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INTRODUCTION 

The purpose of this thesis is to investigate a recent result by 

Garrett D. Birkhoff in [1] concerning D. Hubert's [4] projective metric 

and its application to positive linear operators. Birkhoffs paper is 

of particular interest because it ties together ideas from projective 

geometry with classical results in matrix theory and integro-functional 

equations. Also, the paper provides a method of attack for standard 

eigenvalue problems involving positive linear operators. Examples of 

such operators are matrices with positive entries and the Fredholm in­

tegral operator with a positive kernel. The results in Birkhoffs paper 

are somewhat inaccessible due to two factors. First, they require the 

reader to have a working knowledge of projective geometry; and second, 

Birkhoff has an insight into basic relationships that enables him to 

proceed from result to result with the connection between them vague. 

The primary goal of this thesis is to give an elucidation of Birkhoffs 

work. Background material is developed, omitted proofs supplied, and 

proofs given by Birkhoff are in some cases supplemented and in some 

cases replaced. 

In Chapter I we present a development of the projective line, 

projective transformations, and cross ratios. The development is taken 

only as far as suits the needs of this paper. Most of the ideas dis­

cussed in this chapter are contained in [2] and [3]. 

A metric for points in the projective line is given in Chapter 

II. This metric was first introduced by D. Hilbert and a discussion 
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of i t may be found in [ 4 ] , Basic facts are noted about this metric, and 

i t is used to define a norm for projective transformations. This approach 

is along the lines suggested by Birkhoff. In order to investigate the 

positive operators mentioned earlier, the metric is extended to closed, 

convex subsets of a Banach space. Under relatively simple hypotheses, 

such transformations may be viewed in a certain sense as contractive 

maps. Cauchy sequences necessarily appear in dealing with the contrac­

tive property, and the final result in Chapter II is a proof of complete­

ness of the appropriate sets under the extension of Hubert's metric. 

The major theorem of this thesis is the principal concern of Chap­

ter I I I . This result is called the projective contraction theorem, and 

consideration is given to i ts geometric interpretation. 

The thesis closes (Chapter IV) with applications of the projective 

contraction to both finite and infinite dimensional spaces. Part of the 

classical theorem of Perron-Frobenius regarding the positive eigenvalue 

associated with positive matrices is obtained, as well as bounds for 

this eigenvalue. Other results in Chapter IV include explicit formulas 

to faci l i tate the evaluation of Hilbert's metric in both finite and in­

finite dimensional spaces. 
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CHAPTER I 

THE PROJECTIVE LINE 

Consider the set of a l l ordered pairs ( x ^ x ^ ) of real numbers. 

We w i l l define ( x ^ x ^ ) = (y^yYr>) i f and only i f \x^ = y^ and \ x 2 = y^, 

where \ i s some non-zero scalar . This then defines an equivalence re ­

lat ion on th i s se t , each equivalence c lass consist ing of some ordered 

pair ( x ^ , X 2 ) and a l l i t s non-zero scalar mult ip les . Each c lass w i l l 

have an i n f i n i t e number of members, except for the c lass which contains 

only ( 0 , 0 ) . The equivalence re lat ion implies that two c lasses are iden­

t i c a l i f they have one ordered pair in common. 

Definit ion 1 . 1 . The real project ive l ine L i s the set of a l l equiva­

lence c lasses x as indicated above, with the exception of the c lass 

which contains ( 0 , 0 ) . An equivalence c lass x i s cal led a point on the 

project ive l i n e . 

Note that the above def in i t ion i s independent of a geometric 

model. That i s , nothing in the def in i t ion of L indicates from what geo­

metric source the c lasses x are obtained or what geometric meaning i s 

attached to the l i n e . We w i l l show that the Euclidean l ine can be con­

sidered as a subset of the project ive l ine by considering the fol lowing. 

For a Cartesian l ine X, assign to each point x on the l ine the equiva­

lence c lass containing ( x , l ) . Coordinates designated in th i s manner 

for a Cartesian l ine are cal led homogenous coordinates, and in homoge­

nous coordinates we may view the Cartesian l ine as a subset of L. Given 

any point x on L, we may choose as a representative of x on X the point 
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(—, l) for all x except the class whose second coordinate is zero. Thus 
X 2 

we may associate each point on X with a class in L; and each class in L, 

except the one noted above, with a point in X. Intuitively, we would 

like to adjoin an ideal point, oo, to X and let it represent the equiva­

lence class containing (l , 0 ) . 

We will use the above notions to generate a geometric model for 

L. We will denote the equivalence classes containing (0,l), (l,l), and 

(l ,0) as 0, 1, and 00 respectively. Let us represent a Cartesian line 

in homogenous coordinates and place a unit circle tangent to the origin 

of the line. We associate points on the line with points on the circle 

North. Pole 

Figure 1.1 

in the following manner. For a given point x on X, draw a line segment 

from x to the North Pole and denote the intersection of the circle and 

the line segment as x. Now we see that attaching the point at 00 corres­

ponds to closing the line. We simply associate CO with the point at the 

North Pole. This defines a one-to-one correspondence from L to the 

circle and so gives us a geometric model. 

For two distinct points x, y on the projective line L, take a 



representative of each x,y. We shall refer to these two representatives 

as reference points. Now choose a third point z and a representative z. 

Since both x,y are ordered pairs of real numbers and neither is a scalar 

multiple of the other, there exist two scalars \,n such that z = \x + ny. 

If x,y are replaced by other representatives \'x, |i'y of x,y, then 

z' = XX'x + up. 'y will, in general, not be a member of z, although it will 

be the representative of some point on the line. 

With x,y as reference points, consider a general member of z, y z> 

where y is arbitrary but non-zero. Since z = \x + p,y, then yz = y\x + y^Y* 

Note that whatever value of y w e choose, the ratio of the coefficients of 

x to y remains \/n. Hence given any two reference points x,y, we may ex­

press all representatives of any point z as a unique linear combination 

of x,y and each with the same ratio of coordinates. 

Definition 1.2. The projective parameter for points in L relative to a 

fixed set of reference points is defined to be 

0 = 0~ = L L / \ • 

z z r 

We will allow 0^ to take on the improper value oo. That is, "g = 0 0 

where a / 0. Note that the ratio 0/0 will never occur. As we have seen, 

once reference points have been specified, the projective parameter for 

a point z is uniquely determined. 

For the remainder of the paper, we will assume the following con­

ventions : 
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and 

Definition 1.3. A projective transformation of L onto itself is a trans­

formation taking any point u into some point v by 

V l = a l l U l + a 1 2 U 2 

v 2 = a 2 l U l + a 2 2 u 2 , 

where 

a l l a 2 2 " al2 a21 * °> 

and (u^u^) is a representative of u and (v^fv^) is a representative of 

v. 

