
Time-Shifted Prefetching and Edge-Caching of Video Content:
Insights, Algorithms, and Solutions

A Thesis
Presented to

The Academic Faculty

By

Shruti Lall

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

August 2022

Copyright © Shruti Lall 2022

TIME-SHIFTED PREFETCHING AND EDGE-CACHING OF VIDEO CONTENT:
INSIGHTS, ALGORITHMS, AND SOLUTIONS

Approved by:

Prof. Raghupathy Sivakumar
Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Faramarz Fekri
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Douglas M Blough
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Prof. Umakishore Ramachandran
College of Computing
Georgia Institute of Technology

Prof. Karthikeyan Sundaresan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: May 26, 2022

To the loving memory of my father - my biggest cheerleader

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Siva. He is an exemplary

mentor; being wise, insightful, kind and flexible of mind. His supervision has helped me

shape my research while granting me the autonomy to explore and innovate. He nudged

me to look beyond the obvious and motivated to engage in critical thinking.

I would like to thank the Fulbright Program for their financial support and enabling me

to attend Georgia Tech; it is a privilege to be a part of the Fulbright family. Thank you

also to the Wayne J. Holman Endowed Chair and the National Science Foundation for their

funding support.

I would also like to thank Prof. Fekri, Prof. Blough, Prof. Ramachandran and Prof.

Sundaresan for serving on my proposal and dissertation committee. I am most thankful for

their valuable feedback and insights in steering my research.

I would like to thank my lab-mates Bhuvana, Ching-Lun, Ekansh, Mohit, Shyam, Uma,

and Yubing, who have been a major source of support during my Ph.D. My days at our lab

were littered with insightful discussions, captivating brainstorming sessions, interesting

lunch breaks, and entertaining coffee runs.

My gratitude extends to Prof. Blough, Prof. Fekri, Prof. Ramachandran and Prof. Sun-

daresan, for serving on my committee and providing invaluable suggestions and feedback

that has improved the quality of this work.

I have also had the great fortune of meeting wonderful people and making amazing

friends who have provided stimulating discussions and happy distractions outside of re-

search. I would especially like to thank Anish, Anusha, and Shashi, who have become my

family away from home; I will forever cherish the fun times we have had together.

I am extremely fortunate to have been born to a very supportive and caring family. I

deeply thank my parents for their gentle encouragement, endless patience and limitless

love. My mother is my greatest source of inspiration and has taught me the values of hard-

iv

work and determination through example. My father’s belief in me gave me the strength

to tackle anything that came my way; his support and love have been immeasurable. I am

so grateful for my sister, Khushi, who true to her name, has been a source of immense joy.

I want to thank my father-in-law, mother-in-law and brother-in-law, Amol, who have been

unwavering in their support and so kind in their encouragements. I would also like to thank

my extended family for always cheering me on- especially to my aunt, Anupa, and uncle,

Amitabh, who are like parents to me.

Finally my husband, Adwait, who is my best friend and a great companion, has loved,

supported, encouraged, entertained, and helped me get through this grueling period in the

most positive way- Thank you.

v

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . xii

List of Figures . xiv

Summary . xxi

Chapter 1: Introduction . 1

1.1 Research Focus . 3

1.2 Research Contributions . 5

1.3 Thesis Statement . 7

1.4 Thesis Organization . 8

Chapter 2: Literature Survey . 9

2.1 Video Traffic Characterization . 9

2.2 Prefetching Content . 10

2.3 Edge Caching . 12

Chapter 3: A Real-World Dataset of YouTube Videos and User Watch-Behavior 14

3.1 YouTube and its significance . 15

3.2 Dataset Collection . 16

vi

3.3 Baseline Characteristics . 17

3.4 Analysis and Key Insights . 18

3.4.1 How often do users watch the same video again? 18

3.4.2 Can a user’s YouTube watch behavior be predicted? 21

3.4.3 Do users consume videos suggested through YouTube’s recommen-
dation engine? . 23

3.4.4 Do users’ YouTube video preferences change over time? 26

3.4.5 What are the typical data consumption patterns for YouTube usage
for a user? . 28

Chapter 4: Time-Shifted Prefetching of YouTube Videos to Reduce Peak-time
Cellular Data Usage . 31

4.1 Background & Motivation . 33

4.1.1 Peak vs Off-Peak Performance . 33

4.1.2 On YouTube Data Usage . 34

4.1.3 Problem Definition . 35

4.2 Quantitative Analysis of YouTube Usage 35

4.2.1 Methodology . 35

4.2.2 Data Highlights . 36

4.2.3 Prefetching Strategies and Potential 38

4.3 The MANTIS Prefetching Solution . 41

4.3.1 Overview . 41

4.3.2 Candidate Set Generation . 41

4.3.3 Feature Design . 43

4.3.4 Classifier Design . 46

vii

4.3.5 System design . 50

4.4 Performance Analysis . 53

4.4.1 Macroscopic performance of Mantis 54

4.4.2 Prototype Results . 56

4.4.3 User Study . 57

Chapter 5: A Real-world Dataset of Netflix Videos and User Watch-Behavior . . 59

5.1 Data Collection . 60

5.1.1 Methodology . 60

5.1.2 Baseline Characteristics . 61

5.2 Analysis and Key Insights- Movies . 61

5.3 Analysis and Key Insights- Series . 63

5.3.1 User Watch Patterns . 64

5.3.2 User Watch-Session Length . 65

5.3.3 User Preferences . 69

5.3.4 Predictability . 72

5.3.5 Continuity of User Watch-Behavior 73

Chapter 6: Toward Effective Prediction of Watch Behavior for Time-Shifted
Edge-Caching of Netflix Series Videos 76

6.1 Background & Motivation . 78

6.1.1 Peak vs. Off-peak Load . 78

6.1.2 On Netflix usage . 79

6.1.3 Problem Definition . 80

viii

6.2 A Real-World Dataset . 81

6.2.1 Dataset Collection . 81

6.2.2 Metadata Retrieval . 81

6.2.3 Data Insights . 82

6.3 Baseline Solutions . 87

6.3.1 Predictability of Netflix Content 87

6.3.2 Logical Architecture . 89

6.3.3 Naive Caching Strategy . 90

6.3.4 Heuristic 1: User Continuation . 91

6.3.5 Heuristic 2: Season Continuation 93

6.4 CacheFlix: Edge-caching of Netflix series episodes 94

6.4.1 Overview . 95

6.4.2 Feature Design . 95

6.4.3 Prediction model . 97

6.4.4 Eviction Strategies . 101

6.5 Performance Evaluation . 101

6.5.1 Bandwidth Implications . 102

6.5.2 CacheFlix Prediction Performance 103

6.6 Comparison to MANTIS . 106

Chapter 7: A Real-World Dataset of Joint Netflix and YouTube User Watch-
Behavior . 109

7.1 A Real-World Dataset . 111

7.1.1 Dataset Collection . 111

ix

7.1.2 Baseline Characteristics . 113

7.2 Analysis and Key Insights . 114

7.2.1 User Watch Patterns . 115

7.2.2 Amount of Content Consumption 123

7.2.3 User Preferences . 132

7.2.4 Predictability . 137

Chapter 8: An Integrated Approach for Time-Shifted Prefetching of YouTube
and Netflix Series Videos . 142

8.1 Integrated Solutions . 142

8.1.1 CacheFlix+: Enhancing CacheFlix with YouTube viewing behavior 143

8.1.2 Mantis+: Enhancing Mantis with Netflix viewing behavior 144

8.2 Framework for Prefetching and Edge-Caching Platform Agnostic Video
Content . 144

8.2.1 Data Processing Pipeline . 145

8.2.2 Features Generator . 146

8.2.3 Prediction Module . 146

8.2.4 Cache Manager . 146

8.2.5 Delivery Module . 147

8.3 Extending Framework for Prefetching and Edge-Caching Structured and
Unstructured Data . 147

8.3.1 Data Processing Pipeline . 147

8.3.2 Features Generator . 148

8.3.3 Prediction Module . 148

8.3.4 Cache Manager . 149

x

8.3.5 Delivery Module . 149

Chapter 9: Challenges and Next Steps . 151

9.1 Mantis: Time-Shifted Prefetching of YouTube Videos to Reduce Peak-time
Cellular Data Usage . 151

9.2 CacheFlix: Toward Effective Prediction of Watch Behavior for Time-Shifted
Edge-Caching of Netflix Series Videos . 152

Chapter 10:Conclusions . 154

References . 166

xi

LIST OF TABLES

3.1 User statistics . 17

3.2 Videos statistics . 17

4.1 User statistics . 36

4.2 Videos statistics . 37

4.3 Features description . 44

4.4 Classifier comparison results . 49

4.5 Prototype Results . 57

5.1 Dataset Overview . 62

5.2 Classifier Comparison . 75

6.1 Dataset Overview . 82

6.2 Features description . 97

6.3 Comparison to competing methods . 105

6.4 Comparison to prefetching algorithm in [116] 108

7.1 Netflix Dataset . 114

7.2 YouTube Dataset . 114

7.3 Netflix Activity Levels . 115

xii

7.4 YouTube Activity Levels . 115

8.1 Accuracy of CacheFlix+ for users in AL 1 to AL 4 143

8.2 Efficiency of CacheFlix+ for users in AL 1 to AL 4 143

8.3 Accuracy of Mantis+ for users in AL 1 to AL 4 144

8.4 Efficiency of Mantis+ for users in AL 1 to AL 4 144

xiii

LIST OF FIGURES

1.1 Average normalized available bandwidth with the approximate shape of the
traffic load . 2

1.2 Traffic distribution studied by CloudFlare [11] 3

1.3 Traffic distribution reported by Sandvine [12] 3

1.4 Traffic distribution showed by Xu et al. [13] 3

1.5 Research Focus Landscape . 4

3.1 Repeated video watches per user . 20

3.2 Repeated watches per category . 20

3.3 Repeated watches for varying duration . 20

3.4 Repeated watches for changing view counts 20

3.5 % Videos from related set per user . 22

3.6 Related video watches per category . 22

3.7 Related watches for varying duration . 23

3.8 Related watches for changing view counts 23

3.9 RE effectiveness per user . 25

3.10 RE effectiveness per category . 25

3.11 RE effectiveness for changing view counts 25

3.12 RE effectiveness per hour of day . 25

xiv

3.13 Video duration preference per user . 27

3.14 Video duration preference per hour . 27

3.15 Video duration preference per day . 27

3.16 Aggregate load across all users . 27

3.17 Watch session length per user . 29

3.18 Watch session difference per user . 29

3.19 Watch session length per hour . 30

3.20 Watch session length per day . 30

4.1 Normalized available BW across the day 34

4.2 Usage over Cellular and WiFi networks for 90 users 34

4.3 Percentage of videos watched by day across all users 37

4.4 Percentage of videos watched by hour across all users 37

4.5 Percentage of re-watched videos across all users 39

4.6 Watch-profile similarity scores across all users 39

4.7 Recommended vs. related set across 10 users 43

4.8 Hit ratio for varying generation periods . 43

4.9 Correlation Matrix . 45

4.10 Cumulative Variance PCA . 45

4.11 Accuracy for varying K across 206 users 49

4.12 Accuracy for varying training period across 206 users 49

4.13 Primary system architecture . 51

4.14 Peak-time BW reduction across 206 users for 1 month 55

xv

4.15 Average BW usage for 206 users for 1 month 55

4.16 Performance of Mantis across 206 users 55

4.17 Performance of Mantis on dataset in [87] 55

4.18 PA and PE across 10 volunteers over 2 weeks 58

5.1 Days between subsequent movie watches 62

5.2 Viewing day entropy for movies . 62

5.3 Distribution of episodes watched per day 65

5.4 Viewing day entropy across 1 year history 65

5.5 CDF of time between WSs days . 66

5.6 TBWS entropy across 1 year history . 66

5.7 CDF of No. of episodes watched per WS 67

5.8 Episodes consumption entropy across 1 year history 67

5.9 CDF of burstiness on a per month basis 68

5.10 Distribution of No. of series watcher per day 68

5.11 Episodes distribution per genre . 70

5.12 Monthly genre entropy for all users . 70

5.13 Distribution of number of votes received 71

5.14 Distribution of ratings received . 71

5.15 Predictability from past WSs . 73

5.16 Predictability across different genres . 73

5.17 Seasons watched to its entirety for different genres 74

5.18 Point of departure of seasons not watched to its entirety 74

xvi

6.1 Normalized available BW across the day 79

6.2 User activity levels distribution . 83

6.3 CDF for the number of episodes watched per WS 83

6.4 CDF of TBWS between WSs . 84

6.5 CDF of per-month burstiness score . 84

6.6 Distribution of content watched per day 85

6.7 VDE across users for their 1-year history 85

6.8 VGE across user activity levels for 1-year history 88

6.9 CDF of point of departure for seasons not watched in its entirety 88

6.10 Logical Architecture . 89

6.11 PA for varying values of M and N . 91

6.12 CE for varying values of M and N . 91

6.13 Heuristic 1 performance across varying activity levels 94

6.14 Heuristic 2 performance across varying activity levels 94

6.15 CacheFlix structure . 98

6.16 Average per month BW shifted to off-peak hours 103

6.17 Average per month BW usage without and with CacheFlix 103

6.18 Prefetching algorithm results across all users 103

6.19 PA and CE for different eviction strategies 106

6.20 PA and CE for FIFO eviction strategy . 106

7.1 Distribution of content watched per day for YouTube and Netflix content . . 116

7.2 Distribution of YT videos watched per day 116

xvii

7.3 Distribution of NF series videos watched per day 116

7.4 Distribution of NF movies watched per day 119

7.5 Distribution of YT videos across time of day 119

7.6 Viewing Day Entropy for Video Content 119

7.7 Viewing day entropy for YT videos . 119

7.8 Viewing day entropy for NF series . 119

7.9 Viewing day entropy for NF movies . 119

7.10 Viewing hour entropy for YT videos . 119

7.11 Viewing day entropy for Netflix vs YouTube content 119

7.12 Viewing hour entropy vs viewing day entropy 119

7.13 Distribution of time between WSs for NF and YT videos 120

7.14 Time between WSs for YT videos across all activity levels 120

7.15 Time between WSs for NF series videos across all activity levels 120

7.16 Time between WSs for movies across all activity levels 122

7.17 Time between WSs entropy for NF and YT content 122

7.18 Time between WSs entropy for YT videos across all activity levels 122

7.19 Time between WSs entropy for series content 122

7.20 Time between WSs entropy for NF movies 122

7.21 Time between WSs entropy for NF vs YT consumption 122

7.22 CDF of number of NF and YT videos watched each day 125

7.23 CDF of number of YT videos watched each day 125

7.24 CDF of number of NF episodes watched each day 125

7.25 CDF of number of NF movies watched each day 125

xviii

7.26 Average time spent on YT and NF per day 125

7.27 Average time spent on YT videos per day 125

7.28 Average time spent on NF series content per day 125

7.29 Average time spent on NF movies content per day 125

7.30 Average time spent on YT vs NF per day 125

7.31 Time profile A . 127

7.32 Time Profile B . 127

7.33 Time Profile C . 127

7.34 Time profile D . 128

7.35 Example of time profile A . 128

7.36 Example of time Profile C . 128

7.37 Distribution of users according to time-profiles 129

7.38 YT video load across time of day for all users 129

7.39 CDF of burstiness score for NF and YT videos over entire history 130

7.40 CDF of burstiness score on a monthly basis 130

7.41 CDF of average monthly burstiness score for YT videos 130

7.42 CDF of average monthly burstiness score for NF series 131

7.43 CDF of average monthly burstiness score for NF movies 131

7.44 Average monthly burstiness score of YouTube vs Netflix content 131

7.45 CDF of average monthly burstiness score for NF series 132

7.46 CDF of average monthly burstiness score for NF movies 132

7.47 Average monthly burstiness score of YouTube vs Netflix content 132

7.48 Distribution of YT genres watched across all users 134

xix

7.49 Distribution of NF series genres watched across all users 134

7.50 Distribution of NF movies genres watched across all users 134

7.51 Viewing genre entropy for YT and NF content 134

7.52 Viewing genre entropy of YT content . 134

7.53 Viewing genre entropy of NF series content 134

7.54 Viewing genre entropy of NF movies content 134

7.55 Viewing genre entropy for Netflix vs YouTube on a per-user basis 134

7.56 Distribution of view count for YT content 134

7.57 Distribution of votes received for NF series 136

7.58 Distribution of votes received for NF movies 136

7.59 CDF of predictability for YT content . 136

7.60 CDF of predictability for series content . 138

7.61 CDF of predictability for movies content 138

7.62 CDF of predictability for YT and NF content 138

7.63 Predictability of Netflix vs YouTube content 140

7.64 Average percentage of seasons watched to completion in each genre 140

7.65 Point of departure of seasons not watched to its entirety 140

8.1 General framework for prefetching and caching of video content 145

xx

SUMMARY

Video content is by far the largest contributor to Internet traffic, with video currently

accounting for nearly 80% of overall global Internet traffic [1]. This is expected to grow

further due to a variety of reasons which include the projected increased number of Internet

users and faster broadband speeds, expected improvement in video quality and growth in

the number of video-capable devices, as well as due to the emergence of video dominated

technologies like augmented and virtual reality [2]. As a result of this rapid growth and in-

creasing popularity of video content, the network is heavily burdened. If the network traffic

load is near or exceeds the available capacity, it can lead to network congestion, increased

latency, and even outages, ultimately resulting in poor user quality of experience. Today’s

service providers are under constant pressure to increase the capacity of their networks and

upgrade their infrastructures, which is extremely expensive, in order to keep up with user

demand [3].

Several strategies can be used to address the peak load conditions and hence defer con-

sequent upgrades. Examples of these strategies include reducing the load using compres-

sion and deduplication algorithms, improving the efficiency of the communication through

protocol optimization, and disincentivizing users from imposing such peak loads by enforc-

ing penalties [4, 5]. In this dissertation, we consider the strategy of time-shifted prefetching

and edge-caching of video content to address these peak load conditions. Prefetching is not

a new strategy and has been extensively considered in prior related work [6, 7, 8]. What is

unique about the focus of this work is the substantially time-shifted nature of the prefetch-

ing done with the specific goal of shifting peak load to off-peak periods. In this context,

with network traffic load being significantly higher during peak periods (up to 5 times as

much), we explore the problem of prefetching video content during off-peak periods of the

network even when such periods are substantially separated from the actual usage-time.

The objective of this work is to develop a set of data-driven prediction and prefetching sys-

xxi

tems, using machine-learning and deep-learning techniques, which accurately anticipates

the video content the user will consume, and caches it to the edge which is closest to the

user; this can be the user’s end devices or small data storage servers and wireless routers.

Currently, both fixed and mobile internet traffic is dominated by two video stream-

ing services- Netflix and YouTube. In fact, these two applications have the largest share

of global Internet traffic. YouTube is the leading application and is alone responsible for

nearly 16% of global traffic, and is closely followed by Netflix, which is responsible for

12% of global traffic [9]. While both applications provide video content, they vastly differ

in terms of the purpose they serve and the type of videos provided. In this dissertation,

we develop prefetching systems specifically for YouTube and Netflix content. To this end,

we first collect 3 real-world datasets for YouTube usage, Netflix usage, and joint YouTube-

Netflix usage; using these datasets, we draw key insights and provide substantiated direc-

tions for solutions to problems in the general domains of networking and telecommuni-

cations. We then develop two separate data-driven prediction algorithms and systems for

prefetching the YouTube and Netflix content, respectively. Specifically, the three datasets

we collect are:

1. YouTube Usage: the first dataset we collect comprises of approximately 1.8 million

YouTube videos spanning a 1.5 years watched by 243 users. Using this dataset,

we perform a user-level watching behavior study and propose a prefetching system,

Mantis, which anticipates what YouTube videos a user will consume during peak-

hours, based on their past viewing behavior and how the user interacts with related

videos. We show that we are able to shift 34% of YouTube peak-time viewing traffic

to off-peak hours.

2. Netflix Usage: the second dataset consists of Netflix usage from 1060 users and

contains 1-year worth of viewing activity for each user, which amounts to over 1.7

million episodes and movies collectively watched. With this dataset, we present

key insights related to how users consume Netflix content. We then develop the

xxii

associated prefetching system, CacheFlix, which learns how the user watches Netflix

series videos and then caches the optimal subsequent episodes under storage and

bandwidth constraints. We are able to shift nearly 70% of Netflix series videos to

off-peak hours.

3. Joint YouTube and Netflix Usage: the final dataset we collect contains both YouTube

and Netflix usage from 377 users; the dataset contains at least 1 year’s worth of both

YouTube and Netflix activity for each user, which amounts to 4.3 million YouTube

videos, Netflix episodes and movies collectively watched. From this dataset, we

show results regarding the joint consumption of videos across these platforms and

present practical implications based on our findings. In particular, we investigate if

and how a user’s YouTube and Netflix viewing behavior is related to one another.

We also propose an interesting way of enhancing each solution by incorporating the

watching behavior on the platform we are not prefetching for i.e., we enhance the

YouTube prefetching solution with a user’s Netflix watching behavior and vice versa.

We also show how to integrate the two systems for prefetching YouTube and Netflix

content. Furthermore, based on our findings from our developed algorithms, we develop

a framework for prefetching video content regardless of the type of video and platform

upon which it is hosted. We show how the core concepts of our algorithms can be applied

to prefetch and edge cache beyond just YouTube and Netflix videos. We also show how

the framework can be modified to cater for other type of structured data, as well as for

unstructured data.

xxiii

CHAPTER 1

INTRODUCTION

Internet traffic load is not uniformly distributed throughout the day and is significantly

higher during peak periods. A simple way to exemplify this imbalance is by conducting a

bandwidth (BW) test probe at regular intervals throughout the day. The BW probe measures

the available BW of the network by downloading a small file from a web server and uses

the download time to estimate the current throughput. The aggregate available BW over

both a fixed and cellular network over a 2 week period is shown in 1.1. We see that the

available BW varies through the day, indicating that the traffic load also fluctuates through

the course of the day- the corresponding shape of the traffic load can be approximated when

we assume that the maximum available BW corresponds to a minimum traffic load. We

see that the load is significantly higher during peak hours as compared to off-peak hours.

Similar evidence of the load imbalance has been shown in other Internet traffic distribution

studies; see Figures 1.2 to 1.4.

If this peak traffic load is near or exceeds the available capacity, it can lead to network

congestion, increased latency, and even outages, ultimately resulting in poor user quality

of experience. Today’s service providers are under constant pressure to increase the ca-

pacity of their networks and upgrade their infrastructures, which is extremely expensive,

to keep up with user demand [3]. Several strategies can be used to defer consequent up-

grades by reducing peak-load usage; these include reducing the load using compression and

deduplication algorithms, improving the efficiency of the communication through protocol

optimization, and even discouraging users from imposing such peak loads by enforcing

penalties [4, 10, 5]. In this dissertation, we consider the strategy of time-shifted prefetching

and edge-caching to address these peak load conditions. Time-shifted prefetching refers to

predicting content that a user is likely to access in the future and then fetching that ahead

of time. In particular, we focus on utilizing the available BW during off-peak hours to

1

Figure 1.1: Average normalized available bandwidth with the approximate shape of
the traffic load

prefetch content and cache it to the edge which is closest to the user; this can be the user’s

end devices or small data storage servers, and wireless routers.

Video content is by far the largest contributor to Internet traffic, with video currently

accounting for nearly 80% of overall global Internet traffic [1]. This is expected to grow

further due to a variety of reasons which include the projected increased number of Internet

users and faster broadband speeds, expected improvement in video quality and growth in

the number of video-capable devices, as well as due to the emergence of video dominated

technologies like augmented and virtual reality [2]. We thus narrow the scope of our work

to the prefetching and edge-caching of video content. Currently, both fixed and mobile

internet traffic is dominated by two video providers- Netflix and YouTube. In fact, these

two applications have the largest share of global Internet traffic. YouTube is the leading

application and alone accounts for nearly 16% of global traffic, and is closely followed

by Netflix, which accounts for 12% of global traffic [9]. While both applications provide

video content, they vastly differ in terms of the purpose they serve and the type of videos

provided.

In this work, we develop prefetching systems specifically for YouTube and Netflix con-

2

Figure 1.2: Traffic
distribution studied by
CloudFlare [11]

Figure 1.3: Traffic
distribution reported by
Sandvine [12]

Figure 1.4: Traffic
distribution showed by Xu
et al. [13]

tent. For each system, we first collect 3 real-world datasets for YouTube usage, Netflix

usage and joint YouTube-Netflix usage. We use the datasets to analyze and present key

insights about user-level usage behavior, and show that researchers can use our analysis

can to tackle a myriad of problems in the general domains of networking and communica-

tion. Thereafter, equipped with the datasets and our derived insights, we develop a set of

data-driven prediction and prefetching solutions using machine-learning and deep-learning

techniques (specifically supervised classifiers and LSTM networks). The systems learn the

user’s watching behavior, anticipate the video content the user will consume in the next

peak-hour period, and edge-cache it during the off-peak hours. We also show how to in-

tegrate the two systems and develop a framework that extends the prefetching of videos

beyond just YouTube and Netflix videos.

1.1 Research Focus

Figure 1.5 shows the research landscape and focus of our work. Specifically, the vertices

on the triangle represent the key areas of our work, and the edges represent the relevant

intersections of the areas. For example, the edge between the video traffic and prefetching

represents work that encompasses the prefetching of video content.

At the top vertex, there is an abundance of prior work related to video traffic. It can be

broadly categorized into 3 areas: video measurement studies which study the characteristics

and behavior of video traffic [14]-[16], the prediction of video popularity [17, 18] and also

3

Video Traffic

Prefetching Edge-Caching

Measurements
Video popularity
Social networks

Origin server
Server-initiated

Edge servers
WiFi APs/BSs
End-devices

Server-side
schemes

Reactive
caching

Structural methods
Markov prediction
Machine learning

Prefetching
and edge-
caching of

videos

Figure 1.5: Research Focus Landscape

work in understanding the social networking aspects related to video viewing [19, 20].

Concerning the prefetching dominant prior works shown at the bottom left vertex, there

has been some early work done for the development of strategies at the origin server and of

server-initiated schemes where the computation for the protocols is solely performed at the

server [21]-[23]. In terms of edge caching works shown on the bottom right vertex, there

is significant work done for the development of algorithms and systems at various points

in the network, particularly in content delivery networks [24], edge servers [25], wireless

routers or mobile base stations [26] and end-devices [27].

There is considerably less work that lies between the areas of prefetching and video

traffic that is not cached at the edge, as the benefits of reduced latency and network con-

gestion is greater towards the edge of the network (shown on the edge between the video

traffic and prefetching vertices). The work here primarily involves server-side optimization

schemes for prefetching video content [28, 29]. Research for edge-caching video content

deals with reactive caching schemes where videos are cached based on what users have pre-

viously accessed; there is no prediction component here [30]-[33]. Conversely, the work

that lies between prefetching and edge caching is dedicated to predicting content that will

4

be accessed in the future, and then edge-caching that. There are structural methods that are

used for the prediction; an example of this is link-prefetching [34]. In more recent times,

Markov prediction models and machine learning tools are used for deciding what content

to prefetch to edge devices [35]-[37].

The research focus of this dissertation is at the intersection of the areas of video traffic,

prefetching, and edge-caching.

1.2 Research Contributions

The research contributions of our work can be summarized as follows:

1. With YouTube being the world’s largest video sharing site and reportedly accounts

for 38% of a mobile user’s cellular data usage [38], we collect and perform an in-

depth analysis on a real-world dataset of YouTube usage. The dataset comprises of

1,826,075 videos spanning a 1.5-year period of watch history. The videos, as an

aggregate, represent approximately 65TB of videos watched over a 1.5-year period.

With this dataset, we provide a number of insights and associated implications by

answering questions regarding a user’s interaction with YouTube; these are: i) How

often do users watch the same video again? ii) Is a user’s watch behavior predictable?

iii) What are users’ typical YouTube data consumption patterns? These questions

pertain to specific representative problems, and our associated analysis provides key

insights related to problems in the general area of Internet protocols, algorithms, and

systems.

2. Equipped with the YouTube usage dataset and our derived insights, we design and

develop a data-driven machine-learning based algorithm, Mantis, for prefetching that

is trained on a user’s watch history and predicts the user’s likely video watch behav-

ior over the next 24 hours. We show that the algorithm performs well for 4 metrics:

prefetch accuracy, prefetch efficiency, prefetch selectivity, and overall accuracy. We

also implement the proposed prefetching algorithm using a simple strategy of a con-

5

trol application for the YouTube app on mobile devices. We recruit 10 volunteers

and evaluate the results of our solution using the prototype over a 2 weeks and show

a subsequent reduction of 42% in peak-time YouTube traffic across the users. Fur-

thermore, we show that the implementation is lightweight in terms of CPU, memory,

and network consumption.

3. The second most popular video streaming platform is Netflix which currently ac-

counts for nearly 12% of the global Internet traffic [9]. As a result of the difference in

the nature of the videos of YouTube content (relatively short-form videos) and Netflix

content (long-form series and movies), a separate set of prediction and prefetching

algorithms would need to be developed to prefetch and edge cache Netflix content.

To investigate time-shifted prefetching for Netflix content, we collect and analyze

Netflix usage from 1060 users. The collected dataset contains 1-year worth of view-

ing activity for each user, which amounts to over 1.7 million episodes and movies

collectively watched. We study the user-level Netflix watch behavior by answering

a series of research questions pertaining to the user’s watch patterns, watch-session

length, user preferences, predictability, and series continuation tendencies. We also

implement and evaluate classification models to predict the user’s engagement in a

series and the likelihood of them continuing to watch a series.

4. We propose a time-shifted edge-caching solution, CacheFlix, for prefetching Netflix

series content and storing it to the edge that is the closest to users. We first show re-

sults from a naive caching solution as well as 2 baseline heuristics that is dependent

on the user’s past watch behavior. We then design and implement a deep learn-

ing caching algorithm that uses global and local learners based on Long Short-Term

Memory networks, to cache episodes of Netflix series to the user during off-peak

hours. The algorithm is evaluated in terms of how accurately it is able to predict con-

tent that the user watches in the future (prediction accuracy) and how efficiently it

6

consumes bandwidth and stores the content (caching efficiency). We present results

for 3 different cache eviction policies and also for edge-caches with storage sizes as

small as 2 GB. We also compare our results to related work and show that CacheFlix

is able to perform 1.8 times better in terms of accuracy and 3.5 times better in terms

of efficiency.

5. We collect a dataset for studying the joint Netflix and YouTube consumption from

377 users. The collected dataset contains at least 1-year worth of both YouTube and

Netflix viewing activity for each user, which amounts to over 4.3 million YouTube

videos, Netflix episodes and movies collectively watched. Using this dataset, we

investigate if and how a user’s YouTube and Netflix viewing behavior is related to

one another. We study and derive insights regarding their joint watch patterns, the

volume of content consumption, viewing interests, and predictability of their future

viewing.

6. Finally, we develop an integrated solution of Mantis and CacheFlix, and show how

Mantis can be enhanced with a features representation of the user’s Netflix viewing

behavior, and vice versa. We also present a framework for prefetching video content

during off-peak periods, which is agnostic to the type of videos, the provider, and the

platform upon which it is hosted. This framework consists of 5 modules, namely:

data processing pipeline, features generator, prediction module, cache manager, and

delivery module. We also show how the framework can be modified to cater for other

type of structured data, as well as for unstructured data.

1.3 Thesis Statement

Internet traffic load is significantly higher during peak periods as compared to off-peak pe-

riods; if this peak traffic load is near or exceeds the available capacity, it can lead to network

congestion, increased latency, and outages. With video dominating global Internet traffic,

the available bandwidth during off-peak hours can be efficiently utilized for prefetching

7

video content ahead of time so as to reduce peak-time traffic.

1.4 Thesis Organization

The rest of this dissertation is organized as follows - In Chapter 2, we review related lit-

erature in the domains of video traffic characterization, prefetching, and edge-caching. In

Chapters 3 and 4, we discuss our contributions to the analysis of YouTube usage, and the

developed prefetching system, Mantis. In Chapters 5 and 6, we present our work toward

developing CacheFlix, a time-shifted edge-caching solution for Netflix content. In Chapter

7, we present results related to the joint watch behavior of YouTube and Netflix content. In

Chapter 8, we present an integrated solution of Mantis and CacheFlix and propose a gen-

eral framework for prefetching video content. In Chapter 9, we delve into some existing

challenges of our proposed work and outline additional research directions. Finally, we

conclude our arguments in Chapter 10.

8

CHAPTER 2

LITERATURE SURVEY

In this chapter, we provide a summary of the relevant research pertaining to video traffic

characterization, prefetching (also known as “proactive caching”), and edge-caching and

compare them with the proposed contributions of this thesis.

2.1 Video Traffic Characterization

There have been several measurement studies performed for characterizing and understand-

ing video traffic. With YouTube contributing to 16% of the world’s internet traffic [39],

there have been a plethora of measurement studies in which YouTube video popularity and

YouTube video request patterns were investigated [14]-[16]. One of the earlier works in-

vestigating the platform was performed by Cheng et al. [40] by crawling YouTube’s site

and obtaining video meta-data. The authors found that YouTube streaming videos have no-

ticeably different statistics from traditional streaming videos ranging from length, caching

strategies to their access pattern and active life space. Similar findings were presented by

authors in [14]-[16]. These studies were also alike in their approach to collecting data by ei-

ther scraping data from the network edge, or by crawling YouTube’s site for publicly avail-

able content. The focus of studies from the perspective of users has been limited. Halvey

et al. [19] examined users’ social behavior with YouTube by analyzing their publicly avail-

able online interactions such as commenting and sharing videos. Our work fundamentally

differs from previous works in that we are able to present an in-depth, long-term study of

how user’s interact with both YouTube and Netflix, and what the implications are for the

research community.

Given the short-form nature of YouTube videos, the findings cannot be effectively ex-

trapolated to long-form videos, like Netflix episodes and movies. There has been work

towards understanding the characteristics of Netflix traffic as performed by Rao et al. [15],

9

in which the strategies that Netflix employs to stream their video traffic is performed, and

by Adhikari et al. [41], in which the authors perform a measurement study to understand

Netflix architecture. These studies, however, are agnostic to users’ individual behavior

and provide a macro-view of Netflix traffic. Huang et al. [42] presented a user behavior

analysis on a large-scale video-on-demand system from China, which specifically inves-

tigated the individual’s temporal characteristics and their interests in popular and recently

uploaded content. The dataset which was studied contained a mixture of user-generated

content and commercial videos, which were primarily watched on the user’s mobile device

over mobile networks. While the authors presented an in-depth analysis of their behavior,

it was over a considerably shorter period of time (30 days) and did not separate the analysis

for short-form vs. long-form content, as we have presented. Yuan et al. [43] performed a

similar study and focused primarily on the temporal user’s access patterns. However, they

did not study how the level of activity affects these patterns and neither explored how this

differs for different categories and types of videos. The previous works study the user’s

behavior for a specific video service, Yan et al., on the other hand, attempt to model user

video preferences in six popular video websites with user viewing records obtained from a

large ISP in China. The authors are unable to present a longitudinal study as their dataset

contains viewing records from 2 months, and two-thirds of the users have no more than 10

viewing records and thus suffer from data sparsity.

2.2 Prefetching Content

Prefetching content has extensively been used to reduce user-perceived latency when load-

ing web pages across the internet [44, 45]. These strategies anticipate the content a user is

likely to consume, download the content ahead of time, and make the content available at

the time of consumption. Time-shifted prefetching, as opposed to just-in-time prefetching,

requires that content be prefetched well in advance (potentially a few hours). There have

been several solutions that focus on prefetching suitable content based on the user’s prior

10

interactions with web pages [6, 7, 8]. In our work, we focus on the time-shifted prefetching

of YouTube and Netflix videos. The motivation for prefetching videos stems from one of

two reasons: 1) to reduce network usage during peak times, and 2) to enable high video

viewing QoE by prefetching content to avoid unstable network connections.

Prefetching for load shaping: In order to alleviate backhaul congestion, the authors in

[46] propose a mechanism whereby files are proactively cached to users’ devices during

off-peak periods based on file popularity and disseminated to other users via device-to-

device communications. The authors assume generic distributions for file popularity to

decide what content to prefetch. On the other hand, we focus on a single application that

allows for specifically tailored efficient solutions to be developed. Nanopoulos et al. [47]

proposed a data mining algorithm for generalized web prefetching, in particular, the authors

propose a framework that determines the order of dependencies between web-page accesses

and factors the noise which affects the method for calculating the appearance frequencies

of user access sequences. A closely related work with the goal of reducing peak traffic

by prefetching video content specifically was presented in [48], where the authors propose

a YouTube video prefetching scheme based only on user channel preferences. While we

propose a prefetching scheme that also considers the user channel preferences, it is only

one of the several factors affecting prefetching.

Prefetching for QoE: There have been prior works that have prefetched video content

specifically to end-user’s devices with the specific goal of improving the user’s QoE. [49]

performed prefetching for social media multimedia content to mobile devices, while [50]

cached short-form videos to user’s devices based on their social network interactions. As

these works considered only videos that are shared on social media platforms, the prefetch-

ing is limited in scope. [51] tackles the second problem of maintaining high QoE during

unstable network conditions by proposing two prefetching algorithms; one that is based

on what the users search for, and the other on recommended videos. Both these schemes

perform just-in-time prefetching and consider only the current session. [52] developed CP-

11

Sys, a mobile video prefetching system that determines other similar users and prefetches

content that these users are watching. CPSys requires a central predictor to form a user

similarity graph. However, it does not consider any of the user’s preferences in the pre-

diction. A QoE-driven video segment caching system is proposed by the authors in [53],

in which they introduce a two-dimensional user QoE-driven algorithm for making caching

and replacement decisions based on both content context (e.g., segment popularity) and

network context (e.g., RAN downlink throughput).

