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SUMMARY

The purpose of this paper is to investigate the use of piston
theory and the theory of characteristics, considering the entropy
gradient acroas the_attached shock, for the determination of the pres-
gure distribution along an accelerating flat plate at an angle of
attack. Both the hypersonic and supersonic velcocity regimes are con-
sidered.

The general wave equations which describe the motion of plane
pressure disturbance waves in the area between the flat plate and the
shock wave are developed. The flat plate is considered as an acceler-
ating piston which-causes pressure disturbance waves to propagate to
and be reflected from the shock wave and resulting entropy interfaces.

In the hypersonic regime, the angle between the shock wave and
flat plate is assumed to be small so that the change in flow velocity
is essentially perpendicular to the flat plate surface and the propa-
gating and reflecting waves are essentially parallel to each other.

A numerical-graphical soluticon to the problem for the hypersonic
regime is obtained by the numerical integration of the wave equations in
the x-t plane. BSample calculations are presented for the case of an
instantaneous deceleration of a flat plate at an angle of attack of 10°
from a Mach number of 6.0 to a Mach number of 5.0.

An analytic solution to the problem is then developed and the
pressure change for zero, one and tﬁo reflections, divided by the

steady state pressure change is plotted versus the Mach number and the
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angle between the flat plate and shock wave, (B-8). An expression for
the time required for the reflections to take place is also developed.
As a result of this work, an extension of Lighthill's work on the oscil-
lating airfoil, is presented.

It is shown in the hypersonic case that:

(1) The hypersonic solution is accurate to within one per
cent for values of Mach number greater than 5.6,

(2) & modified piston theory could be used which would give
accuracies within one per cent down to a Mach number of 4.0,

(3) the first reflection of the disturbance waves from the
shock wave accounts for the major correction of the pressure back
toward steady state value,

(¥) the second reflection also contributes & non-negligible
correction, but higher order reflections may be neglected,

(5) the reflection time for a disturbance wave is so short
that for normal accelerstions, the problem may be considered as
essentially a steady state problem, and

{6) the hypersonic theory developed is directly applicable to
the case of an oscillating flat plate.

In the supersonic case, the piston theory is shown to result in
extreme errors. The theory of characteristics is developed for a com-
plete step-by-step solution to the supersonic case. Equations are
developed for the most difficult case, that of matching conditions at
the shock wave, The disturbance wave network existing between the flat
plate and the shock wave is discussed and a step-by-step sclution for

this wave network and the resulting pressure distribution outlined.
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The solution of a complete problem for the supersonic case is recommended

for further investigation.



CHAPTER I
INTRODUCTION

The high rate of acceleration and deceleration asscciated with
the firing of today's missiles and rockets has made necessary a better
umnderstanding and a more accurate determination of the change in pres-
gsure distribution which occurs along a surface asg the surface changes
velocities. It is known that, as a surface changes velocities in the
supersonic and hypersonic range, pressure disturbance waves propagate
from the surface to the shock wave, changing the strength of the shock
wave. This results in an entropy interface, Subsequently, the pressure
disturbance waves reflect between the shock wave, entropy interface, and
surface until a new gteady state is reached. There is & finite time
lapse between the change in velocity and the arrival at 2 new steady
state condition., The instability of some missiles during deceleration,
a problem discussed by Force (1)*, has suggested that the pressure dis-
tribution may change with time and position along the missile to such an
extent that the stability derivatives may be adversely affected.

Several studles have been made of this problem. Gardner, Ludloff
and Reiche {2) used & perturbation potential theory on thin bodies and
showed that the drag coefficient decreased as acceleration increased, the

rate depending cn Mach number and profile, The results were good only

*
Numbers in parentheses following names refer to ltems in the Biblicgraphy.



for small accelerations. Frankl (5) used retarded potential and small
perturbation theory on elongated bodies of revolution and found that for
velocities near the speed of sound, the added pressures arising from
acceleration are negligibly small. Cole (4) used linearized theory of
glender bodies and concentrated on the transonic range. It was shown
that for sufficiently large accelerations, linearized theory is valid
and there is little effect of acceleration on the pressure. Gardner and
Ludloff {5) used a perturbation approach on slender two-dimensionsl air-
Toils, showing that the influence of acceleration in the supersonic range
was very small but that in the transonic range, the pressure curve
depended heavily on acceleration. Lighthill {6) used piston theory to
determine the pressure distribution on an oscillating airfoil, but did
not consider the reflections of the pressure disturbance waves from the
shock wave. The theory developed by Lighthill could eesily be extended
to the case of accelerating or decelerating surfaces.

The purpose of this paper is to investigate the use of piston
theory and the theory of characteristics, considering the effects of
the entropy gradient across the attached shock, for the determination of
the pressure distribution along an accelerating or decelerating flat
plate at an angle of attack in the hypersonic and supersonic velocity
regimes. A4 primary advantage of the piston theory method is the physical
umderstanding it affords of the problem. In addition, only minor sim-
plifying assumptions are necessary in the solution. For simplicity,
the flat plate is used for the development herein. The principles could

be extended, however, to surfaces with other shapes.



-n Chapter II, the physical problem will be described and the gen-
eral wave equations for the solution of the problem will be developed.

In Chapter III, the hypersonic case will be considered and a numerical-
graphical solution and an analytic scolution will be presented., In
Chapter IV, the supersonic case will be considered. For the most general
case, or supersonic case, expressions will be developed for the matching
of conditions which exist at a point on the shock wave where an incident
and reflected wave and an entropy interface meet. A general discussion
of the pressure disturbance wave pattern in the area between the flat
plate and the shock wave will be presented,

Time would not permit a complete development of the theory of
characteristics for the supersonic case, A discussion and some analysis
for this case are included for record, however, in the belief that with
additional effort, a practical solution can be developed.

Finally, as a result of the work on the hypersonic case, an
extension of the work of Lighthill (6) will be presented in the appendix

for the case of an oscillating flat plate.



CHAPTER II
THE PHYSICAL PROBLEM AND WAVE EQUATIONS

A physical appreciation of the general problem may be gained
by picturing a flat plate, Figure 1{a), at an angle of attack, 8,

traveling through a medium at some initial Mach number, M Attached

1°
to the leading edge of the flat plate is a shock wave with a strength
and angle to the horizontal, B, which is determined by the values of
N& and @, -

The surface of the flat plate acts as a piston which moves in
a direction perpendicular to the flat plate surface and induces & velos
city of the medium in that direction. In addition, the fact that the
shock wave is attached to the leading edge of the flat plate demmnds
that there be a flow slippage, that is, & component of veloccity tangent
to the flat plate, in the area betwéen the flat plate and the shock wave.

The resultant flow velocity in this area is given by the equation

1
P . 5in @
a, Ml Cos B-P (1)

and acts in a direction perpendicular to the shock wave. The velocity

of the plane shock wave 1is given by the expression

u
5 .
EI = Ml Sin B (2)



If the flat plate now undergoes either an impulsive acceleration
or deceleration, it 1s necessary that the flow conditions between the
Tflat plate and the shock wave undergo changes tending to adjust toward
the new steady state conditions. As the acceleration or deceleration
occurs, plane pressure disturbance waves parallel to the flat plate
surface travel in a direction perpendicular to the flat plate surface
out toward the shock wave. The disturbance wave will travel at a
speed u + a where u is the flow velocity in the direction of travel
of the wave and & 1s the local speed of sound. This velocity 1s such
that the disturbance wave will overtake and interact with the shock
wave. The strength of the shock wave will be changed, sn entropy
interface will be created and a pressure disturbance wave will be
reflected back toward the flat plate surface at some new angle.
| As the pressure disturbasnce wave propagates, it causes a change
in the component of flow velocity perpendicular to the wave, In the
case of pressure disturbance waves, just as iIn the case of shock waves,
the tangential component of velocity is not changed as it crosses the
wave,

Subsequently, attenuated pressure disturbance waves will be re-
flected between the flat plate surface, the entropy interface and the
shock wave until the new steady state condition corresponding to the
new Mach number is reached. It is seen that there will be a finite time
lapse between the time the flat plate reaches & new steady state velocity
and the time the pressure reaches the new steady state pressure.

