
CROSS-PLATFORM TESTING AND MAINTENANCE OF
WEB AND MOBILE APPLICATIONS

A Thesis
Presented to

The Academic Faculty

by

Shauvik Roy Choudhary

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
May 2015

Copyright c© 2015 by Shauvik Roy Choudhary

CROSS-PLATFORM TESTING AND MAINTENANCE OF
WEB AND MOBILE APPLICATIONS

Approved by:

Dr. Alessandro Orso, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Milos Prvulovic
School of Computer Science
Georgia Institute of Technology

Dr. Mayur Naik
School of Computer Science
Georgia Institute of Technology

Dr. Mukul R. Prasad
Research Manager
Fujitsu Laboratories of America

Dr. Russell J. Clark
School of Computer Science
Georgia Institute of Technology

Date Approved: 4 December 2015

To my parents,

Swagata and Rajkumar,

for their continuous love and support.

iii

ACKNOWLEDGEMENTS

I am thankful to the following people for their guidance, support and company

throughout my graduate school.

First and foremost, I would like to thank my advisor, Dr. Alessandro Orso, for 8

years of his guidance, patience and encouragement; first during my masters, followed

by my PhD years at Georgia Tech. I still remember the day (August 16th 2007) when

I first knocked on his door to ask if I could work with him. Alex’s consent changed my

career and I will always be indebted to his generosity. He challenged me to excel both

in research and in presenting my work to the community. At every stage of my PhD,

Alex has inspired me by setting an example through hard work, and has supported

my various endeavors, including my attempts at multiple startup programs.

I express deep gratitude to Dr. Mukul Prasad for his kindness, guidance and

support during my internship and for the collaboration that flourished afterward.

Mukul’s mentorship has been invaluable for me. He has always been supportive of my

work during my PhD and has given me feedback to steer it towards the right direction.

Under Mukul’s guidance, I gained a broader view and liking for industry research and

realized the importance of making research tools useful for real developers.

I would like to thank other members of my committee, Dr. Mayur Naik, Dr. Rus-

sell Clark and Dr. Milos Prvulovic, who have helped me make this dissertation better,

through their counsel and support. I am also thankful to other faculty members in

the SE group, especially late Dr. Mary Jean Harrold and Dr. Spencer Rugaber, who

gave me helpful suggestions during the initial days of my PhD.

My PhD would not be as joyful without my labmates. I would like to thank Dr.

Sangmin Park and Wei Jin for their dear friendship and company throughout the

iv

years, Mattia Fazzini for getting me excited about espresso (both the drink and the

testing framework), and other members of my lab for their camaraderie.

The former students from the group have been immensely helpful at times when I

needed advice. Dr. GJ Halfond was kind enough to advise me through a collaboration

for my masters project. It was while working with GJ, that I developed my interest for

research, and decided to apply to the PhD program. Dr. James (Jim) Clause taught

me the secret of structuring a paper and creating elegant presentations. Other senior

students in the group, especially Dr. Saswat Anand, Dr. Chris Parnin and Dr. Hina

Shah, have shared their valuable insights from their research experiences.

My friends have played an essential role in keeping my life at decent levels of sanity.

Tanushree Mitra has unconditionally accompanied me through the most challenging

years of my PhD. I cannot thank her enough for her patience and thoughtfulness.

Pushkar Kolhe, my roommate and a close friend has been by my side through the

highs and lows of my graduate school days. My friends, Tushar Kumar and Nawaf

Almoosa have had a very positive influence on my social life with their delightful

company. I would also like to thank Partha and Tanushree Chakraborty, who have

been equivalent to elder siblings. I am grateful to Shafi and Adria Motiwalla, who

have been like family away from home for many international students, like me. I

convey a big thanks to all friends, who have left an everlasting impression on me.

Last but not the least, I would like to thank my family. My little sister, Shatabdi,

who continues to impress me with her enthusiasm and smartness. My parents, Swa-

gata and Rajkumar, who have encouraged me to pursue graduate school and have

been unconditionally supportive of all my endeavors. My mentor and uncle, Dr. Sug-

ata Sanyal, has appreciated my passion towards computer programming since my high

school years. I am fortunate to be born in a little village in West Bengal, India, where

most of my extended family still resides. A final thanks to all of them, especially my

grandparents, for their values, love and wholehearted support through these years.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xii

I INTRODUCTION . 1

1.1 Cross-Platform Testing and Maintenance Problems 1

1.1.1 Identification of Cross-platform Inconsistencies 1

1.1.2 Detecting missing features between two versions of a multi-
platform application . 4

1.1.3 Application test migration between two platforms 7

1.1.4 Other problems . 9

1.2 Thesis . 9

1.3 Overview of Approach . 10

1.4 Contributions . 11

1.5 Organization . 12

II BACKGROUND . 13

2.1 Multiple platforms . 13

2.2 The Single Web Approach . 14

2.3 Mobile Web Applications . 16

2.4 Native Mobile Applications . 18

2.5 Other Approaches . 19

III CROSS-BROWSER TESTING OF WEB APPLICATIONS . . . 21

3.1 Motivating Example . 22

3.2 Study of Real-World XBIs . 25

3.3 Approach . 27

vi

3.3.1 Terminology . 28

3.3.2 Framework for XBI Detection 28

3.4 Detecting Relative-Layout XBIs . 31

3.4.1 The Alignment Graph . 31

3.4.2 Extracting the Alignment Graph 34

3.4.3 Comparing Alignment Graphs 36

3.5 Implementation . 36

3.6 Empirical Evaluation . 38

3.6.1 Subject Programs . 39

3.6.2 Protocol . 40

3.6.3 Results . 40

3.7 Discussion . 42

3.7.1 Threats to Validity . 43

IV DETECTING MISSING FEATURES IN A MULTI-PLATFORM
WEB APPLICATION . 45

4.1 Motivating Example . 46

4.2 Terminology and Problem Definition 49

4.3 Technique . 52

4.3.1 Trace Extraction . 54

4.3.2 Action Recognition . 54

4.3.3 Trace Set Canonicalization 58

4.3.4 Feature Matching . 59

4.4 Evaluation . 62

4.4.1 Tool Implementation . 63

4.4.2 Subjects . 64

4.4.3 Protocol . 65

4.4.4 Results . 66

4.5 Discussion . 68

4.5.1 Threats to Validity . 70

vii

V TOWARDS TEST SUITE MIGRATION BETWEEN MOBILE PLAT-
FORMS . 71

5.1 Motivating Example . 73

5.2 Terminology . 75

5.3 Assumptions . 77

5.4 Technique . 79

5.4.1 Test Trace Generation . 79

5.4.2 Guided Model Generation . 80

5.4.3 Test Generation . 84

5.5 Illustration of the Guided Model Generation 85

5.6 Evaluation . 88

5.6.1 Tool . 89

5.6.2 Subjects . 89

5.6.3 Experimental Protocol . 90

5.6.4 Results . 91

5.7 Challenges . 94

VI RELATED WORK . 96

6.1 XBI Detection . 96

6.1.1 Generation 0: Developer Tool Support 96

6.1.2 Generation I: Tests on a Single Browser 96

6.1.3 Generation II: Multi-Platform Behavior & Test Emulation . . 98

6.1.4 Generation III: Crawl and Compare Approaches 98

6.2 Feature Mapping . 99

6.2.1 Inferring API migration mappings 99

6.2.2 Reverse engineering of web applications 100

6.3 Test Migration . 100

VII CONCLUSION AND FUTURE WORK 102

7.1 Summary . 102

7.2 Future work . 103

viii

7.3 Merit . 104

REFERENCES . 106

ix

LIST OF TABLES

1 Categorization of the real-world XBIs we found in our study. 26

2 Details of the Subjects Used in X-pert’s Empirical Evaluation. . . . 39

3 X-pert’s Detailed Results from Empirical Evaluation. 41

4 X-pert’s Results Compared to those of a State-Of-The-Art Technique. 41

5 FMAP’s Details of subjects and action recognition. 66

6 FMAP’s Results of feature matching compared to state-of-art. 67

7 Test cases for the iOS versions of the subject applications. 91

8 Test Migration Results . 92

x

LIST OF FIGURES

1 Issue on Georgia Tech’s website on two web browsers. 2

2 StackOverflow.com on desktop and mobile. Although functionally sim-
ilar, screen-level differences are intentionally added by the developer
on mobile. 5

3 iOS: Wordpress Test Script for Deleting a Comment. 7

4 Android: Wordpress Test Script for Deleting a Comment. 8

5 Overall research overview. 10

6 Platform Stack . 13

7 Single Web Application to target all platforms 15

8 Separate Mobile Web Application for Mobile platforms 17

9 Native Mobile Application tailored for each Mobile platform 18

10 State Graph for web application Conference in Mozilla Firefox. 23

11 One web page of Conference rendered in two browsers. 23

12 Alignment Graph for the web pages in Figure 11. 32

13 High-level architecture of X-pert. 38

14 MakeMyPost.com Web Application for Desktop and Mobile Browsers 47

15 Network trace from MakeMyPost.com on desktop and mobile. 48

16 High-level overview of FMAP. 53

17 Bipartite graph of features . 60

18 Test cases and partial application state-space for MyList on Platform 1. 73

19 Partial application state-space for MyList on Platform 2. 74

20 High level overview of the MigraTest approach. 79

21 Partial state-space of MyList during model generation. 86

22 Tabular representation for matching actions across platforms. Rows
represent actions from platform p1 and columns represent actions from
platform p2. 87

xi

SUMMARY

Modern software applications need to run on a variety of web and mobile platforms

with diverse software and hardware-level features. Thus, developers of such software

need to duplicate the testing and maintenance effort on a wide range of platforms.

Often developers are not able to cope with this increasing demand and release software

that is broken on certain platforms, thereby affecting a class of customers using such

platforms. Hence, there is a need for automating such duplicate activities to assist

the developer in coping with the ever increasing demand. The goal of my work is to

improve the testing and maintenance of cross-platform web and mobile applications

by developing automated techniques for comparing and matching the behavior of such

applications across different platforms.

To achieve this goal, I have identified three problems that are relevant in the

context of cross-platform testing and maintenance: 1) automated identification of

inconsistencies in the same application’s behavior across multiple platforms, 2) de-

tecting features that are present in the application on one platform, but missing on

another platform version of the same application, and, 3) automated migration of

test suites and possibly other software artifacts across platforms. I present three dif-

ferent scenarios for the development of cross-platform web and mobile applications,

and formulate each of the three problems in the scenario where it is most relevant.

To address and mitigate these problems in their corresponding scenarios, I present

the principled design, development and evaluation of the two techniques, and a third

preliminary technique to highlight the research challenges of test migration. The first

technique, X-pert identifies inconsistencies in a web application running on multiple

xii

web browsers. The second technique, FMAP matches features between the desk-

top and mobile versions of a web application and reports any features found missing

on either of the platform versions. The final technique, MigraTest attempts to

automatically migrate test cases from a mobile application on one platform to its

counterpart on another platform.

To evaluate these techniques, I implemented them as prototype tools and ran

these tools on real-world subject applications. The empirical evaluation of X-pert

shows that it is accurate and effective in detecting real-world inconsistencies in web

applications. In the case of FMAP, the results of my evaluation show that it was

able to correctly identify missing features between desktop and mobile versions of the

web applications considered, as confirmed by my analysis of user reports and software

fixes for these applications. The third technique, MigraTest was able to efficiently

migrate test cases between two mobile platform versions of the subject applications.

xiii

CHAPTER I

INTRODUCTION

The proliferation of cloud and mobile computing has given rise to a diverse set of com-

puting platforms [5, 59]. Consumers use these different platforms for both personal

and business activities such as communication, banking, and shopping. To reach these

consumers, modern software applications need to run on a wide range of platforms,

mainly web and mobile, and present similar functionality on these platforms. How-

ever, this implies that software developers need to duplicate their effort for developing,

testing, and maintaining their applications on multiple platforms. Although, there

are several development approaches that companies use to target multiple platforms,

all of them result in software that requires substantial manual effort for testing and

maintenance across the supported platforms. Moreover, due to the increased reliance

on manual work, such software is often released with cross-platform issues, which

results in software failure on affected platforms. This not only causes inconvenience

to the users on the affected platforms, but also leads to increased customer support

costs and lost revenue for the companies who own such software. Thus, it is essential

to study these problems in the most relevant context, and to improve the state of the

art using automated techniques.

1.1 Cross-Platform Testing and Maintenance Problems

1.1.1 Identification of Cross-platform Inconsistencies

An important problem in this domain is to identify inconsistencies arising due to

the difference in the application’s behavior when it is run on two different platforms.

In the case of web applications, these inconsistencies can be observed when the web

1

(a) Firefox (b) Internet Explorer

Figure 1: Issue on Georgia Tech’s website on two web browsers.

application is accessed on different web browsers. This results in Cross-Browser In-

compatibilities (XBIs), which are discrepancies between a web application’s appear-

ance, functionality, or both, when the application is run on two different web browser

environments. An instance of such a problem is presented in Figure 1, which shows

a section from the front page of my institutional website, http://www.gatech.edu, on

two web browsers, i.e., Firefox and Internet Explorer. As shown in the figure, the

layout of the elements on the web page is affected due to differences between the two

browsers. In practice, XBIs range from such layout defects to critical problems in

the functionality of the web application, and affects all users with a particular web

browsing platform.

Due to the increasing popularity of web applications, and the number of browsers

and platforms on which such applications can be executed, XBIs have become a serious

concern for organizations that develop web-based software. For example, a search on

the popular developer discussion forum stackoverflow.com, for posts tagged with

“cross-browser” returned over 2500 posts over the past four years! Further, nearly

2000 of these have been active over the past year [60].

2

http://www.gatech.edu
stackoverflow.com

Because of the relevance of XBIs, a number of tools and techniques have been

proposed to address them. In fact there are over 30 tools and services for cross-

browser testing currently in the market [13, 45, 55]. Most of these tools are mainly

manual and either provide tips and tricks for developers on how to avoid XBIs or

render the same web application in multiple browsers at the same time and allow a

human to check such renditions. Being human intensive, these techniques are less

than ideal; they are costly and, especially, error-prone.

Researchers have therefore started to propose automated techniques for XBI de-

tection (e.g., [11, 19, 45, 51, 53]). At a high level, these automated techniques work

as follows. First, they render (and possibly crawl) the given web application in two

different web browsers of interest and extract a possibly large set of attributes that

characterize the application. This set may include behavioral attributes, such as fi-

nite state machine models that represent how the web application responds to various

stimuli (e.g., clicks, menu selections, text inputs). The set of attributes may also in-

clude visual characteristics of certain widgets or sets of widgets on a page, such as

their size, their position, or properties of their visual rendition (i.e., appearance).

Second, the techniques compare the attributes collected across the two browsers and,

if they differ, decide whether the difference is attributable to an XBI. Intuitively,

these attributes are used as proxies for the human user’s perception of the page and

its behavior. Thus, differences in attributes between two browsers are indications of

possible XBIs. Finally, the techniques produce reports for the web-application de-

velopers, who can use the reports to understand the XBIs, identify their causes, and

eliminate such causes.

The two most fundamental characteristics of XBI detection techniques are there-

fore (1) the choice of which attributes to collect and (2) the criteria used to decide

whether a difference between two attributes is indeed the symptom of an XBI (i.e.,

it can be perceived by a user as a difference in the web application’s behavior or

3

appearance). In existing techniques, these choices are based primarily on intuition

and experience and not on a systematic analysis of real-world XBIs.

Although such an approach is fine for an initial investigation, and in fact provided

encouraging results in the initial evaluations (e.g., [45, 53]), it must be improved for

a more mature solution to the XBI detection problem. Case in point, the evaluation

of earlier approaches on a more extensive set of web applications generated a consid-

erable number of false positives, false negatives, and duplicate reports for the same

underlying errors. Hence, a principled technique is needed to better detect such XBIs

by identifying the most relevant XBI symptom for each kind of XBI.

1.1.2 Detecting missing features between two versions of a multi-platform
application

Another common problem in a cross-platform setting is to find missing features be-

tween versions of an application, which are developed to target different platforms.

Since, parts of a cross-platform application might be significantly different, and often

developed separately by different teams, it is common to have features, which are

missing on one of the platforms. This problem is indeed relevant across the desktop

and mobile versions of a web application. Due to the proliferation of mobile comput-

ing devices, it is common practice for companies to build mobile-specific versions of

their existing web applications to provide mobile users with a better experience. This

customization is necessary, despite the inherently multi-platform nature of web appli-

cations, due to the unique features of mobile devices, such as their form factor, user

interface, and user-interaction model [66]. Developers thus commonly re-target their

web applications, sometimes substantially, to make them more suitable for mobile

platforms [26].

In spite of the inherent differences between desktop and mobile platforms, and

the resulting differences between desktop and mobile versions of a web application,

4

(a) Desktop (b) Mobile

Figure 2: StackOverflow.com on desktop and mobile. Although functionally similar,
screen-level differences are intentionally added by the developer on mobile.

the end user expects some level of consistency in the feature set offered by the ap-

plication across all platforms. The World Wide Web Consortium (W3C) standards

committee, for instance, recommends the “One Web” principle for web browsing plat-

forms [67], which stipulates that web application users should be provided with the

same information and services irrespective of the device on which they are operating.

Prominent web service providers such as Google [28] and Twitter [64] now follow

this guideline, and Figure 2 provides an illustrative example involving the desktop

and mobile versions of the popular developer discussion forum stackoverflow.com.

Although there are substantial differences in the look and feel of the website in the

two versions, both versions share the same core functionality: clicking on a question

shows detailed information for that particular question in both versions, both versions

allow the user to sort the questions according to different criteria (using tabs in one

case and the order by drop-down menu in the other), and so on.

In this context, the challenge for web developers is to develop different versions

of their applications, which are customized to suit the specific characteristics of the

5

stackoverflow.com

different platforms, and yet provide a consistent set of features and services across all

versions. To accomplish this, one common strategy used by developers is to create

separate front-end components for desktop and mobile platforms, while keeping (as

much as possible) the same server-side implementation [26].

Despite the existence of several libraries and frameworks for helping with this task

(e.g., jQuery Mobile [35], Twitter Bootstrap [65], or Sencha [58]), and even tools for

migrating existing web application to mobile-friendly versions (e.g., Mobify [48] or

Dudamobile [23]), developers perform much of these customizations by hand, which is

time consuming and error prone. Furthermore, the different customized versions must

also be evolved in parallel, during maintenance, which creates additional opportunities

for introducing inconsistencies. As a result, it is often the case that different versions

of a multi-platform web application provide different sets of features. Some of these

differences are introduced on purpose because of the nature of the different platforms.

Location-based features, for instance, are normally available on the mobile version

of a web site but not on its desktop version. Some other differences, however, are

unintentional and can negatively affect the user experience. This problem is confirmed

by the numerous user reports and complaints that appear on the forums for many

popular web sites. To illustrate with a concrete example, some users of the popular

Wordpress web site (http://wordpress.org/) were so frustrated with the problem of

missing features on the mobile version of the site (e.g., the inability to upload media

files) that they were ready to stop using the software altogether (see Section 4.5).

Hence, it is essential to help developers check their applications to understand how

features are implemented across the different platforms. This will not only provide

traceability across the platforms but mainly help them track feature completeness.

6

http://wordpress.org/

(a) Click menu item (b) Click on comment (c) Click on delete button

Figure 3: iOS: Wordpress Test Script for Deleting a Comment.

1.1.3 Application test migration between two platforms

Another problem arising in a cross-platform setting is to migrate test cases and pos-

sibly other software artifacts from one platform to another. This problem is most

relevant when the two platforms are significantly different and the application ver-

sions for each of these platforms are built separately. An example of this scenario

manifests in the case of applications built for the Android and iOS mobile platforms.

As confirmed by several developers [3], these applications are developed by different

teams and nearly all testing and maintenance tasks are repeated for the different

applications. Helping the developers automate some of these tasks will make them

more efficient. For instance, automatically migrating tests that are written for the

iOS version of the application to the Android version or vice versa, would help them

finish the migration task efficiently. Moreover, developers can spend their time on

alternate tasks, which require creative human intelligence instead of repeating the

test authoring task for each new platform.

However, migrating tests across mobile platforms is challenging for two reasons.

Firstly, the application version for each platform is inherently different since they are

7

(a) Click menu item (b) Select comment (c) Click on delete button

Figure 4: Android: Wordpress Test Script for Deleting a Comment.

developed using different technologies and potentially by different teams. Thus, any

technique directed for test migration needs to operate in the face of these differences

to find high level similarities. As an example, Figures 3 and 4 show a test script

for both the iOS and the Android versions of the Wordpress mobile application,

which is used to administer a remote blog. The test case shown in the example

deletes a comment on the blog on each platform. The script involves three steps:

1) navigating to the “Comments” page, 2) selecting the comment, and 3) selecting

the delete action to complete the test script. On each platform, each of these steps

are performed by different set of widgets, which embed different design elements in

the page structure. Hence, it is non-trivial for any automated technique to find

corresponding actions on widgets across the two platforms. Secondly, the state space

of the application on each platform could be extremely large with multiple sets of

actions, which could be performed from the current screen. Thus, any matching

technique needs to work within these constraints and should aim to maximize the

number of test cases migrated from one platform to the other.

8

1.1.4 Other problems

Other software testing and maintenance problems can also arise in this cross-platform

context. Test generation and test selection to target an application migrated to a new

platform are interesting research problems, which are currently addressed manually

by developers. Another set of challenging problems is to test for non-functional

characteristics, such as security and performance, exhibited by the application across

platforms. Any issues in these characteristics can be problematic for the user of the

application and hence, the developer is expected to find and fix such issues before

the application is released. Although these problems are interesting, a technique

addressing them needs to be designed to operate with the current developer work

flow and replace these manually performed operations with automation. To aid with

this design, future researchers can leverage the differential scenario between multiple

platforms to address these problems in a way similar to the work presented in this

thesis.

1.2 Thesis

A key insight underlying my research is that establishing similarities and differences

in application behavior across multiple platforms can be leveraged to address cross-

platform problems. However, this behavior can be significantly different and estab-

lishing an exact equivalence is infeasible in general. Hence, matching techniques

should leverage approximation algorithms to overcome these differences, and thereby

address the cross-platform issues.

The thesis of my work is that such approximate behavior matching techniques

can be used to automate the testing and maintenance of cross-platform applications,

by: 1) uncovering inconsistencies in the behavior of a web application when executed

on different browsing platforms, 2) finding missing features between different multi-

platform versions of a web application, and, 3) translating test suites, and possibly

9

other existing software artifacts from one platform version of a mobile application to

another.

