cations effectively. SAR explores in a multi-bandit setting and it

is a parameter-free solution for multi-best arm identi�cation.

Recent work has sought to unify these approaches, bridging the gap between the �xed

budget and �xed con�dence settings. Gabillon et al. [40] introduced a uni�ed gap-based ex-

ploration (UGapE) meta-algorithm that applies to both settings, providing a standard struc-

ture and performance bounds that highlight similarities in problem complexity. This uni-

�ed perspective has enabled the development of more general solutions applicable across

a broader range of bandit problems, including multi-bandit andm-best arm identi�cation

scenarios.

Further advancements include integrating gap-based bandit techniques with Bayesian

modeling, as seen in Hoffman et al. [41], where the authors introduced a Bayesian ap-

proach calledBayesGap. This method incorporates correlations among the arms, enabling
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improved performance in scenarios with budget constraints and limited function evalua-

tions. Such correlations are particularly valuable in applications like automatic machine

learning, where optimizing model selection and hyperparameters must be done ef�ciently

under a �xed budget.

Furthermore, Varatharajah et al. [47] proposed a contextual-bandit-based approach for

optimizing treatment selection in clinical trials, in which patient characteristics are con-

sidered to dynamically assign treatments, improving both outcomes and decision-making

reliability compared to standard multi-arm bandit methods.

Next, we speci�cally introduce the mathematical foundations of two aforementioned

related works [40, 41] on top of which our theoretical analysis is based.

3.2.2 UGapE:Uni�ed Gap-basedExplorationMeta-algorithm

UGapE [40] deals with the best arm identi�cation problem in a multi-armed bandit setting,

where it aims to minimize the simple regret by identifying the arm with the highest expected

reward over a �xed number of rounds. Each armk is correlated to an unknown reward

distribution, which must be learned through exploration. For armk, the true mean reward

is denoted as� k . The goal is to select the arm with the optimal� k , i.e.,k� = arg maxk � k .

The UGapE algorithm selects arms by striking a balance between theexplorationand

exploitation. Speci�cally, exploration means the forecaster will sample arms with high

uncertainty. Exploitation means the forecaster will sample arms with the highest rewards

based on all empirical observations. For each arm, upper con�dence bounds (UCBs) and

lower con�dence bounds (LCBs) are calculated based on empirical observations. First, we

will introduce the important notations following the settings in UGapE [40], which will

also be used in our problem formulation in Section section 3.3.

DenoteA = 1; : : : ; K as the set of arms, where each armk 2 A is associated with a

reward distribution� k , bounded within the interval[0; b], with mean� k and variance� 2
k .
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Them-max andm-argmax operators are de�ned as

� [am ] =
m

max
k2 A

� k and [am ] = arg
m

max
k2 A

� k ;

where[am ] denotes the index of them-th best arm inA and� [am ] is its corresponding mean

satisfying

� [a1 ] � � [a2 ] � � � � � � [aK ]:

Let Sm � A denote any subset ofm arms (i.e.,jSm j = m < K ) andSm� denote the

subset of them best arms (i.e.,k 2 Sm� iff � k � � [am ]). Without loss of generality, UGapE

assumes there exists a unique subsetSm� .

UgapE extends them-max operator to a new operator which returns a set of arms, such

that

f � [a1 ]; � [a2 ]; � � � ; � [am ]g =
1;2;��� ;m
max
k2 A

� k and Sm� = arg
1;2;��� ;m
max
k2 A

� k :

For each armk 2 A, the gap� k is de�ned as

� k =

8
>><

>>:

� k � � [am +1 ] if k 2 S�

� [am ] � � k if k =2 S� :

The gap� k measures how much better (or worse) armk is compared to the threshold value

� [am ] for optimality, depending on whetherk belongs to the optimal set or not. An armk is

called(�; m )-optimal if

� [am ] � � � � k ;

given the accuracy� and the number of armsm. The gap� k helps de�ne whether an arm is

(�; m )-optimal, which means its performance is within� of them best arms. Whenk 2 S� ,

� k indicates the “advantage” of armk over otherm best arms, i.e., suboptimal arms. When

k =2 S� , � k indicates how suboptimal armk is compared to them best arms. In UGapE,

the(�; m )-best arm identi�cation problem aims to �nd the unique subsetSm� that contains
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a number ofm (�; m )-optimal arms.

UGapE formulates the(�; m )-best arm identi�cation problem as a game between the

forecaster and a stochastic bandit environment. The reward distributionsf � kg correspond-

ing to any armk are unknown to the forecaster. At the beginning of each roundt, the

forecaster pulls an armat 2 A and observes an independent sample drawn from the distri-

bution� at . Then, the forecaster calculates the expected rewards of each arm by computing

the average empirical rewards observed over time. LetNk(t) be the number of times that

arm k has been selected by the forecaster until the end of roundT. Then, the expected

reward of arm8k 2 A is calculated as

�̂ k(T) =
1

Nk(T)

N k (t )X

t=1

r k(t);

wherer k(t) is the reward observed by the forecaster from� k at roundt. For any armk 2 A,

the simple regret of each armk 2 A is de�ned as as

Rk = � [am ] � � k ;

and for any subsetSm � A of m arms, the simple regret is de�ned as

RSm = max
k2 S

Rk = � [am ] � min
k2 Sm

� k :

Let S(m; T) � A be the subset ofm arms selected by the forecaster when the algo-

rithm stops afterT rounds,i.e., the end of the exploration phase, andRS(m;T ) denotes the

corresponding simple regret up till roundT. In order to selectm arms that are(�; m )-

optimal,RS(m;T ) must be smaller than� . Given the accuracy� and the number of armsm

to be selected, the de�nition of the�xed budget settingand�xed con�dence settingcan be

formalized as follows.