For the case of low supersonic velocities, the magnitude of

the angle (B - &) is appreciable and as illustrated in Figure 1 {a),



there is a considerable difference between the direction in which the
original pressure disturbance wave propagates out to the shock wave
and the direction in which the pressure disturbance wave is reflected.
As the Mach number of the flat plate increases, however, the shock
wvave becomes more nearly parallel to the flat plate surface and the
angle (B -.6) decreases. As hypersonic velocities are reached, the
angle (B - @) becomes small and the shock wave may be assumed parallel
to the flat plate surface.

The significance of (f - @) becoming small is that the component
of flow velocity normal to the flat plate surface becomes essentially
equal to the flow velocity since Cos (B_- ) =~ 1.0. For instance, at
(B - 8) = 10°, only a 1.5 per cent error in the flow velocity results.

Also, as the Mach number increases, the angle between the propa-
gating disturbance wave and the reflected disturbance wave becomes less,
Figure 1 (b), until in the hypersonic case, Figure 1 (c), the propagated
and reflected waves may be assumed to be parallel. The values of Mach
number for which the hypersonic solution may be assumed will be more
clearly defined in succeeding chapters.

From this physical description of the problem, it is seen that
the acceleration or deceleration of a flat.plate induces a network of
plane wave motion in the area between the flat plate surfaee and the
shock wave. In the remainder of this chapter, the general equations
which describe such a plane wave motion are developed.

Following the development of Foa (7), use is made of the equa-

tions of continuity, motion and energy given below.



1 3p u 9 Ju
> 5 + = 5% t % C 0 (3)
-TRNG- T - ()
3t 3 T yp ox
dnp=soy 5o 82 (58)
dmp=y B .12 (50)

where the energy equation, given by the first law of thermodynamics,
is expressed in the two forms given by equations (5a) and (Sb). Elimi-
nating p between equations {3) and (5a), and eliminating p between

equetions (4) and (5b), and adding and subtracting the results gives

a 9s

3 (i +u)+(uia)§(7—?]-:aiu)=%(§-:-i?&) (6)

5 (5T azt
where viscosity has been neglected, area has been assumed constant and
%F denotes the substantial derivative.

Equations {6) are nonlinear partial differential eguations with
their left hand sides being the total time derivatives of the functions
( ;%I a + u) in the directions %% =ut a.

The eguations may then be numerically integrated along lines of
this slope in the x-t plane and these lines and the particle path lines
dx/dt = u, which are also the entropy path lines, are called characteris-
tics of equations (6). The speeds dx/dt = u + & are recognized as the
gpeeds of propagation of small disturbances. Characteristics of slope
dx/dt = Ut & are paths of propagation of the disturbances in the x-t

plane.



It will be convenient to non-dimensionalize equations {6) by
making the following substitutions where the subscript 1 denotes
conditions in front of the shock wave and DS represents the initial

o
diztance from the piston to the shock at any arbitrary point along the

flat plate.
A= a./a.l € = x/DSO
U= u/al T = alt/Dso
S = s/yR P=—2_ A+U
y-1
2
Q = 7_—1 A -1
It % denotes differentiation with respect to time along the

characteristics, that is, the operation % + {ut a) Ba:_c , and if it
ors D 3

1s noted that z= =g % 8 5 equations (6) may be written in the
form

8+P _, 5+8 DS

5T -ATT—"'(?’*J-)AE (7)

%,-rgmqég'Ts +(7-1)A-g—§ (8)
Equation {7) gives the rate of change of the variable P along
the P characteristic Jv = U + A and equation (8) establishes the rate
of change of the variable @ along the @ characteristic % = U - A.
It is well to point out here, that if P and § are known at any point,
the values of A and U are also known at that point and thus, the slope

of the P and @ characteristics are established.



Equations (7) and (8) are general equations which describe
msteady plane wave motion such as exists as a result of the deceler-
ation or acceleration of the flat plate and the corresponding deceler-
ation or scceleration of the simulated piston. While these eguations
could be numerically integrated to solve for the flow fileld and pres-
sure distribution for the flat plate for either the supersonic or hyper-
sonic case, their use in the supersonic case is extremely complicated
because of the complex wave network involved. Their use in the hyper-
sonic case is simplified, however, and will be demonstrated in the

next chapter.
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CHAPTER III
HYPERSONIC CASE

In the preceeding chapter, equations were developed which des-
cribed the plane wave motion such as would exist as a result of an
acceleratlion or deceleration of a piston face. In this chapter, the
use of these equations will be demonstirated for the determination of
the pressure distribution along a decelerating flat plate traveling
at hypersonic velocities. The angle, (P - 8), will be assumed to be
nearly zerc so that the shock wave is essentially parallel to the wedge
surface and the propagated and reflected pressure disturbsnce waves
are essentially parallel, Figure 1 {c).

As will be illustrated, the use of equations (7) and (8) requires
time-consuming calculations carrying a large number of significant fig-
ures, Therefore, in the second part of this chapter, an analytic
expression will be developed for the pressure distribution along the
accelerating or decelerating flat plate after any number of disturbance
wave reflections.

Finally, an equation representing the time necessary for the pres-
sure disturbance wave to propagate from the piston surface to the shock
wave and back to the piston surface will be presented. The range of
hypersonic velocities for which either of these two solutions may be used
will be determined,

A. Numericel-Graphical Solution.--To illustrate the determination of

the presgure distribution along a decelerating flat plate at an angle
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of attack by means of the numerical integration of equations (7) and

(8), the instantaneous deceleration of the flat plate from some initial
Mach number, Ml
deceleration of the simulated piston surface is considered. The time-

, to some final Mach number, Mé, and the corresponding

distance plot for this situation is illustrated in Figure 2. The path
of the piston is portrayed by the solid line starting from the origin
and the instantaneocus deceleration takes place at point A. Since x/Dso
is plotted versus alt/Dso » the shock wave will be at x/DSO = 1.0 and
the piston surface at x/Dso = 0 at time t = 0. The convenience of the
non-dimensionalizing parameters defined in Chapter II jis now apparent.
The solution obtained can be made to apply to any point along the sur-
face by cheoosing the appropriate value for DS » The solution will also

o}
apply for any value of a

1°
Until the deceleration takes plaée at point A, the conditions
are steady, Knowing the piston velocity from equation (1), where Cos
(B -~ 8) ~ 1.0, and knowing from shock tables the speed of sound ratio
corresponding to the shock Mach number obtained from equation (2), the
values of P and Q and the slopes of the P and § characteristics may be

obtained in this steady state area. Since, in this area, the flow is

isentropic, and U and A are constant, P and 4 are constant along P and

Q characteristics of slope g% = U+ A respectively. Eguations (7) and

{8) show that in any ares where conditions are isentropic, P and Q are

constant along characteristic lines of slope g% = Uz A, Area 2,

Figure 2, includes the entire area between the piston curve and the

entropy interface and represents an area of constant entropy. There-

fore, P and @ are constant along the P and @ characteristics in this



area, Likewlse, area 3 represents an area of constant entropy between
the entropy interface and the shock wave and P and @ are also constant
along P and Q@ characteristics in this area.

At point A, where the piston velocity changes, there is also a

change in the variable P, At Point A, @ is a constant. Therefore,

2
Q = (9)

and
4P = -Sp A +dU = 20U (10)

which for e deceleration would make dP negative. Knowing the new value
of P at point A and the velue of § which still hasg its steady state
value, the new value of the variable A existing immediately after the
deceleration may be obtained along with the slope of the new P char-
acteristic emanating from this point.

