
Minimizing Multi-zone Orders in the Correlated Storage

Assignment Problem

A Thesis
Presented to

The Academic Faculty

by

Maurice Garfinkel

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Industrial and Systems Engineering
Georgia Institute of Technology

January 2005

Copyright c© 2005 by Maurice Garfinkel

Minimizing Multi-zone Orders in the Correlated Storage

Assignment Problem

Approved by:

Dr. Gunter P. Sharp, Advisor Dr. Earl R. Barnes
School of Industrial and Systems School of Industrial and Systems
Engineering Engineering
Georgia Institute of Technology Georgia Institute of Technology

Dr. Joel S. Sokol, Co-advisor Dr. John H. Vande Vate
School of Industrial and Systems School of Industrial and Systems
Engineering Engineering
Georgia Institute of Technology Georgia Institute of Technology

Dr. Shamkant B. Navathe
College of Computing
Georgia Institute of Technology

Date Appproved: January 2005

To my parents

for all their support

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my parents for all their support during my time

in graduate school. Without everything they have done for me during my time at Georgia

Tech and well before, I would not have gotten to this point. I also want to thank my brother

Chaim for his support.

My primary advisor, Gunter Sharp, helped me define my research problem and get me

on track when my previous research ideas did not work out. Joel Sokol agreed to be my

co-advisor when Gunter went abroad for much of a summer. They were both integral to

this dissertation’s merger of optimization methodology with warehousing. My conversations

with them shaped many of the ideas in this dissertation. I really appreciate their patience,

insights, and support.

My committee members, Earl Barnes, Sham Navathe, John Bartholdi, and John Vande

Vate, gave me valuable feedback on my research and write up. Earl served as my initial

advisor at Georgia Tech and supported me during my first years. When I suggested a

research problem outside his area of expertise, he directed me to Gunter. Sham helped

suggest some applications for our problem outside of warehousing. As a member of the

College of Computing, he also gave us the valuable perspective of someone from outside our

domain. John Bartholdi served on my reading committee and gave me valuable feedback

which helped define the direction of my research. When he told me that he was unable

to attend my defense, John Vande Vate agreed to take his place just a few weeks before

the defense date. I really appreciate his filling in on such short notice. His comments were

valuable in clarifying the description of our problem in the write up.

I also appreciate the various faculty members of ISyE for their assistance on various

aspects of my research. The faculty, staff, and students of this department contributed in

many ways to this dissertation.

My time in Atlanta would not have been the same without the Jewish community in

iv

Toco Hills. I feel immense gratitude to all the families that have invited me to their homes

for meals. It is not possible to mention all the friends I have made in this community during

my time at Georgia Tech. The advice and encouragement of many different people has kept

me going at several difficult times during my studies. Some of my most enjoyable hours

over the last few years was spent playing with the children of these families.

I have had many good friends during my time at Georgia Tech. My closest friend has

been David Copeland who was my roommate for three years until he went on to a more

permanent roommate, his wife Amanda. I have been blessed to know have them as friends

the last couple of years. More recently, playing with their son Jac has been a favorite

activity when I needed a break from my research.

When I needed a change of scenery, bringing my work to some non-standard places

helped me gain insights into particularly challenging problems. Many ideas in my disserta-

tion were worked out in the various kosher restaurants that have come (and gone) over the

last few years. Other insights came to me surrounded by the nature at Stone Mountain. At

times, taking walks around campus helped stimulate my thought process.

Tennis has been a valuable outlet for stress relief during my studies. I appreciate all the

different tennis partners who I have played with over the last couple years.

Many more people who I have not been able to thank individually have helped me get

to this point. I am grateful for everyone who had a direct or indirect influence on my

dissertation.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xii

LIST OF SYMBOLS OR ABBREVIATIONS xiii

1 INTRODUCTION . 1

1.1 Storage Assignment . 1

1.2 Order Picking . 3

1.3 Correlated Storage for Zone Picking . 7

1.4 Literature Review . 10

1.5 Outline of Thesis . 13

2 MODEL . 14

2.1 General Problem . 14

2.2 Special Case: No Stock Splitting . 17

2.3 Special Case: One Pallet For Each Product 17

2.4 Rewarehousing Cost . 18

2.5 Review of Key Modeling Elements . 19

2.6 Cluster Strength Formulation . 20

2.7 Difficulty of Problem . 20

2.8 Small Example . 22

2.9 Bounds on the Solution Quality . 23

3 LAGRANGIAN RELAXATION APPROACH 25

3.1 Lagrangian Relaxation . 25

3.2 Simplification . 25

3.2.1 One Pallet for Each Product . 26

3.2.2 No Stock Splitting . 26

vi

3.3 Quality of Lower Bound . 28

3.4 Upper Bounds . 28

3.5 Algorithmic Details . 30

3.6 Computing Multipliers Given an Initial Solution 30

4 UPPER BOUND HEURISTICS . 35

4.1 Construction Methods . 35

4.1.1 Random Assignment . 35

4.1.2 Popularity . 36

4.1.3 Sequential Clustering . 36

4.1.4 Simultaneous Clustering . 37

4.1.5 Particle Movement . 39

4.2 Improvement Methods . 44

4.2.1 2-Exchange . 44

4.2.1.1 Size of Search Space . 46

4.2.1.2 Running Time per Iteration 46

4.2.2 Cyclic Exchange: Basic Case . 46

4.2.2.1 Size of Search Space . 53

4.2.2.2 Running Time per Iteration 55

4.2.3 Cyclic Exchange: Null Moves . 56

4.2.3.1 Size of Search Space . 59

4.2.3.2 Running Time per Iteration 61

5 GENERALIZATIONS . 62

5.1 Different Product Sizes . 62

5.1.1 2-Exchange . 62

5.1.2 Cyclic Exchange . 63

5.2 Stock Splitting . 65

5.2.1 Random Assignment . 66

5.2.2 Popularity . 66

5.2.3 Cyclic Exchange . 67

5.2.3.1 Size of Search Space . 71

vii

5.2.3.2 Running Time per Iteration 71

5.3 Rewarehousing . 71

6 COMPUTATIONAL RESULTS . 72

6.1 Data . 72

6.2 Larger Data Sets . 73

6.3 Results . 74

6.3.1 One Pallet for Each Product . 74

6.3.1.1 Construction Heuristics 75

6.3.1.2 Improvement Heuristics 78

6.3.2 Multiple Pallets per Product . 85

7 CONCLUSIONS AND EXTENSIONS . 87

7.1 Contributions . 87

7.2 Future Work . 88

7.2.1 Related Applications . 88

7.2.2 Improvement Heuristics . 89

7.2.3 Lower Bound Heuristics . 89

7.2.4 Additional Data Sets . 90

REFERENCES . 91

VITA . 93

viii

LIST OF TABLES

1 Data Used in Computational Tests . 73

2 Problem Sizes of Previous Authors . 73

3 Comparison of Heuristics: 100 Products . 75

4 Comparison of Heuristics: 1000 Products 76

5 Comparison of Heuristics: 2000 Products 76

6 Comparison of Heuristics: 5000 Products 77

7 Comparison of Heuristics: 10644 Products 77

8 Probabilities (z = 10) . 78

9 Distribution of Order Sizes: 100 Products 78

10 Distribution of Product Sizes . 85

11 Comparison of Heuristics: 100 Products with Different Sizes 85

12 Comparison of Heuristics: 1000 Products with Different Sizes 86

ix

LIST OF FIGURES

1 Sorting Alternatives for Batch Picking . 4

2 Alternatives for Zone Picking . 5

3 Small Example . 22

4 Overview of Lagrangian Relaxation Upper Bounding Algorithm 31

5 Sequential Clustering Algorithm . 37

6 Simultaneous Clustering Algorithm . 39

7 Overview of Particle Movement Algorithm 39

8 Product Movement in Phase I . 40

9 Force on Grid Point when dim = 2 . 42

10 Exchange Move . 44

11 2-Exchange Move . 45

12 2-Exchange Algorithm . 46

13 Structure of G . 47

14 Illustration of a Double Cycle . 48

15 Structure of G0 . 49

16 Permutation Algorithm . 50

17 Structure of G1 . 51

18 Cyclic Exchange Algorithm . 52

19 Illustration of Standard Cycle vs. Cycle with Null Exchanges 57

20 Possible Edges when Null Exchanges are Permissible 57

21 Structure of GN . 58

22 Update of GN for a Null Move . 60

23 2-Exchange Move when Products have Different Sizes 63

24 2-Exchange Move with Empty Spaces . 64

25 Cyclic Exchange Graph with Products of Different Sizes 65

26 Cyclic Exchange Graph when Stock Splitting is Permitted 67

27 Objective Change: Random, Cyclic Exchanges (1000 Products) 80

28 Objective Change: Popularity, Cyclic Exchanges (1000 Products) 80

29 Objective Change: Lagrangian Relaxation, Cyclic Exchanges (1000 Products) 81

x

30 Objective Change: Frazelle, Cyclic Exchanges (1000 Products) 81

31 Objective Change: Amirhosseini 1, Cyclic Exchanges (1000 Products) . . . 82

32 Objective Change: Amirhosseini 2, Cyclic Exchanges (1000 Products) . . . 82

33 Objective Change: Amirhosseini 3, Cyclic Exchanges (1000 Products) . . . 83

34 Objective Change: Amirhosseini 4, Cyclic Exchanges (1000 Products) . . . 83

35 Objective Change: Amirhosseini 5, Cyclic Exchanges (1000 Products) . . . 84

36 Objective Change: Amirhosseini OSCM, Cyclic Exchanges (1000 Products) 84

xi

SUMMARY

A fundamental issue in warehouse operations is the storage location of the products it

contains. Placing products intelligently within the system can allow for great reductions

in order pick costs. This is essential because order picking is a major cost of warehouse

operations. For example, a study by Drury [2] conducted in the UK found that 63% of

warehouse operating costs are due to order picking. When orders contain a single item,

the COI rule of Heskett [5] is an optimal storage policy. This is not true when orders

contain multiple line items because no information is used about what products are ordered

together. In this situation, products that are frequently ordered together should be stored

together. This is the basis of the correlated storage assignment problem.

Several previous researchers have considered how to form such clusters of products with

an ultimate objective of minimizing travel time. In this dissertation, we focus on the

alternate objective of minimizing multi-zone orders. We present a mathematical model and

discuss properties of the problem. A Lagrangian relaxation solution approach is discussed.

In addition, we both develop and adapt several heuristics from the literature to give upper

bounds for the model.

A cyclic exchange improvement method is also developed. This exponential size neigh-

borhood can be efficiently searched in polynomial time. Even for poor initial solutions, this

method finds solutions which outperform the best approaches from the literature.

Different product sizes, stock splitting, and rewarehousing are problem features that our

model can handle. The cyclic exchange algorithm is also modified to allow these operating

modes. In particular, stock splitting is a difficult issue which most previous research in

correlated storage ignores. All of our algorithms are implemented and tested on data from

a functioning warehouse. For all data sets, the cyclic exchange algorithm outperforms COI,

the standard industry approach, by an average of 15%.

xii

LIST OF SYMBOLS OR ABBREVIATIONS

a length of space in first dimension 41

b length of space in second dimension 41

Cz capacity of zone z ∈ Z 15

Cf
z capacity of zone z ∈ Z remaining after the nonfractional products

have been assigned 27

c number of clusters in Rosenwein’s formulation 20

c̃ constant for particle heuristic 40

cm cost of relocating a pallet from its current zone 18

cij correlation between products i and j 38

cij cost of the assignment from iteration i given the locations of iteration j 43

D set of order/product pairs 15

dij measure of how often products i, j occur on different orders in
Rosenwein’s formulation 20

EZ expected number of zones visited for all orders 36

ez cost of entering zone z ∈ Z 15

fr ratio of frequency for order r measure used in Amirhosseini’s method 38

G general cyclic swap graph 47

G0 graph to determine permutation of zones for cyclic swap 49

G1 cyclic swap graph given a permutation of zones 50

GN cyclic swap graph given a permutation of zones extended to allow
null moves 58

g location of grid point g in space 41

h location of head of force vector in space 41

(IP1pal) integer program to determine optimal product layout when there is
only one pallet of each product 18

xiii

(IPfix) integer program to correct the fractional variables from solving the
Lagrangian relaxation of (IPnoSS) 27

(IPgeneral) integer program to determine optimal product layout in the general case 16

(IPnoSS) integer program to determine optimal product layout when stock
splitting is not permitted 17

(IPset cover)r set cover problem to determine from which zones to pick order r 66

L set of pallets 25

LB best lower bound of (IP1pal) 28

L(µ) value of (L) for a given value of µ 25

(L) Lagrangian relaxation of (IP1pal) 25

(LD) dual of the Lagrangian relaxation (L) 32

(Lx) version of (L) after simplification 26

(Lµ) linear program to recover values for µ given xpz and yrz 32

lrp zone from which product p of order r is picked 68

md slope between dimensions d and d + 1 40

Nk number of orders containing k products 36

nr number of occurrences of order r ∈ R 15

nrz number of products from order r contained in zone z 45

P set of product sku’s 15

Pyfeas
feasibility problem to determine if a feasible assignment exists for the
given y variables 29

P f products containing fractional assignments 27

Pr(|Z|, k, l) probability of using exactly l out of |Z| zones in a k-product order 36

pl product sku that pallet l represents 15

pj|i conditional probability that product j appears in an order given
product i appears 37

xiv

qr number of zones visited for order r 32

qij 1 if item i assigned to cluster j in Rosenwein’s formulation 20

R set of orders 15

Rp set of orders containing product p 45

Rf orders containing products with fractional assignments 27

sr number of different products in order r 15

srz number of products from order r that are picked from zone z 68

s∗ maximum order size 32

t time step 40

UB best upper bound of (IP1pal) 30

UBx upper bound of (IP1pal) computed from the x variables 29

UBy upper bound of (IP1pal) computed from the y variables 29

uz vertex identified with one of the nodes not being occupied by a product 58

vp number of pallets of product p ∈ P that need to be stored 17

wij weight in graph of edge between nodes i and j 37

wp1p2 edge weight corresponding to the change in objective due to the
replacement of p2 in z2 with p1 44

wprz 1 if product p ∈ P in order r is picked from zone z; 0 otherwise 15

xlz 1 if pallet l ∈ L is stored in zone z; 0 otherwise 15

xpz 1 if product p ∈ P is stored in zone z; 0 otherwise 17

xi
p assignment of product p to a cluster center in iteration i 43

yz 1 if zone z is visited to fill the order from (IPset cover)r; 0 otherwise 66

yrz 1 if to fill order r ∈ R, one must visit zone z; 0 otherwise 15

yi
z location of cluster center z in iteration i 43

xv

Z set of zones 15

Zf
r for fractional order r ∈ Rf , zones not already containing a product from

the previous assignment that had an integral value 27

zl zone to which pallet l has been assigned 68

αlz 1 if pallet l is relocated to/from zone z; 0 otherwise 19

ζi ith zone in the permutation; |ζi| = number of products stored in zone ζi 50

ηj 1 if item j is chosen as a cluster median in Rosenwein’s formulation 20

θ dual variables corresponding to the assignment constraints of (L) 31

θk step size for iteration k in the Lagrangian relaxation algorithm 30

κp location of product p in space 42

κi,d location of product i in dimension d 41

λk parameter used in the Lagrangian relaxation algorithm 30

µrpz multipliers in L; (r, p) ∈ D, z ∈ Z 25

π dual variables corresponding to the capacity constraints of (L) 31

ρz residual capacity of zone z 58

σi popularity of product i 36

σij pairwise popularity of products i and j 36

τ test statistic for Frazelle’s method 37

φpg magnitude of force exerted by all other products on product p projected
onto grid point g 42

χlz 1 if pallet l is currently stored in zone z; 0 otherwise 18

ψd proportion of magnitude of φpg applied to dimension d 42

ωz1z2 edge weight between z1 and z2 in G0 49

xvi

CHAPTER 1

INTRODUCTION

Order picking is a fundamental activity in a warehouse that involves identifying and retriev-

ing products that belong to customer orders. The time to fill an order is spent traveling to

storage locations, searching for the product, physically extracting the product, merging the

products, recording the retrievals, and preparing the shipment. It may be possible to do

some of these activities simultaneously. With product proliferation and increased customer

service expectations, reducing order fill time is crucial. A study by Drury [8] in the UK

found that 63% of warehouse operating costs are due to order picking. Therefore, reducing

picking costs can significantly reduce overall operating costs in a warehouse.

Typically, a warehouse has a reserve storage area and a forward pick area. Products

in reserve storage are generally not retrieved frequently, or have smaller product quantities

stored in the forward pick area for more efficient picking. The majority of order picking

thus occurs in the forward pick area.

Clearly, the location of the products has a major effect on the time to fill orders. If

the products are located so that travel time is reduced, significant reductions in operating

cost may be attained. Other activities in order processing, such as physically extracting

the product from its storage location and recording the pick, are typically not affected by

product location.

1.1 Storage Assignment

Products may be distributed in a warehouse by category, i.e. manufacturer, or class, i.e.

all hats. If a warehouse does not employ this strategy or consider order history, a first

available location rule will likely be used. That is, products will be placed in the first

available location. This rule may reduce the time to stock a location and will guarantee

that there are not too many open locations close to the shipping docks. Furthermore, it will

1

reduce congestion since product location is independent of frequency or correlation between

products. However, if the popular products are located in the back of the facility, then

order picking times will be high.