De�nition 1. [Fixed Con�dence Setting]Denote ~T as the time when the algorithm stops
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andS(m; ~T)) as the corresponding set of returned arms. Given the con�dence level� , the

designed strategy must guarantee

P[rS(m; ~T )) � � ] � �: (3.6)

In a �xed con�dence setting, we must design a strategy that enables the forecaster to stop

as soon as possible and returnsm (�; m )-optimal arms with a �xed con�dence level� . The

performance of the designed strategy is evaluated by the minimum number of rounds~T

required to satisfy Equation 3.6. The smaller~T, the better the strategy.

De�nition 2. [Fixed Budget Setting]Given the �xed budgetT, the performance of the

forecaster in the �xed budget setting is measured by the probability~� of not meeting the

(�; m ) requirement. Speci�cally, we have

~� = P[rS(m;T )) � � ]; (3.7)

In a �xed budget setting, we need to design a strategy that enables the forecaster to return

a set ofm (�; m )-optimal arms with the largest possible con�dence while �xing the budget

to T rounds. The smaller~� in Equation 3.7, the better the strategy.

By changing the stopping criteria [40], these two distinct settings can be applied as a

uni�ed arm selection strategy. In this chapter, we will focus on the �xed budget setting.

3.2.3 BayesGap:Gap-basedbanditwith BayesianModeling

In this subsection, we will introduceBayesGap[41, 48], which solves the �xed budget

problem from a Bayesian bandit perspective. First of all, we will introduce the basics of

Bayesian bandits following similar steps in [41], which are the foundation of our proposed

framework in this chapter. For detailed derivations and examples, please refer to [48].
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Bayesian Bandits

Consider a bandit problem where the reward distribution for each arm depends on unknown

parameters 2 	 that are shared among all arms. We denote the reward distribution for

arm j as � j (�j  ). In a Bayesian framework for the bandit problem, we assume that the

parameters follow a prior density� 0(�). The posterior density of the parameters after

s � 1 rounds can be formalized as

� s( ) / � 0( )
Y

m<s

� am (ym j ): (3.8)

Equation 3.8 shows that by choosing armam at each time stepm, we gather information

about  only indirectly through the likelihood of these parameters, given the observed

rewardsym . This also extends to the scenario where the arms are uncorrelated. If the

rewards for each armj only depend on a set of parameters (or a speci�c parameter) j ,

then at times, the posterior for j would be in�uenced only by the rounds when armj was

previously selected.

However, the posterior distribution of the parameters is not our main interest. Instead,

our focus is on the expected reward for each arm under these parameters, which we de�ne

as

� j = E[Y j ] =
Z

y
� j (yj ) dy: (3.9)

Although the exact value of is unknown, we can access its posterior distribution� s( ).

This distribution induces a marginal distribution over� j , represented as� j;s (� j ). In a gap-

based bandit problem [40, 41], we aim to establish upper and lower con�dence bounds

that hold with high probability, allowing us to design acquisition functions that can strike a

balance between exploration and exploitation.

Assuming that each armj is associated with a feature vectorcj 2 Rd, then we can
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formulate the rewards for selecting armj following a normal distribution as:

� (yj ) � N (y; cT
j  ; � 2); (3.10)

in which � 2 is the variance and 2 Rd the unknown parameter. The rewardsv j for each

armj are conditionally independent given , but share a marginal dependency through 

when is unknown. The speci�c dependence of the rewardsv is de�ned by the structure

of the vectorsv j . If we place a prior on � N (0; � 2I ), we can determine a posterior

distribution over the unknown parameter . Speci�cally, let the matrixG 2 RK � K repre-

sent the covariance of a Gaussian process (GP) prior. The matrixC = [ c1 : : : cK ]T can be

constructed as follows:

C = V D1=2; whereG = V DV T ; (3.11)

where each row ofC is a vectorcj ; wherej 2 f 1; 2; � � � ; K g. The matrixC is essential

in setting up the observation model (see Equation 3.10). In practical scenarios, popular

Bayesian optimization methods often consider �nite action grids or discretization of the

space of possible actions. This chapter focuses on the �nite and discrete action spaces.

Let Y t = f y1; y2; � � � ; ytgT
t=1 represent the observed rewards up to roundt and let

C t = f ca1 ; ca2 ; � � � ; cat g
T
t=1 be the sequence of feature vectors correlated with the selected

arms, whereat is the arm selected at roundt. Then, we can write the posterior at roundt

as follows:

� t ( ) = N ( ;  ̂ t ; �̂ t ); (3.12)

where

� � 1
t = � � 2CT

t C t + � � 2I; (3.13)

and

 ̂ t = � � 2� tCT
t Y t : (3.14)
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Based on the above formulation, the expected reward correlated with armk can be derived

as a marginally normal distribution:

� k;t (� k) = N (� k ; �̂ k;t ; �̂ k;t ); (3.15)

in which the mean̂� k;t = cT
j  ̂ t and the variancê� 2

k;t = cT
j �̂ tcj . In addition, the predictive

distribution of rewards associated with armk is normal with mean̂� k;t and variancê� 2
k;t +

� 2.