Note that if we choose another representative of u, say (yu^fyu^)f 

that we have 

r v 2 = a 2 l T U l + a 2 2 T u 2 , 

and (yv^, yv^) is another representative of v. Thus a projective trans­

formation as defined takes points of L into points of L and is an onto 

transformation. 

Given four distinct points x, y, u, v on L with x, y, u, v as 

representatives, there exist numbers X^, lL2> e a c h G , i f r e r e n " t than 

zero, such that 



5 

u = \ x + \ y 

and 

v = p^x + \i2y . 

Definition 1.4. The cross ratio of x, y, u, v in the given order is de­

fined as 

X 2 ^1 R(u,v,x,y) = r~ • — . 

If x,y remain fixed, but we choose different representatives 

Y-^u, Y 2 V °^ " a n c ' v» then we have that 

Y l u = Y l \ l X + Y l X 2 y 

and 

Note that 

X 2 ^2 R ( Y l u , Y 2v,x,y) = — • -

Thus it follows that 

X 2 H'2 R(u,v,x,y) = — • — . 
X l ^1 

That is, given reference points x,y, it does not matter which representa­

tive of u,v we take to evaluate the cross ratio. 
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Suppose we have the following four points on L: x,y,u = \x + p.y, 

and v = \ 'x + p,'y. We now want to see what happens to the cross ratio of 

these points under a projective transformation. Letting ( x ^ x ^ ) , (Y^Y^)* 

( u ^ u ^ ) , and (v^v^) represent x,y,u,v, respectively, we have that under 

a projective transformation 

X l = a l l X l + a l 2 X 2 

x 2 = a 2 1 X l + a 2 2 X 2 

yl = a l l y l + a 1 2 y 2 

Y 2 = a 2 1 y l + a 2 2 y 2 

U l = an^ X xl + ^ y i ^ + a i 2 ^ X x 2 + ^ Y 2 ^ 

U 2 = a 2 1 ^ X x l + ^ y l ^ + a 2 2 ^ X x 2 + ^ Y 2 ^ ' 

or 

uj = \ ( a 1 1 x 1 + a 1 2 x 2 ) + P-(a 1 1y 1 + a 1 2 y 2 ^ 

U 2 = X ^ a 2 1 X l + a 2 2 X 2 ^ + ^ a 2 1 Y l + a 2 2 Y 2 ^ 

which implies 

u' = \xj + M[ , 

u 2 = \ x 2 + \i.y^ . 



7 

Similarly, we have 

v» = X'x' + ti'y' 

v 2 = X * x 2 + ^'y 2 . 

Thus the images of x,y,u = Xx + p.y, and v = \ 'x + p,'y under a projective 

transformation are xjy',u' = \x' +p-y', and v' = X'x' + p,'y'. Further, 

we can calculate immediately that 

R(u,v,x,y) = R(u',v',x',y') = ^ • ~T • 

Thus we have 

Theorem 1.1. The cross ratio of four points on L is preserved under a 

projective transformation. 

For convenience, let us choose for our reference points x = (l ,0) 

and y = (0,l). With v = (l,l) and u = ( u ^ u ^ we have 

v = x + y 

u = UjX + u 2 y 

and so 

U 2 
R(u,v,x,y) = ~ = Q

u • 

Let r and s be any representatives of the points r, s on L with 

coordinates (r^,r 2), (s^s^) and consider their images (rj,!^), (s^s^) 

under a projective transformation 



we have 

A = 

all 3 1 2 

a21 a 2 2 

with 

Denoting 

by 

a l l a 2 2 " a12 a21 = r 

det 

r i Sl 

r 2 S 2 . 

r,sl = 
r l Sl 

r 2 s 2 

.« r. I I ^ i " ,s 
r' s' 
r 2 S 2 

a i l r i + a l 2 r 2 a l l S l + a 1 2 S 2 

a 2 i r l + a 2 2 r 2 a 2 1 S l + a 2 2 S 2 



all a 1 2 Sl 

a21 a 2 2 r 2 S 2 

r\T>s\ • 

Now 

U 2 
R(u,v,x,y) = — 

0 1 i—
 

U l 

1 1 0 U 2 

1 1 0 U l 

0 1 1 U 2 

y l v l x l U l 

y 2 v 2 x 2 U 2 

X l V l y l U l 

X 2 V 2 y 2 U 2 

|y ,v | • x,u 

x,v| • y,u 

Hence in terms of the images, 
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|y',v'I • |x',u 
R(u,v,x,y) = 

x',v'| • |y',u' 

Evaluating explicitly we have 

R(u,v,x,y) = 
y l V 2 - Y2^i X 1 U 2 - x ^ 

X 1 V 2 - y l U 2 - Y2ux 

II II Ii 
y 2 " V 2 . X 2 " U 2 

ll V l y l U l 
9 

X 2 " V 2 Y 2 " U 2 

which in terms of the respective projective parameters 

0 - 0 0 - 0 
y v x u 

~ 0 - 0 ' 0 - Q 
x v y u 

Thus we have shown the following. 

Theorem 1.2. If x, y, u, v are four distinct points on L, then 

0 - 0 0 - 0 
of. \ - x u y v R(u,v,x,y) ~ Q _ Q * Q _ Q 

x v y u 

Geometrically, if we take four distinct points a, b, c, d on 

L and transform under a projective transformation a into b into 0, 

and c into 1, then the fourth, d, will go into some point (d^^d^l and 

since cross ratio is preserved, we have that the cross ratio R(c,d,a,b) 
dl 

is equal to — . We can find d^9d^ by solving 



1 - + a 1 2 a 2 

0 = a 2 1 a l + a 2 2 a 2 

0 = a u b 1 + a 1 2 b 2 

1 = a 2 1 b l + a 2 2 b 2 

for A and then computing Ad. 

Definition 1.5. A linear fractional transformation is a mapping of the 

form 

aQ + b 
w cO + d 

where 0,a,b,c,d are real and 

ad - be ^ 0 . 

If we map L under a projective transformation, then the projec­

tive parameter of each point is mapped by a linear fractional trans­

formation onto the projective parameter of the image. This immediately 

follows since 

x l = a l l x l + a 1 2 x 2 

x 2 = a 2 1 X l + a 2 2 X 2 

implies 
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Further, we immediately have 

Theorem 1.3. The cross ratio i 

points on L is invariant under 

ail x 2
 a i 2 

i + 
a21 x 2

 a 2 2 

f the projective parameters of four 

a linear fractional transformation. 
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CHAPTER II 

HILBERT'S METRIC ON THE PROJECTIVE LINE 

Basic Properties 

Definition 2.1. If a,b,c are three distinct points on L, then a is 

between b and c if any only if we may write a as a convex linear com­

bination of b and c. 