1.3 Overview of Approach

Behavior
Capture

Behavior
Matching

Inconsistency
Detection

Test Migrationa1

a2

Cross-Platform
Inconsistencies

(e.g., XBIs)

Missing
Features on
one platform

Retargeted
Tests for

new platform

Feature
Analysis

1

2

3

a1.b

a2.b

Matched
Behavior

a1.b1 = a2.b1
a1.b3 = a2.b3

Unmatched
Behavior

a1.b2, a2.b2

Applications
on two platforms

Captured Behavior
of each application

Matching
Result

Cross-Platform
Applications

Figure 5: Overall research overview.

To achieve the goal of my thesis, in my research, I present different techniques

to capture and match the behavior of cross-platform applications. Figure 5 shows

the overall view of my research. As shown in the figure, the approach first captures

the behavior of the application running on two different platforms (a1 and a2). This

behavior is represented in the figure by different shapes and is labeled as a1.b and a2.b

for the two platforms respectively. The details of this dynamic behavior information

vary based on the problem at hand. It can be an explicitly stated model or can be

the runtime trace of the application.

Once suitable behavior information is captured, it is then compared across mul-

tiple platforms to establish a correspondence between the sets of such information

across the platforms. This comparison can lead to both matched and unmatched

behavior across the platforms. In the abstract example shown in the figure, consider

a matching function, which matches the number of edges in the shapes. Hence, the

ovals with infinite edges, (a1.b1, a2.b1), and the quadrilaterals with four edges (a1.b3,

a2.b3), are assigned to the matched behavior. The star with ten edges, (a1.b2), and

10

the triangle with three edges (a2.b2), are assigned to the unmatched behavior set.

The behavior matching function shown in this example is rather simplistic. However,

in practice the behavior is significantly different and a custom approximate match-

ing technique needs to be developed for each type of behavior to reveal interesting

properties relevant to the problem at hand.

Solutions to each of the problems discussed in the previous section can use the

behavior matching result in a different fashion to accomplish its goals. For identifying

potential cross-platform inconsistencies, matched behavior can be inspected in a finer

level of granularity. To address this issue for web applications, I developed the X-

pert technique (Cross-Platform Error ReporTer), which identifies and reports XBIs

(c.f. Section 1.1.1). Another application of such matched information is to use the

correspondence between the platforms to aid maintenance tasks, such as migration of

test cases and possibly other artifacts across the two platforms. A concrete solution

to address this problem for native mobile applications is presented in this thesis in

the development of the MigraTest technique. (cf. Section 1.1.3). Finally, the set

of unmatched behaviors indicate the specific instances of application behavior, which

are missing on either of the platforms. Analyzing these further can be used to assist

the developer in assessing feature completeness while she is developing the application

on one of the two platforms. I present a solution for this problem in the context of

desktop and mobile web applications in Section 1.1.2 of this thesis, as a part of the

FMAP technique (Feature Matching Across Platforms).

1.4 Contributions

My research is developed along the lines of the overview as presented in Section 1.3

and provides the following novel contributions:

• X-pert — A technique which automatically identifies Cross-Browser Incompati-

bilities (XBI) in web applications.

11

• FMAP — A technique to automatically find missing features across the desktop

and mobile versions of a web application.

• Empirical evaluation of X-pert and FMAP on real-world applications to demon-

strate their effectiveness.

• MigraTest — A preliminary technique to migrate test cases between versions of a

native mobile application on two platforms, along with a list of research challenges

for future work.

1.5 Organization

The proposal is organized as follows: Chapter 2 presents background details of the

three different development scenarios for modern multi-platform applications, and

how the problems manifest in these scenarios. Chapters 3 and 4 describe details of

the X-pert and FMAP techniques, along with their empirical evaluation. Chap-

ter 5 describes the MigraTest and the research challenges for mobile test migration.

Chapter 6 presents related work and Chapter 7 concludes the proposal with a sum-

mary of the research along with its contributions.

12

CHAPTER II

BACKGROUND

In the following sections, we will first define the essential components of a platform.

Then we will outline the different development approaches taken by companies to

target multiple platforms and will state the inherent testing and maintenance issues

faced by employing them.

2.1 Multiple platforms

Hardware

Operating System

Runtime

Application

}Platform

Figure 6: Platform Stack

A computing platform stack, as shown in Figure 6, typically consists of three

layers. The first or the bottom-most layer is the Device hardware, which consists

of the physical components of the system. The next layer, Operating system atop

the device hardware, provides various hardware management functionality and other

common services to the software that runs on the layers above it. The third layer

is the Application runtime, which provides runtime support for software applications

running on top of itself. Runtimes can vary from frameworks and libraries to inter-

preters or emulators. These three layers together constitute a computing platform

and provide services to enable the application’s execution. The Software application,

13

constructed by developers, uses these services and implements all the functionality

required from it. While developing a multi-platform application, any differences in

a layer of the computing platform should be handled by another layer above it or

finally by the application itself. If such a difference is not handled suitably, it can

lead to a user observable difference across the two platforms. Since, end users use

multiple platforms to access such software, it is crucial to provide them with a con-

sistent and reliable user experience across these platforms. Hence, these differences

should be abstracted away in case of applications running across multiple platforms.

For this purpose, developers mainly follow three approaches to develop the different

multi-platform versions of the software, as described in the sections below.

2.2 The Single Web Approach

Web applications are popular means of delivering software. Developers can author

a single web application and make it available to web browsers running on multiple

platforms, which consist of a variety of hardware devices with different operating

systems. This is made possible by standardization of web technologies implemented by

all web browsers. As shown in Figure 7, the same web application can be interpreted

by different web browsers on a variety of platforms. However, there can be subtle

differences in web browsers across platforms, which can lead to a situation where web

applications differ in look, feel, and functionality when run on different web browsers.

We call such differences, which may range from minor cosmetic differences to crucial

functional flaws, cross-browser incompatibilities (XBI). In the rest of this section,

we describe details of web applications and the different reasons for cross-browser

differences.

Web Applications Web applications are based on a client-server computing model.

In a typical scenario, a human user interacts with the client-side of a web application

through a web browser that runs on a computing device (e.g., a desktop PC). Users

14

Hardware 1

Operating System 1

Web Browser 1

Web Application

Hardware 2

Operating System 2

Web Browser 2

...

Figure 7: Single Web Application to target all platforms

view web pages, enter data, and perform actions, such as clicks on widgets (e.g.,

buttons or hyper-links). These interactions generate requests to the server, and the

server responds to such requests with updates to the current web page, encoded

in HTML (Hyper-Text Markup language) or XML (eXtensible Markup Language),

and to other associated resources, such as style information in CSS (Cascading Style

Sheets), client-side code (e.g., JavaScript), images, and so on. These resources are

then used to compute and render an updated web page in the web browser. The

recent trend is to handle an increasing portion of the user interactions entirely on the

client side, using JavaScript code and other components, such as Flash, to compute

responses and updates to the current web page. In fact, many of the web pages

viewed by the user may have no corresponding REST-based [25] URI. This is typical

of several modern web applications based on the Ajax paradigm.

The Web Browser: A Source of Cross-browser Differences Modern web

browsers are fairly sophisticated applications comprised of a number of components.

A typical architecture of a web browser is presented in [30]. Of the many functional

components at work in a browser, there are three that are of specific interest for

understanding the reasons for cross-browser incompatibilities. The first and most

15

important among them is the layout engine, which is responsible for rendering a web

page by combining the structural information in the HTML for the page with the

style information in CSS stylesheets. The browser also maintains a DOM (Document

Object Model) representation of the page in memory to allow client-side scripts (e.g.,

JavaScript code) to modify the web page dynamically. The layout engine is the

primary source of cross-browser differences, as the same HTML/DOM and CSS can

produce different-looking pages in different browsers. The second component is the

event-processing engine, or the DOM engine, which couples a user action, such as a

mouse click on a specific location, with the execution of specific event-handling client-

side code. This engine also performs changes in the DOM based on the DOM-API

of the browsers. Browsers also differ in their event-handling algorithms, as well as

in the DOM-API they support. This is another source of cross-browser differences.

Thus, the same user action can produce a different change to the DOM. A third

source of difference is the JavaScript engine—the runtime environment for executing

JavaScript code within the browser. Subtle but definite differences exist between

the JavaScript engines of different browsers, which result in differences in behavior.

It is noteworthy that standards do exist for various client-side technologies, such as

HTML, CSS, DOM, and ECMA-Script. However, browsers typically implement their

own variants of these standards.

Due to these factors, the developer needs to test the application across different

browsers to uncover and fix the different cross-browser incompatibilities. Later in

Chapter 3, I present the X-pert technique, which not only automates the detection

of such issues but also assists the developer to fix them.

2.3 Mobile Web Applications

With the proliferation of mobile devices, an increasing number of people are using

mobile devices to access web applications over the Internet. Although modern mobile

16

Mobile Hardware

Mobile OS

Mobile Web Browser

Mobile Web Application

...

Hardware

Operating System

Web Browser

Web Application

...

Figure 8: Separate Mobile Web Application for Mobile platforms

devices have a high degree of support for web technologies, they are still different from

traditional computers in terms of form factor, user interface, unique hardware support,

different contexts of operation, etc. Due to this, a rich web application written with

desktop browsers in mind, might be inefficient and thus lead to a low user experience

on mobile platforms. To address this issue, companies typically develop one or more

customized mobile-web optimized version of the web application, which is different

from the desktop version of the application, as shown in 8.

Most importantly, the user interface of a mobile web application is significantly

different from the desktop application [41]. This difference can be observed in the

widgets and the web design patterns used for these versions. The existence of these

differences increases the complexity of the presentation layer, since the developer

needs to maintain and support different versions for the desktop and mobile plat-

forms. Typically the web developer creates different presentation layers of the web

application and hosts them on the web server. Based on the web browser used, a

suitable desktop or mobile view of the web application is served. However, typically

both the desktop and mobile clients communicate with the same core server-side web

application. In this approach, the standard web browser platform serves as the run-

time running a different application version for the desktop and mobile platforms.

This might lead to several issues because the developer will need to duplicate the

17

Mobile Hardware 1

Mobile OS 1

Device SDK 1

Native App 1

Mobile Hardware 2

Mobile OS 2

Device SDK 2

...

Native App 2

...

Figure 9: Native Mobile Application tailored for each Mobile platform

testing and maintenance activities for the desktop and mobile-web versions of the

applications. Also, it is possible to have an inconsistency between the feature sets

provided by the applications. In particular, features present in one version of the

application, might not be present in the other or might be implemented in a very

different, non-intuitive manner for the end users of the application. Such a situation

can drastically affect the end user’s experience on the platform as they would not

be able to access those features on the affected platforms. Thus, to eliminate such

situations, developers needs to be aware of these missing features, without a need for

more manual work on her part. This will enable them to address these issues before

the application is released and will also reduce potential support requests in future.

In Chapter 4, I introduce the FMAP technique to match feature across desktop and

mobile versions of web applications, and to report features that are missing across

these versions.

2.4 Native Mobile Applications

Mobile devices support native applications, often called as Apps, which can take

full advantage of the capabilities of the device, such as camera, GPS, accelerometer,

compass, contact list etc. In addition, native applications can also incorporate touch

gestures, notifications and offline capabilities, which allows applications to be more

18

interactive and connected to the user. Hence, many software companies develop such

native applications to take advantage of such hardware level features. As shown

in Figure 9, in this approach, the different platform layers are entirely different.

The runtime in the case of native applications is a custom software development

toolkit (SDK) for each platform. Unlike the web browser runtimes, as in earlier

scenarios, this runtime does not have a common specification and is substantially

different in architecture and design. Examples of such native mobile platforms include

mobile phones running Android, iOS and Windows mobile operating systems, which

include their own custom runtime libraries and SDKs. Not only are the native mobile

platforms different, but the applications are also written using different programming

languages and library components. Hence, a native application’s versions developed

for two mobile platforms are essentially totally different software applications offering

similar functionality to its users at a high level.

Developers make this extra effort, of developing separate native apps, to make

use of the different hardware level features exposed by the SDK APIs. This allows

them to build optimized versions of the application for the particular platform. Not

only does the developer need to create such applications, but they are also required

to duplicate testing and maintenance tasks. This includes rewriting from scratch the

test cases for every platform. Thus, any technique which aids such repetitive work

through automation, would be helpful for developers of cross-platform native mobile

applications. Hence, in my work, I present a preliminary technique, MigraTest in

Chapter 5 to automatically translate test cases of the mobile application from one

platform to the other.

2.5 Other Approaches

Other than the aforementioned three approaches, developers also follow hybrid ap-

proaches to ease development and to increase code reuse. A popular example of

19

such a hybrid approach is the development of native mobile application using web

technologies, such as HTML, CSS and JavaScript. Apache Cordova1 and Appcelera-

tor Titanium2 are two examples of frameworks that allow such development. These

frameworks provide an extended web browser component, also known as a WebView,

which provides access to the native mobile functionalities (e.g., accessing the file sys-

tem, contacts, or device sensors) through a JavaScript API. The application written

using web technologies is then compiled with this browser component for multiple

platforms. The parts of the application written using web technologies is then visible

through the WebView specific to the particular platform. Thus, this approach allows

the distribution of the mobile application across different platforms.

Although this thesis does not directly address testing and maintenance problems

in all such hybrid scenarios, the techniques presented can still be partially applied in

such cases. For instance, the common part in hybrid mobile applications, built using

web technologies, might present issues similar to Cross-browser issues described in

Section 2.2. Thus, a technique for detecting such issues for web browsers can be cus-

tomized and applied to detect inconsistencies introduced by the browser components

on different platforms.

1Apache Cordova - http://cordova.apache.org
2Appcelerator Titanum - http://www.appcelerator.com/titanium

20

http://cordova.apache.org
http://www.appcelerator.com/titanium

CHAPTER III

CROSS-BROWSER TESTING OF WEB APPLICATIONS

This chapter presents X-pert, a new comprehensive technique and tool for detection

of XBIs that addresses the limitation of existing approaches. First, X-pertś approach

is derived from an extensive and systematic study of real-world XBIs in a large number

of web applications from a variety of different domains. Besides showing that a large

percentage of web applications indeed suffer from XBIs (over 20%), thus providing

further evidence of the relevance of the problem, the study also allowed us to identify

and categorize the most prominent feature differences that a human user would most

likely perceive as actual XBIs.

Second, X-pert is designed to be a comprehensive and accurate framework for

detecting XBIs. It integrates differencing techniques proposed in previous work with

a novel technique for detecting layout errors, by far the most common class of XBIs

observed in our case study (over 50% of web-sites with XBIs contained layout XBIs).

This allows X-pert to detect the entire gamut of XBI errors and do so with very

high precision.

Finally, by targeting the most appropriate differencing technique to the right

class of XBIs, X-pert usually reports only one XBI per actual error, unlike other

techniques (e.g., [51,53]), which typically produce several duplicate error reports. For

example, the movement of a single element on a page can have a domino effect on the

positions of all elements below it. CrossCheck [51] might report all such elements as

different XBIs, while our current approach would identify only the offending element.

This improvement greatly simplifies the task of understanding XBIs for the developer.

21

The main contributions of this work are:

• A systematic study of a large number of real-world web applications that helps

develop a deeper, realistic understanding of real-world XBIs and how to detect

them.

• A comprehensive approach for XBI detection, called X-pert, that integrates exist-

ing techniques with a novel approach to detecting layout XBIs in a single, unifying

framework.

• An implementation of our X-pert approach and a thorough empirical study whose

results show that X-pert is effective in detecting real-world XBIs, improves on the

state of the art, and can support developers in understanding and (eventually)

eliminating the causes of XBIs.

• A public release of our experimental infrastructure and artifacts (see http://

gatech.github.io/x-pert/), which will allow other researchers and practitioners

to benefit from them and build on this work.

3.1 Motivating Example

In this section, we introduce a simple web application that we use as a motivating

example to illustrate different aspects of our approach. The application, referred to

as Conference hereafter, is the web site for a generic conference.

Figure 10 provides an abstract view of this web site, as rendered in the Mozilla

Firefox browser. The site consists of three interlinked dynamically generated pages

that show the conference venue details, the key dates of the main conference activ-

ities, and the list of accepted papers. The buttons labeled HOME, DATES, and

PAPERS can be used for navigating between different pages. Alternatively, the

hyperlinks at the bottom of each page can also be used for navigation. The figure

shows these inter-page transitions using two different kinds of edges, where dashed

edges correspond to a button push, and solid edges correspond to a click on a link.

22

http://gatech.github.io/x-pert/
http://gatech.github.io/x-pert/

Figure 10: State Graph for web application Conference in Mozilla Firefox.

(a) Mozilla Firefox (b) Internet Explorer

Figure 11: One web page of Conference rendered in two browsers.

When rendered in Mozilla Firefox (FF) and Internet Explorer (IE), our exam-

ple application manifests one behavioral and three visual XBIs (the latter shown in

Figure 11). We discuss these XBIs and their causes individually.

XBI #1: Buttons HOME, DATES, and PAPERS do not produce any response

when clicked in IE (i.e., the dashed transitions in Figure 10 do not occur in IE),

which prevents the users from accessing part of the application’s functionality. The

cause of this XBI is the following HTML code (shown for the DATES button only, as

the other ones are analogous):

23

The application implements the buttons with tags and associates the JavaScript

event handler navigate to button-click events using the onclick attribute of such tags.

Because IE does not support the onclick attribute for the tag, the buttons are

unresponsive in IE.

XBI #2: The buttons in the pages are arranged horizontally (left to right) in

FF, but vertically in IE. The reason for this layout related XBI is that the application

sets the total width of the button bar to 225 pixels. Due to differences in the default

border and padding around button images in FF and IE, the second button does not

fit in this width in IE and goes to the next line.

XBI #3: The number of accepted papers appears as ‘undefined’ in IE. This

issue is caused by the following JavaScript code:

var count = $("paperlist").childElementCount

+ " papers accepted!";

$("papercount").innerHTML = count;

In the code, the list of papers is implemented as a list element () with id

‘‘paperlist’’. The code uses property childElementCount to query the size of this

list and adds it to the string that prints the number of papers. (We use $("paperlist")

as a shorthand for the complete expression, which is document.getElementById("paperlist").)

Because the childElementCount property is not supported in IE, the query returns

‘undefined’, which results in the observed error.

XBI #4: The page title has a (red) shadow in FF and no shadow in IE. This last

XBI is due to the following CSS property of the page title, which is an <h1> element:

h1{text-shadow: 2px 2px 2px red;}

Similar to the previous XBI, because the text-shadow property is not supported in

IE, the shadow is absent in the IE rendering of the application pages.

24

3.2 Study of Real-World XBIs

As we discussed in the Introduction, the starting point of this work was a study of

a large number of real-world XBIs. The goal was to provide a deeper understanding

that could guide the re-targeting of existing XBI detection techniques and possibly

the development of new ones.

In order to have an adequate sample of web applications for our study, we set the

number of web sites to be studied to 100. Also, to avoid bias in the selection of the

web sites, we selected them randomly using Yahoo!’s random URL service, available

at http://random.yahoo.com/bin/ryl. For each web site selected, we followed the

following process. First, we opened the web site using two different browsers: Mozilla

Firefox and Internet Explorer. Second, a manual examination of the site was per-

formed on the two browsers by studying both the visual rendering of the pages and

their behavior when subjected to various stimuli. To limit the time requirements for

the study, we selected a time limit of five minutes per site for the examination. This

resulted in a total of over eight hours of manual examination, spread across several

days. Finally, we analyzed the XBIs identified to categorize them based on their

characteristics. We now discuss the finding of the study.

One striking result of our study is that the problem of XBI detection is quite

relevant: among the 100 web sites examined, 23 manifested XBIs. This result is even

more surprising if we consider that the examination involved only two browsers and

a fairly limited observation time. More issues may appear if additional browsers and

platforms, or a more extensive observation, were to be considered.

The study of the characteristics of the identified XBIs clearly showed three main

types of XBIs: structure, content, and behavior. A finer grained analysis further

allowed us to identify two subcategories for content XBIs: text and appearance. We

describe these categories in detail below.

25

http://random.yahoo.com/bin/ryl

Table 1: Categorization of the real-world XBIs we found in our study.

Structure 13

Content
Text 5
Visual 7

Behavior 2

• Structure XBIs: These XBIs manifest themselves as errors in the structure, or

layout, of individual web pages. For example, a structure XBI may consist of

differences in the way some components of a page (e.g., widgets) are arranged on

that page. XBI #2 in the example of Section 3.1 is an instance of such an XBI.

• Content XBIs: These XBIs involve differences in the content of individual compo-

nents of the web page. A typical example of this type of XBIs would be a textual

element that either contains different text when rendered in two different browsers

or is displayed with a different style in the two cases. We further classify these XBIs

as text-content or visual-content XBIs. The former category involves differences in

the text value of an element, whereas the latter category refers to differences in the

visual aspects of a single element (e.g., differences in the content of an image or in

the style of some text). XBIs #3 and #4 (Section 3.1) are instances of text-content

and visual-content XBIs respectively.

• Behavior XBIs: These type of XBIs involve differences in the behavior of individual

functional components of a page. An example of behavioral XBI would be a button

that performs some action within one browser and a different action, or no action

at all, in another browser. XBI #1 from Section 3.1 is a behavior XBI.

Table 1 shows, for each category of XBIs that we identified, the number of web

sites in the study sample that exhibit that type of issue. Note that the sum of the

values in the last column is higher than the total number of web sites with XBIs (23)

because a single web site can contain multiple types of XBIs.

The above statistics, as well as a deeper analysis of each of the observed XBIs,

26

provided the following key insights:

1. The three categories of XBIs are independent, that is, there is typically little or no

correlation between the occurrence of XBIs in one category and another.

2. The three categories of XBIs are qualitatively quite distinct. Intuitively, while

behavior of a widget refers to how it respond to a user action, structure denotes

where and how it is arranged on the page, and content refers to its appearance.

3. Structure XBIs are by far the most common category, occurring in 57% (13/23)

of the subjects that had XBIs. Further, we observed that we tended to recognize

a structure XBI through a difference in the relative position of an element with

respect to its immediate neighbors, rather than a difference of its absolute size or

position. (We hypothesize that most users will do the same.)

The first two insights suggest that the three categories of XBIs could be indepen-

dently detected, and techniques specialized to each category should be used. This

insight also partly explains why use of image-comparison techniques for detecting

structure and content XBIs had a high false positive rate in our previous work [53].

The third insight motivated us to develop a novel approach for detecting structure

XBIs based on the concept of relative-layout comparison. This technique is presented

in Section 3.4. It also explained why using the absolute size or position of elements

to detect structure XBIs in our previous work [51] resulted in many false positives.