It is emphasized that there is actuslly & fan of P characteristics
emanating from point A, each with its corresponding value of the variable
P. The pressure scluticn is not affected by considering a finite step.
However, a need for greater accuracy in the time solution would dictate
that this fan be broken up intc intervels and further calculations con-
tinued on this basis. Working with the total increment, though, makes
the calculations far simpler and is felt to yield sufficient accuracy,
particularly if emall enough steps are taken in the deceleration.

As a result of the deceleration, pressure expansion disturbance
waves travel along the P characteristic in the e- T plane and overtake

the shock wave, shown by the dot-dash line in Figure 2, causing a change

in strength of the shock wave. 8ince the flow properties and conditions
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after the disturbance waves are not compatible with a shock solution, a

wave is reflected at the shock as a @ wave traveling along @ character-
istics. Purthermore, an entropy interface is created as the shock strength
changes, Although there i1s a gradual change in shock strength between

the points where the initial and final P disturbances emanating from

point A strike the shock, the change in shock strength is assumed to

oceur at a point midway between the two points and the entropy interface

is assumed to emanate from that point.
The numerical value of the @ wave emanating from point B is still

the same as the steady state value, that is, the entropy has remained
constant. Knowing this value and the value of P at point B, the slope

of this @ characteristic may be computed at the shock and its point of
intersection with the P characteristic. Its intersection with the piston
face at point C may then be determined.

As P changes between points B and D, §Q also changes. As illus-
trated in Figure 2, the'Pb2 wave passes through an entropy interface and
strikes the shock wave. In order to meke conditions compatible at this
point, a @ wave originaetes which passes back through the entropy inter-
face and travels on to the piston face. The only condition known near
point D is the value of the P

b2
face at D'. It is, therefore, necessary to iterate at this point in

wave before it strikes the entropy inter-

order to find the value of the Qb2 wave which is slso assumed to meet the
entropy interface at point D',

This iteration is performed by assuming initlally, a value of Mg,
the new Mach number at which the shock wave is propagating. Knowing
Ms, the value of M3 and a3fal can be obtained from shock tables, and,
from these two guantities, the value of u5/al is determined. The sub-

script 3, in this case, refers to the area between the entropy interface



1h

and the shock wave at point D. The value of up/al in area 3 at point D
is obtained by subtracting ua/al from the assumed us/al.

It is known that the entropy interface travels at the same speed
as the local flow velocity and that the pressures on the two sides of
the entropy interface must be equal. The value of U, then, must be the
same in area 2 at D' as it is in area 3 at D'. It remains to solve for
the value of A in area 2 knowing the value of A in asrea 3.

The entropy in areas 2 and 3 may be related to the entropy in area

1 by the following equations.

g, - 8
1 2 1 3
In &, -~ ln = 11
c {y-1) ~ 7-1 3 7 Py (11)
8, = B )y
2 1 2 1 o
InA_ - = 1n — 12
c (r-1) =~ »-1 2 v P (12)
Since P, = p5 across the entropy interface. equation (12) can be sub-

tracted from equation (11) and the result solved for A3 XAE obtaining

A -
2 = 2= (13)

A, T S¥P |5T
P
The values of A and U in area 2 at D' are now known and a value
for P, can he computed. If the calculated value equals the existing

ba
value of Pb2’ conditions have been successfully matched at point D',
If not, a new value of MS is assumed and the iteration is continued until
conditions are matched. Once the correct values of A and U are known in

area 2 at D', the value of Q and the slope of the Q characteristic can

be computed and the intersection of the Q characteristic with the piston
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face at point E determined. At the same time, the value of Q@ in area
3 at P’ is determined from the above iteration.

At points C and E the values of the variable g and the piston
velocity U are known., The values of the P wave reflected at these
points may be calculated, together with the values of the slopes of
the P characteristicg, The P waves reflected at points C and E travel
out and strike the entropy interface, where they are partially passed
through and partially reflected back toward the piston face as @ waves.
At the seme time, Q waves in area 3, known from the Iteration outlined
shove, travel from the shock to the entropy discontinuity and are
partially passed through and partially reflected as P waves back
toward the shock. Again, at the entropy interface, pcints F and G,
conditions must be matched. This time, however, the matching may be
accomplished in closed form.

For example, at point G, the values of Qd3 and Pd2 are lnown
and the values of U and p on either side of the entropy interface are

again equal. Then

2
Pao = 501 & 10 (14)
Adding equations (1%) and (15),
P +Q. = — (A, +A.) (16)
az az = -1 2 3

Using this equation together with equation (13), A2 and A§ at G are



found, U and U_ are solved for and Qde and P._. together with the slopes

2 3 a3
of the characteristics at point G are determined.

To complete the solution of the probliem, new reflections of the
disturbance waves are considered until there is no significant change
in the value of the P or @ variables and a new steady state is reached.

At each point along the piston face where a P and @ wave inter-
sect, the value of A = a/al is known. Since the entropy 1s constant in

the region of the piston face, the pressure ratio at each of these

points may be obtained from the isentropic expression

2y
71
P a/a
p _ (22 1 (17)
P Py A CVCN

where the Initiel values of PQ/Pi and aefal are obtained from the shock
tables.

The motion of the effective piston face and the variation of pres-
sure with the ordipate alt/Dso are now known. It must be recognized
here that as the flat plate moves through the air, a section of the flat
plate surface, considered as a piston face, moves aft along the flat
plate surface and translates in the x direction as illugtrated in Figure
% (a). The relation between these two motions is obtained in terms of
the initisl distance from the flat plate to the shock wave, DSO, and the

angles B and @ by considering Figure 3.

From Figure 3 (a), it is seem that
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From Figure 3 (b), it is found that

2 (19)
Eguating these two expressions for Yy gives

D
8

-2 = 1 -
Y

1

=g ten (B-6) (20)

B

The relationship of the flat plate surface to a simulated piston
moving through space has now been developed. In addition, the method
for determining the pressure distribution on the simulated piston face
has been presented, It remains to combine the results so that the pres-
sure distribution along the flat plate may be obtained.

Two plots of the pressure distribution along the flat plate
would be of interest. One plot would shcﬁ pressure as & function of
time at any position y along the flat plate. The second plet of inter-
est would show pressure versus distance y along the flat plate at any
time t. The two plots msy be combined by plotting pressure distribu-
tion versus the dimensionless parameter alt/y. This is done as follows.

The angles & and P are known for any case under consideration.

If various values for x/y are assumed, values for Ds /y are obtained

o)

from eguation (20). From these two values, a value of x/DS » 1s com-
o

puted. KXnowing the motion of the piston, x/DS , 85 a function of the

o]

parameter T, a value of T corresponding to the computed value of x/Ds
0

mzy be determined. Also, at this same value of T, the value of the

pregsure ratio may be found from & plot of the pressure ratio versus 7.
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Finally, knowing taI/DS , x/y, and Ds /x, the parameter tal/y may be
0 )
determined and a plot of pressure ratio versus a,t/y may be made.
To illustrate the above procedures, a sample problem was com-

puted using a flat plate at an angle of attack 8 = 10°, decelerating
from Ml = 6.0 to M, = 5.0. In the sample problem, the effective piston
velocity was determined from equation (1), where Cos (B - 6) was not
taken equal to 1.0. Other values in the solution, however, were
determined as outlined above. Plots of the e~ plane, pressure ratio

versus T, and pressure ratio versus alt/y are shown in Figures k4, 5,

and 6. The pressure coefficient used is given by

c - th6 - P

where PM#é is the steady state pressure at M= 6.0 and PM=5 is the
steady state pressure at M= 5.0,

It is seen from Figure 6, that the pressure on the flat plate
immediately after the deceleration is considerably less than the steady
state pressure at Mé = 5.0. However, the [irst reflection of the dis-
turbance waves from the shock wave to the flat plate surface is seen to
accomt for the major correction of the pressure back toward the steady
state value. It is also noted that there 1s one reflection of the pres-
sure disturbance wave from the entropy interface before the second reflec-
tion from the shock wave takes place. This reflection has little effect,

however, on the pressure solution. Finally, it is pointed out that this
single plot illustrates the variation in pressure with time for a fixed
position if y is held constant and the variation of pressure with posi-

tion if t is held constant. With prectical values of ¥y, the time
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to establish the new steady state pressure is measured in milliseconds.