We now want to consider only a segment of the projective line, 

and for convenience will look at the segment between 0 and 56 which 

contains 1. We will refer to this particular segment as the positive 

axis. Each point will have representation {u^fu^)f and again (Xu^Xi^) 

for all non-zero X will represent the same point. 

Definition 2.2. Denoting (l,0) as x and (0,l) as y, then if u,v are 

two distinct points on the positive axis, neither equal to x,y and so 

that v lies between x and u, define the function 

d(u,v) = In R(u,v,x,y) 

and 

d(v,u) = In R(v,u,y,x) . 

Theorem 2.1. The function d(u,v) is a metric for the interior of the 

positive axis of the projective line. 

Proof: Since our reference points are unit points, we have that the 

coordinates of all points on the positive axis may be specified as 
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(u 1,l-u 1), 0 < u1 < 1 . 

(i) Let u,v be two distinct points on the positive axis. Then 

0 - 9 0 - 0 
r>( \ X U . V V 
R(u,v,x,y) = • —* 0 - 0 0 - 0 

x v y u 

^ 0 ^ 

^ 0 ^ v 2 u 2 

U 2 V 1 = 0v 
U 1 V 2 " ° U 

Suppose v lies between x and u. Then it must be the case that 

0 < u1 < vx < 1 and 0 < v 2 < u < 1. Further, 

V l _ { l ~ V V l 

and so d(u,v) is well defined and positive. If we interchange u,v, 

then to evaluate d(u,v) we first compute 

0 - 0 0 - 0 of \ V u . x v R(u,v,y,x) = q _ q Q _ Q 
y v x u 

0 - 0 C O _ 0 
u . v 

0 - 0 oo - 0 v u 

fll 11 
°v " U 2 ' V l 
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U 1 V 2 
But now u. > v. and so > 1 and d(u,v) is well defined and positive, 

1 1 U 2 V 1 

(ii) d(u,u) = ln R(u,u,x,y) 

= ln 1 = 0 . 

(iii) Suppose d(u,v) = 0. Then R(u,v,x,y) = 1 which implies 

© 
0~ = 1, or 0 = 0 . Since the projective parameter is uniquely deter-
v 

mined, we have u=v. 

(iv) Suppose u,v are distinct and v lies between x and u. Then 

0 
d(u,v) = ln R(u,v,x,y) = ln ^ . 

u 

By definition, 

0 
d(v,u) = ln R(v,u,y,x) = ln ^~ 0 

u 

Thus 

d(u,v) = d(v,u). 

The case with u,v permuted follows similarly. 

(v) Suppose we have three distinct points u,v,z on L ordered 

y,u,v,z,x. Then 

X 
0 = . U , , 0 = . v . , and 0 = -r-̂ -r-u 1 - \ 7 v 1 - X 7 z 1 - X u v z 

where 0 < X ,X ,X < 1 u7 v7 z 
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Now it follows that X < X < X and 1 - X > 1 - X > 1 - X , and 
u v z u v z 7 

so 

l - X " 1 - X " 1 - X u v z 

This implies 9 < 9 < 0 . Now we can see that 
R U V z 

since 

Similarly, 

since 

and 

and 

d(u,z) < d(u,v) + d(v,z) 

Q Q 0 0 0 
T Z y , V , , Z . V Z 

u u V u V 

0 
- ln Q 2-

u 

d(u,v) < d(u,z) + d(z,v) 

0 0 0 

< L N 0 ^ + L N 0*" 
u u V 

0 < 0 
V z 

0 

0 ? 1 

V 
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The other case follows in a similar manner. Thus d(u,v) is a metric. 

The above metric was first discussed by D. Hilbert [4], For 

points y,u,v,x ordered on L as given, 

0 
R(u,v,x,y) = ~ . 

u 

As v x, 9^ oo and d(u,v) As u -» x, 0^ 0 and again d(u,v) -> oo. 

Therefore, the metric d(u,v) is not defined for the end points of the 

positive axis. 

We would like to use d(u,v) to investigate the effect of mapping 

the positive axis of the projective line into itself under a projective 

transformation. As noted in Chapter I, such a transformation corres­

ponds to mapping the projective parameter of each point into a new value 

under a linear fractional transformation, and it is this view that we 

will investigate in detail. 

Consider the following linear fractional transformation 

6 ' - P 6 - ad - cb ^ 0 

which maps 0 < 0 < oo into a proper subinterval of 0 < 0' < oo. Since P 

is either increasing or decreasing and, the projection 0 preserves 

cross ratio, we can assume 0 > 0' implies P0 > P0'. Since P(0) = ~ , 

then b and d have the same sign. Since P(0) = oo has no solution, c and 

d have the same sign. Hence, we can assume a,b,c,d are all positive. 

Since we have assumed P to be increasing, we have that since 
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P ' ( o ) = a d " b c

 0 , 
(c© + d) 

then 

ad > bc . 

Definition 2.3. The norm of a projective transformation P which maps 

the positive axis into itself is defined as 

N ( P ) = S U P d ^ ' P v > : d(u,v) < u,v d(u,v) ' 

where u,v are in the positive axis of the projective line. 

Thus we are interested in finding the least upper bound of 

cQ1 + d a© 2 + b 

d(P0 1,P0 2) 1 0 a°l + b ' c G 2 + d 

d(O1,02) 0 2 

= H(0 1,0 2) where 0 < 0 ^ © 2 < co . 

We now take partial derivatives of H(0^,Q 2) with respect to each variable 

and set them equal to zero. Thus 

f : = ( ^ d - ^ ? b ) ( l n e 2 - l n V i i " i 

+ ~- (ln(a0 2+b) - ln(c0 2+d) + ln(cO 1+d)-ln(a0 1+b)) = 0 
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Thus, 

Hence, 

f:^^^-7QTT^ ) ( l n
 e 2 - l n Gi> 

- ~ [ln(a9 2 + b) - ln(c9 2 + d) 

+ ln(cG + d) - ln(aO + b)) 

= 0 . 