BayesGap

BayesGap is a gap-based solution for the Bayesian optimization problem from a bandit per-

spective. BayesGap is based on the top of UGapE [40], focusing on the �xed budget setting.

We formulate our early sepsis prediction problem under the framework of BayesGap be-

cause we want to �x the budget for predicting the sepsis onset time due to the nature of

the big healthcare dataset and the complexity of early sepsis prediction problems. And

BayesGap aligns well with the nature of our problem.

At the start of each roundt, we assume the decision-maker has high-probability bounds,

denoted asUk(t) (upper bounds) andL k(t) (lower bounds), with the unknown mean� k of

each arm. For the simplicity of theoretical analysis as in [41], we de�ne the upper bounds

and lower bounds in terms of the mean and standard deviation, speci�cally�̂ k;t � � �̂ k;t .

These bounds create a con�dence interval diametersk(t) = Uk(t) � L k(t) = 2 � �̂ k;t . This

approach can accommodate more general bounds. In this work, we focus on the Gaussian

arm settings.

With these bounds on the mean reward for each arm, we can now de�ne the gap of arm

k at roundt as follows:

Bk(t) = max
i 6= k

Ui (t) � L k(t); (3.16)

which represents the gap between the lower bound of armk with the highest upper bound
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among all other arms. Equation 3.16 ultimately provides an upper bound on the simple

regret and serves to guide the exploration strategy. Then, we will focus on two essential

arms in gap-based bandit problems:

J (t) = arg min
k2 A

Bk(t) (3.17)

and

j (t) = arg max
k6= J (t )

Uk(t): (3.18)

And, the exploration strategy is de�ned as choosing fromk 2 f j (t); J (t)g that maximizes

the con�dence diameter:

at = arg max
k2f j (t );J (t )g

sk(t): (3.19)

The intuition of this strategy is that we will select either the arm that minimizes the bound

on simple regret (i.e.,J (t)) or the best ”runner-up” arm (i.e.,j (t)). The arm with the

highest uncertainty, which is expected to provide the most information, will be chosen

from f j (t); J (t)g. Then, the �nal arm selection strategy is de�ned as:


 T = J
�

arg min
t � T

BJ (t )(t)
�

: (3.20)

3.3 Problem Formulation

We formulate our problems as a contextual bandit process with a conformal prediction

guarantee. For clari�cation, we explain the problem formulation from the contextual bandit

and conformal prediction perspectives. From the contextual bandit perspective, we follow

the same steps as that in BayesGap and UGapE (see subsection 3.2.3 and subsection 3.2.2).

In this section, we focus on the conformal prediction perspective.
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We observe data(x i ; yi ) generated from the following model

Yi = f (X i ) + � i ; i = 1; 2; : : : ; (3.21)

in which f : Rd ! R is an unknown model;d is the dimension of the feature vector; and

� i is generated from a continuous cumulative distribution function (CDF)Fi . The �rst n

samplesf (x i ; yi )gn
is=1 , i.e., training data or initial state of the random process, are assumed

to be observable.

The ultimate goal of the conformal prediction algorithm is to construct a sequence of

prediction intervals with a certain coverage guarantee and to make the interval width as

narrow as possible. First, we obtained a well-trained modelf̂ usingn training samples.

Then we construct prediction intervalsf Ĉ �
j gn+ bs

j = n+1 for f Yj gn+ bs
j = n+1 , in which bs � 1. � is

the signi�cance level. The batch sizebsde�nes how many steps we want to look ahead.

After new samplesf (x j ; yj )gn+ bs
j = n+1 become available, the pre-trained̂f is deployed on

new samples and the most recentn samples are used to produce prediction intervals for

f Yj gj = n+ bs+1 onward without re-training the model on new data.

As in a standard conformal prediction problem, we consider two types of coverage

guarantees.

De�nition 3. [Conditional Coverage Guarantee]The conditional coverage guarantee en-

sures that each prediction interval̂C �
j ; 8j > n satis�es:

P(Yj 2 Ĉ �
j jX j = x j ) � 1 � �: (3.22)

De�nition 4. [Marginal Coverage Guarantee]The marginal coverage guarantee ensures

that each prediction interval̂C �
j ; 8j > n satis�es:

P(Yj 2 Ĉ �
j ) � 1 � �: (3.23)
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A prediction interval is called conditionally or marginally valid if it can achieve Equa-

tion 3.22 or Equation 3.23, respectively. Equation 3.23 is satis�ed whenever the data is

exchangeable using split conformal prediction [34]. In our early sepsis prediction scenario,

we assume that a clinician receives a prediction interval for the probability that the current

patient develops sepsis on an hourly basis. If the interval satisfying Equation 3.23 is evenly

distributed in all patients in different age groups, it may not exactly satisfy Equation 3.22 for

the current patient. In fact, it is impossible to satisfy Equation 3.22 even for exchangeable

data without additional assumptions [49, 50]. Generally, it is challenging to ensure any of

the aforementioned coverage guarantees under complex data dependency without speci�c

distributional assumptions [50]. Taking into account these challenges, we can bound the

worst-case gap in Equation 3.22 and Equation 3.23 under certain assumptions by adapting

the conformal prediction algorithm introduced in [50].