As an alternative to this policy, early attempts to reduce travel time focused on the idea

that products that are frequently ordered should be located close to the shipping dock of

the warehouse. Also, products with small size should be placed near the shipping dock so

that as many products as possible are in the most accessible places. That way, travel is

minimized to those products whose locations are most frequently visited. Under this rule,

one possibly suffers increased congestion. A second idea is the cube order index (COI) rule

of Heskett [14]. This rule considers both the number of orders containing a given product

as well as the size of the product. That is,

COI =
Number of orders containing a product

Space needed to store product

Products with highest COI are closest to the shipping dock. This rule can also lead to

increased congestion.

The previous two ideas to reduce travel time do not always work well if products are

correlated in order requests. Consider an example where each order contains two products,

a ”base” product and a ”feature” product. Each base product has a set of feature products

that may be ordered with it, one of which must be selected. The set of all feature products

is disjoint from the set of all base products. Specifically, the base product is chosen from

the set {p1, . . . , pn} and the feature product for pi from the set {p1
i , . . . , p

m
i } where m > 1.

Assume that each base product is ordered equally often and that the feature product ordered

with each base product is ordered with the same frequency. In this case, the base products

are ordered m times more often than the feature products. Therefore, COI will place the

base products together and the feature products together. In this case, significant travel is

required to fill the orders. The optimal solution is to store each base product together with

its feature products so that minimal travel is necessary.

For a warehouse containing k products, there are 2k − 1 possible clusters. Since it is

unreasonable to consider all clusters explicitly except for very small values of k, we must

2

develop other methods to cluster products frequently ordered together.

1.2 Order Picking

Warehouses may employ different strategies to do order picking [25]. The simplest approach

is for one order picker to process one order at a time. Two variations on this strategy are

possible. First, one may combine several orders into a batch so that more than one order is

retrieved simultaneously. Performing batch picking requires a sorting operation to separate

the products from the batch into individual orders. There are two alternatives for sorting:

sort-while-pick and downstream sorting (Figure 1). In sort-while-pick the order picker

places the products into a multi-compartment vehicle or container designed to keep items

separated by order. In downstream sorting, products are sent to a downstream sorting

operation that separates the products into individual orders. Determining order batches

which minimize picking time is NP-Complete [12] so heuristics have been discussed in the

literature, for example [13] and [22].

The second variation is to have multiple order pickers process a single order. This is

most appropriate when orders have many line items. It is common for this situation to occur

in a warehouse that is divided into zones where order pickers operate exclusively in a single

zone. Under a warehouse with zoning, order picking may be sequential or simultaneous

(Figure 2). In sequential picking, an order picker retrieves the products from his zone and

passes them to the order picker in the next zone who adds the products from his zone

to the order. After the last zone, the order is ready to be prepared for shipping. With

simultaneous picking, order pickers in each zone pick the products from the order in their

zone and send the products to a downstream sorting operation. After sorting, orders can

be prepared for shipping.

Combining the possibilities of zoning and batching, we have the following different order

picking environments:

No batching, no zoning: One order picker picks all the products for one order.

No batching, simultaneous zoning: The order is split into sub-orders which are dis-

tributed to the order picker in each zone to pick. The completed sub-orders are sent

3

Figure 1: Sorting Alternatives for Batch Picking

4

Figure 2: Alternatives for Zone Picking

5

to a downstream merging operation.

No batching, sequential zoning: A container for an order is passed from zone to zone.

In each zone, the products from that zone are placed in the container.

Batching with downstream sorting, no zoning: A single order picker fills multiple or-

ders and sends the products downstream, often on a conveyor, to a sorting system.

Batching with downstream sorting, simultaneous zoning: The batch is divided into

sub-orders, one for each zone. Each order picker picks the products from his zone into

a container and sends the container to a downstream sorting operation which sorts

and merges the containers into orders.

Batching with downstream sorting, sequential zoning: A container for all the or-

ders is passed from zone to zone. Each order picker picks the products from the batch

in his zone. After the last zone, the container must go to a sorting system where the

products are sorted into orders.

Batching with sort-while-pick, no zoning: One order picker fills several orders simul-

taneously using a vehicle or container with compartments for each order.

Batching with sort-while-pick, simultaneous zoning: The batch is divided into sub-

orders, one for each zone. A vehicle or container with compartments for each order is

used by the order picker in his zone. After each order picker picks the products from

the batch in their zone, the containers are sent downstream so that the compartments

from each zone corresponding to the same order can be merged. This order picking

environment is rarely used.

Batching with sort-while-pick, sequential zoning: A vehicle or container with com-

partments for each order is passed from zone to zone. In each zone, products are

placed into the compartment corresponding to the order(s) to which they belong.

This order picking environment is rarely used.

6

1.3 Correlated Storage for Zone Picking

In our problem, we consider warehouses where many orders contain multiple products and

batch picking is not possible or desirable. Batch picking may not be possible or desirable

because orders need fast response time or because item sizes are large. Also, for our problem

the pick area is divided into zones with order pickers typically operating in a single zone.

The number of zones and their size is predefined. There are several reasons why order

pickers may operate in a single zone. Doing so allows the picker to become familiar with the

products in the zone. It also permits pickers to be trained and expert at special equipment

used in a given zone. That is, the zones need not all have uniform storage equipment. One

zone may have carousels, another a miniload, and a third aisles.

We require that the zones have uniform storage capabilities to the extent that any

product may be stored in any zone. If products have storage incompatibilities, for example

chemicals, refrigerated and non-refrigerated goods, etc. then we would consider each subset

of products separately.

Another case when each order picker picks from a single zone is when the warehouse

layout restricts order pickers from easily traveling between zones. For example, there may

be conveyor systems which naturally divide the warehouse into zones. Also, it may be

expensive to travel between zones so order pickers do not leave their zones. For example,

in an environment where different products are stored in different buildings on a site, it is

possible to travel between buildings, but it may be time intensive.

In environments where picking is simultaneous, each picker selects the products from

the order in his zone and sends the products to a downstream sorting operation, which

may be manual or mechanized. The process of merging products from different zones into

the respective single orders requires human, machine, and data management resources and

hence incurs overhead costs. In particular, if sorting is done manually, there may be limited

space/capacity for sorting, products may not be conveyable, products may be fragile, or

the sorting operation can be expensive. Additionally, all the products from each zone may

be placed in a container with limited availability. Therefore, it is desirable to reduce the

amount of sorting to be done by reducing the number of zones that are visited for each

7

order. In this research we emphasize sorting workload rather than travel time. If we reduce

the number of zones that must be entered, we reduce the number of product groups that

must be sent to the downstream sort. Hence, it should cost less and take less time to

transport all the products to the sorting station. In the case where conveyance is done

mechanically, there may be little or no change in transportation cost as the number of

zones visited changes.

When picking is sequential with sort-while-pick there is no downstream sorting. How-

ever, the following reasons for focusing on minimizing the number of zones visited still

apply. In many systems, once a picker enters a zone, he is required to completely traverse

it. This may be due to limitations on the way a picking machine operates. For example, in

carousels it is common to traverse the entire carousel to retrieve products. In aisle systems,

some picking vehicles are difficult to drive backwards because of the steering mechanism.

The entire zone may also be traversed because multiple pickers are responsible for the zone

and one-way travel is required to reduce congestion. It is also possible that the aisles are

too narrow for two-way travel. It is also desirable to avoid visiting many different zones

when there are expensive start-up costs associated with picking any item from a zone, for

example, as in miniload and carousel systems.

In such cases, the location of each product within the zone is not as important as which

products are in the zone. Travel time between picks in a zone is irrelevant when the entire

zone is traversed. If one were concerned with the product placement in a zone, one could

look at the products assigned to a zone and optimize the locations within the zone. This

problem is not considered here.

Warehouses with multi-product orders, zone-exclusive pickers, and where batching is un-

desirable may occur in many different settings. For example, spare parts, automotive parts,

and hardware supply warehouses often have these characteristics. In these environments,

products are often too bulky for batch picking. Orders for smaller shops usually contain

only a few line items. Many warehouses pick the large orders, such as those that occur

for dealers, separately from the small orders. When picking the large orders, order pickers

often need to visit every zone because of the order’s size. For the small orders, solving

8

our problem can provide significant cost savings. The warehouses we have described may

store as many as several tens of thousands of different products and receive up to several

hundreds of thousands or several million orders. As described, typical orders only have a

few different line items. There are typically between twenty and forty zones.

In summary, we mainly consider the situation with zoning and no batch picking. We

can also consider zoning and batch picking with downstream sorting if the batches are

relatively small; in this case each batch can be treated as an order. For zoning and batch

picking with sort-while-pick, it is also possible to consider our objective. The objective is to

minimize the number of zones visited for all orders. This objective distinguishes our work

from other related efforts which focus on reducing total travel time by placing correlated

products together.

Warehouses with the following characteristics are likely candidates to benefit from op-

timizing according to this objective:

1. Typical orders are relatively small, i.e. 10 or fewer line items.

2. Batching is not desirable.

3. Sorting is expensive.

4. All items picked from a zone are placed in a container which is sent to the sorting

station.

We can also view our problem as a clustering problem. The clustering problem men-

tioned previously is to group products together so that products in the same group have a

high level of correlation and so that products not in the group have a low level of correlation

with products in the group. In our case, we place the products in groups, one group for

each zone, so that as few zones as possible need to be visited for each order. There is a

very rich history of literature on the clustering problem, including the classic reference of

Anderberg [5].

There are two main approaches to clustering, hierarchical and non-hierarchical. In hier-

archical clustering, once a product joins a cluster it stays in that cluster. Non-hierarchical

9

clustering allows a product to leave a cluster if it has a stronger bond with another cluster.

Under hierarchical clustering, there are three main approaches: linkage, centroid, and min-

imum variance. Of these approaches, [23] remarks that the linkage approach is best suited

for correlated storage in a warehouse. Among non-hierarchical clustering methods, the k-

means method and its variants are most popular. For more discussion of cluster analysis as

it relates to correlated storage in warehouses, see [23].

The classical measures used in clustering consider summary information about the rela-

tionships between products. They are fundamentally concerned with product information

while we are concerned directly with order information. The product summary information

used to form clusters loses crucial order information. Since we are specifically concerned

with orders, the techniques we develop and analyze later work directly with this information

to minimize our objective. The clustering methods address our objective only indirectly.

1.4 Literature Review

Correlated product assignment in a warehouse is a fairly new problem with a short literature

history. Forming good product clusters is the focus of [18], [21], and [24]. These methods

do not explicitly consider an objective related to operating costs. Minimizing travel time

is the objective of [4], [10], and [15]. The objective of [24] is to minimize the number

of pallets retrieved. None of these authors’ clustering methods explicitly consider their

respective objective. Only [23] explicitly considers cost factors when forming clusters. He

includes rewarehousing and order picking costs. In this research, we minimize the alternative

objective of multi-zone orders and present methods that do this explicitly.

The first treatment is by Shah [24] who discusses a problem in a miniload system where

products of different sizes are stored in the same pallet. He considers the pallet assignment

problem (PAP) which minimizes the expected number of pallets retrieved over a given time

horizon. A particular time horizon contains several different orders as a super-order. That

is, he combines correlated storage with batching. He shows that the PAP is NP-Hard if

three or more products must be assigned to a pallet. Three heuristics are presented to solve

this problem: one is a greedy heuristic, one is based on pairwise correlation, and the third

10

on level of demand and correlation. The heuristics narrowly consider the products and do

not consider how many pallets have to be retrieved for a given order. He briefly mentions a

2-exchange heuristic but only goes into minimal detail. His construction heuristics involve

a prohibitively large amount of enumeration. No computational results are given.

Frazelle [10] formulates the stock location assignment problem (SLAP), which considers

the travel time between two products in an order. Frazelle shows that the SLAP is NP-Hard

and presents a heuristic solution method that computes the probabilities of the different

ways that two products may occur in an order. An independence hypothesis test is then

applied to filter out pairs with low correlation. He starts with the most popular product.

Of all other products that are correlated, the one with the highest total correlation is added

to the cluster. Products are no longer added to the cluster when a capacity constraint is

violated. After clusters are generated, he places the clusters with highest total popularity

closest to the shipping dock.

Sadiq [23] considers when it is worthwhile to reassign products to different locations

under a dynamic system with correlated demand. His method is the only approach from

the literature that explicitly considers operating costs in the cluster formation. The costs he

includes are the cost associated with picking time and the rewarehousing costs. He proposes

a heuristic, the dynamic stock location assignment algorithm (SLAA), that minimizes the

sum of these costs. This algorithm uses demand and product forecasts, and only considers

order history as a tiebreaker. The SLAA uses a hybrid clustering algorithm (HYCLUS) to

determine the clusters. It is a hybrid method because first it merges products into clusters

and then it considers if a product has a stronger relationship with another cluster and hence

should be moved. He allows stock splitting.

Rosenwein [21] proposes a binary IP formulation to cluster products in a warehouse. He

uses a branch and bound algorithm that solves a Lagrangian relaxation at each node. The

proposed algorithm can be implemented efficiently. He discusses the impact of his approach

on a problem containing 1,000 products, 75,000 orders, and 60 clusters.

Amirhosseini and Sharp [4] propose several correlation measures for clustering products.

Among these measures is an order satisfying correlation measure (OSCM) that attempts

11

to measure how likely the two products are to satisfy the demand of orders in which they

appear. They also propose a clustering method that merges the attributes from the cluster

with the new product added to it so at each stage the original cluster is nested inside the

new one.

Liu [18] gives a correlation measure for products based on how often the products appear

together versus the maximal order size where products appear together. Then he formulates

an IP model to find the best clustering and gives a primal dual algorithm to solve it. He

presents computational results for a problem containing only twenty products.

Ruben and Jacobs [22] discuss batching in settings with random storage, turnover-based

storage, and family-based storage. In the family-based storage policy, ”families of items are

identified that are likely to appear on orders together.” They do not give a method for

accomplishing this.

Hua [15] considers clustering in a kitting area of a manufacturing facility. In this setting,

each order can contain hundreds of different products. He uses a correlation measure based

on the percentage of orders containing both products. Then, a genetic algorithm is used to

determine the clusters. A cluster COI is computed and the clusters are assigned to locations

along space-filling curves in increasing order of cluster COI’s. He also considers adjusting

the COI rule for correlation between clusters.

Our work presents an objective focused on minimizing multi-zone orders whereas previ-

ous authors’ objective minimizes travel time. In addition, many previous authors’ methods

do not explicitly work with travel time; instead, they use one of several surrogate measures

of cluster strength. We propose a Lagrangian relaxation that works explicitly with our

objective. In addition, we adapt several approaches from previous authors for purposes

of comparison. In addition to these construction approaches, we propose improvement

algorithms that explicitly reduce the number of multi-zone orders.

Most previous authors allow products to have different sizes, but stock splitting is only

permitted in [23]. In our research, we allow for both situations. Finally, we present results

from a real data set with 10,644 products and almost 200,000 orders. Problem sizes reported

in the literature contain no more than 1,000 products.

12

1.5 Outline of Thesis

In Chapter 2 we present a mathematical model for minimizing multi-zone orders in the

correlated storage assignment problem and discuss properties of the problem. In Chapter 3

we present a Lagrangian relaxation of this model and discuss how to solve it. We develop

heuristics in Chapter 4 to give upper bounds for the model. We also adapt heuristics from

the literature which focus on different objectives for our problem. In addition, local improve-

ment methods are developed. In Chapter 5, the model is generalized to deal with multiple

pallets of storage for a single product. In this situation, stock splitting is considered and

the local improvement methods are extended to allow stock splitting. Chapter 6 presents

results for each algorithm discussed and discusses the relevant performance characteristics.

Finally, Chapter 7 summarizes the contributions of this dissertation and discusses possible

extensions and future work.

13

CHAPTER 2

MODEL

As discussed in Chapter 1, our objective is to minimize the total number of zones entered

to fill each order. We assume that the products under consideration must be assigned to a

zone. The picking area is defined to be the area containing all the zones. If some products

in the warehouse are only in reserve storage and are not designated for the picking area,

they will not be considered in the problem defined here.

Also, as mentioned in Section 1.3, we assume that all products under consideration can

be stored in any of the zones. That is, the storage technology of each zone is compatible

with each product. If a certain subset of the products could not be stored along with

other products, then we would divide the problem into independent problems - one for each

storage type.

We also assume that all product locations under consideration are empty so that there

is no rewarehousing cost. If a storage decision required moving products to other zones, it

would not be difficult to incorporate such a cost into the objective. We discuss this briefly

in Section 2.4.

We use the warehouse’s order history as a predictor of future orders. Only the orders

representative of what the warehouse will be filling are considered. For example, in a

clothing warehouse setting up for the fall season, orders from previous years’ fall season

would be relevant but orders from other seasons may not be included. In this dissertation,

we take the order history as given. Our methodology is independent of how the order history

has been determined.

2.1 General Problem

In addition to the modeling assumptions discussed in the introduction to Chapter 2, there

are some generalizations that we make for our general formulation:

14

Generalization 1 A product may have several pallets stored in the picking area.

Generalization 2 Different pallets of the same product may be stored in different zones,

i.e. stock splitting is permitted.