3.3 Approach

Our overall framework for XBI detection falls into the broad category of “crawl-and-

compare” approaches described in Section 6.1.4 and draws heavily on the findings of

our case study in Section 3.2. The behavior capture step is fairly similar to the one

used in [51]. However, the behavior comparison step, unlike [51] or any other previous

work, is organized as a set of four independent and orthogonal algorithms, each

27

targeted to detect a specific category of XBIs: behavior, structure, visual-content,

and text-content.

Further, the algorithms for behavior, visual-content, and text-content XBI detec-

tion are adapted from [51] but orchestrated differently and more effectively in the

current work. The algorithm for detecting structure XBIs, which usually constitute

the bulk of XBIs (see Table 1), is completely novel and a substantial improvement

over previous work.

3.3.1 Terminology

Modern web applications are comprised of several static or dynamically generated

web pages. Given a web page W and a web browser Br, W (Br) is used to denote W

as rendered in Br. Each web page is comprised of a number of web elements (e.g.,

buttons, text elements) or containers of such elements (e.g., tables). We use e to refer

to an element of a web page. Further, each web page has a DOM (Document Object

Model) representation, a layout, and a visual representation. We use D to refer to the

DOM of a web page (or a portion thereof). The layout of a web page represents its

visual structure. We model the layout as a set of potentially overlapping rectangles

in a two dimensional plane and denote it as L. Each rectangle represents an element

of the page and is characterized by the coordinates (x1, y1) of its top-left corner and

(x2, y2) of its bottom right corner. Thus, L(e) = ((x1, y1), (x2, y2)) denotes the layout

of element e. The visual representation of a web page is simply its two-dimensional

image, as rendered within the web browser. Accordingly, the visual representation of

an element is the image of the rectangle comprising the element.

3.3.2 Framework for XBI Detection

Algorithm 1 presents our overall approach for XBI detection. Its input is the URL

of the opening page of the target web application, url, and the two browsers to be

considered, Br1 and Br2. Its output is a list X of XBIs. The salient steps of this

28

Algorithm 1: X-pert: Overall algorithm
Input : url: URL of target web application

Br1, Br2: Two browsers
Output: X : List of XBIs

1 begin
2 X ← ∅
3 (M1,M2)← genCrawlModel(url, Br1, Br2)

// Compare State Graphs

4 (B,PageMatchList)← diffStateGraphs(M1,M2)
5 addErrors(B,X)
6 foreach (S1

i , S
2
i) ∈ PageMatchList do

// Compare matched web-page pair

7 DomMatchList i ← matchDOMs(S1
i , S

2
i)

8 LR
i ← diffRelativeLayouts(S1

i , S
2
i ,DomMatchList i)

9 CTi ← diffTextContent(S1
i , S

2
i ,DomMatchList i)

10 CVi ← diffVisualContent(S1
i , S

2
i ,DomMatchList i)

11 addErrors(LR
i , CVi , CTi ,X);

12 return X

approach are explained in the following sections.

Crawling and Model capture: The first step is to crawl the web application, in

an identical fashion, in each of the two browsers Br1 and Br2, and record the observed

behavior as navigation models M1 and M2, respectively. The navigation model is

comprised of a state graph representing the top-level structure of the navigation

performed during the crawling, as well as the image, DOM, and layout information

of each observed page. This is implemented by function genCrawlModel() at line 3

and is similar to the model capture step in CrossCheck [51].

Behavior XBI Detection: The next step is to check the state graphs of naviga-

tion models M1 and M2 for equivalence. This is done using the algorithm for checking

isomorphism of labelled transition graphs proposed in [45]. Function diffStateGraphs()

(line 4) performs this operation. This comparison produces a set of differences, B,

and a list PageMatchList of corresponding web-page pairs S1
i , S

2
i between M1 and

M2. The differences in B are attributable to missing and/or mismatched inter-page

transitions. Since these transitions characterize the dynamic behavior of the web ap-

plication, B represents the behavior XBIs as detected by Algorithm 1. The algorithm

29

then iterates over the list of matched web-page pairs in PageMatchList and compares

them in various ways to detect other kinds of XBIs (lines 6− 13).

DOM Matching: To compare two matched pages S1
i and S2

i , the algorithm

computes a list DomMatchList i of corresponding DOM element pairs in S1
i and S2

i .

This is implemented by function matchDOMs() (line 7) and done based on a match

index metric for DOM element correspondence. This metric was first proposed in [53]

and further developed in [51]. The match index uses a weighted combination of (1)

the XPath (i.e., path in the DOM—see http://www.w3.org/TR/xpath/), (2) DOM

attributes, and (3) a hash of an element’s descendants to compute a number between

0 and 1 that quantifies the similarity between two DOM elements. (See [51] for further

details.) The computed DomMatchList i is used by several of the subsequent steps.

Structure XBI Detection: We introduce the notion of relative-layout com-

parison as the mechanism for detecting structure XBIs, which is one of the key contri-

butions of this work. Function diffRelativeLayouts() (line 8 of Algorithm 1) compares

pages S1
i and S2

i and extracts the set of relative-layout differences LRi that repre-

sent structure XBIs (also called relative-layout XBIs). The technique for detecting

relative-layout XBIs is described in Section 3.4.

Text-content XBI Detection: These XBIs capture textual differences in page

elements that contain text. To detect them, the text-value of an element is extracted

from its DOM representation and compared with that of its corresponding element

from DomMatchList i. This operation is performed by diffTextContent() (line 9) and

is similar to the method for extracting the LDTD feature for machine learning in [51].

Visual-content XBI Detection: Visual-content XBIs represent differences in

the visual appearance of individual page elements, such as differences in the styling of

text or background of an element. To detect such errors, our approach takes the screen

images of two corresponding elements and compares their color histograms using the

χ2 distance, similar to what we did in CrossCheck [51]. Unlike CrossCheck

30

http://www.w3.org/TR/xpath/

however, which compared all DOM elements and generated many false positives, our

new approach applies visual comparison only to leaf DOM elements, where it is most

effective at detecting visual-content XBIs. Function diffVisualContent() (line 10)

implements this operation. The XBIs extracted in this step and in the previous one

are then added to the XBI list X (line 11).

3.4 Detecting Relative-Layout XBIs

Given a web page W and two different browsers Br1 and Br2, relative-layout XBIs

represent discrepancies between the relative arrangements of elements on the layouts

of W (Br1) and W (Br2). To accurately detect these issues, we introduce a formalism

for modeling the relevant aspects of a page layout, called an Alignment Graph. To de-

tect relative-layout XBIs, our approach performs the following two steps: (1) extract

alignment graphs A1 and A2 from the layouts of W (Br1) and W (Br2), respectively;

and (2) compare A1 and A2 for equivalence and extract differences as relative-layout

XBIs.

In the following sections, we formally define the alignment graph and the algo-

rithms for extraction and equivalence checking of alignment graphs.

3.4.1 The Alignment Graph

The alignment graph is used to represent two kinds of relationships between the

elements (rectangles) of the layout of a web page, namely, parent-child relationships

and sibling. We introduce the relevant definitions for these two relationships.

Definition 1 (Contains Relation) Given a set of elements Ds from a web page,

a contains relation, ≺: Ds → Ds, is defined between elements of Ds as follows.

Given two elements e1, e2 ∈ Ds with layout views L(e1) = ((x1
1, y

1
1), (x1

2, y
1
2)) and

L(e2) = ((x2
1, y

2
1), (x2

2, y
2
2)) and XPaths X1 and X2, e1 ≺ e2 if and only if

• x1
1 ≤ x2

1 ∧ y1
1 ≤ y2

1 ∧ x1
2 ≥ x2

2 ∧ y1
2 ≥ y2

2 and

31

body
header

menu

hr1

main

hr2

footer

link1

link2

subHeading

countText

paperList
paper1

paper2

paper3

paper4

button1

button2

above

above

above

above

above

leftOf

above

above

above
left-align
right-align

above
left-align
right-align

above
left-align
right-align

above
left-align
right-align

leftOf
top-align

bottom-align

Figure 12: Alignment Graph for the web pages in Figure 11.

• if L(e1) = L(e2) then X1 is a prefix of X2

Thus, a contains relation exists between e1 and e2 if either (1) rectangle L(e2) is

strictly contained within rectangle L(e1) of e1 or (2) e1 is an ancestor of e2 in the

DOM, in the case where L(e1) and L(e2) are identical.

Definition 2 (Parent node) Given a set of elements Ds from a web page, and two

elements e1, e2 ∈ Ds, e1 is a parent of e2 if and only if e1 ≺ e2, and there does not

exist an element e3 ∈ Ds such that e1 ≺ e3 ∧ e3 ≺ e2.

Thus, the parent of an element e is basically the “smallest” element containing

e. Note that Definition 2 allows for elements to have multiple parents. However, to

simplify the implementation, we use a simple metric (i.e., the area) to associate each

element with at most one parent.

32

Definition 3 (Sibling nodes) Given a set of elements Ds from a web page. two

elements e1, e2 ∈ Ds are said to be siblings if and only if they have a common parent

in Ds.

Parent-child and sibling relationships can be further qualified with attributes spec-

ifying the relative position of the elements with respect to each other. For example, a

child could be horizontally left-, right-, or center-justified and vertically top-, bottom-

, or center-justified within its parent. Similarly, an element e1 could be above, below,

or to the left or right of its sibling element e2. Further, e1 and e2 could be aligned

with respect to their top, bottom, left, or right edges. These attributes can be simply

computed by comparing the x and y coordinates of the elements in question.

Formally, an alignment graphA is a directed graph defined by the 5-tuple (E,R, T , Q,F).

Here, E is the set of vertices, one for each web page element. R ⊆ E × E is a set

of directed relationship edges, such that for elements e1, e2 ∈ E, there exists an edge

(e1, e2) in A if and only if either e1 is a parent of e2, or e1 and e2 are siblings. (Al-

though the sibling relation is symmetric, in practice only one of the edges (e1, e2) and

(e2, e1) is sufficient to represent it, so we can arbitrarily choose one.) T is a set of the

two types {parent, sibling} for identifying an edge as a parent or a sibling edge. Q

is a set of attributes (e.g., left-align, center-align, above, leftOf) used to positionally

qualify the parent or sibling relationship. F : R 7→ T × 2Q is a function that maps

edges to their type and set of attributes.

Figure 12 shows the alignment graph for the web pages shown in Figure 11, where

some sibling edges and edge attributes have been omitted to avoid cluttering. In the

figure, parent edges are represented with black, solid lines, and sibling edges with red,

dashed lines. Node labels indicate the element they represent. Nodes button1 and

button2, for instance, represent menu buttons HOME and DATES, respectively, and

header, footer, and main represent the page header, footer, and the main content-

bearing section (showing the accepted papers), respectively. The graph is identical for

33

Algorithm 2: ExtractAlignmentGraph
Input : W : Web page to analyze, Br: Web browser
Output: A: Alignment Graph

1 begin
2 D ← extractDOM (W,Br)
3 L ← extractLayout(W,Br)
4 Df ← filterDOM (D)
5 foreach e ∈ Df do addNode(e,A)
6

7 addParentEdges(A,L, Df)
8 addSiblingEdges(A)
9 foreach (v1, v2) ∈ parentEdges(A) do

10 addParentChildAttributes(A,L)

11 foreach (v1, v2) ∈ siblingEdges(A) do
12 addSiblingAttributes(A,L)

13 return A

the web pages in Figures 11a (FF) and 11b (IE), except for the sibling edge between

the nodes button1 and button2, which is represented as a dotted blue line for IE and

as a red line for FF.

3.4.2 Extracting the Alignment Graph

Algorithm 2 describes our approach for extracting the Alignment Graph A of a target

web page W with respect to a web browser Br. The algorithm first extracts the DOM

D of W (Br) (extractDOM (), line 2) and the layout L of W (Br) (extractLayout(),

line 3). Function filterDOM () then reduces D to Df by pruning away DOM elements

that have no bearing on the visible layout of the page (e.g., <a>). Line 5 adds one

vertex to A for each element in Df . Layout L is then analyzed to deduce parent-child

relationships between elements in Df and insert parent edges between the correspond-

ing vertices in A. This is implemented by function addParentEdges() (line 6) and,

similarly, for sibling edges by function addSiblingEdges() (line 7). The layout of each

parent-child element pair is further analyzed to infer alignment attributes qualifying

this relationship, which are then added to the relevant edge in A (lines 8−10). This is

similarly done for sibling edges through function addSiblingAttributes() (lines 11−13).

34

Algorithm 3: addParentEdges
Input : A: Alignment Graph being built, L: Layout of web page,

Df : Filtered DOM of web page

1 begin
2 E ← getListOfElements(Df)
3 sort(E, g) // Sort E using compare function g
4 while size(E) > 1 do
5 e← removeLastElement(E)
6 for index← size(E) to 1 do
7 p← getElement(E, index)
8 if contains(p, e,L) then
9 insertParentEdge(A, p, e,L)

10 break

Algorithm 3 computes the parent-child relationships among the nodes in Df and

inserts edges representing them into A. First, the algorithm inserts the elements of

Df into a list E (function getListOfElements(), line 2). Then, list E is sorted using

a compare function g (line 3) that satisfies the following property:

Property 1 For a pair of elements e1, e2 ∈ Df , if e1 ≺ e2 then g(e1, e2) = −1.

Finally, the algorithm iteratively removes the last element e from the sorted list E

(line 5). It then scans E from left to right, while comparing e with each element, until

it finds an element p such that p ≺ e (function contains(), line 8). From Property 1

of the sorted list E, p can be inferred to be the parent of e, so the algorithm adds a

parent edge (p, e) to A (function insertParentEdge(), line 9).

It is fairly straightforward to prove that, given a compare function g satisfying

Property 1, Algorithm 3 finds precisely one parent element, consistent with Defini-

tion 2, for each element in set Df that has a parent, and adds a parent edge to

A accordingly. Note that there are many possible compare functions g that satisfy

Property 1. In our current implementation, we use a function that orders elements

based on their geometric area and XPath.

35

3.4.3 Comparing Alignment Graphs

After extracting alignment graphs A1 and A2 for W (Br1) and W (Br2), respectively,

our technique checks the two graphs for equivalence; any difference found constitutes

a relative-layout XBI. To do so, the technique uses the DOM matching approach we

discussed in Section 3.3.2, which can determine corresponding elements in W (Br1)

and W (Br2), and consequently, corresponding vertices in A1 and A2. Given a node

e ∈ A1 (resp., A2), let m(e) denote its corresponding node in A2 (resp., A1) as

computed by our matching approach. Next, our technique iterates over each edge

r = (e1, e2) in A1 and checks that the corresponding edge r′ = (m(e1),m(e2)) exists

in A2. It further checks that these edges have identical labels, that is, F1(r) ≡ F2(r′).

This check ensures that r and r′ are of the same type and have an identical set of

attributes. Any discrepancies in the edge correspondence is recorded as an error. The

process is repeated in a similar way for A2. Each XBI is detected and reported in the

form of differences in the “neighborhood” of a given element and its counterpart in

the two alignment graphs. The neighborhood refers to the parent and siblings of the

element, and to the edges between them. For example, in Figure 12, the comparison

would yield a single XBI on button1 caused by attribute differences between the

button1 → button2 sibling edges in FF and IE. In FF, the edge indicates that (1)

button1 is to the left of button2 and (2) the top and bottom edges of button1 and

button2 are aligned. For IE, conversely, the dashed blue sibling edge indicates that

button1 is above button2, and the left and right edges of the two buttons are aligned.

This is indeed the only layout XBI between the web pages in Figures 11a and 11b.

3.5 Implementation

We implemented our approach in a prototype tool called X-pert (Cross-Platform

Error ReporTer), which is implemented in Java and consists of three modules: Model

36

collector , Model comparator , and Report generator (Figure 13). Module Model col-

lector , accepts a web application and extracts its navigation model from multiple

browsers using an existing web crawler, Crawljax [46]. Crawljax acts as a driver

and, by triggering actions on web page elements, is able to explore a finite state

space of the web application and save the model as a state-graph representation. For

each state (i.e., page), Model collector also extracts an image of the entire page and

geometrical information about the page elements by querying the DOM API.

Module Model comparator (MC) performs the checks needed to identify the differ-

ent classes of XBIs defined in Section 3.2. First, the Behavior checker detects behavior

XBIs by checking the state-graphs for the two browsers. Then, it passes the equivalent

states from the two graphs to the DOM matcher, which matches corresponding DOM

elements in these states. These matched elements are then checked for structural and

content XBIs by the Layout checker and Content checker. The Layout checker im-

plements the new relative-layout detection algorithm described in Section 3.4. Each

element on the page is represented as a layout node, and its edge relationships are

inferred using the geometric information captured earlier. To find differences in the

neighborhood of matched nodes in two alignment graphs, X-pert checks the nodes’

incoming and outgoing edges, along with the corresponding edge attributes. Any dis-

crepancy observed is attributed to the elements being compared. The Content checker

compares both the textual and visual content of leaf DOM elements on the page. X-

pert performs textual comparison using string operations defined in the Apache Com-

mons Lang library (http://commons.apache.org/proper/commons-lang/). To com-

pare visual content, X-pert uses the implementation of the χ2 metric in the OpenCV

computer vision toolkit [10].

Finally, the Report generator module generates an XBI report in HTML format,

meant for the web developer, using the Apache Velocity library (http://velocity.

apache.org/). These reports first present the behavioral XBIs, overlaid on a graph,

37

http://commons.apache.org/proper/commons-lang/
http://velocity.apache.org/
http://velocity.apache.org/

Report
Generator

Behavior
Checker

DOM
Matcher

Layout
Checker

Content
Checker

XBI
Report

Web
Application

Model Comparator

Model
Collector

...

Crawler

Figure 13: High-level architecture of X-pert.

to depict missing transitions or states, if any. A list of XBIs is presented along with

the pages where they appear. The user can select a particular page to see an instance

of the XBI. These instances are identified using the XPaths and screen coordinates

of the elements involved and also highlighted on two side-by-side screenshots of the

affected page.

3.6 Empirical Evaluation

To assess the effectiveness of our technique for detecting XBIs, we used X-pert to

conduct a thorough empirical evaluation on a suite of live web applications. In our

evaluation, we investigated the following research questions:

RQ1: Can X-pert find XBIs in real web applications? If so, was the new relative-

layout XBI detection algorithm effective in detecting the targeted issues?

RQ2: How does X-pert’s ability to identify XBIs compare to that of a state-of-the-

art technique?

RQ3: How does X-pert’s screen-level XBI detection compare to that of a purely

visual technique?

In the rest of this section, we present the subject programs we used for our eval-

uation, our experimental protocol, our results, and a discussion of these results.

38

Table 2: Details of the Subjects Used in X-pert’s Empirical Evaluation.

Name URL Type St. Tr.
DOM Nodes (per page)
max min avg

Organizer http://localhost/organizer Productivity 13 99 10001 27482 13051
GrantaBooks http://grantabooks.com Publisher 9 8 15625 37800 25852
DesignTrust http://designtrust.org Business 10 20 7772 26437 18694
DivineLife http://sivanandaonline.org Spiritual 10 9 9082 140611 49886
SaiBaba http://shrisaibabasansthan.org Religious 13 20 524 42606 12162
Breakaway http://breakaway-adventures.com Sport 19 18 8191 45148 13059
Conference http://localhost/conference Information 3 12 878 817 853
Fisherman http://fishermanslodge.co.uk Restaurant 15 17 39146 15720 21336
Valleyforge http://valleyforgeinn.net Lodge 4 12 5416 4733 5046
UniMelb http://www.economics.unimelb.edu.au/ACT/ University 9 8 15142 12131 13792
Konqueror http://www.konqueror.org Software 5 4 17586 15468 16187
UBC http://www.ubcsororities.com Club 7 7 20610 7834 12094
BMVBS http://m.bmvbs.de Ministry 5 20 19490 12544 15695
StarWars http://www.starwarsholidayspecial.com Movie 10 9 28452 19719 22626

3.6.1 Subject Programs

Table 2 shows the fourteen subjects we used in our evaluation. Along with the name,

URL, and type of each subject, the table reports the following information: number of

states explored by X-pert, number of transitions between these states, and minimum,

maximum, and average number of DOM nodes analyzed per web page. (This latter

information provides an indication of the complexity of the individual pages.)

The first six subjects (i.e., Organizer, GrantaBooks, DesignTrust, DivineLife,

SaiBaba, and Breakaway) had been previously used in the evaluation of Cross-

Check. In addition, Organizer was also used for evaluating CrossT [45]. Confer-

ence is our motivating example from Section 3.1 and was developed to show different

classes of XBIs in a web application. The following three subjects—Fisherman, Val-

leyforge, and UniMelb—were obtained from the study of real world XBIs presented

in Section 3.2. The main criteria for picking these subjects was the presence of

known XBIs found in the study. All of the subjects mentioned so far had known

XBIs, some of which were detected by previous techniques. To further generalize

our evaluation, we selected four additional subjects using an online random URL

service—http://www.uroulette.com/. (We used this alternative service because the

39

http://www.uroulette.com/

Yahoo! service we used in the study was discontinued.) These additional subjects are

Konqueror, a web-based file manager, UBC, a student organization site, BMVBS, a

mobile web application for the German ministry, and StarWars, a fan site.

3.6.2 Protocol

For our experiments, we set up X-pert on a 64-bit Windows 7 machine with 4GB

memory. X-pert was configured to run two web browsers: the latest stable versions

of Internet Explorer (v9.0.9) and Mozilla Firefox (v14.0.1). Our choice of these two

browsers was due to their use in previous studies. In fact, the chosen browsers do not

have any bearing on the technique and can be replaced with any browser of choice.

Two subjects, Organizer and Conference, were hosted on a local Apache web server,

whereas the remaining subjects were used live from their actual web sites. Note that

we do not report any data on the performance of the tool because the whole analysis,

including crawling, terminated in less than an hour.

To investigate RQ2, as a tool representative of the state of the art we selected

CrossCheck [51]. Unlike X-pert, CrossCheck does not combine XBIs across

different web pages, thereby having the same XBIs possibly reported multiple times.

Therefore, to perform a fair comparison, we implemented such a grouping on top

of CrossCheck. We call this improved version CrossCheck+ in the rest of the

chapter. The reports generated by these tools were manually inspected to find true

and false positives. In addition, we manually analyzed the web pages analyzed by the

tools to count all issues potentially detectable by a human user, which we use as an

upper bound for the number of issues that a tool can detect. We use this number to

calculate the recall of the results produced by the two tools.

3.6.3 Results

To answer RQ1, Table 3 presents a detailed view of X-pert’s results when run on

the 14 subjects considered. The table shows, for each subject, the true and false

40

Table 3: X-pert’s Detailed Results from Empirical Evaluation.