For example, if y = 10 feet and a, = 1000 feet per second, steady state

1
is essentially reached in 1.9 milliseconds.

The method cutlined above can be readily extended to a flat plate
mdergoing linear or non-linear accelerations or decelerations. For
example, results for a particular continuous deceleration can be readily
obtained from the preceeding results by a simple geonmetric adjustment
of the network of Figure 4. Imegine that a streamline between points
A and B is replaced by the surface. The surface deceleration then
occurs over a finite time'interval and the scale adjustment is made by
simply translating the subsequent, P and Q characteristics such that
points C, E, H, I, L and M intersect the new surface.

In addition, the method can be extended to cover shapes other
than the flat plate. However, it will be noted by the reader that to
perform the calculations by hand requires many computations. Furthermore,
the single case considered illustrates that several significant figures
must be carried in order to assure reascnable accuracy. In fact, aveil-
able shock tables have an insufficient number of significant figures,
Although it is possible to machine program the method, considerable
effort would be reguired and it is felt to be beyond the scope of this
paper.

Attention is now turned to the development of an analytic expres-
sion for the pressure distribution along the flat plate and to the devel-
opment of an equation for the time lag which exists between the time the
deceleration or acceleration takes place and the time the reflected

disturbance wave strikes the plston face.
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B. Analytic Solution.--As the deceleration or acceleration takes place

an expansion or compression pressure disturbance wave immediately pro-
pagates from the flat plate surface out toward the shock wave. There
is a resulting immediate change in the pressure along the surface
which can be expressed analytically.

Starting with the condition that initially the variable Q

remains constant as the surface velocity changes, equation (9) gives

aA = 4 %. = Zél au (21)

From equation (1), where Cos (B - @) = 1.0 for the hypersonic case,

n - =
a EI' = dU = sin @ dMl (22)
Combining equations (21) and (22),
-1
aA = L= sin 6 amM, (23)

For isentropic conditions which exist along the flat plate surface,

-1

2y
2 . (Fl{) (24 )
%1 Py

or

a
8 7=1 d P/Pl

afa; ~ 8 T3/p (25)

Substituting equation (25) into equation (23),
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¥ P/Pl

2.
d N = —3751- sin 6 dM, (26)

Changing dM, to dMlQ/EMl for later convenience and noting that p/pl
and a/al are the iInitial steady state values, the following expres-
sion for the change in pressure ratio with respect to Ml2 resulting

immediately after an acceleration or deceleration is obtained.

a2k

p_l 7(P2/Pl)0 Sin 6 (27)
dM12 2 Ml(aQ/al)o

The initial surface velocity change generates a P wave propa-
gating from the flat plate swrface to the shock. Corresponding to
this P wave intersecting the shock wave, there is a Q wave reflecting
from the shock wave., This reflected @ wave strikes the flat plate
surface, changing the surface pressure and reflecting as a P wave.

It remains to express this reflected Q wave as a function of the P
wave and then to arrive at an expression for a corresponding change in
preassure.

First, considering changes across the shock wave, Figure 7,

the following relations from Liepmann snd Roshko (8) apply.

. 4 2
B S 2= (28)
al 7 \P; A 12

2 + y-1

p,  7¥

and
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1/2
(2-2)
( ) L (29)

( 7-I-l P2 1/ 2

l];)l

Now let subscript 3, ( ) represent conditions immediately downstream

5?

of the shock wave.

From equation (28)

1
p P p
1 51 A 151

where

From equation (29)

%1 2 PJ_/O Py
where
P &
) 1 2 1 1
& 2 KPJO : (alz (P_2> yL [ Pen
= y-1 "\ p
"1/, \"1/,
T
- 7-1
7+l 1:'2\

7B,
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In equations (31) and (33), the functions f, and f, are expressed in
terms of (p2/p1)0 and (a2/a1)0 since for an infinitesimal disturbance,
(p2/Pl)o and (a2/al)o becomes exactly equal to p5/pl and as/al. From

equations (30) and (%2), it is seen that

a hi§ up
a 2 - £a2 (34)
1 1l 1
Also in area 3%, the entropy is known from the following expression
3, ~ 8 = _2_ in 2 . l 1n Eé (35)
3 71 y-17a, 7 i
where S1 is a constant.
From equation (35), meking use of the functions fl and fé:
u
¢ T »
2 2 3
is, = 71 T (36)

l
P
8./ lpl/;
o o}
Now, if region 2 is considered, it is known from egquation (10)

that
P, -P_=AP=27A —2 (37)

Also, from definition, it is known that

a ’ a u
P - Pa2 = 731 :2 + :be - 7€l aae + aaz (38)
1 1 1 1




2k

Q, -4 _ [z %we %2)_(2 aa2_ua2) (39)
2 a2 ky-l 8, a, 7-1 a; &

Since the piston velocity on either side of the entropy discon-
tinuity is the same, u, = uaﬁ, and Yo = ubi' Subtracting one from

the other and dividing by a

l,

Yoo i Ugo - u'b§ ) ua5 - a\_up_f'\ (%0)

8 & 8 \al)

and equations (38) and (39) become

2 Bpe ~ Bgp up5

Pp - Pae = 5T ( o ) + /_\.q- {41)
2 [ Bp2 T %o Y53

Uo " %z = 5IT ( oy )‘ B, (42)

Subtracting and rearranging equations (k1) and (L42),

u
%o " Qo = (B - Byl - 2‘&(5?) (43)

Across the entropy interface where the pressures on either side
are equal, equation (35) may be differentiated and expressed as a finite

difference equation to yield,

<a'b5 - %2)
p lafay 2 !

5 0 71 (ayfay), 7.1 T (aymly

(b4)

from equations (41) and (42}

Recognizing that aa2 = aa5, 5
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may be expressed as

Bpo T g %p2 ~ %p3 T Bz " Pgp %03 ~ %2 %b57%3 (45)
"1 ) ! !
Making equations (34) and (36) finite difference equations and sub-

stituting these along with equation (4U4) intec equation (45), the fol-

lowing expression is obtained.

-8 8, T
E‘anl == Tél<ai> 7%1 fi a; lP2 (k6)
) (: j) 7f}(: :)
o %

N

il
f ‘a

1

Substituting equation (46) into equation (41), solving for AE-P—B
1

and substituting this expression into equation (43), an expression
is finally obtained for the @ wave as a function of the P wave.

Taking the limiting case and converting to differentials, the expres-

(4Q); = dP<F> (k7)

L 2
o
751 (Pa/Pe ), Pl

sion becomes

where

The subsgcript 1 refers to the first reflection from the shock.

This @ wave strikes the flat plate surface, causing a resultant
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change in pressure. The effect of this Q wave on the surface pressure
is now cbtained by holding the piston velocity constant during the sur-

face-wave Interaction. Therefore

2

2
dq = ;;:IdA = ‘7-ld (49)

[

Substituting equations (49), (10), (22), and (25) into equation (47),
the pressure ratic change with respect to Mie for the first reflection

becomes

g 22
P, i 7(py/p), sin & v (50)
dM12 lap/ay ), M)

1

It is recognized that the 4§ which results from the first reflec-
tion at the shock is reflected from the flat plate surface as a P wave,
where the reflected AP equals the incident dQ. Thus, again employing

the above results, the 4Q for the second reflection is given by

(dQ), = dP! b)e (51)

2 \
.,

and this same reasoning mey be carried on to succeeding reflections.