2.3 Edge Caching

Edge caching has recently emerged as a promising solution to reduce the burden on data

transmission, reduce the overall latency of content distribution, and improve user QoE by

caching content near or at the edge of the network. Several works have cached video con-

tent specifically to end-user’s devices with the specific goal of improving the user’s QoE.

[49] performed prefetching for social media multimedia content to mobile devices, while

[50] cached videos to users’ devices based on their social network interactions. Authors in

[54] proposed caching segments of videos on the end-users’ devices based on the access

patterns. [55] utilizes edge servers to prefetch content for image recognition applications,

and [56] proposes a selective data object prefetching strategy for mobile apps.

Netflix employs edge caches as a part of their own content delivery network (CDN),

named Open Connect [57]. Open Connect consists of thousands of geographically dis-

tributed data servers that exclusively deliver their content. Even though these servers are

placed near the edge, each of these servers caters to millions of users [58]. On the other

hand, with the emergence of smart WiFi access points/router, and increased storage space

in user end-devices, utilizing these devices as edge caches can allow for fine-grained con-

tent demand prediction and significantly improve user’s quality of experience (QoE). With

the rise in smart WiFi smart-routers or APs, which are equipped with an OS card and has

storage space, authors have proposed a content delivery architecture that is based on ge-

12

ographically dispersed groups of “last-mile” CDN servers, e.g., set-top boxes, WiFi APs

located within users’ homes [59], [60]. The authors in a closely related work [61], proposed

an algorithm for determining when to cache episodes from on-demand television series to

WiFi access points based on trace-driven simulations. The objective of the proposed algo-

rithm is to balance the trade-off between the cost of fetching the content from the server and

the user’s QoE. The authors do not consider the prefetching from the user’s perspective but

rather determine when would be the best time to prefetch content from the content servers.

Next-generation networks will be extremely dynamic and complex owing to the 3 prin-

ciple features it promises:(i) enhanced mobile broadband; (ii) ultra-reliable low-latency

communications, and (iii) massive machine-type communications [62]. Edge caching is

one of the key elements that can enable next-generation networks to meet stringent latency

requirements [63, 64]. Typically, machine learning techniques are used to predict content

popularity based on user preferences [65]-[37], cluster users based on similar content inter-

ests [67],[68], and optimize caching policies under a given set of constraints and predictions

about the state of the network [69]-[71].

There have also been works that specifically utilized LSTM networks for content caching;

such a work was presented by Zhang et al. [72]. The authors presented an LSTM based

edge caching solution for video content. While in our work, the cache node is the end-

device or wireless AP, the cache node in the related work is the data-center of the video

streaming service provider or at a base station or at the CDN. Narayanan et al. [73] claim

to be the first to use an LSTM encoder-decoder for content caching; the authors employ

the LSTM network to predict the future popularity of heterogeneous content objects for

various future time intervals e.g., the next 1-3 hours, 12-14 hours and 24-26 hours. The

authors, however, did not evaluate their proposed algorithm on real-world datasets and

instead generated synthetic datasets with different popularity Zipf distributions to predict

object popularity.

13

CHAPTER 3

A REAL-WORLD DATASET OF YOUTUBE VIDEOS AND USER
WATCH-BEHAVIOR

YouTube is the world’s largest video sharing site with more than 2 billion active users [74].

YouTube videos reportedly account for 38% of a mobile user’s cellular data usage [38].

This represents the largest share of the cellular bandwidth usage among all applications

on the mobile device. Given the prominence of YouTube in terms of the share of wireless

resources consumed, it is of much interest to understand the characteristics of YouTube

usage that could be of use to researchers. However, beyond the macro-level statistics that

YouTube publishes [74], there has been very little work done toward collecting any non-

trivial data performing any meaningful analysis on such usage.

This forms the context for this chapter. We use Amazon’s Mechanical Turk (mTurk)

platform to collect a dataset for YouTube usage from 243 users. The dataset comprises of

1,826,075 videos spanning a 1.5-year period of watch history. The videos, as an aggregate,

represent approximately 65TB of video watches over a 1.5-year period. We believe that the

dataset will be of significant use for researchers working on a wide range of problems in the

general area of Internet protocols, algorithms, and systems. We perform a baseline analysis

of the dataset to identify some interesting standalone nuggets of information such as the

average number of videos watched by a user per day, how long a typical video lasts, the

typical number of categories videos are watched by a user, the average number of playlists

created by a user, and the typical number of channels a user subscribes to.

While we believe that the real value of the dataset lies in other researchers using it for

their respective problems, the core contribution of this work includes considering a few

representative problems in the domains of networking and communications, and analyzing

the dataset to answer key questions pertaining to those problems. Note that the goal of

this work is not to solve the problems, but instead provide substantiated directions for

14

solutions based on insights from the dataset. Specifically, we consider the following sets

of questions:

1. How often do users watch the same video again? If they do see certain videos again,

how far apart are the redundant views? Are there any patterns in which videos are

likely to be watched again?

2. How much of a user’s watch behavior can be predicted? How much of a user’s

past watch behavior has to be considered to maximize the predictive accuracy while

considering the associated costs?

3. How much of a user’s watch behavior is influenced by recommendations? Are there

certain categories of videos for which the users are more likely to be influenced by

recommendations? Are there other attributes of a video (e.g., length, number of likes,

etc.) that also influence recommended watch outcomes?

4. How static are a user’s video preferences over time? Do they remain static over 1.5

years, or do they change drastically?

5. What are the typical data consumption patterns for YouTube usage for a user? Does

this change based on time of day or day of the week? How consistent or bursty is the

usage?

For each of these sets of questions, we delve into the collected dataset, extract insights,

and provide a summary analysis.

3.1 YouTube and its significance

YouTube is a content community that was founded in 2005, which allows users to post,

view, comment, and share videos on the site. It is the most visited website in the world,

with just over 2 billion monthly visitors and more than 300 hours of content uploaded

15

every minute [75]. It consumes nearly 12% of global network traffic share (following Net-

flix and HTTP media streaming), and benefits from being the most commonly embedded

video on other sites, including Facebook [76]. YouTube content currently dominates mo-

bile data traffic, and is reported to account for 38% of all mobile traffic [38]. Furthermore,

YouTube’s data traffic usage is the highest among all other mobile apps. As reported by

Cisco, the average mobile YouTube data traffic consumed per smartphone per month is 2.3

GB, and the average usage for PC/tablets is 3.3 GB per month [77].

3.2 Dataset Collection

To collect the dataset, we rely on mTurk to gather anonymized watch-history from the

users [78]. The mTurk platform allows a task to be posted for a fee, which in turn can be

completed by users known as mTurkers. Previous studies have shown that mTurk samples

can be accurate when studying technology use in the broader population [79]. The task

we posted required mTurkers to navigate to Google’s Takeout page and download their

YouTube related data. The mTurker would then extract the archive file and select the files

related to their watch-history, playlists and subscriptions data; these files were then anony-

mously uploaded via a dropbox link (we were advised by the IRB that IRB approval was

not required as no private or personally identifiable information was collected).

The archived file that was uploaded contained the following files: watch-history.html,

a JSON file for each playlist created by the user, and subscriptions.json. The watch-

history.html file contains a list of all video titles, where the title of the video is a hyperlink

to the video URL, viewed by the mTurker, and the associated time it was viewed. The

JSON file for each user-created playlist contains a list of the video IDs for all videos added

to that playlist. Similarly, the subscriptions.json file contains a list of all channels the user

is subscribed to.

16

3.3 Baseline Characteristics

A high level overview of the statistics of the per-user watch-history data is presented in

Table 4.1. In the collected dataset, there are 1,826,075 videos watched by 243 users. Each

video is categorized by the uploader according to 18 predefined categories and added to

a particular channel; users can subscribe to the channel (known as subscriptions) and add

the video to user-created playlists. The videos watched per user per day (videos/day), the

number of categories the user has watched videos from (categories), the number of playlists

the user has created (playlists), and the number of channels the user has subscribed to

(subscriptions), is shown in the table.

The total number of unique videos watched by the users is 1,172,111 videos. Us-

ing YouTube’s data API, we obtained meta-data associated with each video in our dataset

regarding its video duration, the number of views, the number of likes, the number of dis-

likes and the number of comments each video has at the time of data collection. Table 4.2

summarizes the metrics associated with the videos watched by the users.

Table 3.1: User statistics

Attribute Mean Std Dev. Min Max
Videos/day 15.01 6.24 0 48
Categories 4.2 0.7 3 13
Playlists 1.4 5.8 0 24
Subscriptions 10.9 12.8 0 57

Table 3.2: Videos statistics

Attribute Mean Std Dev. Min Max
Duration (min.) 13.2 30.1 0.02 820
Views (×106) 3.2 26.9 3 560
Likes (×103) 20.6 124.3 0 30,079
Dislikes (×103) 1.4 16.9 0 9,518
Comments (×103) 1.9 13.2 0 52,639

17

3.4 Analysis and Key Insights

In the following subsections, we attempt to answer 5 questions to gain insights regarding

our users’ YouTube watching behavior. Based on the insights, we also present implica-

tions and the feasibility of the applications and development of associated technologies.

We present results on a per-user basis and also study the effect of various attributes. In par-

ticular, we are concerned with the following attributes, namely: 1) video related attributes-

the category that a video belongs to, the duration of the video, the number of views the

video has; and 2) user related attributes- the hour of day that the video was watched by a

particular user, and the day of week that the video was watched by the user. For each of the

aforementioned video related attributes, the percentage of videos, from our videos dataset,

belonging to each category, video duration window and view count range is computed and

is shown as the overall distribution in relevant results that follow. Similarly, for user related

attributes, we show the overall distribution of videos watched in each hour of the day and

day of the week, across all users.

3.4.1 How often do users watch the same video again?

Local caching attempts to speed the access to data by storing data that has recently been

accessed by the client. Caching plays a vital role for web traffic and can effectively decrease

network traffic volume, lessen server workload, and reduce the latency perceived by end

users [80]. A fundamental prerequisite for successful caching is the presence of redundancy

in a user’s behavior i.e. do users watch the same video again? We seek to capture this

redundancy by analyzing how often, as well as when and what types of videos, are watched

again by a particular user. We also present the feasibility of local caching based on our

findings.

Methodology and Metrics: To explore this aspect, for each user in the dataset, we

compute the percentage of videos from their watch-history that are watched more than

once by the user. Furthermore, we see whether a video that was watched again belonged to

18

a channel that the user subscribed to or appeared in any of their playlists. We also compute

the time difference between subsequent watches. It is also beneficial to understand the

characteristics of the videos that are watched again; to this end, for each category, duration

window, and views range, we calculate the percentage of videos that are watched again for

that parameter value. It is important to mention that for our analysis, a video is considered

to be watched again only if the video content is retrieved from YouTube servers and not

stored on their device.

Analysis and Discussion: Fig. 3.1 shows the percentage of videos that are watched

again by each user, arranged in ascending order. The average percentage of videos that

are watched again is 10.9%, and ranges from 0.8% to 33.7%, with a standard deviation

of 6.4% and median of 9.2%. With respect to their subscriptions and playlists, we found

that 8.4% of user’s repeated views are from channels that the user has subscribed to, and

4.3% are from their playlists. We also computed the average time difference between each

repeated watch of a video on a per user basis. We found that the average difference between

such watches across all users, is approximately 2.8 months, and ranges from 2.7 days to

approximately a year, with a standard deviation of 2 months and a median of 2.3 months.

To understand how the video related attributes impact the repeatability of video watches,

we further look into this redundancy expressed as a function of video category, duration

window and views count. In Fig. 3.2, we see that videos belonging to the “movies” cat-

egory are the most likely to be watched again (with nearly 10% of all “movies” being

watched again), as compared to other categories; we should bear in mind that the fraction

of videos in our dataset belonging to the movies category is less than 1%. Following the

“movies” category, the videos that are categorized as “shows”, “comedy”, and “music” are

more likely to be watched again. We also analyze whether the video duration affects if a

video is watched again or not; this is shown in Fig. 3.3. We see that video duration does not

have a large impact on the repeatability, however, the repeated video watches percentage

generally increases as the duration increases. Fig. 3.4 shows the percentage of repeated

19

watches of videos with various view counts. We see that in general, videos that have a

higher view count are more likely to be watched again.

0 50 100 150 200

Number of Users

0

10

20

30

40

R
ep

ea
te

d
 V

id
eo

 W
at

ch
es

 (
%

)

<25th Percentile

25th-50th Percentile

50th-75th Percentile

>75th Percentile

Mean

Figure 3.1: Repeated video watches
per user

0 2 4 6 8 1001020

Film & Animation
Cars & Vehicles

Music
Pets & Animals

Sport
Travel & Events

Gaming
People & Blogs

Comedy
Entertainment

News & Politics
How-to & Style

Education
Science & Technology

Non-profits & Activism
Movies
Shows

Trailers

Repeated Video Watches (%) Overall Distribution (%)

Figure 3.2: Repeated watches per
category

(0
, 2

)

[2
, 4

)

[4
, 6

)

[6
, 8

)

[8
, 1

0)

[1
0,

 1
2)

[1
2,

 1
4)

[1
4,

 1
6)

[1
6,

 1
8)

[1
8,

 2
0)

>=20

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0

10

20

Repeated Video Watches (%) Overall Distribution (%)

Figure 3.3: Repeated watches for
varying duration

<=1k

(1
k-

5k
]

(5
k-

10
k]

(1
0k

-5
0k

]

(5
0k

-1
00

k]

(1
00

k-
50

0k
]

(5
00

k
- 1

M
]

(1
M

 -
5M

]

(5
M

 -
10

M
]

(1
0M

 -
50

M
])

(5
0M

 -
10

0M
]

>10
0M

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0

10

20

Repeated Video Watches (%) Overall Distribution (%)

Figure 3.4: Repeated watches for
changing view counts

Key Insights: With the use of local caching, even a minute reduction of YouTube traffic

volume can lead to savings of tens of millions of dollars for carriers that operate under se-

vere resource constraints [81]. There are also several benefits from the user’s perspective;

two notably being an improved quality of experience, and reduction in costs associated with

network data transfers. Typically, YouTube content is not locally cached beyond caching

only video chunks as stipulated by YouTube’s employment of the MPEG-DASH protocol

[82]. From the results presented in this section, we see that there is a scope for local caching

20

of video content with nearly 11% of videos watched again by the user; algorithms to deter-

mine what videos and for how long they should be kept in the cache, can be developed.

With approximately 11% of videos being watched again by a user, local caching can

yield an acceptable hit rate; however, the cached content will need to be stored for 2.8

months on average.

3.4.2 Can a user’s YouTube watch behavior be predicted?

Being able to predict what a user will watch in the future is particularly useful for prefetch-

ing strategies. Prefetching content has extensively been used to reduce user-perceived la-

tency when loading web pages across the internet [44, 45]. These strategies anticipate the

content a user is likely to consume, download the content ahead of time, and make the

content available at the time of consumption. To explore the feasibility of prefetching, we

consider how a user’s YouTube watch behavior is influenced by videos they have seen in

the past. Specifically, we see whether videos that are related to videos that have been seen

by a user in the past, is consumed by the user in the future.

Methodology and Metrics: YouTube algorithmically determines videos that are related

to one another using the video’s meta-data, and also by employing collaborative filtering

methods. We use YouTube API’s relatedToVideoId endpoint to retrieve a list of videos

which is related to a particular video. For a particular user, we fetch 50 related videos of

every video that has been watched by the user, and then see if any of the related videos

were watched later; we term this set as the “related set”. We perform this analysis for all

the users in our collected dataset for their entire watch-history, and present the per-user

results, as well as the results pertaining to several video related attributes.

Analysis and Discussion: Fig. 3.5 shows the percentage of videos that are found in

the related set of videos they have seen in the past. We find that the average percentage is

59.1%, and ranges from 36.5% to 91.6%, with a standard deviation of 16.2% and median

of 58.6%. In addition, 9.6% of these videos are from channels the user has subscribed to,

while 2.9% appear in their playlists. In addition, we also study the time difference between

21

when a video was consumed, and when a video related to it, was watched in the future.

The average time difference between such watches is 25.9 days, and ranges from 6.4 days

to 45.7 days, with a standard deviation of 7.3 days and median of 25.9 days.

The video related attributes we investigate are the category, duration and view count.

In Fig. 3.6, we compute the percentage of videos watched in each category that was in

the related set of a video that a user watched in the past. We observe that related videos

belonging to the “entertainment” category are more likely to be watched as compared to

any other category. In Fig. 3.7, we similarly perform the analysis for videos of varying

duration; here we see that related videos that are between 4-6 minutes long are most likely

to be watched; the least likely are videos from 0 to 2 minutes. Fig. 3.8 shows that, in

general, related videos with a higher view count are watched more.

0 50 100 150 200

Number of Users

40

50

60

70

80

90

100

V
id

e
o
s

fr
o
m

 R
e
la

te
d
 S

e
t

(%
)

<25th Percentile

25th-50th Percentile

50th-75th Percentile

>75th Percentile

Mean

Figure 3.5: % Videos from related set
per user

0 10 20 30 40 50 60 70 8001020

Film & Animation
Cars & Vehicles

Music
Pets & Animals

Sport
Travel & Events

Gaming
People & Blogs

Comedy
Entertainment

News & Politics
How-to & Style

Education
Science & Technology

Non-profits & Activism
Movies
Shows

Trailers

Videos from Related Set (%) Overall Distribution (%)

Figure 3.6: Related video watches per
category

Key Insights: The motivation for prefetching videos stems from one of two reasons: 1)

to reduce network usage during peak times, and 2) to enable high video viewing QoE by

prefetching content to avoid unstable network connections. The results presented in this

section show that YouTube content is indeed predictable, across categories and especially

for more popular videos. Hence, there is a potential for developing successful prefetching

systems which can be used to fetch content during low-cost periods (such as over WiFi or

off-peak periods).

22

(0
, 2

)

[2
, 4

)

[4
, 6

)

[6
, 8

)

[8
, 1

0)

[1
0,

 1
2)

[1
2,

 1
4)

[1
4,

 1
6)

[1
6,

 1
8)

[1
8,

 2
0)

>=20

0

10

20

30

40

50

60

70

80

0

10

20

Videos from Related Set (%) Overall Distribution (%)

Figure 3.7: Related watches for
varying duration

<=1k

(1
k-

5k
]

(5
k-

10
k]

(1
0k

-5
0k

]

(5
0k

-1
00

k]

(1
00

k-
50

0k
]

(5
00

k
- 1

M
]

(1
M

 -
5M

]

(5
M

 -
10

M
]

(1
0M

 -
50

M
])

(5
0M

 -
10

0M
]

>10
0M

0

10

20

30

40

50

60

70

80

0

10

20

Videos from Related Set (%) Overall Distribution (%)

Figure 3.8: Related watches for
changing view counts

With 59% of videos watched by a user being present in the related set of videos that the

user has previously watched, YouTube watch behavior is predictable and can be used

in the development of effective prefetching systems.

3.4.3 Do users consume videos suggested through YouTube’s recommendation engine?

YouTube’s recommendation engine (RE) uses sophisticated algorithms to understand user

preferences and suggest videos that the user is likely to watch. The understanding of how

video views are driven through the RE is beneficial for not only the research community

(in serving as a case study of how video content is discovered), but also advertisers and

content providers [83]. Using our collected dataset, we attempt to independently quantify

the effectiveness of YouTube’s RE. Furthermore, we provide insights about the types of

videos that are better referrers.

Methodology and Metrics: The recommended videos are based on the user’s past

watch-history and videos identified as “related videos” (as discussed in the previous sec-

tion) through collaborative filtering and other association algorithms. Specifically, YouTube’s

RE consists of two neural networks: the candidate generation network and the ranking net-

work [84]. For each video watched by a user, there are recommended videos shown along-

side; we term this as the “recommended set”. Due to the RE being dependent on the user’s

live actions and the prioritization of fresh content, there is no simple approach to obtain the

23

recommended set for a user.

In order to approximate the RE’s behavior for a user, we create a test YouTube account

(account that had no prior watch-history) and programmatically re-played the user’s watch-

history for 1 year (for the full video length). Even though the recommended videos will not

be an exact match of the videos shown to the user at their time of viewing, we see that across

10 randomly selected users, a relatively large fraction (67%) of their future video watches

have previously appeared as a recommendation. We also compute the percentage of videos

watched from their related video sets, and find that on average, 63% of their future video

views appear in the related video sets; this is only 4% lower than their recommended video

sets. Due to the complexity and computational inefficiency associated with emulating the

RE, we use the related videos as a close proxy for the recommendation videos set.

We obtain the RE effectiveness by computing the percentage of videos which appeared

in the related videos set of the video previously watched; this provides an indication of

whether the user clicked on a video that appeared in the recommendation list of a video

they were currently watching. We also study how the recommendation system performs

across video categories, duration, number of views and also, the hour of day the video was

consumed.

Analysis and Discussion: The RE effectiveness per user is shown in Fig. 3.9; the

average effectiveness among all users is 21.4%, and ranges from 3.2% to 47.7%, with a

standard deviation of 7.5% and median of 21.2%. 8.1% of the recommended videos were

watched from the user’s subscribed channels, and 2.2% from their user-created playlist.

Fig. 3.10 shows the RE effectiveness for different video categories; we see that the RE

for the “shows” category is found to be the most effective where the recommended videos

from just over 35% of videos watched from this category, is watched by users. Fig. 3.11

shows the effectiveness as a function of view count; in general, recommended content from

more popular referrer videos are likely to be be seen. Fig. 3.12 shows how the time of day

a particular video was watched affects if a recommended video was watched; we find that

24

the recommendation system tends to be more effective from 5am to 2pm. This corresponds

to a decrease in the overall distribution of video traffic. Furthermore, we compute the

effectiveness for different video duration, and find that this has no significant impact on the

performance of the RE.

0 50 100 150 200

Number of Users

0

10

20

30

40

50

E
ff

e
c
ti

v
e
n
e
ss

 (
%

)

<25th Percentile

25th-50th Percentile

50th-75th Percentile

>75th Percentile

Mean

Figure 3.9: RE effectiveness per user

0 5 10 15 20 25 30 3501020

Film & Animation
Cars & Vehicles

Music
Pets & Animals

Sport
Travel & Events

Gaming
People & Blogs

Comedy
Entertainment

News & Politics
How-to & Style

Education
Science & Technology

Non-profits & Activism
Movies
Shows

Trailers

Effectiveness (%) Overall Distribution (%)

Figure 3.10: RE effectiveness per
category

<=1k

(1
k-

5k
]

(5
k-

10
k]

(1
0k

-5
0k

]

(5
0k

-1
00

k]

(1
00

k-
50

0k
]

(5
00

k
- 1

M
]

(1
M

 -
5M

]

(5
M

 -
10

M
]

(1
0M

 -
50

M
])

(5
0M

 -
10

0M
]

>10
0M

0

5

10

15

20

25

30

0

10

20

Effectiveness (%) Overall Distribution (%)

Figure 3.11: RE effectiveness for
changing view counts

Hour

2
1
.8

2
1
.9

21
.5

19.9

19.5

22.0

22.8

23.2

24.2

24.5

2
4
.9

2
4
.02

3
.72
3
.9

22
.8

21.0

21.3

22.7

22.5

22.5

22.3

21.6

2
1
.7

2
0
.0

Effectiveness (%) Overall Distribution (%)

Figure 3.12: RE effectiveness per
hour of day

Key Insights: The RE plays a vital role in attracting and retaining users, and also in-

creasing video popularity. Advertisers and content providers will be able to plan their

strategies to increase visibility and predict their effectiveness by understanding how and

when video’s recommended content is consumed. We find that we can anticipate that a

user will watch a recommended video over one fifth of the time, even though it is not

25

watched within the same watch session. We also find that there are certain videos that

serve as better referrers than others (e.g. more popular videos in “shows” category), and

that the RE is more effective during off-peak periods.
For a video currently being watched by a user, approximately 21.4% of videos watched

next, appear as a recommendation. Furthermore, the more popular a referrer video is,

the more likely a recommended video will be consumed thereafter.

3.4.4 Do users’ YouTube video preferences change over time?

The immense prevalence and widespread consumption of YouTube have influenced ad-

vertisers to design their strategies incorporating this platform. Advertising revenue on

YouTube is estimated to be up to $4.5 billion [85]. User preferences and how this evolves

would thus be of interest to advertisers for targeting and personalizing adverts. To gauge

how dynamic users’ preferences are, we explore how video duration, channel and category

preferences change with time.

Methodology and Metrics: We study how the duration of a video influences a user’s

preferences and whether this changes depending on when they watch the videos. Further-

more, we analyze the user’s category and channel preferences, and how this changes over

time. The preference strength is proportional to the volume of video content consumed, i.e.

the more video content that is consumed from a particular channel or category, the more

preferred that channel or category is.

Analysis and Discussion: Fig. 3.13 shows the average duration of videos watched

across all users; the average per video duration across all users is 12.8 minutes, and ranges

from 9.9 minutes to 13.8 minutes, with a standard deviation of 0.7 minutes and median of

13 minutes. Performing this analysis on a per month basis, we see that the average duration

differs by only 0.8 minutes from month-to-month; this is equivalent to a 6.3% change across

1.5 years. Fig. 3.14 and Fig. 3.15 show how the average duration of videos watched by

users differs for the time of the day they are watching it, and the day of week the video is

watched. We find that during off-peak periods, the average video length is approximately

26

2.5 minutes longer per video than during peak periods. Over weekends (Friday to Sunday),

the average video duration is only slightly higher than during the rest of the week.

0 50 100 150 200

Number of Users

10

11

12

13

14

15

16

17

V
id

e
o
 D

u
ra

ti
o
n
 (

m
in

s)

<25th Percentile

25th-50th Percentile

50th-75th Percentile

>75th Percentile

Mean

Figure 3.13: Video duration
preference per user

Hour

1
3
.4

1
2
.5

13
.3

13.6

12.6

13.6

14.0

14.9

15.2

14.81
4
.7

1
3
.8

1
2
.91

2
.412

.7

12.5

12.6

11.9

12.2

13.0

12.1

12.1

11
.9

1
3
.0

Video Duration (mins) Overall Distribution (%)

Figure 3.14: Video duration
preference per hour

M
on

da
y

Tue
sd

ay

W
ed

ne
sd

ay

Thu
rs

da
y

Frid
ay

Sat
ur

da
y

Sun
da

y

10.0

11.0

12.0

13.0

14.0

10.0

12.5

15.0

Video Duration (mins) Overall Distribution (%)

Figure 3.15: Video duration
preference per day

Figure 3.16: Aggregate load across all
users

We also evaluate the dynamic nature of users’ preferences by studying how their chan-

nel and category preferences change over time. We find that users are actually fairly static

with 95% of all their watched videos, belonging to their 3 most preferred categories. Sim-

ilarly, we find that 38% of all video watches are from user’s 10 most preferred channels,

while 63% are from their 30 most preferred channels. When we perform this analysis

on a month-to-month basis for each user, and compute the percentage change of videos

27

watched from their 3 most preferred categories and 30 most preferred channels of the pre-

vious month, we find that their consumed video content changes by 4.6% and 32.4% per

month for category and channel preferences, respectively.

Key Insights: Learning about user preferences makes it possible to model user infor-

mation needs and adapt services to meet these needs. Our results suggest that users tend

to watch videos between 12 to 13 minutes of length. We also see that user preferences re-

lated to the types of videos they watch (characterized by their category and channels) does

not vary significantly across time, and so there is potential for time-invariant personalized

advertising.

User preferences in terms of the video duration, their 3 most preferred categories, and

30 most preferred channels change by 6.3%, 4.6% and 32.4%, respectively over their

1.5 years of watch history.

3.4.5 What are the typical data consumption patterns for YouTube usage for a user?

Internet access provisioning or network load provisioning is the process of preparing and

equipping a network to allow it to handle the anticipated load and provide new services to

its users. Predicting the peak workload of an Internet application and capacity provisioning

based on these estimates is notoriously difficult [86]. This is because typically, the peaks of

individual users are uncorrelated, and so, the network peak load grows much more slowly

than the sum of the peak loads of the individual users. To investigate how the user peak

load affects overall traffic, we provide results to show the distribution of YouTube traffic

across time and how bursty the usage is.

Methodology and Metrics: To understand how YouTube specific network load is dis-

tributed through the day, for each user in our dataset, for each minute of day a video was

seen, we check to see whether a video is being watched during that minute (here we assume

that the video was watched in its entirety unless the start time of the next video watched by

the user is before the current video has finished playing). We also calculate the length and

gap between watch sessions for each user; we deem a watch session as the period of time

28

that videos are watched within 5 minutes of each other. In addition, we show how the hour

of day, and the day of week that videos are watched, affect the watch session length.

Analysis and Discussion: Fig. 3.16 shows the normalized aggregate load across all

users for each minute of the day. Here we see that from approximately 5am and 12pm, the

load drops significantly. During the rest of the day, the load is nearly twice as much. With

regard to the watch session length, Fig. 3.17 shows this on a per user basis. The mean

is 26.9 minutes, and ranges from 5.6 minutes to 106.7 minutes, with a standard deviation

of 14.4 minutes and a median of 24.8 minutes. In addition, the average time difference

between such watch sessions for each user is shown in Fig. 3.18. The mean is 61.3 hours,

and ranges from 1.1 hour to 592.8 hours with a standard deviation of 114.9 hours and a

median of 20.6 hours.

Fig. 3.19 shows how the watch session length varies for hour of the day, and Fig. 3.20

shows how it varies for day of the week. We see that there is an increase in the watch

session length during off-peak periods (5am to 12pm), and also a slight increase on Fridays

and Saturdays.

0 50 100 150 200

Number of Users

0

50

100

150

200

W
at

ch
 S

es
si

o
n
 L

en
g
th

 (
m

in
s)

<25th Percentile

25th-50th Percentile

50th-75th Percentile

>75th Percentile

Mean

Figure 3.17: Watch session length per
user

0 50 100 150 200

Number of Users

0

100

200

300

400

500

600

T
im

e
 D

if
fe

re
n
c
e
 (

h
o
u
rs

) <25th Percentile

25th-50th Percentile

50th-75th Percentile

>75th Percentile

Mean

Figure 3.18: Watch session difference
per user

Key Insights: With YouTube having a severe influence on network traffic, it is beneficial

to understand the distribution of YouTube traffic and users’ access patterns. From our

analysis, we see that user’s access patterns are similar in that their aggregate usage results

in a clear distinction between off-peak and peak periods (shown in Fig. 3.16). We find

29

Hour

2
9
.3

2
7
.1

28
.4

26.5

24.6

31.1

31.9

32.4

32.8

33.33
1
.5

2
9
.9

2
7
.1

2
8
.2

26
.7

24

26.0

26.4

27.6

26.1

25.

26.7

2
6
.4

2
6
.1

Watch Session Length (mins) Overall Distribution (%)

Figure 3.19: Watch session length per
hour

M
on

da
y

Tue
sd

ay

W
ed

ne
sd

ay

Thu
rs

da
y

Frid
ay

Sat
ur

da
y

Sun
da

y

10

15

20

25

30

12.5

15.0

Watch Session Length (mins) Overall Distribution (%)

Figure 3.20: Watch session length per
day

that YouTube specific network traffic almost doubles during peak hours, while the average

watch session length increases by 17% during off-peak hours. Hence, we see that the time

of day plays an important role in the burstiness and overall traffic load. Network service

providers would thus need to take this into account when developing their provisioning

strategies.

YouTube traffic is nearly 2x as much during peak periods as compared to off-peak

periods, and the average watch session length increases by 17% during off-peak hours.

30

CHAPTER 4

TIME-SHIFTED PREFETCHING OF YOUTUBE VIDEOS TO REDUCE
PEAK-TIME CELLULAR DATA USAGE

Wireless spectrum is expensive. The federal communications commission’s AWS-3 auc-

tion (in 1700 MHz and 2100 MHz blocks) netted approximately $45B for 65 MHz of spec-

trum (at $2.71 per MHz-POP1), with AT&T being the highest bidder at $18.2B followed

by Verizon at $10.2B. Wireless service providers upgrade their infrastructure and add spec-

trum in reaction to load characteristics on their networks. It is typical for upgrades to be

triggered when there is a reasonably sustained peak usage that exceeds 80% of capacity

[3].

Several strategies can be used to address the peak load conditions and hence defer con-

sequent upgrades. Examples of these strategies include reducing the load using compres-

sion and deduplication algorithms, improving the efficiency of the communication through

protocol optimization, and disincentivizing users from imposing such peak loads by enforc-

ing penalties [4, 10, 5]. In this chapter we consider the strategy of time-shifted prefetching.

Specifically, we explore the problem of prefetching content during off-peak periods of the

cellular network2 even when such periods are substantially separated from the actual usage-

time. Prefetching is not a new strategy, and has been extensively considered in prior related

work [6, 7, 8]. What is unique about the focus of this work is the substantially time-shifted

nature of the prefetching done with the specific goal of shifting peak load to off-peak peri-

ods.

We restrict the focus of this chapter to a specific application - YouTube, and explore the

time-shifted prefetching of videos to the mobile device so that the videos do not have to be

fetched when watched during peak periods. YouTube videos reportedly account for 38%

1MHz passing one person.
2While our contributions can be extended to the scenario of prefetching over “cheaper” WiFi networks,

we only focus on cellular networks in this chapter.

31

of a mobile user’s cellular data usage [38]. This represents the largest share of the cellular

bandwidth usage among all applications on the mobile device. Given such a dominant

portion of wireless bandwidth usage, strategies to prefetch YouTube videos during off-peak

periods can have a meaningful impact on the overall peak usage of the cellular network.

At the same time, focusing on a single application allows for specifically tailored efficient

solutions to be developed as we show in the rest of the chapter.

Thus, the key question we answer in this chapter is the following: For a given wireless

user, can YouTube videos be prefetched during off-peak periods so that the actual cost of

fetching videos during the peak periods is reduced? The key contributions made in the

chapter are summarized as:

• User dataset analysis: We collect a dataset of YouTube watch history from 206 users.

The dataset comprises of 1,798,132 videos spanning a 1-year period. We use the

dataset to study whether YouTube watch behavior is predictable, especially up to 24

hours ahead. We show that a significant percentage of the watch behavior (> 40%) is

indeed predictable by relying on the past watch history of that user. To overcome any

biases in our collected dataset, we also verify this conclusion using an independent

dataset collected by Park et al. [87].

• Prefetching algorithm: We design and develop a machine learning algorithm for

prefetching that is trained on a user’s watch history and predicts the user’s likely

video watch behavior over the next 24 hours. We show that the algorithm per-

forms well for four different metrics: prefetch accuracy (how many of the predictable

videos does the algorithm successfully select), prefetch efficiency (how many of the

videos prefetching are actually watched by the user), prefetch selectivity (what is the

ratio of the number of videos selected for prefetching to the number of videos in the

candidate set), and overall accuracy (how well the classification algorithm is able to

classify videos).

32

• Prototype and user study: Finally, we implement the proposed prefetching algorithm

using a simple strategy of a control application for the YouTube app on mobile de-

vices. The implementation relies on YouTube’s offline mode and stores prefetched

videos directly into YouTube’s offline folder. We recruit 10 volunteers and evaluate

the results of Mantis using the prototype over a 2-week period; we show the overall

performance of Mantis and the subsequent reduction in peak-time YouTube traffic

across the users. We also show that the implementation is lightweight in terms of

CPU, memory, and network consumption.

4.1 Background & Motivation

4.1.1 Peak vs Off-Peak Performance

Traffic load on mobile networks is significantly higher during peak periods. To exemplify

this, we performed a bandwidth probe with a Google Pixel smartphone (with Android Pie)

and measured the available bandwidth (BW) over a T-Mobile cellular network at different

times during a day. The probe was done by running a speedtest that downloads a small

file from a web server to the mobile device, and using the download time to estimate the

throughput. The speedtest was conducted every 30 minutes on the Android device for 5

consecutive days, while the device was connected to a cellular network; Fig. 4.1 shows the

average of the measurements across 5 days. We observe an increase in the available BW

between 2 AM to 5 AM , and a subsequent decrease from 6 AM to 8:30 PM and a gradual

increase from 8:30 PM. This indicates that the traffic load varies through the course of the

day i.e. low available BW correspond to high traffic, and vice-versa. Similar trends have

also been shown in other cellular traffic distribution studies [76, 13]. Using Fig. 4.1 as a

reference, the off-peak period is defined as 2am to 5am, and the peak period is defined as

5am to 12am, and 12am to 2am. There is thus potential to utilize the available bandwidth

during off-peak periods for prefetching video content.

33

N
or

m
al

iz
ed

 B
W

0.2

0.4

0.6

0.8

1

Hour of Day

0 3 6 9 12 15 18 21

Figure 4.1: Normalized available BW
across the day

Cellular Wifi

Network

0

20

40

60

80

100

Y
o

u
T

u
b

e
U

sa
g

e
(%

)

Figure 4.2: Usage over Cellular and
WiFi networks for 90 users

4.1.2 On YouTube Data Usage

YouTube content currently dominates mobile data traffic and is reported to account for 38%

of all mobile traffic [38]. Furthermore, YouTube’s data traffic usage is the highest among

all other mobile apps. As reported by Cisco, the average mobile data traffic consumed per

smartphone per month is 2.3 GB, and the average usage for PC/tablets is 3.3 GB per month

[77]. To further validate the data usage associated with YouTube, we perform a separate

study of YouTube cellular data usage, using Amazon Mechanical Turk (a crowd-sourcing

platform which allows users to complete tasks for a fee). This effort collected data from

90 users across the world and was specifically focused on understanding what percentage

of cellular usage was attributable to YouTube. Users in the study were required to send in

screenshots of their YouTube mobile app usage, for 1 full month, for both cellular and WiFi

data. A box-plot showing the percentage of YouTube’s data consumption while connected

to a cellular network, and also while connected to a WiFi network is shown in Fig. 4.2.