Name Behavior Structure
Content

Total
Text Image

TP FP TP FP TP FP TP FP TP FP

Organizer 1 0 9 0 0 0 0 0 10 0
GrantaBooks 16 0 11 0 0 0 0 0 27 0
DesignTrust 2 0 5 3 0 0 0 0 7 3
DivineLife 7 0 3 6 1 0 0 0 11 6
SaiBaba 2 0 2 9 0 0 0 0 4 9
Breakaway 0 0 10 2 0 0 0 0 10 2
Conference 2 0 3 0 1 0 1 0 7 0
Fisherman 1 0 3 1 0 1 1 0 5 2
Valleyforge 0 0 2 2 0 0 1 0 3 2
UniMelb 2 0 0 0 0 0 0 1 2 1
Konqueror 0 0 0 0 0 0 0 6 0 6
UBC 0 0 0 0 0 0 0 0 0 0
BMVBS 0 0 0 0 0 0 0 0 0 0
StarWars 0 0 12 0 0 0 0 0 12 0
TOTAL 33 0 60 23 2 1 3 7 98 31

Table 4: X-pert’s Results Compared to those of a State-Of-The-Art Technique.

Name XBI
X-pert CrossCheck+

TP FP Precision Recall Duplicate TP FP Precision Recall Duplicate

Organizer 10 10 0 100% 100% 0 8 2 80% 80% 13
GrantaBooks 27 27 0 100% 100% 0 27 1 96% 100% 0
DesignTrust 7 7 3 70% 100% 0 6 122 5% 86% 3
DivineLife 11 11 6 65% 100% 0 10 24 29% 91% 3
SaiBaba 5 4 9 31% 80% 0 4 53 7% 80% 10
Breakaway 13 10 2 83% 77% 1 7 49 13% 54% 12
Conference 7 7 0 100% 100% 0 7 0 100% 100% 0
Fisherman 5 5 2 71% 100% 0 4 5 44% 80% 8
Valleyforge 3 3 2 60% 100% 0 1 1 50% 33% 0
UniMelb 2 2 1 67% 100% 0 2 27 7% 100% 0
Konqueror 0 0 6 — — 0 0 11 — — 0
UBC 0 0 0 — — 0 0 1 — — 0
BMVBS 1 0 0 100% 0% 0 0 2 0% 0% 0
StarWars 12 12 0 100% 100% 0 10 91 10% 83% 3
TOTAL 103 98 31 76% 95% 1 86 389 18% 83% 52

positives reported by X-pert for each of the four types of XBI we identified, along

with an aggregate total. As the results show, X-pert reported 98 true XBIs and 31

false positives (76% precision). The detected issues included all four types of XBIs,

with a prevalence of structure XBIs (60), followed by behavior (33) and content (5)

XBIs. Based on these results, we can answer RQ1 and conclude that, for the subjects

considered, X-pert was indeed effective in finding XBIs. We can also observe that

the new relative-layout XBI detection algorithm was able catch most of the issues in

our subjects.

Table 4 summarizes and compares the results of X-pert and CrossCheck+,

41

which allows us to answer RQ2. The table shows, for each subject, its name, the num-

ber of XBIs found by manual analysis (XBI), and the results of the two tools in terms

of true positives (TP), false positives (FP), precision (Precision), recall (Recall), and

duplicate reports (Duplicate) produced. As the table shows, X-pert outperformed

CrossCheck+ in terms of both precision and recall for all of the subjects consid-

ered, and often by a considerable margin. For subject DesignTrust, for instance,

X-pert produced 3 false positives, as compared to 122 false positives produced by

CrossCheck+. On average, the precision and recall of X-pert’s results were 76%

and 95%, respectively, against 18% and 83% for CrossCheck+. Our results also

show that the X-pert reported a negligible number of duplicate XBIs—only 1 versus

the 52 duplicate XBIs CrossCheck+ reported. We can therefore answer RQ2 and

conclude that, for the cases considered, X-pert does improve over the state of the

art.

3.7 Discussion

As our empirical results show, X-pert provided better results than a state-of-the-art

tool. We attribute this improvement, in large part, to our novel relative-layout detec-

tion technique. From our study of real world XBIs, presented in Section 3.2, it was

clear that layout XBIs are the most common class of XBIs. In previous approaches,

such as WebDiff or CrossCheck, these XBIs were detected indirectly, by mea-

suring side-effects of layout perturbations, such as changes in the visual appearance

or in the absolute size or position of elements. However, as demonstrated by our

results, detecting side effects is unreliable and may result in a significant reduction

in precision. In addition, a single XBI can have multiple side effects, which when

detected by previous techniques would result in duplicate error reports.

One solution for eliminating duplication, used in previous techniques, is to clus-

ter related XBIs. However, clustering can be imperfect, thereby including unrelated

42

issues in one cluster or separating related issues across multiple clusters. Moreover,

developers still need to manually sift through the errors in a cluster to find the un-

derlying cause of the XBI and related side effects. To alleviate this problem, X-pert

focuses each differencing technique (i.e., visual comparison, text comparison, and lay-

out differencing) where it can be most effective at detecting XBIs. By focusing the

techniques on very specific problems, each XBI can be detected in terms of its princi-

pal cause, rather its side effects, which can be used to provide a better explanation of

the XBI to the developers. In addition, we observed that such focused orchestration

can detect more errors, which explains the improvement in the recall of the overall

approach.

Another potential advantage of X-pert is that it separates the individual tech-

niques into different components, unlike previous approaches. Although we did not

demonstrate this aspect in our study, intuitively this separation could allow devel-

opers to tune each of these components based on the kind of web application under

test. For instance, developers could selectively use the behavioral detector, if such

issues are more common in their web applications, or could turn it off to focus on

other kinds of XBIs.

3.7.1 Threats to Validity

As with most empirical studies, there are some threats to the validity of our results.

In terms of external validity, in particular, our results might not generalize to other

web applications and XBIs. To minimize this threat, in our study, we used a mix

of randomly selected real-world web applications and applications used in previous

studies. The specific browsers used in the evaluation should not have affected the

results, as our technique does not rely on browser specific logic and operates on DOM

representations, which are generally available. Thus, we expect the technique to

perform similarly on other browsers.

43

Threats to construct validity might be due to implementation errors in X-pert

and in the underlying infrastructure—especially with respect to the integration with

the browser to extract DOM data. We mitigated this threat through extensive manual

inspection of our results.

44

CHAPTER IV

DETECTING MISSING FEATURES IN A

MULTI-PLATFORM WEB APPLICATION

This chapter presents FMAP, which is an automated technique for matching features

across different versions of a multi-platform web application. The goal of this tech-

nique is to accurately identifying matching features across the desktop and mobile

versions of a web application.We defined our technique based on the intuition that,

although the front-ends of these platform-specific versions may look substantially dif-

ferent, in most cases they rely on the same back-end functionality. Specifically, if the

platform-specific customizations are typically restricted to the client tier, with the

server tiers mostly unchanged, exercising the same feature on two different platforms

should generate largely similar communications between client and server in the two

cases. Our technique therefore identifies and matches the features of a multi-platform

web application by analyzing the client-server communication that occur when the

application is used on the different platforms. At a high level, our technique operates

in four main steps: (1) record traces of the network communication between the client

and server of platform-specific versions of a web application, (2) model each trace as

a sequence of basic actions, (3) identify a subset of these traces as feature instanti-

ations, and (4) match the feature sets identified for each platform-specific version of

the web application to identify matching and missing features across versions.

The main contributions of this work are:

• The introduction and definition of the notion of consistency between different,

platform-specific versions of a web application.

• The definition of a technique for performing cross-platform feature matching for

45

web applications.

• The development of FMAP, a prototype tool that implements our technique and is

publicly available, together with our experimental infrastructure (http://gatech.

github.io/fmap).

• An empirical evaluation of our technique on nine real-world multi-platform web

applications.

4.1 Motivating Example

In this section, we introduce a simple web application and use it as our motivating

example to illustrate the challenges and opportunities for matching features across

different platforms. The example web application MakeMyPost.com, as shown in

Figure 14, is a content management system, and provides different front-ends for the

desktop and mobile platforms. The first row shows two screens for the desktop version

of the application and the second row shows three mobile screens.

When the user first loads the web application, she is taken to the login screen.

The desktop and mobile versions of this screen have differences in their presentation

as well as function. For example, the widgets for the login button and the alignment

of the text box and the corresponding labels is different. Further, the “Remember

me” check-box and the “Forgot pass” button, and their corresponding functionality,

is not provided on the mobile view.

After login, the user is taken to the “Home” screen, where she can create a new

post on the website. As shown, even this view is somewhat different on both platforms.

Firstly, the navigation tabs present on the desktop version has been replaced by a

dropdown on mobile. This dropdown can be seen in action on the third mobile screen.

Although the functionality is preserved on the mobile web app, instead of clicking on

the tabs, the user would select a dropdown option to navigate to the other screens

of the web application. Secondly, the radio buttons, which allow the user on the

46

http://gatech.github.io/fmap
http://gatech.github.io/fmap

BlogHome Pages

Submit Post

CREATE POST

My Post ContentPost Body

Post Type

Post Title My Post Title

MakeMyPost.com

MakeMyPost.com

myUser

Login

Login

Username myUser

MakeMyPost.com

Forgot Pass

Password *******

 Home

CREATE POST

MakeMyPost.com

My Post Title

My Post Content

Submit

Username

Password

Remember me

CREATE POST

MakeMyPost.com

My Post Title

My Post Content

Submit

Home
Blog
Post

 Home

Blog Pages

Figure 14: MakeMyPost.com Web Application for Desktop and Mobile Browsers

desktop to choose the “Post Type”, are missing on the mobile screen. Finally, like

the previous screen, the buttons use a different widget on both screens and appear

different.

Thus, although the core functionality of the desktop web app is substantially

mirrored in the mobile version there are significant differences in the style of widgets,

the layout of various screens, and on occasion, the actions required to access specific

functions. Thus, techniques based on comparing presentation-level information, such

as screen layout and attributes of widgets would not work in this context. Tools for

cross-browser compatibility checking [52] are once such example.

47

1. REQUEST: GET /index.php

2. RESPOSE: 200 OK, ’text/html’

3. REQUEST: GET /style.css

4. REPONSE: 200 OK, ’text/css’

5. REQUEST: GET /logo.png

6. REPONSE: 200 OK, ’image/png’

7. REQUEST: GET /script.js

8. REPONSE: 200 OK, ’text/javascript’

9. REQUEST: POST /login.php

user=user1&pass=..&sid=w2s31

10. RESPONSE: 200 OK, ’text/html’

....

11. REQUEST: POST /create_blog.php

title=..&content=..

12. RESPONSE: 200 OK, ’text/html’

(a) Desktop Trace

1. REQUEST: GET /index.php

2. RESPOSE: 200 OK, ’text/html’

3. REQUEST: GET /mobile_style.css

4. REPONSE: 200 OK, ’text/css’

5. REQUEST: GET /logo_small.png

6. REPONSE: 200 OK, ’image/png’

7. REQUEST: GET /mobile_script.js

8. REPONSE: 200 OK, ’text/javascript’

9. REQUEST: POST /login.php

user=myUser&pass=..&sid=d4sW2

10. RESPONSE: 200 OK, ’text/html’

....

11. REQUEST: POST /create_blog.php

title=..&content=..

12. RESPONSE: 200 OK, ’text/html’

(b) Mobile Trace

Figure 15: Network trace from MakeMyPost.com on desktop and mobile.

Now, let us consider the client-server communication originating from both ap-

plication versions. We will consider a use-case where the user creates a post. For

this purpose, first the user authenticates herself to the system from the login screen.

Then she navigates to the home screen where she submits the post content. The

corresponding network requests for this use-case are shown in Figures 15a and 15b,

for the desktop and mobile platforms respectively. As one can notice, the requests

made by both versions of the applications are largely similar, albeit with some minor

differences. The first difference is in the requests to client-side scripts and styling

information is different (i.e., the requests on lines 3–8, point to separate resources).

Secondly, the requests made to the server-side scripts have differences in the submit-

ted form data provided by the user as well as that generated by the application (e.g.,

the user and sid fields on line 9). However, the requests on lines 9 and 11, which

invoke the “login” and “create blog” functionalities on the server side respectively,

48

when taken together uniquely characterize the use-case shown in the example. These

requests in fact correspond to the same action on either platform.

The intuition behind our approach, developed in this work, is that by analyzing

use-cases in terms of the network traces they generate we can abstract away the

irrelevant parts of the trace, e.g., the user data. Further, by using the key actions

that characterize these abstract use-cases we can successfully establish correspondence

between different implementations of the same use-case on different platforms.

4.2 Terminology and Problem Definition

In this section, we define the terminology used for developing our approach in the

next section. The terms are defined specifically in the context of the network level

communication between the client and the server sides of web applications. They

may carry different meanings in other contexts.

Definition 4 (Service) A service is an atomic functionality offered by the web server

to all clients, which may be invoked, potentially under different contexts, by different

clients.

In the MakeMyPost.com example, two services offered by the server are the login

and create post functionalities.

Definition 5 (Request) A request is a call made from the client browser to the

server, to request display resources, exercise a service, or to navigate the user-interface

to gain access to a particular service.

Definition 6 (Response) A response is the reaction of the server to a request from

the client.

Definition 7 (Trace) A trace is an ordered sequence of requests and responses that

is generated as a user exercises a given use-case on the application, through the client

browser.

49

Figure 15a shows a trace from the desktop version of MakeMyPost.com, corre-

sponding to the use-case of logging in and creating a post. Figure 15b shows the

corresponding trace for the mobile version. In this example, each of the traces contain

6 requests and 6 responses, as indicated. Note that only the requests corresponding

to lines 9 and 11 invoke services (login and create post respectively), while the others

request display resources or navigate the user-interface.

Definition 8 (Feature) A feature is the functionality exercised by executing a spe-

cific set of services, provided by the web application, in a specific order.

A feature can be exercised through any of several use-cases of the application,

each of which exercise the services defined by the feature in the said order. Thus, a

feature is, in effect, an abstract use-case, describing this set of concrete use-cases. The

traces shown in Figure 15 exercise the features of logging in, followed by creating a

post. Other variations of this use-case, interleaved with arbitrary navigation actions

on the UI would correspond to the same feature, as would use-cases creating multiple

posts. However, a use-case for logging in and simply browsing blog-posts, without

creating a new one, would map to a different feature (since it does not exercise the

service for creating a post).

Definition 9 (Action) An action is a request with the user data and platform-

specific resource references abstracted away.

Thus, an action is essentially an abstract request. For our motivating example,

the login request (line 9) can be made from different platforms, in different traces, and

with different usernames and passwords. However, all such distinct requests access

the same login service of the web application, on the server. Hence, all these requests

correspond to the same action.

50

Definition 10 (Feature Equivalence) Two application features, each from a dif-

ferent platform, are said to be equivalent if they correspond to exercising the same set

of services on the server side and in the same sequence.

Thus, the two traces shown in Figure 15 instantiate the equivalent “login and

create blog” feature on the desktop and mobile platforms respectively. We would

like to automatically establish such an equivalence across all the features available on

each platform.

Given a web application with two versions W1 and W2, as implemented on two

platforms, P1 and P2 respectively, we would like to establish a mapping of features

between W1 and W2. As a starting point for analyzing the user-interfaces (UI) of

W1 and W2 we assume that we are given sets of traces T1 and T2 generated from

W1 and W2 respectively. These traces should exercise the features available on the

respective interfaces. However, there are no other assumptions on trace sets T1 and

T2. For example, T1 and T2 need not be minimal sets or correspond to each other

in any way. In fact the trace sets need not even represent all the features of each

UI. Our technique simply matches the features represented in the trace sets. These

traces could be drawn from a variety of sources, such as from user-session data, from

test-cases written for each application version or even by systematically crawling each

web application [46]. Our technique makes no assumption regarding the sources of

these traces either. Based on this, we can formally pose the feature matching problem

as follows.

Definition 11 (Feature Mapping Problem) Given two versions W1 and W2 of

a web application, as implemented on two different platforms, and two sets of traces

T1 and T2 drawn from W1 and W2 respectively, the feature mapping problem is to

identify sets of features F1 and F2 represented in traces T1 and T2 respectively, and a

one-to-one relation M ⊆ F1 × F2, such that for any features f1 ∈ F1 and f2 ∈ F2,

(f1, f2) ∈M iff features f1 and f2 are equivalent.

51

The feature mapping problem, as posed above, presents the following challenges:

• Action Recognition: Although, each of the requests contained in the raw traces

(trace sets T1 and T2) appear distinct, they are in fact instances of a small set

of actions available on the UI of the web application. Thus, requests need to be

appropriately abstracted and recognized as the appropriate action.

• Trace Set Canonicalization: Since we make no assumptions on the traces

present in the provided trace-sets, it is quite conceivable that the trace-sets con-

tain several traces representing a given feature. Thus, the trace-sets need to be

canonicalized into a minimal set with precisely one representative for each feature.

• Feature Mapping: The minimal trace-sets obtained in the previous stage need to

be mined for features which need to be mapped. Note that the requests (or actions)

do not directly specify whether they represent a call to navigate the UI, procure pre-

sentation resources or actually exercise a service. Thus, the identification of service

invokations and hence identification of features needs to be performed indirectly

leveraging other information.

Our technique, developed in Section 4.3, presents our solution to these challenges.

4.3 Technique

In this section we develop our technique for accurately identifying matched and un-

matched features across mobile and desktop versions of a web application. As stated

in Section 4.2, we use a set of traces derived from client-server communication of each

version as the basis for performing this matching. In our view, this interface is most

appropriate for this task because it naturally abstracts away a lot of presentation-

level differences, while preserving the functional structure of the use-case. Further, it

allows us to develop our solution as a black-box technique, which is much easier to

deploy and maintain than, for example, a (hypothetical) white-box technique based

52

Trace
Extraction

Action
Recognition

Feature
Matching

A
X
B
Y
C
D

A

B

C
D

A
Q
R

S

A
Q
R
R
S

M
N
O
P

U
V
W

Matched
Features

Unmatched
Features

Traces FeaturesPlatforms

A
X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
R
S

M
N
O
P

U
V
W

Labeled Actions

A
B
C
D

A
Q
R
R
S

Trace Set
Canonicalization A

X
B
Y
C
D

A
B
C
D

A
Q
R
S

A
Q
R
R
S

M
N
O
P

U
V
W

A
B
C
D

A
Q
R
R
S

Figure 16: High-level overview of FMAP.

on analysis of server-side artifacts. Also, the use of traces is well suited to our ap-

plication since the features we are attempting to compare are in fact abstract traces.

Thus, more elaborate representations of the client user-interface, such as finite-state

machine models [46, 56] or event-based models [43] would not be particularly useful

in this context.

Figure 16 presents a high-level view of our technique, FMAP. The first step

of FMAP is to collect a set of network-level traces from the two web application

versions. These trace-sets form the basis of the subsequent feature mapping. The core

feature mapping is largely independent of this trace collection. It consists of three

principal steps, mirroring the three challenges discussed in Section 4.2. In the first

step, the network traces are mined to identify requests which are instances of the same

action. In this phase, all requests are abstracted and mapped onto a small alphabet

of actions. In the next step, the abstract traces from each platform are clustered

and canonicalized into a core set of traces with precisely one representative for each

potential feature supported on that platform. In the final step, the canonicalized

traces from the desktop and mobile platforms are compared against each other to

find a correspondence between features. The matching from this step produces two

results: (1) the mapping between the matched features of the application across the

two platforms, and (2) the features which did not match and are possibly missing in

the desktop or mobile version of the web application.

In the remainder of this section, we will explain the details of each of these steps

53

of our technique using our motivating example presented in Section 3.1.

4.3.1 Trace Extraction

The goal of this step is to automatically capture network level traces of the web

application from both desktop and mobile platforms. A trace is captured as a user

is interacting with the web application and performing meaningful actions to access

the features offered by the web application. For every use case, which the user ex-

ercises, the technique captures the request-response pairs sent by the browser along

with certain meta-data related to each pair. In particular, for HTTP requests, the

technique collects and saves the URL path (path) and request parameters (params).

The latter contains the information sent in the request as a key-value pair. For each

HTTP response header, the technique saves the response code and the MIME type of

the resource returned. The response code contains the status of the response, which

can be indicative of either success, redirection or error. This response information

is used in the next step to determine how the request information should be used

for recognizing actions. Figure 15 contains several examples of such request-response

pairs.

4.3.2 Action Recognition

The goal of this step is to identify intrinsically similar requests, appearing in different

network traces, and recognize them as instances of the same action. As described in

Algorithm 4, RecognizeActions is the main function in this algorithm. It takes a set

of network traces from the two platforms, and returns a set of labeled actions. The

key functions involved in this step are: 1) Trace simplification (TraceSimplify), to

convert traces into sequences of keyword sets, 2) Action clustering (ClusterActions),

to cluster related requests into the same action, and 3) Action canonicalization, to

assign same symbols to nearly similar actions across different platforms. These steps

are explained in detail below:

54

Algorithm 4: Action Recognition
/* RecognizeActions */

Input : Td,Tm: Set of traces from desktop and mobile
Output: Ad,Am: Set of labeled actions for desktop and mobile

1 begin
2 Cd ← ClusterActions(Td)
3 Cm ← ClusterActions(Tm)

// Action Mapping

4 Map← { }
5 foreach c1 ∈ Cd do
6 foreach c2 ∈ Cm do
7 if isSimilar(c1, c2) then
8 if c1 ∈Map or c2 ∈Map then
9 c1← c1 ∪Map.remove(c1)

10 c2← c2 ∪Map.remove(c2)

11 Map.add(c1 7→ c2)

12 Ad ← [],Am ← []
13 foreach (c1, c2) ∈Map do
14 action← getNewSymbol()
15 Ad.assign(c1, action)
16 Am.assign(c2, action)

17 foreach c1 ∈ Cd and c1.action == null do
18 Ad.assign(c1, getNewSymbol())

19 foreach c2 ∈ Cm and c2.action == null do
20 Am.assign(c2, getNewSymbol())

21 return Ad,Am

/* ClusterActions */

Input : T: Set of traces
Output: C: Cluster of actions

22 begin
23 K ← TraceSimplify(T)

// Level 1 Clustering

24 L1Cluster ← SimpleCluster(T, url path equals)
// Level 2 Clustering

25 L2Cluster ← { }
26 JD ← {JaccardDistance(k1, k2) | k1, k2 ∈ K}
27 underCluster ← split(L1Cluster, size == 1)
28 overCluster ← split(L1Cluster, size > 1)
29 L2Cluster.add(AggloCluster(underCluster, JD, (<, t1)))
30 foreach c ∈ overCluster do
31 L2Cluster.add(AggloCluster(c, JD, (>, t2)))

32 return L2Cluster

/* TraceSimplify */

Input : T: Set of network traces = {T1, T2, .., Tn}
Output: K: Set of keyword tuple sequences = {k1, k2, .., km}

33 begin
34 K ← ()
35 foreach T ∈ T do
36 foreach 〈request, response〉 ∈ T do
37 while isRedirect(response.code) do
38 response← followRedirect(response)

39 if isCodeOrData(response.type) then
40 k ← getKeyws(request.path, request.qs)
41 K.add(k)

42 return K

55

4.3.2.1 Trace Simplification

The goal of this step is to extract a set of keywords from each request, which are

later used to group similar requests. As shown in the algorithm (lines 33 –42), the

TraceSimplify function takes a set of network traces and returns a set of keyword

tuple sequences, each corresponding to a provided trace. To achieve its goal, the

technique first, removes redundant requests occurring due to HTTP redirection and

assigns the MIME type of the final resource to the originating request (lines 37 –

38). This MIME type is used by the function call isCodeOrData to only consider

requests related to client-side code or data resources (line 39). All reqyests to resources

related to style or binary files are hence ignored at this step. This is essential since

the technique aims to abstract out information relating to the visual rendering of the

page. For our motivating example (Figure 15), this step ignores requests on lines 3

and 5 for both platforms.