Thus, the total change in pressure with respect to Ml2 may be obtained

by adding the original pressure change, equation (27), to the pressure

change resulting from the reflections and the final expression becomes

P
d._.-.. "
(/ Py 7(py/P), Sin 8 [ 1
- lyrs P4 ...+ P (52)
\ M E / (ae/al)o Ml L 2
n
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where n is the number of reflections considered.

Equation (52) expresses the surface pressure change for n reflec-
tione following an infinitesimal velocity change. However, assuming
that linearized theory holds within the region between the shock and
surface, the differentials can be replaced by finite differences, that

7(p/py ),
is, it can be assumed that and F are approximately con-

la ?a T M

2 7101

stant during the time required for the significant reflections to occur.
As will be shown subsequently, changes occurring during decelermtions or
accelerations which occur at reasonable rates are sufficiently small so
that the linearized theory is Justified in most cases.

As a basis for evaluating the above equation, and illustrating
the effects of reflected waves, a direct comparison to steady state

shock solutions can be made, The pressure change across an obligue shock

is given by

Py =P
2 TP gy 2 o2
5 T i () s B -1) (53)

In addition, the eguation giving the relation between 8, Mi, and B is

M 2 Sin2 B-1
tan © = 2 Cot p —zt (54)
M, "(7 + Cos 2B) + 2

Letting Mle Sin2 B = Z, the derivative of both sides of equation (53)

is taken with respect to Miz, obtaining
P
15,
P = 2, (55)
aM 2 7+l aM 2
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Then, with @ constant, the derivative of both sides of equation (54%) is

12 and the resulting expression solved for dZ/dMlz.

Substituting this expression for dZ/dM12 into equation (55), letting

taken with respect to M

y = 1.4 and simplifying, the following expression 1s obtained

Pa
? EI 2.8 [(-.722 + .22 + .5) + .6M12(z-1i]z
" 3, (56)

This expression gives the exact change in steady state pressure ratio

across an oblique shock for a change in M12.

Figures 8, 9, and 10 show a plot of 5 obtained from the
aM
1 _
d Py/Py
theory, equation (52), divided by the value of ——5— from equation
dM
1

(56) versus Mach number and the angle (P - 6). These results iliustrate
the effect of differential or linearized step chaﬁges in Mach number on
the surface pressure lag, that is, the effect of wave reflections on the
correspond ing surface pressure lag. Furthermore, they directly demon-
strate the accuracy of the unsteady flow, hypérsonic theory since the
ordinate should approach 1.0 when the number of reflections becomes
large.

In Figures 8 (a), 9 (a), and 10 (a), the abscissa ié the angle
between the flat plate and the shock wave, (f - 8). This choice is
dictated by the fact that the accuracy of the hypersonic piston theory
is dependent upon the approximation that Cos (P - 0) =1.0, é.s previously
discussed. Thus, it is expected that this plot should correlate results

reggonably well regardless of Ml or the angle 8. It can also be shown
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that the angle (B - @) is essentially dependent only upon Ml for ranges
of Ml and & of most interest. Since Ml is a more convenient and des-
criptive parameter, the results plotted in Figures 8 (b), 9 (b), and 10
(b) employ Ml as the abscissa.

The plot of the pressure ratio versus (B -86) and M, for no wave
reflecﬁions, that is, the pressure ratio existing immediately after a
change in velocities, is presented in Figure 8. This corresponds to
the so«called shock expansion theory and it can be geen that there is
considerable error, particularly at the higher Mach numbers.

Shown In Figures 9 and 10 are ﬁhe pressure ratic curves for one
and two reflections of the pressure disturbance waves. It is seen that
the first reflection agsin accounts for the major correction of the
pressure back toward steady state values. The first reflection results
in a pressure ratic within one per cent of steady state value for M1
greater than 5.60. The second reflection makes a further non-negligible
correction to the pressure ratio, but, succeeding reflections have little
effect.

The solid lines of Figures 8, 9, and 10 were computed for 8 = 10°.
In order to illustrate the effect of 6, however, one calculation was made
with € = 15° and twe calculations were made with 6 = 20° for values of
{B - 8) and Ml near the limits of good accuracy. These points are plotted
on Figures 9 and 10, illustrating that good correlation is obtained with
the solid curves for the cases of one and two reflections.

Figure g shows that if one reflection is considered, this hyper-

sonic theory will result in accuracy within one per cent for values of M

between 5.6 and 11.7. If two reflections are considered, the theory gives
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an accuracy within one per cent for values of M greater than 5.8

with no apparent upper Limit on M. It is interesting to note that

the theory apparently results in about the same degree of accuracy for
valueg of é up to at least 20°.

It was pointed out earlier that in the steady state case, the
flow velocity between the flat plate and shock wave was in a direc-
tion perpendicular to the shock wave. When a change in velocity of
the flat plate occurs, there 1z a resultant change in piston velocity
perpendicular to the flat plate which has a component perpendicular to

the shock of

e

EI— = sin 8 Cos (B - 8) My {(57)
It is this component of the change in flow velocity which one might
expect to be of significance in establishing the pressure change.

If the rotation of the shock, that is, the change in (B - 8), is
negligible, a modified piston thecry is obtained by multiplying equation
(52) by the factor Cos (B - 6). The plot of the pressure ratlo versus
Ml and (P - 6) for two reflections using this modified theory is pre-
sented in Figure 11. This Figure shows that the modification extends
the theory so that good accuracy is obtained for considerably lower
values of M. Correlation is still shown to be good for values of 9 of
15° and 20°. It is important to point out, however, that thls approach
neglects the effect of the component of initial velocity perturbation
tangential to the shock wave. That is, if the theory accurately pre-

dicts the steady state surface pressure after several reflections, this
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tangential compornent must necessarily be attenuated. Since this compo-
nent is initially neglected, the time-pressure variations associated with
this attenuation process are neglected.

The preceding comparisons illustrate the limits of applicebility
of the small perturbation or linearized theory which has been developed.
It remains, however, to establish the corresponding time-pressure rela-
tionship for acceleration or deceleration and to investigate the extent
to which the small perturbation or linearized theory mey be applied.

To determine the time involved for the pressure disturbance wave
to travel from the flat plate to the shock wave and back to the flat
plate after a change in flat plate velocities, consider Figwre 12. If
&L, Is the time it takes for the disturbance wave to travel from the

1

piston to the shock wave, then during this time the shock wave moves

Dl = us ﬂtl (58)

and the pressure disturbance wave moves

D, + DSO = (u+a) ot (59)

During the time Aml described above and the time Atz which it takes
the disturbance wave to travel from the shock wave to the flat plate,

the piston travels a distance

D, = u, (cml + ame) (60)

Alszo, during time Atz, the disturbance wave travels a distance

D, +D -D, = (up-a) ot {61)
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Equations (58), (59), (60), and (€l) may be solved for the time

and D, giving

7= ¢¢l + A¢2 in terms of up, Uss & 8 .
u
3 23
a
1 1
D u u u (62)
s o B _E Y\ B2 + 2.k
1 %A% ' B

The expression has been made non-dimensional sc that the param-

al
eter ﬁl— is independent of position along the plate. This eguation

So

represents the time lapse from the initial chenge in velocity and sur-
face pressure until the first reflection strikes the flat plate result-
ing in the second pressure change along the flat plate surface. Egquation
(62)‘would also be applicable for the second, third and subsequent
reflections. In fact, it can readily be converted to & single eguation

for the general case ¢f n reflections.

a

1
A plot of 5 versus M

%o

values of M, for which equation (52) is assumed accurate. It is noted

1 is included as Figure 13 for the same

again, agsuming realistic values for a, and D, , that this time lapse

i o
is measured in milliseconds.