Following the general model, we will discuss some special cases that restrict these general-

izations. The problem data is:

P = set of product skus

L = set of pallets

pl = product sku that pallet l represents

R = set of orders

Z = set of zones

D = set of order/product pairs; that is, for each order, all the products

in that order; for example (r1, p1) ∈ D if product p1 is in order r1

nr = number of occurrences of order r ∈ R

ez = cost of entering zone z ∈ Z

sr = number of different products in order r

Cz = capacity of zone z ∈ Z

Note that we measure product units in terms of pallets for convenience, but we could model

product units by other measures such as cartons or individual items if desired. The variables

are:

xlz = 1 if pallet l ∈ L is stored in zone z; 0 otherwise

yrz = 1 if to fill order r ∈ R, one must visit zone z; 0 otherwise

wprz = 1 if product p ∈ P in order r is picked from zone z; 0 otherwise

15

Given these generalizations, the general mathematical formulation is:

(IPgeneral) min
∑

r∈R

∑

z∈Z

nrezyrz

s.t.
∑

z∈Z

xlz = 1 ∀l ∈ L (1)

∑

l∈L

xlz ≤ Cz ∀z ∈ Z (2)

∑

l∈L:pl=p

xlz ≥ wprz ∀(r, p) ∈ D, z ∈ Z (3)

∑

z∈Z

wprz ≥ 1 ∀(r, p) ∈ D (4)

wprz ≤ yrz ∀(r, p) ∈ D, z ∈ Z (5)

xlz binary ∀l ∈ L, z ∈ Z

wprz binary ∀(r, p) ∈ D, z ∈ Z

yrz binary ∀r ∈ R, z ∈ Z

The objective minimizes the total cost of entering all zones to fill all orders. When

ez = 1 ∀z, it minimizes the total number of zones entered. If some order appears multiple

times, the objective reflects that. Also, we allow different zones to have different entry costs.

Constraint (1) ensures that each pallet of a product is assigned to one zone. Constraint (2)

ensures that more pallets are not assigned to a zone than the zone can store. Each pallet

occupies the same amount of space, though each product may have a different number of

pallets. We are considering an environment where each product is stored in a standard

unit size. If unit sizes were non-standard, a parameter for the unit’s size can easily be

incorporated into this constraint. Constraint (3) allows us to pick a product for an order

from a zone only if some pallet containing that product is stored in that zone. Constraint

(4) forces each product in an order to be picked from some zone. Constraint (5) ties the

assignment to the objective; if some product in an order is picked from a particular zone,

then that zone must be visited when filling the order. Observe that this formulation has

|L| + |D| + |Z| ∗ (1 + |D| + |R|) constraints and |Z| ∗ (|L| + |D| + |R|) variables. For our

formulation, note that single-product orders will always be contained in exactly one zone

regardless of the assignment. Hence, such orders need not be considered in the optimization.

This helps reduce the problem size.

16

2.2 Special Case: No Stock Splitting

Here we present the formulation for the special case where Generalization 2 is restricted so

that stock splitting is prevented. This situation occurs in many warehouses. In this case, a

product is the basic unit of storage so we do not need to work with the set L. The simplified

formulation is:

(IPnoSS) min
∑

r∈R

∑

z∈Z

nrezyrz

s.t.
∑

z∈Z

xpz = 1 ∀p ∈ P (1′)

∑

p∈P

vpxpz ≤ Cz ∀z ∈ Z (2′)

xpz ≤ yrz ∀(r, p) ∈ D, z ∈ Z (3′)

xpz binary ∀p ∈ P, z ∈ Z

yrz binary ∀r ∈ R, z ∈ Z

In this formulation:

xpz = 1 if product p ∈ P is stored in zone z; 0 otherwise

vp = number of pallets of product p ∈ P that need to be stored

The objective does not change in this case. Constraint (1’) is identical to (1) except that

the subscript l ∈ L that has been replaced by p ∈ P . Constraint (2’) has been modified

from (2) to account for the difference in product storage sizes. Also, as with constraint

(1’), the subscripts have been replaced. Constraint (3’) replaces constraints (3)-(5) above.

It relates the objective to the decision variables: for each order, if some product in that

order is in a zone, then that zone must be visited when filling that order. Observe that this

formulation has |P |+ |Z|+ |Z| ∗ |D| constraints and |Z| ∗ (|P |+ |R|) variables.

2.3 Special Case: One Pallet For Each Product

This special case restricts Generalization 1 so that each product has exactly one pallet in

the picking area. Generalization 2 is also restricted since stock splitting is no longer possible

17

and the sets P and L are identical. The simplified formulation is:

(IP1pal) min
∑

r∈R

∑

z∈Z

nrezyrz

s.t.
∑

z∈Z

xpz = 1 ∀p ∈ P (1′′)

∑

p∈P

xpz ≤ Cz ∀z ∈ Z (2′′)

xpz ≤ yrz ∀(r, p) ∈ D, z ∈ Z (3′′)

xpz binary ∀p ∈ P, z ∈ Z

yrz binary ∀r ∈ R, z ∈ Z

Constraints (1”) and (3”) are identical to the first special case. The vp term from (2’)

does not appear in constraint (2”) because vp = 1 ∀p by assumption. That is, we can

view this formulation as the special case of (IPnoSS) where vp = 1 ∀p. The formulation has

|P |+ |Z|+ |Z| ∗ |D| constraints and |Z| ∗ (|P |+ |R|) variables.

2.4 Rewarehousing Cost

We will now consider the case where pallets may already be stored in the warehouse so

there is a cost associated with moving the pallets to a different location. Let us introduce

the following data:

cm = cost of relocating a pallet from its current zone

χlz = 1 if pallet l is currently stored in zone z; 0 otherwise

The parameter cm includes the cost of labor and capital as well as the costs associated with

human error such as incorrect transfers and breakage.

To incorporate the rewarehousing cost, the objective contains the following additional

term:
1
2

∑

l∈L

∑

z∈Z

cm (xlz − χlz)
2

The term (xlz−χlz)2 will be equal to zero for all zones if the pallet does not change location.

If the pallet changes location, this term will be equal to one for both the old and new zones,

and zero for all other zones. This causes the term to be divided by two.

To avoid the quadratic term in the objective, we may introduce the following variable:

18

αlz = 1 if pallet l is relocated to/from zone z; 0 otherwise

The additional objective term becomes:

1
2

∑

l∈L

∑

z∈Z

cmαlz

In this case we need to add the following constraints:

αlz ≥ xlz − χlz ∀l ∈ L, ∀z ∈ Z (6)

αlz ≥ χlz − xlz ∀l ∈ L, ∀z ∈ Z (7)

αlz binary ∀l ∈ L, ∀z ∈ Z

Since we are minimizing, αlz will be set to zero if possible. When xlz = χlz, this is possible.

If xlz 6= χlz, the right hand side of either Constraint (6) or (7) will be equal to 1. The

other constraint’s right hand side will be equal to -1, so αlz will be set to one. Hence

these constraints ensure that αlz is defined correctly. Observe that we must add 2|L| ∗ |Z|
constraints and |L| ∗ |Z| variables to the formulation to eliminate the use of a quadratic

term.

In our discussion we have used pallets as the units of storage. In the special cases where

we use products instead, the model extension is still valid. The only change is that the

subscripts l ∈ L become p ∈ P .

2.5 Review of Key Modeling Elements

We will now give a summary of important modeling details implicit to our formulations:

1. Any product can be stored in any location

2. Products come in standard container sizes (i.e. pallets, totes, etc.)

3. Replenishment costs are not considered

4. Cost to enter a zone is a fixed value independent of the number of stops in the zone

(do not consider travel within zone)

5. Capacity of pick vehicle is sufficient to retrieve all products in the order from the zone

in one visit

19

6. No restriction on which products can be put in the same zone

7. Stock splitting is into discrete, predefined units of storage

2.6 Cluster Strength Formulation

For comparison purposes, we now present Rosenwein’s model [21], a typical formulation to

optimize cluster strength:

min
∑

i∈P,j∈P

dijqij

s.t.
∑

j∈P

qij = 1 ∀i ∈ P

∑

j∈P

ηj = c

qij ≤ ηj ∀i, j ∈ P

qij binary ∀i, j ∈ P

ηj binary ∀j ∈ P

where:

qij = 1 if item i assigned to cluster j

ηj = 1 if item j is chosen as a cluster ”median”

dij = measure of how often products i, j occur on different orders

c = number of clusters

Observe that this formulation has |P |2 + |P | variables and |P |2 + |P |+ 1 constraints. Also

observe that it looks similar to (IP1pal). The objective is to ”select c items as medians such

that the sum of distances from all items to their respective median is minimized” [21]. While

dij takes into consideration how often pairs of items are ordered together, the objective does

not look at how many clusters an order would have to visit to be filled. Although these are

similar objectives, they are different.

2.7 Difficulty of Problem

As mentioned in Chapter 1, typical systems have between twenty and forty zones, tens of

thousands of products, and several hundreds of thousands to millions of orders. Even after

20

eliminating single product orders, the formulation (IP1pal) has millions of constraints and

millions of variables. Hence direct solution does not seem promising.

It is even worse than that. Previous authors have shown that similar problems are

NP-Hard. Shah [24] shows that the PAP is NP-Hard if three or more products must be

assigned to a pallet. Frazelle [10] also shows that the SLAP is NP-Hard. Now we will show

that our problem is NP-Complete. Let us state the decision version for the special case of

this problem where every order contains exactly two products and ez = 1 ∀z:

MULTIZONE 2-ORDERS

Given a set P of products, R of orders, Z of zones, zone capacity p, and an

integer k, is there an assignment of products to zones with less than k total

zone visits to fill all orders?

The 2 in the problem name indicates that each order has two products. Omitting the 2

will denote the general decision problem. Let us also state the following problem:

GRAPH PARTITIONING

Given a graph G = (V, E), m subsets, maximum subset size j, and an integer l,

is there a partition of vertices into m subsets of size at most j with less than l

edges going between subsets?

Theorem 2.1 MULTIZONE ORDERS is NP-Complete

Proof We will show that the special case MULTIZONE 2-ORDERS is NP-Complete. It

is straightforward to see that MULTIZONE 2-ORDERS is in NP. Given an assignment of

products to zones do the following: for every order with both products in the same zone,

add one to the objective function; for all other orders, add two to the objective function.

Sum over all orders and verify if the total is less than k.

It remains to give a polynomial reduction. Hyafil and Rivest [16] show that GRAPH

PARTITIONING is NP-Complete. Let each vertex be a product (V → P), each edge

e = (u, v) represent an order containing products u and v (E → R), each subset be a zone

(m → Z), and maximum subset size be the zone capacity (j → p). It is clear that there is an

21

Figure 3: Small Example

assignment of products to zones with less than k total zone visits for all orders if and only if

there is a partition of vertices into subsets with at most l edges between subsets. Therefore

MULTIZONE 2-ORDERS is NP-Complete and consequently MULTIZONE ORDERS is as

well.

This proof focused on the special case of (IP1pal) where ez = 1 ∀z. By extension, this

result demonstrates that (IP1pal) and its two generalizations, (IPnoSS) and (IPgeneral), are

NP-Complete as well.

2.8 Small Example

To illustrate our formulation, we present the following very small example (Figure 3). There

are two orders each of which contain two distinct products and occur once. There are two

zones each with capacity two and entry cost one. That is, |R| = 2, |P | = 4, |Z| = 2, Cz =

2, ez = 1 ∀z ∈ Z, nr = 1 ∀r ∈ R. The formulation is:

22

min y11 + y12 + y21 + y22

s.t. x11 + x12 = 1

x21 + x22 = 1

x31 + x32 = 1

x41 + x42 = 1

x11 + x21 + x31 + x41 ≤ 1

x12 + x22 + x32 + x42 ≤ 1

x11 ≤ y11

x12 ≤ y12

x21 ≤ y11

x22 ≤ y12

x31 ≤ y21

x32 ≤ y22

x41 ≤ y21

x42 ≤ y22

xpz binary ∀p ∈ P, z ∈ Z

yrz binary ∀r ∈ R, z ∈ Z

The first four constraints belong to the family (1”), the next two to the constraint family

(2”), and the last eight to (3”). Note that the optimal solution is for x11 = x21 = x32 =

x42 = y11 = y22 = 1 and for all other variables to be equal to zero.

2.9 Bounds on the Solution Quality

When each order occurs once, nr = 1 ∀r, and each zone has unit entry cost, ez = 1 ∀z, a

trivial lower bound to (IPgeneral) is |R|. This corresponds to the assignment where for every

order, all of its products are in a single zone. The trivial upper bound is |D|. This upper

bound is based on an assignment where every product in an order is in a different zone.

Such an assignment may not actually be possible but certainly one can do no worse than

this. In fact this upper bound is asymptotically tight as shown in the following example:

23

Every order has exactly two products, one of which is product 1. The other product is

different for each order. Let vp = 1 ∀p and let Cz = 2 ∀z. In this case |D| = 2|R|. The

optimal assignment has product 1 and some other product in zone 1, and two products

never ordered together in each other zone. Hence the optimal value is 2|R| − 1.

24

CHAPTER 3

LAGRANGIAN RELAXATION APPROACH

3.1 Lagrangian Relaxation

The difficulty with (IPnoSS) lies in the constraints that relate the objective to the assign-

ment variables. Therefore, our idea is to consider the Lagrangian relaxation which drops

these constraints explicitly. The following is the formulation of this Lagrangian relaxation

problem:

(L) maxµ≥0{ L(µ) = minx,y

∑

r∈R

∑

z∈Z

nrezyrz +
∑

(r,p)∈D

∑

z∈Z

µrpz(xpz − yrz)

s.t.
∑

z∈Z

xpz = 1 ∀p ∈ P (1)

∑

p∈P

vpxpz ≤ Cz ∀z ∈ Z (2)

xpz binary ∀p ∈ P, z ∈ Z

yrz binary ∀r ∈ R, z ∈ Z }

where µrpz ∀(r, p) ∈ D, z ∈ Z are the Lagrange multipliers. Let us denote by L(µ) the

value of the above problem for a given µ. Also, let v∗(IPnoSS) be the optimal value of our

original problem. For any vector µ ≥ 0, L(µ) is a lower bound for v∗(IPnoSS). Hence if we

find maxµ≥0 L(µ) then we will obtain the Lagrangian relaxation lower bound.

3.2 Simplification

Note that in this formulation, the y variables do not appear in constraints (1) or (2). Since

µ ≥ 0 and the problem is minimization, we can preprocess yrz ∀r ∈ R, z ∈ Z as follows:

yrz =





1 if


nrez −

∑

p:(r,p)∈D

µrpz


 < 0

0 otherwise

After the optimization, we can then add the contribution to the objective from the y terms.

To determine the value of the x variables, we have two cases, described in Sections 3.2.1

25

and 3.2.2.

3.2.1 One Pallet for Each Product

In (IP1pal), all products have the same size, i.e. vp = 1 ∀p, so the constraints (1) and (2)

are network constraints. We can view the problem as a network flow over a bipartite graph

where there is a node for each product with supply one, a node for each zone with demand

Cz, and a node with supply
∑

z∈Z Cz −|P | corresponding to the excess demand. There is a

directed arc from every supply node to every demand node. Hence, the constraint matrix is

totally unimodular and any solution of L(µ) with the x variables relaxed to be nonnegative

will automatically be integer [20]. Furthermore, if we solve maxµ≥0 L(µ) then we will get

the solution to the LP relaxation of (L) where the x variables are relaxed. To obtain the x

variables we solve:

(Lx) min
∑

(r,p)∈D

∑

z∈Z

µrpzxpz

s.t.
∑

z∈Z

xpz = 1 ∀p ∈ P (1′)

∑

p∈P

xpz ≤ Cz ∀z ∈ Z (2′)

xpz ≥ 0 ∀p ∈ P, z ∈ Z

The x variables should now be interpreted as the percentage of a product assigned to a

given zone. This problem is an LP with |P |+ |Z| constraints and |P | ∗ |Z| variables that is

amenable to a network simplex algorithm or the more specialized transportation simplex.

Hence, it is not a difficult problem to solve. The only entity with large size is µ which has

|Z| ∗ |D| components. This is a setup cost of the problem and does not affect the problem

size.

3.2.2 No Stock Splitting

For (IPnoSS), the constraints are not a network polytope so integrality is not guaranteed

when solving the relaxation (Lx) with constraint (2) instead of (2’). Still in this case one

is guaranteed to not have too many fractional variables when one solves the relaxation.

Since there are |P | + |Z| constraints, a basis will be of size |P | + |Z|. For each of the |P |

26

products, at least one xpz must be strictly positive. No xpz can satisfy more than one of

the constraints (1’) so |P | of the variables in the basis will be used to satisfy the constraints

(1’). Therefore, there are at most |Z| variables left that can be fractional. Since |P | is much

greater than |Z|, even in this case solving the relaxation will give a solution not too far

from integral. If the solution obtained is not integral, solving the following problem will fix

the fractional values to give an integral solution:

(IPfix) min
∑

r∈Rf

∑

z∈Zf
r

nrezyrz

s.t.
∑

z∈Z

xpz = 1 ∀p ∈ P f (1f)

∑

p∈P f

vpxpz ≤ Cf
z ∀z ∈ Z (2f)

xpz ≤ yrz ∀(r, p) ∈ D s.t. r ∈ Rf , p ∈ P f , z ∈ Zf
r (3f)

xpz binary ∀p ∈ P, z ∈ Z

yrz binary ∀r ∈ R, z ∈ Z

Where:

P f = products containing fractional assignments

Rf = orders containing products with fractional assignments

Zf
r = for fractional order r ∈ Rf , zones not already containing a product from

the previous assignment that had an integral value

Cf
z = capacity of zone z ∈ Z remaining after the nonfractional products have been

assigned

Since |P f | ≤ |Z| and |Z| is small, the above problem will be small so long as the number

of affected orders, Rf , is small.