Next, the technique extracts all the words present in the request URL path and

request parameters of these resources (line 40). Our notion of a word is a sequence

of alphabets separated by the reserved URL characters [9]. This allows us to ignore

numeric values as well as randomly generated tokens or session identifiers. We also

ignore the words belonging to a list of known file extensions [37]. The extracted words

are further simplified by converting them to their lemmas by using Lemmatisation

[42]. This process converts different suffixed or prefixed forms of the same word

into one, thereby making them standard across different occurrences. At the end

of this step, the technique has a sequence of keyword tuples for each trace. For

example, the sequence corresponding to the desktop trace of our example application

is [(‘index’), (‘script’), (‘login’, ‘user’, ‘pass’, ‘sid’), (‘create’,

‘blog’, ‘title’, ‘content’)].

56

4.3.2.2 Action Clustering

This step is used to map intrinsically similar requests onto the same action. This is

done by performing a two-level clustering as shown in the ClusterActions routine.

Assuming a blackbox view of the server-side from the client, the URL path is used to

indicate the service which is invoked. Thus, the first level of clustering combines all

requests made from one platform with the same URL path into the same cluster. The

SimpleCluster routine (line 24) takes the traces and uses this URL equality notion

to cluster the requests. After this clustering, another level of clustering is needed to

refine the clusters based on other URL parameters.

The second level of clustering, as shown on (lines 25–32), is used to further refine

two classes of clusters obtained from the first level of clustering: 1) Over-clustered

requests, which result from different requests being clustered together, and 2) Under-

clustered requests, which are similar requests put into separate clusters. A practical

case of over-clustered requests is when a request parameter is used reflectively to

determine the server-side function to be invoked. Under-clustered requests can be

illustrated by two requests invoking the same service, but whose URL path contains

dynamic fields possibly entered by the user or generated by the application. For this

step, we use agglomerative clustering [42], which is a kind of hierarchical clustering

that uses a distance metric to iteratively merge two items by varying the threshold

on the distance metric. We use the Jaccard distance metric [33] for this step, which

is defined as:

JaccardDistance(a, b) = 1− |words(a) ∩ words(b)|
|words(a) ∪ words(b)|

Here, (a, b) are two requests and words(a), words(b) are the respective set of key-

words computed in the trace simplification step. The Jaccard Distance measures the

dissimilarity between the keywords and provides a ratio in the range [0, 1].

The technique picks under-clustered requests by considering all single item clusters

57

and the remaining larger clusters as over-clustered requests. For the clustering, we

chose1 a low threshold (t1) and a high threshold (t2). For the agglomerative clustering,

the condition (<, t1) is used for under-clustered requests to cluster nearly similar

requests together. Similarly, condition (>, t2) is used for over-clustered requests to

break apart requests which are very different. At the end of this step, we obtain

clusters where requests corresponding to the same action are clustered together.

4.3.2.3 Action Mapping

The goal of this step is to find a correspondence between the actions from the desktop

and mobile web applications. As shown on lines 4—11, this is achieved by using the

function isSimilar, which checks the similarity of request clusters across the two

platforms to establish a mapping. For this purpose, this function applies the Jaccard

distance metric to the set of words associated with the requests of each cluster by

using the low threshold (t1) from the previous step. If one cluster matches to a single

cluster from the other platform, a mapping is added between those clusters. In the

case, where this mapping is overlapped over multiple clusters on a particular platform,

such clusters and any existing mapping is merged. Finally, each unique cluster across

both platforms is assigned a unique symbol from the same alphabet. In terms of our

motivating example, each requests on lines 1, 7, 9 and 11 will be assigned a unique

but same symbol across the two platforms.

4.3.3 Trace Set Canonicalization

The goal of this step is to cluster traces which instantiate the same feature. Then

one trace in each cluster can then be retained as the representative of the feature,

discarding the others. We will refer to this chosen trace as a feature instance or even

simply a feature, where the distinction is unnecessary. Thus, the output of this step

is two sets of feature instances, one corresponding to each platform.

1For our evaluation, we empirically picked the values of (t1, t2) as (0.3, 0.8)

58

This canonicalization is performed by reducing each trace down to the most ele-

mental form of the use-case it represents. To do this our technique finds and removes

all repeated action subsequences within each trace. Intuitively, these repeated action

subsequences would correspond to repeated portions of a basic use-case, for exam-

ple, creating multiple blog posts, in the context of our motivating example from

Section 3.1.

For finding such repeated sequences, we use an algorithm for finding tandem

repeats, which is a popular technique used in biology to find repeated subsequences in

a DNA sequences [8]. In general, a tandem repeat is a set of two or more contiguous

repetitions of a sequence. The algorithm iteratively finds the occurrences of such

repeats and replaces them with a single instance of the sequence. After performing

this reduction for each trace in our trace sets, any duplicate traces thus created are

removed from the trace set, thereby retaining only one feature instance per potential

feature.

As an example, consider the sequences (AQRRS, AQRS) from the high-level overview

presented in Figure 16. The technique will first replace the tandem repeat of sub-

sequence RR in the first trace with R. The resulting two sequences would then be

identical and hence merged into the same feature instance, as shown in the next step

in the figure.

4.3.4 Feature Matching

The goal of this step is to find a one-to-one correspondence between the two feature

instance sets (from the desktop and mobile versions of the application) created in

the previous step. This implies a matching of the corresponding features represented

by each feature instance. We formulate this feature instance matching problem as

a maximum weighted bipartite matching (MWBM) problem, which is a well known

problem in the field of operations research. Given a bipartite graph G = (V,E),

59

1

2

3

4

5

1

2

3

4

Fd Fm

0.9

0.2
0.8

0.3
0.7

0.2
0.3

0.7

1

2

3

4

5

1

2

3

4

Fd Fm

0.9

0.8

0.7

0.7

Figure 17: Bipartite graph of features

with bipartition (D,M) and a weight function w : E 7→ R the MWBM problem is

to find a matching of maximum weight where the weight of matching M is given

by w(M) =
∑

e∈Mw(e). The most popular solution to this problem is presented

by the Hungarian algorithm, which has been applied to instances of this problem

for transportation planning and assignment of agents to tasks [38, 49]. We use this

algorithm in our implementation as well.

In our formulation of the MWBM problem, we create the bipartite graph G with

one vertex for each feature instance. Thus, the set of vertices D and M , forming the

biparition, denote the feature instances from the desktop and mobile versions respec-

tively. The edges E running between D and M denote the possibility of matching the

corresponding features and the weight on an edge denotes the profit 2 of matching

those two features, in other words the likelihood that they are indeed correct matches.

Figure 17 illustrates this problem formulation. On the left side is an instance of the

problem, where features 1-5 from the desktop platform (Fd) are connected to features

1-4 from the mobile platform (Fm) through edges, with profit as labels for each pair.

On the right side of the figure is the solution to the MWBM problem where only

2A profit function is the inverse of a cost function. Instead of minimizing the cost, the
goal here is to maximize the profit.

60

the edges contributing to the maximum overall profit are retained. This matching

is the final outcome of the algorithm and provides a list of matched features, which

is [(1, 2, 3, 5), (1, 2, 3, 4)] for the example. The figure also shows unmatched features

from both platforms. Feature 4 for desktop is unmatched in this example.

A key step in our formulation is the assignment of weights or “profit values” to

the edges of the bipartite graph. This value should reflect the likelihood that two

feature instances, each represented by a sequence of actions, are in fact matches of

each other. Our solution involves assigning weights to each action in the alphabet and

then computing the profit value of a pair of potential matching action sequences as

the additive weight of the heaviest common subsequence between them. This solution

is developed in the following sections.

4.3.4.1 Assigning Weights to Actions

Since we cannot directly identify service invoking actions in a feature instance (i.e., a

trace) versus ones that perform navigation or request presentation resources, we can-

not use Definition 10 to directly compute feature matchings. However, we exploit the

observation that actions specific to exercising specific services would only be observed

in use-cases using that service. Thus, rare actions and unique action sequences can

be and often are the signature of a feature.

Hence, our technique assigns a weight to each action based on how many times it

occurs across different feature instances on that platform. In particular, we use the

following formula to compute weight:

ω(a) = 1− count(F, a)

|F |

where, ω(a) is weight of action denoted by symbol a, count(F, a) is a function that

computes the number of feature instances out of all feature instances (F), which

contain a, and |F | denotes the total number of feature instances. Thus, if an action

occurs in all features its weight will be zero. However if it occurs in fewer features it

61

will be assigned a weight closer to 1. Once these weights have been assigned, these

are used to compute the heaviest common subsequence match from respective traces.

4.3.4.2 Heaviest Common Subsequence

The Heaviest Common Subsequence (HCS) problem aims to find a common subse-

quence among two sequences, which maximizes the additive weight of the items in

the common subsequence [34]. The HCS problem can be defined formally using the

following recursive formula:

Wi,j =


0 if i = 0 or j = 0

Wi−1,j−1 + fi,j if i, j > 0 and xi = yi

max(Wi,j−1, wi−1,j) if i, j > 0 and xi 6= yi

where Wi,j is the weight of hcs(x[1..i], y[1..j]), i.e., it is the weight of the heaviest

common subsequence between the prefix of sequences x, y of lengths i, j. The weight

function f , which is used in HCS considers the weights of actions from both platforms

and is computed as: fi,j = ω(xi)× ω′(yj) where, (xi, yj) are actions in the features

(x, y) respectively at positions (i, j), and (ω, ω′) are the weight functions from the

two platforms.

The technique computes and stores the associated HCS weight for all pairs of

features across the desktop and mobile platforms and stores it in an N ×M matrix,

where (N,M) are the number of features on the desktop and mobile platforms re-

spectively. As explained earlier, this weight corresponds to the likelihood of match

between the pairs.

4.4 Evaluation

In order to assess the usefulness and effectiveness of our technique we implemented it

in a tool called FMAP and used it for our experimentation. Our evaluation addresses

the following research questions:

62

RQ1: How effective is FMAP in recognizing web application actions across different

traces and platforms?

RQ2: How effective is FMAP in matching features between the desktop and mobile

versions of real web applications?

In order to establish a baseline technique for evaluating RQ2, we explored existing

solutions and found that feature matching is currently done manually by developers.

Therefore, we used the following baseline technique, which shares the overall frame-

work of our solution but lacks some of its sophistication. Specifically, it works as

follows: First, it uses the URLs in network requests to identify actions across plat-

forms. Next, it combines traces on the same platform with identical action sequences

into the same feature instance. Finally, it uses the MWBM problem formulation us-

ing the edit distance metric as the cost function to establish feature matching across

the two platforms. These represent reasonable baseline design choices since URL-

based servuce identification is commonly used by web developers to report runtime

details of a web application, such as web analytics and traffic monitoring. Similarly,

edit distance is a commonly used metric for comparing and matching strings and

sequences.

In the following sections, we describe the implementation, the test subjects, the

protocol for conducting and evaluating the experiments, and the results of the study

itself.

4.4.1 Tool Implementation

Our prototype tool, FMAP consists of two components. The first component per-

forms trace extraction and is implemented as an extension for the Chromium web

browser (http://chromium.org). It performs the following tasks for implementing

trace extraction: 1) To capture the network request-response information, it attaches

to the browser’s debugger interface, 2) It allows the user to select the desktop or

63

http://chromium.org

mobile platform and alters the HTTP user agent string in the network requests to

emulate the iPhone 5 mobile browser, 3) Once the trace is captured, it takes the use

case name specified by the user and saves the trace to a file in JSON format, and, 4)

It also resets the browser state after each trace is captured by the user. In addition to

these activities, FMAP also saves a screen dump as the user navigates between dif-

ferent screens of the web application. This screen dump functionality is independent

from the technique and is used for verifying the results of our experiments.

The next component of FMAP is written in python and implements the ac-

tion recognition, feature identification, and feature matching steps of the technique.

During the trace simplification step of action recognition, it first extracts the set of

keywords from each request. To detect the several inflected forms of words as one, the

words are reduced to their root forms by using the WordNet lemmatizer [47] in the

Python natural language toolkit (http://nltk.org). All metrics were computed by

using the corresponding methods from the nltk.metrics package. We have in-house

implementations of the Clustering and Heaviest Common Substring algorithms, in

python. Finally, we used the open source python library, munkres, suitably modified

to handle floating point profits, for solving the MWBM problem.

4.4.2 Subjects

The ultimate goal of our technique is to match features between desktop and mobile

versions of a web application, which may appear substantially different, but intrinsi-

cally embody similar features and functionality. To perform a meaningful evaluation

of our technique, we selected nine web applications whose mobile and desktop versions

appear to be quite different. These applications are listed in Table 5. The first six

subjects are popular open source web applications obtained from http://ohloh.net:

wordpress version 3.6, a web blogging tool; drupal version 7.23, a content manage-

ment app; phpbb version 3.0, a bulletin board; roundcube version 0.9.4, an email

64

http://nltk.org
http://ohloh.net

client; elgg version 1.8.16, a social networking app; and gallery version 3.0.9, a

photo sharing app. These applications were configured with specific mobile presen-

tation plug-ins and set up to run on a local web server. In particular, we used the

wordpress mobile pack version 1.2.5, nokia mobile theme version 6.x-1.3 for drupal,

artodia mobile style version 3.4 for phpbb, mobilecube theme version 3.0.0 for round-

cube, elgg mobile module version 2.0, and imobile theme version 2.7 for gallery. The

three other subjects, wikipedia.org, stackoverflow.com, and twitter.com, are

public websites from the Alexa top website list. We chose these sites in particular

because they demonstrated significant differences in appearance on the desktop and

mobile application versions and were quite different from our existing open source

applications.

4.4.3 Protocol

To collect the experimental data for our evaluation, five graduate students were re-

cruited. At first, they installed a fresh version of the Chromium web browser to ensure

that the collected data is not corrupted by existing user sessions and extensions. Next,

they installed FMAPś browser-extension component. To ensure that our traces do

not suffer from biased usage, we asked different students to independently access all

use-cases of the desktop and mobile versions of the subject applications. In case the

same student accessed both versions, we asked them to create separate users and

to provide different data on each platform. For expressing the intended use-case for

each trace, the students were instructed to provide the use-case name for each trace.

For isolating the effects of use-cases on each other locally, students used the provided

functionality in the plug-in to clear the entire browser history before capturing each

trace.

The collected traces submitted by the students were then provided to FMAP and

the baseline tool to compute the feature matchings. To evaluate the effectiveness of

65

Table 5: FMAP’s Details of subjects and action recognition.

Name Type
#Traces #Requests #Actions Action F-score #Features
D M D M D M D M D M

wordpress Blog 40 12 415 98 72 12 99.7% 100.0% 29 8
drupal Content 16 15 140 62 32 23 100.0% 100.0% 13 13
phpbb Forum 12 12 230 152 20 19 99.6% 99.3% 11 11
roundcube Email 11 13 144 169 20 24 99.8% 100.0% 6 7
elgg Social 13 9 225 121 39 27 100.0% 100.0% 9 7
gallery Media 37 4 390 117 77 14 99.9% 100.0% 31 4
wikipedia.org Content 60 22 709 162 67 40 99.7% 98.8% 11 10
stackoverflow.com Q&A 19 14 174 104 54 37 97.9% 98.9% 18 14
twitter.com Social 19 14 285 54 73 26 83.5% 99.2% 16 11
Total 227 115 2712 1039 454 222 97.8% 99.6% 144 85

the tool, we manually analyzed the results and compared them against the use-case

names provided by the user. We also checked the screen dumps for the matched

use-cases when the provided use-case name was not descriptive enough. The results

from our analysis are presented in the next section.

4.4.4 Results

To answer RQ1, we ran FMAP on the subject traces and analyzed the intermedi-

ate results generated by the action recognition step. In particular, we obtained a

list of all action symbols and the clusters of requests corresponding to them, and

compared them against manually computed results. To report the quality of clus-

tering we use the F-score metric [42], which considers both intra-cluster similarity

and inter-cluster difference. Since, F-score is a weighted average of both precision

and recall of clustering, a higher F-score value indicates better clustering. The re-

sults for RQ1 are presented in Table 5, which shows, for each subject, its name, its

type, the total of number traces captured (#Traces), the number of requests across

all traces (#Requests), the number of actions recognized (#Actions), the computed

F-score for action recognition (Action F-score), and the number of features identified

(#Features). Each of these are listed in the table for both, the desktop (D) and

mobile (M) platform. As shown, FMAP was able to reduce 2712 requests on the

66

Table 6: FMAP’s Results of feature matching compared to state-of-art.

Name
Features Matched (Baseline) Features Matched (FMAP)

Rep TP FP FN TN
F-score

Rep TP FP FN TN
F-score Mis Ack

D M D M D M D M D M D M D M D M D M D M

wordpress 8 8 3 3 5 5 2 1 21 1 48.0% 8 8 7 7 1 1 0 0 21 0 93.3% 21 15
drupal 12 12 12 12 0 0 0 0 0 0 100.0% 12 12 12 12 0 0 0 0 0 0 100.0% 0 -
phpbb 3 3 3 3 0 0 9 9 0 0 40.0% 10 10 10 10 0 0 1 1 0 0 95.2% 0 -
roundcube 10 10 4 4 6 6 0 0 0 0 57.1% 4 4 4 4 0 0 2 3 0 0 76.2% 0 -
elgg 9 9 2 2 7 7 4 0 0 0 30.8% 5 5 5 5 0 0 1 1 3 1 90.9% 0 -
gallery 0 0 - - - - - - - - - 3 3 2 2 1 1 1 1 26 0 66.7% 26 20
wikipedia.org 17 17 4 4 13 13 1 4 8 1 34.0% 7 7 7 7 0 0 1 1 3 2 93.3% 2 1
stackoverflow.com 13 13 3 3 10 10 4 1 1 0 32.4% 10 10 9 9 1 1 1 1 7 3 90.0% 3 1
twitter.com 0 0 - - - - - - - - 2 2 2 2 0 0 8 8 6 1 33.3% 4 3
Total 72 72 31 31 41 41 20 15 30 2 51.5% 61 61 58 58 3 3 15 16 66 7 86.3% 56 40

desktop into 454 actions with an overall F-score of 97.8%. On the mobile, 1039 re-

quests were reduced to 222 actions with overall F-score of 99.6%. These actions were

used to discover 144 features on the desktop and 85 features on the mobile versions

of the web applications respectively.

For addressing RQ2, Table 6 presents the effectiveness of the FMAP against

the baseline. The table shows, for each subject, the features matched by using the

baseline and FMAP, in terms of the number of matchings reported (Rep), true

positives (TP), false positives (FP), false negatives (FN), true negatives (TN),

and the overall F-score of the matching result. To contrast the matched features in

different platforms, we report these results for both, the desktop (D) and the mobile

(M) platform. In addition, for FMAP, we also report the sum of the missing features

across both platforms (Mis), which were verified by us manually, and the number of

these features (Ack), which were also reported by end users, or acknowledged or fixed

by developers in a later version. As shown in the results table, FMAP was able to

successfully match features across the desktop and mobile platforms for each of the

subjects considered. It reported a total of 58 true matchings with a total F-score of

86.3%. In comparison, the baseline produced 31 true matchings with 51.5% F-score.

These results are further discussed in the next section.

67

4.5 Discussion

Based on the results of our empirical study, we observed that the action recognition

step was indeed effective in mapping several requests into the same canonical action.

For all nine subjects, FMAP clustered similar requests while achieving high F-scores

on both desktop and mobile platforms. The few errors in clustering can be attributed

to the cases where the requests contained a lot of user supplied data, which resulted

in FMAP classifying them as separate actions in the action clustering step. We

noticed that, although FMAP removes a significant portion of such information in

the trace simplification step, it is limited by its blackbox view of the application.

Future improvements to this step can be made by leveraging runtime information

from the application. In particular, dynamic tainting [17, 31] can be used to track

the sources of such user supplied data and remove them from the requests before

clustering them.

In the matching step, FMAP was effective in matching features from all subjects

with significantly higher F-score than the baseline. For drupal, the baseline peforms

just as good as FMAP. In this case, the request URL paths could uniquely identify

the feature, which is an ideal scenario for the baseline but not common practice. By

contrast, in case of gallery and twitter, the baseline could not compute any matchings

and hence, no results were reported for them.

The true negatives of matching represents features which were not matched by

FMAP and are potentially missing. Our analysis of this result revealed several

missing features as reported in Table 6, which were also acknowledged by developers

or end-users of the application. For our first subject, Wordpress, we found that the

users of the mobile toolkit were frustrated with the absence of certain features on

the mobile version of the application [4]. Specifically, users complained about not

being able to upload media or add categories to posts on their mobile blog [1]. We

also found several complaints from the users who wanted to access administration

68

features on the mobile version [2]. Some users even stated that they would abandon

this software due to its missing features on mobile. In the case of gallery, we found

that the mobile version only had features for viewing the photo gallery on mobile,

while features for uploading the photos and for performing administrative functions

were only available on desktop. We validated the need of these missing features

on the project’s support forum [12] and found that several users complained about

not being able to upload photos, share pictures, comment on gallery pictures, and

change settings through the mobile version of the site. In the case of Twitter, we

confirmed 4 missing features from output generated by FMAP. These features were

related to the viewing or editing the profile details of the logged in user. Although,

we could not get access to Twitter’s private support requests, we found several users

complaining about these features on public forums. Interestingly, we later found that

Twitter developers implemented 3 out of these 4 features in their latest mobile web

application, namely, the ability to see the current user’s favourite tweets, the list of

followers, and other users being followed by the current user. We believe that this is

an affirmation of the usefulness of the missing features identified by FMAP.