3.3.1 Intuition for Constructionof PredictionIntervals

We construct our prediction intervals following the similar steps demonstrated in [50, 51].

The oracle prediction intervalC �
j containsYj with an exact conditional coverage at1 � �

and is the narrowest among all possible conditionally valid prediction intervals. In an oracle

prediction scenario, we assume perfect knowledge off andFi in Equation 3.21. We denote

Fi;Y as the CDF ofYi conditioning onX i = x i , then we have

Fi;Y (y) = P(Yi � yjX i = i t ) = P(� i � y � f (x i )) = Fi (y � f (x i )) : (3.24)

Based on Equation 3.22, our goal is to create an interval such that the probability ofYi

falling within this interval is exactly1 � � . This can be done by the following steps:
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Inverse CDF and Probability Intervals:

• First, we need to �nd the quantile function as a general conformal prediction al-

gorithm does (e.g., Equation 3.4). We denoteF � 1
i;Y (� ) as the inverse cumulative

distribution function ofYi . F � 1
i;Y (� ) �nds the value ofy such that the probability

P(Yi � yjX i = x i ) is equal to� .

• To put it simply, the inverse CDF tells at which value ofYi the cumulative probability

equals� . This helps us de�ne the boundaries of our prediction interval.

Construct Ensemble Intervals:

• Interval [F � 1
i;Y (� ); F � 1

i;Y (1 � � + � )] is designed to capture a speci�c portion of the

total probability.

• The upper bound of the interval isF � 1
i;Y (1 � � + � ), where� 2 [1; � ]. This upper

bound can ensure that the total probability contained within the interval is1 � � .

Theoretical Analysis of the Total Probability:

• Be de�nition, Fi;Y is the CDF ofYi , i.e., it describes the probability thatYi takes on

a value less than or equal to a given number.

• To construct a prediction interval with desired probability coverage, we choose1 �

� + � and� so that the difference in cumulative probabilities between them is1� � .

• Mathematically, the probability thatYi falls within [F � 1
i;Y (� ); F � 1

i;Y (1 � � + � )] is:

P(Yi 2 [F � 1
i;Y (� ); F � 1

i;Y (1 � � + � )]jX i = x i )

= Fi;Y (F � 1
i;Y (1 � � + � )) � Fi;Y (F � 1

i;Y (� ))

= 1 � �:

(3.25)
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In conclusion, now for any� 2 [0; � ], we have

P(Yi 2 [F � 1
i;Y (� ); F � 1

i;Y (1 � � + � )]jX i = x i ) = 1 � �;

whereF � 1
i;Y (� ) := inf f y : Fi;Y (y) � � g. Let y� = F � 1

i;Y (� ), then we have

y� = f (x i ) + F � 1
i (� );

which allows us to �ndC �
i – the oracle prediction interval with the narrowest width:

C �
i = [ f (x i ) + F � 1

i (� � ); f (x i ) + F � 1
i (1 � � + � � )]; (3.26)

where

� � = arg min
� 2 [0;� ]

(F � 1
i (1 � � + � ) � F � 1

i (� )) :

After constructing the oracle intervalC �
i , we need to �gure out a way to approximateC �

i

well as in a standard conformal prediction algorithm [23].

3.3.2 Approximationof PredictionIntervals

The Dilemma in Conformal Prediction

In a conformal prediction problem, we need to split the training data into two parts:

• The �rst partition is used to estimatef

• The second partition is used to obtain prediction residuals which is required to cal-

culate the �nal conformal prediction interval.

There is a trade-off between using as much data as possible to approximatef and quantile

of prediction residuals to approximate the prediction interval indicated in Equation 3.26.

On the one hand, we want to use as much data as possible to train the estimatorf̂ . On the
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other hand, we want the quantile of prediction residuals to well approximate the tails of

F � 1
i (� � ) andF � 1

i (1 � � + � � ).

If we use all training data to approximatef , we might have an over-�tting problem. If

we train only on a subset of training data to avoid over-�tting and calculate the prediction

residuals on the rest [34], we will get a worse approximation ofF � 1
i (� � ) andF � 1

i (1 � � +

� � ). So there is a dilemma.

To solve this dilemma, we will use the well-known Leave One Out (LOO) estimator

where thei -th residua is obtained by training thei -th LOO estimator on all except thei -

th training entry(x i ; yi ) so that the LOO estimator is not over�tted on that datum. Then

repeating overT training data yieldsT LOO estimators with good predictive power andT

residuals to calibrate the prediction intervals well.

The LOO methodology can strike a good balance between the approximatingf and

well-calculating prediction residuals [52]. However, the LOO methodology is known to

be extremely computationally expensive since we need to retrain the model. To avoid the

high computational complexity, we use the computationally ef�cient method in [50], which

utilizes the pre-trained models to obtain the LOO estimators.