We found that on average, users watched YouTube videos while connected to a cellular

network 38% of the time. For these users, the YouTube mobile app consumed 10.2 GB of

data in a month.

34

4.1.3 Problem Definition

The problem we address in this chapter is how to shift cellular network load, specifically

YouTube videos from peak to off-peak periods. The following performance metrics, which

are mathematically defined in section 4.4, are used to evaluate the proposed solution:

(i) Prefetch Accuracy (PA) is the fraction of watched videos that have been prefetched,

over the total number of watched videos; (ii) Prefetch Efficiency (PE) is the fraction of

watched videos among the prefetched videos; (iii) Prefetch Selectivity (PS) is the fraction

of prefetched videos among the candidate set of videos; and (iv) Overall accuracy (OA) is

the fraction of correctly classified videos among the entire candidate set. The goals of the

proposed prefetching solution are as follows:

• Decrease the peak-period mobile data traffic consumed by the end-user by ensuring

the prediction algorithm has a high PA and PE, with low PS.

• Ensure that the user’s real-time video viewing experience is not negatively impacted.

• Be light-weight, and not burden the resource-constrained mobile device’s power and

storage consumption.

4.2 Quantitative Analysis of YouTube Usage

4.2.1 Methodology

Dataset collection:

To collect the dataset, we rely on Amazon Mechanical Turk (mTurk) to gather anonymized

watch history from the users [78]. The mTurk platform allows a task to be posted for a fee,

which in turn can be completed by users known as mTurkers. Previous studies have shown

that mTurk samples can be accurate when studying technology use in the broader popula-

tion [79]. The task we posted required mTurkers to navigate to Google’s Takeout page and

download their YouTube related data. The mTurker would then extract the archive file and

select the files related to their watch-history, playlists and subscriptions data; these files

35

Table 4.1: User statistics

Attribute Mean Std Dev. Min Max
Videos/day 15.01 6.24 0 48
Categories 4.2 0.7 3 13
Playlists 1.4 5.8 0 24
Subscriptions 10.9 12.8 0 57

were then anonymously uploaded via a dropbox link 3. The archived file that is uploaded

contained the following files: watch-history.html, a JSON file for each playlist created by

the user, and subscriptions.json. The watch-history.html file contains a list of all video ti-

tles, where the title of the video is a hyperlink to the video URL, viewed by the mTurker,

and the associated time it was viewed. This data was collected from 206 mTurkers.

Independently collected dataset:

To further overcome any biases in the mTurk dataset, we also show performance results

for an independently collected dataset used by Park et al. [87]. The authors in this chapter

performed a data-driven study of the view duration of YouTube videos by collecting data

from 158 users over several weeks (by monitoring their YouTube activity via a plugin that

needed to be installed by the user). The video IDs, along with the watch-date, appear in the

dataset for each user.

4.2.2 Data Highlights

Users dataset:

A high-level overview of the statistics of the per-user watch-history data is presented in

Table 4.1. In the collected dataset, there are 1,798,132 videos watched by 206 users.

The videos watched per user per day (videos/day), the number of categories the user has

watched videos from (categories), the number of playlists the user has created (playlists),

and the number of channels the user has subscribed to (subscriptions), is reported in the

table.
3We were advised by the IRB that IRB approval was not required as no private or personally identifiable

information was collected.

36

Table 4.2: Videos statistics

Attribute Mean Std Dev. Min Max
Duration (min.) 7.8 45.2 0.02 222
Views (×106) 3.2 26.9 3 560
Likes (×103) 20.6 124.3 0 30,079
Dislikes (×103) 1.4 16.9 0 9,518
Comments (×103) 1.9 13.2 0 52,639

V
id

eo
s w

at
ch

ed
 (%

)

10
11
12
13
14
15
16
17

Day of Week

M Tu W Th F Sa Su

Figure 4.3: Percentage of videos
watched by day across all users

V
id

eo
s w

at
ch

ed
 (%

)

1

2
3

4
5

6

Hour of Day

0 3 6 9 12 15 18 21

Figure 4.4: Percentage of videos
watched by hour across all users

Videos dataset:

The total number of unique videos watched by the users is 1,116,271 videos. Table 4.2

summarizes the metrics associated with the videos watched by the users. Further insights

were obtained by analyzing the day of week and time of day that videos were viewed across

the 206 viewers for their entire watch-history. The percentage of videos watched is shown

across the days of the week in Fig. 4.3 and across hour of day in Fig. 4.4. We observe that

there is a slight increase in vieweing activity from Friday to Sunday. The plot showing the

level of viewing activity across hour of day indicates that there is a lull period from 2 AM

to 8 AM. There is a fairly constant level of viewing for the rest of the day (as can be seen

from 12 PM to 11 PM).

37

User preferences:

Additionally, with regard to user-preferences, on average users watch 95% of their videos

from 3 of their most preferred categories. As for channel preferences, on average, 38% of

all videos watched by a user are uploaded by their 10 most preferred channels, and 63%

are watched from their 30 most preferred channels. The preference of a user’s channel and

category is indicated through the number of videos that are watched belonging to the par-

ticular category or channel i.e. the most number of videos watched by a user belonging to a

certain channel, over their watch-history, will be deemed as their most preferred channel; it

is similarly computed for their category preference. For playlists preference, we computed

on average what percentage of videos are viewed by a user that belongs in user-created

playlists; we observed that less than 3% of videos were watched from the user-created

playlists. Similarly, for user subscribed channels, it was found that around 10% of videos

watched were watched from subscribed channels.

4.2.3 Prefetching Strategies and Potential

Successful prefetching of YouTube videos requires the ability to predict what videos the

user is likely to watch in the future. In order to study the feasibility of prefetching, we

perform an analysis on a dataset comprised of YouTube usage history collected from 206

users. Note that the intent of this section is only to show that successful prefetching has

potential. We focus on how the prefetching should be done in the next section.

Simple history:

A simple approach for prefetching would be to prefetch videos from the user’s watch-

history (similar to typical web-caching; YouTube currently does not employ such a cache

on the mobile device). Such an approach would work if there is repetition in the user’s

watch behavior. In other words, how often does a user watch the same video again?

To explore the feasibility of this approach, for each user in the dataset, we compute the

percentage of videos that are watched more than once by the user. The summary of the

38

0

4

8

12

16

20

24

R
e
-w

a
tc

h
e
d
 v

id
e
o
s

(%
)

Figure 4.5: Percentage of re-watched
videos across all users

0

5

10

15

S
im

il
ar

it
y
 s

co
re

 (
%

)

Figure 4.6: Watch-profile similarity
scores across all users

repeated viewings is shown as a box-plot in Fig. 4.5. We also calculate the time difference

between subsequent watches of the same video. We find that, on average, 13% of videos are

re-watched by the user, and the time difference between subsequent watches is on average

3.2 months, ranging from 1 minute to 0.8 years. Based on this preliminary analysis, the

following can be concluded:
The potential for effective prefetching of videos simply based on what a user has pre-

viously watched is low, with only 13% of videos being re-watched on average.

Collaborative filtering:

Another approach for time-shifted pre-fetching is to use collaborative filtering in a time-

shifted manner. In other words, we explore if there are patterns in the watch-behavior of

different users. If users have similar watch patterns, what one user watches could be used to

inform the prefetching decision of the other matching users. We call these users that have

similar watch-patterns as user clones. If two users who are clones are in different time-

zones (eg. GMT and PST) we can predict what the user in the PST zone will watch based on

what has been watched by the user in the GMT zone. To find these user clones, we compute

a watch-profile similarity score across the 206 users, where for every user, this score is

computed as the percentage of its videos the user has in common with every other user.

Across the 206 users, we found that the highest similarity score was 26.2% between any two

users; the median similarity score across all users was only 7.6%. This is shown in Fig. 4.6.

39

Due to the low similarity of videos watched across users, there is minimal scope for

utilizing the watch-behavior of other users for prediction in a time-shifted manner.

Recommended Videos:

YouTube’s recommendation engine uses sophisticated algorithms to understand user pref-

erences and suggest videos that the user is likely to watch. YouTube’s recommendation

engine consists of two neural networks that are the candidate generation network and the

ranking network. The candidate generation network takes into account the users’ watch-

history and applies collaborative filtering to obtain videos, and then the ranking network

prioritizes and suggests these videos using live A/B testing, to the user. Due to the recom-

mendation engine being dependent on the user’s live actions and the prioritization of fresh

and popular content, there is no simple approach to obtain the recommended videos set for

a user.

To emulate the recommendation engine’s behavior for a user, we create a test YouTube

account (account that had no prior watch-history) and programmatically re-played the

user’s watch-history between June 2016 and May 2017 (for the full video length). Us-

ing this account populated with the user’s history for the past year, we compute, for every

video watched between June 2017 and May 2018, the fraction of future videos watched

by the user that was in the set of recommended videos shown on the right pane of the

video that is currently being watched on the YouTube website (39 recommended videos

were scraped for each video that was being replayed during the testing). It is impor-

tant to note that these recommended videos will not be an exact match of what the user

would have seen since the recommendation engine will include videos that have been

uploaded to YouTube recently but were not available when the user watched the videos

in the history. However, despite these differences, we see that across 10 randomly se-

lected users, a relatively large fraction, 67%, of their future video watches have previ-

ously appeared as a recommendation. This is consistent with other reports that approx-

40

imately 70% of YouTube views are driven by YouTube’s recommendation system [88].
Using recommended videos as the candidate set from which to prefetch videos is a

promising solution. Approximately 70% of a user’s watch behavior is represented by

the videos suggested in the recommended set of videos.

4.3 The MANTIS Prefetching Solution

4.3.1 Overview

In the previous section, we established that the recommended videos based on the user’s

watch-history is a promising candidate set for a prefetching algorithm to operate on. That

is, videos that are likely to be watched by the user in the future, can be determined from the

recommended videos of videos the user has previously seen. However, several fundamental

challenges need to be addressed by the prefetching algorithm. One of the key challenges is

that even with the focus on recommended videos, the size of the candidate set is likely to

be large enough to prohibit prefetching the entire set. With this core insight, we propose an

intelligent prefetching algorithm, Mantis, that accurately predicts videos a user will watch

from her candidate videos set, while ensuring an acceptable prefetching efficiency. In the

proceeding sections, we present Mantis in three stages: 1) generating the candidate set,

2) selecting features for the algorithm and 3) designing the classifier. We also present the

system design for Mantis.

4.3.2 Candidate Set Generation

When the candidate set of videos is populated by all the recommended videos of videos

the user has previously seen (over the past year), we found that 67% of their future watch

behavior is predictable. For the average user that watches 15 videos per day, the size of

the candidate set increases by 585 videos for each day in the past we use to populate the

candidate set; it is thus infeasible and inefficient to prefetch the full candidate set. We

thus need to be able to intelligently select videos to prefetch, and for this, being able to

accurately capture the user’s viewing patterns and preferences regarding the videos they

41

have watched from the candidate set is imperative. As YouTube’s recommendation engine

cannot exactly be emulated (owing largely to live A/B testing), we cannot obtain precise

results regarding which of the recommended videos were watched by the user. As a result, a

major caveat with utilizing the recommended videos set is that the classifier cannot operate

until the training period is complete i.e. we cannot use the user’s past watch-history to

understand their interaction with the recommendation engine, but would instead need to

monitor their behavior for the entire training period. To address the issue, we explore

an alternative set of videos for the candidate set, which can act as a close proxy for the

recommended videos set.

Related Videos as the candidate set:

YouTube algorithmically determines videos that are related to one another using the video’s

meta-data, and also collaborative filtering methods- these videos are used as input to YouTube’s

recommendation engine’s candidate generation network. The related videos are indepen-

dent of the particular user and their watch history. We thus explore utilizing related videos

as the set of videos from which to prefetch, and use YouTube API’s relatedToVideoId end-

point to retrieve a list of videos which is related to a particular video.

For a particular user, we fetch 50 related videos of every video that has been watched

by the user, and then see if any of the related videos were watched later. We perform

this analysis for all the users in our collected data set for their 1 year of watch-history,

and found that 59% (with a standard deviation of 16%) of all videos watched by the user

were in the related videos set. To see if the related videos set can serve as an effective

proxy of the recommended videos set, we perform a similar analysis for the videos that are

shown as recommended videos to a currently watched video. We see that the percentage

of videos watched from the recommended videos, for 10 randomly selected users, is on

average only 4% higher than the percentage of videos watched from the related videos set,

as shown in Fig. 4.7. Thus the related videos can act as a close proxy to the recommended

videos set, while avoiding the idle training period that would be required when utilizing the

42

recommended videos as the candidate set.

Candidate set generation period

Mantis generates the candidate set by adding 50 videos that are related to videos previ-

ously watched by the user over a certain fixed period in the past; we term this period as the

candidate set generation period. To determine the optimal generation period for the can-

didate set, for each day of the user’s watch history, we compute the fraction of videos that

are watched that day which appear in the candidate set (hit ratio) generated over varying

generation periods. Figure 4.8 shows the average hit ratio for 206 users, over their entire

watch-history, while varying the generation period from 1 day to 4 weeks. The hit ratio in-

creases from 0.19 to 0.41, when the generation period is increased from 1 day to 2 weeks.

Increasing the generation period to more than 2 weeks only exhibits a slight increase on the

hit ratio, but considerably impacts the size of the candidate set. Thus, the generation period

is set to 2 weeks for Mantis.

V
id

eo
s w

at
ch

ed
 (%

)

50

60

70

80

User
1 2 3 4 5 6 7 8 9 10

Recommended Related

Figure 4.7: Recommended vs. related
set across 10 users

H
it

ra
tio

0

0.1

0.2

0.3

0.4

0.5

Generation period (days)
1 7 14 21 28

Figure 4.8: Hit ratio for varying
generation periods

4.3.3 Feature Design

For the average user who watches 15 videos every day, Mantis needs to be able to accurately

identify 15 videos the user is likely to watch the next day from 10,500 potentially distinct

videos (from the related videos the user has watched over the last 2 weeks). To obtain this

43

precision, being able to effectively encapsulate the user’s viewing behavior is pertinent.

Thus the features that are used for the classification algorithm are of great significance.

Feature selection:

The features that we select, which are associated with every video in the candidate set, are

shown in Table 6.2. The features are selected to capture the user’s preferences (retrieval

date, channel ID, category ID, subscribed, repeats, playlist, and tags) and also features that

are associated with the inherent nature of the video (time-difference, views, likes, dislikes,

comments, subscribers, uploads, and duration).

Table 4.3: Features description

Feature Description
Retrieval date Date of when the video from which the related videos are obtained, was

watched
Time difference Time difference between video upload date and prefetching day
Views No. of views of video
Likes No. of likes of video
Dislikes No. of dislikes of video
Comments No. of comments of video
Channel ID ID of the channel which uploaded video
Category ID ID of the category of video
Subscribers No. of subscribers video’s channel
Uploads No. of videos uploaded by video’s channel
Subscribed A boolean flag that is set if the user has subscribed to the video’s channel
Repeats No. of times the video has been viewed
Duration Duration of the video
Playlist A boolean flag that is set if the video appears in a user’s created playlists
Tags Tags associated with the video

Dimensionality reduction:

For the numeric features, the Pearson’s correlation coefficient, is computed between each

feature pair. Figure 4.9 shows the Pearson correlation matrix containing correlations be-

tween every pair of features from Table 6.2. The coefficients shown are averaged across

the watch history of 206 users, made up of 1,116,271 unique videos. We can observe from

the correlation matrix that there is a strong relationship between four features for a video -

44

vi
ew

s
lik

es

di
sl
ik

es

co
m

m
en

ts

su
bs

cr
ib

er
s

ch
an

ne
l u

pl
oa

ds

su
bs

cr
ib

ed

re
pe

at
s

du
ra

tio
n

pl
ay

lis
t

tim
e
di

ff
er

en
ce

views
likes

dislikes
comments

subscribers
channel uploads

subscribed
repeats

duration
playlist

time difference

0.3306

-0.164

-0.03471

0.3762

-0.08176

-0.3302

-0.07213

0.3597

-0.1358

-0.04001

0.3128

-0.07377

-0.2979

-0.08394

0.2681

-0.09304

-0.03467

0.1878

-0.03424

-0.1666

-0.04982

0.3314

-0.09601

-0.04058

0.1651

-0.04053

-0.1828

0.001831

0.3306

0.3597

0.2681

0.3314

0.0564

-0.05126

0.03059

-0.04785

-0.02141

0.06387

-0.164

-0.1358

-0.09304

-0.09601

0.0564

0.1077

-0.1446

0.02633

0.2187

-0.009

-0.03471

-0.04001

-0.03467

-0.04058

-0.05126

0.1077

-0.04786

0.009296

-0.1572

0.05038

0.3762

0.3128

0.1878

0.1651

0.03059

-0.1446

-0.04786

-0.08438

-0.3789

-0.1741

-0.08176

-0.07377

-0.03424

-0.04053

-0.04785

0.02633

0.009296

-0.08438

0.1597

-0.0503

-0.3302

-0.2979

-0.1666

-0.1828

-0.02141

0.2187

-0.1572

-0.3789

0.1597

0.08232

-0.07213

-0.08394

-0.04982

0.001831

0.06387

-0.009

0.05038

-0.1741

-0.0503

0.08232

1

0.9499

0.6448

0.7473

0.9499

1

0.6649

0.833

0.6448

0.6649

1

0.9113

0.7473

0.833

0.9113

1

1

1

1

1

1

1

1

-1

-0.5

0

0.5

1

Figure 4.9: Correlation Matrix
Figure 4.10: Cumulative Variance
PCA

the number of views, likes, dislikes and number of comments. This demonstrates that there

is considerable redundancy present in the features.

Given that there is a sizeable amount of data to be considered for accurate prediction

of videos a user may watch in the future, utilizing all the features is computationally ex-

pensive. Mantis eliminates this redundancy with the application of principal component

analysis (PCA) [89]. PCA is a statistical technique that uses an orthogonal transforma-

tion to convert a set of features into a set of linearly uncorrelated variables called principal

components. The principal components are computed in such a way, that the greatest vari-

ance by some projection of the original features, lies on the first coordinate (called the first

principal component), the second greatest variance on the second coordinate, and so forth.

The details of the algorithm can be found in [89]. Fig. 4.10 shows the cumulative variance

contributed by each of the components for the 1,116,271 videos. We can observe that ap-

proximately 95% of the variance is captured within the first 11 principal components. We

can thus reduce the number of dimensions from 15 to 11, thereby reducing the computa-

tional complexity associated with large datasets, while still capturing significant variance

within the dataset. The 11 principal components containing 95% of the variance are used

by Mantis to classify which videos to prefetch.

45

4.3.4 Classifier Design

There are two facets to Mantis’s classification algorithm: training, and prediction. These

are described as follows:

Training: Mantis’s training algorithm involves populating the training set which will

be used during the prediction phase, and is shown as Algorithm 1. For each user in the

mTurk dataset, and for each day in the training period, the following steps are performed:

1) Populate candidate set: A list of related videos of all videos watched in the candidate

set generation period, is obtained through the appropriate YouTube API call (line 8). The

metadata for each related video is fetched, either from the videos database (which stores

the video’s metadata, line 11) or through the appropriate YouTube API call (line 13).

2) Prune candidate set: These videos are further filtered to reduce the candidate set by

only selecting videos within the user’s preferred channels and category (line 15). This is

motivated by the insight that (see section 4.2.2) users watch 95% of their videos from their

3 most preferred categories, and 63% of the videos from their 30 most preferred channels.

3) Set classification attribute: Once the candidate set has been populated for the generation

period, a class attribute for the video, that indicates whether this video was indeed watched

by the user on the day, is set to chosen if it is found in the candidate set, otherwise it remains

as discarded (lines 23-25). This set is then added to the training data for the classifier (line

27). Once the training data has been obtained, PCA is applied (line 29), and this data is

loaded into the classifier (line 30), after which the prediction will commence.

Prediction: For each prefetch day, Mantis aims to predict what the user is likely to

watch that day. It performs this prediction by populating the candidate set over the gen-

eration period, as was done during the training phase (lines 8 to 13), and then prunes this

candidate set (line 15). The classifier intelligently selects, from this candidate set, the

videos that will be watched by the user.

46

Algorithm 1: Prefetching training algorithm
1 INPUT: videos DB; preferred channels and categories per user; training period;

generation period
2 OUTPUT: trained classifier
3 PROCEDURE
4 for each day in training period
5 generation period start← day - generation period
6 past videos← videos watched (generation period start to day)
7 for each video in past videos
8 related video list← relatedToVideo(video)
9 for each rv in related video list

10 if rv is in videos DB
11 metadata← corresponding videos DB entry
12 else
13 metadata← videos list by id(rv)
14 Add metadata to videos DB
15 end if
16 if rv’s channel or category is preferred
17 Add rv metadata to candidate set
18 end if
19 end for
20 end for
21 current videos← videos watched on day
22 Set class to discarded for all videos in candidate set
23 for each video in cadidate set
24 if video in current videos
25 class← chosen
26 end if
27 end for
28 Add candidate set to training data for classifier
29 end for
30 Apply PCA to training data
31 Load training data into classifier

47

Classifier selection:

Once the candidate set has been populated, Mantis’s classifier will predict which videos

from the candidate set will likely be watched by the user on a particular day. From the data

highlights, we found that users tend to watch videos that are similar in nature (for example,

95% of all videos watched by a user was from 3 of their most preferred categories); a

classifier that we hypothesize will be well suited for data is the k-nearest neighbor classifier

(KNN). KNN is a supervised neighbors-based learning method that predicts the label for

a sample based on the labels of a predefined number of training samples (K) closest in

Euclidean distance to the sample to be classified [90]. It then assigns a class (chosen or

discarded) to the video based on the majority of classes present in the closest K points.

As the KNN classifier directly classifies data samples based on feature similarity, it applies

well to the prefetching problem.

To validate our hypothesis regarding the choice of the classifier, we implement the

aforementioned training and prediction (after feature scaling), and using KNN (for the de-

fault value of K=3) and compare it to 3 other popular machine learning algorithms: Gaus-

sian Naive Bayes (GNB), linear support vector machine (SVM) and also random forests

(RF). 10-fold cross-validation is applied where the models are trained on 90% of the data,

and is tested on the remaining 10%; we compute the classifier accuracy (how accurately it

is able to correctly predict which videos from the candidate set are watched) and the area-

under-curve (AUC) score (see Table 5.2). The AUC score provides an aggregate measure

of how well the classifier can distinguish between the 2 different classes, and is especially

useful for classifiers that are trained on an imbalanced dataset, such as is characteristic with

this problem (there are significantly more videos that are not watched from the candidate

set than are watched) [91].

It can be seen that the KNN classifier does indeed perform better than the other methods

(with the AUC score being 41.5%, 19.6% and, 5.9% higher than GNB, SVM and also RF

respectively); for proceeding results, we thus utilize KNN as the classifier for Mantis.

48

Table 4.4: Classifier comparison results

KNN GNB SVM RF
Accuracy
(%)

77.6 38.1 57.6 69.1

AUC (%) 84.1 42.6 64.5 78.2

A
cc

ur
ac

y
(%

)

50
55
60
65
70
75

K
1 5 9 13 17 21

Figure 4.11: Accuracy for varying K
across 206 users

A
cc

ur
ac

y
(%

)

50
60
70
80
90

Training period (days)

7 35 63 91 119 147

Figure 4.12: Accuracy for varying
training period across 206 users

Classifier parameter tuning:

There are two important parameters for the KNN classier, namely the value of K, the num-

ber of neighbors in the KNN algorithm, and also the training period. The effect of varying

the number of neighbors used by the classifier (averaged across 10-fold cross-validation),

is shown in Fig. 4.11; the optimal value for K is found to be 5. Training the classifier on

the user’s entire watch-history data can result in over-fitting and may be computationally

inefficient. Furthermore, we will not be able to take into account the temporal variance of

the data i.e. the way the user’s viewing behavior changes over time. We thus evaluate the

classifier when the training period is selected as the period immediately preceding the test

period. To determine the optimal training period, we utilize the 30 most recent viewing

days in their watch-history and vary the value of the training period (see Fig. 4.12). It can

be seen that the classifier performance peaks at a training period of approximately 90 days,

after which there is a slight decrease. We thus set the training period to be 90 days.

49

4.3.5 System design

In this subsection, we present a system architecture, as well as the design for a prototype

for Mantis. The architecture presented here requires the user to download and install a

prefetching app.

Architecture:

The architecture consists of a Mantis server and a Mantis client, with the server residing

on a cloud infrastructure (either on a centralized cloud or a mobile edge cloud), and the

native client app on the user’s mobile device. Mantis is provided as service to which a user

subscribes to, from the Mantis client app during the start-up process. After the user has

subscribed to the Mantis service, the Mantis client performs in steady-state mode. Fig. 4.13

depicts a high-level overview of the system architecture for a single server-client scenario.

In this architecture, YouTube’s offline download feature is utilized as means of prefetching

the videos. This offline feature is available only with YouTube Premium subscriptions in

the U.S.A, however, this feature is freely available in 125 other countries [92]. This feature

enables seamless injection of the prefetched video content into the YouTube app’s native

cache. The Mantis client app interacts with the YouTube mobile app to fetch the videos

predicted by the Mantis server.

The Mantis server consists of a mobile sync module that is used to interface with the

users. It is responsible for registering the user with Mantis and instantiating the four mod-

ules responsible for predicting the content to prefetch for the user. These modules are (i)

Data preprocessor module, which is used for processing the user’s history; (ii) Training

module, which contains the KNN classifier used to train the network with the user’s his-

tory; (iii) Classifier module that is used for classifying related videos; (iv) the Prediction

module, which determines the videos to be prefetched by the client.

The prefetching server also consists of a global database and user database. Each user

subscribed to the Mantis service will have a specific instance of the user database. Unlike

50

Figure 4.13: Primary system architecture

the user database, there is only one global database from which metadata related to videos

are obtained for every user. The global database contains a videos features table with

metadata about videos. The database also contains a users table which is a list of the users,

with each user identified by a user ID. The user database contains details about the user’s

viewing behavior. The History table is used to store the watch history for each user, along

with whether the watched video appears in one of their playlists and whether the user is

subscribed to the channel which uploaded the video. There are also 2 other tables in this

database - the subscriptions table containing the list of channel IDs of the channels the user

is subscribed to and the playlist table containing the list of video IDs from user-created

playlists.

Note that this architecture places the burden on the user for its deployment, as the user

is required to install the app on their phone. Cellular network providers can reduce this

burden by 1) implementing an incentive-model in which the user is offered benefits for

installing the application, or 2) the network provider can bundle Mantis with bloatware

(software installed on phones by network carriers).

Operating modes:

Mantis operates in two modes - the start-up mode and the steady-state mode. Start-up

mode occurs when the user first installs the client app and uses it to start the Mantis service.

51

During this mode, there are four main actions which occur:

1) Create user database and modules: This process involves instantiating the prefetching

modules and creating an instance of the user database on the Mantis server.

2) Fetch user’s data: The Mantis client on the user’s mobile device retrieves the user’s

watch-history, as well as their current channel subscriptions and videos that appear in their

playlists. This information is securely sent to the server over an encrypted channel.

3) Populate databases: The current channels to which the user is subscribed to, and video

IDs appearing in their playlists, are used to populate the subscriptions table and playlist

table, respectively. The received watch-history file, is also used to populate the history

table which has fields corresponding to the features described in Table 6.2. Furthermore,

the global video database is populated with the video IDs received in the watch-history, and

metadata is obtained.

4) Train KNN classifier: The KNN classifier is trained on the user’s watch-history using

Algorithm 1.

Once the start-up mode is complete, the steady-state mode begins during the off-peak

period, and will continue daily until the user decides to stop the service. These actions take

place during the steady-state mode:

1) Fetch user’s data: As in start-up mode, the history from the previous day, subscriptions

and playlists are retrieved and securely sent to the server.

2) Populate databases: This is the same as with start-up mode, with the respective databases

on the Mantis server being updated with the received information.

3) Train KNN classifier: The KNN classifier is trained with the user’s history, using Algo-

rithm 1.

4) Predict videos: Using the trained KNN classifier, the video titles of the predicted videos

are retrieved using the algorithm described in Section 4.3.4. These titles are communicated

to the client securely.

5) Download predicted videos: Utilizing YouTube’s offline download feature, the client

52

app interacts with the YouTube mobile app and downloads the videos sent by the server.

4.4 Performance Analysis

We begin this section by defining the following metrics for evaluating Mantis:

• T P= Number videos that are prefetched and watched by the user (true positives)

• FP= Number of videos that are prefetched but not watched by the user (false positives)

• T N= Number of videos that are not prefetched and also not watched by the user (true

negatives)

• FN= Number of videos that are not prefetched but are watched by the user (false nega-

tives)

• Prefetch Accuracy PA= TP/(TP+FN): the ratio of videos correctly classified and watched

by the user, to the total number of videos watched by the user from the candidate set;

indicates how accurately the prefetching algorithm predicts what a user will watch in the

near future.

• Prefetch Efficiency PE= TP/(TP+FP): the ratio of videos correctly classified and watched

by the user, to the total number of videos prefetched from the candidate set; indicates how

efficient the prefetching algorithm is in prefetching content that is actually consumed by

the user.

• Prefetch Selectivity PS= (TP+FP)/(TP+FP+TN+FN): the ratio of videos prefetched to

the total number of videos in the candidate set (after the related videos set been pruned);

indicates how effectively the algorithm selects videos from the candidate set.

• Overall Accuracy OA= (TP+TN)/(TP+FP+TN+FN): the ratio of videos correctly clas-

sified, to the total number of videos in the candidate set; indicates how well the prediction

algorithm can classify a video as going to be watched by the user, or not.

Evaluation methodology: To evaluate Mantis, the user’s data obtained through mTurk,

is first parsed and stored, in a Postgres PSQL database with the tables described in section

4.2.1. The Mantis algorithm was implemented on a macOS Mojave system with a 2.5 GHz

53

Intel Core i7. The parameter values used for evaluating Mantis are: K= 5, number of users=

206, and prefetching time= 4 am, generation period= 2 weeks unless stated otherwise. The

training period was empirically determined for each user as described in section 31. Mantis

was evaluated for 30 continuous viewing days for each user in the dataset.

4.4.1 Macroscopic performance of Mantis

Bandwidth implications:

The impact of Mantis can be shown in terms of the bandwidth (BW) consumption for the

users. When Mantis is implemented, and videos are prefetched during off-peak hours,

there is a decrease in the BW consumed by the users during peak periods. This decrease

corresponds to a smoothening of the network traffic demand curve. We compute the BW

required to download the videos for each user for their test period. The BW reduction per

user during peak periods is shown in Fig. 4.14; this is shown as a function of the number of

videos watched by the user over their test period. On average, a BW saving of 3.3 GB across

the 206 users is observed (this is computed based on prefetching and watching videos at

480p quality) Fig. 4.15 summarizes the per-user BW consumption for peak and off-peak

periods, with and without the use of Mantis, across all users. We see that Mantis is able to

achieve a peak-time BW reduction of 34% while increasing the overall BW consumption

by 12% (from 10.6 Gb to 11.9 Gb).

Furthermore, during the off-peak hours, the average amount of YouTube data down-

loaded is about half the data downloaded during peak periods. As we saw in Fig. 4.1, there

is on average four-times more available BW during off-peak periods than during peak-

periods, making the off-period prefetching feasible without causing an unmanageable bur-

den on the network providers. Also, we found that with Mantis, 180 MB of video data, on

average, is downloaded per person, per day during off-peak periods. Thus, it will only take

90 seconds to prefetch 180 MB data at 16 Mbps (typical LTE data-rate [93]), which is well

within the chosen 3-hour off-peak period. As the videos are evicted and replaced after each

day from the cache, there is on average 180 MB of video data at 480p quality (at 720p it

54

User
0

2

4

6
P

e
a
k
-t

im
e

B
W

 r
e
d
u
c
ti

o
n
 (

G
B

) 0-250 videos watched

251-500 videos watched

501-750 videos watched

751-1000 videos watched

Figure 4.14: Peak-time BW reduction
across 206 users for 1 month Figure 4.15: Average BW usage for

206 users for 1 month

PA PE OA
60

70

80

90

100

P
e
rf

o
rm

a
n
c
e
 (

%
)

Figure 4.16: Performance of Mantis
across 206 users

PA PE OA
60

70

80

90

100

P
e
rf

o
rm

a
n
c
e
 (

%
)

Figure 4.17: Performance of Mantis on
dataset in [87]

would be 318 MB, and at 1080p it would be 438 MB) that is stored on the user’s mobile

device; with mobile devices currently having 16-256 GB available for storage, even at full

HD quality, less than 3% of the device’s storage is dedicated for storing prefetched videos.

Prefetching performance:

In terms of the performance metrics, the results of Mantis, averaged over the 30 day testing

period, for all 206 users are shown in Fig.4.16. We see that Mantis is able to accurately

select 79.3% of the predictable videos from the candidate set, and of the videos that are

prefetched, 79.1% of the videos are watched by the user. In, addition the average PS is

29.3%, which means that the algorithm is able to fetch 29.3% from the candidate set; the

PE from the entire unfiltered dataset is less than 0.001%. Furthermore, Mantis is able to

55

correctly classify 83.2% of the videos in the filtered candidate set. The distribution of the

metrics for each user across the 30 days is shown as box-plots in Fig. 4.16.

Mantis is also evaluated on data that was collected by Park et al. [87]. For the 158

users in this dataset, the duration over which the user’s history was monitored for, is not

consistent and varies from 2 weeks to 14 weeks. Mantis can only be applied to 57 users

for whom the required watch-history for the training period was available. For these users,

Mantis was used to predict videos for 1 week. Fig. 4.17 shows the evaluation metrics for

the dataset collected in [87]. Mantis performs well for this dataset with PA= 76.2%, PE=

74.2%, OA= 83.1% and PS of 26.7%.

4.4.2 Prototype Results

We developed a proof-of-concept prototype of Mantis for Android devices. The prototype

uses Macrodroid [94] to schedule and sequence the various tasks on Mantis client during

the steady-state mode 4. The Mantis server was implemented on a macOS Mojave system

with a 2.5 GHz Intel Core i7; the client device and the server exchange information over a

wireless FTP.

Steady-state operation:

The steady-state operations are given as follows.

1) Client fetches watch-history: The client fetches the watch-history at 4 AM each day

as a background process. This is performed through a pre-determined sequence of UI

interactions with the YouTube App - launching the YouTube app and navigating to the

”Manage all activity” page which contains the entire watch-history of the user. This HTML

page is downloaded and sent to the Mantis server via FTP. As the page is pulled from the

app, there is no request for credentials. The current subscriptions are then fetched by

navigating to the subscriptions page, invoking the onClick event associated with the ”All”

keyword. The playlists are similarly obtained. The HTML history file, subscriptions, and

the playlist video titles are sent to the server via FTP.

4iOS devices can use workflow [95] for this purpose

56

2) Server makes prediction: The various databases are hosted on a PSQL database server

in the Mantis server. Upon reception of the data from the client, the server processes the

HTML files and appropriately populates the database. The KNN classifier is trained and

predictions are made according to the algorithm in section 4.3.4. Finally, a list of the

predicted video titles is sent to the client through FTP.

3) Client receives predictions: The client actively listens for messages from the server

on the incoming FTP port. If the client receives video title strings from the server, it will

loop through the video titles and perform the following steps: (i) launch the YouTube

App; (ii) enter title into the search bar; and (iii) prefetch appropriate video by selecting the

“download” option from the contextual menu.

Table 4.5: Prototype Results

Metric Value
Memory Usage 64 MB
Data usage overhead 65 KB
Average CPU usage 14%
Battery usage 3%

Results:

The proof-of-concept prototype was evaluated for prefetching an average of 6 videos for

10 randomly selected users, for 5 days. Results are shown for the app’s memory and CPU

usage (when the client is interacting with the YouTube app), data usage overhead (the

overhead incurred when uploading data to the server and downloading video titles), and

also the battery consumption (taken as the difference between battery percentage before

the prefetching service starts, until after it has downloaded videos), and is summarized in

table 4.5.

4.4.3 User Study

For the user study, we recruited 12 volunteers from 4 different countries ranging from 16 to

56 years and deployed the Mantis prototype as described in section 4.3.5. Each volunteer

57

was required to install the prefetching app on their Android device and was told to remain

logged into their YouTube account on their mobile device for a period of 2 weeks. The

Mantis server was hosted on a macOS Catalina system with a 2.5 GHz Intel Core i7. Prior

to the installation of Mantis app on each user’s device, we obtained 3 months of their

watch-history to train the KNN classifier so that the prediction and subsequent prefetching

can occur from 4 AM the next day, and continue so for 13 more days. The average number

of videos watched per day by the users is 13.1 (similar to the users in the mTurk dataset).

Fig. 4.18 shows the results for each of the 10 volunteers over 2 weeks.

0
25
50
75

100

Volunteer #

1 2 3 4 5 6 7 8 9 10

PA (%) PE (%)

Figure 4.18: PA and PE across 10 volunteers over 2 weeks

The average PA and PE is 71.5% and 69.7% respectively; this is comparable to results

achieved across the mTurk dataset (PA= 76.2% and PE= 74.2%). We also found that nearly

48% of peak video traffic was shifted to off-peak periods with the use of Mantis, which is

considerably higher than the 34% obtained across the mTurk dataset. This increase can be

attributed to the fact that 69% of all future videos watched appeared in the candidate set. A

potential reason for this difference could be that the candidate set is populated at the time

of prefetching as opposed to ahead of time (which was done in the case of mTurk dataset

in simulating Mantis).