0 (—§ _ £ ) = a (—§ _ — £ ) 
l vaO + b c0 1 + b ; 2 v a 0 2 + b c 0 2 + d ; 

0 (acOg + ad0 2 + bc0 2 + bd) = 9 2(ac9^ + ad9.[ + bc9 x + bd) 

a c ^ O * - 9^9 2) = bd(9 2 - 9 X ) 

0 . 0 O = M . 
1 2 ac 

Thus the maximum value occurs when 9.9_ = — . Now let us consider the 
1 2 ac 

graph of H(9^,9 2) for fixed 9 2« Both numerator and denominator are non-

negative and are zero at 9^ = 9 2« The derivative of the denominator with 
respect to 9_ is TT-, and the derivative of the numerator with respect to 

* W 2 
© 2 is 
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since 

ad© 2 - bc© 2 < ac© 2 + ad© 2 + bc© 2 + bd 

and 

0 < ac© 2 + 2bc© 2 + bd 

Thus it follows that as © 2 the numerator decreases at a slower 

rate than the denominator, and as ©^ < © 2 ->oo, the numerator increases 

at a faster rate than the denominator. Both numerator and denominator 

have a cusp at ©^ = © 2 < Taking note of their concavity, we have the 

graphs illustrated in Figure 2.3. 

H(© 1,9 2) 

Denominator Denominator 

Figure 2.3. 

lim 
We see that the maximum value of H(©^,© 2) for fixed ©^ is Q _̂  g 

H(©^,© 2). Ht©^,©^) is 0/0 so we can not evaluate directly. From 

Figure 2.3, we expect Q
 H ( 9 i > e

0 ) ^ 1 s i n c e the numerator is 
y

2 i- 2. 
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always smaller than the denominator. Since we know the maximum value 

occurs when 0,0~ - — , we will set 
1 2 ac ' 

l ac 

bd 
and take limit of H(0.,0_) as 0 O -> ( — ) 2 . 

1* 2 2 ' ac 

I 

c ( M ) 2 + d a 0 o + b ac . 2 In lim _1 c0 + d 
1 ,bd>,2 , , 

bd^2 a W + b 

2 ' ac' 0 2 

In 

( — ) 2 

ac 

1 1 

c0 o+d a ( M ) 2 + b c ( M ) 2 + d . . 2 ^ ac t ac . ad - be 
lim a0 +b ' 1 1 / Q , ,x2 

1 2 , b d , 2 + H , b d , 2 + K

 ( c ° 2 + d ) 

b d N 2 C f e ) + d a ( I c " } + b 

2 ac 

& 2 

ad - be 

(^) 2(ac • £ + a d ( ^ ) 2 + b c ( ^ ) 2 + bd) bd ac ac ac 

ad _ , 
be 

ad 
be 

+ 1 

Now letting v = "T~ > 1 , we have 
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N(P) « V " | 

v + 2v 2 + 1 

Note that 

v - 1 v - 1 _ (v 2 + l)(v 2 - 1) 
I ~ I I 

v + 2v 2 + 1 (v 2 + l ) 2 (v 2 + l ) 2 

v 2 - 1 

v 2
+ 1 

Now letting e X = v, we have 

X _X 

N(P) = = 1 " 6
 x = tanh (\) < 1 . 

e + 1 1 + e 

ad 

The value X = ln(-j—•) is the length under the projective metric of the 

image of 0 < 9^ < co under P. 

Extensions to Banach Spaces 

Let C be a closed, bounded convex subset of a real Banach space 

X and assume C has a non-empty interior. We are interested in extending 

the notion of the projective metric to the interior of such a set. 

Let T be the boundary of C. Let u,v be two distinct points 

interior to C. Draw a line from u through v until it intersects r . Call 

this intersection x. Extend the same line in the opposite direction 

until it intersects T and call this point y. See Figure 2.2. Now we 
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define the function D(u,v) = In R(u,v,x,y). We will later show that this 

is a metric for points interior to C. 

Figure 2.2. 

Theorem 2.2. For the above conditions, 

| | x - u | | l|y~vll 
R(u,v,x,y) = — — • — , 

| | x - v | | IIy - u|| 

where ||*|| is the norm associated with the Banach space X. 

Proof: Since we have four points on a line, we can view the line and 

the points as a subset of the projective line. We will have 

u = \ x x + (1 - \ 1 ) y 

v = x 2x + (l - x 2)y o < x 1 , \ 2 < 1 , 

and so by definition, 
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R(u,v,x,y) = 
1 - X. 

1 - X, 

Now consider 

x - u 

x - v 

My - v| | 

lly - U | | 

llx - X xx - (l - x1)y|| 
llx - X 2x - (1 - x2)y|| 

lid - X x)(x - y)H 1 
lid - X 9)(x - y)ll 1 

y - x2x - (1 - x2)y[1 
y - xxx - (1 - x1)y|I 

X 2(x - y] 

'X^x - y! 

1 - X. 

This completes the proof. 

There is no essential distinction between d(u,v) and D(u,v). 

However, in order to verify that D(u,v) is a metric in C, we must estab­

lish that the triangle inequality holds since three arbitrary points are 

no longer necessarily collinear. 

Theorem 2.3. The function D(u,v) is a metric in C, 

Proof: Let a,b,c be three non-collinear points in C. These three points 

will determine a plane. Call x the intersection of the line from a 

through b with V. Let y be the intersection of the same line extended 

in the opposite direction with V. We have assumed c does not lie on the 

line from x to y. See Figure 2.3. Let us denote the line from x through 
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y as l(x,y). Let u,v,z, and w be the respective intersections of r with 

Figure 2.3. 

l(a,c), l(c,a), l(b,c), and l(c,b). Set p equal to the intersection of 

the line l(v,z) and l(w,u). If l(v,z) and l(w,u) did not intersect, then 

a,b,c would be collinear. Now we need the following lemma. 

Lemma 2.1. A geometric projection of a line onto a line, as indicated 

in Figure 2.4, where x -> x', y -> y', u -> u f , and v -y v', preserves cross 

ratio. 

Figure 2.4. 
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and 

Proof: 

u = \ x x + (1 - \ 1 ) y 

v = X 2x + (1 - x 2 ) y 

u' = tix' + (1 - ti1)y' 

v' = p^x' + (1 - p , 2 ) y ' 

We have x' = ax, y' = py, u' = yu, v' = 6v . Substituting in the above 

we have 

yu = \L^ax + (l - u, 1 )fiy 

6v = p.2ax + (l - |i2)Py , 

and so 

p^a (1 - p. )p 
u = x + y 

Y Y 

H 2a (1 - p.2)p 
V = T " X + ~ Y ' 

Therefore, 

_ P ^ a _ P- 2a ( x )P 
x x = — , x 2 = — , (1 - x x ) = — , 



(1 - H o 

( i - x 2 ) 

Thus 

and cross ratio is preserved. 