3.3.3 TheFinal EnsemblePredictionInterval

We assume that the �rstn data pointsf (x i ; yi )gn
i =1 are observable. Following the aforemen-

tioned intuitions in subsection 3.3.1, we approximate our conformal prediction interval as

follows

Ĉ �
i =[ f̂ � i (x i ) + � quantile off �̂ j gi � n

j = i � 1;

f̂ � i (x i ) + (1 � � + � ) quantile off �̂ j gi � n
j = i � 1];

(3.27)

in which f̂ � i is de�ned as thei -th “leave-one-out” estimator off . In other words,f � i is not

trained on thei -th entry(x i ; yi ) and may include the remainingn � 1 training data points.
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The LOO prediction residual̂� i is calculated as:

�̂ i := yi � f̂ � i (x i ); (3.28)

and the correspondinĝ� are calculated as follows:

� � = arg min
� 2 [0;� ]

�
(1 � � + � ) quantile off �̂ j gi � n

j = i � 1�

� quantile off �̂ j gi � n
j = i � 1:

(3.29)

3.3.4 OnlineLearningPerspective

Then, we will consider problem formulation from the online learning perspective. In this

chapter, we consider the early sepsis prediction task as an online learning-based decision-

making process.

Speci�cally, we model it as a contextual multi-armed bandit problem withK arms

over a time horizonT and context setx t;a t 2 X , wherek = 1; � � � ; K . We denoteA =

f 1; 2; � � � K g as the arm set. At each timet, we �rst observe the context for each arm, then

choose an armat 2 A and receive the reward. And the reward of pullingat 2 A at roundt

is denoted as:

r t;a t = f at (x t;a t ) + � t;a t ; (3.30)

wheref 1; � � � ; f K : X ! R are unknown and� t;a t is the noise drawn from an unknown

distributionFat . We do not require the noises� t;k ; t 2 [T]; k 2 [K ] to be independent. The

contextx t;k can be either exogenous data or the reward history on armk. In this chapter,

x t;k is the electrical health records (e.g., lab values, vital signs, demographics, etc.) of the

ICU patients recorded hourly.

The average regret up till roundT is de�ned as the average difference of expected
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reward between the optimal arms and the selected arms at each roundt:

RT =
1
T

TX

t=1

�
f a�

t
(x t;a �

t
) + E[� t;a �

t
]
�

�
1
T

TX

t=1

(f at (x t;a t ) + E[� t;a t ]) ; (3.31)

wherea�
t = arg maxk2 [K ] f k(x t;k ) + E[� t;k ], t = 1; � � � ; T.

3.4 The Proposed Online Learning-based Framework for Early Sepsis Prediction

with Conformal Prediction Guarantee (Sepsyn-OLCP)

Figure 3.1: System Overview of Sepsyn-OLCP.

From a high level, the proposedSepsyn-OLCPalgorithm operates within aconformal

prediction and gap-based Bayesian banditframework, speci�cally designed for clini-

cal decision-making scenarios involving AI clinicians (i:e:; A1; A2; � � � ; AK in Figure 3.1).

The algorithm is structured into two phases: 1) apply EnsembleCP0 on historical data to

get the LOO reward ensemble estimators and LOO residuals; 2) Update the online selec-

tor to adjust the selection strategy. In this context, each arm corresponds to a distinct AI

clinician, and each round represents the arrival of a new patient whose data is evaluated

by the AI clinicians. A trusted third party, such as a hospital, handles the collection of re-

wards and computation of regrets to ensure unbiased and accurate performance evaluation.

The high-level system overview of Sepsyn-OLCP is shown in Figure 3.1, wherePi denotes
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Algorithm 5: Sepsyn-OLCP.
Require: Of�ine training EHRsDn = f (x i;k ; r i;k )gT

i =1 ; number of armsK ;
exploration budgetT; candidate AI clinicians setA ; signi�cance level� ;
aggregation function� ; number of bootstrapB; ref it step; IsRef it

1 for t > T do
2 for k = 1; : : : ; K do

// Apply algorithm 6 on historical data Dn to get
LOO reward ensemble estimators and LOO
residuals

3 f̂ �;B
t;k (x t;k ); ê�

t;k = EnsembleCP0(Dn ; D0
n ; k; Ak ; �; B; ref it step; IsRef it );

4 Compute the inverse empirical quantile function (ICDF)F � 1
t;k (� ) := � quantile

of f ê�
t;k gT + T1

t= T and ;
5 F � 1

t;k (1 � � + � ) := 1 � � + � quantile off ê�
t;k gT + T1

t= T ;

6 Compute�̂ t;k := arg min � 2 [0;� ]f F � 1
t;k (1 � � + � ) � F � 1

t;k (� )g;

7 U�
t;k (x t;k ) := f̂ �;B

t;k (x t;k ) + F � 1
t;k (1 � � + �̂ t;k );

8 L �
t;k (x t;k ) := f̂ �;B

t;k (x t;k ) + F � 1
t;k (�̂ t;k );

9 B �
t;k (x t;k ) := max a6= k U�

t;a (x t;a ) � L �
t;k (x t;k ) for eachk = 1; : : : ; K ;

10 s�
t;k (x t;k ) := U�

t;k (x t;k ) � L �
t;k (x t;k );

11 Jt := arg min k B �
t;k (x t;k );

12 j t := arg maxk U�
t;k (x t;k );

Output : Selectat := arg maxk2f j t ;J t g s�
t;k (x t;k ) and receive rewardr t;a t ;

the patient at roundi . Given the AI clinicianAk , each patientPi in the training dataset

is associated with dataf (x i;k ; r i;k )gjTi =1 . Similarly, each patientPi in the testing dataset is

associated with dataf (x i;k ; r i;k )gjT + T1
i = T +1 given the AI clinicianAk .