58

CHAPTER 5

A REAL-WORLD DATASET OF NETFLIX VIDEOS AND USER
WATCH-BEHAVIOR

Video streaming accounts for over 60% of downstream Internet traffic, and is expected to

grow to 82% by 2022 [1]. Netflix, the world’s most popular video streaming service, is

alone responsible for nearly a quarter of the world’s video traffic [9]. Given the dominance

of Netflix on Internet resources, it is valuable to derive insights on Netflix usage which can

be useful to not only the research community, but to network operators, content providers,

marketing agencies, content creators as well as users themselves. This serves as the pri-

mary motivation for our work in which we conduct a meaningful analysis and provide key

insights using a real-world dataset of users’ Netflix behavior.

To this end, we use Amazon’s Mechanical Turk (mTurk) platform to collect a dataset

for Netflix usage from 1060 users. The collected dataset contains 1-year worth of viewing

activity for each user, which amounts to over 1.7 million episodes and movies collectively

watched. Beyond high-level statistics published by Netflix [96], there has been little work

done towards collecting and deriving insights using real world usage data spanning a sig-

nificant period of time.

Equipped with this dataset, we provide an in-depth analysis on user’s watching behav-

ior for movies and series content. Movies and series vary vastly in their form with movies

being 3 times longer than episodes from series, and also are non-episodic. It follows that

the way a user watches movies will be different to how they consume series content. We

thus separate the analysis of user’s watching behavior for movies and series. We derive key

insights for individual user behavior related to their watch patterns, watch-session length,

preferences, predictability of their future viewing, and their series continuation tendencies.

Furthermore, we implement and evaluate classification models to predict the user’s engage-

ment in a series, and the likelihood of them continuing to watch a series. We present our

59

results by grouping our users into 3 categories based on the amount of content they con-

sume: low active user, moderately active user, and high active users. We believe that the

real value of the dataset lies in researchers using it for their respective problems. A core

contribution of this work includes presenting results in the context of problems in the do-

main of networking and communications. Specifically, we consider the following sets of

research questions (RQs):

1. Do users have a preferred day of viewing for movies/series? What is the number

of days between subsequent watches? How does this differ for varying user activity

levels?

2. How many episodes do users watch each day? Do active users tend to consume the

same amount of content each day?

3. Do users watch the same genre(s) content regularly? Are users inclined to binge

watch certain genres over others? Do active users prefer more popular and higher

rated content? How much content is related to content the user has previously seen?

4. How much of a user’s future watches are predictable? Is it easier to predict for less

active users? Are certain genres easier to predict that others?

5. How much of a series does a user watch to its entirety? At what point does a user

stop watching a series if they don’t complete it? Can we predict when this point will

arise? Which classification model is the most well suited for this prediction?

5.1 Data Collection

5.1.1 Methodology

To collect our dataset, we rely on Amazon Mechanical Turk (mTurk) to gather anonymized

Netflix viewing history from 1060 users for a 1-year period [78]. The mTurk platform

allows a task to be posted for a fee, which in turn can be completed by users known as

60

mTurkers. Studies have shown that mTurk samples can be accurate when studying tech-

nology use in the broader population [79]. The mTurkers were required to navigate to

their viewing activity page associated with their profile, and download their Netflix view-

ing activity as a csv file; the file was then anonymously uploaded via a dropbox link1. The

viewing activity file uploaded by the mTurker contains 2 fields: title and date. The title

field consists of the name of the feature film or TV series/documentary, as well as the sea-

son and episode name where applicable, separated by colons. The date field consists of the

most recent date that the title was viewed (there is no time of day given).

We then use The Movie Database API [97] (TMDB) to obtain the following metadata

for each title watched by a user: the release date of the title, the IMDB rating, the number of

IMDB votes for the title, the run-time in minutes, the genre(s), director(s), writers, actors,

the language of the title, country of production, and related titles. For series, we obtain the

number of seasons, and number of episodes each season has through appropriate API calls.

A Postgres SQL database is used to store the user’s viewing history and metadata.

5.1.2 Baseline Characteristics

A high-level overview of the collected dataset is presented in table 6.1. We show the total

number of movies and episodes watched by all the users in the dataset, as well as the total

number of seasons and series watched by all our users. We also show the average number

of hours a user spends watching series during each watch session (WS). We define a (WS)

as a day on which at least one episode of some series is watched by the user.

5.2 Analysis and Key Insights- Movies

In this section, we perform an analysis on the user’s movie watching behavior. We group the

users into 3 categories based on the number of movies they have watched in their submitted

1-year history. Users in low active category have watched less than 20 movies (11% of

1We were advised by the IRB that IRB approval was not required as no private or personally identifiable
information was collected.

61

Table 5.1: Dataset Overview

Description Value
Users 1060

Movies 63,296
Episodes 1,632,980
Seasons 121,101
Series 30,224

Hours per WS 1.8

C
D

F

0

0.25

0.5

0.75

1

Days between movie watches

0 17.5 35 52.5 70

Overall Low
Mod. High

Figure 5.1: Days between subsequent
movie watches

C
D

F

0

0.25

0.5

0.75

1

Viewing Day Entropy (Movies)

0.5 0.6 0.7 0.8 0.9

Low Mod. High

Figure 5.2: Viewing day entropy for
movies

users), users in moderately (mod) active category have watched between 21 to 100 movies

(81% of users), and high active users have watched more than 100 movies (9% of users).

RQ1: How often do users watch movies?

An important question to consider for load estimation and content delivery systems is how

much and how often the user consumes content. The typical user in our dataset watched 56

movies in 1 year, this equates to approximately 1.1 movies per week. For the users 1-year

viewing history, we show the number of days between subsequent movie watches in Fig.

5.1 (outliers were removed). We find that 75% of the low, mod, and high active users watch

movies every 33.2 days, 6.6 days and 3.5 days respectively.

RQ2: Do users watch movies on the same day(s)/week?

To quantify whether users tend to watch movies on the same day(s) each week, we

define the Viewing Day Entropy (VDE) as given in Eq. 7.1.

62

V DE =
−∑d∈D pd× log(pd)

log(N)
(5.1)

where
pd =

Number of movies watched on day d
Total number of episodes watched by user

(5.2)

and N is the total number of days in a week (N= 7). The VDE is a value between 0 and 1,

where a VDE closer to 0 indicates that the user has a more regular request pattern, and a

value close to 1 indicates that the user uniformly watches content across the week. Interest-

ingly, we find that less active and highly active users have a higher VDE than moderately

active users. This implies that moderately active users tend to watch movies around the

same day of the week as compared to other users.

RQ3: Are movies more often re-watched by active users?

Local caching attempts to speed the access to data by storing data that has recently been

accessed by the client. A prerequisite for successful caching is the presence of redundancy

in a user’s behavior. Here we analyze if and how often a user re-watches, either parts or the

entire, movie. For every user, we compute the fraction of movies that appear in the user’s

viewing activity more than once (i.e. it was watched on more than 1 day). We find that for

low active, moderately active, and high active users, approximately only 3.2%, 7.4% and

8.7% of movies, respectively, are watched more than once. Thus, we conclude that active

users tend to re-watch more movies than less active users.

5.3 Analysis and Key Insights- Series

With 96% of the user’s Netflix titles being episodes of series, we perform a larger and

more in-depth analysis of users’ series watching behavior. In the following subsections,

we answer questions categorized into 5 groups to gain insights regarding the users’ Netflix

series viewing behavior. The groups are related to the user’s watch patterns, watch-session

length, user’s preferences, the predictability of Netflix series videos and the continuation

of watching series. In order to analyze the user’s behavior, and how their levels of activity

impact our derived insights, we group our users into 3 categories based on the number

63

of episodes they have consumed in their 1-year viewing history, namely, low active users

that have watched less than 100 episodes, moderate (mod) active users who have watched

between 101 and 800 episodes, and high active users that have watched more than 800

episodes. Approximately 13% of the users are in the low active category, 17% in the high

active category, and the remaining 70% of the users are in the moderate active category.

5.3.1 User Watch Patterns

RQ1: Do users have a preferred day of viewing?

We explore whether users have a regular schedule in terms of when they view content;

knowing what day a user is likely to access content is particularly helpful for load estima-

tion and caching systems, and consequently can improve the user’s Quality of Experience

(QoE). We first show the distribution of content watched across the day of the week; this

can be seen in Fig. 5.3. In general, the highest % of episodes watched occurred on a Sun-

day (16.3%), and the lowest on Friday (13.4%). In contrast, low active users watch their

least content on Thursdays (12.8%). To quantify whether users tend to watch series content

on the same day(s) each week, we compute the VDE as given in Eq. 7.1, where

pd =
Number of episodes watched on day d

Total number of episodes watched by user
(5.3)

The CDF of the VDE across users is shown in Fig. 6.7. We find that low active users are

slightly more regular in terms of their day of viewing than high active users; however, 50%

of all users, regardless of their activity level, have a VDE between 0.6 and 0.83, implying

that in general users, do not have a regular schedule in terms of their watch pattern.

RQ2: What is the number of days between subsequent watches?

A further important insight related to a user’s watch patterns, is what the number of days

between subsequent WSs, termed as time between watch sessions (TBWS), is. Fig. 5.5

shows the CDF of the TBWS days across the 1 year viewing history for all the users. We

find that the TBWS days for 75% of the users is less than 6 days i.e. a typical user watches

Netflix at least every 6 days. The TBWS days is nearly 3 days for 75% of the highly active

64

E
p
is

o
d
e
s
 W

a
tc

h
e
d
 (
%

)

12

13.25

14.5

15.75

17

Day of Week

M Tu W T
h F

S
a

S
u

Overall Low
Mod. High

Figure 5.3: Distribution of
episodes watched per day

C
D

F

0

0.25

0.5

0.75

1

Viewing Day Entropy (Series)

0.5 0.6 0.7 0.8 0.9

Low Mod. High

Figure 5.4: Viewing day entropy
across 1 year history

users, and 13 days for low active users.

Similar to computing the VDE to see if a user’s watch pattern follows a regular sched-

ule, we also compute the entropy for the TBWS days. That is, we compute if the user tends

to leave the same number of days between watching Netflix series content, regularly. The

TBWS entropy (TBWSE) is computed as

T BWSE =
−∑i∈I pt× log(pt)

log(N)
(5.4)

where
pt =

No. of instances when TBWS was t
Total number of WSs−1

(5.5)

and N is the total number of possible TBWS days (N= 28, as the maximum number of days

between any 2 WSs was 28 days across in our dataset). Essentially, pt is the probability

that the days between 2 WSs for a specific user is t days. Fig. 5.6 shows the CDF for the

TBWSE. We see that highly active users are more regular in terms of the days between

subsequent WSs (a smaller TBWSE means a more regular behavior), whereas for the least

active users, the TBWSE is closer to 1, implying that the user’s watch pattern is sporadic.

This is line with the findings from Fig. 6.7 where the highly active users have a larger VDE,

indicating a smaller and more regular TBWS.

5.3.2 User Watch-Session Length

RQ3: How many episodes do users watch per day?

65

C
D

F

0

0.25

0.5

0.75

1

Time between WSs

0 7.5 15 22.5 30

Overall Low
Mod. High

Figure 5.5: CDF of time between
WSs days

C
D

F

0

0.25

0.5

0.75

1

Time between WSs

0 0.25 0.5 0.75 1

Low Mod. High

Figure 5.6: TBWS entropy across
1 year history

In effort of understanding user’s viewing behavior as well as for the design of content

delivery, caching and load estimation systems, it is crucial to know about how much content

is consumed by a user. We show the CDF of the number of episodes watched in each WS

across all our users’ viewing history in Fig. 5.7. For 75% of the users in our dataset, at

most 4.5 episodes are watched per day. For highly active users, 75% of the users watches

at most 6 episodes per day and for the least active users, it is 3.5 episodes per day. The

typical user in our dataset watches 2.7 episodes each day- using the runtime associated

with watched episodes, this is equivalent to spending approximately 1.5 hours during each

WS. This corresponds to 4.5 GB of a user’s data when streaming in HD [98]. Furthermore,

for a highly active user, the average user watch 5.3 episodes per day, spends 2.9 hours on

Netflix series, and uses 9 GB (streaming at HD) of data each day.

RQ4: Do active users watch the same no. of episodes daily?

An important consideration for prefetching and caching systems, is being able to effectively

predict how much content a user will see, usually based on their past behavior. It follows

that users with uniform behavior will be easier to predict for than users with inconsistent

behavior. We observed that some users drastically increase or decrease the number of

episodes they watch in 1 WS as compared to previous WSs. To quantify if the user tends to

watch the same number of episodes during each WS, we compute the episode consumption

entropy (ECE) as given in Eq. 5.6.

66

C
D

F

0

0.25

0.5

0.75

1

Number of Episodes

0 2.5 5 7.5 10

Overall Low
Mod. High

Figure 5.7: CDF of No. of
episodes watched per WS

C
D

F

0

0.25

0.5

0.75

1

Episodes per WS Entropy

0.1 0.325 0.55 0.775 1

Low Mod. High

Figure 5.8: Episodes consumption
entropy across 1 year history

ECE =
−∑w∈W pe× log(pe)

log(N)
(5.6)

where
pe =

No. of WSs when episodes watched was e
Total number of WSs

(5.7)

and N is the total number of possible episodes that the user can watch in a WS (N= 9 as

the maximum number of episodes watched by a user during a single WS). The CDF of

the entropy is shown Fig. 5.8; here we find the entropy is very similar across users with

different activity levels. We find that 75% of all the users in our dataset have a ECE of more

than 0.5 which indicates that the users do not have a regular pattern in terms of the number

of episodes consumed during each WS; we observe that users have a large variance in the

number of episodes they watch in consecutive WSs.

This insight leads us to investigate the “burstiness” of the amount of content consumed

during WSs; this parameter is computed as in Goh and Barabasi [99]. The Burstiness

parameter is defined in equation 7.8 as,

B =
σt−mt

σt +mt
(5.8)

where σt is the standard deviation and mt is the mean of the user’s episodes per WS, over

a period of t days. The parameter is a value between -1 and 1, where a value closer to 1

means that the standard deviation is larger than the mean, implying that the user’s behavior

is bursty with regard to the number of episodes they consume in consecutive WSs. A

67

C
D

F

0

0.25

0.5

0.75

1

Burstiness Parameter

-1 -0.75 -0.5 -0.25 0 0.25 0.5

Low Mod. High

Figure 5.9: CDF of burstiness on
a per month basis

W
a
tc

h
 S

e
s
s
io

n
s
 (
%

)

0

22.5

45

67.5

90

Series Per WS

1 2 3 4

Overall Low Mod. High

Figure 5.10: Distribution of No.
of series watcher per day

value closer to -1 indicates the user watches almost the same number of episodes each

WS. As an example, if user A watches the following number of episodes from Monday to

Friday: [M=2, Tu=3, W=2, Th=2, F=3], then the burstiness parameter is -0.6; whereas if

user B watches episodes as follows: [M=0, Tu=5, W=0, Th=10, F=0], then the burstiness

parameter is 0.2. Fig. 7.39 shows the average monthly burstiness parameter (t= 30) for

the entire viewing history for the users. We find that the more active the user is, the more

bursty their behavior is i.e. there is more variance in the number of episodes consumed per

WS for active users.

RQ5: How many series does a user watch in a singe day?

It can be argued that the number of episodes a user watches from a particular series will

vary depending on what else the user is watching at that time. We explore this by determin-

ing the number of different series the user watches episodes from in a single sitting. Fig.

5.10 shows the distribution of the number of series watched across all WSs of the users.

We find that, most of the time (nearly 68% of WSs), a user watches episodes from a single

series in one sitting. In general, we see that less active users have a more concentrated

viewing experience in that they only watch episodes from a single series in nearly 88% of

their WSs, whereas, for highly active users, they only watch content from a single series

for 65% of their WSs, and 23% of the time, they watch episodes from 2 series during the

same sitting.

68

5.3.3 User Preferences

RQ6: Do active users watch the same genre(s) regularly?

This is an important question for recommendation engines and proactive caching systems,

where a prediction of what to cache is made based on the user’s preferences. Understanding

users’ preferences would also be useful for targeted advertising. There are 27 genres of

Netflix series that are watched by the users in our dataset, and a series can be assigned

multiple genres. A distribution of the episodes watched by all the users in our dataset, and

the genres of the associated series, is shown in Fig. 5.11. We have shown the % of episodes

watched belonging to the top 12 genres that make up 98% of all series’ genres consumed;

the remaining 15 genres are included in “other”. As seen in the figure, the largest % of

episodes watched (nearly 27%) are of the “drama” genre; this is the largest for all levels of

user activity. Furthermore, we see that regardless of user activity level, the distribution of

episode genres is very similar.

This, however, does not tell us if users in different activity levels have a concentrated

preference in terms of the genre of content (i.e. they tend to watch content only from 1 or 2

genres) or a more diverse genre preference (i.e. they watch content from multiple genres).

To quantify this, we compute the user’s viewing genre entropy (VGE) as given in Eq. 7.9.

V GE =
−∑g∈G pg× log(pg)

log(N)
(5.9)

where
pg =

Number of episodes in genre g
Total number of episodes watched by user

(5.10)

and N is the total number of genres (N= 27). The VGE is a number between 0 and 1; a

value closer to 0 means that the user has more stability in terms of their preference (they

prefer content from a few genres only), whereas a larger VGE means that the user watches

content from various genres. We computed the VGE for each month of the user’s viewing

history, and obtained the average across all the months; the results are shown in Fig. 5.12.

We find that the more active the user is, the higher the VGE and thus, the more diverse the

69

E
p
is

o
d
e
s
 (
%

)

0

7.5

15

22.5

30

D
ra

m
a

C
o
m

e
d
y

S
c
i-
F
i
&
 F

a
n
.

A
c
ti
o
n
 &

 A
d
v.

C
ri
m

e

A
n
im

a
ti
o
n

M
y
s
te

ry

D
o
c
u
m

e
n
ta

ry

F
a
m

ily

R
e
a
lit

y

K
id

s

F
a
n
ta

s
y

O
th

e
r

Overall Low
Moderate High

Figure 5.11: Episodes
distribution per genre

C
D

F

0

0.25

0.5

0.75

1

Viewing Genre Entropy

0 0.25 0.5 0.75 1

Low Mod. High

Figure 5.12: Monthly genre
entropy for all users

preferred genres (75% of the users in low, moderate and high activity levels have a VGE of

less than 0.45, 0.49, and 0.54 respectively).

RQ7: Do active users prefer more popular and higher rated content?

Gaining insight into how the popularity and ratings of content affect the consumption for

different activity levels, is helpful for caching and content delivery. For each series watched

by users in our dataset, we obtained the number of IMDB votes the series had at the time

of retrieval. IMDB is an extensive online database of information related to movies, TV

series and streaming content- including rating and reviews that are given by registered

IMDB users. A rating that a series has received by IMDB registered users is counted as a

vote; thus the number of votes a series received can serve as a indication of how popular

that series is. Fig. 5.13 shows the distribution of the votes that users’ watched series have;

we find that 33% of series that highly active users watch has between 20,000 and 30,000

votes, whereas 29% of low active users’ series fall in this range. We see that for votes

higher than 30,000; users in low active categories watch the largest % of series (39%) as

compared to moderately and highly active users (32% for both). The average number of

votes for series watched by users in low, moderate and high categories are 30786, 29985,

28734 respectively. This implies that less active users tend to watch slightly more popular

content than more active users.

Fig. 5.14 shows the distribution of the ratings (a score out of 10 given by registered

70

%
 o

f
S

e
ri
e
s

0

10

20

30

40

Number of Votes

<
1
0
k

[1
0
k
,2

0
k
)

[2
0
k
,3

0
k
)

[3
0
k
,4

0
k
)

[5
0
k
,6

0
k
)

>
6
0
k

Overall Low
Moderate High

Figure 5.13: Distribution of
number of votes received

%
 o

f
S

e
ri
e
s

0

15

30

45

60

Ratings

[0
,1

)

[2
,3

)

[3
,4

)

[4
,5

)

[5
,6

)

[6
,7

)

[7
,8

)

[8
,9

)

[9
,1

0
]

Overall Low
Moderate High

Figure 5.14: Distribution of
ratings received

IMDB users) of series watched by users. Here we see that less active users prefer content

with higher ratings than more active users; 35% of series watched by low active users

have a rating of above 8, whereas 30% of highly active user have a rating of above 8.

In conclusion, we find that less active users, even though watch less content, prefer more

popular and higher rated content than more active users.

RQ8: How much of user’s watched series are related to series they have seen in the

past?

Recommendation engines predominantly recommend content that is related to what the

user has watched in the past. Although we are unable to retrieve the content that is rec-

ommended to the user when they are watching content on Netflix, we obtain an approxi-

mation of the effectiveness of the engine by computing the fraction of series watches that

are related to series that the user has previously seen. This analysis can further aid in the

prediction of what content the user will watch. During the meta-data retrieval process, we

obtained the 12 related series as listed by IMDB; using this information, for every series

that a user has watched, we see if this series is related to any series watched previous to this.

We find that approximately 42% of a series watched by a user, was related to a previously

watched series. Furthermore, we find that this percentage is similar for users across activ-

71

ity levels; with low, moderate and high active users, watching 41.4%, 42.3% and 40.1% of

series that was related to a series they had seen before.

5.3.4 Predictability

RQ9: How much of user’s future watches are predictable?

Predicting what, and how much, a user will watch next, is crucial for prefetching and

caching strategies. These strategies anticipate the content a user is likely to consume,

downloads the content ahead of time, and makes the content available at the time of con-

sumption. To see whether we can predict what the user will watch next based on what

they have consumed in the past WSs, we do the following: for every WS that appeared

in a user’s viewing history, and for each episode watched in that session, we check if its

preceding episode was watched within a certain number of previous WSs. For example, if

episode 20 of series A was watched today, we check if and how many WSs prior, episode

19 was watched. We compute this for all users in our dataset across their entire history, the

average is shown in Fig. 7.62 for various WS intervals.

For the average user in our dataset, we see that nearly 58% of episodes proceed an

episode that was watched in the previous WS (1 WS), a further 13% of episodes proceeded

an episode that was watched between the previous 2 and 10 WSs, 1% between 11 and

20 WSs ago, 1% between 21 and 30 WSs prior, and 3% was watched more than 30 WSs

prior. In general, we find that approximately 77% of the user’s episode watches follows an

episode that the user has seen in the past. We also find that as the activity level of the user

increases, the larger the predictable % of episodes. Thus, we conclude that nearly 77% of a

user’s future episode watches can be predicted as it proceeds a previously watched episode

from the series.

RQ10: Are certain genres easier to predict for than others?

Fig. 5.16 shows the % of episodes that is predictable for different genres. We consider all

WSs in the user’s viewing activity for this analysis. We find that nearly 85% of episodes

from “Fantasy” series follows a previously watched episode; this is the highest for any

72

E
p
is

o
d
e
s
 (
%

)

0

20

40

60

80

Categories

Overall Low Mod. High

1 WS 2-10 WSs
11-20 WSs 21-30 WSs
>30 WSs

Figure 5.15: Predictability from
past WSs

E
p
is

o
d
e
s
 (
%

)

65

70

75

80

85

90

Genre

D
ra

m
a

C
o
m

e
d
y

S
c
i-
F
i
&
 F

a
n
.

A
c
ti
o
n
 &

 A
d
v.

C
ri
m

e

A
n
im

a
ti
o
n

M
y
s
te

ry

D
o
c
u
m

e
n
ta

ry

F
a
m

ily

R
e
a
lit

y

K
id

s

F
a
n
ta

s
y

O
th

e
r

Overall Low
Mod. High

Figure 5.16: Predictability across
different genres

genre. We find that the “comedy” genre and “kids” genre has the least % of episodes that

are predictable (71.4% and 71.1% respectively), this is the same for low and high active

users as well. We speculate that these differences arise due to the episodic (such as for

“Fantasy” series) vs non-episodic (such as “kid” shows) nature of series. This insight can

further aid prediction and prefetching systems to determine if and how many episodes from

a particular series, the user will watch in the near-future.

5.3.5 Continuity of User Watch-Behavior

RQ11: How many seasons does a user watch to its entirety?

An effective way of gauging a user’s interest and engagement in a particular series, which

will be helpful for content creators, marketing agencies and content providers, is to see if

they watch a series season to its entirety. Fig. 5.17 shows that % of seasons users watch

to its completion across various series genres. Overall, nearly 55% of series seasons are

watched entirely, with series seasons in the “Animation” genre watched to its entirety the

most as compared to other genres (60%). We find this to be similar across low and high

active users.

RQ12: At what point does a user stop watching a series season if they don’t complete

it?

73

S
e
a
s
o
n
s
 (
%

)

45

50

55

60

65

Genre

D
ra

m
a

C
o
m

e
d
y

S
c
i-
F
i
&
 F

a
n
.

A
c
ti
o
n
 &

 A
d
v.

C
ri
m

e

A
n
im

a
ti
o
n

M
y
s
te

ry

D
o
c
u
m

e
n
ta

ry

F
a
m

ily

R
e
a
lit

y

K
id

s

F
a
n
ta

s
y

O
th

e
r

Overall Low
Mod. High

Figure 5.17: Seasons watched to
its entirety for different genres

C
D

F

0

0.25

0.5

0.75

1

Season Watched (%)

0 24.75 49.5 74.25 99

Overall Low
Mod. High

Figure 5.18: Point of departure of
seasons not watched to its entirety

Interestingly, we found that a large percentage of seasons, nearly 45%, are abandoned at

some point, and not watched to completion. For the series seasons that are not watched to

its entirety, we explore the point at which a user stops watching a season (we only consider

seasons of episodes that are watched contiguously). Fig. 5.18 shows the CDF of how much

a season a user has watched before abandoning it- we term this as the “point of departure”.

We see that 50% of seasons are abandoned when less than 25% of the season is watched;

this is consistent across users of all activity levels. The remaining 50% of the seasons has

a point of departure from 25% to 99%, and this is nearly uniformly distributed.

RQ13: Can we predict when a user will abandon a series?

Given that nearly 45% of series seasons are not watched to completion, this leads us to

investigate if we can predict the time at which the user will stop watching a series- this

could be due to a variety of reasons, but particularly a waning interest in continuing the

season. To this end, we employ 4 popular machine learning classification models to answer

the following question: For the latest episode of a series watched in a particular WS, will

the user watch proceeding episodes in subsequent WSs? The models we employ are as

follows: Binary Logistic Regression (LR), Support Vector Machine (SVM), Naive Bayes

model (NB) and Random Forest (RF). The models use the following features for prediction:

% season watched, number of votes the season’s series has, the IMDB rating the season’s

74

Table 5.2: Classifier Comparison

Method Accuracy Precision Recall AUC
LR 66.2 0.57 0.69 0.61

SVM 59.2 0.53 0.59 0.62
NB 65.1 0.56 0.67 0.63
RR 68.1 0.61 0.73 0.69

series has, series genre, episode runtime, year of release and number of seasons. In essence,

for every series watched in a particular user’s WS, we obtain the latest episode watched

from that series, extract the appropriate features of the episode’s series, feed this into the

trained classification model and obtain one of two possible outputs: 1) “continue”- the

model predicts that the user will continue watching the seasons, 2) “abandon”- the model

predicts that the user will stop watching the series.

Table 5.2 shows the results of the classification model using the following performance

metrics: the accuracy, the precision, the recall, the and the AUC value. The descriptions of

the classification metrics can be found in [100]. We train the models on the first 9 months

of the user’s data, and perform the testing on the remaining 3 months. To ensure a balanced

dataset i.e. approximately the same number of “abandon” instances as there are “continue”

instances, we perform under-sampling of the “continue” class during training. We find that

we are able to achieve the highest prediction accuracy with the RF model- we are able

to correctly predict 68% of the instances of when the user either abandons or continues

watching a seasons. In general, we find that the classifiers perform similarly in terms of

their classification.

75

CHAPTER 6

TOWARD EFFECTIVE PREDICTION OF WATCH BEHAVIOR FOR
TIME-SHIFTED EDGE-CACHING OF NETFLIX SERIES VIDEOS

Video streaming services dominate global Internet traffic because of the tremendous rise in

the number of cord-cutters, which has grown by 48% in the last 8 years and is predicted

to rise to 55 million by 2022 in the U.S. alone. As a result of the increasing growth and

popularity of video streaming services, the network is heavily burdened. To cope with this,

Internet Service Providers either have to spend several millions of dollars for infrastructure

upgrades, or employ congestion-reducing mechanisms like bandwidth throttling and data

caps, which negatively impacts the overall user experience [101]. Typically, upgrades are

triggered when there is a reasonably sustained peak usage that exceeds 80% of capacity

[3].

Edge-caching is often used to overcome this problem by storing content nearer to the

clients, thereby eliminating redundant traffic flows and, reducing overall traffic consump-

tion and latency. Typically, recently accessed content (traditional web caching [102]), or

popular content accessed by users over a geographical region (content delivery networking

[103]) is cached. In this chapter, we explore the strategy of time-shifted prefetching, or

caching during off-peak periods of the network even when such periods are substantially

separated from the actual usage-time. Prefetching, or proactive caching, is not a new strat-

egy, and has been extensively considered in prior related work [52]. The uniqueness of this

work is the substantially time-shifted nature of the prefetching done with the specific goal

of shifting peak load to off-peak periods.

Furthermore, with the increasing storage space available in end-user’s viewing devices

along with the emergence of smart WiFi access points (APs) [59], we consider caching

content at the edge closest to the client; at the end-user’s viewing device (set-top box,

computer) or a storage server attached to an AP (such as a WiFi router). This architecture

76

has significant benefits for both content providers as well as users. It allows for requests

to be served locally which in addition to reducing latency and improving user’s Quality of

Experience (QoE), alleviates content server traffic and cross-traffic among ISPs. However,

these devices have stringent storage and bandwidth constraints, and as a result, the selection

of what and how much content to cache is extremely important.

With Netflix being the most popular video streaming service (it has approximately 195

million global subscribers and accounts for the largest share of global application traffic

[39]) and also consuming the largest portion of global network traffic share, we restrict

our focus of edge caching to Netflix content. Given the dominance that Netflix traffic

has on global Internet traffic and the correspondence of peak-time traffic with prime time

for television viewing, accurate and efficient time-shifted caching can have a meaningful

impact in tackling the problem of network traffic imbalance. With 96% of the average

user’s Netflix titles being episodes from series, we restrict the scope of our study to Netflix

series and documentaries which together account for 65% of a typical user’s Netflix load in

terms of bytes fetched. Thus, the key question we answer in this chapter is the following:

For a given Netflix user, can Netflix series videos be prefetched and edge-cached during off-

peak periods so that the actual cost of fetching videos during the peak periods is reduced?

The key contributions made in the chapter are summarized as:

• We collect a dataset of Netflix viewing history from 1060 users. The dataset is com-

prised of 2,465,276 Netflix titles over a 1-year period- 2,132,980 of which are TV

shows and documentary episodes, while the remaining are movies.

• Using the dataset, we divide the users in 4 categories depending on how active the

user is. We then perform an extensive analysis on users’ content preferences, their

request patterns and series continuation tendencies. We also explore the extent to

which a user’s Netflix usage can be predicted, and we show that a significant per-

centage of their series watching behavior (77%) is predictable by relying on the past

viewing history of that user.

77

• We present results from a naive caching solution which caches proceeding episodes,

regardless of the user’s past viewing behavior, and we show that we achieve a cache

efficiency of 6% with this method- this means that 94% of content that is cached, is

not consumed by the user in the future. Given the limited edge-caching resources,

this is an unacceptable cache efficiency rate. In effort to improve this efficiency, we

present 2 baseline heuristics that is dependent on the user’s continuation tendencies.

• Finally, we design and implement a deep learning caching algorithm, CacheFlix, that

uses global and local learners based on Long Short-Term Memory (LSTM) networks,

to cache episodes of Netflix series to the user during off-peak hours. Based on the

user’s past viewing patterns and preferences, CacheFlix predicts how many episodes

from previously watched Netflix series to prefetch to the storage constrained edge-

cache for future viewing. The algorithm is evaluated in terms of how accurately it is

able to predict content that the user watches in the future (prediction accuracy) and

how efficiently it consumes bandwidth and stores the content (caching efficiency).

We present results for 3 different cache eviction policies, and also for edge-caches

with storage sizes as small as 2 GB. We also compare our results to related work, and

show that CacheFlix is able to perform 1.8 times better in terms of accuracy, and 3.5

times better in terms of efficiency.

6.1 Background & Motivation

6.1.1 Peak vs. Off-peak Load

Traffic load on networks is significantly higher during peak periods. To illustrate this, we

performed a bandwidth (BW) probe on an Apple MacBook Pro, and measured the available

BW over a university campus WiFi network as well as over a home WiFi at different times

during the day. The probe downloads a small file from a nearby Comcast web server to the

mobile device, and uses the download time to estimate the throughput; the same server is

used for both the home and campus networks. This test was conducted every 30 minutes for

78

N
or

m
al

ize
d

Av
ai

la
bl

e
BW

0

0.25

0.5

0.75

1

Time

0:0
0

2:3
0

5:0
0

7:3
0

10
:00

12
:30

15
:00

17
:30

20
:00

22
:30

Campus Home

Figure 6.1: Normalized available BW across the day

10 consecutive days, while the device was connected to the WiFi network; Fig. 6.1 shows

the average of the normalized (with respect to the maximum value) measurements across

10 days. We observe a sharp increase in the available BW between 12:30 AM to 4 AM,

and a subsequent decrease till 8 AM. This indicates that the traffic load varies through the

course of the day i.e. low available BW correspond to high traffic, and vice-versa. Similar

trends have also been shown in other Internet traffic distribution studies [104]-[106]. Using

Fig. 6.1 as a reference, the off-peak period is defined as 2 AM to 6 AM, and the peak period

is defined as 6 AM to 12 AM, and 12 AM to 2 AM. There is thus potential to utilize the

available BW during off-peak periods for prefetching content.

6.1.2 On Netflix usage

Netflix is the most popular streaming entertainment service with over 195 million paid

memberships in over 190 countries. The number of subscribers is currently growing at an

unprecedented rate, with Netflix adding 15.8 million new subscribers worldwide during the

first three months of 2020, more than doubling its growth forecast for the quarter [107]. It

consumes 12.6% of global network traffic share- the largest for any single application [39].

79

Furthermore, it is estimated that Netflix users collectively stream 165 million hours using

nearly 500 million GB of data per day [108]. It was recently reported by Netflix, that an av-

erage users watches 2 hours of Netflix videos per day [109]. This equates to approximately

60 GB of data usage per month if content is watched on standard definition, otherwise 180

GB is watched in high definition [108]. This corresponds to the average viewing time com-

puted for the users in our collected dataset; the average user in our dataset watches 1.8 hours

of content per day. It was further reported, by Netflix, that users mainly watch Netflix on

TV and multiple devices rather than on mobile devices only [109]. Given the importance

of Netflix content on global Internet traffic and the correspondence of peak-time traffic

with prime time for television viewing (8pm-11pm), accurate and efficient prefetching has

potential in tackling the problem of network traffic imbalance.

6.1.3 Problem Definition

The problem we address in this chapter is shifting peak-time traffic to off-peak periods

by caching Netflix series content at the edge closest to the user. The edge device can

be the user’s viewing devices themselves or smart WiFi routers that have limited storage

space. The key question we answer is: For a given Netflix user, can Netflix series videos

be effectively prefetched and cached to storage-constrained edge devices during off-peak

periods, so that the actual cost of fetching videos during the peak periods is reduced? We

use the following metrics, which are later defined in section 6.3.3 to evaluate our proposed

solution: (i) Prediction Accuracy (PA)- the fraction of watched Netflix series episodes that

have been cached, among the total number of watched episodes; (ii) Caching Efficiency

(CE)- the fraction of watched Netflix episodes among the cached Netflix episodes. The

goal of our proposed solution is to decrease the peak-period data traffic consumed by the

end-user by ensuring the caching solution has both a high PA, while having an acceptable

CE given the storage and bandwidth constraints of the edge-caches.

80

6.2 A Real-World Dataset

6.2.1 Dataset Collection

In order to study user behavior and the feasibility of caching Netflix content, we rely on a

dataset collected from 1060 users spanning a total of 1 year. We utilize Amazon Mechanical

Turk (mTurk) to gather anonymized Netflix viewing history from users over the required

time period [78]. The mTurk platform allows a task to be posted for a fee, which in turn

can be completed by users known as mTurkers. Previous studies have shown that mTurk

samples can be accurate when studying technology use in the broader population [79]. The

task we posted required mTurkers to navigate to their viewing activity page associated with

their profile, and download their viewing activity; the file was then anonymously uploaded1.

Netflix allows a user to download their past viewing activity as a CSV file which contains

2 fields: title and date. The title field consists of the name of the feature film or TV

series/documentary, as well as the season and episode name where applicable, separated by

colons. The date field consists of the most recent date that the title was viewed; there is no

associated time of viewing.

6.2.2 Metadata Retrieval

A Postgres SQL database is used to store the data for the mTurkers. The SQL database

consists of 3 tables, namely, tblUsers, tblSeasons, and tblTitles. The tblUsers table is used

to store the title, watch-date as well as the season number and episode number if an episode

from a series is watched. These values are populated from the user’s submitted viewing

activity file, and through appropriate API calls from The Movie Database (TMDB) API

[97]. The tblSeasons contains the season number and total number of episodes in each

season for every series watched by the users. The tblTitles table contains a number of

attributes related to the series and movies watched by all the users; the TMDB API is used

to obtain this metadata. The attributes obtained are: the release date of the title, the IMDB
1We were advised by the IRB that IRB approval was not required as no private or personally identifiable

information was collected.

81

Table 6.1: Dataset Overview

Description Value
No. of Users 1060
No. of Movies 332,296
No. of Episodes 2,132,980
No. of Hours (movies) 631,351
No. of Hours (episodes) 1,172,510
No. of Seasons 121,101
No. of Series 30,224

rating, the number of IMDB votes for the title, the run-time in minutes, the genre(s) (there

are 29 genres that Netflix uses to classify its content, and a title can have multiple genres),

director(s), writers, actors, the language of the title, country of production and related titles

(as determined through TMDB). There is also a field which is used to indicate if the title is

a movie or a series.