Returning to the proof of Theorem 2.3, we may view a,c,u,v on 

the line l(u,v) as a geometric projection into a,d,x',y' on the line 

l(x,y) from p. Thus, 

R(a,c,u,v) = R(a,d,x',y') 

R(c,b,w,z) = R(d,b,x',y') . 

Now we need 

Lemma 2.2. For points y,a,b,x',x ordered as written, R(a,b,x',y) > 

R(a,b,x,y). 

Proof: 

O _ 0 0^ _ 0 
R(a,b,x,y) = Q

a _ Q
X • Q _ Q

Y . 
b x a y 

Note that 0 , < 0 and 0 , > 0 , 0, . Thus x x x a 7 b 

© _ 0 ( 0 b _ 0 
R(a,b,x',y) = Q

a _ Q
X • Q _ Q

Y > R(a,b,x,y) . 
b x' a y 

Again returning to the proof of the theorem we have 
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R(a,c,u,v) > R(a,d,x,y) 

R(c,b,w,z) > R(d,b,x,y) 

Multiplying, we have 

R(a,c,u,v)R(c,b,w,z) > R(a,d,x,y)R(d,b,x,y) 

But 

Thus 

and 

Thus 

R(a,d,x,y)«R(d,b,x,y) = 
Q _Q Q Q 0 0 0 -0 

_ a x . d y . d x , b y 
0 0 ' 0 _© 0 - 0 ' o,-0 
d x a y b x d y 

9 _0 0 0 
a x . b y 

0 0 0 _© 
b x a y 

= R(a,b,x,y) . 

R(a,c,u,v)*R(c,b,w,z) > R(a,b,x,y) , 

In R(a,c,n,v) + In R(c,b,w,z) > In R(a,b,x,y) 

D(a,c) + D(c,b) > D(a,b) , 

and D(u,v) is a metric in C. 

Let us note that if a,b,c are three collinear points in the given 

order in a Banach space, then 
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| | a - c | | = | | a - b | | + | | b - c | | 

We are going to use this fact to prove the following. 

Theorem 2.4. C is complete under D(u,v). 

Proof: Suppose ^ a
n"j n>i ^ s a sequence in C so that D(a n,a m) -y 0 as 

n,m -^oo. The theorem implies that there is an a in C so that D(a n,a) 0, 

Suppose D ( a
n > a

m ) -> 0 as n,m - » o o , but there is some e > 0 and subsequence 

\a ) so that l l a - a II > e for all elements in the subsequence, j n .\ n . > 1 1 1 n. n ' 1 — 

To keep the notation simple, let us assume 

Let us denote the intersection of the boundary of C with the line from 

a through a as x m . We will define y m as the intersection of the line n 3 m n 7n 
from a through a with the boundary of C. Then m n 

i l m l I i l m I I i l m l l 
a _ x a - y a ~ y 1 1 n n 1• •• m 7 n 1 ' 1 1 m n 1 1 

> m i l I I m i l — II m i a - x a - y a - y m n 1 1 1 1 n 'n 1 1 1 1 n n 1 

Let us denote 

m 

Then 

X + e 
n/ m n\ . n.m , , £ v . 
R(a ,a ,x ,y ) > •— = 1 + > 1 . n' m' n* ym y - X„ m X n m n.m n.m 

Since C is bounded \ is bounded for all values n,m. This implies 
n.m 
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D(a ,a ) does not go to zero which is a contradiction. Hence, a - a n' m 3 ' 1 1 n m 1 1 

must go to zero as n,m - » c o . Since C is a closed subset of a Banach space, 

there is some a in C so that lla - all 0 as n - y c o . Consider 
i i N II 

As n -+cof we have 

D(a ,a) = ln n 
x - a y - a u n 1 1 1 1 7 n 
x - a y - a n 1 1 1 1 7 n n 

x - a y - a n n 1 1 1 1 n 
> 

x - a y - a n 1 1 1 1 7 n n 
^ 1 . 

Hence D(a n,a) 0, and C is complete with respect to the metric D(u,v) 
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CHAPTER III 

PROJECTIVE CONTRACTION THEOREM 

Let X be a real Banach space. 

Definition 3.1. A closed subset C of X is said to be a closed, convex 

cone if and only if 

(i) C + C c c > 

(ii) \C c C 

for each, positive real number X, and 

(iii) C C\ (-C) = 0 , where 0 is 

the origin of X. 

Note that in E^ the positive quadrant, that is, those vectors 

x = (x x, x n ) 

so that x^ > 0 for i = 1, ..., n, forms a closed, convex cone. 

Definition 3.2. Let f be a bounded linear functional on X. The set of 

points £x:f(x)=b, b a real scalar) is said to be a hyperplane in X. 

We want to consider the intersection of a closed, convex cone C 

with a hyperplane H. We will choose H so that it intersects at one point 

each ray which starts at the origin and is in C. It follows that C /"A H 

is a closed, bounded convex set, and the metric D(u,v) that we developed 

in Chapter II is applicable to it. 
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Let P be any bounded, linear transformation that maps C into it­

self. Then P(Cf^\ H) will be a closed bounded convex subset of C. Let 

us choose two distinct points u,v interior to C f~\ H. We would like to 

apply D(•,•) to the images of u,v under P. As before, draw the line 

l(u,v) until it intersects the boundary of C C\ H and call the point x. 

Similarly let y be the intersection of l(v,u) with the boundary of C /°\ H. 

Now compute Px, Py, Pu, Pv. We have that x,y,u,v are collinear in C R\ H. 

Since P is linear, Px, Py, Pu, Pv will be collinear in P ( C / ^ H ) . Thus 

we can make a geometric projection through the origin of the line seg­

ment joining Px and Py onto C/**\ H. As we saw in Chapter II, such a 

projection preserves cross ratio, and hence will preserve the projective 

distance between Pu and Pv. We will call the composite transformation of 

P operating on u and the geometric projection of Pu through the origin 

and back into C /"\H as T . Thus we have 

D(Pu,Pv) = D(T/ U, T V ) 
P P 

and 

T ( C O H ) C C C\ H . 
P 

When we construct C/^\ H and evaluate the distance between 

points there, we are actually computing in a certain sense the distance 

between rays (through the origin) in C. Choose two rays a,b. Select a 

hyperplane with the required cutting property, and denote the inter­

section of a,b with H ^ ^ \ C as u,v, respectively. To evaluate D(u,v) 

we first select x,y in the usual manner. Choose another feasible hyper­

plane H . Call the intersection of a,b with H - / ^ C u',v', respectively. 
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To evaluate D(u',v') we first find x',y'. Note we may view u', v', x', 

y' as a geometric projection u^v,x,y through the origin. Thus it follows 

that D(u,v) = D(u',v'). This number can be considered the distance be­

tween the rays a,b since this distance is independent of the hyperplane 

selected. 