For each AI clinician (or arm)Ak from A1 to AK , Sepsyn-OLCP evaluates the incom-

ing patient data at each time stepst > T . Sepsyn-OLCP leverages theEnsembleCP0

method (Line 3), which applies LOO conformal prediction techniques to estimate ensem-

ble rewardsf̂ �;B
t;k (x t;k ) and compute leave-one-out (LOO) residualsê�

t;k . These estimates

form the basis for constructingprediction intervals that capture the uncertainty of the AI

clinician's performance.

The inverse empirical quantile function (ICDF)F � 1
t;k (� ) is derived as the� quantile of

residualsf ê�
t;k gT + T1

t= T (Line 5), whileF � 1
t;k (1 � � + � ) is calculated as the1� � + � quantile

(Line 5). The optimal parameter̂� t;k , minimizing the width of the prediction interval, is
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Algorithm 6: EnsembleCP0(Dn ; D0
n ; k; Ak ; �; B; ref it step; IsRef it ).

Require: Of�ine training EHRsDn = f (x i;k ; r i;k )gT
i =1 ; EHRs of the current testing

patientD0
n = f (x j;k ; r j;k )jj > T g; prediction algorithmAk 2 A , AI

clinician indexk; aggregation function� ; number of bootstrap models
B , ref it step, IsRef it

1 if t = T + 1 then
// Initial fitting

2 for b= 1; : : : ; B do
3 Sample with replacement an index setSb = ( i 1; : : : ; iN ) from indices

(1; : : : ; N );
4 Computef̂ b

t;k = Ak((x i;k ; r i;k )ji 2 Sb);
5 SaveB �tted estimatorsf f̂ b

t;k gjBb=1 ;

6 else// Re-fitting if required
7 if IsRef it == T rue then
8 if (t � T) mod ref it step = 0 then
9 Retrainf f̂ b

t;k gB
b=1 on the updated dataset;

10 else
11 Load previousB �tted estimatorsf f̂ b

t � 1;kgjBb=1 asf f̂ b
t;k gjBb=1 to make

predictions for the current patient;

12 if t > T then
13 f̂ �;B

t;k (x t;k ) = � (f f̂ b
t;k gB

b=1 );

14 Computêe�
t;k = r t;k � f̂ �;B

t;k (x t;k );

Output : f̂ �;B
t;k (x t;k ), andê�

t;k

identi�ed (Line 6). Using these intervals, Sepsyn-OLCP calculates the upper and lower

con�dence bounds,U�
t;k (x t;k ) andL �

t;k (x t;k ), respectively (Lines 7-8).

Thegap-based banditstrategy is employed to guide decision-making. The gapB t;k (x t;k )

quanti�es the difference between the upper bound of an alternative AI clinician and the

lower bound of the current AI clinician, emphasizing the need to exploit or explore other

options (Line 9). The spreadst;k (x t;k ) (Line 10) measures the uncertainty associated with

each AI clinician's performance. The algorithm then identi�es the AI clinicianJt with

the smallest gap (indicating a promising but uncertain option) and the clinicianj t with the

highest upper bound (suggesting the best current prediction) (Lines 11-12).

Ultimately, the expected best-performing AI clinicianat is chosen based on the max-
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imum spreadst;k (x t;k ) between these selected AI clinicians. The hospital, acting as the

trusted third party, records the received rewardr t;a t , processes the outcome, and calcu-

lates the regret associated with the decision to assess the long-term performance of the AI

clinicians.

The EnsembleCP0subroutine uses conformal prediction principles to ensure robust

and calibrated uncertainty estimates for each AI clinician. At the initial testing time step

t = T + 1, B bootstrap models are trained on resampled patient data to create a set of

�tted estimatorsf f̂ b
t;k gB

b=1 (Lines 2-5). If re-�tting is required, the models are retrained

periodically according to therefit step parameter, ensuring the estimators remain up-

to-date with new patient data (Lines 6-9). If not, the previously �tted models predict the

current patient (Lines 10-11).

For subsequent time stepst > T , the aggregated prediction̂f �;B
t;k (x t;k ) is computed

using the aggregation function� , and the residual̂e�
t;k is determined (Lines 13-14). The

subroutine outputs the ensemble prediction and the associated residual, which are crucial

for the conformal prediction intervals.

This work�ow integrates conformal prediction to provide reliable uncertainty estimates

and employs a gap-based Bayesian bandit approach for dynamic decision-making in a clin-

ical setting. Thus, it ensures effective and interpretable patient care.