The solution obtained from appending this assignment to the assignment from solving

the relaxation is a heuristic and not an optimal approach. The difference in cost between

the merged assignment and the fractional assignment is expected to be small if Rf is small.

27

3.3 Quality of Lower Bound

For (IPnoSS) where each order occurs once, nr = 1 ∀r, and each zone has unit entry cost,

ez = 1 ∀z, we now show that under the assumption that the problem is feasible, the solution

to maxµ≥0 L(µ) = |R|:

Theorem 3.1 If
∑

p∈P

vp ≤
∑

z∈Z

Cz, then max
µ≥0

L(µ) = |R|

Proof Consider the following solution:

xpz = yrz =
Cz∑

u∈Z Cu
∀r ∈ R, p ∈ P, z ∈ Z

First we show that this solution achieves the lower bound:

∑

r∈R

∑

z∈Z

yrz =
∑

r∈R

∑

z∈Z

Cz∑
u∈Z Cu

=
∑

r∈R

1 = |R|

Now we show that this solution is feasible to the LP relaxation of (IPnoSS):

1.
∑

z∈Z

xpz =
∑

z∈Z

Cz∑
u∈Z Cu

= 1 ∀p ∈ P

2.
∑

p∈P

vpxpz =
Cz∑

u∈Z Cu

∑

p∈P

vp ≤ Cz∑
u∈Z Cu

∑

u∈Z

Cu = Cz ∀z ∈ Z

3. xpz =
Cz∑

u∈Z Cu
= yrz ≥ 0 ∀(r, p) ∈ D, z ∈ Z

Because (IP1pal) is an instance of (IPnoSS) with vp = 1 ∀p ∈ P , Theorem 3.1 holds true

for this problem as well. Theorem 3.1 tells us that since the optimal value for the Lagrangian

relaxation equals the optimal value for the LP relaxation of (IP1pal), the lower bound, LB,

we obtain is no better than the trivial lower bound. Therefore, using a simple Lagrangian

relaxation approach in this situation is not sufficient to obtain good lower bounds.

3.4 Upper Bounds

For these last two sections, we will only discuss the special case (IP1pal) with nr = 1 ∀r and

ez = 1 ∀z. Each time we solve (Lx) for a given µ we obtain a feasible assignment. The y

28

variables from the solution are almost certainly not feasible since the xpz ≤ yrz constraints

have been relaxed. Hence the objective value for (Lx) plus the contribution from the y terms

will be incorrect. However, it is not difficult to compute the actual cost of the assignment

from the x variables. We will call this upper bound, UBx. For each order, if some product

in that order is assigned to a zone then a cost of one is incurred by the objective. That is,

UBx =
∑

r∈R

∑

z∈Z

1[∃p:(r,p)∈D,xpz=1]

where 1S is an indicator variable that indicates whether statement S is true. If it evaluates

to true, the variable has value 1; otherwise it has value 0. This upper bound can be obtained

for each µ.

A second upper bound may be available from the y variables, but this upper bound is

not guaranteed for each µ. First, if
∑

r∈R,z∈Z yrz ≥ UBx, then the upper bound from the y

variables will almost surely be no better than that from the x variables so we do not look

further. However, if
∑

r∈R,z∈Z yrz < UBx, the y variables may give a better lower bound

but only if a feasible assignment can be found for these y variables. So, we must solve the

following feasibility problem:

(Pyfeas
)

∑

z∈Z

xpz = 1 ∀p ∈ P (4)

∑

p∈P

xpz ≤ Cz ∀z ∈ Z (5)

xpz = 0 ∀p ∈ P s.t. (r, p) ∈ D and yrz = 0, z ∈ Z (6)

xpz ≥ 0 ∀p ∈ P, ∀z ∈ Z

The third constraint says that if to fill an order one does not visit a zone, then no

product in that order can be assigned to that zone. If this problem is not feasible, then

the y variables do not allow for a feasible assignment. If the problem is feasible, then an

assignment has been found that gives the y variables. Since it is possible that some yrz was

unnecessarily positive, we compute the value of the assignment in the same way as we did

to get UBx. At this point we have found an upper bound from the y variables which we

call UBy .

Therefore, for each value for the multiplier µ we can get one, and potentially two upper

bounds for (IP1pal).

29

3.5 Algorithmic Details

To solve the problem, maxµ≥0 L(µ), we use the subgradient optimization technique outlined

in Ahuja et al. [1]. That is, we start with an initial µ0. Then, ∀(r, p) ∈ D, z ∈ Z:

µk+1
rpz = [µk

rpz + θk(xpz − yrz)]+

We use the following suggested heuristic for updating θk:

θk =
λk[UB − L(µk)]

‖x− y‖2

where UB is the best upper bound obtained so far. To start we use the trivial upper bound

of |D| and to update λk , use the following heuristic:

Start with an initial λ0 between 0 and 2. If the best Lagrangian objective found

so far has not increased in a given number of iterations, then reduce λk by a

given factor.

Even though the initial value of µ0 does not affect convergence of the method, to get

good upper bounds it helps to try multiple starting points. That is, we let the method

proceed for some number of iterations from multiple starting points. After a predetermined

number of iterations, we stop and go on to the next starting point. For one of the starting

points, we let the method run until a terminating condition has been reached. The algorithm

terminates when one of the following conditions occurs:

1. The iteration limit has been exceeded.

2. The upper bound and lower bound are the same - this is the ideal situation.

3. The value of the Lagrangian relaxation is the same in two consecutive iterations.

3.6 Computing Multipliers Given an Initial Solution

In Chapter 4 we will discuss several other ways to get feasible solutions. Now we will show

how a set of multipliers for the Lagrangian relaxation problem can be obtained from any

heuristic solution by solving an inverse optimization problem. Hence any feasible solution

30

Lagrangian Relaxation Upper Bounding Algorithm

For each starting point do
While no terminating condition holds do

Preprocess out the contribution to the objective, L(µ) from the y terms.
Solve (Lx).
Let L(µ) = (Lx) + y contribution.
Update LB.
Update the best Lagrangian objective found or the number of iterations

in which it hasn’t changed.
Determine UBx.
If

∑
r∈R,z∈Z yrz < UBx solve (Pyfeas

). If it is feasible, compute UBy.
If min(UBx, UBy) < UB, update UB and record the assignment.
Update λ, θ, µ.
If the current starting point should not go to completion and it has completed

its allowed number of iterations, break and go to the next point.
End while

End for

Figure 4: Overview of Lagrangian Relaxation Upper Bounding Algorithm

not only gives an upper bound to the number of zones visited but also gives a starting point

for solving the Lagrangian relaxation problem. To show this, we will rewrite the Lagrangian

relaxation problem together with its dual. In this section, we assume that all products have

one pallet of storage, vp = 1 ∀p, each order occurs once, nr = 1 ∀r, and each zone has unit

entry cost, ez = 1 ∀z. So we have:

(L) min
∑

r∈R

∑

z∈Z

yrz +
∑

(r,p)∈D

∑

z∈Z

µrpz(xpz − yrz)

s.t.
∑

z∈Z

xpz = 1 ∀p ∈ P (θ)

∑

p∈P

xpz ≤ Cz ∀z ∈ Z (π)

µrpz ≥ 0 ∀(r, p) ∈ D, z ∈ Z

xpz ≥ 0 ∀p ∈ P, z ∈ Z

yrz ≥ 0 ∀r ∈ R, z ∈ Z

31

(LD) max
∑

p∈P

θp +
∑

z∈Z

Czπz

s.t. θp + πz ≤ µrpz ∀p ∈ P, z ∈ Z

0 ≤ 1−
∑

p∈P :(r,p)∈D

µrpz ∀r ∈ R, z ∈ Z

πz ≤ 0 ∀z ∈ Z

Given a solution xpz, yrz, we can solve the following linear program to recover µrpz:

(Lµ) min
∑

(r,p)∈D,z∈Z:

xpz=0,yrz=1

µrpz

s.t.

θp + πz ≤ µrpz ∀(r, p) ∈ D, z ∈ Z

0 ≤ 1−
∑

p∈P :(r,p)∈D

µrpz ∀r ∈ R, z ∈ Z

πz ≤ 0 ∀z ∈ Z





(D) feasibility

µrpz ≥ 0 ∀(r, p) ∈ D, z ∈ Z

}
(P) feasibility

πz = 0 ∀z ∈ Z :
∑

p∈P

xpz < Cz

θp + πz = µrpz ∀(r, p) ∈ D, z ∈ Z : xpz > 0

0 = 1−
∑

p∈P :(r,p)∈D

µrpz ∀r ∈ R, z ∈ Z : yrz > 0





Complementary

Slackness

The objective of (Lµ) looks for multiplier values that will maximize (L). However, the true

goal is to find a feasible solution. In fact, we can give an analytical solution for such a

feasible point. First we define the following:

qr = number of zones visited for order r

s∗ = maximum order size

Theorem 3.2 The following point is feasible for (Lµ):

µrpz =





1
s∗

∀(r, p) ∈ D, z ∈ Z : xpz = yrz = 1
1− nrz

s∗

sr − nrz
=

1
s∗

s∗ − nrz

sr − nrz
∀(r, p) ∈ D, z ∈ Z : xpz = 0, yrz = 1

1
sr

∀(r, p) ∈ D, z ∈ Z : xpz = yrz = 0

πz = 0 ∀z ∈ Z

θp = 1
s∗ ∀p ∈ P

and has an objective value for (L) of 1
s∗

∑
r∈R sr

32

Proof First observe that:

s∗ ≥ sr ∀r ∈ R sr ≥ nrz ∀r ∈ R, z ∈ Z s∗ ≥ nrz ∀r ∈ R, z ∈ Z

Now let us restate the constraints as follows:

θp + πz = µrpz ∀(r, p) ∈ D, z ∈ Z : xpz = 1 (1a)

θp + πz ≤ µrpz ∀(r, p) ∈ D, z ∈ Z : xpz = 0 (1b)
∑

p∈P :(r,p)∈D

µrpz = 1 ∀r ∈ R, z ∈ Z : yrz = 1 (2a)

∑

p∈P :(r,p)∈D

µrpz ≤ 1 ∀r ∈ R, z ∈ Z : yrz = 0 (2b)

πz = 0 ∀z ∈ Z :
∑

p∈P

xpz < Cz (3a)

πz ≤ 0 ∀z ∈ Z :
∑

p∈P

xpz = Cz (3b)

µrpz ≥ 0 ∀(r, p) ∈ D, z ∈ Z (4)

We will verify that the constraints (1a) - (4) hold:

(1a) xpz = 1 ⇒ µrpz =
1
s∗

= θp

(1b) xpz = yrz = 0 ⇒ µrpz =
1
sr
≥ 1

s∗
= θp

xpz = 0, yrz = 1 ⇒ µrpz =
1
s∗

s∗ − nrz

sr − nrz
≥ 1

s∗
= θp

(2a) yrz = 1 ⇒
∑

p∈P :(r,p)∈D

µrpz =
∑

p∈P :(r,p)∈D

xpz=1

µrpz +
∑

p∈P :(r,p)∈D

xpz=0

µrpz

= nrz
1
s∗

+ (sr − nrz)
1− nrz

s∗

sr − nrz
= 1

(2b) yrz = 0 ⇒
∑

p∈P :(r,p)∈D

µrpz = sr
1
sr

= 1

(3) πz = 0 ∀z ∈ Z

(4) xpz = yrz = 1 ⇒ µrpz =
1
s∗

> 0

xpz = yrz = 0 ⇒ µrpz =
1
sr

> 0

xpz = 0, yrz = 1 ⇒ µrpz =
1
s∗

s∗ − nrz

sr − nrz
≥ 1

s∗
> 0

33

Now we compute the objective value of (L) for this point:

(L) =
∑

r∈R,z∈Z

yrz +
∑

(r,p)∈D,z∈Z

µrpz(xpz − yrz)

=
∑

r∈R

qr −
∑

(r,p)∈D,z∈Z: xpz=0,yrz=1

µrpz

=
∑

r∈R

qr −
∑

r∈R,z∈Z: xpz=0,yrz=1

(sr − nrz)
1− nrz

s∗

sr − nrz

=
∑

r∈R

qr −
∑

r∈R,z∈Z: xpz=0,yrz=1

(
1− nrz

s∗
)

=
∑

r∈R

qr −
∑

r∈R

(
qr − sr

s∗
)

=
1
s∗

∑

r∈R

sr

Theorem 3.2 connects the approach from the current chapter to those in Chapter 4.

The objective value (L) of the analytical point given by (x, y, µ) does not depend on the

storage assignment (x, y). The value is the sum of the proportion of each order size to the

maximum order size. This value will be greater than zero and cannot exceed |R|. Since (L)

gives a lower bound of the optimal solution, we would like to maximize its value. We attain

the maximal lower bound of |R| when sr = s∗, i.e. all orders are the same size.

34

CHAPTER 4

UPPER BOUND HEURISTICS

Earlier, we gave the trivial upper bound of |D| on (IPgeneral). Typically, this upper bound

is an overestimate so we would like to use intelligent heuristics to get better upper bounds.

In this chapter, we will exclusively discuss the formulation (IP1pal). For simplicity, we

assume each order occurs once, nr = 1 ∀r, and each zone has unit entry cost, ez = 1 ∀z. In

Chapter 5 we will discuss the two generalizations.

Below we discuss several ideas of our own as well as several ideas from the literature.

Before presenting other researchers’ methods, we must clarify how we will use their ap-

proaches on our problem since they consider a slightly different problem. They consider

how to form product clusters and where to place them so that travel time is minimized.

First, since they consider clusters and we consider zones, we use their notions of cluster

formation to create the set of products to store in a zone. That is, clusters will logically

be treated as zones. Second, we do not consider the placement of zones in the warehouse.

Hence, we will ignore the problem of placing clusters in locations and only worry about the

content of the clusters.

4.1 Construction Methods

In construction heuristics, a feasible solution is incrementally built up from an empty initial

solution. In this section, we adapt several heuristics that were developed for travel time

objectives and propose a new heuristic for our problem.

4.1.1 Random Assignment

A simple approach is to place products randomly in zones in the warehouse. This heuristic

is useful as a performance baseline for future methods. To determine the expected per-

formance, we let Pr(|Z|, k, l) be the probability of using exactly l out of |Z| zones in a

k-product order. Note that we make the logical assumptions that l ≤ |Z| and l ≤ k. Then

35

Pr(|Z|, k, 0) = 0 and for l > 0,

Pr(|Z|, k, l) =
(

l

|Z|
)k (|Z|

l

)
−

l−1∑

i=1

(|Z| − i

l − i

)
Pr(|Z|, k, i)

The first term is the number of different ways that the k products may be placed in l or

fewer zones out of |Z| total. The second term subtracts all the ways that the products could

be in i zones for i < l. For each i, there are |Z| − i zones that could be empty of products

in the order and we need to choose l − i zones to be empty.

Given the probabilities Pr(|Z|, k, l), the expected number of zones visited for all orders,

EZ, is
∑

k

[
Nk

k∑

l=1

l Pr(|Z|, k, l)

]

where Nk is the number of orders containing k products.

4.1.2 Popularity

One common method in industry is to use popularity. That is, we sort the products in order

of their popularity. We place the most popular products together subject to the capacity on

the zone and continue until all products have been assigned to a zone. When all products

have the same size as we assume in this chapter, this is equivalent to the COI rule.

4.1.3 Sequential Clustering

Frazelle [10] proposes a sequential clustering approach where clusters are grown one at a

time. He includes a congestion constraint in addition to the capacity constraint; we will

modify his method to ignore this constraint as we do not consider congestion explicitly. First

he determines whether for all pairs of products i and j, there is a statistically significant

relation between them using the Chi-square, χ2, test for independence. First define:

σij = the number of orders in which products i and j appear together

(the pairwise popularity of products i and j)

σi = the number of orders in which product i appears

(the popularity of product i)

36

Sequential Clustering

While there is an unassigned product do
Choose the most popular unassigned product, say i, as a cluster seed.
Decrement the capacity of the zone by one.
While the capacity of the zone is positive do

Choose a neighbor of the cluster with highest weight, say j,
and add it to the cluster.

Merge nodes i and j by letting wik := wik + wjk ∀k 6= i, j
and removing vertex j along with all its edges from the graph.

Decrement the capacity of the zone by one.
Let σi := σi + σj

End while
End while

Figure 5: Sequential Clustering Algorithm

Then he defines the following test statistic:

τ =

(
σij − σiσj

|R|2
)2

σiσj

|R|2
+

(
σi − σij − σi(1−σj)

|R|2
)2

σi(1−σj)
|R|2

+

(
σj − σij − (1−σi)σj

|R|2
)2

(1−σi)σj

|R|2

If τ > χ2
1−α(1) for a specified level α then the test fails to reject the hypothesis that products

i and j are independent. Using this information, he creates a graph as follows. For each

product, he creates a vertex i with label σi. For each pair where τ is statistically significant,

he creates an edge with weight equal to the conditional probability that product j appears

in an order given i appears. So the edge weight, wij , is

pj|i =
σij

σi

Given this graph, the method uses the most popular unassigned product as a cluster seed.

The unassigned product with strongest correlation to the cluster is iteratively added to the

cluster subject to capacity restrictions. When the cluster has reached its size limit, the next

cluster is formed in the same way. The algorithm proceeds until all products have been

assigned to clusters. The method is summarized in Figure 5.