Equation 62 can now be utilized to illustrate the rate at which
disturbances are reflected for reascnable values of the parameters and,
thus, to Jjustify the utilization of small perturbation or linearized
theory. The criterion is that the relative change in flow velocity ahead
of the flat plate over the interval of time required for the effects of

the change to be attenuated must be small. This can be stated by



33

du, N au 1
T L T [ ow =8<<lo (63)
o
This can bhe written as
du
-—— I >
du n _ d s (1M L (64)
at u M & 2 Ds
11 0
or
du
It _ &M Yy _ 8MCot (B -8) (65)
(a,/2000)° 8o =0 D -y
€ 1 &, D,
o 8]

where the acceleration du/dt is normalized by the standard acceleration

due to gravity and a. is normalized by dividing by 1000. This equation

1
is plotted in Figure 14 for the case of a single reflection and 6 = 10°
in order to illustrate the general characteristics for & = 0.0L. These
results show that extremely high rates of acceleration or deceleration
are required over the entire Ml range if & i1s as high as 0.0l. For more
reasonable accelerations, b will be extremely small. It is apparent,
that within this range of Ml, essentially steady state conditions exist
during the deceleration or acceleration.

Equations (52) eand (62), then, allow the computation of the pres-
sure distribution along the decelerating or accelerating flat plate
using a finite difference method. It has been shown that conditions

during the change in velocities, for reasoneble accelerations or decel-

erations, are essentially steady state. Thus, it 1s not felt by the



author that the problem of the deceleration or acceleration of a flat
plate at hypersonic velocities is of great importance. It would appear,
however, that the situation may be considerably different in the low
supersonic regime.

It is-felt thet the problem of oscillating airfoils in the
hypersonic velocity range could be of importance. As a side light to
this investigation, therefore, the methods investigated above are
applied to extend the theory of Lighthill (6) to include the effect of
any number of reflections of the pressure disturbance wave, This
extension is contained in the Appendix.

The methods outlined in this chapter apply only to Mach numbers
in the hypersonic velocity range. It 1s seen that as supersonic velo-
cities are approached, the piston theory results in errors of ten per
¢ent or more. In the succeeding chapter, an approach is outlined for

the supersonic case.
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CHAPTER IV

SUPERSONIC CASE

The supersonic case is much more complex than the hypersonic
case because, as explained earliler, the shock wave can not be assumed
parallel to the flat plate surface, and the propagating and reflecting
pressure disturbance waves can not be assumed paralliel to each other. In
fact, changes in the velocity tangential to the surface may become guite
subgtantinl in comparison with the changes normal t¢ the surface. The
theory of characteristics seems to provide the only method for accurately
caleulating the unsteady flow field behind a shock attached to a flat
plate in supersonic flow. Since the author kmows of no attempt to set up
the theory of characteristics for this case, and since considersble ef-
fort wes spent in studying this situation in an effort to understand the
physical problem, some ideas and results will be presented herein.

Time would not allow a complete development of the theory of char-
acteristics, although the most difficult analytical sclution invelving
Interactions at the shock wave is solved. In addition, the physical sit-
uation and remaining analytical developments, believed to be required
for a solution, are established. In the subsequent paragraphs, the sol-
ution invelving the interaction at the shock will first be developed.
Then the physical wave situation existing between the shock wave and
the flat plate surface will be discussed and a method for the solution

of the wave motion in this area will be briefly outlined.



Shown in Pigure 15 (a), is a flat plate at angle of attack 8,
which has undergone an acceleration. For purposes cf clarity, finite
changes are illustrated and occasionally used in the derivation. At

point A, a propagating wave, w.,, coalesceg with the ghock wave, 815

1
causing & change in strength of the shock wave and a new pressure dis-
turbance wave, iy to refiect. Also originating et this point because
of the change in shock strength is an entropy interface shown by the
dotted line.

Since point A is, and must remain, comeon to both shock 8y and

wave w,, an equation may be written for the motion of point A along

shock wave 5,. If this motion is denoted by dZA/dt, then

L
C c
d;A ) Wy Sl (66)
at SIn(P - @)  tan(p - 9)

In & similar menner, point A must remain common to both wave v, and

shock s,. PFor this case,

1
az Cw cs
A, 2, 1 (67)
3t Sin © tan &

Equating equations (66) and (67), and noting that in the limiting case,

or case of small perturbstions,

— = | =] + Cos (B - 8
8 8 &
1 1 A 1
Csl "p Cos (B - 6) Sin B
a ¥ T Sin 8 (69)

1 1
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and

Q

W & (3 |
E__% = .a.é - a'P' Cos B (70}
1 1 A 1 .

the following relationship for & 1s obtained after some algebraic

gimplification.

sin ( ) j\/éw”’ ( ) (71)

where
2
ol B Ml Sin @ - Sin B Cos (B - @)
1l/0
X = ~—Sm (B - 9) (72)
and
Sin &
In the same manner, a relation may be found between the angle d¢
and 032' Considering wave L and shock 815 dZA/dt is again given by

equation (66). The corresponding solution for shock 8, and shock N is

dz CS + dCs o

A 1 sl
at Sin d¢  ten de (7h)

Setting equations (66) and (T4) equal to each other and using the identi-

ties sin d¢ = tan d¢ = dé¢, the following relation is obtained.
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;EE = d¢ [ﬁ] (75)

where

85
— }+M. Sin @
8, ! M, Sin B

= 0 1
] (Sin (B-6) ~ tad (P-9) (76)

A second expression involving dCS iz obtained from the shock

relations from Liepmann and Roshko (8) given below.

1/2
EE = %:l A Eg (77)
8y 7 2y Py
. . 2y 1/2
2. 1 (2, 731 (78)
%1 7 \P Po 41
p, 7+l
Differentiating equations (77) and (78), gives
-1/
Cs y-1 Pa
da-—- 571 + o
2 \& 27_ G
d Eg ' r+1
P
v [y PeM(E)
g . e/ A (80)
P 7 P. P, -
a -2 2y 4L 2y L rt
P, p, | 7l p, ) 7
0 ] . 0 _

From eguations (79) and (80), it is found that
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C 1
a2 =[] a2 (81)
1 1
where
(28
? 7+
] - |24 (@)
(E?_ 4 2221 |
L\ F1 o 7+l_1

d:_i = de (s = d¢ [J] (83)

which represents the change in flow velocity in area b of Figure 15
(a).

The angle ¥ can also be determined by the compatibility condi-
tion at point A. The compatibility condition for the entropy interface

and shock g, is

2
C -1 C -1
tan (8 - ¥) = S22 . sl p (84)
da, “el Ce1
at Sin (p-0) tam (B-9)

After simplifying, the relation for tan (& - ¥) 1s given by

Sin o5
tan (5 - ¥) = SLom P 1 Toepoe) (85)
B (ay/8,], M Sin 6 M Sinp

Sin (B-0) " tan (p~8)



The equations developed up to this point establish the wave
geometry and & relationship between d CS/al and d up/al. Additional
conditions are now required hefore either d CB/al and 4 uP/al, and
thus, the strength of wave w, can bhe determined.

2

First, wave w, is a plane wave which can only induce changes

2
normal to the wave front. Thus, a required condition is that the
tangential component of du across the wave Wy must remain unchanged
and equal to that in region d in Figure 15 {(a). Second, the component
of du normal to the entropy interface and the static pressure must be
the same on both sides of the entropy interface,

The entropy interfece will first be considered. Since flow

glippage may occur at the entropy interface,

ko

u u u
al2 = a BBy g BB (8)
1 1 1
du N
where apa is the change in slip velocity along the entropy inter-
1
face, Let ( )nor represent the component of velocity normel to wave Vo
Vo
and ( )tan represent the component of change in velocity tangent to
LN :
wave Wy Then
u u u
é = fa BB} (aﬁ—t (87)
a = 1 =1
1/ nor 1 /nor \ 1 /nor
W2 Y2 Yo
u /u u N
a2 - a2 + (a B2 (88)
1/tan 1 /tan R R tan
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From Figure 15 (a) it is seen that

U u ) u
q 2= = -52 4+ d a—p— Cos (& + d¢) _EE' cos B (89)
81 /nor 1 1 1

u D u Up u
ai = aﬁ +d -52- Sin (5 + de¢) - 5£ gin ® (90)
1 /tan s i 1

After simplifying, eliminating second order terms, and substituting

from equation (83) for dé¢, the following expressions are obtained.