6.2.3 Data Insights

Overview

A high-level overview of the collected dataset is presented in table 6.1. We show the total

number of movies and episodes watched by all the users in the dataset, the number of hours

of viewing time for TV series episodes, the number of hours of viewing time for movies, as

well as the total number of seasons and series watched by all our users. In the proceeding

sections, we will group users in 4 categories based on their level of viewing activity, and

present results related to what type of content they view and when they consume it.

Activity Levels

We divide the users in our dataset into 4 levels from activity level 1, which are the users

that watch the least amount of Netflix content, to activity level 4, which is the subset of

users that watch the most content. The users are categorized based on the total number of

episodes that the user consumes over their 1 year history submitted. The distribution of the

number of episodes watched by users during the year and the percentage of users belonging

82

%
 o

f U
se

rs

0

12.5

25

37.5

50

Activity Levels
AL 1 AL 2 AL 3 AL 4

Figure 6.2: User activity levels
distribution

C
DF

0

0.25

0.5

0.75

1

Number of Episodes per WS
0 2.5 5 7.5 10

All AL 1 AL 2
AL 3 AL 4

Figure 6.3: CDF for the number
of episodes watched per WS

to each category is given in Fig. 6.2. The users in activity level 1 (AL 1) have watched

less than 100 episodes, users in activity level 2 (AL 2) have watched between 101 and

400 episodes, users in activity level 3 (AL 3) have watched between 401 and 800 episodes

and finally, the most active users in activity level 4 (AL 4), have watched more than 800

episodes. In the following sections, we present results for the entire user dataset as well as

for the different activity levels as defined here.

User request pattern

Here we present insights, through questions, regarding the request patterns for users in our

dataset.

How much content does a user consume each day? We define a watch-session (WS) as

a day on which at least one episode of some series is watched by the user. Fig 6.3 shows the

CDF for the number of episodes watched per WS for all the users in the dataset together,

as well as for different activity levels. On average, a user watches 2.7 episodes per WS

(approximately 1.5 hours), with the number of episodes watched per WS increasing with

increasing activity level.

How often do users watch content? We explore the number of days between consecutive

WSs, termed as the time between watch sessions (TBWS); the CDF is shown in Fig. 6.4.

For 80% of the users, the TBWS is approximately 6 days- i.e. a user watched Netflix

content every 6 days. We see that for 80% of the users in activity levels 3 and 4, the TBWS

83

C
DF

0

0.25

0.5

0.75

1

TBWS (days)
0 6.5 13 19.5 26

All AL 1 AL 2
AL 3 AL 4

Figure 6.4: CDF of TBWS
between WSs

C
DF

0

0.25

0.5

0.75

1

Burstiness Score
0 0.175 0.35 0.525 0.7

All AL 1 AL 2
AL 3 AL 4

Figure 6.5: CDF of per-month
burstiness score

is approximately 2 days, and for users in activity level 1, it is 14 days.

How consistent is the amount of content the user consumes each day? The observation

that a user drastically increases or decreases the number of episodes they watch in 1 WS as

compared to previous WSs, leads us to investigate the burstiness, in terms of the number of

episodes watched in a single WS, of a user. In order to quantitatively capture this burstiness,

we compute a burstiness parameter as in Goh and Barabasi [99]. The Burstiness parameter

is defined as in equation 7.8,

B =
σt−mt

σt +mt
(6.1)

where σt is the standard deviation and mt is the mean of the user’s number of episodes

they consumed in each WS. The parameter ranges from -1 and 1, and is then scaled to a

value between 0 and 1, where a value closer to 1 indicates that the standard deviation is

larger than the mean, implying that the user’s behavior is bursty with regard to how many

episodes they consume in each WS. Fig. 7.39 shows the CDF of the average per-month

burstiness parameter computed across 1 year of the user’s viewing history; we find that the

more active the user is, the more bursty their behavior is i.e. there is more variance in the

number of episodes consumed across WSs for more active users.

How consistent is the time that content is consumed by the user? For our entire dataset,

in Fig. 6.6, we plot the % of episodes viewed on each day of the week; the most amount

84

C
on

te
nt

 v
ie

w
ed

 (%
)

12.5

13.4

14.3

15.2

16.1

17

Day of Week
M Tu W Th F Sa Su

All AL 1 AL 2
AL 3 AL 4

Figure 6.6: Distribution of
content watched per day

C
DF

0

0.25

0.5

0.75

1

Viewing day entropy
0 0.25 0.5 0.75 1

All AL 1 AL 2
AL 3 AL 4

Figure 6.7: VDE across users for
their 1-year history

of content is viewed on Sundays, and the least being on Friday. There is no significant

differences across the activity levels. To quantify if a user tends to watch Netflix content on

the same day each week, we define a Viewing Day Entropy (VDE) metric as follows [110]:

V DE =
−∑d∈D pd× log(pd)

log(N)
(6.2)

where

pd =
Number of episodes watched on day d

Total number of episodes watched by user
(6.3)

and N is the total number of days in a week (N= 7). The V DE is a value between 0 and

1, where a smaller VDE indicates that the user mostly watches content on the same day

of the week, and that this user may have a regular request pattern (note that VDE=0 when

pd tends to 0). A larger value, on the other hand, indicates request days more uniformly

distributed across the week. The CDF of the VDE is shown in Fig. 6.7; there is a slight

difference between the curves across activity levels. We find that active users tend to watch

content on the same day(s) each week as compared to less active users.

Preferences

We present insights related to the users viewing preferences for genres and popularity of

series.

85

Do users watch the same genre of content regularly? To quantify whether the users

prefer a certain genre of series than others (recall, there are 29 different genres and a series

can have multiple genres), we define Viewing Genre Entropy (VGE) as follows:

V GE =
−∑g∈G pg× log(pg)

log(N)
(6.4)

where

pg =
Number of episodes in genre g

Total number of episodes watched by user
(6.5)

and N is the total number of genres (N= 29). The larger the value of the VGE, the more

genres the user regularly consumes (when pg = 0, then VGE is 0). As shown in Fig. 6.8, the

CDF of the VGE across the user’s entire viewing history shows that 50% of the users have a

VGE of greater than 0.7, meaning that users tend to consume content of various genres. We

also find that there is not much difference between active and less active users- all users,

regardless of the level of activeness, tend to consume content of a variety of genres.

Do users tend to watch more popular content? During the metadata retrieval process,

we also obtain the number of ratings, termed as votes, that a series receives on IMDB.

IMDB registered users can rate series on a score from 1 to 10, thus the number of votes is

the number of users that have rated a particular series. The number of votes can serve as an

indication of how popular a series is, where the more number of votes a series has, the more

popular it is. In our dataset, the series with the highest number of votes has 836,117 votes at

the time of metadata retrieval, and the series with the lowest number of votes has 65 votes.

For each user’s viewing history, we compute the average number of votes that each watched

episode’s series obtained; we found that the mean number of votes for activity levels 1 to 4

are 30786, 30398, 30121 and 29212 respectively. This indicates that less active users tend

to prefer content that is slightly more popular than active users.

Do users tend to watch content with higher ratings? The aggregate of the ratings that

IMDB registered users give a particular series is also obtained during the metadata retrieval

process. In our dataset containing all series that users have watched, the highest rating is

86

10, and the lowest rating is 0.02. As in the case of number of votes, for every user’s viewing

history, we compute the average rating that each watched episode’s series obtained; for the

entire dataset, the average rating is 5.81. For activity levels 1 to 4, the average ratings is

6.16, 5.85, 5.72, 5.64 respectively. This shows that less active users, although watch less

content, prefer higher rated content than active users.

Season Completion

We investigate the season completion percentage of series that users watch. We attempt

to answer the following questions: (i) How often do users watch a particular series to

completion? (ii) At what point do users stop watching a season of a series if they do not

complete it? To do this we compute the number of contiguous episodes a user watches from

the beginning of a season (subsequent watches of episodes from a season can be interleaved

with movie watches or episode watches from other series), and compute the percentage of

the season that the user watched during the course of their 1 year viewing activity. We

find that across our entire dataset, approximately 55% of series seasons are watched in its

entirety. This value is similar across different activity levels, with users in activity levels 1

to 4, completing 53.2%, 55.1%, 54.3% and 53.7% of TV series seasons.

For the remaining seasons that are not completed to its entirety (approximately 45%),

we compute the “point of departure”- that is, the % of the season watched until which the

user abandons the season, and does not watch any more episodes. The CDF across all our

users for their entire viewing history is shown in Fig. 6.9. We find that 75% of seasons are

abandoned when less than 50% of the season was watched by the user, and this is fairly

consistent across different activity levels.

6.3 Baseline Solutions

6.3.1 Predictability of Netflix Content

Being able to predict what a user will watch in the future is particularly useful for prefetch-

ing strategies. These strategies anticipate the content a user is likely to consume, download

87

C
DF

0

0.25

0.5

0.75

1

Viewing genre entropy
0 0.25 0.5 0.75 1

All AL 1 AL 2
AL 3 AL 4

Figure 6.8: VGE across user
activity levels for 1-year history

C
DF

0

0.25

0.5

0.75

1

Season watched (%)
0 24.75 49.5 74.25 99

All AL 1 AL 2
AL 3 AL 4

Figure 6.9: CDF of point of
departure for seasons not
watched in its entirety

the content ahead of time, and make the content available at the time of consumption. To

explore the feasibility of prefetching, we consider how a user’s Netflix watch behavior is

influenced by content they have seen in the past. We restrict the scope of our study to Net-

flix series and documentaries that together account for 65% of a typical user’s Netflix load

in terms of bytes fetched (computed from the collected dataset across all users where the

runtime was used as a proxy for the data consumed) and 96% of the Netflix titles watched

by a user (a Netflix title is either an episode or a movie). For every WS that appeared in

a user’s viewing activity, and for each TV show/documentary watched in that session, we

compute the fraction of episodes (across following watch-sessions) which proceed the last

viewed episode in the series. We see that nearly 77% of all episodes that a user watches

in the future, follows an episode that the user has seen in previous WSs. Thus, we con-

clude that nearly 77% of a user’s future episode watches can be predicted as it proceeds a

previously watched episode from the series. These results serve as an upper bound for the

accuracy the caching algorithm can achieve, if it were to cache all proceeding episodes of

TV series and documentaries that the user has seen.

88

Core
Network

ISP Site

ISP Site

IXP

ISP
SFI

Edge Cache

Edge Cache

Figure 6.10: Logical Architecture

6.3.2 Logical Architecture

Netflix deploys its own content delivery infrastructure, named Open Connect [57], which

are used to exclusively deliver their video content. Their global network of thousands of

Open Connect servers, called Open Connect Appliances (OCA) are deployed in 2 ways: (i)

the OCAs are installed within internet exchange points (IXP) which are interconnected with

mutually-present ISPs via settlement-free public or private peering (SFI); (ii) the OCAs are

deployed directly inside ISP networks [111].

The logical architecture that we consider for the edge-caching of Netflix videos is

shown in Fig. 6.10. We cache contents to the node closest to the user, beyond the OCAs.

This can be on the devices themselves or a server attached to an access point (e.g. a WiFi

AP), a network gateway, or even a micro-datacenter available for use by nearby devices.

The prefetching algorithm will reside in these edge cache nodes as well. This allows the

caching to be tailored for specific users, and negates latency during time of consumption.

With storage being a pertinent constraint in our edge caches, as compared to traditional

edge caches (i.e. CDN servers), the proposed prediction algorithm needs to be highly

efficient so that it does not unnecessarily prefetch content that the user does not end up

watching.

89

6.3.3 Naive Caching Strategy

Here we present a naive caching solution which blindly caches proceeding episodes during

off-peak periods based on episodes that the user has previously seen. Specifically, we

consider the episodes that the user has watched in the watch-session prior to the prefetch

time (we arbitrarily select 4 AM as the prefetch time during off-peak hours); we then cache

proceeding episodes accordingly. We begin by first defining the following metrics which

will be used to evaluate the prefetching solutions:

• Prediction Accuracy (PA)= the ratio of watched episodes present in the cache to the

number of predictable2 episodes watched by the user on a particular date.

• Cache Efficiency (CE)= the ratio of watched episodes present in the cache to the number

of episodes in the cache.

The naive caching algorithm can be summarized as follows: for each day that a user

watches episodes from some series, we cache N proceeding episodes and store it in the

cache for M WSs (if the number of episodes left in the series is less than N, we only cache

the remaining proceeding episodes). The PA and CE is computed for the WS proceeding

the prefetch time. The results, across all users, is shown in fig. 6.11 and fig. 6.12 for N

from 1 to 10, and M from 1 to 4.

We find that as we increase the number of WSs we store the content for (M), the accu-

racy also increases with the difference between 1 stored WS and 2 stored WSs being the

most significant. A maximum of 58.1% in the prediction accuracy is achieved when we

store 10 proceeding episodes (N= 10) for 4 future watch sessions (M= 4). We see that there

is an increase in the accuracy as N increases, but it tends to saturate once N surpasses 6.

A PA of 58.1% corresponds to 44.6% of Netflix traffic associated with series (recall, that

77% of the traffic was found to be predictable). The CE however takes a hit when we cache

more episodes and store them over a longer time period, with the CE being only 6% for the

2Predictable episodes are the subset of the user’s watched episodes which follow episodes watched in
previous watch-sessions

90

PA
 (%

)

0

15

30

45

60

N
1 2 3 4 5 6 7 8 9 10

M= 1 M= 2
M= 3 M= 4

Figure 6.11: PA for varying values of
M and N

C
E

(%
)

0

15

30

45

60

N
1 2 3 4 5 6 7 8 9 10

M= 1 M= 2
M= 3 M= 4

Figure 6.12: CE for varying values of
M and N

highest PA.
With the naive caching strategy, 45% of a user’s series traffic can be shifted to off-peak

periods, however the associated CE is 6%.

6.3.4 Heuristic 1: User Continuation

Overview

From the naive caching solution, we find that while we can achieve an acceptable accuracy,

the efficiency is extremely low at 6%, which means that 94% of content that is being fetched

and stored, is not being consumed. This is unacceptable given the stringent storage and

bandwidth constraints of the end-devices on which content is cached. In effort to improve

the efficiency, we present a heuristic solution which caches episodes depending on the

user’s perceived interest in the series. A way of gauging the user’s interest can be based

on how much of a particular series the user has seen prior to the prefetching time. For this

heuristic, we use the % of a season the user has watched prior to the prefetching time as a

means of predicting how many more episodes the user will see in the future. We present 2

methods of prediction: (i) hash map scheme, and (ii) employing linear regression.

91

Hash map scheme

In this method, for each user, 75% of the the user’s viewing activity is used to create

〈%seasonwatched,numbero f episodeswatchedthenextWS〉 tuples (〈key,value〉) for the high-

est episode of every season watched during a WS. These tuples will act as the training set

to populate a hash table; for the remaining 25% of the user’s viewing activity, we use the

tuples to perform a matching where we use the % season watched as an input (or key), and

find all tuples that have the % season watched within 5% of the input, and take the average

of the corresponding values. We use this number to cache the next episodes and store it

for 4 WSs. If there is no such tuple present in the hash table, we search for the nearest %

season watched tuple.

The results of the PA and CE are shown in Fig. 6.13. We find we can achieve an CE

of 12.8% (an increase of 6.8% from the naive caching scheme), but the PA decreases to

56.2%. This CE means that we are caching approximately 87% more content than the user

actually consumes. In particular, we find that CE decreases the more active the user is. A

reason for this is that the users in AL 1 on average watch between 1 to 2 episodes per WS,

with a std dev of 0.13, which indicates that their amount of consumption is fairly regular,

and so this heuristic tends to perform better than for more active users.

Linear regression prediction

Another way of implementing this heuristic is with the use of a machine learning model

to predict the number of episodes to cache based on the % season watched by the user.

For this, we implement a linear regression model (ordinary least squares regression), us-

ing Python’s scikit learn library to model and predict the relationship between the season

watched % and the number of episodes to cache. We fit the model on our training data

tuples and predict the values for the number of episodes to cache for our testing data. We

found that the efficiency increases to 18.7%, however the accuracy drops by around 6% to

50.1%. This indicates that it is simply not sufficient to estimate a user’s interest as a way of

92

determining how much content they will consume in the proceeding sessions. This leads

us to the development of our second heuristic.
With a CE of 19%, it is not sufficient to prefetch episodes simply based on how many

episodes the user previously watched.

6.3.5 Heuristic 2: Season Continuation

Overview

As was discussed in section 6.2.3, only 55% of seasons are watched to completion, and

around 45% are abandoned at some point (on average, when 20% of the season is watched).

It follows that if we can predict at what point a user will stop watching a season, then we

need not prefetch episodes thereafter, thereby improving the efficiency.

Methodology

For this prediction, we employ a binary logistic regression model which will predict if a

user will continue watching a season or abandon the season (this is a standard classifier

that is often used for predicting categorical outcomes [112]). The question we attempt to

answer is the following: Given the % of a season watched by the user, what is the likelihood

that the user will continue watching the season? The logistic regression model will be used

to predict if a user will continue watching the season based on what % of the season they

have already watched; it will also use content specific features for training and testing.

The model uses the following features: % season watched, number of IMDB votes, IMDB

rating, genre, runtime, year of release and number of seasons.

Prediction Results

With 75% of the user’s dataset used for training, and 25% for testing, the logistic regression

model is able to accurately predict 66.2% of the instances of when a user abandons a season.

We overlay this model with the linear regression model described in heuristic 1 to improve

the efficiency by first predicting whether a user will continue watching the season using

the logistic regression model, and if so, then using the linear regression model, we predict

93

Va
lu

e
(%

)

0

25

50

75

100

AL 1 AL 2 AL 3 AL 4 All

PA CE

Figure 6.13: Heuristic 1 performance
across varying activity levels

0

25

50

75

100

AL 1 AL 2 AL 3 AL 4 All

PA CE

Figure 6.14: Heuristic 2 performance
across varying activity levels

and cache the associated number of episodes in that instance. The results for the different

activity levels are shown in Fig. 6.14. Here we see that that the overall efficiency increases

to 22.6% (from 18.7%), and the accuracy decreases slightly to 48.6% (from 50.1%) due to

the incorrect predictions of the logistic regression model (when it incorrectly predicts that

the user will not continue watching the season, and thus no episodes are cached thereby

decreasing the accuracy).
Even while being able to predict 66% of the instances when a user abandons a season

of a series before completion, the efficiency only increases slightly to 22%.

6.4 CacheFlix: Edge-caching of Netflix series episodes

We have shown that the naive caching strategy can shift nearly 45% of peak-time Netflix

traffic, however, the associated CE is only 6%. We also showed, through 2 heuristics

which are based on the user’s continuation of series, that while we are able to improve

the efficiency slightly, approximately 80% of content that is cached is not watched. With

storage being a major limiting constraint, there is a need for an intelligent algorithm that

is able to accurately predict how much content a user will watch so that excess bandwidth

and storage is not utilized for content that the user will not watch (given the average user’s

Netflix consumption, approximately 10GB of additional unnecessary content would need

to be downloaded during every single off-peak period for the naive caching strategy, and 8

94

GB for heuristic 2). To this end, we propose the CacheFlix caching algorithm, which not

only takes into account how much a user will continue to consume (as in heuristic 1 and 2)

and content specific features (as in heuristic 2), but also capture the temporal dependencies

in the amount of content consumed by the user on a daily basis.

6.4.1 Overview

We model the prediction problem as a sequence problem, where the user’s past viewing

behavior is encapsulated as a sequence of episodes they watch from series in past WSs.

A prediction of how many episodes the user will watch in proceeding WSs is then made

based on their history. For every WS, and for every series watched in that WS, we cache

proceeding episodes during the following off-peak hours for the next WS. If there are mul-

tiple series watched in the same WS, for example episode 1 of series a, and episode 1 of

series b, then caching will be triggered for both series a and series b. CacheFlix predicts

the number of proceeding episodes to prefetch, and the optimal time to cache it for, while

optimizing for caching efficiency under storage and bandwidth constraints.

For the remainder of this section, we present CacheFlix which predicts how many pro-

ceeding episodes to cache from a series they have watched in the WS prior to the prefetch-

ing time, for future watch-sessions. The algorithm uses an local learner which is boosted

by predictions made by an global learner. The details on the features used for prediction,

the learners and the boosting algorithm, is provided in the proceeding subsections. The

cache eviction policies we consider are also discussed.

6.4.2 Feature Design

Informed by our insights into the user’s content preferences (section 6.2.3), their temporal

access patterns (section 6.2.3), and the results from the heuristics, we consider 3 categories

of features: content specific features, series popularity features, and temporal features.

These features will be used to predict the number of episodes to cache during off-peak

periods for a particular user.

95

Content specific features

The features that are specific to the content that the user watches fall under this category.

These features include the genres of the series (there are 29 possible genres for Netflix

series, and a series can have multiple genres), the runtime of the series (the episode length

time in minutes), the first air date of the series (considered as a ¡month, year¿ tuple), the

number of seasons the series has, and also if the series is related to any series that was

previously watched by the user (series that was watched in WSs prior to the WS for which

we are caching).

Series popularity features

There are 2 features that we use as an indication of how popular a particular series is, these

are: IMDB votes (the number of IMDB votes or ratings that series has received), as well as

IMDB rating (the aggregate score that IMDB registered users have given these series out

of 10). In addition to using these features as is, we also compute a series popularity score

as shown in eq. 6.6.

Popularity score= IMDB rating× IMDB votes (6.6)

By multiplying the features to compute the popularity score, we are mapping the fea-

ture’s impact as a whole, and adding another dimensionality (known as “feature crossing”

[113]).

Temporal features

The temporal features are features that are related to when the content for which we are

caching, was consumed. The features include the day of the week that the WS we are

caching for occured on, the % of season watched until that point, the % of series that

has been watched until that point, and also the number of series that the user has been

watching over the past 3 watch sessions (users tend to watch 1.2 episodes less per series

than they typically do if they watch more than one series in the same WS). In addition to

96

Table 6.2: Features description

Feature Description Category
Genres Genre(s) of the episode’s series Content
Runtime Length of episode in minutes Content
Air date Month and year that the episode’s series aired Content
No. of Seasons No. of seasons of the episode’s series Content
Related Boolean flag indicating if this episode’s series is related

to previously seen series
Content

IMDB votes No. of IMDB votes the episode’s series has Popularity
IMDB rating IMDB rating the episode’s series has Popularity
Popularity score Popularity score given in eq. 6.6 for the episode’s series Popularity
Burstiness score Burstiness parameter over the past w WSs Temporal
Weekday Day of week episode was watched Temporal
Season watched % % of episode’s season watched Temporal
Series watched % % of episode’s series watched Temporal
No. series No. of series watched over 3 prev. WSs Temporal

these features, a burstiness score, computed over the past w WSs, is used as a means of

identifying if there will be drastically less or more content consumed in the next WS. The

burstiness parameter is computed as in eq. 7.8 and is scaled from a value of 0 to 1 resulting

in a burstiness score.

6.4.3 Prediction model

Overview

The structure of the CacheFlix caching algorithm is shown in Fig. 6.15. The viewing

history of the user is used as input to train as well as predict how many episodes to prefetch.

Each entry in the viewing history, shown as a single block, consists of the the name of the

series, the season and episode number, as well as the date that it was viewed. The history

until the day of caching is used as input. This is sent to a feature layer which extracts

the features shown in table 6.2. Once the appropriate features have been extracted, this is

fed into the global long short-term memory (LSTM) network which makes a prediction on

the number of episodes to prefetch for the next WS for that series, i. For the local LSTM

network, the viewing history only pertaining to series i is extracted (these are shown as

97

ç

ç

ç

Adaptive	
boosting 𝑥"#

$

Global	 LSTM

Local	LSTM

ç

ç

Viewing	history

Viewing	history	
for	series	𝑖

Feature	Layer

Figure 6.15: CacheFlix structure

the blue blocks in the viewing history sequence); this is then sent through to the features

layer and subsequently into the local LSTM network which also makes a prediction on the

number of episodes to cache. The output from the global LSTM learner is then boosted

by the prediction made from the local LSTM learner using an adaptive boosting algorithm.

Essentially, the global LSTM network attempts to learn the user’s overall viewing pattern,

whereas the local LSTM network, captures the viewing pattern for that particular series

only. The specifics of the learners are discussed in the proceeding subsections.

LSTM Networks

With the immense success of long short-term memory (LSTM) networks in being able to

capture dependencies between items in a sequence, we select LSTMs as the core compo-

nent upon which the learners are built. LSTMs are a class of neural networks used in the

field of deep learning that allow previous outputs to be used as inputs while having hid-

den states. At its core, the sequence prediction utilizes a type of recurrent neural network

(RNN) called long short-term memory (LSTM) network. RNNs have recently proven to be

successful for sequence prediction tasks such as for handwriting recognition, speech gen-

eration and image classification. RNNs are a class of neural networks that allow previous

98

outputs to be used as inputs while having hidden states; this allows RNNs to have a tem-

poral dimension as well. However, RNNs have been proved to suffer from the vanishing

gradient problem which hampers the learning of long sequence of data. To address this

LSTMs were created. LSTMs have internal mechanisms which regulate the flow of infor-

mation, and allow the network to learn what information is important, and what should be

forgotten [114]. Each neuron in a LSTM network is called a memory cell and includes a

multiplicative forget gate, an input gate and an output gate. The gates, each of which are

structured as neural networks with either tanh or sigmoid activation functions, are used to

control access to the cells.

Global LSTM Learner

In order to capture the overall user’s viewing patterns, we make a prediction x̂i
t which is the

number of episodes watched during watch session t belonging to series i. For each series i

watched in the previous watch session (watch session t−1), a prediction x̂i
t is made based

on the user’s history from watch session m until watch session t−1 where m < t:

x̂i
t = f (Xm,Xm+1,Xm+2, ...,Xt−1) (6.7)

where Xq = {xn
q|n ∈ R} where R is the set of all series titles watched by the user. Xq is

a sequence that contains the number of episodes from each series watched during watch

session q. For example, if 3 episodes were watched from series a and 2 episodes from

series b in the first watch session, then X1 = {xa
1 = 2,xb

1 = 3}. This learner attempts to

capture viewing trends in the user’s watching behavior as the prediction is influenced by

their previous viewing patterns from some watch session m.

Local LSTM Learner

As we can see from Eq. 6.7, the sequence contains episodes watched from all series. We

therefore train a local learner which specifically is trained on the sequence of episodes for

a series the prediction is being made for. We can make a prediction, x̂k
t , for TV series k for

99

WS t based on the user’s viewing history from WS m where m < t:

x̂k
t = f (Xk

m,X
k
m+1,X

k
m+2, ...,X

k
t−1) (6.8)

where Xk
q is the number of episodes watched in WS q for TV series k. For example, if we

are making a prediction for series a for the user’s fourth WS, then x̂a
4 = f (1,0,3) if the

user has watched 1 episode of series a during their first WS, 0 episodes of series a during

their second WS, and 3 episodes from series a in the third WS. This learner captures the

behavior of the user specific to the series for which the prediction is being made.

Boosting algorithm

The prediction from the local LSTM learner as defined in Eq. 6.8 can be boosted by the

predictions made by the global learner defined in Eq. 6.7. The boosting procedure trains

the local learner based on incorrect predictions made by the global learner. Specifically,

given our input training sample sequence and output value pair : (x1,y1)...(xm,ym), where

each training sample (in the form of eq. 6.7) consists of a sequence of prior history, and the

prediction thereof, we initialize the sample weight as:

D1(i) = 1/m for i = 1, ...,m (6.9)

We train the global learner using the training samples which are sampled according to the

distribution of D1. We then obtain the error from the global learner for each sample as:

e1(i) =
|yi− ŷi|

yi
for i = 1, ...,m (6.10)

The weights of each of the training samples are updated as follows:

D2(i) =
D1(i)exp(−β1e1(i))

∑
m
i=1 D1(i)exp(−β1e1(i))

for i = 1, ...,m (6.11)

where we compute the learning rate as:

β1 =
1
2

ln
(

1−∑
m
i=1 e1(i)

∑
m
i=1 e1(i)

)
(6.12)

100

The updated weights given in Eq. 6.11 is used to train the local learner with the training

samples sampled according to the the distribution of D2. This procedure essentially trains

the local learner to correct the wrong predictions made by the global learner.

6.4.4 Eviction Strategies

The end-user devices on which the cached items will be stored has stringent storage con-

straints. To fully understand how this impacts the performance of CacheFlix, particu-

larly the caching efficiency, we consider 4 different caching eviction policies for which

CacheFlix will be evaluated. Based on the policy, the episodes are stored in the cache

with an associated time-to-live (TTL) parameter based on the cache eviction policy; this

parameter indicates after how many watch-sessions a stored and not-watched episode in

the cache, should be evicted. The cache eviction policies are:

• Simple: The cache is emptied at the end of each WS before any new content is cached.

The TTL parameter is set as 1.

• User specific: For each user, the average number of watch sessions between subsequent

episode watches from the same series is computed across their viewing history (for ex-

ample, if episode 1 and 2 of series a is watched in WS 1, and the proceeding episode 3 is

watched in WS 4, then the difference between the WSs is 3). This value is then used as

the TTL parameter for each item that is cached.

• Unlimited: Across all users, we found that for our dataset, approximately 90% of all

episodes that proceed previously watched episodes is consumed within the next 20 watch

sessions. We thus set the TTL parameter to 20 for each item in the cache that is prefetched.

• FIFO cache eviction: In this policy, we evict contents in a cache with a fixed storage size

on a first-in-first-out (FIFO) basis once it gets full.

6.5 Performance Evaluation

We evaluate CacheFlix on the data collected from 1060 users for 4 different cache eviction

policies in terms of the PA and CE. For every WS, CacheFlix is triggered to cache, during

101

off-peak hours, the proceeding episodes of the series that were watched in that WS. To

evaluate CacheFlix, the user’s data obtained through mTurk, is first parsed and stored in a

Postgres PSQL database with the tables described in section 6.2.2. The caching algorithm

was implemented on a macOS Mojave system with a 2.5 GHz Intel Core i7. We split the

user’s viewing history in 2 halves: their first 6 months, and then the second 6 months.

For each set, we train CacheFlix on the first 75% of the user’s WSs, and evaluate on the

remaining 25%. This effectively doubles the test data for our evaluation. For the user

specific cache eviction policy, the time-to-live parameter associated with each episode is

computed from the training data (see section 6.4.4). Each LSTM is trained for 30 time-

steps with 3 hidden layers, and proceeded by a dropout layer (dropout rate = 0.4) to avoid

over-fitting, and then followed by a fully connected dense layer for the output (the hyper-

parameters were determined through 10-fold cross-validation). The burstiness window, w

was empirically determined and set to 3 days. The results are evaluated over 100 epochs.

The deep-learning models are implemented using Keras with Tensorflow as the back-end.

6.5.1 Bandwidth Implications

When CacheFlix is implemented, and videos are prefetched during off-peak hours, there

is a decrease in the BW consumed by the users during peak periods. This decrease corre-

sponds to a flattening of the network traffic demand curve. As there is no time of viewing

shown in the user’s viewing activity file, we make the assumption that episodes are watched

during peak hours i.e. episodes are not watched between 2 AM to 6 AM (this corresponds

with the overall Internet Traffic Usage distribution as discussed in section 6.1.1).

We compute the average BW per month that was shifted to off-peak periods for each

user’s test datasets when using the user specific cache eviction policy; the corresponding

CDF of the BW reduction during peak-periods is shown in Fig. 6.16. According to Netflix,

watching videos uses about 1 GB of data per hour for each stream of standard definition

(SD) video [98]. Using the runtime for episodes that are cached, we can compute the BW

consumption for SD video consumption at 1 GB/hour. We see that for the average user,

102

C
DF

0

0.25

0.5

0.75

1

Shifted BW (GB)
0 17.5 35 52.5 70

All AL 1 AL 2
AL 3 AL 4

Figure 6.16: Average per
month BW shifted to
off-peak hours

BW
 U

sa
ge

 (G
B)

0

7

14

21

28

35

Scheme
w/o CacheFlix w/ CacheFlix

Peak Off-Peak (Hit)
Off-Peak (Miss)

Figure 6.17: Average per
month BW usage without
and with CacheFlix

Va
lu

e
(%

)

50

60

70

80

90

100

Activity Level
AL 1 AL 2 AL 3 AL 4 All

78.2
82.3

78.377.775.8

87.6
85.486.588.290.1

PA
CE

Figure 6.18: Prefetching
algorithm results across all
users

approximately 19 GB of their Netflix data consumption is shifted to off-peak periods; the

average user watches approximately 27 GB per month. This translates to 70% of their

Netflix BW usage being shifted to off-peak hours.

Furthermore, in order to understand the impact on overall BW consumption, we need

to also take into account the data that is used for caching content that is not watched by

the user. This is shown in Fig. 6.17; we can see here that for the average user, without

CacheFlix the user consumes 27 GB per month, and with CacheFlix, approximately 24 GB

is consumed during off-peak periods- this includes the 19 GB of prefetched and watched

content (off-peak (hit)), in addition to 5 GB of cached content that is not watched by the

user (off-peak (miss)); 8 GB of content, that was not cached by CacheFlix, is downloaded at

time of consumption (shown as peak hours). Thus, with CacheFlix, we are able to shift 70%

of peak-time traffic to off-peak hours while increasing the overall BW consumption, during

off-peak hours, by 21 % (from 27 GB without CacheFlix to 32.5 GB with CacheFlix).

6.5.2 CacheFlix Prediction Performance

The PA and CE across all users in our dataset is shown in Fig. 6.18; the results are shown for

the user specific cache eviction policy. The PA and CE of CacheFlix across all the users is

87.6% and 78.2% respectively- this is a significant improvement from the results obtained

in the proposed heuristics. In general, the PA decreases for more active users (from 90.1 %

103

to 85.4%), while the CE increases (from 75.8 % to 82.3 %). A PA of 87.6% implies that

CacheFlix is not able to prefetch 12.4% of the Netflix content that the user consumes. We

computed that approximately 5.3% of is due to CacheFlix under-predicting the number of

episodes to cache, 3.2% is due to users watching future episodes that do not immediately

follow the episodes they have watched on the prefetching day and the remaining 2.9% is

because the cache eviction policy removes the episode before it is consumed.

Algorithm Performance

Here we present results pertaining to the machine learning model that is used for prediction

in 6.3. Instead of utilizing the dual LSTM global and local learners for the prediction, we

compare the results achieved across all the users in our dataset for the user specific eviction

strategy when using competing ML models- specifically, support vector machine (SVM),

random forest and a artificial neural network with 5 layers (ANN). The models are trained

using the features given in table 6.2. We find that the competing models perform poorly

largely as they are not able to capture the temporal relationships in viewing activity.

Furthermore, we show the performance when using only the local LSTM, and only the

global LSTM. The effectiveness of the adaptive boosting algorithm can be seen here with

both LSTM’s individually performing around 10-15% poorer than CacheFlix which boosts

the output from each of the LSTMs. We also present the results of CacheFlix with some

features removed (shown with a “-” symbol, i.e “CacheFlix - Content Features” means that

CacheFlix is trained with all the features except feature in the “content” category shown in

table 6.2). The importance of the features are highlighted here, with the popularity features,

temporal features and content features having importance in increasing order based on the

performance metrics.

Eviction Strategies

In this section we present the results across all users in the dataset for the 4 different cache

eviction policies described in section 6.4.4. Fig. 6.19 shows the average PA and CE for

104

Table 6.3: Comparison to competing methods

Method PA [mean, std] CE [mean, std]
SVM [63.2, 10.2] [34.5, 25.4]
Random Forest [66.7, 7.5] [42.6, 4.7]
ANN [68.2, 6.5] [40.3, 8.7]
Local LSTM [78.6, 4.5] [64.3, 2.3]
Global LSTM [79.6, 8.7] [69.3, 4.5]
CacheFlix - Content Features [59.2, 3.4] [51.3, 4.2]
CacheFlix - Temporal Features [61.4, 8.9] [58.7, 10.2]
CacheFlix - Popularity Features [80.6, 5.6] [74.5, 3.4]
CacheFlix + All features [87.6, 4.6] [78.2, 6.2]

the simple, user specific and unlimited eviction policies. We are able to achieve the highest

prediction accuracy of 90.36% with the unlimited eviction policy, however this is at the

cost of the lowest CE of 56.2%, as due to the long TTL attached to each episode, the

number of episodes in the cache at any given time is high as compared to other eviction

policies. The simple eviction policy performs the worst in terms of accuracy with a PA of

70.2%; this is because we found that approximately 27% of prefetchable content, is not

consumed in the immediately proceeding watch-session. Fig. 6.20 shows the performance

of the FIFO policy for various cache storage sizes (1 hour of SD Netflix content consumes

1 GB data [108]). As the cache size increases from 4 GB onwards, the CE drops slightly as

we continue to store content that is not consumed in future WSs (recall CE is the ratio of

cached episodes to the number of episodes stored in the cache). However the PA increases

as the size increases, and is comparable to the unlimited cache policy when the storage size

is 10 GB.

The cache eviction policy can be appropriately tuned depending on whether a strong

preference for a high PA is desired, or if a conservative CE is desired. Furthermore, we see

that the predictions from CacheFlix, for any cache eviction strategy, significantly improves

the CE (from 6% as was seen in section 6.3.3) and yields high PA with a fairly small cache

sizes (in the order of units of GBs). This makes CacheFlix suitable for end-user device

105

Va
lu

e
(%

)

0

25

50

75

100

PA CE

56.2

90.3
78.2

87.6 82.3
70.2

Simple User specific
Unlimited

Figure 6.19: PA and CE for
different eviction strategies

Va
lu

e
(%

)

60

70

80

90

Cache Size (GB)
2 4 6 8 10

PA CE

Figure 6.20: PA and CE for FIFO
eviction strategy

caching as it utilizes a fraction of built-in storage avaiable in smart WiFi routers [115].