Definition 3.3. If P is a bounded, linear transformation that maps C 

into itself then T^ maps C f~\ H into itself, and the diameter A of PC 

is equal to the diameter of ^ ( C f~\ H) a n c l is given by 

A = SUP|D(PU, Pv): u,v in C f~\ Ĥ j 

= sup [D(Tf u,T v ) : u , v i n C / ^ H J . 

If x,y lie on the boundary of C (~\ H, then in order for D(T^x,T^y) 

to be finite, it must be the case that neither T x nor T y lie on the 
' P P 

boundary of C H H. Suppose for example that T^x did. Then 

11*' - T x|| | |T x - T y| | 
D T x, T y = In rr~^ • 2 = - . 

P P x ' - T y 
II p / i i 

That is, if T (C f\ H) is to have finite diameter, T ( C H H) must be a p p 

proper subset of C /~\ H, and in fact, bounded away from the boundary of 

C O H -
We would like to establish that T is actually a linear fractional 

P 

transformation of the projective parameter of the points in C ^ H onto 

the projective parameter of the images. 

Choose two distinct points u,v in C A H. Locate x,y in the 

usual manner. Now compute T x, T y, T u, and T v. We will have 
P ' P ' P ' P 
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u = XjX + (1 - \ 1 ) y 

(1) 

v = \ 2 x + (1 - X 2)y, 0 < \ 1 , \ 2 < 1 > 

and so 

(2) 

T p U = X 1 T p X + ( l - X 1 ) T p y 

T pv = x2Tpx + (1 - X 2 ) T p y 

Now extend the line from T^x through T^y until it intersects the bound­

ary and call this point x 1 . Similarly generate y 1 . Thus 

T px = T l x ' + (1 - r ^ y ' 

(3) 

T Y = Y 2 x ' + (1 - Y 2)y', 0 < Y l , Y 2 < 1 

Now substituting (3) into the first equation in (2) we see that 

T 
P U = X l T 1 X ' + ( 1 " Y l / y ' + ( 1 " X l } Y 2 X ' + ( 1 " Y 2 / Y ' 

= x1r1 + d - X 1 ) Y 2 *' + xx(i - vx) 

+ (i - x^d - Y 2 ) y' 

X, 
Note that from (l) 0 = rr^ . Also note that 

u 1 
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_ \lr1 + (i -

Yi© + Y~ 

Hence is a linear fractional transformation of the projective param­

eter of all points contained on any line in C f~\ H onto the projective 

parameter of the points on the image line. 

Definition 3.4. The projective norm of P relative to C is the projective 

norm of T^ relative to C /^\ H and is given by 

N(PjC) = N(Tp;Cn H) 

f D(T U,T v) 
u,v in C O H ( D(u,v) 9 J 

Lemma 3.1. If the transform of C H under T p has finite diameter A, 

then 

N(T p;C f~\ H) = tanh (̂ ) < 1 . 

Proof: From our investigation of projective transformations in Chapter II, 

it immediately follows that N(T ; C / ^ H) < ^ . To show that equality 

holds, we take a sequence of inverse images u
n > v

n of suitably nearby 
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pairs of points on l ine segments from to of lengths A - 2 n or 

more. We know such segments ex i s t because of the def in i t ion of A as 

the sup over a l l segments. For such segments, we have 

N ( T P ; C O H) > tanh(^ 4

 z ) . 

Hence, as N ( T J C / ^ H) i s the sup over a l l such segments, 

N(T ;C r\U) = tanh 4 • 
D ' 4 

Now we are ready to prove the major theorem of th i s paper. 

Theorem 3 . 1 . Let C be a closed, convex cone in a real Banach space X. 

Let P be any bounded l inear transformation so that PC C. I f 

N ( T r ; C / ^ \ H ) < 1 for some r , then for any u in C / ~ \ H, the sequence 
P 

^ p U J N > l c o n v e r 9 e s t ° a unique f ixpoint c in C /""^H. 

Proof: I f N ( T R ; C O H ) < l > t h e n j T ( c ^ H ) has f i n i t e diameter by what 
P P 

• P P+1 
we have j u s t seen. Further, D(T U , T U ) < + CO for arbitrary u in 

P P 
C /^U since i f 

D(T r u, T r + 1 u ) , 

then T p + 1 u i s in the boundary of C O H. But T p ( C O H) i s a proper sub­

set of C O H and T r + 1 ( C P \ H) Q T r ( C C\ H) and so T r + 1 u can not be on 
P —* P P 

the boundary. Note that 

D ( T ( T u ) , T ( T u ) ) < N ( T J C A ^ - D C T U , T U ) 
p p ' p p — p 1 p ' p 
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since 

D(T u,T v) 
S U P P P = N(T ^ H ) u,v D(u,vJ p 

Hence for n > r, n = qr + y, 0 < y < r, 

D ( T n u , T n + 1 u ) = D [ T r ( ^ l ) ( T r 4 Y u ) , T r ( q - l ) ( T r 4 Y + 1 u ) ] p ' p L p p ' p p J 

< N(T r;C H H ) q _ 1 D ( T r ^ u , T r ^ + 1 u ) — p p ' p 

Let 

K = n , m a * D ( T r X , T r ^ + 1 u ) . 0 < y < r p ' p 

Since 

N(T r;C r\H) < 1 , 
P 

then K is finite, and it follows that 

D(T nu, T n + 1 n ) < N ^ O ^ K . 
P ' P P 

Hence ^T^u^,^ is a Cauchy sequence. We established in Chapter II that 

C H is complete under D(u,v), and so the Cauchy sequence converges to 

a limit c in C. Thus c - ^ m T nc. We have that P is bounded. Thus 
n -i co p 

T is bounded and continuous. Hence 
P 

_ lim _n _ c = T . T c = T c p n co p p 
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Uniqueness is immediate. If T c* = c*, then 

D(c,c*) = D(T*c, T V ) < N ( f ; C n H)D(c,c*) 

< D(c,c*) . Hence D(C,C*) = 0 and C = C*. 

Geometrically, the above theorem implies that P has a fixed ray. 