I8 u u
a EBE = [(Cos B EE Si? 5l 4 E® (91)
1l /nor 1 &1
Yo
u 1 11
d EEE = |sin & + 53 003 B 4 22 (92)
1l /tan i &
Yo

Now noting that

11 k¥
a et = -fa 2% sin y (93)
1l /nor al
Yo
and
u u
q 2ot a 2L\ cos y (o)
al tan 8y
¥a

equations (87) and (88) become
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n oy 1 n
a E’I% = |cos 5 - 2 Sig Bl a apb - fa Eat> sin y  (95)
1 /nor 1 1 1
W,

u u
) = Sm6+—P- 0036 a2 4+ (a2} cosy  (96)
tan 2 8 8y

Second, consider the changes across wave Wy The component of
change in velocity in area 4, Figure 15 (a), tangent to wave LA is given

in the limit by

Lol

g

v} 11

a - EE sin (8 + 8 - 8) (97)
1/ tan 1

Wa

u
Now, since (% Eiil is the same on both sides of wave w,, equations
ar

Y2
u
(96) and (97) can be equated. Solving for 4 _g_a_t. glves,
1
u u u
pat l 2 . Db .
a-£= = a sin (8 + 8- 8) « d = (Sin & (38)
8q Cos al aq
u
+ -a_g Cos & )
1

Now consider changes normal to wave W for which the variable P

would be constant. Holding P constant gives

_2_d_._+ 2 =~§—-de+ “pe (99)
-1 nor -1 E,’l E"l nor
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P Ba
The value of =T 4 —~— can be obtained from the constant pressure con-
- al
dition that exists across the entropy interface
a
cf, dmoeg
2 1 2 1 1
ag, = 71 "a_ = -1 By (100)
Substituting for dS  from equation (%6) and for d ab/al from equation
{34}, the following expression is obtained.
(2
a a u
2 4 =2 - o . g Fb (101)

In area d, the component of the change in piston velocity normal

is given by

n u
G—P-> = 6—1’)(}05 (8 + B - 8) (102)
a a
1/ nor 1
Vo

If it is noted that across wave wl, where the variable Q@ is a constant,

Lo wave w
2

u
that =~ a2 = 4 -B ang if equations (95), (101), and (102) are
r-1 a,y 8y

upat
8y

substituted into equation (99), a second equation for 4 is

obtained giving



4y

[ <_2)
u a u ¥l
pat 1 1o _'p sin® b
a2 = Sinwl 2 ¥ Cos & - £ == a - (103)
1 2 1 1
7fl -
u
- {1+ Cos (8 +B-6)| a =L
8

Fquation (103) can then be set equal to equation (98) and the following

expression for 4 :?;b obtained.
1
u u
dE!L = K] da-E (104 )
1 1
where
e _ 1+ Cos (8+PB -06)+ Sin (5 + B -0) tan ¥ (105)
2
a u 1,
2L 4cos s - B BB Oy (gin 5+ 25222 tan v
Py a; J ag Jd
L4 _
Introducing equation (104k) into eguation (98),
u ' u 1
pat _ 1 p Cos & _p
d — = o5V Sin(‘c‘>+ﬁ-6)-K(SJ’.n6+a—-—J—- d —
1 1 1
(106)

Then substituting equations (104) and (106) into equation (95) gives

s b Y5 Sin &
G—P_a =d§f K(Casb-—E—_J,—)-tanw (107)

H Cos B
sin (6 + B - 0) - K(sin 8+ B =5
1
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Pinally, since

2_ 4.8

y=-1 a (108)

™
£
=
O
L1
1]
o
[
1
A
L l?c
U2
=]
@]
=

equations (101), {(204) and (107) may be substituted into equation {108).

Recognizing that dP = 2 dup/al, the following expression results

(32>
nor T e PR — - -—T—-

2 ) 8,
o 1
W, 7f(—-
2 1 p
10
% Cos ®
tanwlrl:sin(8+B-6)-K Sin & + £ 222
a, J

Tt is interesting to note that in the limit when & = y =(f -~ 8)= 0, the

above expression for {(4Q) reduces to the same expression as derived

nor
W2
for the hypersonic case. This is, of course, a necessary condition.

Equation (107) or (109) expresses the strength of the reflected wave in
terms of initial conditions. K, &, J, and ¥, are all explicitly defined
by initial conditions.

The equations outlined above, are valid for the matching of con-
ditions at a point on the shock wave where a propagating wave, a reflected
wave and an entropy interface meet. Also, the equations can lmmediately
be applied in a finite difference solution., For M= 2.0, it is found that
& = 124.6° and ¥ = 81.95°, If M were decreased further, 5 would become
larger, whereas, if M were increased, & would become smaller until in the

hyperscnic case, b would become approximately zeroc.
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To carry the solution further, the reflected wave at point A
must be a continuous part of the wave front which originated at the nose
of the flat plate at the time of the change in velocity and traveled
downstream along the plate surface to point D in Figure 15 (b). That
is, the wave generated at the tip of the flat plate at time t = 0 has
grown and moved downstream and is now a part of the same wave which is
reflected at point A at some time later. This entire wave network grows
continuously with time, maintaining similarity. It is possible to cal-
culate the distance along the flat plate which the wave, generated at
t = 0, has traveled. Rough scaling for the case M = 2,0, indicates that
the reflected wave from point A must curve toward the nose of the flat
plate as it travels toward the flat plate, in order for there to be
compatibility at the plate surface. That this must be true is also seen
from the fact that if the reflected wave from point A were gllowed to
strike the flat plate at an angle greater than 90°, measured clockwise
from the flat plate surface, there would be no reflected wave solution
which would keep the point of incidence and reflection in contact with the
flat plate as the flat plate moves through the air.

The equationsg necessary to establish competibility at the shock
wave are now known and the condition for compatibility at the flat plate
surface has been discussed. Conclusions made thus far indicate that the
reflected wave from the shock wave to the flat plate surface is curved in
order to satisfy compatibility requirements at both end points. It
remains to discuss a method by which the wave pattern between the flat

plate and shock wave may be determined.
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It may be postulated that in the case of the infinite flat plate,
Jjust as in the case of the infinite cone, there is no scale factor and,
that between the flat plate and shock, similarity must exist along radial
lines, originating at the nose of the flat plate., The area between the
flat plate and shock may then be divided into a finite number of areas
by radial lines as indicated in Figure 15 (b). The strength and direc-
tion of travel of wave W, are known at point A and these same values may
be assumed to exist at point B, similar to the case of steady flow char-

acteristics., Wave w_, propagating into area 2, joins with wave LN at

3’
point B.

Now the similsrity condition demands that the wave pattern grows
with time such that B moves to B', A moves to A', D moves to D', etc.,
expanding but meintaining similarity. This change with time is iilus-
trated in Figure 15 (b). Thus, the compatibility condition at point B

establishes the direction of wave w_,. Furthermore, a third wave, Wy, »

3

must intersect point B such that conditions in region 4 as obtained by
the flow passing through waves Vs and Wy, in series, are the same as those

obtained by the flow passing through wave w5. The direction of W), is

again established by the compatibility condition at point B. With the

direction of waves w, and W), established, only one solution of the plane

3

wave equation exists for the strength of w, and W), .