6.6 Comparison to MANTIS

In this section, we present a comparison to a closely related work in [116]; the authors

present a proactive caching scheme that caches YouTube videos to the user’s viewing de-

vice based on their viewing history. The goal of the work is similar to ours in that it

aims at reducing peak-time cellular network traffic by prefetching content during off-peak

hours. The authors propose a prefetching scheme specifically for YouTube which lever-

ages YouTube’s related videos suggestions to prefetch videos that is related to videos that

the user has previously seen. The authors employ a K-nearest neighbor classifier (KNN)

which determines which videos from the related videos set to prefetch for a particular user

on a particular day. KNN is a supervised neighbors-based learning method that predicts

the label for a sample based on the labels of a predefined number of training samples (K)

closest in Euclidean distance to the sample to be classified. Here we perform a comparison

between the prefetching algorithm presented in [116] and CacheFlix.

To predict the number of episodes to prefetch for the next WS, we employ a KNN

classifier to find a similar series, to the series that is being prefetched for, in the user’s past

viewing activity. We present the results for training the KNN classifier on a combination of

features described in table 6.2. Once a similar series has been found, we use the watching

106

pattern of that series as a way of predicting how the user will watch episodes for the series

we are prefetching for. We evaluate the KNN classifier when trained on the following

combination of features: A) content related features, B) content and popularity related

features and C) all the features given in table 6.2. If we assume that we are prefetching for

some series Y, then we use the KNN classifier to find the nearest neighbor, let us call this

series X. Then, in order to find the corresponding time in series X ′s watching pattern, we

obtain results for the following methods:

1. % series watched: We find the corresponding point when approximately the same %

of series X has been watched, as was watched for the point in time we are prefetching

for series Y . We then find the number of episodes that were watched in the following

WS for series X, and prefetch this number of episode for series Y.

2. % season watched: Here we find the approximate % season watched for the closest

season number of series X to the season we are prefetching for series Y.

3. Deviation: Here we find the corresponding point in series X where the deviation

from the average number of episodes per series/WS for the user is approximately the

same as for the series WS we are prefetching for. For example, if a user, on average,

watches 2 episodes per series every WS and if 2 more episodes than the average

(i.e. 4 episodes) of series Y was watched in some WS, then to determine how many

episodes to prefetch, we search for the WS in which 4 episodes, or the closest thereof,

of series X was watched, we then obtain the number of episodes of series X that was

watched in a proceeding WS, and use this value to predict the number of episodes to

prefetch for series Y.

The results for the PA and the CE are shown in table 6.4 for the user specific eviction

strategy. If a similar series cannot be found in the past viewing activity of the user, then

the average number of episodes watched per WS for the user, is the number of episodes

that is prefetched. As with the evaluation of CacheFlix, we train the KNN classifier with

107

Table 6.4: Comparison to prefetching algorithm in [116]

Method Content [PA, CE] Content &
Popularity [PA, CE]

All features [PA,
CE]

% series watched [45.6, 18.3] [46.1, 17.2] [45.7, 19.1]
% season watched [45,1, 20.8] [46.2, 21.2] [48.1, 21.5]
Deviation [44.7, 15.4] [39.2, 12.7] [43.2,9.8]

75% of their viewing activity, and test it on the remaining 25%. We find that the highest

PA we are able to achieve based on the algorithm presented in [116], is 48.1% with a

CE of 21.5%. This is when the KNN is trained with all the features, and the % season

watched is used to find the corresponding point in the similar series’s watching timeline.

In contrast, CacheFlix is able to achieve a PA of 87.6% and a CE of 78.2% with the same

eviction strategy. This shows that the prefetching methods applied to short-form videos

(e.g. YouTube), cannot be effectively applied to long-form videos (e.g. Netflix) given the

difference in their nature and way of consumption.

108

CHAPTER 7

A REAL-WORLD DATASET OF JOINT NETFLIX AND YOUTUBE USER
WATCH-BEHAVIOR

Fixed and mobile internet traffic is dominated by two video streaming services- Netflix

and YouTube. In fact, these two applications have the largest share of global Internet traffic

[117]. YouTube is the leading application and is alone responsible for nearly 16% of global

traffic, and is closely followed by Netflix, which is responsible for 11% of global traffic

[117]. While both applications provide video content, they vastly differ in terms of the

purpose they serve. YouTube is a platform for user-generated content and largely relies on

advertising revenue and its creator bases, whereas Netflix is a subscription-based service

that invests billions of dollars into scripted and unscripted entertainment. Furthermore, the

type of videos available on these platforms differ in their nature where YouTube provides

short-form videos, that are on average 12 minutes long, whereas content on Netflix are

episodes from series or documentaries (typically range from 30 to 60 minutes), and full

feature length films (80 to 120 minutes).

Given the dominance of both YouTube and Netflix on Internet resources, it is valu-

able to derive insights on YouTube and Netflix usage which can be useful to not only the

research community, but to network operators, content providers, marketing agencies, con-

tent creators as well as users themselves. This serves as the primary motivation for our

work in which we conduct a meaningful analysis and provide key insights using a real-

world dataset of users’ Netflix and YouTube watching behavior. This work studies the

behavior of consuming both YouTube and Netflix content on a per-user basis. Not only

is the behavior of a user’s Netflix and YouTube viewing studied so that independent con-

clusions can be drawn, but we also present a unique perspective of how the joint watching

behavior of YouTube content and Netflix content relates, including temporal access differ-

ences or how these videos are watched together or separately within a session. With our

109

study, we hope to shine a spotlight on the user behavior consumption and provide findings

and results upon which researchers can develop problems and associated solutions. Fur-

thermore, related work has shown how online video behaviors have quickly changed in the

past and has further highlighted the need for updated work in this area [118].

To this end, we use Amazon’s Mechanical Turk (mTurk) platform to collect a dataset

for Netflix and YouTube usage from 377 users. The collected dataset contains at least 1-

year worth of both YouTube and Netflix viewing activity for each user, which amounts to

over 4.3 million YouTube videos, Netflix episodes and movies collectively watched. Be-

yond high-level statistics published by Netflix [96] and by YouTube [75], there has been

little work done towards collecting and deriving insights using real-world usage data span-

ning a significant period of time. Furthermore, this is the first longitudinal study which

investigates the joint YouTube and Netflix watching behavior. Equipped with this dataset,

we derive key insights for individual user behavior related to their watch patterns, amount

of content consumption, viewing interests, and predictability of their future viewing. We

also implement and evaluate classification models to predict the user’s engagement in a

series, and the likelihood of them continuing to watch a series. Specifically, we consider

the following sets of research questions (RQs):

1. User watch patterns: Do users have a preferred time of viewing? What is the time

between subsequent video watches? How does this differ for varying user activity

levels?

2. Amount of content consumption: How much time is spent consuming content? How

does this differ across the two platforms? How does the YouTube traffic load vary

across time of day? How bursty is the amount of content consumed for Netflix vs

YouTube content?

3. Viewing interests: Do users watch the same genre(s) content regularly? Do genre

preferences change across YouTube and Netflix for a single user? Do active users

110

prefer more popular and higher rated content?

4. Predictability: How much content is related to content the user has previously seen?

How much of a user’s future watches are predictable? Is it easier to predict for less

active users?

7.1 A Real-World Dataset

7.1.1 Dataset Collection

To collect our dataset, we rely on Amazon Mechanical Turk (mTurk) to gather anonymized

Netflix and YouTube viewing history from 377 users for at least a 1-year period [78]. The

mTurk platform allows a task to be posted for a fee, which in turn can be completed by users

known as mTurkers. Studies have shown that mTurk samples can be accurate when study-

ing technology use in the broader population [79]. The task we posted required mTurkers to

submit both their YouTube viewing history and Netflix viewing history covering the same

period (at least 1 year from January 2020 to January 2021). For the Netflix viewing history,

the mTurkers were required to navigate to their viewing activity page associated with their

profile, and download their Netflix viewing activity as a csv file; the file was then anony-

mously uploaded via a dropbox link1. For the YouTube viewing history, the mTurker was

required to navigate to Google’s Takeout page and download their YouTube related data.

The mTurker would then extract the archive file and select the files related to their watch-

history, playlists and subscriptions data; these files were then anonymously uploaded via

the dropbox link.

The Netflix viewing activity file uploaded contains 2 fields: title and date. The title

field consists of the name of the feature film or TV series/documentary, as well as the sea-

son and episode name where applicable, separated by colons. The date field consists of

the most recent date that the title was viewed (there is no time of day given). A Postgres

SQL database is used to store the data for the mTurkers. The SQL database consists of 3
1We were advised by the IRB that IRB approval was not required as no private or personally identifiable

information was collected.

111

tables, namely, tblUsers, tblSeasons, and tblTitles. The tblUsers table is used to store the

title, watch-date as well as the season number and episode number if an episode from a

series is watched. These values are populated from the user’s submitted viewing activity

file, and through appropriate API calls from The Movie Database (TMDB) API [97]. The

tblSeasons contains the season number and total number of episodes in each season for ev-

ery series watched by the users. The tblTitles table contains a number of attributes related

to the series and movies watched by all the users; the TMDB API is used to obtain this

metadata. The attributes obtained are: the release date of the title, the IMDB rating, the

number of IMDB votes for the title, the run-time in minutes, the genre(s), director(s), writ-

ers, actors, the language of the title, country of production and related titles (as determined

through IMDB). There is also a field which is used to indicate if the title is a movie or a

series. For series, we obtain the number of seasons, and number of episodes each season

has through appropriate API calls.

For the YouTube watch-history data, the archived file that was uploaded contained the

following files: watch-history.html, a JSON file for each playlist created by the user, and

subscriptions.json. The watch-history.html file contains a list of all video titles, where the

title of the video is a hyperlink to the video URL, viewed by the mTurker, and the associated

time it was viewed. The JSON file for each user-created playlist contains a list of the video

IDs for all videos added to that playlist. Similarly, the subscriptions.json file contains a list

of all channels the user is subscribed to. There are 4 additional tables added to the database

related to the user’s YouTube viewing, namely, a users table, a videos table, a playlist table

and a subscriptions table. The users table is used to store the watch history for each user,

along with whether the video that was watched appears in one of their playlists and whether

the user is subscribed to the channel which uploaded the video. The videos table, stores

the associated metadata for each of the videos. The playlist table and subscriptions table

contains all the video IDs of videos that appear in the mTurker’s playlists, and channel

IDs of all the channels that the user is subscribed to, respectively. For every entry in the

112

watch-history.html file of the user, the video ID is retrieved (through the video URL of the

associated hyperlink) and the associated watch date and time. The playlist table is then

checked to see if this video ID appears in the table for this particular mTurker, if it does,

then the playlist field is set to true, otherwise it is set to false. Similary the subscriptions

table is checked and the subscriptions field is set accordingly. Using YouTube’s data API,

we obtained meta-data associated with each video in our dataset regarding its video dura-

tion, uploaded channel, category, the number of views, the number of likes, the number of

dislikes each video has at the time of data collection as well 50 of its related videos.

7.1.2 Baseline Characteristics

A high-level overview of the collected Netflix and YouTube datasets is presented in table

7.1.2 and table 7.1.2 respectively. In table 7.1.2, we show the total number of movies, and

series collectively watched by the 377 users. In addition, the number of series seasons and

associated episodes watched by all the users in their submitted history files is presented.

We refer to any Netflix episode or movie watched as a title; there were 778,036 titles col-

lectively watched by the user, of which nearly 12% were movies, and the remaining were of

episodes watched from series or documentaries. In table 7.1.2, we present the total number

of YouTube videos watched by the 377 users, the number of channels from which those

videos were uploaded from. Each video is categorized by the uploader according to 18

predefined categories and added to a particular channel; users can subscribe to the channel

(known as subscriptions) and add the video to user-created playlists. We also show the

number of channels that the users subscribed to; this is termed as a subscription. Further-

more, we present the number of playlists created by the 377 users; a playlist is a collection

of videos that the user can access and share with other YouTube users. Approximately

3.6 million YouTube videos uploaded by nearly 990 thousand channels, were collectively

watched.

113

Netflix Parameters Value

No. of Movies 89,793

No. of Series 43,147

No. of Episodes 688,243

No. of Seasons 72,244

Table 7.1: Netflix Dataset

YouTube

Parameters

Value

No. of Videos 3,590,670

No. of Channels 989,814

No. of Playlists 578

No. of Subscriptions 9,265

Table 7.2: YouTube Dataset

7.2 Analysis and Key Insights

In the following subsections, we answer questions categorized into 5 groups to gain in-

sights regarding the users’ YouTube and Netflix viewing behavior. The groups are related

to the user’s access patterns, amount of content consumption, user’s viewing interests, the

predictability of Netflix and YouTube watching behavior, and the the user’s perceived en-

gagement in a series. In order to analyze the user’s behavior, and how their levels of activity

impact our derived insights. We group our users into 3 categories based on the number of

videos they have watched over their submitted viewing history. Table 7.3 and table 7.4

show the activity levels arranged from least active (AL 1) to most active (AL 3) for videos

consumption on Netflix and YouTube, respectively. The users are grouped based on the

average number of videos watched per year; for example, users that watched less than 200

Netflix titles are categorized as low active users (AL 1 users), whereas users that watched

more than 800 Netflix titles, are categorized as the most active users (AL 3). The users that

watched, on average, between 200 to 800 videos per year, are categorized as moderately

active (AL 2). Approximately 18% of the users are grouped in AL 1, 68% in AL 2 and

14% in AL 3. Similarly, table 7.4 show the number of videos used to label user’s activity

levels as well as the % of users belonging in each group.

114

Activity Level Videos/year % of Users
AL 1 < 200 18
AL 2 200−800 68
AL 3 > 800 14

Table 7.3: Netflix Activity Levels

Activity Level Videos/year % of Users
AL 1 < 300 19
AL 2 300−4000 59
AL 3 > 4000 22

Table 7.4: YouTube Activity Levels

7.2.1 User Watch Patterns

Do users have a preferred time of viewing?

We explore whether users have a regular schedule in terms of when they access and view

content; knowing what time a user is likely to access content is particularly helpful for

load estimation and caching systems, and consequently can improve the user’s Quality of

Experience (QoE). We first show the distribution of content watched across the day of the

week; this can be seen in Fig. 7.1. With movies and series varying vastly in their form

(movies being three times longer and non-episodic), we henceforth show results pertaining

to Netflix (NF) series viewing and NF movies viewing separately as NF: series and NF:

movies. In general, we find that there is an increase in the amount of Netflix watched over

the weekend, whereas for YouTube, there is a slight increase during the middle of the week

and, instead, a drop during the weekend. It can be seen that there is a greater variation in

how movies are watched on a day-to-day basis as compared to YouTube videos or episodes

from series; the variance across the week for series and YouTube videos is 1.31% and

1.34% respectively, whereas the variance for movies is 4.95%. The sequential nature of

episodes can be a potential reason for consistency in terms of the number of episodes

watched across the week, wheres the short-form content of YouTube leans itself to a media

115

C
o

n
te

n
t

(%
)

0

5

10

15

20

25

Day of Week

M Tu W Th F Sa Su

Figure 7.1: Distribution of
content watched per day
for YouTube and Netflix
content

YT
 C

on
te

nt
 (%

)

0

5

10

15

20

25

Day of Week
M Tu W Th F Sa Su

AL 1 AL 2 AL 3

Figure 7.2: Distribution of
YT videos watched per day

N
F

 S
e
ri
e
s
 C

o
n

te
n

t
(%

)

0

5

10

15

20

25

Day of Week

M Tu W Th F Sa Su

Figure 7.3: Distribution of
NF series videos watched
per day

which is for ”in-between” moments through the day [119]. To see if this distribution of

content watched across the week is the same for all users, despite their level of activeness,

we present the results for users in AL1 to AL3 for YT videos (Fig. 7.2), NF episodes (Fig.

7.3) and NF movies (Fig. 7.4). We find that the least active users are more sporadic in terms

of when they watch YouTube videos (Fig. 7.2; on the other hand, the watching behavior

is fairy consistent irrespective of how active a user is on the Netflix platform (as seen in

Fig. 7.3 and Fig. 7.4). In addition to the day of week that a user watches YT content, we

also plot the hour of day that the content is watched; this is shown in Fig. 7.5 (note that the

time of viewing is not available for the NF content watched; only the date it was watched).

As was seen in Fig. 7.2, the least active users (AL 1) are inconsistent across time of day,

while there is a peak exhibited from 6pm to 8pm for AL 2 users and a rising increase in the

content watched from 6pm till midnight for the most active users (AL 3).

To quantify whether users tend to watch content on the same day(s) each week, we

compute the viewing day entropy (VDE) as given in Eq. 7.1.

V DE =
−∑d∈D pd× log(pd)

log(N)
(7.1)

where

pd =
Number of videos watched on day d

Total number of videos watched by user
(7.2)

116

and N is the total number of days in a week (N= 7). The CDF of the VDE across users is

shown in Fig. 7.6. The VDE is a value between 0 and 1, where a VDE closer to 0 indicates

that the user has a more regular request pattern, and a value close to 1 indicates that the

user uniformly watches content across the week. We find that users watch movies are more

regular intervals that episodes or YT videos; this was further evidenced in Fig. 7.1 in which

we see that users watch movies over weekends more than on other days of the week. We

also find that low active users are slightly more regular in terms of their day of viewing than

high active users; this is across YouTube and Netflix videos shown in Fig. 7.7, Fig. 7.8

and Fig. 7.9. Furthermore, 50% of all users, regardless of their activity level, have a VDE

between 0.7 and 0.85 for YT videos and NF series videos (Fig. 7.7 and Fig. 7.8), implying

that in general users, do not have a regular schedule in terms of their watch pattern. In

contrast, 50% of users have a VDE between 0.5 and 0.78 when watching movies implying

a regular access patterns when watching movies. The viewing hour entropy (VHE) for YT

content is defined as in Eq. 7.3

V HE =
−∑h∈H ph× log(ph)

log(N)
(7.3)

where

ph =
Number of videos watched during hour h
Total number of videos watched by user

(7.4)

and N is the total number of hours in a day (N= 24). A plot of the VHE across activity

levels for YT videos is shown in Fig. 7.10. As was seen in the results for the VDE, the

least active users exhibit a slightly more regular behavior than more active users; however,

all users have a VHE of greater than 0.5 meaning that users do not typically have a fixed

time of day for viewing YouTube content.

To analyze how the access pattern differs for a single user for YouTube vs Netflix, we

compute the Netflix VDE for a single user and compare it to their YT VDE; this is shown

in Fig. 7.11 where each point in the scatter plot corresponds to a single user. We find that

the VDE is fairly concentrated along YouTube VDE dimension (between 0.83 and 0.87

117

excluding outliers), whereas it is more spread out along the Netflix VDE axis (between

0.75 and 0.9 excluding outliers). While it seems that there are no specific days that only

YouTube content is watched, there are certain hours of the day when YouTube videos are

consumed; this can be seen in Fig. 7.12 in which the YouTube VHE is scattered more than

the Netflix VDE is. We also compute the Pearson correlation coefficient as given in Eq.

7.5:

r =
∑

n
i=1(xi− x)(yi− y)√

∑
n
i=1(xi− x)2(yi− y)2

(7.5)

where the n is total number of users (n = 377), xi is the values of the Netflix parameters

values, yi is the values of the YouTube parameters value, x is mean of the Netflix parameters

values and y is mean of the YouTube parameters values. The Pearson correlation coefficient

is a measure of linear correlation between two sets of data. A value of 1 represents a perfect

positive relationship, -1 a perfect negative relationship, and 0 indicates the absence of a

relationship between variables. The Pearson correlation coefficient for the VDE for Netflix

and YouTube videos as shown in Fig. 7.11 is 0.13 indicating a weak positive relationship

between the VDE of Netflix and YouTube content. To summarize the key insights:
Users watch movies on a more regular schedule as compared to series or YouTube videos

with the average movies viewing day entropy being 0.1 less than the viewing day entropy

for YouTube videos and Netflix series content. This is further evidenced by the variance

of movies watched on a day-to-day basis being 4.95%, as compared to the variance of

watching series and YouTube videos being 1.31% and 1.34%.

What is the time between subsequent watches?

A further important insight related to a user’s access patterns, is the time between subse-

quent watch sessions (WSs), termed as time between watch sessions (TBWS). A watch-

session is defined as a day on which at least one Netflix or YouTube video was watched.

Fig. 7.13 shows the average time difference between WSs on which YouTube videos, Net-

flix episodes and movies were watched. We find that 75% of users, on average, watch

YouTube content at least every 3 days (this corresponds to a TBWS of 2 days), series con-

118

N
F

 M
o

v
ie

s
 C

o
n
te

n
t

(%
)

0

5

10

15

20

25

Day of Week

M Tu W Th F Sa Su

Figure 7.4: Distribution of
NF movies watched per
day

Y
T

 C
o

n
te

n
t

(%
)

0

7

14

21

28

35

Hour of Day

0 2 4 6 8 10 12 14 16 18 20 22

Figure 7.5: Distribution of
YT videos across time of
day

C
D

F

0

0.2

0.4

0.6

0.8

1

Viewing Day Entropy

0.5 0.625 0.75 0.875 1

YT NF: series NF: movies

Figure 7.6: Viewing Day
Entropy for Video Content

C
D

F

0

0.2

0.4

0.6

0.8

1

VDE of YT Videos

0.6 0.675 0.75 0.825 0.9

AL 1 AL 2 AL 3

Figure 7.7: Viewing day
entropy for YT videos

C
D

F

0

0.2

0.4

0.6

0.8

1

VDE of NF Series

0.6 0.675 0.75 0.825 0.9

AL 1 AL 2 AL 3

Figure 7.8: Viewing day
entropy for NF series

C
D

F

0

0.2

0.4

0.6

0.8

1

VDE of NF Movies

0.6 0.675 0.75 0.825 0.9

AL 1 AL 2 AL 3

Figure 7.9: Viewing day
entropy for NF movies

C
D

F

0

0.2

0.4

0.6

0.8

1

VHE of YT Videos

0.5 0.625 0.75 0.875 1

AL 1 AL 2 AL 3

Figure 7.10: Viewing hour
entropy for YT videos

Y
o

u
T
u
b

e
 V

D
E

0.6

0.68

0.76

0.84

0.92

1

Netf ix VDE

0.6 0.68 0.76 0.84 0.92 1

Figure 7.11: Viewing day
entropy for Netflix vs
YouTube content

Y
o

u
T
u
b

e
 V

H
E

0.6

0.68

0.76

0.84

0.92

1

Netf ix VDE

0.6 0.7 0.8 0.9 1

Figure 7.12: Viewing hour
entropy vs viewing day
entropy

119

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS (Days)

0 20 40 60 80

YT NF: Series NF: Movies

Figure 7.13: Distribution
of time between WSs for
NF and YT videos

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS of YT Videos (hours)

0 125 250 375 500

AL 1 AL 2 AL 3

Figure 7.14: Time between
WSs for YT videos across
all activity levels

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS of NF Series (days)

0 15 30 45 60

AL 1 AL 2 AL 3

Figure 7.15: Time between
WSs for NF series videos
across all activity levels

tent is watched at least every 5 days and a movie is watched at least every 20 days. Fig.

7.14 shows the average number of hours between YouTube watch-session, where here, a

watch-session is an hour on which at least one YouTube video was watched. We find that

75% of the most active users watch YouTube content at least every 10 hours, moderately

active users watch YouTube videos every 1.5 days between watch sessions, and 75% of

the least active users watch YouTube videos at least once every 10 days. Fig. 7.15 and

Fig. 7.16 show the distribution of the TBWS for watching series and movies content re-

spectively. We find that 75% of the most active Netflix users watch episodes, at least every

2.5 days, moderately active users watch every 5 days, and least active users watch series

content every 2 weeks. For movies, 75% of the most active users watch movies at least

once a week, moderately active users watch at least one every 2 weeks, and least active

users watch movies every 1.5 months.

Similar to computing the VDE to see if a user’s watch pattern follows a regular sched-

ule, we also compute the entropy for the TBWS days. That is, we compute if the user tends

to leave the same number of days or hours between watching videos. The TBWS entropy

(TBWSE) is computed as

T BWSE =
−∑i∈I pt× log(pt)

log(N)
(7.6)

where
pt =

No. of instances when TBWS was t
Total number of WSs−1

(7.7)

120

and N is the total number of possible TBWS. Essentially, pt is the probability that the days

between 2 WSs for a specific user is t days or hours. A TBWSE value closer to 0 implies

that the user’s watch content at regular intervals whereas a TBWSE closer to 1 implies a

non-uniform TBWS. Fig. 7.17 shows the CDF for the TBWSE for YouTube videos, Netflix

series content and Netflix movies. It is evident from the figure that the TBWSE is lower for

series content and the higher for YouTube videos, meaning that users tend to follow a more

regular schedule when watching series content as compared to YouTube videos or Netflix

movies. Fig. 7.18, Fig. 7.19 and Fig. 7.20 shows the TBWSE across activity levels; we find

that in all three types of content, the least active users have a higher TBWSE than active

users, implying that the user’s watch pattern is sporadic. This is line with the findings from

Fig. 7.7 to Fig. 7.9 where highly active users have a larger VDE, indicating a smaller and

more regular TBWS. Fig. 7.21 shows the Netflix TBWSE and YouTube TBWSE where

each data point is the average TBWSE for that user over their entire viewing history. Here

we can see that the YouTube TBWSE ranges from approximately 0.6 to 1 (average TBWSE

is 0.78), whereas for Netflix content, it is from 0 to 0.8 (average TBWSE is 0.36) indicating

that users have a more regular schedule for watching Netflix content rather than YouTube

videos. The correlation coefficient is 0 indicating no linear relationship between the two

values.
A typical user watches YouTube content at least once every 1.2 days, series content at

least once every 3.6 days and movies at least once every 10.5 days. The days between

subsequent Netflix watch-sessions is more consistent than for YouTube watch-sessions,

with the average time between watch sessions for Netflix content being 0.36 and for

YouTube content being 0.79.

Practical Implications

Caching of content plays an important role in lowering costs for network operators, increas-

ing network capacity and improving user quality of experience by reducing the distance that

data travels within the network. In addition to what content to cache, the temporal dimen-

121

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS of NF Movies (days)

0 37.5 75 112.5 150

AL 1 AL 2 AL 3

Figure 7.16: Time between
WSs for movies across all
activity levels

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS Entropy

0 0.25 0.5 0.75 1

YT NF: Series NF: Movies

Figure 7.17: Time between
WSs entropy for NF and
YT content

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS Entropy for YT Videos

0.5 0.625 0.75 0.875 1

AL 1 AL 2 AL 3

Figure 7.18: Time between
WSs entropy for YT videos
across all activity levels

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS Entropy of NF Series

0 0.25 0.5 0.75 1

AL 1 AL 2 AL 3

Figure 7.19: Time between
WSs entropy for series
content

C
D

F

0

0.2

0.4

0.6

0.8

1

TBWS Entropy of NF Movies

0 0.25 0.5 0.75 1

AL 1 AL 2 AL 3

Figure 7.20: Time between
WSs entropy for NF
movies

Y
o

u
T
u

b
e
 T

B
W

S
E

0

0.2

0.4

0.6

0.8

1

Netf ix TBWSE

0 0.2 0.4 0.6 0.8 1

Figure 7.21: Time between
WSs entropy for NF vs YT
consumption

sion of when to cache content is equally important. To design effective caching systems, it

is critical to not only understand overall traffic consumption patterns, but also application

specific usage [120]; in reality, there exist different types of temporal request trends among

different types of content [121]. This phenomena is evident in our collected real-world

dataset which shows differing access patterns for long-form vs short-form video content

e.g. YouTube content is watched more frequently however Netflix movies are consumed

on a more regular schedule. Caching systems should thus understand content specific usage

and can then tailor their policies based on the type of content it is catering for [120].

122

7.2.2 Amount of Content Consumption

How much time is spent watching YouTube and Netflix videos?

In effort of understanding user’s viewing behavior as well as for the design of content

delivery, caching and load estimation systems, it is crucial to gain insight regarding how

much content is consumed by a user. We show the CDF of the number of videos watched

each WS day (i.e. a day on which some video was watched) across all our users’ viewing

history in Fig. 7.22. For 75% of the users in our dataset, at most 15 YouTube videos are

watched per day, at most 5 episodes from some Netflix series is watched and less than

two-thirds of a Netflix movie is watched during each WS day. Fig. 7.23 to Fig. 7.25 show

how this value varies across different activity levels for each WS day. We find that 75%

of highly active users can watch up to 20 YouTube videos, 2.5 episodes, and nearly half a

movie more than a low active user during a single WS. The greatest variance we see here

across difference activity levels is in the average number of YouTube videos watched each

day.

Next we investigate the time spent watching content on the different platforms. The

CDF average time spent on a WS day is shown in Fig. 7.26. We find that the time spent

during each YouTube WS is on average 2 hours less than the time spent during a Net-

flix WS. Surprisingly, we find that the time spent watching series content as compared to

movies content during a single WS, is approximately the same. Fig. 7.27 to Fig. 7.29

show how the time spent during each WS varies across activity levels for YouTube content,

Netflix series content and Netflix movies content. We find that there is a larger variance

across activity levels for YouTube videos and Netflix series content as compared to Netflix

Movies; this is in line with the results obtained regarding the number of videos watched.

We find that on average, the watch-session length for least active users is 60% less for

YouTube content as compared to AL 2 users, 16% less for Netflix series and 8% less for

movies content.

According to Netflix, watching videos uses about 1 GB of data per hour for each stream

123

of standard definition (SD) video, and 3 GB per hour for streaming high definition video

[98]. Based on our results, the typical user spends 2 GB (when streaming at SD) or 6 GB

(when streaming at HD) of data per WS day either watching Netflix series or Netflix movies

content. Our findings corresponds to Netflix’s recent reporting stating that the average

user spends 2 hours on Netflix each day [109]. For YouTube content, the typical user

spends approximately an hour per WS day watching YouTube content; this corresponds to

spending around 560 MB of data when streaming at 480p or 1.2 GB when streaming at

720p [122]. While our results show that users consume less data on watching YouTube, the

frequency with watching YouTube content is greater than for Netflix content as is evidenced

in the discussion in section 7.2.1.

When comparing the average time spent watching Netflix content vs the average time

spent watching YouTube content, we find that correlation coefficient is 0.15, indicating

a weak positive linear relationship between the average time spent across their viewing

history. The scatter plot of the average time spent for each user is shown in Fig. 7.30. As

the plot is only comparing the average time spent over more than 1 year, the relationship

between how content is watched over the 2 services in a single day is lost. We investigate

this aspect in the next section.
The average user spends 27 minutes/day watching YouTube content, while spending a

considerably longer 2.5 hours watching Netflix series content during a watch-session,

which is also the same for movies content. The watch-session length for least active users

is on average 60% less for YouTube content as compared to the moderately active user;

however, for Netflix series and movies content, the watch-session length is, respectively,

only 16% and 8% shorter for the least active users compared to a moderately active

user.

How does time spent differ for watching short-form vs long-form content?

In this section we investigate how for a single user, the time spent watching Netflix and

YouTube content differs on a per-day basis. If we plot the time spent of each service on

124

C
D

F

0

0.2

0.4

0.6

0.8

1

No. of videos watched per day

0 10 20 30 40

YT NF: Episodes NF: Movies

Figure 7.22: CDF of
number of NF and YT
videos watched each day

C
D

F

0

0.2

0.4

0.6

0.8

1

No. of YT videos watched per day

0 16 32 48 64 80

AL 1 AL 2 AL 3

Figure 7.23: CDF of
number of YT videos
watched each day

C
D

F

0

0.2

0.4

0.6

0.8

1

No. of episodes watched per day

0 2.5 5 7.5 10

AL 1 AL 2 AL 3

Figure 7.24: CDF of
number of NF episodes
watched each day

C
D

F

0

0.2

0.4

0.6

0.8

1

No. of movies watched per day

0 1 2 3 4

AL 1 AL 2 AL 3

Figure 7.25: CDF of
number of NF movies
watched each day

C
D

F

0

0.2

0.4

0.6

0.8

1

Time spent per day (min.)

0 125 250 375 500

YT NF: Episodes NF: Movies

Figure 7.26: Average time
spent on YT and NF per
day

C
D

F

0

0.2

0.4

0.6

0.8

1

Time spent on YT per day (min.)

0 100 200 300 400

AL 1 AL 2 AL 3

Figure 7.27: Average time
spent on YT videos per day

C
D

F

0

0.2

0.4

0.6

0.8

1

Time spent on episodes/day (min.)

0 100 200 300 400

AL 1 AL 2 AL 3

Figure 7.28: Average time
spent on NF series content
per day

C
D

F

0

0.25

0.5

0.75

1

Time spent on movies/day (min.)

0 100 200 300 400

AL 1 AL 2 AL 3

Figure 7.29: Average time
spent on NF movies content
per day

T
im

e
 s

p
e
n

t
o

n
 Y

T
/d

a
y
 (
m

in
.)

0

100

200

300

400

Time spent on NF/day (min.)

0 100 200 300 400

Figure 7.30: Average time
spent on YT vs NF per day

125

a daily basis for a particular user, over some fixed period, there are four possible time-

profiles that can result. These are shown in Fig. 7.31 to Fig. 7.34. Time profile A captures

a user’s behavior where on days of increased viewing, there is an increase of viewing on

both YouTube and Netflix platforms. A user that fits time-profile B tends to spend a fixed

amount of time watching content and thus, the amount of content watched on YouTube is

inversely propotional to the amount of content watched on Netflix. A user exhibiting time-

profile C’s behavior is a user that generally watches the same amount of YouTube content

each day, but their time spent watching Netflix content varies across days. Finally, time-

profile D captures the behavior of user where the time spent on Netflix is approximately

the same each day, however time spent watching YouTube videos varies. An example of 1

month of viewing for 2 users fitting time-profile A and time-profile D is shown in Fig. 7.35

and Fig. 7.36 respectively. Here, the axes are normalized with the respect to the maximum

amount of time spent on YouTube and Netflix for that month; and each point on the chart

refers to a single WS day in which YouTube and/or Netflix content was watched.

In order to find the best fitting time profile given the daily time spent on Netflix and

YouTube over some fixed period, we compute the Pearson correlation coefficient. If the

correlation coefficient is a value between 0.5 and 1, then this indicates a positive correlation

which matches with the characteristics of time-profile A. If the value is between -0.5 and

-1, then there is a negatives correlation and so it is classified as being time-profile B. If

there is weak to no correlation (correlation coefficient is between -0.5 and 0.5), the best-

fit line is computed based on the least-squares method. If the line has a gradient that is

between 0 and 1, then it is classified as time-profile C, otherwise, if the gradient is greater

than 5 (implying that the maximum normalized range is 0.2 for the time spent on Netflix),

it is time profile D. Finally, if there are data-points that do not conform to any of the time-

profiles, we label it as none. We compute the time-profiles on a per-month basis for each

user across their entire viewing-history; we then categorize a user based on the majority of

time-profile labels over their history. Fig. 7.37 shows the distribution of the time-profiles

126

T
im

e
 s

p
e
n

t
o

n
 Y

o
u

T
u

b
e

Time spent on Netf ix

Figure 7.31: Time profile A

T
im

e
 s

p
e
n
t

o
n
 Y

o
u
T
u
b

e

Time spent on Netf ix

Figure 7.32: Time Profile B

T
im

e
 s

p
e
n
t

o
n
 Y

o
u
T
u
b

e

Time spent on Netf ix

Figure 7.33: Time Profile C

for all the user in our datasets. Furthermore, we show this distribution for least active

and most active users; the least-active user are in the 10th percentile of users based on the

number of videos (regardless of whether they were watched on YouTube or Netflix), and

the most active users are in the 90th percentile. Interestingly, we find that nearly 38% users

tend to spend a consistent time watching Netflix content on a day-to-day basis as compared

to YouTube content. This does not translate to the least active and most active users, where

in both cases, the users tend to spend time on both platforms sporadically (with nearly 48%

of users not being characterized as having a typical behavior which fits time-profiles A to

D). To summarize:
On a day-to-day basis, 38% of users tend to spend a consistent time watching content

on Netflix while there is a larger variance watching content on YouTube, 26% of the

users’ time spent watching YouTube videos is inversely proportional to the time spent

on Netflix, 13% of users spend approximately the same time on YouTube as compared

to Netflix, and 13% spend increased time watching both YouTube and Netflix on days of

increased viewing.

How does the amount of YT content consumed vary across time of day?

Internet access provisioning or network load provisioning is the process of preparing and

equipping a network to allow it to handle the anticipated load and provide new services to

its users. Predicting the peak workload of an Internet application and capacity provisioning

based on these estimates is notoriously difficult [86]. This is because typically, the peaks of

127

T
im

e
 s

p
e
n
t

o
n
 Y

o
u
T
u
b

e

Time spent on Netf ix

Figure 7.34: Time profile D

N
o

rm
.
ti
m

e
 s

p
e
n
t

o
n
 Y

o
u
T
u
b

e

0

0.25

0.5

0.75

1

Norm. time spent on Netf ix

0 0.25 0.5 0.75 1

Figure 7.35: Example of
time profile A

N
o

rm
.
ti
m

e
 s

p
e
n
t

o
n
 Y

o
u
T
u
b

e

0

0.25

0.5

0.75

1

Norm. time spent on Netf ix

0 0.25 0.5 0.75 1

Figure 7.36: Example of
time Profile C

individual users are uncorrelated, and so, the network peak load grows much more slowly

than the sum of the peak loads of the individual users. To investigate the how user peak

load affects overall traffic, we provide results to show the distribution of YouTube traffic

across time and how bursty the usage is. Recall that we only have the time of day viewing

for YouTube viewing history and not for Netflix viewing history.