That is, there is some vector c and some real number X > 0 so that 

Pc = Xc. In the above theorem, in order that D(T pc,c) = 0, we have 

that after a geometric projection of Pc through the origin onto C H H, 

T pc and c are the same point. This implies Pc and c lie on the same 

ray, and Pc = Xc for some X > 0. 
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CHAPTER IV 

APPLICATIONS 

Finite Dimensional Cones 

In the finite dimensional case, taking as our cone C the posi­

tive quadrant and as our linear transformation, P, a square matrix, 

the requirement that PC have finite diameter is equivalent to requir­

ing that PC be a proper subset of C. This implies P is a positive 

matrix; that is, that all the elements of P are positive. If e.. is the 

coordinate vector with all zeros except a one in the j ^ position, then 

PC being a proper subset of C implies Pe.. is a positive vector. Thus 

the j**1 column of P is positive. The projective contraction theorem 

then immediately gives us the portion of the classical theorem of Perron-

Frobenius that guarantees that a positive matrix has a unique positive 

eigenvector and eigenvalue. See Varga [ 6 ] . The projective contraction 
r 

theorem is stated so that it is sufficient that P take C into a pro­

per subset of itself with finite diameter, provided P > 0 for some r, 

which implies P is a primitive matrix; that is, P has only one eigen­

value in modulus equal to the spectral radius of P. 

With the positive quadrant as our cone C in E n and P a positive 

matrix, we would like to establish methods other than the definition 

for evaluating D(u,v) and A. Let H be the unit hyperplane given by 

the set of all points f = (f^, f ) satisfying 
n 

f. = 1, f. > 0 for i = 1, ..., n . 
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v ) in Select two distinct points u = (u^, u^) and v = (v^, .. 

C / ^ H . Find x,y as in Chapter III. Now find the smallest value p. so 

that u < \LV and find the largest value X so that Xv < u. See Figure 4.1 

Figure 4.1. 

Now construct the line through u and \LV. Call the intersection of this 

line and the boundary of C/"A H y'. This line will be parallel to one 

of the coordinate faces of C and so x' = co. Now y',u,^v ,co is a geometric 

projection of y,u,v,x through the origin, and so 

R(u,v,x,y) = R(u,p,v,co,y' ) 

I |y' ~ P-v| | 

The line connecting u to Xv will be parallel to the line connecting y' 

and the origin. Thus in the triangle with vertices at the origin, y', 

and it follows that 
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x - p,v 

y - u Xv 

Hence we have the following computational method. 

Theorem 4.1. Let C be the positive quadrant in E^ and H the unit hyper-

plane. If u,v are two points in CHH and m(x) = max X, M(|i) = min \i 

satisfying Xv < u < |iv, then 

D(u,v) = m*^! 

m(x) 

It is a simple matter to evaluate m(x) and M(|i). The inequality 

m(x)v < u < M(LX)V may be written 

m (X) < 

! u. 

< M(IX) 

u | 

The largest value that X may take on is m(x) 

u. 

v 

u. 
min 1 . 

— . Similarly, 
i 

M(LI) = M A X 

J v. 
J 

Thus 

m(x) 

max v. _1 
j V . 

J _ 
u„ V . max I j 

min u. 1 

1 ' 3 u.v. 
J 1 

i V . 
1 

Therefore another computational scheme for evaluating D(u,v) is 
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Theorem 4.2. With C,H as in Theorem 4.1, two points u = [u^, 

and v = [ v^, ..., v ] in C H will satisfy 

u. v. 
D(u,v) = m a X . 

1 , J " j V . 

In a similar vein, we will establish a formula for A . Again let 

H be the unit hyperplane, C the positive quadrant, and P a positive 

square matrix. The image P ( C H ) will be closed, convex, and bounded 

by straight lines. An extreme point for such a set is a point in the 

set that can not be written as a convex linear combination of any two 

distinct points again in the set; hence in this case an intersection of 

the boundary lines. Then in order to compute A , we need only the distances 

between all pairs of extreme points in P ( C r\ H ) because A is equal to the 

maximum of these values. The images of the extreme points in C O s H 

will be the extreme points in P C C / ^ H ) . These points will have coordi­

nates given by the column vectors of P . Using Theorem 4.2, we have 

Theorem 4.3. Under the above conditions, 

A = I n . m a x - ^ i i ^ i i , i.j.k.l P j k P n 

where 

P = [p..] , p.. > 0 all i,j = 1, n . L f i j J n x n ' *ij 9 J 9 9 

The geometric considerations we have been making throughout this 

paper yield immediate bounds on the positive eigenvalue \ associated 

with a positive matrix P , and these bounds are similar to those 
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contained in Varga [ 6 ] . There is no loss in generality in assuming the 

positive eigenvector c corresponding to X lies in C / ^ H . The value X 

scale c so that it intersects P(C H) and Pc. Since c is interior to 

C R \ H, the value X is between the smallest and largest of the values 

that scale the appropriate vectors in C F ~ \ H into the extreme points of 

P ( C O V H ) . Since the extreme points of P(C 0\H) are the column vectors 

of P, we need find for each column of P a vector u = (u^, u ) in 

C C\W and a value X. so that 
1 

X i ( u 1 , u 2 , • • • > u 1 - K + ••• + v i » ' 

li' P 2 i ' •••> Pni» 

or we need solve the n equations 

l 1 r l i 

2i 

= P, n-1, i 

X.(l - (u x + ... + V l » = ^ n i 

Solving the first (n-l) equations for the u^'s and substituting into the 

n t n equation" we have 



or 

x. = P U + ... + pn. . 

It follows that 

n n 
min ) p.. < X < max ) p. . 

1 < j < n 1 J ~ ~ 1 < j < n £ 1 

If all column sums are the same, then x is equal to their common value. 

In this case P(C ̂ \ H) is parallel to H. Since the eigenvalues of 

P equal those of P^, similar remarks are true about the row sums. 

Infinite Dimensional Cones 

Another cone of interest is the following. Let L be the space 

of continuous functions or [0,l] with norm || * || = ^ irT^O l] lf(x)l* 
Consider the set C of non-negative functions. This defines a closed, 

convex cone complete under || • || and so complete under D(u,v). Let 

P be the operator defined by 

Pf = p(x,y)f(y)dy , 
J0 

where p(x,y) is continuous on X = [0,l] x [0,l] and 

0<infp(x,y) = a < sup p(x,y) = p = y a 
X X 
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Now we would like to establish that P takes C into a set with finite 

diameter A so that we can apply the projective contraction theorem and 

establish that P has a positive eigenvector and eigenvalue. First we 

need 

Lemma 4.1. Let the following six coilinear points a,y,u,v,x,b in a 

Banach space be ordered along the line as listed. Then as y approaches 

a and/or x approaches b along the line, R(u,v,x,y) decreases. 