3.5 Theoretical Analysis

Our theoretical analysis is based on the top of [50, 53, 54]. For eacht > T , we de�ne the

eventEt := f L �
t;k � r t;k � U�

t;k 8k 2 f 1; 2; � � � ; K gg that ensures valid coverage of each

stochastic reward at timet. For simplicity, we may remove the dependency onx t;k and

remove the subscriptt when the time index is clear (e.g.,Bk = B t;k (x t;k ) at decision time

t). Then, we have the following lemmas.
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Assumption 1(Estimation quality [50]). There exists a real sequencef � T gT � 1 such that

1
T

TX

t=1

�
f̂ � t (x t ) � f (x t )

� 2
� � 2

T and
�
�
� f̂ � (T +1) (xT +1 ) � f (xT +1 )

�
�
� � � T :

Lemma 1 (Bound on simple regret by contextual gap). Assume the eventEt occurs and

at 6= a�
t , which is the best arm at roundt. Then

Rat � Bat ;

whereBat := max k6= at U�
k � L �

at

Proof. We have on the eventEt that

Rat = r t � � rat = max
k6= at

r k � rat

� max
k6= at

U�
k � L �

at
= Bat :

Lemma 2(Bound on contextual gap). At timet, denotesk := U�
k � L �

k as the width of the

con�dence interval. Then,

Bat � sat :

Proof. By the selection of the arm in Algorithm algorithm 5, we must haveat 2 f j t ; Jtg.

We consider both cases.

Assumeat = j t . Then,

Bat = B j t = max
k6= j t

U�
k � L �

j t

� U�
j t

� L �
j t

= sj t :

Assumeat = Jt . We consider two cases based on the relationship ofsJ t ; sj t .
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First, supposesJ t < s j t . SinceJt is selected, this situation happens only whenj t =

Jt , U�
j t

= U�
J t

= max k U�
k . Thus,

Bat = BJ t = max
k6= J t

U�
k � L �

J t

� U�
j t

� L �
J t

= U�
J t

� L �
J t

= sJ t :

Next, supposesJ t � sj t . In this case, we must haveU�
j t

� U�
J t

. Suppose not (i.e.,

U�
j t

> U �
J t

), thenL �
j t

> L �
J t

. As a result,

B j t = max
k6= j t

U�
k � L �

j t
< U �

j t
� L �

J t
= BJ t :

However,Jt := arg min k Bk , so this is a contradiction. As a consequence,

Bat = BJ t = max
k6= J t

U�
k � L �

J t

� U�
j t

� L �
J t

� U�
J t

� L �
J t

= sJ t :

Lemma 3. For any timet and any armk, recall N t;k is the number of times that armk

is pulled by roundt. Assume that (1) the errorsf � �;k gN t;k
� =1 are independent and identically

distributed (i.i.d.) according to a common CDFFt;k , which is Lipschitz continuous with

constantL t;k > 0; and (2) there is a real sequencef � T;kgT � 1 that converges to zero such

that
P N t;k

� =1 (f̂ �
� �;k (x �;k ) � f k(x �;k ))2=Nt;k � � 2

N t;k ;k . Then,

P(Et ) � 1 �
KX

k=1

�
� + 24

q
log(16N t;k )=Nt;k + 4L t;k � 2=3

N t;k ;k

�
:

Lemma 4(Bound of con�dence interval width, by [50, Theorem 3]). Suppose assumptions

in Lemma 3 hold. In addition, assume there exists a sequencef 
 T gT � 1 that converges to
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zero such thatjf̂ �
� t;k (x t;k ) � f k(x t;k )j � 
 N t;k . Lastly, assume thatF � 1

t;k ; F̂ � 1
t;k ; F̂t;k are

Lipschitz continuous with constantsK t;k ; K 0
t;k ; K

00

t;k respectively. Thus,

jsk � W �
t;k (� )j � C �

t;k (� )
�


 N t;k +
q

log(16N t;k )=Nt;k + � 2=3
N t;k ;k

�
;

whereW �
t;k (� ) := min � 2 [0;� ] F̂ � 1

t;k (1 � � + � ) � F̂ � 1
t;k (� ) denotes the �xed oracle interval

width that solely depends on� and the constantC �
t;k (� ) that is a function of the Lipschitz

constants and� .

As a consequence of earlier lemmas, we can provide the following guarantee.

Theorem 2(Bound on simple regret). Suppose the assumptions in Lemmas 1—4 hold and

we build the con�dence intervals for all arms at level� . Fix � > 0. SupposeN t;a t is large

enough so that

C �
t;a t

(� )
�


 N t;a t
+

q
log(16N t;a t )=Nt;a t + � 2=3

N t;a t ;at

�
� �:

Then,

P(Rat � W �
t;a t

(� ) + � ) �
KX

k=1

�
� + 24

q
log(16N t;k )=Nt;k + 4L t;k � 2=3

N t;k ;k

�
:

Proof. The result easily follows by earlier Lemmas, whereRat � Bat � sat with probabil-

ity at least1� P(Et ). Becausesat ! W �
t;k (� ) asN t;k ! 1 , after suf�ciently many pulling

of armk, the deviation fromW �
t;a t

(� ) is unlikely to be greater than� by P(Et ).

Note that the factorW �
t;a t

(� ) in Theorem 2 occurs naturally. Consider an example when

the simple regret becomes the difference of the largest and thej -th order statistics of errors

(e.g.,Rat = � a�
t

� � at ). In this case,W �
t;a t

(� ) = W � (� ) := min � 2 [0;� ] F̂ � 1(1 � � + � ) �

F̂ � 1(� ) is the smallest(1 � � ) con�dence interval for any� k . Because errors are i.i.d.,

P(� k 2 [L �
k ; U�

k ]) � 1 � � for any armk. Hence,P(Rat � W �
t;a t

(� ) + � ) � P(� a�
t

>

U�
k ) + P(� at < L �

k ); where the latter is approximately bounded byK� .
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3.6 Experimental Results

3.6.1 ExperimentalSetup

We use the 2019 PhysioNet Computing Cardiology Challenge [2] dataset following the

Sepsis-3 guidelines [1]. The dataset contains EMRs of ICU patients from three different

hospitals. The EMRs of each patient is stored in a .psv �le on an hourly basis. Implementa-

tion of algorithm 6 is based on [50], and we has rewritten algorithm 6 in parallel computing

mode. We utilizedHyperImpute[55] for data imputation, which leverages generalized it-

erative imputation enhanced with automatic model selection, to ef�ciently handle missing

data across datasets, ensuring robust and adaptive imputation performance.