4.1.4 Simultaneous Clustering

Amirhosseini and Sharp [4] propose a clustering approach where multiple clusters are formed

simultaneously. They define some correlation measures from the literature which we will

37

also state in terms of the variables σi and σij that we defined in Section 4.1.3:

c1
ij =

of times products i, j appear together in an order
Total # of orders

=
σij

|R|

c2
ij =

of times products i, j appear alone in an order
Total # of orders

=
σi + σj − 2σij

|R|

c3
ij =

of times products i, j appear together in an order
of times products i or j or both occur in an order

=
σij

σi + σj − σij

c4
ij =

of times products i, j appear together in an order
of times only product i occurs in an order

=
σij

σi − σij

c5
ij =

of times products i, j appear together in an order
of times only product j occurs in an order

=
σij

σj − σij

They then present their own measure, the Order-Satisfying Correlation Measure (OSCM):

cOSCM
ij =

sum of the fractions of orders filled by products i or j or both
of times products i or j occur alone in an order

=
∑

r∈R fr

σi + σj − 2σij

where

fr =





number of products from i and j that appear in order r

sr
if fL ≤ fr ≤ fU

0 otherwise

for parameters 0 ≤ fL ≤ fU ≤ 1.

Using a chosen correlation measure, he then does hierarchical clustering using a nearest

neighbor method (NNC). The method starts with each product in its own cluster. The

two clusters with the strongest correlation iteratively merge together. A cluster becomes

ineligible for mergers when its size reaches the maximum. The main difference with the

approach in Section 4.1.3 is that here multiple clusters are eligible to grow whereas before

only one cluster grew at a time. Figure 6 outlines our implementation of this method.

38

Simultaneous Clustering

Compute the correlation for all pairs of products.
Initialize all products to be in their own cluster.
While there are more clusters than zones do

Choose the cluster pair, say i and j, with the maximum correlation measure
and merge the clusters together.

Update the correlation between the merged cluster and all other clusters k
by taking max{cik, cjk}.

If the cluster size is equal to the zone capacity, remove the cluster from
further consideration.

End while

Figure 6: Simultaneous Clustering Algorithm

Particle Movement

Phase I
Assign products to initial points in space
While terminating condition has not yet been reached do

Relocate products in space based on pairwise popularity
End while

Phase II
Assign cluster centers to initial points in space
While the assignment is new do

Assign products to cluster centers using transportation simplex
Relocate cluster center to center of mass defined by products in the cluster

End while

Figure 7: Overview of Particle Movement Algorithm

4.1.5 Particle Movement

In this approach, products in n-dimensional space iteratively move towards each other

with magnitude depending on the correlation strength. When an equilibrium is reached so

that products no longer move significantly, cluster centers are placed in space. Products

are successively assigned to the cluster centers and the cluster centers relocated until an

equilibrium is reached. The overview of the algorithm is given in Figure 7. This method is

similar to those in Sections 4.1.3 and 4.1.4 in that it works directly with pairwise product

popularity. Below we will discuss in detail how the movement and cluster center phases

work as well as the implementation details.

39

Figure 8: Product Movement in Phase I

The objective of Phase I is to place the products in space so that products with strong

bonds are near each other. First, products are randomly placed at points in n-dimensional

space. Given an assignment of products to points in space, we relocate the products so that

products with high pairwise popularity move closer to each other. However, to ensure that

the products do not all move to the same point, we include a repulsive force. Following is

the total magnitude of movement for two products i, j:

t(
attractive force︷︸︸︷

σij −

repulsive force︷ ︸︸ ︷
c̃

distance(i, j)
)

where t is a time step and c̃ is a constant. Observe that the repulsive force used here is

inversely proportional to the distance between two points. We assign half of the magnitude

of movement to each product. Let md be the slope between dimensions d and d + 1 and

dim be the number of spatial dimensions. Since the products move towards each other on

the line connecting them (Figure 8), the following proportion of the movement is assigned

to each dimension:

Dimension 1:
1√∑dim−1

d=1 m2
d

Dimension d (d > 1):
md−1√∑dim−1
d=1 m2

d

where:

md =
κi,d+1 − κj,d+1

κi,d − κj,d

40

κi,d =location of product i in dimension d

We sum the movement for each product over all its pairs and then simultaneously execute

the moves. This process continues until we reach a stopping condition. Several different

stopping criteria are proposed:

1. Iterate for a fixed number of time steps.

2. Continue while the total change in movement in an iteration exceeds some threshold.

3. Run while the percentage of change in movement exceeds a threshold.

4. Proceed until the total distance between all pairs exceeds a threshold.

The distance threshold in the last criterion is a percentage of the expected distance between

the points if we were to randomly place the points in space. In the case when the dimension

is two, Lazoff and Sherman [17] report the expected distance in closed form:

a5 + b5 − (a4 − 3a2b2 + b4)
√

a2 + b2

15a2b2
+

a2

6b
ln

(
b +

√
a2 + b2

a

)
+

b2

6a
ln

(
a +

√
a2 + b2

b

)

where a, b are the lengths of the space in each of the two dimensions. When a = b the

equation reduces to

a

(
2 +

√
2

15
+

ln(1 +
√

2)
3

)
≈ 0.5214a

When a stopping criterion is reached, the products have reached an equilibrium in space

and Phase I terminates. Note that the equilibrium is not guaranteed to be a globally optimal

product distribution.

In Phase II clusters are formed using the distribution of products in space from Phase

I. Throughout Phase II, the placement of products is fixed. First, cluster centers must be

given initial positions in space. The simplest approach is to do this randomly. However,

since we have placed the products in space in Phase I, we can use this information as follows.

Create a grid in n-dimensional space and compute the force exerted on each grid point g

by each product p. Let us define the point h to be the head of the force vector created by

the cumulative force of every other product on p (Figure 9). Also, let

41

Figure 9: Force on Grid Point when dim = 2

κp = location of product p in space

Then,

φpg =
(κp + h) · g

‖g‖
or the magnitude exerted by all other products on p projected onto the point g. We then

break this magnitude down into the different dimensions of our space. Define

md =
∣∣∣∣
gd+1 − pd+1

gd − pd

∣∣∣∣

ψd =





1 d = 1

mdψd−1 d > 1

for each dimension d = 1, . . . ,dim − 1. Observe that ψd is defined recursively. The force

each product p applies to grid point g in dimension d is φpgψd. So the total force on grid

point g is
∑

p∈P

∑d=dim
d=1 φpgψd. The |Z| grid points with the highest total force become our

initial cluster centers.

Once we have initial cluster centers, we optimally assign the products to the cluster

centers using the transportation simplex algorithm. The objective is to minimize the total

distance from products to their respective cluster centers. Note that this objective does not

directly compute our objective of minimizing multizone orders, but we expect the objectives

42

to be strongly correlated. It is simple to compute our objective for the assignment and

compare its behavior over time to the objective used by the transportation simplex. If the

assignment in an iteration is the same as an assignment from a prior iteration, the method

terminates. Otherwise the cluster centers are relocated to the center of mass of the products

which are assigned to it. In this case all products have identical mass.

Now we will show that Phase II converges. First define:

yi
z = location of cluster center z in iteration i

xi
p = assignment of product p to a cluster center in iteration i

cij = cost of the assignment from iteration i given the locations of iteration j

=
∑

p∈P distance(κp, y
j
xi

p
)

Theorem 4.1 Phase II of the particle movement heuristic converges monotonically to some

limit c∗.

Proof First we show that the objective is nonincreasing, that is, cii ≥ ci+1,i+1 ∀i. Observe

that cii ≥ ci+1,i because the locations of the cluster centers have not changed so the new

assignment is optimal and hence cannot have a cost higher than the previous one. Now

observe that ci+1,i ≥ ci+1,i+1. This is true because the cluster centers have moved to the

center of mass so the total distance from all products in a cluster to their cluster center must

decrease. Putting these two inequalities together shows that cii ≥ ci+1,i+1 ∀i. Since the

sequence is bounded below by zero, the Monotone Convergence Theorem [6] demonstrates

that it converges to some limit c∗. This completes the proof.

This theorem shows that Phase II terminates at an objective value. However, it is

important to note that there is no guarantee that we get globally optimal clusters.

Now we will propose some implementation alternatives for the particle heuristic. In

Phase I, products were initially placed randomly throughout the entire space. An alternative

idea is to start with the products close together in the space and let them expand out into

clusters in a ”big bang” way. In Phase II, there are several alternative ideas on how to form

clusters using the assignment of products to points in space.

43

Figure 10: Exchange Move

1. Start with a single cluster and split the cluster into pieces until we have |Z| clusters.

2. Run a vehicle routing algorithm on the location of the products in space to find |Z|
routes with minimal travel distance.

3. Use as many grid points as form distinct cluster centers whether it is more or less than

|Z|. If some cluster has too many products in it or there are too many clusters, fix

the content of the other clusters and run a smaller assignment problem on the excess

products.

4.2 Improvement Methods

The upper bound heuristics discussed in Section 4.1 all construct solutions from scratch.

Here we discuss methods that try to improve upon an an incumbent feasible solution. The

basis of the improvement methods we discuss below is the exchange move where a product

in one zone is replaced with a product from a different zone (Figure 10).

4.2.1 2-Exchange

We implement a 2-exchange algorithm where two products p1 ∈ z1 and p2 ∈ z2 swap zones

during an iteration (Figure 11). First let:

wp1p2 = edge weight corresponding to the change in objective due to the replacement

44

Figure 11: 2-Exchange Move

of p2 in z2 with p1

Rp = set of orders containing product p

nrz = number of products from order r contained in zone z

The edge weight is negative if this move reduces the objective and positive otherwise. Note

that in general wp1p2 does not equal wp2p1 . To compute wp1p2 , initialize wp1p2 := 0. Then

for each order r ∈ Rp1 , do:

1. If nrz1 = 1, let wp1p2 := wp1p2 − 1

2. If nrz2 = 0, let wp1p2 := wp1p2 + 1

3. If nrz2 = 1 and p2 is the unique product from order r in zone z2, let wp1p2 := wp1p2 +1

In the first computation, if p1 is the only product from the order contained in z1, we no

longer need to visit the zone to fill order r so the objective improves by one. If z2 contained

no products from order r, we now must visit this zone to retrieve the order so the second

computation increases the objective by one. The third computation corrects the case when

p2 is the only product from r in z2 but is replaced by p1. In this situation, the weight for

the edge from p2 will mistakenly give a benefit for order r. Since any cycle has both an

inbound and an outbound edge to p2, the third computation offsets this case.

For each pair of zones, we exchange the pair of products that minimizes wp1p2 + wp2p1

so long as the minimum is negative. The method terminates when there is no pair of

45

2-Exchange

While swapflag
Set swapflag := false
For each pair of zones z1 and z2

For each pair of products such that p1 ∈ z1 and p2 ∈ z2

Evaluate the improvement in objective from exchanging p1 and p2

If the greatest improvement is positive
Exchange this pair
Set swapflag := true

End if
End for

End while

Figure 12: 2-Exchange Algorithm

zones with an improving 2-exchange. The algorithm (Figure 12) is guaranteed to finitely

terminate because only improving exchanges are accepted.

4.2.1.1 Size of Search Space

Any two products in different zones may be exchanged. Hence the size of the search space

in any iteration is Θ(|P |2).

4.2.1.2 Running Time per Iteration

In the worst case, we must look at all pairs of products in different zones before finding

an improving exchange or determining that none exists. There are O(|P |2) such pairs to

examine per iteration. For each product pair, the edge weights composing the swap must

be computed. As described in Section 4.2.1, we must consider |Rp| orders for edge (p, p1).

On average, the value of |Rp| is small compared to |P |. Therefore, in practice, an edge

weight can be computed in constant time and the total running time is O(|P |2). So the

search space and running time are identical.

4.2.2 Cyclic Exchange: Basic Case

The 2-exchange approach can be viewed as a search for cycles with two products from

different zones. Next, we consider larger cycle sizes. We could do this using a k-exchange

procedure for any k < |Z|. Performing a k-exchange procedure for each k involves O(|P |k)

46

Figure 13: Structure of G

possible swaps. Below we discuss a cyclic exchange method to search an exponential number

of swaps of sizes from 2 to |Z| in polynomial time.

The theory of cyclic exchanges is developed in [26]. Cyclic exchanges are applied to the

capacitated minimum spanning tree problem in an efficient manner yielding good solutions

in [2] and [3]. In this work we are minimizing multi-zone orders in the storage assignment

problem.

We define a graph G (Figure 13) as follows:

• There is a vertex for each product.

• There is a directed edge between each pair of products not contained in the same

47

Figure 14: Illustration of a Double Cycle

zone.

• The edge weight wp1p2 is as described for 2-exchanges.

In the 2-exchange case, an edge (p1, p2) is paired with the edge (p2, p1). The main issue

with cyclic swaps is that we do not know the next edge in the cycle so the location of

p2 after the exchange is unknown. Our goal is to find the minimum weight negative cycle

(MWNC) in this graph. However, there is a complication. The cycle detected could contain

two products that are both located in the same zone (Figure 14). In this scenario, the edge

weights computed earlier are incorrect. The computation for edge weight (p1, p2) assumed

that p2 was leaving z2 but in this case some other product is leaving as well. Hence, if we get

a cycle that repeats any zone, for example Figure 14, the reported objective improvement

could be incorrect. Therefore we need to identify the minimum weight negative cycle that

visits each zone at most once (MWNCZ1). Let us state the decision version of this problem:

MWNCZ1

Given the graph G defined above with a vertex for each product p ∈ P and edge

weights wpi,pj , and an integer k, is there a directed negative weight cycle visiting

each zone at most once with length ≤ k?

Conjecture 4.1 MWNCZ1 is NP-Complete.

48

Figure 15: Structure of G0

We believe that Conjecture 4.1 is true because the shortest circuit problem is NP-

Complete when negative edge weights are allowed [11]. It is difficult to prove that the

MWNCZ1 problem is NP-complete because we can only visit each zone at most once and

because the edge weights have a special structure. Since we believe that MWNCZ1 is NP-

Complete, we use heuristic methods to detect good improving cycles. First we determine

a permutation of the zones. Next we create a directed acyclic graph (DAG) based on the

permutation. Due to the method by which we create this graph, we find an improving cycle

by solving a shortest path problem. Now we will describe each of these steps in further

detail.

To determine which of the |Z|! different permutation to choose, we construct the graph

G0 (Figure 15):

• There is a node for each zone.

• There is a directed edge between each pair of zones.

• The edge weight between zones z1 and z2,

ωz1z2 =
∑

p1∈z1,p2∈z2

1[wp1p2<0]wp1p2

where wp1p2 is from G.

49

Permute

Choose the directed edge e = (z1, z2) in G0 with minimum weight
Let z1 be the first zone and z2 the second zone in the permutation
While there remains a zone not yet in the permutation

Select the edge e = (z1, z2) with minimum weight where z1 is the zone
most recently added to the permutation and z2 is a zone not in the permutation

Add z2 to the end of the permutation
End while

Figure 16: Permutation Algorithm

To compute the edge weights ωz1z2 , we consider all pairs of products p1 ∈ z1, p2 ∈ z2. If the

move of p1 to the location of p2 improves the objective, the objective change wp1p2 is added

to ωz1z2 . Note that, by construction, all edge weights in G0 are non-positive.

On the graph G0 we do a greedy search for a permutation (Figure 16). First we select

the edge with smallest weight and add the associated zones to the permutation. Then we

iteratively choose the edge starting at the last zone in the permutation which terminates in

a zone not yet selected which has minimum weight. The as yet unselected zone is added to

the permutation. This terminates when every zone is included in the permutation.

Performing this algorithm on G0 defines a sequence of zones ζ1, . . . , ζ|Z| where ζi is the

ith zone in the permutation. We let |ζi| denote the number of products stored in this zone.

Now that we have found a permutation, the graph G1 is constructed (Figure 17). For each

product there is a node in G1. There is a directed edge between each pair of products p1, p2

for which the zone of p1 occurs earlier in the permutation than the zone of p2. Note that

unlike in G, in G1 exactly one of the edges (p1, p2), (p2, p1) occurs but not both. The edge

weight is exactly the same edge weight as defined for G. In addition to the subgraph of G

just described, a dummy sink node, s, is created. Let p0 ∈ ζi denote the starting node for a

cyclic exchange. There is an edge from every product p ∈ ζj , j > i, to node s. The weight

of these edges is wpp0 so that these edges correspond to moving p to the location of p0, the

starting node.

Using the graph G1, we can find a minimum weight cycle. We have constructed G1 so

that it is a DAG. A Θ(V + E) algorithm is given for solving the single source shortest path

50

Figure 17: Structure of G1

problem in a DAG in [7]. Running this algorithm to find a shortest path finds a cycle of

products because s is identified with the first node on the path. By construction, the path

must contain at least one product node besides the starting node p0 and may contain up to

|Z| total product nodes. It cannot find self loops.

The DAG-shortest-paths algorithm works on a topological sort of the vertices. For each

permutation, the edges from a particular vertex in the topological sort is the same. Only

the locations of individual products in the topological sort changes. Therefore, to efficiently

implement G1, we construct the graph on the topological sort. The vertices and edges

need only be defined once. However, the edge weights must be reevaluated each time the

locations of products in the topological sort change.