Proof: 

||x - u|| ||y - v| 
R(u,v,x,y) = • 

My - UM M x - V M 

As y -4 a, remains constant, and | |x - u| | and | jy - u| | are 
||x - v|| 

| | x - u | | 
increased by the same amount. Thus it follows that decreases. 

Ily- «ll 
Similar remarks are true if x -) b. 

Now we will choose two arbitrary continuous functions f,g > 0 

on [ 0,l], and show that D(Pf,Pg) is less than a constant that is inde­

pendent of f,g. Letting e(x) = 1 on [ 0 , 1 ] , there will exist real numbers 

x(f), x(g) > 0 so that 

\(f)e(x) < Pf < r \(f)e(x) 

x(g)e(x) < Pg < r x(g)e(x) , 

or 

Pf 

(l) e(x) < -^j-p) ^ re(x) 
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(2) e(x) <^hr < Y e(x) X ( G ) 

It follows that 

( 3 ) T e(x) < £ L . < Y
2 e ( x ) 

X ( F ) 

and 

(4) r e(x) < < T
2 e ( x ) . 

X(g) 

Combining (3) with (2) and (4) with (l) we have 

(5) L £ L > - * L _ 

X ( F ) X ( G ) 

(6) I ! L > - ^ -

X ( G ) X ( F ) 

Assuming y > 1 (otherwise the problem of finding eigenvalue for P i s 

Pf trivial), consider the four points - ^ , (y - 1) , 

X ( F ) X(g) X ( F ) 

(y - l) rr^r , and ̂ 9 . ^11 four of these points will be interior 
X ( G ) X ( G ) X ( F ) 

to C due to (5) and (6) and assumptions on f,g,y. Now we need to estab-

list that these four points are collinear. Hence, we must find a real 

number X^ satisfying 0 < X^< 1 so that 

/ . v Pf % Pf % Pg , TPq Pf 
( T " 1 } X(f) = X 1 T X(f) " X l X(g) + X(g) " X ( F ) 

-E2L ^ PF - X 
1 XTGT + x i X T F L 



47 

or, 

x 

We can do this by choosing X^ = ^ + i ° ^ n <^ second, we need to find \^ 

satisfying 0 < \^ < 1 so that 

/ . x Pg YPf , Pg . Pg Pf 
( r " 1 } x(g) = X 2 x(P) " X 2 x(g) + Y X(g) " x(f) 

•2 x(g) + x 2 x ( f ) 

or 

We can do this by choosing 

•2 Y + 1 

Thus, 

n / / , \ Pf , i \ Pg P(g) Pf Pf Pg N 

R ( ( Y - i ) ^ 7 ) , (Y ~ 1 ) xTgT ' Y xtg) xTf) ? Y XTPJ ~ xlgT 

Y 
Y + 1 

1 - Y 

Y + 1 

1 - + 1 

Y + 1 
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By Lemma 4.1 and the properties of D(u,v) we have that 

D ( ( Y - 1) 
Pf 

( r - D ^ y ) = D(pf,p g) < ln r
2 

x(f) ' 

Thus, PC has finite diameter, and the projective contraction theorem 

applies to guarantee that P,a Fredholm integral operator with a posi­

tive, continuous kernel, has a positive eigenvalue and eigenvector in 

the space of continuous functions on a closed, bounded interval. 

This result may be generalized to an arbitrary Banach lattice 

L. A bounded linear transformation of a vector lattice L into itself 

will be called uniformly positive if, for some fixed e > 0 in L and 

finite number y, independent of f, we have 

for any f > 0 and some X = x(f) > 0. Since our previous development 

for the specific case was based entirely on an equation of the form 

(7), we have 

Theorem 4.4. Any uniformly bounded linear transformation P of a 

Banach lattice L into admits a unique positive vector c and scalar 

X > 0 so that 

Consider the Volterra operator with positive, continuous ker­

nel, i.e., 

Il) Xe < Pf < kxe 

Pc = Xc 

Pf = p(x,t)F(t)dt, 
Ja 

a < x < b 
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We choose e(x) = x - a and set 

inf p(x,t) x, t in [ a, b] 

P = 
sup 

x,t in [a,b] p(s,t) 

and 

Thus P is uniformly positive and Theorem 4.4 applies. 

Theorem 4.1 prompts the following investigation. Let L be a 

Banach lattice. Let L be the set of positive vectors in L. Two ele-
4 -

ments f,g in L will be called comparable if there exist two positive 

numbers \,p. such that 

Let Q be the subset of L containing all comparable functions in L . 

Note that Q is a convex cone. Let M(f,g) = inf p,, m(f,g) = sup X. We 

will establish the following theorem in analogy with Theorem 4.1. 

Theorem 4.5. 

is a projective metric in Q . 

Proof; (i) By definition of m(f,g) and M(f,g) we see D(f,g) is well 

defined and non-negative and equal zero if and only if f = g. 

(ii) To establish that we have a projective metric, we need only 

Xg < f < jxg 

D(f,g) * In M(f,q? m(f,g) 



show that homogenity is satisfied, that is 

D( Tf,g) = D(f,g) for all y > 0 

But if 

m(f,g)g < f < M(f,g)g, 

then 

ym(f,g)g < yf < Y M( f>g)g 

and 

m(yf,g) = ym(f,g) by definition of 

and similarly 

M( Tf,g) = YM(f,g) . 

Hence 

D ( T f , , ) . i n t f j | j a ) - D ( f , g ) . 

(iii) Suppose we have m(f,g)g < f < M(f,g)g and 

M(f,g) 
D(f,g) = I n ^ M . 

, y m(f,g) 

Then 

MlfTgT f i 9 - m ( f , g ) f 

and 
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(iv) Let f,g,h be distinct in Q. Let e > 0 . Then 

(m(f,h) - e)h < f < (M(f,h) + e) 

and 

(m(h,g) - e)g < h < (M(h,g) + e) . 

Here we have assumed £ < min j m(f,h),m(h,g)j. Thus we have 

(m(f,h - e)(m(h,g) - e )g < f < (M(f,h) + e)(M(h,g)+ e)g 

So by definition of M,m we have 

(m(f,h) - e)(m(h,g) - e ) < m(f,g) 

and 

(M(f,h) + e)(M(h,g) + e) > M(f,g) 

Letting e 0 we have 

m (f,g) > m(f,h) • m(h,g) 

and 

M(f,g) < M(f,h) • M(h,g) 

And so 

M(f.q) < M(f th) • M(h,q) 
m(f,g) - m(f,h) • m(h,g) 

and, therefore, the triangle inequality 



D(f,g) < D(f,h) + D(h 

established. 
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