We evaluate Sepsyn-OLCP using different� values, which control the con�dence level

in the conformal prediction framework. We have a list of AI clinicians as candidates, i.e.,

Neural Network (nnet), Random Forest (rf), XGBoost (xgb), Ridge Regression (ridge), Lo-

gistic Regression (lr), and Decision Tree (dct). All the AI clinicians are established using

standard Python libraries instead of advanced algorithms to see the performance of Sepsyn-

OLCP. If the average regret can decrease even when we add some “dumb” AI clinicians to

the candidates, it means that Sepsyn-OLCP can effectively improve performance through

the online learning process compared with a standalone AI clinician. Different combina-

tions of AI clinician models are plotted to observe the average regret over time. For each

combination, we have one AI clinician as the baseline. Each time, we add one AI clinician

to the candidates to observe the changes in average regrets of different combinations.

We randomly selected 1,000 septic and 1,000 non-septic patients for a balanced train-

ing dataset. We randomly selected 250 septic patients and 250 non-septic patients for the

testing dataset for all the experiments. We plot the average regret for the septic patients,

and the performance in terms of AUROC, AUPRC, Accuracy, F-measure, and Utility is

calculated following the standards provided by the 2019 PhysioNet Computing Cardiology
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Challenge [2]. For implication details, please refer to our open-sourced code1. All the

experiments in this chapter were performed using the resources provided by thePartner-

ship for an Advanced Computing Environment (PACE)[56] at the Georgia Institute of

Technology.

3.6.2 ComprehensiveRegretAnalysis

(a) Average Regret (� = 0 :05). (b) Average Regret (� = 0 :1)

Figure 3.2: Average Regret (baseline = rf).

Effects of signi�cance level� on Con�dence Intervals and Online Exploration

The signi�cance level� controls the con�dence interval width used in Sepsyn-OLCP.

Lower values of� (e.g.,� = 0:05 and� = 0:1) result in narrower con�dence intervals,

1https://github.com/Annie983284450-1/CPGapBandit.git
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(a) Average Regret (� = 0 :15). (b) Average Regret (� = 0 :2).

Figure 3.3: Average Regret (baseline = rf).

leading to more conservative exploration. When Sepsyn-OLCP makes conservative explo-

rations with low� values, the algorithm relies heavily on existing knowledge and explores

less. This behavior can be advantageous when the AI clinician candidates' predictions are

already reasonably accurate, as it might reduce unnecessary exploration that could possibly

increase regret. For example, as we can see in Figure 3.2a and Figure 3.2b, rfxgb com-

bination has the lowest regrets compared with other combinations when the signi�cance

level � is low.

Figure 3.5a, Figure 3.5b, Figure 3.6a, and Figure 3.6b illustrate the average regret over

time for various combinations of AI clinicians with different values of the parameter� ,

speci�cally for the septic patients. Each �gure presents the performance of a combination

of experts across �ve different� values: 0.05, 0.1, 0.15, 0.2, and 0.25.

All �gures (i.e., Figure 3.5a, Figure 3.5b, Figure 3.6a, and Figure 3.6b) show a relatively
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(a) Average Regret (� = 0 :25, baseline
= rf).

(b) Average Regret (� = 0 :25, baseline =
nnet).

Figure 3.4: Average Regret (alpha = 0.25).

large average regret in the beginning, which gradually decreases as the exploration phase

stabilizes. Generally, during the initial phase, the algorithm is trying out various actions

to learn about the environment and gather data for making more informed decisions in the

future.

As time progresses, we can see that the average regrets decrease and converge, indicat-

ing that the algorithm has learned an effective policy and is optimizing its decisions. The

separation of regret values across different� levels become more apparent.

Lower values of� tend to show more consistent and higher regret in the long run. This

suggests that lower values of� will result in more conservative exploration. Higher values

of � exhibit greater �uctuations in the early rounds and lower average regret in the long

run. This is likely due to more aggressive exploration, leading to suboptimal choices in
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(a) Average Regret (rfxgb). (b) Average Regret (rfxgb lr).

Figure 3.5: Average Regret of Different� (baseline = rf).

some early stages. The xgbcat rf dct lr combination involving all experts (i.e., XGBoost,

CatBoost, Random Forest, Decision Tree, and Logistic Regression) shows the most varia-

tion across different� values, with signi�cant performance differences between lower and

higher � . The rf xgb ridge lr combination demonstrates a more balanced performance,

with the average regret curves gradually decreasing and showing smaller gaps between dif-

ferent� levels. The simpler combinations like rfxgb lr and rf xgb combinations result in

smoother curves, with regret levels more tightly clustered, particularly in the later stages.
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