On G1, we search a restricted set of cyclic exchanges. For any starting node p0 in zone

ζi, we consider cyclic exchanges that include p0 and products from all subsequent zones,

but not products from zones preceding ζi. At most one product from each zone subsequent

to ζi can be in the cycle, and the products included must be in ascending zone permutation

order. In our algorithm we consider three cases for p0. The first case lets the starting node

p0 be one particular product in ζ1. The second case expands upon the first by letting p0 be

each possible product in ζ1. The third case set expands upon the second by allowing p0 to

be a product from any of the first |Z| − 1 zones in the permutation. In the first case, we

run the DAG shortest path algorithm once. In the second case, it runs |ζ1| times. In the

last case it runs |P | − |ζ|Z|| times.

We have discussed the main issues involved in finding a good improving cycle. Now we

51

Cyclic Exchange

While found an improving cycle in last permutation or
did not let the starting zone be any zone in last permutation

Construct G0 and run Permute
Construct G1

If permutation is different from previous one
Evaluate edge weights in G1 for all edges not incident to origin
While Find Cycle(ζ1)

Perform cyclic exchange
Else

For i = 2 to |Z| − 1
Find Cycle(ζi)

If cycle was found
Perform cyclic exchange

End if . . . else
End while

Find Cycle(z)

For each product p contained in z
Set origin to p and evaluate edge weights in G1 for all edges incident to p
Run DAG-shortest-paths
If the path found has weight smaller than current cycle

Set cycle to the one defined by this path
End for
If cycle has negative weight, return True
Else, return False

Figure 18: Cyclic Exchange Algorithm

present a summary of the algorithm in Figure 18 and discuss the implementation details.

We use the second case for p0 and perform the exchange indicated by the minimum weight

cycle so long as the cycle weight is negative. Observe that when we vary the starting node

p0, all arcs in G1 incident to p0 must be updated. This includes both arcs of the form wp0p

and wpp0 for p 6= p0. Also observe that if the cycle found does not include all zones, we can

run the minimum weight cycle algorithm on the remaining zones to find an additional cycle.

We do not implement this latter idea because it is unlikely to lead to significant additional

improvement.

If the minimum cycle weight is nonnegative, we look for a new zone permutation. Cycles

52

are then evaluated in the graph G1 defined by this permutation. If no cycle can be found

for a particular permutation, we extend the search space to the third one described. If a

cycle is found in this search space, we return to the second search space. If no cycle is found

in the largest search space, the algorithm terminates. As with 2-exchanges, the algorithm

is guaranteed to finitely terminate because only improving exchanges occur.

Prior to terminating, there are several other neighborhoods one might try short of

examining all permutations which would find any improving simple cycle. We might try to

reverse the direction of all the arcs in the graph. Or we could pick a point in the permutation

and move all zones prior to this point to the end of the permutation. The experimental

results indicate that most improvements in the cyclic exchange algorithm come without

expanding the search space to the largest neighborhood. Therefore, it seems unlikely that

these approaches will significantly improve the objective while they will certainly increase

the running time.

4.2.2.1 Size of Search Space

Now we will consider how large a search space our cyclic exchange algorithm examines. For

a given permutation of zones, it considers all exchanges in which products from an earlier

zone can be exchanged with products in a later zone. At most one product from any one

zone may move, and one particular product from the first zone must be involved in the

exchange.

Theorem 4.2 Starting from a single starting product, the number of cycles in the search

space is
|Z|∏

i=2

(|ζi|+ 1)− 1

Proof First, we comment that the (|ζi| + 1) term has the +1 to count exchanges of a

product from ζi with a zone other than ζi+1. The -1 ensures that we do not count the self

loop associated with moving the starting product to the dummy node.

The proof is by induction on |Z|. In the base case, |Z| = 2, it is clear that the starting

product can exchange locations with any product in the second zone. Now we demonstrate

53

this:
|Z|∏

i=2

(|ζi|+ 1)− 1 = (|ζ2|+ 1)− 1 = |ζ2|

Now, assume that the statement is true for |Z| = k. For |Z| = k + 1 we have:
(

k∏

i=2

(|ζi|+ 1)− 1

)
+

(
k∏

i=2

(|ζi|+ 1)− 1

)
|ζk+1|+ |ζk+1|

where the first term is the number of possible cycles ignoring ζk+1, the second is the number

of possible cycles using some other zones along with ζk+1, and the third is the number of

possible cycles using only ζk+1. This can be rewritten as:
(

k∏

i=2

(|ζi|+ 1)− 1

)
(|ζk+1|+ 1) + |ζk+1|

=
k+1∏

i=2

(|ζi|+ 1)− (|ζk+1|+ 1) + |ζk+1|

=
k+1∏

i=2

(|ζi|+ 1)− 1

which completes the proof.

We then have the following corollaries:

Corollary 4.1 There are O
(
(|P |/|Z|)|Z|) cycles starting from a single starting product.

Proof Since ζ1 can be any zone so to maximize the product from Theorem 4.2 we would

like to solve:

max
|Z|∏

i=1

(|zi|+ 1)

s.t.
|Z|∑

i=1

|zi| = |P |

|zi| ≥ 0, i = 1, . . . , |Z|
From [6] we know that when ai are positive real numbers,

∏m
i=1 ai ≤ (

∑m
i=1 ai/m)m with

equality when ai = aj ∀i, j. Therefore for this problem the optimal solution sets |zi| =

|zj | ∀i, j which gives an objective value of (|P |/|Z|+ 1)|Z|. Theorem 4.2 excludes one zone

from the product so the maximum value is (|P |/|Z|+ 1)|Z|−1. Also, in general, |zi| =

|zj | ∀i, j. Therefore there are O
(
(|P |/|Z|)|Z|) cycles.

54

Corollary 4.2 If the |ζi| are balanced, that is |ζi| ≈ |P |/|Z| ∀i, then there are

(|P |/|Z|+ 1)|Z|−1 − 1 or Θ
(
(|P |/|Z|)|Z|−1

)
cycles.

Observe that Corollary 4.2 shows that the search space is exponential in the number of

zones. We also note that in typical warehouses |P |/|Z| > |Z| so the number of cycles is

greater than |Z||Z|−1.

In the situation where no cycle can be found from the first zone in the permutation, we

search a larger search space. Here we let the starting zone be any zone except the last one.

From Theorem 4.2 it is easy to see that the search space in this situation is:

|Z|∑

j=2



|Z|∏

i=j

(|ζi|+ 1)− 1


 =

|Z|∑

j=2

|Z|∏

i=j

(|ζi|+ 1)− |Z|+ 1

If we assume as before that the |ζi|’s are balanced and that |P |/|Z| > |Z|, then the number

of cycles is

|Z|−1∑

i=1

(|P |/|Z|+ 1)i − |Z|+ 1

>

|Z|−1∑

i=1

(|Z|+ 1)i − |Z|+ 1

=
|Z|−1∑

i=2

(|Z|+ 1)i + 2

4.2.2.2 Running Time per Iteration

In Section 4.2.1.2 we argued that an edge weight can be computed in constant time. To

populate graph G1, Θ(|P |2) edge weights must be computed as a setup cost. We also

must run the Permute algorithm. Given the edge weights wp1p2 , we can compute the

weights ωz1z2 for G0 in Θ(|P |2) time. The first step in Permute is to determine the most

negative edge weight. This requires |Z|(|Z| − 1) = Θ(|Z|2) evaluations and adds two zones

to the permutation. Successive steps in Permute add the most negative edge incident

to the last zone in the permutation. When there are k zones still to be added to the

permutation, this requires k evaluations. Since this must be done |Z| − 2 times, there are
∑|Z|−2

k=1 k = |Z|(|Z| + 1)/2 − 2 = Θ(|Z|2) total evaluations. Hence the total run time for

Permute is Θ
(|P |2 + 2|Z|2) = Θ(|P |2) since |Z| < |P |.

55

In Section 4.2.2 we stated that we can search for the best exchange in a graph by solving

the shortest path problem in Θ(V + E) time. For our graph V = |P |+ 1 and E is Θ(|P |2)
so the shortest path problem takes Θ(|P |2) time to solve. In total, for a particular starting

product we can find an improving cycle in Θ(|P |2) time. In the case where no improving

cycle is found from a product in zone ζ1, we perform |P | − ζ|Z| runs. Hence the total search

time in this case is Θ
(|P |2(|P | − ζ|Z|)

)
= Θ

(|P |3). In either case we search an exponential

space in polynomial time.

The difference in run time from the 2-exchange algorithm is that here it is Θ(|P |2)
starting from the first zone whereas for 2-exchanges it is O(|P |2). Another difference between

the two algorithms is that the 2-exchange algorithm searches all possible 2 exchanges. The

cyclic exchange algorithm searches all 2-exchanges as well as all cycles that follow the zone

permutation as described in Section 4.2.2.

4.2.3 Cyclic Exchange: Null Moves

Here we extend the neighborhood defined above to include unused storage spaces in a zone.

Previously, every cycle moved products from one zone to the next. That is, we were able

to represent a cycle involving n zones as C = (p1, p2, . . . , pn, p1) where pi ∈ P ∀i. Now

we allow a cycle to include moves involving empty slots within a zone provided they exist

(Figure 19). While the above representation of a cycle is still valid, we now include at most

one node p /∈ P for each zone. We restrict our search to cycles where for each arc (p, q),

at least one of p and q is in P . That is, we eliminate cycles that move an empty node to

another empty node. We allow the following types of edges (p, q) (Figure 20):

1. p, q ∈ P - the type of edge allowed previously

2. p ∈ P, q /∈ P - moves a product to an empty node

3. p /∈ P, q ∈ P - allows the cycle to continue with a product after including an empty

node

Including null exchanges allows for path exchanges (pi ∈ P ∀i 6= 1), standard cyclic ex-

changes (pi ∈ P ∀i), and exchanges with multiple null moves.

56

Figure 19: Illustration of Standard Cycle vs. Cycle with Null Exchanges

Figure 20: Possible Edges when Null Exchanges are Permissible

57

Figure 21: Structure of GN

When we defined G1 previously, we had a node for each product and a downstream

arc between any pair of products in different zones. Structurally, we were able to create

the node and arc structure once because a cycle only changed the product represented by

a particular node. Now that we allow null moves, the number of products in a zone may

change thereby changing the arc structure. To avoid potentially having to modify the graph

each time an improving cycle has been detected, we define an extended skeletal graph. For

each zone we have a node for each unit of capacity rather than for each product as in G1.

Aside from the extra vertices, the graph structure is identical. To determine an improving

cycle, a subgraph of this skeletal graph is used which we refer to as GN (Figure 21).

To form GN , each product is assigned to a node in its respective zone. Remaining

unassigned nodes correspond to empty slots within a zone. For each zone z ∈ Z we define

uz = vertex identified with one of the nodes not being occupied by a product

ρz = residual capacity of zone z

If ρz = 0, the zone is full and uz is ignored as a vertex in GN . Otherwise it is present and

any null exchange involving zone z must go through uz. This avoids the redundancy of

considering a separate null exchange for each empty slot in z. To summarize, GN contains

a node for each p ∈ P , a node uz ∀z ∈ Z, and the terminal node s. The edge structure is as

follows. As in G1, there is a downstream arc into s for every node not contained in zone ζ1.

There is a downstream arc between each pair of nodes in different zones with the following

58

exceptions: if ρz = 0, there are no edges incident to uz; there is no arc between uz and uz′ ,

for z 6= z′.

The edge weight between two nodes containing products is the same as before. An edge

going from an empty node to a node containing a product has zero weight. For an edge

going from a product node to an empty node, the weight computation is as before except

that the third computation is unnecessary.

The search for cyclic exchanges on the graph GN is identical to the search on the graph

G1. By construction, the graph does not allow infeasible null moves. The graph update is

unchanged except for one case. If an exchange involving uζi is contained in the best cycle,

the node identified with uζi must be changed and ρζi as well as ρζi+1 must be updated

(Figure 22). Since the skeletal graph exists, it is not costly to change uζi .

4.2.3.1 Size of Search Space

As described, we have expanded the search space. Previously we had |ζi| nodes in the ith

zone. Now we have |ζi|+1 nodes if ρζi > 0 and |ζi| nodes otherwise. We make the following

claim about the number of cycles in the expanded search space:

Theorem 4.3 The number of cycles in the search space is

Θ



|Z|∏

i=2

|ζi|



Proof It is clear that there are at least as many cycles as when null moves are not allowed.

Hence there are at least
|Z|∏

i=2

(|ζi|+ 1)− 1

cycles in the search space.

If every zone has |ζi|+ 1 nodes, there are fewer than

|Z|∏

i=2

((|ζi|+ 1) + 1)− 1 =
|Z|∏

i=2

(|ζi|+ 2)− 1

cycles because the formula treats the extra nodes as if they are product nodes. However,

unlike product nodes, there are no arcs between uz and uz′ , for z 6= z′. This completes the

proof.

59

Figure 22: Update of GN for a Null Move

60

We have corollaries similar to those in Section 4.2.2.1:

Corollary 4.3 There are O
(
(|P |/|Z|)|Z|) cycles starting from a single starting product.

Corollary 4.4 If the |ζi| are balanced, that is, |ζi| ≈ |P |/|Z| ∀i, then there are

Θ
(
(|P |/|Z|)|Z|−1

)
cycles.

4.2.3.2 Running Time per Iteration

When we have null swaps, the graph can have up to |P |+|Z| vertices. The graph has Θ(|P |2)
edges between product nodes and Θ(|P |) edges incident to empty nodes. Therefore, there

are still Θ(|P |2) edges. Computing individual edge weights still takes constant time and is

a setup cost of the problem. The run time for Permute is Θ(|P |2) as before. The shortest

path problem can still be solved in Θ(E) = Θ(|P |2) time. Therefore, for a particular

starting product, it still takes Θ(|P |2) time to find an improving cycle. In the case where no

improving cycle is found from a product in zone ζ1, we can perform up to |P |+ |Z|−ζ|Z|−1

runs. Hence the total search time in this case is Θ
(|P |2(|P |+ |Z| − ζ|Z| − 1)

)
= Θ

(|P |3).
Here the search times are the same as in the basic case.

61

CHAPTER 5

GENERALIZATIONS

The algorithms in Chapter 4 focused on the special case where each product only had

one pallet, (IP1pal). In this chapter we will generalize these approaches to the models

where products may have multiple pallets, (IPnoSS), and where stock splitting is allowed,

(IPgeneral). For simplicity of discussion, we will assume each order occurs once, nr = 1 ∀r,
and each zone has unit entry cost, ez = 1 ∀z.

5.1 Different Product Sizes

In this section we generalize the product storage requirements so that it may be necessary

to store multiple pallets of the same product. We have restricted the situation so that all

pallets of a product must be stored in the same zone, i.e. we do not allow stock splitting

until Section 5.2. The main change from Chapter 4 where each product required exactly

one unit of storage is the feasibility of product to zone assignment. Instead of ensuring

that the number of products in a zone does not exceed the capacity as we did previously,

we now must ensure that the volume of products assigned to a zone does not exceed the

capacity. A smaller change is that where the algorithms used popularity, they now use COI

to adjust for different product sizes. The construction approaches discussed previously are

easily extended with these modifications. Below, we discuss in detail how the improvement

methods can be generalized.

5.1.1 2-Exchange

Previously when doing an exchange, feasibility was not an issue. Any product could fit in

the storage space of any other product, so any exchange was feasible. Now it is possible

that a large product may be unable to fit in a zone replacing a small product. As we do

when cyclic exchanges allow null swaps, for each zone we must keep track of the residual

capacity, ρz in order to check feasibility. Recall from Section 2.2 that vi is the number of

62

Figure 23: 2-Exchange Move when Products have Different Sizes

pallets of product i. An exchange involving product i from zone m and product j from zone

n will be feasible if there is sufficient space in both zones, i.e. vi + ρm ≥ vj and vj + ρn ≥ vi

(Figure 23). We can extend the 2-exchange approach to incorporate null exchanges, that

is, moves of a single product to a different zone exchanging it with empty space. When one

node is an empty space, the feasibility test is the same except that vi = 0 for the empty

node (Figure 24). Other than the modification of the feasibility test and updating ρz at

each iteration, the algorithm proceeds as discussed in Section 4.2.1.

The search space includes any feasible exchange of two products from different zones.

There are O(|P |2|) such moves. In addition, any product may move into a different zone

with sufficient extra capacity. There are Θ(|P | ∗ |Z|) such moves. Hence the search space

in this case is Θ(|P |2|) like before. Since the algorithm proceeds as in Section 4.2.1, and

we must still consider at most Θ(|P |2) possible moves to find an improving exchange, the

running time is O(|P |2) as before.

5.1.2 Cyclic Exchange

We can treat cyclic swaps of different sized products as generalizations of cyclic swaps with

null moves. We define GN as in Section 4.2.3 (Figure 25). That is, we maintain the residual

63

Figure 24: 2-Exchange Move with Empty Spaces

capacity of a zone, ρz, a node corresponding to extra capacity in a zone, uz, and identify one

underlying node with each product. The arc structure is also identical. The only difference,

as with 2-exchanges is that certain edges will be infeasible due to the lack of space for

different product sizes. For an arc replacing product j in zone n with product i in zone m,

it is feasible if vj + ρn ≥ vi. If the node from zone m corresponds to unused capacity um,

the arc is feasible. If the node from zone n corresponds to unused capacity un, the arc is

feasible if ρn ≥ vi. We do not allow arcs where both nodes represent empty slots. In this

slightly modified graph with the infeasible arcs eliminated, we search for a cycle on GN as

before. To update the graph, we can follow the same approach as in the case with null

swaps.