The true negatives reported by FMAP also included few features that were indeed

present on both platforms. In these cases, we found that our user missed capturing

it on one of the platforms. Our investigation of such cases with our study recruits

revealed that such misses were mainly attributable to the complex user interface of the

application on the platform in question. Hence, the user could not locate the feature

during the trace collection. We believe that this itself might be important feedback

for the developer of the application to improve the usability of the user-interface.

With the exception of twitter, all other subjects have low false negatives. On an-

alyzing the traces from twitter, we found that both the mobile and desktop versions

were constructed independently even on the server side — a design which deviates

from the One Web principle, upon which our technique is predicated. In spite of this

69

difference, FMAP was able to match two features on each platform with no false

positives. We believe that the duplication of the server-side is unlikely in a general

setting in practice, where a single code base favors code re-use and maintenance.

Overall, we think that the results are encouraging and provide clear evidence of

the effectiveness of FMAP in matching as well as finding missing features.

4.5.1 Threats to Validity

In this section, we describe details of each threat and how they were addressed in

defining and evaluating FMAP. As with all studies, the external validity of subjects

will increase with more subjects and experimentation. However, we argue that more

than the subjects, the success of the technique relates to the similarity of the cross-

platform interface, which is in line with the One Web principle. Another valid concern

is regarding the use-case coverage achieved by traces collected by our human subjects.

As mentioned earlier, our core feature matching technique is independent of the col-

lected traces. Since it operates on these traces, any improved approach to obtain

high coverage traces will also benefit our technique. We also performed a sensitivity

study by independently varying t1 and t2 in Algorithm 4 by ±0.1, and observed that

it did not significantly change the clustering result. For addressing internal validity,

we removed any selection bias by picking top web applications, which had dynamic

features and demonstrated a clear difference in appearance across platforms.

70

CHAPTER V

TOWARDS TEST SUITE MIGRATION BETWEEN

MOBILE PLATFORMS

In this chapter, I present MigraTest, a preliminary technique to assist migration

of test cases of a mobile application across different platforms. In particular, given

two platform versions of an application, and a test suite for one, the goal of this

technique is to automatically generate the test suite for the other platform version.

The underlying intuition for this technique is that the test suites check the application

for high-level requirements, which are expected to be very similar across the platforms.

Thus, by comparing the behavior of the original test suite on the first platform with

the behavior of the application on the second platform, the technique can leverage the

similarities in the application versions to generate test cases for the second platform.

However, establishing this behavioral correspondence between the two platforms is the

most challenging in this context, where the applications are developed independently

using totally different technologies.

Typically, while developing mobile applications for two different platforms, the

developer needs to develop most functionality on each platform from scratch. The

developer also needs to migrate existing software artifacts, such as test suites, between

these two platforms. Test suites are needed to ensure quality of the application on

all platforms. Moreover, existing test suites embed domain knowledge and exercise

the behavior of the application in a meaningful way. Hence, it is desirable to reuse

test suites and possibly other artifacts across platforms. Manually migrating such

test suites is a human intensive task and is error-prone. Hence, the migration activity

should involve as little of manual effort as possible and should be able to perform

71

most tasks automatically.

However, although desirable, test migration between mobile platforms is a very

challenging problem for several reasons. The first and foremost problem is that since

the two versions are developed completely independently, often using different lan-

guages and application frameworks, the structure of the implementation cannot be

used as a basis for migration. Secondly, test cases are sequences of actions, and the

space of such action sequence combinations is huge and can be potentially infinite.

Hence, a technique that needs to explore the application’s state-space, needs to work

with a partial model of the appication for tractability.

To address these challenges, we present MigraTest a preliminary technique that

performs test migration across different platform versions of an application. At a high

level, MigraTest operates in the following steps: (1) Test trace generation: The

available tests for the source platform are executed on the relevant app version to

extract a trace of the test, (2) Guided model generation: The state-space of the app

is explored on the target platform to generate a partial model of the application along

with a mapping to its input trace, and (3) Test generation: The mapping is utilized

to generate executable tests for the target platform.

Essentially, the MigraTest technique follows an iterative approach to explore

just as much of the state space as needed and is directed towards maximizing the

number of test steps migrated. In situations when the technique has several potential

partial solutions, it tries to evaluate which one out of them is the best by prioritizing

exploration under the most promising path through the state space. If the technique

generates multiple solutions, it presents all such solutions to the user to let them

choose the correct solution.

The main contributions of this work are:

• The introduction and definition of the problem of migrating tests between different,

platform-specific versions of a mobile application.

72

• The definition of a technique for performing cross-platform mobile application test

migration.

• The development of MigraTest, a prototype implementation of the test migration

technique for translating a mobile application’s test suite from its iOS version to

the Android version.

• A preliminary empirical evaluation of our technique on three real-world mobile

applications for iOS and Android platforms.

• A set of open problems and challenges, that need to be addressed by future work

for improving test migration across platforms.

5.1 Motivating Example

In this section, I present a simple mobile application on two platforms. I will use this

application to demonstrate the challenges for test migration. This example will be

referred to as MyList, a mobile app to manage a list of items. Users of this application

can add items to the list, mark an item with a “star” or delete an item.

MyList Item >

MyList +

MyList Item

MyList +

Delete ItemStar Item

MyList Item >

MyList + MyList +

TAP
"MyList Item"

TAP
"Star Item" TAP

"Delete Item"

AssertPresent
"Star"

AssertNotPresent
"MyList Item"

a1

a2
a3

TAP
"MyList Item"

a1

TAP
"Star Item"

a2

TAP
"Delete Item"

a3

 ACTIONS ORDER

TEST 1: Add Star to Item

a1

a1

a2

a3

TEST 2: Delete Item

TAP "MyList Item"
TAP "Star Item"
AssertPresent "Star"

TAP "MyList Item"
TAP "Delete Item"
AssertNotPresent "MyList Item"

Figure 18: Test cases and partial application state-space for MyList on Platform 1.

73

Figure 18 shows two test cases, and a partial state-space of the mobile application

on platform 1. As shown in the figure, the test cases consist of two actions each and

have an associated test oracle. The first test performs the action of selecting an item

by tapping on the item (action a1), then it performs another tap on the “Star Item”

button (action a2), and finally checks if the star was actually added to the item.

The second test, also selects the item, but then performs a tap on the “Delete Item”

button (action a3), and checks if the item was deleted from the list.

TAP
"View Items"

TAP
"Star" TAP

"Delete"

View Items

Add Item

MyList

Items

MyList Item

MyList

Items

Delete

MyList Item

Star

MyList
TAP

"MyList Item"

Items

MyList

Items

MyList Item

MyList

AssertPresent
"Star"

AssertNotPresent
"MyList Item"

Figure 19: Partial application state-space for MyList on Platform 2.

The corresponding application running on platform 2, is shown in Figure 19. The

figure shows the partial state-space of the application, which covers the functionality

accessed by the two tests on platform 1. Unlike in platform 1, the application on

platform 2 has a landing screen on which the “View Items” button needs to be clicked

to access the list. After clicking this button, the list item needs to be selected for the

“Star” and “Delete” buttons to appear on the screen. Upon clicking these buttons,

the selected item is starred or deleted from the list, which is again checked by similar

oracles as in the original test cases.

74

As mentioned earlier, exploring a minimal and partial state-space of the applica-

tion to cover only the functionality accessed by the tests, is non-trivial without any

prior knowledge. As shown in the figure, the function of the “View Items” action is

to navigate the user to the item list screen. To capture this partial state-space into a

model, the model generator will need to keep track of actions that have been covered,

and those which need to be found during the exploration. Moreover, the widgets

used to perform the actions across platforms are different (e.g., “MyList Item” is a

table cell on platform 1, as compared to a checkbox on platform 2). Additionally, the

widgets often have different labels too (e.g., “Star Item” on platform 1, compared to

“Star” on platform 2). Such differences make it challenging for the technique to map

actions across the platforms, and thus migrate the test cases.

In the next two sections, I will introduce the terminology and the assumptions,

which will be then used in the definition of the MigraTest technique for performing

test migration.

5.2 Terminology

The terms defined in this section are in the context of User Interface (UI) testing of

the application. UI tests interact with the components (or so called widgets) of the

application’s graphical user interface (GUI) represented on the screen and check the

resulting GUI output, just as a user would see it. Hence, UI tests are typically end-to-

end tests, which test the behavior of the entire application from a user’s standpoint.

Test Action: A test action is an atomic interaction with the application under test,

which leads to a change in the application’s GUI state. A test action a is defined as

the following sequence:

a = < actionType, element, actionParams >

75

where actionType is the kind of interaction performed, element is the information to

identify the element upon which the interaction is performed, and actionParams is

the list of optional parameters, which is sent as a part of the action.

Test Oracle: A test oracle is a special type of action, which checks the assertion to

decide success or failure of the test. A test oracle is defined as the following sequence:

a = < assertionType, element, expectedV alue >

where assertionType is the kind of assertion that is being performed upon the

element, and expectedV alue is the optional value if the assertion type checks for

the equality or inequality of the value contained by the element.

Test Case: A test case is an ordered sequence of test actions, which corresponds

to a use-case of the software under test. The test case actions encode the program

inputs, which are supplied to the software to check its behavior against expectation.

Formally, a test case (tc) can be defined as a sequence:

tc = < a1, a2, . . . , an, O >

where a1, a2, . . . , an are test actions and O is the test oracle and checks the actual

behavior against expectation.

Test Suite: A test suite is a set of test cases. A test suite may group test cases

based on execution conditions, including environment assumptions or configuration

of the software under test. A test suite (ts) is defined as:

ts = {tc1, tc2, . . . , tcm}

Test Trace: An execution trace from running a test case, or test trace, encodes low

level details about the user interface elements (or widgets), which were acted upon

76

by the test case. A test trace is defined as:

tt = < a′1, a
′
2, . . . , a

′
n >

where a′i represents the action along with run time properties of the widgets upon

which the action or oracle checking was performed. Specifically, a′i is of the form

< action type, (widget type, widget label, widget name, widget value, ...)>.

LTS Model: We model the GUI as a Labeled Transition System (LTS). The LTS is

a model whose states are labeled with a set of enabled actions (or transitions). Similar

model of computation has been used in prior work for modeling GUI applications for

testing [14,15,36]. Essentially, an LTS model is a tuple (S, s0, A, δ), where

• S is a set of GUI states,

• s0 ∈ S is the initial state,

• A is the set of actions,

• δ : (S × A)→ S is a state transition function.

Model Trace: A trace in the model is a possible sequence of actions in the model

starting at s0. Formally, a model trace (mt) is defined as:

mt = < a1, a2, . . . , au >

where ∃a1 . . . au ∈ A and ∃s0, . . . , su ∈ S |
∧

i∈[1,u]

δ(si−1, ai) = si

5.3 Assumptions

The following assumptions were made during the design of MigraTest. These

assumptions are based on our practical experience of how mobile applications are

designed for different platforms. These have also been exemplified in the evaluation

of the technique, as reported later in Section 5.6.

77

Action correspondence: Actions, when present on two platforms, have a one-to-

one correspondence across both platforms. The goal of the action matching is to

establish this correspondence. Map : Ap1 → Ap2 , where Map is the matching

function and (Ap1 , Ap2) are the sets of actions on the two platforms (p1, p2).

Although, in theory multiple actions can implement a particular functionality, lead-

ing to the same state change, our technique is interested in finding the one-to-one

correspondence, which holds across the two platforms and facilitiates maximal test

migration. This assumption, not only makes the technique tractable, but also lets

it focus only on the best pairs of corresponding actions.

Action types: Actions can either be key actions or navigation actions. The former

actions are crucial to a particular use case in the application, while the later are

platform-specific actions to reach a state with an available key action. Our tech-

nique relies on the assumption that such key actions need to be present on both

platforms, while navigation actions might be absent on either of them. This is

guided by our observation of real applications, where the navigation of the appli-

cation might change across platforms, but the essential functionality is retained

through the sequence of key actions.

Action ordering: Key actions, which are integral to a test case, occur in the same

order on each platform test case and can be separated by a finite number of navi-

gation actions. If tcp1 and tcp2 are two matched test cases for platforms p1 and p2,

then the ordering of the key actions in each test is preserved. Formally,

tcp1 = a1, a2, . . . , am, Oa

tcp2 = b1, b2, . . . , bn, Ob

(∀ai, aj ∈ tcp1) ∧ (ai < aj) =⇒ (∃bx, by ∈ tcp2) ∧ (bx < by), where (ai, aj), (bx, by)

are key actions in the application on platforms p1, p2 respectively, and < denotes

the ordering constraint between actions.

78

Platform 1
App

Platform 2
App

Test Trace
Generation

Platform 1
Tests

Incremental
Model

Generation

Platform 1
Test Trace

Test
Generation

Platform 2
Tests

Model-Trace
Mapping

Figure 20: High level overview of the MigraTest approach.

Other than these assumptions, there is also an implicit requirement that the func-

tionality behind the test case is present on both platforms for the test migration

to be feasible. This functionality should be reachable from the initial state of the

application for the technique to discover it. In addition, the technique harnesses the

similarity between action widgets across platforms, to prioritize exploration in the

target platform. Thus, it will be more efficient in the presence of such similarities

in widgets across platforms.

5.4 Technique

In this section, I present the approach for automatically migrating test cases across

two multi-platform versions of a mobile application. As shown in the high level

overview in Figure 20, the technique consists of three steps which are described in

detail below.

5.4.1 Test Trace Generation

The goal of this step is to capture information from the test cases on platform 1 (i.e.,

the source platform), which will be used to explore the application state-space on plat-

form 2 (i.e., the target platform). For achieving this goal, the technique transforms the

test cases to log information about the widgets upon which the actions are performed

at each step. This is a simple source-to-source transformation, which transforms a

79

statement of the form widget.action() to another statement doAction(widget), where

doAction is a proxy function defined by MigraTest which logs information about

the widget before performing the action. Specifically, action can be any UI event

supported by the source platform and the proxy needs to understand its seman-

tics to gather information about the widget upon which the action was performed.

e.g., Apple’s iOS supports widget actions like tap, doubleTap, twoFingerTap and

touchAndHold, for which the goal of this step is to log the information about the

widget before these actions are performed on it. The information captured about

the widget includes two kinds of details: (1) Identifiers, which are used to locate a

widget on the UI screen including its accessibility label, name, contained value, or

its position within its parent, and (2) Widget state, which is checked by the oracle

and includes properties like isValid, isEnabled, isVisible, isFocussed, and, isSelected.

All this information is used in the next step to generate the application model on the

target platform.

5.4.2 Guided Model Generation

The goal of this step is to explore the partial state-space of the mobile application in

the target platform to cover the functionality accessed by the test cases. To achieve

this goal, MigraTest interacts with the user interface of the application, as a black-

box, and learns an LTS model from the traces explored. During this model generation,

MigraTest guides the exploration of the application’s user interface by considering

the current mapping of actions from the input test traces to the model and the

dependent, unmapped actions in the test traces. The technique is described in the

overall algorithm below.

5.4.2.1 Overall Algorithm

Consider an application on two platforms p1 and p2, with test traces from p1 in the

form tt =< a1, a2, . . . , am >. The goal of the technique is to generate an LTS model

80

from p2 in the form (S, s0, A, δ), with a maximal mapping between the actions in the

trace and those in the model (i.e., A). To achieve this goal, the technique explores the

application state-space by interacting with the application, and at each step chooses

which action to perform, for covering the required functionality.

Algorithm 5 shows the overall algorithm behind the MigraTest technique. As

shown, the technique takes as input, the test traces (TT) from running the tests on

the source platform. The model is initialized with the default state of the application

and all the active widgets, upon which actions can be performed, are added to a

Worklist (lines 2-3). Then the technique iteratively selects each widget and performs

the suitable actions on it to reach new states (lines 5-7). At this step, the technique

first tries to maximize the mapping between trace actions and actions in the model

in MaxMatchSolve. Details of this matching are described later in 5.4.2.2. Once

this analysis is complete, the next widget action is selected by the getNextAction()

function, which analyzes available actions and their dependence on matched actions.

This selection is done by assigning a priority to the available widgets, as described

in 5.4.2.4. After the selected action is performed, the resulting state is compared to

the set of known states, and if it is a newly discovered state, then its widgets are

added to the Worklist (lines 8-9). At each step, the information is added to the

model and the model exploration is repeated until all actions have been performed

or if the TIMEOUT is reached. Finally, the technique returns the captured Model

and computed mapping Map between the trace and model actions on line 11.

5.4.2.2 Action Mapping as an Optimization Problem

This subsection describes the logic behind the maximal matching functionMaxMatchSolve.

This maximal mapping between actions of the two platforms should be such that each

test trace on p1 can be mapped to a model trace in p2. The problem is formulated as

the following optimization problem:

81

Algorithm 5: Guided Model Generation
Input : TT : {< a1, a2, . . . , an >, . . . } // Set of test traces from the source platform
Output: Model: (S, s0, A, δ) // Explored application model for the target platform

Map: Action mapping between source and target platforms

1 begin
// Initialize Model

2 Model← (S, s0, A, δ)|S = {s0}, A = ε, δ = ε
3 Worklist← s0.actions()
4 while Worklist.size > 0 and time() < TIMEOUT do
5 Sol←MaxMatchSolve(Model, TT)
6 (s, a)← Sol.getNextAction(Worklist) // Get Next Action to Perform

7 snext ← doAction(s, a)
8 if snext /∈ S then // snext is a new state. Add it to worklist

9 Worklist← snext.actions()

10 Model.add(s, a, snext)

11 return Model, Sol.Map

max
∑

a∈Σtti

|Map(a)|

such that

• Map : Ap1 → Bp2 is a mapping from every action a ∈ Ap1 from platform p1 to

action b ∈ Ap2 in platform p2 and Ap2 = {ε ∪ A}, where A is set of actions in the

model.

• |Map(a)| is 0 if a is mapped to ε and 1 otherwise

• (Map(ai) = bx) ∧ (Map(aj) = by) ∧ (ai < aj) ∧ (bx 6= ε) ∧ (by 6= ε) =⇒ (bx < by)

∧ ({∀bz | (bx < bz < by)} ∧ {∃ak | (Map(ak) = bz)})→ (ai < ak < aj)

The < operator in the last constraint specifies the order between actions, such that

ap < aq denotes that action ap is followed by action aq. The last constraint in the

optimization problem enforces ordering on the set of matches produced. In particular,

it restricts that if actions ai, aj from platform p1 matches with actions bx, by from

platform p2, then their ordering must be preserved. Additionally, any non ε action

ak on platform p1, between the matched actions (ai, aj), should be either mapped to

ε or an action bz, which is in between actions (bx, by) on platform p2. This not only

ensures that the matched actions appear in the same order in both the test trace

82

and the model trace, but also that two pairs traces with distinct key actions have

non-overlapping distinct model traces.

5.4.2.3 Branch-and-Bound

Branch-and-bound is a general scheme for building algorithms to solve hard optimiza-

tion problems [18, 39]. Branch and bound follows a divide and conquer strategy to

search through the entire space of solutions. Unlike exhaustive enumeration, it uses

a bounding constraint to discard a subset of the solution space that does not satisfy

this constraint. At each step, the algorithm maintains the status of the solution along

with respect to the search in the space of all solutions. This is described in terms of

the current best solution and a subset of the unexplored solution space.

MigraTest uses branch-and-bound to compute the matching between all pairs

of actions between the two platforms. The bounding condition is governed by the

constraints presented in the previous section, which decide feasibility of a possible

matching based on the ordering constraints. At each iteration of the guided model

generator, MigraTest reports the final branch-and-bound tree, which contains all

the feasible matching solutions.

The worst case complexity of branch-and-bound algorithms is typically the same

as that of exhaustive enumeration. However, in practice, the bounding constraint

limits exploration of all solutions under a particular infeasible partial assignment.

Moreover, the branch-and-bound algorithm does not restrict the search strategy in

the solution space and there is further room for optimization there to find an optimal

solution quicker as described in the next section.

5.4.2.4 Prioritizing Actions during Model Generation

To reach at an optimal solution faster, the technique prioritizes performing actions,

which are similar across platforms and can lead to discovery of more actions for better

matching. To this effect, the priority of a potential action, b on the target platform

83

is computed using the following formula:

Priority(b) =
∑

∀a|Map(a)=b

Similarity(a, b)×
∑

∀ai|ai>a∧Map(ai)=ε

1


where, the second part of the multiplier in the equation is the count of all actions in

the trace, which are dependent on a. This allows the technique to prioritize actions,

which would enable more solutions for the dependent actions by discovering more

candidate actions in the model.

The first part, Similarity, is a function that computes the similarity between the

labels of the two cross-platform actions, a and b. It also considers a conservative

over-approximation of a set of compatible actions (i.e., a tap can be mapped to a tap,

longTap or doubleTap but not to a type action across platforms). This function is

defined as:

Similarity(a, b) =


(

1− LevensteinDistance(a.label, b.label)

max(a.label.length, b.label.length)

)
, if a ∼ b

0, otherwise

where, if a and b are compatible (∼), then the similarity score is computed based

on the Levenshtein distance [40] between the labels. If the actions are incompatible,

their similarity score is zero.

5.4.3 Test Generation

The goal of this step is to generate the test cases for platform p2 from the traces for

platform p1 and the solution generated by the guided model generation step. Specifi-

cally, the technique maps each test trace to a model trace by leveraging the mapping,

and replaces the test actions to the corresponding model actions. In addition to

mapped actions, the technique adds any extra actions in the model trace on platform

p2, which are needed to connect mapped actions, or the initial state to the first action

84

in the model. Actions from platform p1, which are mapped to ε are omitted in the

process.

While doing performing test generation, the technique maintains any contextual

information, which is relevant for the action to be performed on platform p2. This in-

formation includes input values for test actions, which interact with textual elements

on screen, and expected values for the test oracles, which check this value against the

actual value while performing the assertion. All this contextual information about ac-

tions in the model trace on platform p2, is encoded into executable test cases through

code generation. These executables tests are provided to the developer as a final

result of the test migration technique.

5.5 Illustration of the Guided Model Generation

In this section, I will explain the implementation of the guided model generation part

of MigraTest and illustrate it with the motivating example. As mentioned in the

technique section, the goal of the model generation is to expore the state-space of the

application and finally generate a model of the state-space along with a mapping of

test trace actions to the model.

The input test cases to MigraTest for the MyList application on platform p1,

were presented in Figure 18. From this input, it generates the test traces:

TT = {< a1, a2 >,< a1, a3 >}

where, a1 =< TAP, (TableCell, “MyList Item”) >, a2 =< TAP, (Button, “Star Item”) >,

and a3 =< TAP, (Button, “Delete Item”) > are the three trace actions from platform

p1.