To understand how YouTube specific network load is distributed through the day, for

each user in our dataset, for each minute of day a video was seen, we check to see whether

a video is being watched during that minute (here we assume that the video was watched in

its entirety unless the start time of the next video watched by the user is before the current

video has finished playing). Fig. 7.38 shows the normalized aggregate load across all users

for each minute of the day. Here we see that from approximately 2AM to 10AM, the load

drops significantly for AL 2 and AL 3 users. During the rest of the day, the load is just over

twice as much. This is similar across all activity levels.
Overall YouTube traffic is nearly 2x as much during peak periods (10AM to 2AM) as

compared to off-peak periods (2AM to 10AM), regardless of user activity level.

How bursty is the users access pattern?

An important consideration for prefetching and caching systems, is being able to effectively

predict how much content a user will see, usually based on their past behavior. It follows

that users with uniform behavior will be easier to predict for than users with inconsistent

128

%
 o

f
U

s
e
rs

0

12.5

25

37.5

50

Time-Prof le

A B C D None

Overall Least Active Most Active

Figure 7.37: Distribution of users
according to time-profiles

N
u

m
b

e
r

o
f

Y
T

 V
id

e
o

s

0

5,000

10,000

15,000

20,000

25,000

Time

0:00
2:00

4:00
6:00

8:00
10:00

12:00

14:00

16:00

18:00

20:00

22:00

AL 1 AL 2 AL 3

Figure 7.38: YT video load across
time of day for all users

behavior. We observed that some users in our dataset drastically increase or decrease the

number of videos they watch in 1 WS as compared to previous WSs. This insight leads

us to investigate the “burstiness” of the amount of content consumed during WSs; this

parameter is computed as in Goh and Barabasi [99]. The Burstiness parameter is defined

in equation 7.8 as,

B =
σt−mt

σt +mt
(7.8)

where σt is the standard deviation and mt is the mean of the user’s number of videos per

WS, over a period of t days. The parameter is a value between -1 and 1, where a value

closer to 1 means that the standard deviation is larger than the mean, implying that the

user’s behavior is bursty with regard to the number of videos they consume in consecutive

WSs. A value closer to -1 indicates the user watches almost the same number of videos

each WS. As an example, if user A watches the following number of videos from Monday

to Friday: [M=2, Tu=3, W=2, Th=2, F=3], then the burstiness parameter is -0.6; whereas

if user B watches videos as follows: [M=0, Tu=5, W=0, Th=10, F=0], then the burstiness

parameter is 0.2.

Fig. 7.39 shows the average burstiness parameter across the user’s entire history and

Fig. 7.40 shows the average monthly burstiness parameter (t= 30). We find that in general,

the burstiness parameter is lower when users are watching movies as compared to series

or YouTube videos. The difference in terms of the number of videos from one WS to the

129

C
DF

0

0.2

0.4

0.6

0.8

1

Burstiness Parameter
-1 -0.6 -0.2 0.2 0.6 1

YT NF: Series NF: Movies

Figure 7.39: CDF of
burstiness score for NF
and YT videos over entire
history

C
DF

0

0.2

0.4

0.6

0.8

1

Monthly Burstiness Parameter
-1 -0.6 -0.2 0.2 0.6 1

YT NF: Series NF: Movies

Figure 7.40: CDF of
burstiness score on a
monthly basis

C
DF

0

0.2

0.4

0.6

0.8

1

Monthly Burstiness of YT

-1 -0.6 -0.2 0.2 0.6 1

AL 1 AL 2 AL 3

Figure 7.41: CDF of
average monthly
burstiness score for YT
videos

next is larger if the video duration is shorter (i.e. the way in which YouTube videos are

watched, which are on average shorter than series episodes and movies, tends to be more

bursty). The monthly average burstiness is lower than the average burstiness over at least

a year’s viewing history; this is expected as there is a larger variance in the number of

videos watched over a longer period of time which results in a higher burstiness score.

However, to make accurate short-term predictions, it is important to consider the behavior

over shorter periods of time. In general, we find that the more active the user is, the more

bursty their behavior is i.e. there is more variance in the number of videos consumed per

WS for active users; this can be seen in Fig. 7.41 to Fig. 7.46. We also find that users have

a higher burstiness score when watching YouTube videos as compared to Netflix videos

(the monthly burstiness score on average for YouTube videos is 0.1, for series content it is

0.01 and for movies, this is -0.2). A scatter plot of the average monthly burstiness score

per user is shown in Fig. 7.47; the correlation coefficient is -0.03 implying that there in no

linear relationship between these two parameters.
The typical user exhibits a more sporadic behavior in terms of the number YouTube

videos watched from day to day, as compared to Netflix series and movies content with

a average burstiness score of 0.1, 0.01 and -0.2 for YouTube videos, series and movies

respectively.

130

C
DF

0

0.2

0.4

0.6

0.8

1

Monthly Burstiness of Series

-1 -0.6 -0.2 0.2 0.6 1

AL 1 AL 2 AL 3

Figure 7.42: CDF of
average monthly burstiness
score for NF series

C
DF

0

0.2

0.4

0.6

0.8

1

Monthly Burstiness of Movies

-1 -0.6 -0.2 0.2 0.6 1

AL 1 AL 2 AL 3

Figure 7.43: CDF of
average monthly burstiness
score for NF movies

Yo
uT

ub
e

Bu
rs

tin
es

s

-1

-0.5

0

0.5

1

Netflix Burstiness
-1 -0.5 0 0.5 1

Figure 7.44: Average
monthly burstiness score of
YouTube vs Netflix content

Practical Implications

Internet access provisioning or network load provisioning is the process of preparing and

equipping a network to allow it to handle the anticipated load and provide new services to

its users. Predicting the peak workload of an Internet application and capacity provisioning

based on these estimates is notoriously difficult [86]. This is because typically, the peaks of

individual users are uncorrelated, and so, the network peak load grows much more slowly

than the sum of the peak loads of the individual subscribers whose traffic is carried by the

network. With YouTube and Netflix having a considerable influence on network traffic, it is

beneficial to understand the distribution of such traffic and the users’ content consumption

patterns. Through our analysis in this section, we compared how on a daily basis, the

content consumption for long-form vs short-form video content differs, how individual

YouTube traffic varies across time of day, as well as how bursty the different types of

content this. For example, we saw that nearly 40% of users tend to watch the same amount

of Netflix content each day but there is a larger variance in terms of YouTube watching

behavior. Network service providers would need to take these insights into account when

developing their provisioning strategies.

131

C
DF

0

0.2

0.4

0.6

0.8

1

Monthly Burstiness of Series

-1 -0.6 -0.2 0.2 0.6 1

AL 1 AL 2 AL 3

Figure 7.45: CDF of
average monthly burstiness
score for NF series

C
DF

0

0.2

0.4

0.6

0.8

1

Monthly Burstiness of Movies

-1 -0.6 -0.2 0.2 0.6 1

AL 1 AL 2 AL 3

Figure 7.46: CDF of
average monthly burstiness
score for NF movies

Yo
uT

ub
e

Bu
rs

tin
es

s

-1

-0.5

0

0.5

1

Netflix Burstiness
-1 -0.5 0 0.5 1

Figure 7.47: Average
monthly burstiness score of
YouTube vs Netflix content

7.2.3 User Preferences

Do users watch the same genre(s) regularly?

Learning about user preferences makes it possible to model user information needs and

adapt services to meet these needs. This is an important question for recommendation en-

gines and proactive caching systems, where a prediction of what to cache is made based

on the user’s preferences. Understanding users’ preferences would also be useful for tar-

geted advertising. There are 21 genres of Netflix series that are watched by the users in our

dataset, and a series can be assigned multiple genres; and there are 21 genres that Netflix

movies are assigned. Every YouTube video is categorized by the uploader according to 18

predefined categories. A distribution of the videos watched by all the users in our dataset,

and the genres of the associated videos, is shown in Fig. 7.48 to Fig. 7.50. We find that

the largest % of YouTube videos watched, across all activity levels (nearly 30% overall), is

from the “music” genre. For Netflix series we see that the most popular genre is “drama”,

and “comedy” is the most popular movie genres across all activity levels.

This, however, does not tell us if users in different activity levels have a concentrated

preference in terms of the genre of content (i.e. they tend to watch content only from 1 or 2

genres) or a more diverse genre preference (i.e. they watch content from multiple genres).

To quantify this, we compute the user’s viewing genre entropy (VGE) as given in Eq. 7.9.

132

V GE =
−∑g∈G pg× log(pg)

log(N)
(7.9)

where
pg =

Number of episodes in genre g
Total number of episodes watched by user

(7.10)

and N is the total number of genres. The VGE is a number between 0 and 1; a value closer

to 0 means that the user has more stability in terms of their preference (they prefer content

from a few genres only), whereas a larger VGE means that the user watches content from

various genres. We computed the VGE for each month of the user’s viewing history, and

obtained the average across all the months; the results are shown in Fig. 7.51. We find

that the VGE is typically the lowest for series content (0.52 on average) and the highest for

movies (0.76 on average). This indicates that users tend to watch series content from the

same genre(s), whereas the users are more diverse in their choice of movie genres. Fig.

7.52 to Fig. 7.54 shows the VGE across activity levels; interestingly, we find that the VGE

for YouTube videos is fairly similar regardless of activity levels (the average VGE is 0.71),

whereas for Netflix content, less active users tend to be comparatively concentrated in their

genre/category preferences. The plot in Fig. 7.55 shows the average per-user VGE for

Netflix vs YouTube videos. We find that the VGE for YouTube content is more scattered

than for Netflix content, indicating that users tend to watch videos for different categories

as compared to Netflix videos. The correlation coefficient is 0.1 indicating a weak positive

relationship between the VGE of Netflix vs YouTube content meaning that users that tend to

have concentrated genre preferences for YouTube, may also have concentrated preferences

for Netflix content.
The typical user has more concentrated genre preferences for series content (average

viewing genre entropy is 0.52) as compared to YouTube videos (viewing genre entropy

is 0.71) and movies (viewing genre entropy is 0.76); interestingly, this holds true across

activity levels.

133

Y
T

 C
o

n
te

n
t

(%
)

0

6

12

18

24

30

G
a
m

in
g

P
e
o

p
le

 &
 B

lo
g

s

C
o

m
e
d

y

E
n

te
rt

a
in

m
e
n

t

T
ra

v
e
l
&

 E
v
e
n

ts

A
c
ti
v
is

m

S
c
ie

n
c
e
 &

 T
e
c
h

.

N
e
w

s
 &

 P
o

lit
ic

s

P
e
ts

 &
 A

n
im

a
ls

M
o

v
ie

s

M
u

s
ic

A
u

to
s
 &

 V
e
h

ic
le

s

E
d

u
c
a
ti
o

n

S
p

o
rt

s

H
o

w
to

 &
 S

ty
le

F
ilm

 &
 A

n
im

a
ti
o

n

T
ra

ile
rs

S
h

o
w

s

AL 1 AL 2 AL 3

Figure 7.48: Distribution of
YT genres watched across
all users

N
F

:
S

e
ri
e
s
 C

o
n
te

n
t

(%
)

0

7

14

21

28

35

M
y
s
te

ry
K

id
s

F
a
m

ily
A

c
ti
o

n
 &

 A
d

v.
S

c
i-

F
i
&

 F
a
n
ta

s
y

R
o

m
a
n
c
e

W
a
r

&
 P

o
lit

ic
s

C
ri
m

e
D

ra
m

a
A

n
im

a
ti
o

n
R

e
a
lit

y
W

e
s
te

rn
N

e
w

s
M

u
s
ic

C
o

m
e
d

y
D

o
c
u
m

e
n
ta

ry
S

o
a
p

Ta
lk

T
h
ri
lle

r
M

u
s
ic

a
l

H
is

to
ry

AL 1 AL 2 AL 3

Figure 7.49: Distribution of
NF series genres watched
across all users

N
F

:
M

o
v
ie

s
 C

o
n

te
n

t
(%

)

0

4

8

12

16

20

M
y
s
te

ry
F

a
m

ily
A

d
v
e
n

tu
re

S
c
ie

n
c
e
 F

ic
ti
o

n

R
o

m
a
n

c
e

W
a
r

C
ri
m

e
D

ra
m

a
A

n
im

a
ti
o

n
W

e
s
te

rn
M

u
s
ic

C
o

m
e
d

y
D

o
c
u

m
e
n

ta
ry

T
h

ri
lle

r
H

is
to

ry
H

o
rr

o
r

F
a
n

ta
s
y

A
c
ti
o

n
T

V
 m

o
v
ie

AL 1 AL 2 AL 3

Figure 7.50: Distribution of
NF movies genres watched
across all users

C
D

F

0

0.2

0.4

0.6

0.8

1

VGE

0 0.25 0.5 0.75 1

YT NF: Series NF: Movies

Figure 7.51: Viewing genre
entropy for YT and NF
content

C
D

F

0

0.2

0.4

0.6

0.8

1

VGE for YT videos

0 0.25 0.5 0.75 1

AL 1 AL 2 AL 3

Figure 7.52: Viewing genre
entropy of YT content

C
D

F

0

0.2

0.4

0.6

0.8

1

VGE of NF series content

0 0.25 0.5 0.75 1

AL 1 AL 2 AL 3

Figure 7.53: Viewing genre
entropy of NF series
content

C
D

F

0

0.2

0.4

0.6

0.8

1

VGE of NF movies content

0 0.25 0.5 0.75 1

AL 1 AL 2 AL 3

Figure 7.54: Viewing genre
entropy of NF movies
content

Y
o

u
T
u
b

e
 V

G
E

0

0.25

0.5

0.75

1

Netf ix VGE

0 0.25 0.5 0.75 1

Figure 7.55: Viewing genre
entropy for Netflix vs
YouTube on a per-user
basis

Y
T

 C
o

n
te

n
t

(%
)

0

6

12

18

24

30

Number of Views

<
1

0
k

[1
0

k
,1

0
0

k
)

[1
0

0
k
,1

M
)

[1
M

,1
0

M
)

[1
0

M
, 1

0
0

M
)

[1
0

0
M

, 5
0

0
M

)

[5
0

0
M

, 1
B

)

[1
B

, 4
B

]

>
4

B

Overall AL 1 AL 2 AL 3

Figure 7.56: Distribution of
view count for YT content

134

Do active users prefer more popular YouTube and Netflix content?

Gaining insight into how the popularity and ratings of content affect the consumption for

different activity levels is helpful for caching and content delivery systems. For each series

watched by users in our dataset, we obtained the number of IMDB votes the series/movie

had at the time of retrieval. IMDB is an extensive online database of information related

to movies, TV series and streaming content- including rating and reviews that are given

by registered IMDB users. The number of votes a series/movies received can serve as a

indication of how popular that title is, and similarly, the number of views that a YouTube

videos received can serves as a measure of popularity. Fig. 7.56 shows the distribution of

the views that users’ watched YouTube videos have; we find that 46% of videos that the

least active users watch has more than 100 million views, whereas 29% of highly active

users’ videos fall in this range. The average number of views for YouTube videos watched

by users in AL 1, AL 2 and AL 3 categories are 620 million, 360 million, 202 million views

respectively. This implies that less active users tend to watch more popular content than

more active users. Similar behavior can be seen for Netflix content too; the distribution of

the number of votes for series content and movies content is shown in Fig.7.57 and Fig.

7.58. The average votes of Netflix series content watched for users in AL 1, AL 3 and AL

3, is 6234, 4921 and 4721 votes respectively. We see from Fig. 7.58 that the least active

users prefer more popular content; more than 55% of the watched content having more than

6000 votes as compared to 41% for AL 2 users and 36% for AL 3 users.
The least active users prefer to watch more popular content on both Netflix and YouTube

platforms; the YouTube videos that least active users watch has 3 times as many views

as the videos that highly active users watch, and 1.5 times more votes than Netflix series

and movies have.

Practical Implications

Being able to effectively understand users’ preferences lends itself to the development of

efficient recommendation systems and personalized advertising strategies. With Netflix

135

N
F

 S
e
ri
e
s
 C

o
n
te

n
t

(%
)

0

6

12

18

24

30

Number of Votes

<
1
k

[1
k
,2

k
)

[2
k
,3

k
)

[3
k
,4

k
)

[5
k
,6

k
)

[6
k
,7

k
)

[7
k
,8

k
)

[8
k
,9

k
)

>
9
k

Overall AL 1 AL 2 AL 3

Figure 7.57: Distribution
of votes received for NF
series

N
F

 M
o

v
ie

s
 C

o
n
te

n
t

(%
)

0

4

8

12

16

20

Number of Votes

<
1
k

[1
k
,2

k
)

[2
k
,3

k
)

[3
k
,4

k
)

[5
k
,6

k
)

[6
k
,7

k
)

[7
k
,8

k
)

[8
k
,9

k
)

>
9
k

Overall AL 1 AL 2 AL 3

Figure 7.58: Distribution
of votes received for NF
movies

C
D

F

0

0.2

0.4

0.6

0.8

1

Predictability of YT content (%)

0 25 50 75 100

AL 1 AL 2 AL 3

Figure 7.59: CDF of
predictability for YT content

being a subscription-based model, it does not rely on personalized ads for its revenue, but

rather it heavily relies on its recommendation engine for customer retention; in fact, it is

estimated that 80% of stream time is achieved through their recommendation engine [123].

The recommendation algorithm has several components which work in conjunction when

determining what to recommend to a particular user. It consists of a personalized video

ranker (orders Netflix titles for a specific individual user), a trending now ranker (which

takes into account popularity and trending features) as well makes use of collaborative fil-

tering component [124]. The individual user’s preferences is key for the personalized video

ranker in particular, and being able to study and draw insights from the user preferences as

well as how it changes over time is critical. Our results suggest that a user tends to have

a more concentrated preference for Netflix series content than for short-form videos or

movies, and that typically, the amount of content a user consumes is inversely proportional

to the popularity of that content.

With regard to YouTube, the immense prevalence and widespread consumption of

YouTube videos has influenced advertisers to incorporate and design their strategies around

these platforms [85]. Advertising revenue on YouTube is estimated to be up to $8.5 billion

[75]. User preferences and how this changes with time would thus be of utmost inter-

est to advertisers for targeting and personalizing adverts. Similar to advertisers, content

providers are also interested in user preferences with the mutual goal of increasing visi-

136

bility. Learning about user preferences makes it possible to model user information needs

and adapt services to meet these needs. Interestingly, our results show that user preferences

related to the types of YouTube videos they watch (characterized by their category) does

not vary significantly across time, and so there is potential for time-invariant personalized

advertising.

7.2.4 Predictability

How much of user’s YouTube future watches are predictable?

Being able to predict what a user will watch in the future is particularly useful for prefetch-

ing strategies. Prefetching content has extensively been used to reduce user-perceived la-

tency when loading web pages across the internet [44, 45]. These strategies anticipate the

content a user is likely to consume, download the content ahead of time, and make the

content available at the time of consumption. To explore the feasibility of prefetching, we

consider how a user’s YouTube watch behavior is influenced by videos they have seen in

the past. Specifically, we see whether videos that are related to videos that has been seen by

a user in the past, is consumed by the user in the future; we term this as the predictability.

YouTube algorithmically determines videos that are related to one another using the

video’s meta-data, and also by employing collaborative filtering methods. We use YouTube

API’s relatedToVideoId endpoint to retrieve a list of videos which is related to a particular

video. For a particular user, we fetch 50 related videos of every video that has been watched

by the user, and then see if any of the related videos were watched later; we term this set

as the “related set”. We perform this analysis for all the users in our collected dataset for

their entire watch-history, and present the results across the activity levels; this is shown

in Fig. 7.59. This figure shows the percentage of videos that are found in the related set

of videos they have seen in the past. We find that the average percentage is 60.4%, and

ranges from 9.5% to 98.3%, with a standard deviation of 13.7% and median of 59.1%. In

addition, we found that 8.3% of these videos are from channels the user has subscribed

to, while 3.4% appears in their playlists. We find that moderately active users are more

137

C
D

F

0

0.2

0.4

0.6

0.8

1

Predictability of NF series (%)

0 25 50 75 100

AL 1 AL 2 AL 3

Figure 7.60: CDF of
predictability for series
content

C
D

F

0

0.2

0.4

0.6

0.8

1

Predictability of NF movies (%)

0 25 50 75 100

AL 1 AL 2 AL 3

Figure 7.61: CDF of
predictability for movies
content

C
D

F

0

0.25

0.5

0.75

1

Predictability (%)

0 25 50 75 100

YT NF: Series NF: Movies

Figure 7.62: CDF of
predictability for YT and
NF content

predictable, in the sense, than on average, 8.7% more content appears in the related set of

their previously watched content as compared to the most active users. When compared to

least active users, on average, 23.4% more content is related to previously watched content.
With 60% of YouTube videos watched by a user being present in the related set of videos

that the user has previously watched, YouTube watch behavior is predictable and can be

used in the development of effective prefetching systems.

How much of user’s Netflix future watches are predictable?

To see whether we can predict what the user will watch next based on what they have

consumed in the past WSs, specifically for Netflix series content, we do the following:

for every WS that appeared in a user’s viewing history, and for each episode watched in

that session, we check if its preceding episode was watched within a certain number of

previous WSs. For example, if episode 20 of series A was watched today, we check if

and how many WSs prior, episode 19 was watched. We compute this for all users in our

dataset across their entire history, the average is shown in Fig. 7.60 across the various

activity levels. In general, we find that approximately 78% of the user’s episode watches

follows an episode that the user has seen in the past. We also find that as the activity level

of the user increases, there is only a slight increase in the predictable % of episodes. The

average predictability for users in AL 1, AL 2 and AL 3 is 76.1%, 77.8% and 78.4%. We

138

conclude that nearly 78% of a user’s future episode watches can be predicted as it proceeds

a previously watched episode from the series. These results serve as an upper bound for

the accuracy the caching algorithm can achieve, if it were to cache all proceeding episodes

of TV series and documentaries that the user has seen.

To evaluate the predictability of movies we employ a similar method to evaluating the

predictability of YouTube content. For every movie watched, we see if it was related to a

movie that was previously watched (12 related movies are obtained during the meta-data

collection for every movie). Fig. 7.61 show the percentage of movie watches that was

related to movies the user had previously watched. On average, approximately 56.2% of

future movies were related to previous movies watched; this value increases as the activity

level of the user increases. Specifically, the predictability for movie content for moderately

active and highly active users is approximately the same (55.8% and 57.9% respectively),

however, for the least active users, it is significantly lower with the average being nearly

20% less than for more active user. This in line with our previous results which show than

low active users are more diverse in terms of their movie genres that they watch.
Nearly 78% of a user’s future series episode watches, and 56% of future movie watches

can be predicted based on what the user has seen in the past.

How does the predictability compare for YouTube vs Netflix?

In effort to compare the prefetching potential via the predictability metric, we show the

average predictability for all users in our dataset for YouTube content, Netflix series content

and Netflix movies content in Fig. 7.62. The predictability is quite similar for YouTube

content and Netflix movies content (60.4% and 56.2% respectively), however it is much less

than for series content (78%). This is not surprising as Netflix series content is sequential

in nature, and thus prefetching and caching systems for Netflix series content can prove to

be successful. However, due to limited resource constraints on the caching and prefetching

devices, designing an efficient prefetching system that does not cache content that the user

does not ultimately watch, may prove to be complex. Similarly, for caching systems that

139

Y
o

u
T
u

b
e
 P

re
d

ic
ta

b
ili

ty
 (
%

)

0

20

40

60

80

100

Netf ix Predictability (%)

0 20 40 60 80 100

Figure 7.63: Predictability
of Netflix vs YouTube
content

S
e
a
s
o

n
s
 t

o
 c

o
m

p
le

ti
o

n
 (
%

)

0

25

50

75

100

Ta
lk

M
u
s
ic

a
l

K
id

s
C

o
m

e
d

y
W

a
r

&
 P

o
lit

ic
s

R
e
a
lit

y
W

e
s
te

rn
D

ra
m

a
M

u
s
ic

H
is

to
ry

N
e
w

s
F

a
m

ily
S

c
i-

F
i
&

 F
a
n
ta

s
y

C
ri
m

e
M

y
s
te

ry
A

n
im

a
ti
o

n
A

c
ti
o

n
 &

 A
d

v.
R

o
m

a
n
c
e

D
o

c
u
m

e
n
ta

ry
S

o
a
p

T
h
ri
lle

r

56.757
Average

Figure 7.64: Average
percentage of seasons
watched to completion in
each genre

C
D

F

0

0.25

0.5

0.75

1

Season point of departure (%)

0 25 50 75 100

Overall AL 1 AL 2 AL 3

Figure 7.65: Point of
departure of seasons not
watched to its entirety

rely on the related movies and YouTube videos from which to prefetch, will need to employ

intelligence to be able to effectively learn the user’s behavior and then cache content in an

efficient manner.

Fig. 7.63 shows the average per-user predictability for Netflix vs YouTube content. The

Pearson correlation coefficient is 0.04 which indicates that there is no correlation between

the predictability from one service to another i.e. if for a specific user, there is a higher

prefetching potential for Netflix content, it does not mean it is the same for YouTube content

too. We can see that there is a larger range of YouTube predictability (from 10% to 98%)

to as compared to Netflix content (from 24% to 90%).
With an average correlation coefficient of 0.04, there is no correlation between the pre-

dictability potential for Netflix vs YouTube content for a single user.

Practical Implications

Being able to predict what a user will watch in the future is particularly useful for prefetch-

ing strategies. Prefetching content has extensively been used to reduce user-perceived la-

tency when loading web pages across the internet [44, 45]. These strategies anticipate the

content a user is likely to consume, download the content ahead of time, and make the

content available at the time of consumption. The motivation for prefetching videos stems

from one of two reasons: 1) to reduce network usage during peak times, and 2) to enable

140

high video viewing QoE by prefetching content to avoid unstable network connections.

The results presented in this section show that both YouTube and Netflix content is indeed

predictable across all activity levels. Hence, there is a potential for developing successful

prefetching systems which can be used to fetch content during low-cost periods (such as

over WiFi or off-peak periods). However, while there is a considerable higher prefetching

potential for Netflix series content (78% for Netflix series and 60% for YouTube videos),

the cost of inaccurate prefetching is higher for Netflix series videos as compared to shorter

YouTube videos due to bandwidth and storage constraints. Thus, designing a highly effi-

cient prefetching system for Netflix content specifically is imperative.

141

CHAPTER 8

AN INTEGRATED APPROACH FOR TIME-SHIFTED PREFETCHING OF
YOUTUBE AND NETFLIX SERIES VIDEOS

In the previous chapters, we provided an in-depth analysis with associated key insights from

our collected datasets of YouTube and Netflix usage (chapter 3 and chapter 5). We then

designed two prefetching solutions for YouTube content, namely Mantis (chapter 4), and

then for Netflix content, namely CacheFlix (chapter 6). We then collected another dataset

of joint YouTube and Netflix usage, and showed the interaction between these platforms

at an individual user level (chapter 7). We also studied the predictability of YouTube and

Netflix series videos as well (section 7.2.4); an interesting follow-up would be to determine

if and how Mantis and CacheFlix can be jointly utilized cross-platforms for the prefetching

of video content. To this end, we use the joint dataset collected of both YouTube and

Netflix usage, and show how we can integrate CacheFlix and Mantis. We then provide

results pertaining to enhanced versions of Mantis and CacheFlix. We also provide a general

framework for prefetching video content, which is governed by the systems that we have

developed. This framework can be applied for prefetching video content beyond videos

hosted on YouTube and Netflix.

8.1 Integrated Solutions

In this section, we discuss methods to enhance our proposed Mantis scheme with CacheFlix,

and vice versa. For this, we utilize the same dataset that was used for the joint insights

study described in chapter 7. To reiterate, we relied on Amazon Mechanical Turk to gather

anonymized Netflix and YouTube viewing history from 377 users for at least a 1-year pe-

riod [78]. The task we posted required mTurkers to submit both their YouTube viewing

history and Netflix viewing history covering the same period (at least 1 year from January

2020 to January 2021). A summary of the dataset is in table 7.1.2 and table 7.1.2.

142

Table 8.1: Accuracy of CacheFlix+ for users in AL 1 to AL 4

Accuracy (%) AL 1 AL 2 AL 3 AL 4 Overall
CacheFlix 83.2 82.1 84.3 81.1 82.7
CacheFlix+ 86.6 85.3 87.2 83.2 85.6

Table 8.2: Efficiency of CacheFlix+ for users in AL 1 to AL 4

Efficiency (%) AL 1 AL 2 AL 3 AL 4 Overall
CacheFlix 70.2 73.3 74.5 76.1 73.5
CacheFlix+ 74.6 75.2 77.2 79.5 76.7

8.1.1 CacheFlix+: Enhancing CacheFlix with YouTube viewing behavior

A simple but effective way to enhance CacheFlix, would be to include the user’s YouTube

watching behavior to determine if that has an influence on how the user consumes Netflix

content. We term this system as CacheFlix+. Specifically, we include a features based

representation of the user’s YouTube watching behavior at the time we are prefetching

Netflix series videos. As stipulated by Mantis during the candidate set generation period,

we include the user’s YouTube watching behavior over the 2 weeks prior to the day of

prefetching. The features that we include from those videos are the viewing genre entropy

(Eq. 7.9), viewing day entropy (Eq. 7.1), viewing hour entropy (Eq. 7.3), time between

watch sessions entropy (Eq. 7.6), burstiness parameter (Eq. 7.8), no. of videos watched

over the generation period, and also the amount of time spent watching YouTube videos

over the generation period. These features are added to the features layer as described in

Fig. 6.15. The rest of the operation of CacheFlix with the user specific eviction policy is as

described in section 6.4 (the way we train and test the algorithm is as described in section

6.5). We show the results of CacheFlix+ in table 8.1 and table 8.2; we show the results for

the users in activity levels 1 to 4 and compare the accuracy and efficiency to CacheFlix.

We find that overall, CacheFlix+ is 2.9% more accurate, and 3.2% more efficient than

CacheFlix. We found this to be true across all activity levels.

143

Table 8.3: Accuracy of Mantis+ for users in AL 1 to AL 4

Accuracy (%) AL 1 AL 2 AL 3 AL 4 Overall
Mantis 73.2 74.3 77.6 78.4 75.9
Mantis+ 74.1 76.3 77.8 78.7 76.7

Table 8.4: Efficiency of Mantis+ for users in AL 1 to AL 4

Efficiency (%) AL 1 AL 2 AL 3 AL 4 Overall
Mantis 72.4 74.2 76.2 75.5 74.6
Mantis+ 73.6 75.8 77.9 76.0 75.8

8.1.2 Mantis+: Enhancing Mantis with Netflix viewing behavior

We also look into how to supplement Mantis with a user’s Netflix viewing history. We im-

plement Mantis+ in a similar fashion in that we include a features based representation of

the user’s Netflix viewing behavior over the past 2 weeks from the day of prefetching. The

features that are used to capture the user’s Netflix behavior is the viewing genre entropy

(Eq. 7.9), viewing day entropy (Eq. 7.1), the time between watch sessions entropy (Eq.

7.6), burstiness parameter (Eq. 7.8), no. of Netflix series videos watched over the genera-

tion period, and also the amount of time spent watching series videos over the generation

period. These features are added to the features layer as described in Fig. 6.15. The rest of

the operation of CacheFlix with the user specific eviction policy is as described in section

6.4 (the way we train and test the algorithm is as described in section 6.5). We show the

results of CacheFlix+ in table 8.1 and table 8.2; we show the results for the users in activity

levels 1 to 4 and compare the accuracy and efficiency to CacheFlix. We find that overall,

CacheFlix+ is 2.9% more accurate, and 3.2% more efficient than CacheFlix. We found this

to be true across all activity levels.

8.2 Framework for Prefetching and Edge-Caching Platform Agnostic Video Content

Here we propose a general framework for prefetching and caching video content in a time-

shifted manner for any platform (e.g., Hulu, Disney+, Vimeo). The overall framework,

144

Fetch viewing history

Obtain metadata

Process and store data

Data Processing Pipeline

Extract user features

Extract content features

Features Generator

ML/DL Algorithm

Prediction Module

Download videos

Evict videos

Cache Manager

Cache policy,
device resources,
user-defined rules

Store videos

Retrieve videos

Delivery Module

Determine videos

Figure 8.1: General framework for prefetching and caching of video content

governed by our proposed systems for prefetching YouTube and Netflix series videos, is in

Fig. 8.1. It consists for 5 components, namely: data processing pipeline, features extrac-

tion, prediction model, cache manager and delivery. To summarize, (i) user-level watching

data is collected and the associated meta-data is obtained, (ii) after which the appropriate

features are extracted, (iii) this is then fed to a prediction model which determines what

videos the user is likely to watch, (iv) the videos that are ultimately cached and removed

are determined by the cache manager, (v) after which it is stored on the device and retrieved

by the user at a later time. In the following subsections, we will discuss each component in

further detail.

8.2.1 Data Processing Pipeline

This component relates to the collection and processing of the user’s watching behavior

which is used during both the training and prediction phases. The main purpose of this

component is to learn the user’s watching behavior based on their viewing history, so that

accurate predictions can be made by the prediction model. This component involves ob-

taining the relevant metadata for the videos watched by the user so that appropriate features

can be extracted. It also includes processing and storing the data which can be stored in a

centralized or distributed database depending on the chosen system architecture design.

145

8.2.2 Features Generator

This component involves extracting both user related features and content specific features.

As was discussed in the design for both Mantis and CacheFlix, there are features that are

related to the type of content that is consumed (such as the genre, the release date, the

people involved in the content creation etc.), as well as features that are used to capture the

way the user consumes videos on that platform, and how they interact with certain videos.

User specific features can include the user’s temporal patterns (e.g., viewing entropy rates),

the amount of content typically consumed by the user, as well as their content preferences

(e.g., preferred genre).

8.2.3 Prediction Module

The prediction model consists of the machine learning or deep learning model that is trained

on the user’s past data, and then makes predictions based on the user’s recent viewing his-

tory. For both phases, the data processing pipeline as well as the features extraction is the

same. The algorithm can be a classification model (as in the case for Mantis), which is

used to determine what videos to select from a candidate set, or sequential (such as for

CacheFlix) which determines how much content to prefetch. It can also utilize a combina-

tion of these two types of models as will be discussed in the subsequent sections.

8.2.4 Cache Manager

The cache manager is responsible for fetching the videos that are predicted by the pre-

diction module from the content provider. It also evicts videos that are stored on the

device/edge-cache governed by predetermined cache policy (e.g., FIFO, LRU). This policy

is used to determine which videos to prefetch based on the available resources (e.g., device

storage, available power), and user defined rules (e.g., the user can specify that at most x

videos can be downloaded).

146

8.2.5 Delivery Module

This module stores the videos on the device so that it can be seamlessly fetched and pre-

sented to the user, when the user requests it at a later stage. Once the cache manager

downloads the videos, the delivery module stores it at an appropriate location and format,

so that when the user requests the videos, it is retrieved from the cache and presented to

the user. It is important to note that the prefetching system does not alter the user’s view-

ing behavior in any way as the prefetching is performed as a background function, and the

videos should be presented to the user in an uninterrupted manner when requested from

their choice of video consumption platform.

8.3 Extending Framework for Prefetching and Edge-Caching Structured and Un-
structured Data

In the previous section, we presented a general framework for edge-caching video content

regardless of the platform on which it is hosted. In this section, we show how the framework

can be modified to prefetch other types of data, not only video content. Specifically, we

explore two types of data accesses: i) structured data, which refers to data that is organized

and searchable (YouTube and Netflix videos fall under structured data); and ii) unstructured

data which is raw data that is not searchable such as data from IoT sensors.

8.3.1 Data Processing Pipeline

Structured Data

For structured data, the data processing pipeline would be as shown in Fig. 8.1, where

the key principles regarding learning how the user interacts with the structured data, and

retrieving appropriate metadata, remains applicable. For example, if the data that is being

prefetched is Spotify audio tracks, then the user’s history regarding what they listen to and

data regarding the audio tracks would be stored.

147

Unstructured Data

In addition to the sub-modules shows in Fig. 8.1, a sub-module which organizes the un-

structured data first would need to be included. For this sub-module, as an example if

temperature sensor data were to be collected, then the data would first need to be processed

from the readings given by the sensor, and additional information, such as perhaps the time

the data was obtained, would need to be attached. Additional metadata of how this relates

with the user would need to be included to form an equivalent ”history” of user interactions

with the unstructured data.

8.3.2 Features Generator

Structured Data

The sub-modules for the structured data, even though it is not video data, is not modi-

fied. The features related to the user’s behavior and how they access the structured data

is extracted, as well as features from the meta-data of the structured data is extracted and

stored.

Unstructured Data

While the exact method of extracting features will be dependent on the type of data, both

user-specific features about how the user interacts with unstructured data, as well as features

related to the metadata that is retrieved during the data process pipeline will be extracted,

processed and stored accordingly. For example, if the timestamp was attached during sen-

sor data retrieval, then this would be one of the content-specific features extracted.

8.3.3 Prediction Module

Structured Data

The objective of this module is, to use as input, a featurized representation of the user’s his-

tory for training the ML or DL module to ultimately make a prediction on what structured

data would need to be prefetched. This sub-module also includes generating the ”candi-

148

date set” from which data would need to be predicted if applicable (such as in the case of

Mantis). The module would be only modified for the type of data to predict (for example,

audio tracks rather than specific videos).

Unstructured Data

As the features are used as input into the prediction module, the sub-module for training

the ML or DL algorithm will be required. The prediction would be in the same structure as

formatted during the data-processing pipeline submodule.

8.3.4 Cache Manager

Structured Data

The cache manager would be responsible for downloading the data from the structured data

source (e.g. the Spotify server), and evicting content from the cache as stipulated by the

cache policies and device resources.

Unstructured Data

While the sub-modules in the cache manager will be required for unstructured data, a sep-

arate module which handles the prediction made from the prediction module (this is in a

structured form) and converts into the unstructured data would need to be included. Sim-

ilarly, a module which converts the structured-data based caching eviction policy to cater

to the unstructured data would need to be included. This would then evict the unstructured

data based on the policy.