The search space and algorithm are the same as the cyclic exchange method with null

moves from Section 4.2.3 except that some additional arcs are infeasible. The removal of

these arcs does not effect the complexity of the search space, so it still contains Θ
(∏|Z|

i=2 |ζi|
)

cycles. The complexity of the running time is also not effected by the removal of these arcs

so it remains Θ
(|P |3).

64

Figure 25: Cyclic Exchange Graph with Products of Different Sizes

5.2 Stock Splitting

The second modification we consider generalizes the case where one may have multiple

pallets of the same product to allow stock splitting, i.e. pallets of the same product each

stored in different zones. Stock splitting may be particularly beneficial for products that

commonly occur with disjoint groups of products. In addition, stock splitting gives flexibility

as to which zones are visited to fill an order.

Aside from [23], previous authors have not discussed stock splitting in the correlated

storage assignment problem. It is more complicated to generalize the approaches of Sec-

tions 4.1.3 and 4.1.4 in this case. Allowing stock splitting extends the range of feasible

assignments. However, we can still use a non-stock-splitting approach to construct a feasi-

ble solution and use our improvement methods to rearrange and split products in favorable

ways.

Before discussing these methods in further detail, we must address one major compli-

cation that arises when we allow stock splitting. When all pallets of a product are stored

together, it is not difficult to compute an order’s contribution to the objective. One simply

visits all zones that contain some product from the order. By allowing stock splitting we

now potentially have a choice of which zones to visit. If some product has multiple pallets

each stored in a different zone, we can now choose from which zone we wish to retrieve that

product. Given a choice, we would like to visit as few zones as possible. That is, for each

65

order r ∈ R we now have the following set covering problem.

(IPset cover)r = min
∑

z∈Z

yz

s.t.
∑

l∈L:pl=p

yz ≥ 1 ∀p : (r, p) ∈ D

yz binary ∀z ∈ Z

where

yz = 1 if zone z is visited to fill the order; 0 otherwise

The formulation minimizes the number of zones visited. For each product, at least one zone

must be visited that contains a pallet of that product.

There are |R| such problems and they are each NP-Complete. However, when the

average order is small, these are small problems. We show in Chapter 6 that the computation

time needed to solve these problems is reasonable for a large real world data set.

We now describe how we modify construction and improvement heuristics to obtain

good stock-split solutions to the problem.

5.2.1 Random Assignment

When stock splitting is permitted, we use random assignment to place each pallet indepen-

dently regardless of the product it contains. Each pallet is randomly assigned to a zone so

long as the zone has remaining capacity. Thus, the initial solution allows for stock splitting.

As before, if the zone is full, a different zone to store the product is randomly generated.

This continues until all pallets have been assigned.

5.2.2 Popularity

The popularity heuristic proceeds much as before except that we exploit the ability to split

products. Products are ranked from greatest COI to least COI and the zones are ordered

ζ1, . . . , ζn. We proceed down the product list placing products in the active zone until it

reaches maximum capacity. Then we move onto the next zone. In this case, if a product has

more than one pallet of storage so that it is eligible for stock splitting we do not place all

pallets in the active zone. The first pallet is placed in the active zone with each subsequent

66

Figure 26: Cyclic Exchange Graph when Stock Splitting is Permitted

pallets placed in the successive zones in the zone ordering. If pallets remain after the final

zone is reached, they are placed in the active zone subject to capacity. This approach

ensures that at any point in the algorithm, for zones ζi and ζj with i < j, the utilized space

of zone ζi is greater than or equal to that of zone ζj .

5.2.3 Cyclic Exchange

When stock splitting is permitted, we can use the cyclic exchange procedure to take either

a split or non-split solution and generate a solution with stock splitting. The basic graph

structure is the same as GN where null moves are allowed but there is no stock splitting.

The main difference between this case and the previous cases is that we now identify a node

in the graph as containing a pallet rather than a product (Figure 26). This enables us to

separate the pallets of a product since each pallet is now a logical unit.

Treating each pallet as a unit does not effect the presence of arcs in the skeletal graph

underlying GN but does impact the effective graph. Feasibility was complicated when we

allowed products to have different storage sizes but moved all pallets of a product together.

Here feasibility reverts back to the simpler case of null swaps with each product occupying

67

one unit of space. The feasibility check is to verify that ρz > 0.

We have mentioned that stock splitting complicates the computation of the objective.

This main difficulty for cyclic swaps is in the computation of the arc costs. When moving a

pallet from zone i to zone j, we can no longer say with certainty that the product associated

with that pallet was previously picked from zone i and is now picked from zone j. If we

wanted to be able to make such a statement, we would have to solve (IPset cover)r ∀r ∈ R

before executing the move and again for the system resulting from the entire series of swaps

in a particular cycle. This is too expensive to do for each potential cycle.

Our solution is to use arc costs so that executing improving cycles found with these

costs improves the objective. Let us define the following data:

zl = zone to which pallet l has been assigned

lrp = pallet used to retrieve product p from order r

srz = number of products from order r that are picked from zone z

wij = cost of arc that moves pallet i to the location occupied by pallet j,

assuming that lrp does not change when this move is made

Of particular note is lrp. By tracking this piece of data, we make the decisions specified by

(IPset cover)r.

We can solve (IPset cover)r ∀r ∈ R before executing any cyclic swaps and reevaluate it

after every iteration. However, this is computationally intensive, so in practice we only

want to reevaluate it every k iterations, for some fixed parameter k.

Theorem 5.1 Suppose we have used our cyclic exchange procedure to identify a sequence

of k cyclic swaps since the last solution of (IPset cover)r ∀r ∈ R. If we have used wij as arc

costs in the cyclic exchange graph, then executing the sequence of k cyclic exchanges will

improve the solution.

Proof Let x be the initial assignment of pallets to zones.

Case 1: k = 1, i.e. , we have just solved the set covering problems. Therefore, we have

calculated lrp, the optimal pallets to pick each product for each order, with true cost z.

68

The conservative edge weights, w, represent the edge weights if lrp does not change, i.e.

one picks the same pallets that were selected in the set covering problems. If an improving

cycle C was detected using these edge weights, then v(C) < 0 where v(C) is the weight of

the cycle. Therefore, if one picks the same pallets for the orders, i.e. , uses the same lrp, the

new solution x′ has cost z′ = z + v(C) < z. However, we might do better if we re-solve the

set covering problems to obtain l′rp, the optimal pallets to pick each product in each order,

with true cost z′′. Since lrp with value z′ is feasible to the set covering problems, z′′ ≤ z′.

Therefore z′′ ≤ z′ < z and C is an improving cycle under real edge weights as well as for

conservative edge weights.

Case 2: Since last solving the set covering problems to obtain lrp, we have found k > 1

improving cycles, C1, C2, . . . , Ck, using conservative edge weights. The solution resulting

from executing all the cycles, x′, has cost z′ = z + v(C1) + v(C2) + . . . + v(Ck). Since these

cycles were improving under the conservative edge weights, v(Ci) < 0 i = 1, . . . , k, we have

z > z + v(C1)

> z + v(C1) + v(C2)

...

> z +
k∑

i=i

v(Ci)

= z′

When we re-solve the set covering problems to obtain l′rp, the optimal pallets to pick each

product in each order, it has value z′′. Since lrp is feasible to the set covering problems,

z′′ ≤ z′. Therefore z′′ ≤ z′ < z and we have improved the solution since last solving the set

covering problems under both conservative and real edge weights.

Theorem 5.1 shows the benefit of solving the set covering problems more often. Case 1

shows that for k = 1, re-solving the set covering problem after every improving cycle, we are

guaranteed to improve the objective. Case 2 demonstrates that multiple cycles collectively

improve the objective with no guarantee that each one individually improves the objective.

Therefore, for smaller values of k, it is more likely that each cycle improves the objective.

69

Now we will describe how to compute wij and update srz. For arc (i, j), ∀r ∈ R : (r, p) ∈
D, pi = p, lrp = i let srzi := srzi − 1 and srzj := srzj + 1. Start with wij = 0 and do the

following:

1. If srzi = 1, let wij := wij − 1

2. If srzj = 0, let wij := wij + 1

3. If srzj = 1, (r, pj) ∈ D, and lrpj = j, let wij := wij + 1

The update is similar to the update from Section 4.2.1 where there was no stock splitting.

We consider orders r that contain pi and use pallet i to retrieve pi for the order. In the first

computation, if pi is the only product from r contained in zi, we no longer need to visit the

zone to fill the order so the objective improves by one. In the second computation, if z2

contained no pallet of a product used to fill order r, we now must visit this zone to retrieve

pi so the second computation increases the objective by one. The third computation adjusts

for the case where pj is the only product from r contained in zj and pallet j is used to fill

product pj for the order. In this case, the weight for the edge from p2 will mistakenly give

a benefit for order r. Since any cycle has both an inbound and an outbound edge to p2, the

third computation offsets this case.

This update may not give the best choice of lrp because moving pallet i from zone zi to

zj may result in the selection of pi from an entirely new zone for the order. It is also possible

that all other products from the order currently picked from zi should also be picked from

zone zj . That is, we should set lrp′ = zj for every p′ such that (r, p′) ∈ D and lrp′ = zi and

not just for p.

Once we have determined the costs for each each arc in the graph, the cyclic swap

heuristic proceeds in the same way as it did when we did not have stock splitting. Note

that to reduce the search space, we consider only the first pallet of a product in a particular

zone for edge cost computation and for the DAG algorithm; every other pallet would have

exactly the same set of improving edges.

70

5.2.3.1 Size of Search Space

The search space is similar to the case of cyclic swaps with null moves. The difference in

this case is that we redefine |ζi| to be the number of pallets stored in the ith zone instead of

the number of products. After this definition modification, the search space still contains

Θ
(∏|Z|

i=2 |ζi|
)

cycles.

5.2.3.2 Running Time per Iteration

When the values of lrp∀(r, p) ∈ D are given, the running time for the cyclic swap algorithm

is the same as for cyclic swap with null moves. Only the arc cost computation has changed,

and it is of the same difficulty as it was before. Therefore, for given lrp the total search

time is Θ
(|P |3). As stated in Section 5.2, solving (IPset cover)r ∀r ∈ R requires solving |R|

small NP-Complete problems. So iterations which require solving (IPset cover)r ∀r ∈ R take

O(|R|2s∗) time while the other iterations take Θ
(|P |3) time.

5.3 Rewarehousing

In Section 2.4 we showed how to extend the formulations to incorporate a rewarehousing

cost. Here we briefly discuss how to include the rewarehousing cost in the improvement

techniques. To search for an improving cycle, we evaluated edge weights wij which indicate

the change in objective from moving pallet i to the location of pallet j. From this value we

will subtract the rewarehousing cost, cm, if the pallet is currently stored in the incumbent

location. When a pallet has moved and we wish to consider returning it to its incumbent

location, we add cm. With this minor modification of the edge weights, the algorithms

proceed exactly as described earlier.

71

CHAPTER 6

COMPUTATIONAL RESULTS

In this chapter, we present computational results for the algorithms we discussed in Chap-

ters 3, 4, and 5.

6.1 Data

The data set used to test the model was obtained from a potential client of a global third-

party logistics provider who cannot be revealed due to confidentiality. The data for this

warehouse has 12,845 products, 293,404 orders, and 508,006 distinct order-product pairs.

Of this total, 10,644 products are used in 74,202 multi-product orders for a total of 288,870

order-product pairs. Hence there are an average of just fewer than four products per multi-

product order. We treat duplicate orders that come at different times as separate for the

purposes of order picking.

The data was in a MS Access database which we cleaned up using queries. Since there

was no information about the number of zones, we assumed that there were 40 zones for the

complete data set as this is a common number for warehouses of this size. We also assumed

that all zones had equal capacity, and that the overall system had 10% excess capacity

spread equally across all the zones. Excess storage capacity is common in warehouses. In

our case it is required for the products which do not appear in multi-product orders. We

also considered subsets of the complete data set. The problem sizes are summarized in

Table 1.

For purposes of comparison, Table 2 summarizes the problem sizes of some of the work

discussed in Section 1.4. Observe that the problem sizes we consider are significantly larger

than those reported in the literature. Only [21] gives results for problem sizes close to ours.

72

Table 1: Data Used in Computational Tests

Products Multi-product orders Line items Zones
100 711 1,922 10
1,000 14,308 44,540 20
2,000 21,827 74,089 20
5,000 52,131 199,035 30
10,644 74,202 288,870 40

Table 2: Problem Sizes of Previous Authors

Author Products Orders Zones
Frazelle [10] n/a 5,000 300
Sadiq [23] 300 n/a n/a
Rosenwein [21] 1,000 75,000 60
Amirhosseini et al. [4] 500 1,000 n/a
Liu [18] 20 n/a n/a

6.2 Larger Data Sets

Recall from Chapter 4 that to compute the edge weights (p, q) in the improvement graphs,

the popularity of a product, and the pairwise popularity of p, q we had to consider all orders

containing a product. Also, to update the multipliers in the Lagrangian relaxation approach

we had to consider all orders (Chapter 3). It is possible for the order history to contain

many millions of orders. In such cases, one may consider a subset of the order history

containing ”good” orders so as to speed up the algorithms. Further good orders could then

be included during the construction or improvement algorithm being used. Leaving out

orders gives an objective below the actual value but does not affect the feasibility of an

assignment.

There are several ways to select a good subset of orders. One approach is to consider

which orders will net the largest savings by being added to the algorithm. To do this, we

can use the probabilities from Section 4.1.1 to determine the expected number of zones

necessary to fill an order if the algorithm does not consider it. This value is compared

to a target number of zones that likely can be obtained if the order is considered in the

algorithms. To implement this approach, one must estimate reasonable targets.

73

Another idea to consider only those orders containing products that are frequently

ordered together. To determine such products we can use clustering approaches. However,

this alone may not be sufficient. If two items are frequently ordered together but almost

always occur with additional items, then putting these items in the same zone is not enough

because one will have to leave the zone to retrieve the other items. Hence, one needs to

consider how often the products, if placed together, will come close to filling an order [4].

That is, we would divide the number of times the products occur together by the average

order sizes in which the products occur. There are many other methods to determine

candidate products. Once the candidate products have been determined, orders containing

those products are added to the algorithm.

These methods were not required for the data in this study.

6.3 Results

We implemented all our algorithms in the C programming language with use of the CPLEX

callable library. In addition, as discussed in Chapter 4, we adapted the algorithms of [10]

and [4]. We refer to Amirhosseini and Sharp’s algorithm by just Amirhosseini in the tables.

The performance of their algorithm is presented for each of the six correlation measures they

propose. In the tables, the best performance in each column is in bold. The experiments

were run on a Dual Xeon 2.4 GHz machine with 2GB of RAM.

6.3.1 One Pallet for Each Product

In our first computational experiment, we tested the basic case where each product requires

a single pallet of storage. Tables 3, 4, 5, and 6 present the number of zones visited for each

data set using each algorithm. To compute the expected number of zones using random

assignment for the 100 product data set, we use the information in Tables 8 and 9. Similar

information is used for the other data sets.

Limited results are presented for the full data set due to limits on machine memory.

The clustering approaches have to store information about 113,284,092 product pairs which

requires more memory than is available on our machines. The Lagrangian relaxation (L)

has 10,684 constraints, 425,760 x variables, 2,968,080 y variables, and 11,554,800 µ values.

74

Table 3: Comparison of Heuristics: 100 Products

Algorithm Initial 2-Exchange Cyclic Cyclic: Null Moves
Random 1731 948 794 784
Popularity 888 821 806 806
Lagrangian 846 791 780 793
Frazelle 907 837 795 818
Particle 1202 959 794 799
Amirhosseini 1 785 780 769 769

2 1069 831 812 812
3 775 775 775 775
4 787 780 776 776
5 790 787 782 783
OSCM 786 777 775 771

Upper Bound 1922
Lower Bound 711
Optimal 764

The optimal solution for the 100 product problem requires 3.5 weeks to terminate.

Therefore it is unlikely that the larger problems can be solved optimally.

6.3.1.1 Construction Heuristics

We observe that the first and third correlation measure perform best for Amirhosseini and

Sharp’s algorithm, and outperform each of the other algorithms as well. Note that these

measures are not the new one they define, OSCM. It is also interesting that following this

algorithm, the order of the best performers is: Popularity, Lagrangian relaxation, Frazelle,

Particle, Random. Random assignment is worst as expected. One would expect popularity

to perform poorly because it does not consider any notion of product correlation but it

does reasonably well. The particle heuristic performs unexpectedly poorly. Due to this and

its sensitivity to its parameters, we do not give results for larger problem sizes. Frazelle’s

heuristic is motivated by a travel distance objective rather than minimizing the number of

zones visited. It is possible that this hurts its performance when using our objective. The

Lagrangian relaxation method’s performance is sensitive in the parameters used. Therefore,

we might be able to improve its performance with more experimentation on its parameters.