When MigraTest starts its exploration, it sees the initial screen of the mobile

application. As an example, refer to the partial state-space for the MyList application

shown in Figure 21. The model generator sees two actions TAP “View Items” (b1) and

85

TAP
"View Items"

View Items

Add Item

MyList

TAP
"Add Item"

b1

b2

Items

MyList Item

MyList

Add Item

MyList

Item Name

Add
TAP

"Add"

Type
"Item Name"

b3

b4

b5

Items

Delete

MyList Item

Star

MyList
TAP

"MyList Item"

TAP
"Star"

TAP
"Delete"

b6 b7

Iteration 1 Iteration 2 Iteration 3

Figure 21: Partial state-space of MyList during model generation.

TAP “Add Item” (b2) on this first screen. The exploration of the application’s state-

space is shown over three iterations in the figure, where each new iteration results

in a bigger model. During its exploration, the technique keeps track of each pair of

candidate actions to be matched, along with their similarity score. This information is

maintained in a tabular representation, as shown in Figure 22, for the three iterations

of the technique. As shown in the figure, the table contains platform p1 actions as

rows and platform p2 actions as columns. Thus, as new actions are discovered during

the model generation, they are added as new columns to the table.

In the first iteration, two actions b1 ad b2 were found but not yet explored by the

technique. The similarity scores are listed in the table under this iteration. Under

this current state, any action from platform p1 could be assigned to any other action

from platform p2 individually. However, since there are two orderings on platform p1,

86

0.4 0.4 1.0 0.0 0.0

0.5 0.5 0.4 0.0 0.0

0.4 0.4 0.4 0.0 0.0

0.4 0.4 1.0 0.0 0.0 0.1 0.2

0.5 0.5 0.4 0.0 0.0 0.4 0.2

0.4 0.4 0.4 0.0 0.0 0.1 0.5

0.4 0.4

0.5 0.5

0.4 0.4

a1
a2
a3

a1
a2
a3

a1
a2
a3

b1 b2 b3 b4 b5 b6 b7b1 b2 b3 b4 b5b1 b2

Iteration 1 Iteration 2 Iteration 3

Figure 22: Tabular representation for matching actions across platforms. Rows
represent actions from platform p1 and columns represent actions from platform p2.

i.e., (a1 < a2) and (a1 < a3), either only a1 or both a2, a3 can be matched with

either b1 or b2. Since, no solution was found for all actions, the technique decides to

explore further and needs to decide whether to perform action b1 or b2. Computing

the Priority gives the same priorities to both these actions, as shown below, and hence

both the actions are performed in this iteration.

Priority(b1) = 0.4× 2 + 0.5× 0 + 0.5× 0 = 0.8

Priority(b2) = 0.4× 2 + 0.5× 0 + 0.5× 0 = 0.8

In the second iteration, after these actions are performed, the technique discovers

actions TAP “MyList Item” (b3), TYPE “Item Name” (b4) and TAP “Add” (b5).

Since, b4 is not compatible with any other action on platform p1, it is assigned a zero

similarity score. In addition, the similarity score of b5 with every action on platform

p1, computes to zero, as well. In the case of b3, there is a perfect match of action

labels with a1 and thus, its similarity score is 1 under the corresponding place and is

fractional with a2 and a3. This iteration brings more solutions to the action matching

problem. However, the best match for a1 is with b3, which still leaves two pending

actions that are dependent on it. Note that, there are other possible solutions in this

iteration, which make assignment feasible (e.g., a1 = b2, a2 = b4, a3 = b5). however,

these assignments are suboptimal to the single assignment of a1 with b3. Hence, the

technique decides to continue the exploration. The computed priorities for b3 is 2,

87

whereas it is 0 for b4 and b5. Hence, the technique explores action b3.

Priority(b3) = 1× 2 + 0.4× 0 + 0.4× 0 = 2

Priority(b4) = 0

Priority(b5) = 0

In the third iteration, after action b3 is performed, the technique discovers ac-

tions b6 and b7, each of which has strong fractional similarity scores with a2 and a3

respectively. At this point, the technique has found a feasible and optimal matching

(a1 = b3, a2 = b6, a3 = b7) in this iteration.

5.6 Evaluation

To evaluate the test case migration technique, we implemented it in a tool called

MigraTest and used the to answer the following research questions:

RQ1: Can MigraTest effectively translate test cases, from one version of a mobile

application, to semantically equivalent test cases on the other platform?

RQ2: During the test migration, was MigraTest able to reveal any platform

specific issues between the two versions of the application?

RQ3: How efficient is the guided model generation phase of MigraTest?

RQ1 addresses the effectiveness of MigraTest in the test migration task with

respect to the quality of tests generated and their equivalence to the original tests in

the source platform. RQ2 addresses the fault finding ability of MigraTest while

performing test migration. RQ3 addresses the efficiency with respect to the time

taken by MigraTest to explore the state-space of the application on the target

platform and if it minimized the exploration of actions, which were not necessary for

the test case migration.

88

In the rest of this section, we will present details of our implementation, the

subject cross-platform apps used for our evaluation, experimental protocol and the

results of our study.

5.6.1 Tool

Our prototype tool, MigraTest is engineered to migrate GUI tests from an ap-

plication written for Apple’s iOS platform to a corresponding application written

for the Android platform. The tool accepts tests written using the UIAutomation

JavaScript API, which is a testing library provided by Apple, as a part of the iOS

SDK. MigraTest defines proxy functions in JavaScript to capture information for

each widget, while performing the action as described in the technique. Each API

function that corresponds to a test action is replaced by a relevant proxy function in

the iOS test cases. The trace generator is implemented as a shell script for execut-

ing the test cases and a python script for parsing the low level traces for extracting

relevant information, which is logged by the JavaScript proxy functions. The guided

model generator for Android is built on top of the PUMA tool [32]. Specifically,

we enhanced PUMA with our optimization engine, which implements the solver and

decides the exploration strategy as described in the technique. The test generator

supports two test oracle types: (1) AssertExists, which checks for the existence of an

element on the final screen, and (2) AssertText, which checks the textual content of

an element. The resulting test cases are generated using the python wrapper for the

uiautomator tool for Android.

5.6.2 Subjects

The goal of the evaluation is to migrate test cases from an iOS mobile application, to

its version on the Android platform. Thus, we selected three mobile applications with

both iOS and Android versions. The first application, wikiHow Survival Kit, includes

89

100 articles for everyday emergencies and extreme scenarios. This application has pre-

populated data for the users to browse through the information even when offline. The

second application, WhiteHouse, is the official application for the American president

and contains news articles, press briefings and audio-visual materials from the White

House. The third application, BarCodeFitness, is a fitness application, which helps its

user keep track of weightlifting workouts at the Campus Recreation Center at Georgia

Tech. In the case of wikiHow, the iOS and Android versions of the applications were

built by different developers. The WhiteHouse app was built by a team of professional

developers and the source code was released to the open source community. The iOS

and Android versions of the BarCodeFitness app were built by different teams of

students and we obtained the source code of these versions from our school’s App

Lab1.

5.6.3 Experimental Protocol

For our experiments, the subject applications were installed on an Apple iPhone 5S

and a Nexus 4 emulator. We recruited 2 graduate students for each application, and

provided them with the iPhone to interact with the iOS version of the application.

The students were instructed to study the user interface of the application, define as

many test cases as they could envision, and submit them to us on a form. We encoded

these test cases into the UIAutomation tests in JavaScript. These automation tests

were executed, and the resulting trace was captured for the technique. The results

reported by the technique were manually analyzed against the input test cases to de-

termine the effectiveness of the technique. For computing the efficiency, we compared

the state-space of the applications, which was explored by MigraTest tool in terms

of the actions performed on the application, and compared it to the number of ac-

tions, that would be needed by the vanilla PUMA crawler to make the test migration

1Gatech App Lab - http://gtjourney.gatech.edu/app-lab

90

possible. We explain the results in the next section.

5.6.4 Results

Table 7: Test cases for the iOS versions of the subject applications.
Subject Test Description

wikiHow

Items loaded When user selects category, check if items in category are loaded
Page title When user selects category, check if page title matches category name
Back button When user selects category & item, and presses button with label “Back”,

check if page title matches category name
Pop-up shown When user selects category & item, and presses button with label “Add”,

check if pop-up is displayed to user
WebView loaded When user selects category & item, check if a WebView is added on the screen

WhiteHouse

Menu loaded When the user taps on Menu, check if “BLOG” is present
Photo loaded When the user taps on Menu, and selects “PHOTOS” check if the first photo

is loaded
Video loaded When the user taps on Menu, and selects “VIDEOS” check if the first photo

is loaded
Search When the user taps on Menu, and enters “A” in the search bar, check if page

contains “No Results”

BarcodeFitness

Workouts button When the user loads the app, the “Add Workout” button is shown
Exercise button When the user selects an item, the “Add Exercise” button is shown
Exercises loaded When the user selects an item, and presses “Add Exercise”, and presses

“List”, check if workout items are loaded
Add Workout When the user selects “Add Workout”, and types “Workout1”, and presses

“Save”, check if “Workout1” is added to list
Add Exercise When the user selects an item, and presses “Add Exercise”, and presses

“List”, and presses “Ab crunch”, and presses “Done”, check if “Ab crunch”
is added to list

The student participants provided a total of 10 natural language test cases per

application, which were used to build the automated test cases. We ignored the du-

plicate scenarios of tests between the 2 students that analyzed each application. In

addition, there were certain natural language tests, which could not be represented by

the testing infrastructure on iOS. An example of such an unsupported feature is for

performing assertions on the element inside a WebView component in the wikiHow

application. This is because, WebView is a browser component used in the applica-

tion, which is seen as a black box by the test case. Table 7 shows the test cases for

the iOS versions of the application, which were considered for our evaluation.

The results of MigraTest for RQ1 are shown in Table 8. The table shows for

each test belonging to the three subjects: 1) the name of the iOS test for the subject,

2) if the test was successfully migrated to the Android version of the application,

3) if not migrated successfully, the challenge which prevented the migration, and 4)

91

Table 8: Test Migration Results
Subject Test Migrated Challenge Potential Issues Found

wikiHow

Items loaded Yes
Page title Yes Duplicates found
Back button Partial Platform specific functionality
Pop-up shown Partial Missing functionality Missing functionality
WebView loaded Yes

WhiteHouse

Menu Loaded Yes
Photo Loaded Yes Empty label on Android
Video Loaded Yes Empty label on Android
Search Yes

BarcodeFitness

Workouts button Yes
Exercise button Yes
Exercises loaded Yes
Add Workout Partial Missing functionality Missing functionality
Add Exercise Partial Complex Widgets

any potential issues found in the application, during the migration. As shown in

the results, MigraTest was able to migrate 10 out of 14 tests completely. In the

cases where MigraTest was able to migrate the test successfully, the migrated

test was the most optimal one. In the 4 cases, where MigraTest was unsuccessful

in completely migrating the test, we found that it could migrate most of the test

actions and faced some challenges in performing further migration, as listed in the

table. In the case of wikiHow, one test case needed the user to interact with a UI

widget with a label “Back”. However, on the Android version, such a widget was

not present and this functionality was implemented using the hardware back button.

In the case of two tests, i.e., the “Pop-up shown” test for wikiHow and the “Add

Workout” test for BarcodeFitness, the entire functionality behind these tests were

missing on the Android version of the application. Further, the “Add Exercise” test

case required the crawler to interact with a complex widget on Android, which was

used to select specific values for selecting the details of the exercise. This widget was

composed of two buttons, high and low, and a read-only textual element, whose values

could be altered by interacting with the buttons. Without the knowledge of such a

composition, the model generator could not intelligently input the value needed by

the test case.

In terms of RQ2, MigraTest was able to detect some issues in the test migra-

tion process. For the wikiHow application, MigraTest reported the presence of a

92

duplicate entry for the textual value of the element under assertion. Upon further

investigation, we realized that this was a result of a data issue, where there was an

additional extra erroneous item in the database, for the Android version of the appli-

cation. Two test cases that MigraTest was not able to migrate were as a result of

missing functionality. In such cases, although the widgets were present but the de-

veloper had not implemented the underlying feature. Finally, MigraTest reported

that on two test cases, the label of the widget under action had an empty label. Such

labels are used by accessibility services to help visually impaired users to understand

the purpose of such widgets. Without a label, a visually impared user user would not

be able understand the functionality of a particular widget or distinguish between

multiple widgets.

To answer RQ3, I would like to compare the efficiency improvements over the

baseline crawler, PUMA. However, since the vanilla version of PUMA was not able

to crawl any of the subject applications, I made several fixes to it to enable it to

explore the application. This modified version of PUMA is called PUMA+. In our

experimentation, PUMA+ took more than 3x time than MigraTest to cover all the

actions needed for test migration. This is because PUMA+ targets all the available

actions instead of the actions that are in the original tests.

From these results, I believe that MigraTest is a promising first attempt at

the test migration problem for mobile platforms. I believe that MigraTest was

mostly successful in the context of mobile applications because of multiple reasons: 1)

Although the cross-platform versions of mobile applications are significantly different,

they often implement the same use-cases and a high level equivalence can be estab-

lished between the versions, and, 2) Mobile applications have a simpler user interface,

with lesser actions to be performed than other traditional applications. I believe that

these two opportunities make MigraTest tractable for mobile application and help

it migrate a significant number of test cases for the subject applications.

93

However, as reported in our results, MigraTest was not able to migrate some

of the tests. Most of these failures were due to the limitations of our current imple-

mentation and can be improved with suitable engineering. In the next section, I will

list these challenges broadly in the context of the test migration and discuss how they

can be addressed in future work.

5.7 Challenges

MigraTest is the first technique and tool to migrate tests between mobile platforms.

The case study shows promise in the approach. However, there are several challenges

that future work should address to make MigraTest applicable in many other

settings.

Platform-specific functionality: The “back” button is an example of a platform-

specific functionality, which is present in Android and some other platforms but is

missing in specific platforms like iOS. On iOS, the back functionality is implemented

using any widget available to the programmer. Understanding the functionality be-

hind the button and translating it across platforms will require further analysis of the

application. Similarly, test cases that use other platform-specific features, like the

features provided by hardware sensors or actuators, will require special handling in

order to migrate them across platforms.

Complex Interactions: Currently our implementation can handle simple widgets

that accept tap or type actions. However, in the case of the BarcodeFitness app, there

was a composite widget that the target test was supposed to interact with. However,

without any prior specification of a complex widget, it is challenging for any black-box

model generator to identify such widgets and perform these interactions.

94

Oracle migration: MigraTest relies on a simple oracle that checks the value

or state of a particular UI element on a single screen. However, test oracles can be

general and more complicated. For instance, an oracle can be defined over multiple

screens, which checks for the absence of an element, which was present on a previous

screen. In such cases, inter-screen analysis needs to be performed for migrating such

oracles. Another example is where the oracle is a function or a complex program,

which returns a true/false result. Migrating such oracles would require a use of

program analysis and reasoning.

Sand-boxing: In the case of wikiHow, the application contained all the data, with-

out communicating with external servers. Other applications may fetch external

resources leading to a source of non-determinism. This can adversely affect the effec-

tiveness of the technique if not handled appropriately. Testing is typically performed

in a hermetic environment such as a sand-box, which would need to be setup for both

versions of the applications. This would be possible by setting up mocks or proxies,

which would present the same sand-boxed environment in both platforms.

95

CHAPTER VI

RELATED WORK

In this chapter, I will discuss the related work from all the three problems targeted

by my research.

6.1 XBI Detection

Previous work on cross-browser compatibility testing can be divided into the following

four generations of techniques.

6.1.1 Generation 0: Developer Tool Support

A common resource used by web developers are browser-compatibility tables main-

tained by reference websites such as http://quirksmode.org and http://caniuse.com.

Using these tables, a developer can manually lookup features used by their applica-

tions to know if the feature is supported by a certain set of browsers. However,

these tables are generated manually and only have feature information for a lim-

ited set of browsers. Some web development tools such as Adobe Dreamweaver

(http://www.adobe.com/products/dreamweaver.html) provide basic static analysis-

based early detection of XBIs during development. However, these tools only check

for certain types of XBIs related to specific DOM API calls or CSS features not

supported by certain browsers. Modern XBIs often arise through a combination of

browser, DOM, and JavaScript features, which is outside the scope of such tools.

6.1.2 Generation I: Tests on a Single Browser

Recently, researchers have targeted web application issues, which are specific to single

browsers. The technique proposed by Eaton and Memon [24] is among the earliest

96

http://quirksmode.org
http://caniuse.com
http://www.adobe.com/products/dreamweaver.html

works in this area. Their technique tries to identify potentially problematic HTML

tags in a given web page, based on a manual classification of good and faulty pages

previously generated by the user. However, XBIs in modern web applications are usu-

ally not attributable simply to specific HTML tags, but rather to complex interactions

of HTML structure, CSS styles and dynamic DOM changes through client-side code.

More recently, Tamm [61] presented a tool to find layout faults in a single page, with

respect to a given web browser, by using DOM and visual information. The tool

requires the user to manually alter the web page—hide and show elements—while

taking screen-shots. This technique is not only too manually intensive to scale to

large web applications, but also virtually impossible to apply to dynamically gener-

ated pages (i.e., most of the pages in real-world applications). Finally, its focus is not

specifically cross-browser testing.

This problem has also been targeted from the point of fixing the browser. Specif-

ically, the Web Standards Project introduced Acid Tests [6], which are a set of 100

tests that check a given web browser for enforcement of various W3C and ECMA

standards. Similarly, the test262 suite [62] (formerly called SputnikTests) can check

a JavaScript engine (of a web browser) against the ECMA-262 specification. It is

noteworthy that in an experiment we ran, Mozilla Firefox 7.0.1 failed 187 of the

11016 tests in the test262 suite, Google Chrome 15.0 failed 416 tests, and Internet

Explorer 9 failed 322 tests. In other words, the JavaScript engines of these popular

browsers are not standard and differ from one another. These suites reveal some of

these differences and justify the development of techniques to identify XBIs.

All of the above techniques either test a web application within a single web

browser or test a single web browser itself. Thus, while such testing may happen to

remove causes of XBIs, they are not, strictly speaking, cross-browser techniques.

97

6.1.3 Generation II: Multi-Platform Behavior & Test Emulation

This class of tools allows developers to emulate the behavior of their web application

under different client platforms. Tools such as BrowserShots (http://browsershots.

org) and Microsoft Expression Web SuperPreview (http://microsoft.com) provide

previews of single pages, while tools such as CrossBrowserTesting.com and Browser-

Stack.com let the user browse the complete web application in different emulated

environments. A common drawback of all these tools is that they focus on the rela-

tively easy part of visualizing browser behavior under different environments, while

leaving to the user the difficult, manually intensive task of checking consistency. Fur-

ther, since they do not automatically explore the dynamic state-space of the web

application, they potentially leave many errors undetected.

6.1.4 Generation III: Crawl and Compare Approaches

This class of techniques represents the most recent and most automated solutions

for cross-browser testing. These techniques generally work in two steps. First, the

behavior capture step automatically crawls and captures the behavior of the web ap-

plication in two or more browsers; such captured behavior may include screen images

and/or layout data of individual web pages, as well as models of user-actions and

inter-page navigation. Then, the behavior comparison step automatically compares

the captured behavior to identify XBIs.

WebDiff [53] uses a combination of DOM and visual comparison, based on

computer-vision techniques, to detect XBIs on individual web pages. CrossT [45],

conversely, uses automatic crawling and navigation comparison to focus on differences

in the dynamic behavior caused by, for example, unresponsive widgets in a certain

browser. CrossCheck [51] combines these two approaches and tries to achieve bet-

ter precision through machine-learning based error detection. However, it still suffers

from a high number of false positives and duplicate error reports. WebMate [19], a

98

http://browsershots.org
http://browsershots.org
http://microsoft.com

recent addition to this class of techniques, focuses mainly on improving the cover-

age and automation of the automated crawling, and its XBI detection features are

still under development. QualityBots (http://code.google.com/p/qualitybots/) is

an open source project that checks the appearance of a web application in different

versions of the Google Chrome browser. The technique uses pixel-level image com-

parison and is not yet available for use with other families of web browsers. Browsera

(http://www.browsera.com/), MogoTest (http://mogotest.com/), and Browserbite

(http://app.browserbite.com/) are the very first industrial offerings in this cate-

gory. They use a combination of limited automated crawling and layout comparison,

albeit based on a set of hard-coded heuristics. In our (limited) experience with these

tools, we found that these heuristics are not effective for arbitrary web sites. However,

an objective evaluation of the quality of these tools cannot be made at this time, since

a description of their underlying technology is not available.

6.2 Feature Mapping

Matching different elements of software has been a problem addressed by works on

inferring API mappings and in comparing reverse engineered application models, as

described below:

6.2.1 Inferring API migration mappings

There is a body of research [27,50,68] on inferring mappings between two versions of

an API or between two independent implementations of an API, for example in two

different languages. Although this problem seems similar to ours, the granularity is

completely different. While API mappings are between individual functions (which

can be viewed as atomic actions) constituting the API, feature mapping is about

mapping use-cases or traces which are sequences of actions. Further, the basis of

extracting similarity is also different. API mapping tools such as Rosetta [27] assume

that they are given a population of pairs of equivalent traces, one each from the two

99

http://code.google.com/p/qualitybots/
http://www.browsera.com/
http://mogotest.com/
http://app.browserbite.com/

API versions. However, such a trace-level correspondence is actually the output of our

technique. Our technique is predicated on the assumption that the two versions of the

web application may have different client implementations but exhibit substantially

similar behavior at the client-server interface. No such interface exists or can be

exploited by API matching techniques.

6.2.2 Reverse engineering of web applications

This body of work attempts to reverse engineer a model of a web application, that

can then be used as a basis for constructing test-cases for the application. Some

representative techniques in this category include the Crawljax tool [46] and the more

recent ProCrawl crawler [56] which dynamically crawl a web application to extract a

finite state model of its user interface. The WARE approach by Di Luca et al. [21] uses

a combination of white-box static analysis and black-box dynamic analysis to extract

a UML model of the web application. A somewhat different approach proposed by

Elbaum et al. [57] is to use web application user session data to directly contruct

test cases. Our work is orthogonal to this body of work in that it starts with a set

of use-cases of the web application on each platform, independent of the source of

those use-cases. They could be derived from the models constructed by [21, 46, 56],

created from session data as in [21], or derived from some other source of manually

or automatically generated test-cases.

6.3 Test Migration

Test case repair for regression testing is a widely explored problem in the context of

Java programs, graphical user interfaces, and web applications [7, 20, 22, 29, 44, 54].