8.3.5 Delivery Module

Structured Data

This module would store the structured data on the storage or user device as was used for

CacheFlix and Mantis. The required content would then be retrieved from the device and

presented to the user in a seamless manner. The operation of this module would be the

same as was discussed in the prior section.

149

Unstructured Data

As unstructured data is downloaded by the cache manager, an appropriate database which

is designed to handle such data, for example non-relational databases such as MongoDB,

would be used to store the data. The retrieval sub-module would then retrieve the data from

the databases, and present it to the user in its original state.

150

CHAPTER 9

CHALLENGES AND NEXT STEPS

In this dissertation, we presented 2 prefetching solutions for YouTube videos (Mantis) and

for Netflix series videos (CacheFlix). In this chapter, we discuss some challenges and

future directions for the proposed systems.

9.1 Mantis: Time-Shifted Prefetching of YouTube Videos to Reduce Peak-time Cel-
lular Data Usage

1. System design: The system architecture presented earlier in the chapter requires that

the user have a YouTube premium subscription (if used in a country that does not of-

fer offline download as a free feature [92]). To bypass the requirement of a YouTube

premium account, a possible alternative architecture for Mantis is to place a transpar-

ent HTTPs caching proxy between the Mantis client and the YouTube server, residing

on the client device. The Mantis server’s operations are the same as section 4.3.5.

All the client actions are performed and prefetched by the proxy.

2. Expanding candidate set: In this chapter, we use only the related videos set as the

candidate set from which to perform the prefetching. This places an upper bound on

the overall prefetching hit ratio (of about 40%) that can be achieved. Other sources

of videos can be considered to go beyond this bound. Such sources can include the

user’s social media network and videos within YouTube’s recommendation list.

3. WiFi offloading: Although this work has focused on shifting network traffic from

peak to off-peak for cellular networks, WiFi networks can also be used for prefetch-

ing content. There are 2 ways in which this can take place: 1) the WiFi network

is used to prefetch content during off-peak hours, or 2) Mantis can be configured

to trigger the prefetching when a change in connection is detected- content can be

151

prefetched when the user moves to a WiFi network from a cellular network, or if

network connectivity is predictable when the user is likely to leave a WiFi network.

4. User quality of experience (QoE) implications: There are several user-related QoE

benefits through the employment of Mantis such as improved video quality and re-

duction in buffer events during peak-time hours when they would otherwise experi-

ence network outages or throttling.

5. User privacy: With the current system architecture, the user’s watch-history is sent

over a secure channel to a server in the cloud; however, this can be prevented if

the prediction module and history databases are locally placed on the mobile device

itself, which means that the user’s data will not be shared with any other service. We

leave this consideration for future work.

9.2 CacheFlix: Toward Effective Prediction of Watch Behavior for Time-Shifted
Edge-Caching of Netflix Series Videos

1. Incentives and cost-benefits: The problem of reducing peak-time traffic is addressed

in this work; network service providers stand to gain the most from this, but there

are also several QoS benefits (e.g. reducing buffering events) for clients. In terms of

incentives, there are 2 potential ways to address this: (i) ISPs can waive or reduce

billing for usage during off-peak periods; (ii) even if the usage will be eventually

passed along to the user, if the ISP does 95th percentile billing, then CacheFlix’s

prefetching will bring the 95th percentile usage of the user to a lower tier. Further-

more, CacheFlix can help video providers reduce their network burden; recently, sev-

eral video providers (Netflix, YouTube, Disney+, Apple) complied with a European

Commission request to alleviate network strain during the pandemic, by reducing the

default quality of the video delivered to users [125]. The incentives and benefits for

video and networks providers, as well as for clients should be further explored.

2. Implementation challenges: A possible method of caching content is to store it on

152

an external storage connected to a smart-TV or WiFi router. However, due to the

recent encryption of HTTP transfers using SSL for Netflix content, implementing a

transparent caching proxy and seamlessly presenting the prefetched content to the

user is challenging and solutions will need to be explored.

3. User privacy: As the user’s viewing history is required for the training of CacheFlix,

methods to ensure user privacy needs to be developed. This can potentially be per-

formed locally on the end-device itself.

4. Sharing Netflix profiles: It is fairly common for households to share a Netflix account

with users creating different profiles on the account. However, as CacheFlix attempts

to learn a user’s preferences, if there are multiple users that share the same user

profile, this would invariably compromise the ability of the algorithm to learn a user’s

personal viewing behavior.

5. Prefetching Netflix feature films: With feature films constituting 12% of a user’s

viewing activity in terms of the bytes fetched, methods of prefetching this content

should be developed.

In addition to the next steps specific to Mantis and CacheFlix, a future work for both

solutions include extending to a multiple-user scenario. Currently, Mantis and CacheFlix,

learns a single user’s behavior and then prefetches content specific for that user. There are

interesting challenges that arise if we were to expand these solutions to cater to multiple

users with shared storage (e.g. at a CDN storage node) and bandwidth resources. Further-

more, more computationally efficient techniques (e.g. LSTM with attention) for prediction

purposes once the solution is scaled up should be adopted.

153

CHAPTER 10

CONCLUSIONS

In this dissertation, we considered the strategy of time-shifted prefetching. We explored

the problem of prefetching content during off-peak periods of the network even when such

periods are substantially separated from the actual usage-time, and caching the content

on edge nodes closest to the user. With video streaming dominating Internet traffic and

increasingly placing a burden on the network, we focus on the prefetching of Netflix and

YouTube content- the two most popular video streaming platforms. The objective of this

work is to develop a set of data-driven prediction and prefetching systems, using machine-

learning and deep-learning techniques, which accurately anticipates the video content the

user will consume, and caches it on edge nodes during off-peak periods to reduce peak-time

usage. To this end, we collected 3 datasets on YouTube and Netflix usage, and presented

key insights, and developed associated time-shifted prefetching systems.

In chapter 3, we collected and analyzed a real-life dataset of YouTube watch history

from 243 users comprised of over 1.8 million videos spanning over a 1.5-year period. Us-

ing this data, we provided a number of insights and associated implications by answering

5 questions regarding a user’s interaction with YouTube: i) How often do users watch the

same video again? ii) Is a user’s watch behavior predictable? iii) What role does YouTube’s

recommendation engine play in influencing users? iv) How dynamic are user’s video pref-

erences? and v) What are user’s typical YouTube data consumption patterns? These ques-

tions pertain to certain representative problems and our associated analysis provided key

insights related to those problems. Furthermore, we considered a few representative prob-

lems in the domains of networking and communications, and provided substantiated direc-

tions for solutions based on insights from the dataset.

In chapter 4, we address the problem of high peak cellular traffic, through a time-shifted

prefetching strategy for YouTube content. Equipped with the dataset and its associated

154

findings from chapter 3, we propose Mantis, a machine learning algorithm for prefetching

YouTube videos that is trained on a user’s YouTube watch history and predicts the user’s

likely video watch behavior over the next 24 hours. Mantis generates the candidate set,

selects features to appropriately encapsulate the user’s past behavior, and uses a tuned KNN

classifier to select videos from the candidate set. Mantis was evaluated across the users,

and also compared to data collected by different authors. We also presented and tested a

proof-of-concept prototype for the proposed prefetching solution. We found that an overall

reduction, of 34%, in traffic during peak periods was achieved through the employment of

this algorithm, while increasing the overall BW consumption by 12%.

In chapter 5, we collected and analyzed a real-world Netflix dataset which consisted of

1-year viewing activity from 1060 users amounting to over 1.7 million watched episodes

and movies. Equipped with this data, we derived key insights pertaining to the user’s watch

patterns, watch-session length, user preferences, predictability and series continuation ten-

dencies. We also implemented and evaluated prediction models that is used to predict if

a user will continue watching a series or not. We found that we were able to achieve an

overall accuracy of 68% with the Random Forest classifier.

In chapter 6, we explored the time-shifted edge caching of Netflix series videos on edge

nodes closest to the user, with the goal of reducing overall peak-time Netflix traffic. We

proposed a deep-learning prediction algorithm, CacheFlix, using the dataset and insights

from chapter 5, which makes a prediction of how much content to cache based on the

user’s past viewing pattern and their content-specific interactions. We presented results

for the prediction accuracy and caching efficiency for our solution across 4 different cache

eviction policies, and show that we are able to shift 70% of their Netflix traffic to off-peak

periods.

In this chapter 7, we collected and analyzed a real-world YouTube and Netflix dataset,

which consisted of at least 1-year viewing activity from 377 users amounting to over 4.3

million watched episodes and movies. Using this dataset, we derived key insights for in-

155

dividual user behavior related to their watch patterns, amount of content consumption,

viewing interests, and predictability of their future viewing for both Netflix content (series

and movies) and YouTube videos. The results and analysis provided attempt to serve as a

basis for tackling several problems in the general area of Internet protocols, algorithms and

systems.

In chapter 8, we developed an integrated solution of Mantis and CacheFlix. We showed

how Mantis can be enhanced with a features representation of the user’s Netflix viewing

behavior, and how CacheFlix can be enhanced with a features representation of the user’s

YouTube viewing behavior. We saw that were able to achieve a slight improvement with the

enhanced algorithms across all activity levels. We also presented a general framework for

prefetching video content during off-peak periods. This framework consisted of 5 modules,

namely: data processing pipeline, features generator, prediction module, cache manager

and delivery module.

156

REFERENCES

[1] (2016). “Cisco visual networking index: Forecast and methodology 2016-2021.”

[2] (2017). “Cisco vni complete forecast highlights.”

[3] (2019). “4 ways service providers can improve capacity forecasts.”

[4] F. Fusco, M. P. Stoecklin, and M. Vlachos, “Net-fli: On-the-fly compression, archiv-
ing and indexing of streaming network traffic,” Proc. VLDB Endow., vol. 3, no. 1-2,
pp. 1382–1393, Sep. 2010.

[5] J. Malone, A. Nevo, and J. Williams, “The tragedy of the last mile: Congestion
externalities in broadband networks,” NET Institute, Working Papers 16-20, 2016.

[6] K. Lau and Y.-K. Ng, “A client-based web prefetching management system based
on detection theory,” in Web Content Caching and Distribution, C.-H. Chi, M. van
Steen, and C. Wills, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 129–143, ISBN: 978-3-540-30471-5.

[7] S. Sanadhya, U. P. Moravapalle, K.-H. Kim, and R. Sivakumar, “Precog: Action-
based time-shifted prefetching for web applications on mobile devices,” in Pro-
ceedings of the Fifth ACM/IEEE Workshop on Hot Topics in Web Systems and
Technologies, ser. HotWeb ’17, San Jose, California: ACM, 2017, 1:1–1:6, ISBN:
978-1-4503-5527-8.

[8] J. Han, X. Li, T. Jung, J. Zhao, and Z. Zhao, “Network agile preference-based
prefetching for mobile devices,” in 2014 IEEE 33rd International Performance
Computing and Communications Conference (IPCCC), 2014, pp. 1–8.

[9] (2020). “The global internet phenomena report covid-19 spotlight.”

[10] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional ip routing
protocols,” IEEE Communications Magazine, vol. 40, no. 10, pp. 118–124, 2002.

[11] (2020). “On the shoulders of giants: Recent changes in internet traffic.”

[12] (2012). “Sandvine global internet phenomena report 2012.”

[13] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding mobile traffic pat-
terns of large scale cellular towers in urban environment,” IEEE/ACM Trans. Netw.,
vol. 25, no. 2, pp. 1147–1161, Apr. 2017.

[14] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube network traffic
at a campus network – measurements, models, and implications,” Computer Net-
works, vol. 53, no. 4, pp. 501 –514, 2009, Content Distribution Infrastructures for
Community Networks.

157

[15] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous, “Network
characteristics of video streaming traffic,” in Proceedings of the Seventh COnfer-
ence on Emerging Networking EXperiments and Technologies, ser. CoNEXT ’11,
Tokyo, Japan: ACM, 2011, 25:1–25:12, ISBN: 978-1-4503-1041-3.

[16] V. K. Adhikari, S. Jain, Y. Chen, and Z. Zhang, “Vivisecting youtube: An active
measurement study,” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 2521–2525.

[17] Y. Zhou, L. Chen, C. Yang, and D. M. Chiu, “Video popularity dynamics and
its implication for replication,” IEEE Transactions on Multimedia, vol. 17, no. 8,
pp. 1273–1285, 2015.

[18] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing the video
popularity characteristics of large-scale user generated content systems,” IEEE/ACM
Transactions on Networking, vol. 17, no. 5, pp. 1357–1370, 2009.

[19] M. J. Halvey and M. T. Keane, “Exploring social dynamics in online media shar-
ing,” in Proceedings of the 16th International Conference on World Wide Web,
ser. WWW ’07, Banff, Alberta, Canada: ACM, 2007, pp. 1273–1274, ISBN: 978-
1-59593-654-7.

[20] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of youtube videos,” in
2008 16th Interntional Workshop on Quality of Service, 2008, pp. 229–238.

[21] T. Ibrahim and C.-Z. Xu, “Neural nets based predictive prefetching to tolerate www
latency,” in Proceedings 20th IEEE International Conference on Distributed Com-
puting Systems, 2000, pp. 636–643.

[22] S.-w. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu, and H. Zhou, “Machine
learning-based prefetch optimization for data center applications,” in Proceedings
of the Conference on High Performance Computing Networking, Storage and Anal-
ysis, 2009, pp. 1–10.

[23] V. A. Siris and D. Kalyvas, “Enhancing mobile data offloading with mobility pre-
diction and prefetching,” in Proceedings of the Seventh ACM International Work-
shop on Mobility in the Evolving Internet Architecture, ser. MobiArch ’12, Istanbul,
Turkey: Association for Computing Machinery, 2012, 17–22, ISBN: 9781450315265.

[24] M. Z. Shafiq, A. X. Liu, and A. R. Khakpour, “Revisiting caching in content de-
livery networks,” in The 2014 ACM International Conference on Measurement and
Modeling of Computer Systems, Austin, Texas, USA: Association for Computing
Machinery, 2014, 567–568, ISBN: 9781450327893.

[25] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier: Edge-caching
for recognition applications,” in 2017 IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS), 2017, pp. 276–286.

158

[26] K. Guo, C. Yang, and T. Liu, “Caching in base station with recommendation via
q-learning,” in 2017 IEEE Wireless Communications and Networking Conference
(WCNC), 2017, pp. 1–6.

[27] M. Mehrabi, D. You, V. Latzko, H. Salah, M. Reisslein, and F. H. P. Fitzek, “Device-
enhanced mec: Multi-access edge computing (mec) aided by end device computa-
tion and caching: A survey,” IEEE Access, vol. 7, pp. 166 079–166 108, 2019.

[28] A. Gouta, D. Hausheer, A.-M. Kermarrec, C. Koch, Y. Lelouedec, and J. Rückert,
“Cpsys: A system for mobile video prefetching,” in 2015 IEEE 23rd International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommu-
nication Systems, 2015, pp. 188–197.

[29] X. Wang, T. Kwon, Y. Choi, H. Wang, and J. Liu, “Cloud-assisted adaptive video
streaming and social-aware video prefetching for mobile users,” IEEE Wireless
Communications, vol. 20, no. 3, pp. 72–79, 2013.

[30] S. Bayhan, S. Maghsudi, and A. Zubow, “Edgedash: Exploiting network-assisted
adaptive video streaming for edge caching,” IEEE Transactions on Network and
Service Management, vol. 18, no. 2, pp. 1732–1745, 2021.

[31] M. Ma, Z. Wang, K. Su, and L. Sun, “Understanding the power of smartrouter-
based peer cdn for video streaming,” in 2016 25th International Conference on
Computer Communication and Networks (ICCCN), 2016, pp. 1–9.

[32] A. Mahzari, A. Taghavi Nasrabadi, A. Samiei, and R. Prakash, “Fov-aware edge
caching for adaptive 360° video streaming,” in Proceedings of the 26th ACM In-
ternational Conference on Multimedia, ser. MM ’18, Seoul, Republic of Korea:
Association for Computing Machinery, 2018, 173–181, ISBN: 9781450356657.

[33] K. Mokhtarian and H.-A. Jacobsen, “Flexible caching algorithms for video con-
tent distribution networks,” IEEE/ACM Transactions on Networking, vol. 25, no. 2,
pp. 1062–1075, 2017.

[34] Z. Jiang and L. Kleinrock, “Web prefetching in a mobile environment,” IEEE Per-
sonal Communications, vol. 5, no. 5, pp. 25–34, 1998.

[35] Z. Zhao, L. Guardalben, M. Karimzadeh, J. Silva, T. Braun, and S. Sargento, “Mo-
bility prediction-assisted over-the-top edge prefetching for hierarchical vanets,”
IEEE Journal on Selected Areas in Communications, vol. 36, no. 8, pp. 1786–1801,
2018.

[36] J. Cobb and H. ElAarag, “Web proxy cache replacement scheme based on back-
propagation neural network,” Journal of Systems and Software, vol. 81, no. 9,
pp. 1539–1558, 2008, Gauging the progress of Software Architecture research:
three selected papers from Working IEEE/IFIP Conference on Software Architec-
ture (WICSA) 200.

159

[37] Z. Chang, L. Lei, Z. Zhou, S. Mao, and T. Ristaniemi, “Learn to cache: Machine
learning for network edge caching in the big data era,” IEEE Wireless Communica-
tions, vol. 25, no. 3, pp. 28–35, 2018.

[38] (2019). “2019 mobile internet phenomena.”

[39] (2019). “2019 global internet phenomena.”

[40] X. Cheng, J. Liu, and C. Dale, “Understanding the characteristics of internet short
video sharing: A youtube-based measurement study,” IEEE Transactions on Mul-
timedia, vol. 15, no. 5, pp. 1184–1194, 2013.

[41] V. K. Adhikari, Yang Guo, Fang Hao, M. Varvello, V. Hilt, M. Steiner, and Z.
Zhang, “Unreeling netflix: Understanding and improving multi-cdn movie deliv-
ery,” in 2012 Proceedings IEEE INFOCOM, 2012, pp. 1620–1628.

[42] L. Huang, B. Ding, Y. Xu, and Y. Zhou, “Analysis of user behavior in a large-
scale vod system,” in Proceedings of the 27th Workshop on Network and Operating
Systems Support for Digital Audio and Video, ser. NOSSDAV’17, Taipei, Taiwan:
Association for Computing Machinery, 2017, 49–54, ISBN: 9781450350037.

[43] Y. Yuan, X. Wang, and G. Bin, “Analysis of user behavior in a large-scale internet
video-on-demand(vod) system,” in Proceedings of the 5th International Conference
on Multimedia and Image Processing, ser. ICMIP ’20, Nanjing, China: Association
for Computing Machinery, 2020, 153–158, ISBN: 9781450376648.

[44] V. N. Padmanabhan and J. C. Mogul, “Using predictive prefetching to improve
world wide web latency,” SIGCOMM Comput. Commun. Rev., vol. 26, no. 3, pp. 22–
36, Jul. 1996.

[45] C.-Y. Chang and M.-S. Chen, “A new cache replacement algorithm for the integra-
tion of web caching and prefectching,” in Proceedings of the Eleventh International
Conference on Information and Knowledge Management, ser. CIKM ’02, McLean,
Virginia, USA: ACM, 2002, pp. 632–634, ISBN: 1-58113-492-4.

[46] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of proactive
caching in 5g wireless networks,” IEEE Communications Magazine, vol. 52, no. 8,
pp. 82–89, 2014.

[47] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos, “A data mining algorithm for
generalized web prefetching,” IEEE Transactions on Knowledge and Data Engi-
neering, vol. 15, no. 5, pp. 1155–1169, 2003.

[48] C. Koch, B. Lins, A. Rizk, R. Steinmetz, and D. Hausheer, “Vfetch: Video prefetch-
ing using pseudo subscriptions and user channel affinity in youtube,” in 2017 13th
International Conference on Network and Service Management (CNSM), 2017,
pp. 1–6.

160

[49] Y. Zhao, N. Do, S.-T. Wang, C.-H. Hsu, and N. Venkatasubramanian, “O2sm: En-
abling efficient offline access to online social media and social networks,” in Mid-
dleware 2013, D. Eyers and K. Schwan, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 445–465, ISBN: 978-3-642-45065-5.

[50] X. Wang, T. Kwon, Y. Choi, H. Wang, and J. Liu, “Cloud-assisted adaptive video
streaming and social-aware video prefetching for mobile users,” IEEE Wireless
Communications, vol. 20, no. 3, pp. 72–79, 2013.

[51] S. Khemmarat, R. Zhou, D. Krishnappa, L. Gao, and M. Zink, “Watching user gen-
erated videos with prefetching,” Signal Processing: Image Communication, vol. 27,
no. 4, pp. 343 –359, 2012, Modern Media Transport - Dynamic Adaptive Streaming
over HTTP (DASH).

[52] A. Gouta, D. Hausheer, A. Kermarrec, C. Koch, Y. Lelouedec, and J. Rückert, “Cp-
sys: A system for mobile video prefetching,” in 2015 IEEE 23rd International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems, 2015, pp. 188–197.

[53] C. Ge, N. Wang, S. Skillman, G. Foster, and Y. Cao, “Qoe-driven dash video
caching and adaptation at 5g mobile edge,” in Proceedings of the 3rd ACM Confer-
ence on Information-Centric Networking, ser. ACM-ICN ’16, Kyoto, Japan: Asso-
ciation for Computing Machinery, 2016, 237–242, ISBN: 9781450344678.

[54] C. Jayasundara, M. Zukerman, T. A. Nirmalathas, E. Wong, and C. Ranaweera,
“Improving scalability of vod systems by optimal exploitation of storage and mul-
ticast,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24,
no. 3, pp. 489–503, 2014.

[55] U. Drolia, K. Guo, and P. Narasimhan, “Precog: Pefetching for image recognition
applications at the edge,” in Proceedings of the Second ACM/IEEE Symposium
on Edge Computing, ser. SEC ’17, San Jose, California: ACM, 2017, 17:1–17:13,
ISBN: 978-1-4503-5087-7.

[56] P. Baumann and S. Santini, “Every byte counts: Selective prefetching for mobile ap-
plications,” Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 1, no. 2,
6:1–6:29, Jun. 2017.

[57] (2020). “Netflix open connect.”

[58] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, “Open connect every-
where: A glimpse at the internet ecosystem through the lens of the netflix cdn,”
SIGCOMM Comput. Commun. Rev., vol. 48, no. 1, 28–34, Apr. 2018.

[59] W. Jiang, S. Ioannidis, L. Massoulié, and F. Picconi, “Orchestrating massively dis-
tributed cdns,” in Proceedings of the 8th International Conference on Emerging
Networking Experiments and Technologies, ser. CoNEXT ’12, Nice, France: Asso-
ciation for Computing Machinery, 2012, 133–144, ISBN: 9781450317757.

161

[60] M. I. A. Zahed, I. Ahmad, D. Habibi, Q. V. Phung, L. Zhang, and A. Mathew,
“Security aware content caching for next generation communication networks,” in
ICC 2019 - 2019 IEEE International Conference on Communications (ICC), 2019,
pp. 1–6.

[61] W. Hu, Y. Jin, Y. Wen, Z. Wang, and L. Sun, “Towards wi-fi ap-assisted content
prefetching for on-demand TV series: A reinforcement learning approach,” CoRR,
vol. abs/1703.03530, 2017. arXiv: 1703.03530.

[62] P. Popovski, K. F. Trillingsgaard, O. Simeone, and G. Durisi, “5G Wireless Net-
work Slicing for eMBB, URLLC, and mMTC: A Communication-Theoretic View,”
IEEE Access, vol. 6, pp. 55 765–55 779, 2018.

[63] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-
access edge computing: A survey of the emerging 5g network edge cloud archi-
tecture and orchestration,” IEEE Communications Surveys Tutorials, vol. 19, no. 3,
pp. 1657–1681, 2017.

[64] H. Elazhary, “Internet of things (iot), mobile cloud, cloudlet, mobile iot, iot cloud,
fog, mobile edge, and edge emerging computing paradigms: Disambiguation and
research directions,” Journal of Network and Computer Applications, vol. 128,
pp. 105–140, 2019.

[65] H.-G. Song, S. H. Chae, W.-Y. Shin, and S.-W. Jeon, “Predictive caching via learn-
ing temporal distribution of content requests,” IEEE Communications Letters, vol. 23,
no. 12, pp. 2335–2339, 2019.

[66] S. M. S. Tanzil, W. Hoiles, and V. Krishnamurthy, “Adaptive scheme for caching
youtube content in a cellular network: Machine learning approach,” IEEE Access,
vol. 5, pp. 5870–5881, 2017.

[67] Y. Liu, Z. Ma, Z. Yan, Z. Wang, X. Liu, and J. Ma, “Privacy-preserving federated
k-means for proactive caching in next generation cellular networks,” Information
Sciences, vol. 521, pp. 14–31, 2020.

[68] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong, “Caching in
the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for opti-
mized quality-of-experience,” IEEE Journal on Selected Areas in Communications,
vol. 35, no. 5, pp. 1046–1061, 2017.

[69] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for the internet
of things with edge computing,” IEEE Network, vol. 32, no. 1, pp. 96–101, 2018.

[70] R. Wang, R. Li, P. Wang, and E. Liu, “Analysis and optimization of caching in fog
radio access networks,” IEEE Transactions on Vehicular Technology, vol. 68, no. 8,
pp. 8279–8283, 2019.

162

https://arxiv.org/abs/1703.03530

[71] Y. Fadlallah, A. M. Tulino, D. Barone, G. Vettigli, J. Llorca, and J.-M. Gorce,
“Coding for caching in 5g networks,” IEEE Communications Magazine, vol. 55,
no. 2, pp. 106–113, 2017.

[72] C. Zhang, H. Pang, J. Liu, S. Tang, R. Zhang, D. Wang, and L. Sun, “Toward edge-
assisted video content intelligent caching with long short-term memory learning,”
IEEE Access, vol. 7, pp. 152 832–152 846, 2019.

[73] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang, “Deepcache:
A deep learning based framework for content caching,” ser. NetAI’18, Budapest,
Hungary: Association for Computing Machinery, 2018, 48–53, ISBN: 9781450359115.

[74] (2019). “Youtube for press.”

[75] (2019). “The latest youtube stats on audience demographics: Who’s tuning in.”

[76] (2016). “2016 global internet phenomena.”

[77] (2016). “Cisco visual networking index: Global mobile data traffic forecast update,
2017-2022.”

[78] (2019). “Amazon mechanical turk.”

[79] F. R. Bentley, N. Daskalova, and B. White, “Comparing the reliability of ama-
zon mechanical turk and survey monkey to traditional market research surveys,”
in Proceedings of the 2017 CHI Conference Extended Abstracts on Human Fac-
tors in Computing Systems, ser. CHI EA ’17, Denver, Colorado, USA: ACM, 2017,
pp. 1092–1099, ISBN: 978-1-4503-4656-6.

[80] J. Erman, A. Gerber, M. T. Hajiaghayi, D. Pei, and O. Spatscheck, “Network-aware
forward caching,” in Proceedings of the 18th International Conference on World
Wide Web, ser. WWW ’09, Madrid, Spain: ACM, 2009, pp. 291–300, ISBN: 978-1-
60558-487-4.

[81] F. Qian, K. S. Quah, J. Huang, J. Erman, A. Gerber, Z. Mao, S. Sen, and O.
Spatscheck, “Web caching on smartphones: Ideal vs. reality,” in Proceedings of
the 10th International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’12, Low Wood Bay, Lake District, UK: ACM, 2012, pp. 127–140,
ISBN: 978-1-4503-1301-8.

[82] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the internet,”
IEEE MultiMedia, vol. 18, no. 4, pp. 62–67, 2011.

[83] R. Zhou, S. Khemmarat, and L. Gao, “The impact of youtube recommendation
system on video views,” in Proceedings of the 10th ACM SIGCOMM Conference on
Internet Measurement, ser. IMC ’10, Melbourne, Australia: ACM, 2010, pp. 404–
410, ISBN: 978-1-4503-0483-2.

163

[84] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube rec-
ommendations,” in Proceedings of the 10th ACM Conference on Recommender
Systems, New York, NY, USA, 2016.

[85] (2019). “Nielsen social report 2019.”

[86] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal, “Dynamic provisioning of
multi-tier internet applications,” in Second International Conference on Autonomic
Computing (ICAC’05), 2005, pp. 217–228.

[87] M. Park, M. Naaman, and J. Berger, “A data-driven study of view duration on
youtube,” in ICWSM, 2016.

[88] (2018). “Youtube’s ai is the puppet master over most of what you watch.”

[89] H. Abdi and L. J. Williams, “Principal component analysis,” WIREs Comput. Stat.,
vol. 2, no. 4, pp. 433–459, Jul. 2010.

[90] L. Bottou and V. Vapnik, “Local learning algorithms,” Neural Computation, vol. 4,
no. 6, pp. 888–900, 1992. eprint: https://doi.org/10.1162/neco.1992.4.6.
888.

[91] A. P. Bradley, “The use of the area under the roc curve in the evaluation of machine
learning algorithms,” Pattern Recognition, vol. 30, no. 7, pp. 1145 –1159, 1997.

[92] (2019). “Watch videos offline on mobile in select countries.”

[93] (2018). “The state of lte.”

[94] (2019). “Macrodroid.”

[95] (2019). “Workflow.”

[96] (2020). “User behavior analytics.”

[97] (2019). “Tmdb api.”

[98] (2020). “Netflix help center.”

[99] K.-I. Goh and A.-L. Barabási, “Burstiness and memory in complex systems,” EPL
(Europhysics Letters), vol. 81, no. 4, p. 48 002, 2008.

[100] G. Bonaccorso, Machine Learning Algorithms: A Reference Guide to Popular Al-
gorithms for Data Science and Machine Learning. Packt Publishing, 2017, ISBN:
1785889621.

[101] (2017). “America has an internet problem — but a radical change could solve it.”

[102] C. Aggarwal, J. L. Wolf, and P. S. Yu, “Caching on the world wide web,” IEEE
Transactions on Knowledge and Data Engineering, vol. 11, no. 1, pp. 94–107,
1999.

164

https://doi.org/10.1162/neco.1992.4.6.888
https://doi.org/10.1162/neco.1992.4.6.888

[103] G. Rossini and D. Rossi, “A dive into the caching performance of content centric
networking,” in 2012 IEEE 17th International Workshop on Computer Aided Mod-
eling and Design of Communication Links and Networks (CAMAD), 2012, pp. 105–
109.

[104] A. Ghosh, R. Jana, V. Ramaswami, J. Rowland, and N. K. Shankaranarayanan,
“Modeling and characterization of large-scale wi-fi traffic in public hot-spots,” in
2011 Proceedings IEEE INFOCOM, 2011, pp. 2921–2929.

[105] K. Fukuda, K. Cho, and H. Esaki, “The impact of residential broadband traffic
on japanese isp backbones,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 1,
pp. 15–22, Jan. 2005.

[106] S. Sundaresan, W. de Donato, N. Feamster, R. Teixeira, S. Crawford, and A. Pescapè,
“Broadband internet performance: A view from the gateway,” in Proceedings of the
ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11, Toronto, Ontario, Canada:
ACM, 2011, pp. 134–145, ISBN: 978-1-4503-0797-0.

[107] (2020). “Can netflix’s surge last?”

[108] (2019). “Netflix users stream 164 million hours per day.”

[109] (2019). “Netflix’s cindy holland says subscribers watch an average of two hours a
day.”

[110] L. Huang, B. Ding, A. Wang, Y. Xu, Y. Zhou, and X. Li, “User behavior analysis
and video popularity prediction on a large-scale vod system,” ACM Trans. Multi-
media Comput. Commun. Appl., vol. 14, no. 3s, Jun. 2018.

[111] (2020). “Netflix open connect.”

[112] A. Agresti, Categorical Data Analysis, ser. A Wiley-Interscience publication. New
York [u.a.]: Wiley, 2002, XV, 558 S.

[113] Y. Luo, M. Wang, H. Zhou, Q. Yao, W.-W. Tu, Y. Chen, W. Dai, and Q. Yang,
“Autocross: Automatic feature crossing for tabular data in real-world applications,”
in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery Data Mining, ser. KDD ’19, Anchorage, AK, USA: Association for
Computing Machinery, 2019, 1936–1945, ISBN: 9781450362016.

[114] F. Gers, “Learning to forget: Continual prediction with lstm,” IET Conference Pro-
ceedings, 850–855(5),

[115] (2012). “Top five wi-fi routers with built-in network storage.”

[116] S. Lall, M. Agarwal, and R. Sivakumar, “A youtube dataset with user-level usage
data: Baseline characteristics and key insights,” in ICC 2020 - 2020 IEEE Interna-
tional Conference on Communications (ICC), 2020, pp. 1–7.

165

[117] (2022). “The global internet phenomena report january 2022.”

[118] F. Bentley and J. Murray, “Understanding video rewatching experiences,” in Pro-
ceedings of the ACM International Conference on Interactive Experiences for TV
and Online Video, ser. TVX ’16, Chicago, Illinois, USA: Association for Comput-
ing Machinery, 2016, 69–75, ISBN: 9781450340670.

[119] O. Budzinski, S. Gänßle, and N. Lindstädt-Dreusicke, “The battle of youtube, tv
and netflix: An empirical analysis of competition in audio-visual media markets,”
Ilmenau, Ilmenau Economics Discussion Papers 137, 2020.

[120] M. Zeng, T.-H. Lin, M. Chen, H. Yan, J. Huang, J. Wu, and Y. Li, “Temporal-
spatial mobile application usage understanding and popularity prediction for edge
caching,” IEEE Wireless Communications, vol. 25, no. 3, pp. 36–42, 2018.

[121] S. Mehrizi, T. X. Vu, S. Chatzinotas, and B. Ottersten, “Trend-aware proactive
caching via tensor train decomposition: A bayesian viewpoint,” IEEE Open Journal
of the Communications Society, vol. 2, pp. 975–989, 2021.

[122] B. Stegner, “How much data does youtube actually use? explained,” Tech. Rep.,
2021.

[123] (2020). “Deep dive into netflix’s recommender system.”

[124] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,
business value, and innovation,” ACM Trans. Manage. Inf. Syst., vol. 6, no. 4, 2016.

[125] (2020). “Amazon and apple are reducing streaming quality to lessen broadband
strain in europe.”

166

	Title Page
	Acknowledgments
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	Introduction
	Research Focus
	Research Contributions
	Thesis Statement
	Thesis Organization

	Literature Survey
	Video Traffic Characterization
	Prefetching Content
	Edge Caching

	A Real-World Dataset of YouTube Videos and User Watch-Behavior
	YouTube and its significance
	Dataset Collection
	Baseline Characteristics
	Analysis and Key Insights
	How often do users watch the same video again?
	Can a user's YouTube watch behavior be predicted?
	Do users consume videos suggested through YouTube's recommendation engine?
	Do users' YouTube video preferences change over time?
	What are the typical data consumption patterns for YouTube usage for a user?

	Time-Shifted Prefetching of YouTube Videos to Reduce Peak-time Cellular Data Usage
	Background & Motivation
	Peak vs Off-Peak Performance
	On YouTube Data Usage
	Problem Definition

	Quantitative Analysis of YouTube Usage
	Methodology
	Data Highlights
	Prefetching Strategies and Potential

	The MANTIS Prefetching Solution
	Overview
	Candidate Set Generation
	Feature Design
	Classifier Design
	System design

	Performance Analysis
	Macroscopic performance of Mantis
	Prototype Results
	User Study

	A Real-world Dataset of Netflix Videos and User Watch-Behavior
	Data Collection
	Methodology
	Baseline Characteristics

	Analysis and Key Insights- Movies
	Analysis and Key Insights- Series
	User Watch Patterns
	User Watch-Session Length
	User Preferences
	Predictability
	Continuity of User Watch-Behavior

	Toward Effective Prediction of Watch Behavior for Time-Shifted Edge-Caching of Netflix Series Videos
	Background & Motivation
	Peak vs. Off-peak Load
	On Netflix usage
	Problem Definition

	A Real-World Dataset
	Dataset Collection
	Metadata Retrieval
	Data Insights

	Baseline Solutions
	Predictability of Netflix Content
	Logical Architecture
	Naive Caching Strategy
	Heuristic 1: User Continuation
	Heuristic 2: Season Continuation

	CacheFlix: Edge-caching of Netflix series episodes
	Overview
	Feature Design
	Prediction model
	Eviction Strategies

	Performance Evaluation
	Bandwidth Implications
	CacheFlix Prediction Performance

	Comparison to MANTIS

	A Real-World Dataset of Joint Netflix and YouTube User Watch-Behavior
	A Real-World Dataset
	Dataset Collection
	Baseline Characteristics

	Analysis and Key Insights
	User Watch Patterns
	Amount of Content Consumption
	User Preferences
	Predictability

	An Integrated Approach for Time-Shifted Prefetching of YouTube and Netflix Series Videos
	Integrated Solutions
	CacheFlix+: Enhancing CacheFlix with YouTube viewing behavior
	Mantis+: Enhancing Mantis with Netflix viewing behavior

	Framework for Prefetching and Edge-Caching Platform Agnostic Video Content
	Data Processing Pipeline
	Features Generator
	Prediction Module
	Cache Manager
	Delivery Module

	Extending Framework for Prefetching and Edge-Caching Structured and Unstructured Data
	Data Processing Pipeline
	Features Generator
	Prediction Module
	Cache Manager
	Delivery Module

	Challenges and Next Steps
	Mantis: Time-Shifted Prefetching of YouTube Videos to Reduce Peak-time Cellular Data Usage
	CacheFlix: Toward Effective Prediction of Watch Behavior for Time-Shifted Edge-Caching of Netflix Series Videos

	Conclusions
	References