75

Table 4: Comparison of Heuristics: 1000 Products

Algorithm Initial 2-Exchange Cyclic
Random 41071 26608 22830
Popularity 25808 24839 22615
Lagrangian 29756 26606 22294
Frazelle 31635 28875 22366
Amirhosseini 1 22462 22359 22226

2 26240 25229 22502
3 22948 22391 22184
4 31215 28791 22230
5 31400 28351 22241
OSCM 25517 24144 22241

Upper Bound 44540
Lower Bound 14308
Optimal n/a

Table 5: Comparison of Heuristics: 2000 Products

Algorithm Initial 2-Exchange Cyclic
Random 66836 37072 35471
Popularity 40166 39156 35973
Lagrangian 47668 38843 35139
Frazelle 56069 51185 34530
Amirhosseini 1 35260 34889 34409

2 40736 39438 35900
3 37694 36508 34668
4 49504 44852 34328
5 51738 47225 34724
OSCM 46145 43684 34855

Upper Bound 74089
Lower Bound 21827
Optimal n/a

76

Table 6: Comparison of Heuristics: 5000 Products

Algorithm Initial 2-Exchange Cyclic
Random 180801 105217 92958
Popularity 114459 111542 97446
Lagrangian 135380 104941 92394
Frazelle 148518 139157 95542
Amirhosseini 1 99211 98202 94902

2 114371 111118 96305
3 112268 108367 90002
4 134612 122697 90113
5 136979 125591 91513
OSCM 120856 115139 90762

Upper Bound 199035
Lower Bound 52131
Optimal n/a

Table 7: Comparison of Heuristics: 10644 Products

Algorithm Initial
Random 266665
Popularity 174624
Lagrangian 215881
Frazelle n/a
Amirhosseini 1 n/a

2 n/a
3 n/a
4 n/a
5 n/a
OSCM n/a

Upper Bound 288870
Lower Bound 74202
Optimal n/a

77

Table 8: Probabilities (z = 10)

k l
1 2 3 4 5 6 7

2 0.1 0.9
3 0.01 0.27 0.72
4 0.001 0.063 0.432 0.504
5 0.0001 0.0135 0.18 0.504 0.3024
6 0.00001 0.00279 0.0648 0.3276 0.4536 0.1512
7 0.000001 0.000567 0.021672 0.1764 0.42336 0.31752 0.06048

Table 9: Distribution of Order Sizes: 100 Products

k number of orders, Nk

2 242
3 58
4 16
5 4
6 4
7 1

For the full data set, the Lagrangian relaxation algorithm has a running time of approx-

imately 10 hours while the popularity based heuristic takes under 2 minutes to run.

6.3.1.2 Improvement Heuristics

Both the 2-exchange and cyclic exchange algorithms improve upon the initial solutions

found by the construction algorithms. For the same initial solution, the cyclic exchange

algorithm always outperforms the 2-exchange algorithm. In addition, it makes arbitrarily

bad initial solutions, such as those from random assignment, competitive. Including null

moves in the cyclic exchange algorithm has little effect on the algorithm’s performance. For

this reason, we do not report the performance of this variation for larger problem sizes.

We also note that using the inverse optimization approach from Section 3.6 to improve a

solution yields no benefit.

The best performance over all instances is from using Amirhosseini and Sharp’s con-

struction algorithm with the first correlation measure together with the cyclic exchange

improvement algorithm. In particular, comparing the performance of the best solution to

78

popularity, we see an improvement of 13.4% for 100 products, 14% for 1000 products, 14.5%

for 2000 products, and 21.4% for 5000 products. Since popularity is a standard measure

used in industry, using our approach can lead to significant savings. In addition, the trend

indicates that the potential savings increase as the warehouse size increases.

Graphs 27-36 illustrate the change in objective during the run of the cyclic exchange

algorithm for each construction heuristic. Each of these graphs starts with an initial sharp

decrease of objective. In general, the rate of change decreases after some number of itera-

tions. However, it is difficult to conclude that the cyclic exchange method should terminate

once the rate of decrease slows down. Graphs 30, 33, 34, 35, and 36 all have one or more

kinks after the graph initially flattens out. Recall that the cyclic exchange algorithm allows

the starting product to be any product in any zone if no improving cycle can be found from

a product in the first zone in the permutation. The kinks in the graph almost always occur

when this happens. Since significantly more work is necessary for these steps, it is undesir-

able to perform the expanded search at every iteration. We also observe that Graphs 27,

28, 29, and 31 do not have this behavior. With further experimentation, we may find that

certain construction heuristics lead to smoother graphs. For smooth graphs, it is easier to

identify a break point after which significant additional improvement is unlikely.

The running time of the improvement methods is negligible for the 100 product data set.

The cyclic exchange algorithm takes 7-19 minutes for 1000 products. For the 5000 product

problem, the 2-exchange algorithm takes 4-39 minutes while the cyclic exchange algorithm

takes 23 to 65 hours. The upper bounds for the run time are for the random heuristic. The

other construction methods have running times near the lower bound. These run times are

not unreasonable since they are for warehouses that are starting with an empty system.

Warehouses completely reconfigure on a seasonal rather than daily basis. Hence a running

time of several days is acceptable. For the 5000 product problem, our implementation of

the 2-exchange algorithm and the cyclic exchange algorithm require on the order of 1GB of

memory. This limits the problem sizes that can be solved using the current implementation

of these methods.

79

Figure 27: Objective Change: Random, Cyclic Exchanges (1000 Products)

Figure 28: Objective Change: Popularity, Cyclic Exchanges (1000 Products)

80

Figure 29: Objective Change: Lagrangian Relaxation, Cyclic Exchanges (1000 Products)

Figure 30: Objective Change: Frazelle, Cyclic Exchanges (1000 Products)

81

Figure 31: Objective Change: Amirhosseini 1, Cyclic Exchanges (1000 Products)

Figure 32: Objective Change: Amirhosseini 2, Cyclic Exchanges (1000 Products)

82

Figure 33: Objective Change: Amirhosseini 3, Cyclic Exchanges (1000 Products)

Figure 34: Objective Change: Amirhosseini 4, Cyclic Exchanges (1000 Products)

83

Figure 35: Objective Change: Amirhosseini 5, Cyclic Exchanges (1000 Products)

Figure 36: Objective Change: Amirhosseini OSCM, Cyclic Exchanges (1000 Products)

84

Table 10: Distribution of Product Sizes

Number of Pallets Percent of Products
1 75%
2 10%
3 10%
4 5%

Table 11: Comparison of Heuristics: 100 Products with Different Sizes

Algorithm Initial 2-Exchange Cyclic Cyclic: SS
Random 1608 1077 794 767
Popularity 847 804 788 782
Frazelle 869 814 789 764
Amirhosseini 1 780 776 772 753

2 949 841 793 761
3 777 775 773 764
4 786 785 780 764
5 783 780 779 770
OSCM 781 774 775 753

Upper Bound 1922
Lower Bound 711
Optimal n/a

6.3.2 Multiple Pallets per Product

When we allow multiple pallets for each product, we consider the effect of allowing stock

splitting. For our data set there was no information about the number of pallets per product

in the picking area so we assumed the distribution in Table 10.

In Tables 11 and 12 we present results that show the effect of permitting stock splitting.

We let Cyclic: SS denote the version of the cyclic exchange algorithm that allows stock

splitting. The Lagrangian relaxation algorithm is not implemented for this case because

(L) no longer has the network structure that enabled us to solve it quickly (Section 3.2.2).

Also, because the particle heuristic performed poorly and is sensitive in its parameters, we

do not implement it here. Note that for every construction heuristic, the initial solution

does not contain any products with split stock.

The relative performance of the heuristics is the same as when all products had the

85

Table 12: Comparison of Heuristics: 1000 Products with Different Sizes

Algorithm Initial 2-Exchange Cyclic Cyclic: SS
Random 41255 27603 22868 21588
Popularity 25837 25024 22436 22221
Frazelle 33304 30523 22329 20762
Amirhosseini 1 22523 22422 22287 19869

2 26522 25632 23015 22727
3 23001 22536 22337 20654
4 31252 28624 22479 20677
5 31193 28120 22364 20190
OSCM 25956 24456 22556 20672

Upper Bound 44540
Lower Bound 14308
Optimal n/a

same size. As before, both the 2-exchange and cyclic exchange algorithms improve upon

the initial solutions. The cyclic exchange algorithm outperforms the 2-exchange algorithm

and makes arbitrarily bad initial solutions competitive. The best performance again comes

from pairing Amirhosseini and Sharp’s construction algorithm using the first correlation

measure with the cyclic exchange improvement algorithm.

In this situation, we observe that when stock splitting is allowed, cyclic exchanges always

produce a better solution than in the non-stock splitting case. Since the initial solutions do

not contain stock splitting, we rely on the improvement heuristic to do stock splitting. For

the results presented here, we re-solve the set covering problem at every iteration, that is,

k=1.

The running time of the improvement methods is negligible for the 100 product data set.

For 1000 products, the 2-exchange algorithm takes a few seconds. Without stock splitting,

the running times for the cyclic exchange are similar to those when all products had the

same size, i.e. , under 20 minutes. When stock splitting is allowed, the running times are

3-6 hours, an order of magnitude larger.

86

CHAPTER 7

CONCLUSIONS AND EXTENSIONS

In this chapter we summarize the major contributions of this research and recommend

directions for future work.

7.1 Contributions

Following is a summary of the contributions of this research which we will discuss in more

detail below.

1. Modeled problem using direct measure of zone visits.

2. Developed Lagrangian relaxation approach.

3. Introduced powerful local search heuristics.

4. Incorporated the ability to solve problems that include different product sizes, stock

splitting, and rewarehousing.

5. Solved significantly larger problems than previous authors.

6. Provide superior solution quality compared to previous approaches.

7. Performed comparative study of existing methods.

The objective we have presented for the correlated storage assignment problem is based

on the number of zones that must be visited to fill an order. Our objective directly models

order picking costs, unlike previous authors who use cluster strength as a proxy to measure

travel time. We have also discussed properties of our problem and showed that it is NP-

Complete.

To solve the storage assignment problem with this objective, we have proposed La-

grangian relaxation and particle heuristic approaches. In addition we have adapted several

87

approaches from the literature. A 2-exchange and cyclic exchange algorithm were proposed

to improve the assignments from the construction approaches. The strength of the cyclic

exchange algorithm is that it searches an exponential neighborhood in polynomial time.

Previous authors have not discussed local search approaches for correlated storage.

In addition, we discuss generalizations that allow a single product to have multiple pal-

lets of storage as well as stock splitting. The issue of rewarehousing is another important

situation that we have discussed. The stock splitting and rewarehousing scenarios are im-

portant cases for which many previous authors do not account. We presented mathematical

models for each problem variation.

Also, we report results for the special case as well as the generalizations for problems

containing up to several thousand products, several hundred thousand orders, and forty

zones. These are problem sizes which are realistic for operating warehouses and exceed the

problem sizes discussed by previous authors. In addition, we perform a comparative study

of our approaches as well as the approaches of several other authors. No other studies exist

which consider the approaches of different authors on the same problem.

Our solution methods give superior results. The best solution using our approach out-

performs COI, the standard used by many companies, by an average of 15%. Even when

we start with a poor quality initial solution like random assignment, our solution is better

than that from using COI.

7.2 Future Work

Now we will outline some possible directions for future research on this problem based on

our findings.

7.2.1 Related Applications

We would like to explore how our problem could be adapted to settings outside of ware-

housing. The core idea of our problem is of work that can be partitioned into multiple zones

with substantial costs caused by accessing multiple zones. There are several problems which

appear to fit into this paradigm. One application is organizing manufacturing processes into

virtual manufacturing cells. Here we would like to assign processes to cells so that jobs can

88

be completed using a minimal number of cells. Another application is assigning tasks to

parallel processors. In this case, the problem is to divide the work among processors so that

minimal information must be sent between processors to complete the work.

There are also applications for our problem in computer science. A standard problem

is storing information on multiple disks and/or on multiple partitions on a disk for use

in one application or report. In this situation there are costs associated with accessing

multiple disks and moving between partitions on a single disk. Another problem arises in

vertical partitioning of databases. Vertical partitioning refers to splitting the attributes of

records into fragments [19]. Partitioning can be beneficial to performance since fragments

are smaller than the entire data so fewer memory pages are necessary to fill a transaction.

To maximize performance, we want to minimize the number of fragments required to fill a

database transaction.

7.2.2 Improvement Heuristics

Solving problems with more than 5000 products using the cyclic exchange method is difficult

due to machine memory limits and running time complexity. There are several methods

we can incorporate into the cyclic exchange algorithm to alleviate these problems. For

example, we can eliminate arcs with high costs from the graph. We also might consider

partial enumeration of 2-exchanges and/or 3-exchanges before, or within, general cyclic

exchanges. Another possibility is to include kick moves where some products are randomly

moved to other zones. We could also try implementing some of the ideas from Section 6.2

to determine a good subset of orders.

In the cyclic exchange algorithm with stock splitting, we might perform further experi-

ments on algorithm performance for different values of k. We also can experiment solving

the set covering problem with preprocessing and enumeration instead of giving it to CPLEX

directly.

7.2.3 Lower Bound Heuristics

The various algorithms we have discussed focus on finding good upper bounds to our prob-

lem. It is also important to determine good lower bounds. Since we would like to close the

89

gap between the upper and lower bounds, it is worth exploring lower bound heuristics.

7.2.4 Additional Data Sets

Further consideration should be given to data sets with various characteristics. The com-

parative performance of the different construction heuristics may depend on the nature of

the set. Additionally, the improvement heuristics may have varying degrees of impact.

90

REFERENCES

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows: Theory, Algorithms,
and Applications. Prentice Hall.

[2] Ahuja, R.K., Orlin, J.B., Sharma, D., 2001. Multi-exchange neighborhood search algo-
rithms for the capacitated minimum spanning tree problem. Mathematical Program-
ming 91, 71-97.

[3] Ahuja, R.K., Orlin, J.B., Sharma, D., 2003. A composite very large-scale neighborhood
structure for the capacitated minimum spanning tree problem. Operations Research
Letters 31, 185-194.

[4] Amirhosseini, M.M., Sharp, G.P., 1996. Simultaneous analysis of products and orders
in storage assignment. Manufacturing Science and Engineering, MED 4, 803-811.

[5] Anderberg, M.R., 1973. Clustering Analysis for Applications. Academic Press.

[6] Bartle, R.G., 1976. The Elements of Real Analysis. John Wiley & Sons.

[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L., 1999. Introduction to Algorithms.
McGraw-Hill.

[8] Drury, J., 1988. Towards more efficient order picking. IMM Monograph No. 1, The
Institute of Materials Management, Cranfield, United Kingdom.

[9] Frazelle, E.H., Sharp, G.P., 1989. Correlated Assignments: A Stock Location Assign-
ment Strategy to Dramatically Reduce Order Picking Times. Industrial Engineering
(April), 33-37.

[10] Frazelle, E.H., 1990. Stock location assignment and order picking productivity. Ph.D.
Dissertation, Georgia Institue of Technology.

[11] Garey, M.R., Johnson, D.S., 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman and Co.

[12] Gademann, A.J.R.M., Van Den Berg, J.P., Van Der Hoff, H.H., 2001. An orrder batch-
ing algorithm for wave picking in a parallel-aisle warehouse. IIE Transactions 33, 385-
398.

[13] Gibson, D.R., Sharp, G.P., 1992. Order batching procedures. European Journal of
Operational Research 58, 57-67.

[14] Heskett, J.L., 1963. Cube-per-order index - a key to warehouse stock location. Trans-
portation and Distribution Management 3, 27-31.

[15] Hua, W., 2001. Cluster based storage policies in kitting area. Ph.D. Dissertation, Geor-
gia Institue of Technology.

91

[16] Hyafil, L., Rivest, R.L., 1973, Graph partitioning and constructing optimal decision
trees are polynomial complete problems. Report No. 33, IRIA-Laboria, Rocquencourt,
France.

[17] Lazoff, D.M., Sherman, A.T., 1994. An exact formula for the expected wire length
between two randomly chosen terminals. Technical Report TR CS-94-08, Computer
Science Department, University of Maryland Baltimore County. 14 pages.

[18] Liu, C.M., 1999. Clustering techniques for stock location and order-picking in a distri-
bution center. Computers & Operations Research 26, 989-1002.

[19] Navathe, C.B., Ceri, S., Weiderhold, G., Dou, J., 1984. Vertical partitioning algorithms
for database design. ACM Transactions on Database Systems 9, 680-710.

[20] Nemhauser, G.L., Wolsey, L.A., 1988. Integer and Combinatorial Optimization. John
Wiley & Sons.

[21] Rosenwein, M.B., 1994. An application of cluster-analysis to the problem of locating
items within a warehouse. IIE Transactions 26, 101-103.

[22] Ruben, R.A., Jacobs, F.R., 1999. Batch construction heuristics and storage assignment
strategies for walk/ride and pick systems. Management Science 45, 575 - 596.

[23] Sadiq, M., 1993. A hybrid clustering algorithm for reconfiguration of dynamic order
picking systems. Ph.D. Dissertation, University of Arkansas.

[24] Shah, P., 1988. Decision problems in mini-load automatic warehousing systems. Ph.D.
Dissertation, Purdue University.

[25] Sharp, G.P., 2001. Warehouse Management, in Salvendy, G. (Ed.), Handbook of In-
dustrial Engineering, 3rd Ed., John Wiley & Sons, 2083-2109.

[26] Thompson, P.M., Orlin, J.B., 1989. The theory of cyclic transfers. Working Paper
OR200-89, Operations Research Center, Massachusetts Institute of Technology.

92

VITA

Maurice Garfinkel was born in San Francisco, California, USA on April 26, 1976. After

living in Berkeley, California for the first eight years of his life, his family moved to Los

Angeles, California. Maurice graduated from Cornell University in 1998 with a B.A. in

Mathematics and a concentration in Operations Research. After spending the summer in

Fort Worth, Texas working for Lockheed Martin Tactical Aircraft Systems, he began a

doctoral program at Georgia Institute of Technology. He completed a M.S. in Operations

Research in 2001 and a Ph.D. in 2005. In his spare time, Maurice is an avid tennis player.

93