These techniques try to repair the test cases by either modifying the test oracle or

by altering the test steps. Such changes required for test case repair are typically

small and are often obtained by analyzing the results of the failed test cases or the

100

changes introduced in the new application version. However, in the case of test mi-

gration, the different platform mobile applications are essentially completely different

implementations. Any technique for test case repair is limited in handling such large

differences.

Another related area of work is that of automated test case generation. Such

techniques either make use of software specifications [63], or program analysis based

methods [16] to generate test cases. In an ideal setting, one could possibly generate

tests for each of the platforms using these techniques independently on each program

version. However, there are several challenges which restrict the applicability of these

techniques for multi-platform software. Software specifications are usually not readily

available, especially for multiple platforms. Developing such a specification requires

additional effort from the developer on each platform. The program analysis based

techniques might generate different tests for each of the platform without any corre-

spondence between the tests. In addition, the program analysis techniques are closely

tied to the programming language, they are needed to be developed for each platform

separately.

101

CHAPTER VII

CONCLUSION AND FUTURE WORK

This section concludes my dissertation with a summary of my goals and a discussion

of its merit.

7.1 Summary

With the emergence of new computing platforms, software applications are increas-

ingly being developed to target multiple platforms. Hence, developers of such soft-

ware need to duplicate testing and maintenance activities to support the software

on different platforms. Often developers are unable to cope with this ever increasing

demand and might inadvertently release broken software for certain platforms, or

miss deadlines while attempting to address this issue. Hence, in my research, I am

developing automated techniques to assist developers with cross-platform testing and

maintenance tasks.

The thesis of my research is that approximate behavior matching can be used to

develop techniques to address cross-platform testing and maintenance problems. To

investigate this thesis, I have developed three techniques for (1) finding inconsistencies

in an application that runs across platforms, (2) to detect missing features across two

different versions of a multi-platform application, and, (3) to migrate test cases across

two platforms of a cross-platform application. Each of these problems were formulated

in a practical scenario, where they are most relevant and real world subjects were

chosen for experimentation. I have performed experiments in such realistic scenarios

to provide a strong evidence to support my thesis. My work represents an important

tool to help developers effectively and efficiently deal with cross-platform testing and

maintenance.

102

7.2 Future work

In the future, as new platforms keep emerging, it is likely that cross-platform testing

and maintenance will continue to be a major component of software development.

Through this thesis, I have identified several challenges as a motivation and foundation

that future work can address.

Cross-platform Issue Detection: One possible direction for future work that re-

lates to issue detection, is to investigate techniques that can automatically eliminate

the cross-platform issues identified by our approach. In the case of XBIs, such elimi-

nation can be performed through browser-specific web page repairs. Another possible

direction is to identify inconsistencies in applications by comparing them to differ-

ent variants of the application on different platforms (e.g., desktop, web, and mobile

variants of web applications).

Identifying Cross-platform Missing Features: In our work, we used the net-

work level abstraction for performing feature matching. For applications that do not

heavily rely on the network, a different abstraction might be needed, which would

present different challenges for performing feature matching. Another possible di-

rection is to extend the results of feature matching to applications for uncovering

the behavioral aspects across different platform front-ends, such as web and mobile

(native) versions of an application.

Migrating Test Cases Across Platforms: Test migration was the most challeng-

ing problem addressed in this thesis. Our preliminary evaluation presented multiple

challenges that need to be addressed in future work. The most important challenge

is in the development of the guided model generator, which needs more sophistication

to target specific differences in the cross-platform context. These requirements are

103

summarized as follows: 1) Platform-specific functionality, such as the flows occur-

ring through the “back” button on Android, should be handled in the design of the

model generator. 2) There should be a provision to specify the behavior of custom

widgets, so that the model generator can interact with such widgets intelligently. 3)

The model generator should be coupled with mechanisms to sandbox the state of the

application, so that it can avoid side-effects while it is trying to learn the model.

In addition to the improvements to the model generator, we also reported the

challenges in the migration of the test oracle, especially while migrating complex

assertions. Migrating such assertions requires the use of deeper knowledge of the

program semantics through analysis and reasoning. Another related direction is to

migrate other artifacts, such as documentation, across platforms. This poses further

challenges in understanding such artifacts through natural language processing tech-

niques and correlating this information with matched entities across platforms for

artifact migration.

7.3 Merit

The work in this thesis concerns the foundations of software engineering and has

specific focus on improving cross-platform testing and maintenance. The techniques

developed as a part of this can be used in many scenarios, where two software compo-

nents have a high-level functional similarity, without expecting the unlikely notion of

program equivalence. Since cross-platform applications are relevant and are likely to

have more adoption with the introduction of modern computing platforms, I believe

that there is scope of extending my work to other platforms than those considered in

this thesis.

The techniques presented in this thesis extend the state of art in software test-

ing and maintenance, and do so automatically by leveraging the differential testing

104

scenario of multi-platform systems. Hence, the improvements introduced by the tech-

niques do not require much effort from the developer and are not intrusive. In addi-

tion, the preliminary evaluation of the techniques on real world applications indicates

that the approach can reduce the cost and difficulty of performing these testing and

maintenance tasks. Together the techniques address multiple issues, which arise in the

cross-platform context and provide an over-arching approach to apply this framework

to address different testing and maintenance tasks.

105

REFERENCES

[1] “[Plugin: Wordpress mobile pack] adding media or tags.” http:

//wordpress.org/support/topic/plugin-wordpress-mobile-pack-

adding-media-or-tags, 2010.

[2] “[Plugin: Wordpress mobile pack] allow author access to mobile admin.”
http://wordpress.org/support/topic/plugin-wordpress-mobile-pack-

allow-author-access-to-mobile-admin, 2012.

[3] “What are the product management best practices for building one product
across multiple platforms.” http://qr.ae/Qlx1F, July 2012.

[4] “Wordpress mobile pack.” http://wordpress.org/plugins/wordpress-

mobile-pack/, May 2012.

[5] “Android fragmentation visualized.” http://opensignal.com/reports/2014/

android-fragmentation/, August 2014.

[6] “Acid Tests - The Web Standards Project.” http://www.acidtests.org.

[7] Alshahwan, N. and Harman, M., “Automated session data repair for web
application regression testing,” in Proceedings of the 2008 International Confer-
ence on Software Testing, Verification, and Validation, (Washington, DC, USA),
pp. 298–307, IEEE Computer Society, 2008.

[8] Benson, G., “Tandem repeats finder: a program to analyze dna sequences.,”
Nucleic acids research, vol. 27, no. 2, p. 573, 1999.

[9] Berners-Lee, T., Masinter, L., McCahill, M., and others, “Uniform
resource locators (url),” 1994.

[10] Bradski, G. and Kaehler, A., Learning OpenCV. O’Reilly Media, September
2008.

[11] Browserbite, “Cross browser testing with computer vision.” http://app.

browserbite.com/.

[12] calleho, “Theme: imobile for iphone and ipad.” http://galleryproject.

org/node/101768.

[13] Chapman, C., “Review of cross-browser testing tools..” http://www.

smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-

tools/, August 2011.

106

http://wordpress.org/support/topic/plugin-wordpress-mobile-pack-adding-media-or-tags
http://wordpress.org/support/topic/plugin-wordpress-mobile-pack-adding-media-or-tags
http://wordpress.org/support/topic/plugin-wordpress-mobile-pack-adding-media-or-tags
http://wordpress.org/support/topic/plugin-wordpress-mobile-pack-allow-author-access-to-mobile-admin
http://wordpress.org/support/topic/plugin-wordpress-mobile-pack-allow-author-access-to-mobile-admin
http://qr.ae/Qlx1F
http://wordpress.org/plugins/wordpress-mobile-pack/
http://wordpress.org/plugins/wordpress-mobile-pack/
http://opensignal.com/reports/2014/android-fragmentation/
http://opensignal.com/reports/2014/android-fragmentation/
http://www.acidtests.org
http://app.browserbite.com/
http://app.browserbite.com/
http://galleryproject.org/node/101768
http://galleryproject.org/node/101768
http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-tools/
http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-tools/
http://www.smashingmagazine.com/2011/08/07/a-dozen-cross-browser-testing-tools/

[14] Chen, J., “Formal Modelling of Java GUI Event Handling,” in Formal Meth-
ods and Software Engineering (George, C. and Miao, H., eds.), vol. 2495 of
Lecture Notes in Computer Science, pp. 359–370, Springer Berlin Heidelberg,
2002.

[15] Choi, W., Necula, G., and Sen, K., “Guided GUI Testing of Android Apps
with Minimal Restart and Approximate Learning,” in Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications, OOPSLA ’13, (New York, NY, USA), pp. 623–
640, ACM, 2013.

[16] Clarke, L., “A system to generate test data and symbolically execute pro-
grams,” Software Engineering, IEEE Transactions on, vol. SE-2, pp. 215–222,
Sept 1976.

[17] Clause, J., Li, W., and Orso, A., “Dytan: A Generic Dynamic Taint Analysis
Framework,” in Proceedings of the International Symposium on Software Testing
and Analysis (ISSTA 2007), (London, UK), pp. 196–206, July 2007.

[18] Clausen, J., “Branch and bound algorithms-principles and examples,” 1999.

[19] Dallmeier, V., Burger, M., Orth, T., and Zeller, A., “WebMate: a tool
for testing web 2.0 applications,” in Proceedings of the Workshop on JavaScript
Tools (JSTools), pp. 11–15, ACM, June 2012.

[20] Daniel, B., Jagannath, V., Dig, D., and Marinov, D., “ReAssert: Sug-
gesting Repairs for Broken Unit Tests,” in Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, (Wash-
ington, DC, USA), pp. 433–444, IEEE Computer Society, 2009.

[21] Di Lucca, G. A., Fasolino, A. R., and Tramontana, P., “Reverse engi-
neering web applications: the ware approach,” Journal of Software Maintenance
and Evolution, vol. 16, pp. 71–101, Jan. 2004.

[22] Dobolyi, K. and Weimer, W., “Harnessing web-based application similari-
ties to aid in regression testing,” in Proceedings of the 20th IEEE international
conference on software reliability engineering, ISSRE’09, (Piscataway, NJ, USA),
pp. 71–80, IEEE Press, 2009.

[23] DudaMobile, “Mobile websites made easy.” http://www.dudamobile.com/,
September 2013.

[24] Eaton, C. and Memon, A. M., “An empirical approach to evaluating web ap-
plication compliance across diverse client platform configurations,” International
Journal of Web Engineering and Technology, vol. 3, pp. 227–253, January 2007.

[25] Fielding, R. T. and Taylor, R. N., “Principled design of the modern web
architecture,” ACM Trans. Internet Technol., vol. 2, pp. 115–150, May 2002.

107

http://www.dudamobile.com/

[26] Fling, B., Mobile Design and Development: Practical concepts and techniques
for creating mobile sites and web apps, ch. 11. O’Reilly Media, 2009.

[27] Gokhale, A., Ganapathy, V., and Padmanaban, Y., “Inferring likely map-
pings between apis,” in Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, (Piscataway, NJ, USA), pp. 82–91, IEEE Press,
2013.

[28] Google, “Youtube mobile gets a kick start.” http://youtube-global.

blogspot.com/2010/07/youtube-mobile-gets-kick-start.html, 2010.

[29] Grechanik, M., Xie, Q., and Fu, C., “Maintaining and evolving gui-directed
test scripts,” in Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, (Washington, DC, USA), pp. 408–418, IEEE Computer
Society, 2009.

[30] Grosskurth, A. and Godfrey, M. W., “A reference architecture for
web browsers,” 21st IEEE International Conference on Software Maintenance,
pp. 661–664, September 2005.

[31] Haldar, V., Chandra, D., and Franz, M., “Dynamic taint propagation for
java,” in Computer Security Applications Conference, 21st Annual, pp. 9–pp,
IEEE, 2005.

[32] Hao, S., Liu, B., Nath, S., Halfond, W. G., and Govindan, R.,
“PUMA: Programmable UI-automation for Large-scale Dynamic Analysis of Mo-
bile Apps,” in Proceedings of the 12th Annual International Conference on Mo-
bile Systems, Applications, and Services, MobiSys ’14, (New York, NY, USA),
pp. 204–217, ACM, 2014.

[33] Jaccard, P., “Distribution de la flore alpine dans le bassin des drouces et
dans quelques regions voisines,” in Bulletin de la Socit Vaudoise des Sciences
Naturelles, vol. 37, p. 241272, 1901.

[34] Jacobson, G. and Vo, K.-P., “Heaviest increasing/common subsequence
problems,” in Combinatorial Pattern Matching, vol. 644 of Lecture Notes in
Computer Science, pp. 52–66, Springer Berlin Heidelberg, 1992.

[35] jQuery Mobile, “Touch-optimized web framework for smartphones & tablets.”
http://jquerymobile.com/, September 2013.

[36] Kervinen, A., Maunumaa, M., Pääkkönen, T., and Katara, M., “Model-
Based Testing Through a GUI,” in Proceedings of the 5th International Confer-
ence on Formal Approaches to Software Testing, FATES’05, (Berlin, Heidelberg),
pp. 16–31, Springer-Verlag, 2006.

[37] Knowledge, C., “FILExt: The file extension source.” http://filext.com/.

108

http://youtube-global.blogspot.com/2010/07/youtube-mobile-gets-kick-start.html
http://youtube-global.blogspot.com/2010/07/youtube-mobile-gets-kick-start.html
http://jquerymobile.com/
http://filext.com/

[38] Kuhn, H. W., “The hungarian method for the assignment problem,” Naval
Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.

[39] Land, A. H. and Doig, A. G., “An Automatic Method of Solving Discrete
Programming Problems,” Econometrica, vol. 28, pp. 497–520, 1960.

[40] Levenshtein, V., “Binary codes capable of correcting spurious insertions and
deletions of ones,” Problems of Information Transmission, vol. 1, pp. 8–17, 1965.

[41] Ma, S., “10 ways mobile sites are different from desktop web sites.”
http://www.uxmatters.com/mt/archives/2011/03/10-ways-mobile-

sites-are-different-from-desktop-web-sites.php, 2011.

[42] Manning, C. D., Raghavan, P., and Schütze, H., Introduction to informa-
tion retrieval, vol. 1. Cambridge University Press Cambridge, 2008.

[43] Memon, A. M., “An event-flow model of gui-based applications for testing:
Research articles,” Softw. Test. Verif. Reliab., vol. 17, pp. 137–157, Sept. 2007.

[44] Memon, A. M. and Soffa, M. L., “Regression testing of guis,” in Proceed-
ings of the 9th European software engineering conference held jointly with 11th
ACM SIGSOFT international symposium on Foundations of software engineer-
ing, ESEC/FSE-11, (New York, NY, USA), pp. 118–127, ACM, 2003.

[45] Mesbah, A. and Prasad, M. R., “Automated cross-browser compatibility
testing,” in Proceeding of the 33rd International Conference on Software Engi-
neering (ICSE), pp. 561–570, ACM, May 2011.

[46] Mesbah, A., van Deursen, A., and Lenselink, S., “Crawling ajax-based
web applications through dynamic analysis of user interface state changes,” ACM
Transactions on the Web, vol. 6, pp. 3:1–3:30, March 2012.

[47] Miller, G. A., “Wordnet: a lexical database for english,” Communications of
the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[48] Mobify, “Adaptive platform for responsive websites.” http://www.mobify.

com/, September 2013.

[49] Munkres, J., “Algorithms for the assignment and transportation problems,”
Journal of the Society for Industrial and Applied Mathematics, vol. 5, no. 1,
pp. pp. 32–38, 1957.

[50] Robillard, M., Bodden, E., Kawrykow, D., Mezini, M., and Ratch-
ford, T., “Automated api property inference techniques,” Software Engineer-
ing, IEEE Transactions on, vol. 39, no. 5, pp. 613–637, 2013.

[51] Roy Choudhary, S., Prasad, M. R., and Orso, A., “Crosscheck: Combin-
ing crawling and differencing to better detect cross-browser incompatibilities in
web applications,” in Proceedings of the IEEE Fifth International Conference on

109

http://www.uxmatters.com/mt/archives/2011/03/10-ways-mobile-sites-are-different-from-desktop-web-sites.php
http://www.uxmatters.com/mt/archives/2011/03/10-ways-mobile-sites-are-different-from-desktop-web-sites.php
http://www.mobify.com/
http://www.mobify.com/

Software Testing, Verification, and Validation (ICST), pp. 171–180, IEEE, April
2012.

[52] Roy Choudhary, S., Prasad, M. R., and Orso, A., “X-PERT: Accurate
identification of cross-browser issues in web applications,” in Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, (Piscataway,
NJ, USA), pp. 702–711, IEEE Press, 2013.

[53] Roy Choudhary, S., Versee, H., and Orso, A., “WebDiff: Automated
identification of cross-browser issues in web applications,” in Proceeding of the
2010 IEEE International Conference on Software Maintenance (ICSM), pp. 1–
10, IEEE, September 2010.

[54] Roy Choudhary, S., Zhao, D., Versee, H., and Orso, A., “WATER: Web
Application TEst Repair,” in Proceedings of the First International Workshop on
End-to-End Test Script Engineering, ETSE ’11, (New York, NY, USA), pp. 24–
29, ACM, 2011.

[55] Safairis, I., “15 useful tools for cross browser compatibility test..”
http://wptidbits.com/webs/15-useful-tools-for-cross-browser-

compatibility-test/, March 2011.

[56] Schur, M., Roth, A., and Zeller, A., “Mining behavior models from enter-
prise web applications,” in Proceedings of the 2013 9th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2013, (New York, NY, USA), pp. 422–
432, ACM, 2013.

[57] Sebatian Elbaum, Gregg Rothermal, S. K. and II, M. F., “Leveraging
user-session data to support web application testing,” IEEE Transactions on
Software Engineering, vol. 31, pp. 187–202, March 2005.

[58] Sencha Touch, “Build mobile web apps with html5.” http://www.sencha.

com/products/touch, September 2013.

[59] Shevchik, L., “Mobile device fragmentation: Its only going to get worse.”
http://blog.newrelic.com/2013/05/23/mobile-device-fragmentation-

its-only-going-to-get-worse/, May 2013.

[60] Stackoverflow. http://data.stackexchange.com/stackoverflow/query/
77488/posts-for-cross-browser-issues, August 2012.

[61] Tamm, M., “Fighting layout bugs.” http://code.google.com/p/fighting-

layout-bugs/, October 2009.

[62] “test262 - ECMAScript.” http://test262.ecmascript.org/.

[63] Tsai, W.-T., Volovik, D., and Keefe, T., “Automated test case generation
for programs specified by relational algebra queries,” Software Engineering, IEEE
Transactions on, vol. 16, pp. 316–324, Mar 1990.

110

http://wptidbits.com/webs/15-useful-tools-for-cross-browser-compatibility-test/
http://wptidbits.com/webs/15-useful-tools-for-cross-browser-compatibility-test/
http://www.sencha.com/products/touch
http://www.sencha.com/products/touch
http://blog.newrelic.com/2013/05/23/mobile-device-fragmentation-its-only-going-to-get-worse/
http://blog.newrelic.com/2013/05/23/mobile-device-fragmentation-its-only-going-to-get-worse/
http://data.stackexchange.com/stackoverflow/query/77488/posts-for-cross-browser-issues
http://data.stackexchange.com/stackoverflow/query/77488/posts-for-cross-browser-issues
http://code.google.com/p/fighting-layout-bugs/
http://code.google.com/p/fighting-layout-bugs/
http://test262.ecmascript.org/

[64] Twitter, “Overhauling mobile.twitter.com from the ground up.” https://

blog.twitter.com/2012/overhauling-mobiletwittercom-ground, 2012.

[65] Twitter Bootstrap, “Sleek, intuitive, and powerful front-end framework for
faster and easier web development..” http://getbootstrap.com/, September
2013.

[66] Willamson, L., “A mobile application development primer: A guide for en-
terprise teams working on mobile application projects,” IBM Software: Thought
Leadership White Paper, 2013.

[67] World Wide Web Consortium, “Mobile web best practices 1.0.” http:

//www.w3.org/TR/2008/REC-mobile-bp-20080729/, July 2008.

[68] Zhong, H., Thummalapenta, S., Xie, T., Zhang, L., and Wang, Q.,
“Mining api mapping for language migration,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering, ICSE ’10, (New
York, NY, USA), pp. 195–204, ACM, 2010.

111

https://blog.twitter.com/2012/overhauling-mobiletwittercom-ground
https://blog.twitter.com/2012/overhauling-mobiletwittercom-ground
http://getbootstrap.com/
http://www.w3.org/TR/2008/REC-mobile-bp-20080729/
http://www.w3.org/TR/2008/REC-mobile-bp-20080729/

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	Summary
	Chapter 1 — Introduction
	Cross-Platform Testing and Maintenance Problems
	Identification of Cross-platform Inconsistencies
	Detecting missing features between two versions of a multi-platform application
	Application test migration between two platforms
	Other problems

	Thesis
	Overview of Approach
	Contributions
	Organization

	Chapter 2 — Background
	Multiple platforms
	The Single Web Approach
	Mobile Web Applications
	Native Mobile Applications
	Other Approaches

	Chapter 3 — Cross-Browser Testing of Web Applications
	Motivating Example
	Study of Real-World XBIs
	Approach
	Terminology
	Framework for XBI Detection

	Detecting Relative-Layout XBIs
	The Alignment Graph
	Extracting the Alignment Graph
	Comparing Alignment Graphs

	Implementation
	Empirical Evaluation
	Subject Programs
	Protocol
	Results

	Discussion
	Threats to Validity

	Chapter 4 — Detecting Missing Features in a Multi-platform Web Application
	Motivating Example
	Terminology and Problem Definition
	Technique
	Trace Extraction
	Action Recognition
	Trace Set Canonicalization
	Feature Matching

	Evaluation
	Tool Implementation
	Subjects
	Protocol
	Results

	Discussion
	Threats to Validity

	Chapter 5 — Towards Test Suite Migration between Mobile Platforms
	Motivating Example
	Terminology
	Assumptions
	Technique
	Test Trace Generation
	Guided Model Generation
	Test Generation

	Illustration of the Guided Model Generation
	Evaluation
	Tool
	Subjects
	Experimental Protocol
	Results

	Challenges

	Chapter 6 — Related Work
	XBI Detection
	Generation 0: Developer Tool Support
	Generation I: Tests on a Single Browser
	Generation II: Multi-Platform Behavior & Test Emulation
	Generation III: Crawl and Compare Approaches

	Feature Mapping
	Inferring API migration mappings
	Reverse engineering of web applications

	Test Migration

	Chapter 7 — Conclusion and Future Work
	Summary
	Future work
	Merit

	References