3
Wave w_ will then be known after the above solution at point B

3
is kmown. The same process mey be repeated at point C and the reflected
wave carried on, step-by-step, to the flat plate surface. At the sur-

face, the boundary condition dictetes that the only component of flow

velocity must be the component tangent to the surface, The solutions
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at points B, C, etc., may also be iterated as in standard steady state
characteristic solutions.

At the ssme time, wave Wy, is known from the solution at point B.
The solution for wave Wh across the entropy interface may be found from
equations previously developed and the Intersection of wave vy, with the
shock wave at point E may be determined. The equations developed in the
first part of this chapter may again be used to find a seolution at point
E which is compatible with existing conditions.

By following a step-by-step procedure gimilar to that outlined
above, the entire wave pattern in the area between the flat plate and
shock wave may be determined, and the pressure distribution calculated.

The solution of a sample problem is left to later investigations.
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CHAPTER V

CONCLUSIONS

Piston theory, incorporating the theory of characteristics
and considering the entropy gradient across the attached shock, has been
used to obtain a numerical-graphical and an analytic sclution which give
good resgults to the problem of pressure distribution along an accelerating
flat plate at an angle of attack in the hypersonic velocity regime. For
y = 1.4 it was shown that:

{1} The hypersonic solution developed herein is good to within
an accuracy of one per cent for values of Mach number greater than 5.6,

{2) a modified piston theory could be used which gave accuracies
within one per cent down to a Mach number of 4.0,

{3) the so-called shock expansion theory solution to the problem
contalns considerakle error,

(4) the first reflection of disturbance waves from the shock wave
accounts for the major correction of the pressure back toward steady state
value,

{5) the second reflection also contributes a non-negligible cor-
rection but higher order reflections may be disregarded,

(6) the reflection time for a disturbance wave is s0 short that
for normal accelerations, the problem may be considered as essentially a
steady state problem, and

{7) the hypersonic theory developed is directly applicable to the

case of oscillating flat plates and can be used to extend the theory of
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Lighthill (6). A sample extension is illustrated in the. Appendix.

In the supersonic case, the piston theory method resulted in poor
accuracy because of the effect of changes in the velocity component tan-
gent tc the plate surface, It was shown that the theory of character-
istice could be developed for a complete step-by-step solution to the
supersonic case, Equations were developed for the most difficult
problem, that of matching conditions at the shock wave. In addition,

a discussion was presented concerning the disturbance wave network
existing between the flat plate and the shock wave, and a step-by-

gtep solution for this network and the resulting pressure distribution

was outlined. A complete solution of an example problem was left to later

investigations.
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APPENDIX
EXTENSION OF THE METHOD OF LIGHTHILL

In reference (6), Lighthill uses piston theory to determine the
pressure distribution on an cscillating airfeoil at high Mach numbers.
Essentially, use is made of the first three terms of the binomial

expansion of the "simple wave" condition

2y

FFL
) _ (110)
1

=

1]

. (14222
Py

where u/al is the perturbation velocity of the airfoil normal to the
stream. Thus, no reflections of the pressure disturbance wave are con-
sidered in the solution.

As a result of_the work presented in Chapter III, Lighthill's
results can now be extended to account for the pressure change resulting
from wave reflections from the shock wave for the flat plate case. The
value of the ratio a/al will be determined as a function of time on the
flat plate surface. Since the entropy is constant in the area of the flat
plate surface, the isentropic relation, equation (24), may be used to give
the pressure at any time t.

Initially it is known that along the flat plate surface

2

Q = > - = (111)

1 1

mlm

and
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2 a u
P = w—= — = (112)
¥l al a)
Differentiating with respect to time,
i A
Q@ _ 2 1 1
A i i (113)
and
dz— a—
aP 2 1 1
T~ 51 T txm (114)

From equation (47),

dQ(t aP(t-n}
d‘E) = [F ‘ai—l (115)

where 1 is the time regquired for the reflection of a disturbance wave.

Substituting from equations (113) and {(11k),

a=(t) a2~ (t) a == (t-n)
2 1 1 =(F) 2 1 (116)
el dt dt y=1 dt
L
d = (t-1)
41
at

If the flat plate is assumed to have a velocity normal to the free

stream

= (t) =z +A sin 2nft (117)

1 1
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where A is the maximum perturbation amplitude and u/al is the steady
state velocity, the velocity may be differentiated with respect to time

yielding,

L 2nf A Cos 2nft (118)

and

u

d — (t-n)
il
at

= 2nf A Cos 2nf (t- 7) (119)

Substituting equations (118) and {119) into equation (116) and rearranging,

d g—-(t) a gg-(t-n)
2 1 S F i = 2nf A Cos 2nft (120)
Y- | — 3t at

+ 2xfAF Cos 2nf{t-1)

If F is zero, Lighthill's solution is obtained, that is

2 (4) = 4 (%in onst + %) (121)

a 22 -1
2(t) =| =] + A Sin onft (122}
a _ a 2

1 1/,

where the boundary condition used is that at t = 0, afa, = (a,/a)),

ar

If F is small and assumed constant, that is, if the velocity

changes are small, a solution of the following form may be assumed.

2 (t) = Zéi [iq sin 2nft + F £,(t) + F £ (t)Heet ann(tﬂ (123)
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where n in this case would represent the number of reflections. By
differentiating the assumed solution with respect to time and substituting
into eguation (120), expressions may be obtained for the functions fl‘(t),
fé’(t), voo, fn'(t). Performing this operation and substituting into the
differential egquation obtained from differentiating the assumed solution

for a/al(t) with respect to time, it is found that

a4 &= (t)
ét - 751 [enm Cos 2nft + Fin fA Cos 2nf (t-1) (124)

+ F* 4xf A Cos anf(t~2n} + ...t FUnfA Cos 2ﬂf(t—nnh
-

Equation (120) is s linear differential equation. The solution of
equation (120), however, differs from the solution of & standard differen-
tial eguation in that boundary conditions must be specified over a finite
interval of time. A4s a typical example of a solution, it is assumed that
the oscillating motion has been going on for an indefinite period of
time, and that at t = O, a/al = (aE/al)O. Equation (124} may then be

integrated to obtain the solution for a/al {t) as follows.

a

&, .

2 (t) = (a—2-> + 1; A{ Sin 2xft + F [sm 2nf(t-1) (125)

1 1
0

- «
+ Sin EﬂfnJ + F Sin 2nf(t-2m) + Sin 4nfn
L
+oeee + FO [.Sin 2nf(t-un) + Sin QnﬂfnJ

Tre pressure may be obitained at any time t, then, by the expression

- ey

| > 1
P 18 (y) (126)
P L%1
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¢) Hypersonic Case M3 >> My

Figure 1. The Physicel Problem,
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Figure 3. Relation between x, y, Dy , B and
& for Flat Plate. °



59

34,69
26-5
12,15
10.23
T
6.40
; h.u8
y = 1.h Y3
N
B A o
1 ba. 2
PN
Not to scale E \\
) \L
€ 1.0 0
Pop = 7.246635 Qo = 5.161416 A, initial = 1.2392
P o= 6.904943 Uy = 5.161506 A, final = 1.205031
P = 6.904043 Qup = 5.161506 A, = 1.20503L
P, = 6.920994 Qpp = 5163666 Ap = 1.208241
1"(:5 = 6.8%0054 Qc5 = 5,095045 Ay = 1.208241
Paz = 6-855439 Y5 = 5.095946 Ay = 1.208259
Qae = 511”‘5365 Qe5 = 5'095914'6 AL = 1'208259
o = 5.161416 Qf5 = 5,008102 Ay = 1.208691
Figure 4. e-1 Plane for Step Deceleration of

Flet Plate From M = 6.0 to M = 5.0.



1.12

K 8= 10"
l.lo \ 7 == -ll-_
C-E,| Pregsure| Corrpctian, First
1.08 Reflectipn frpm Shock
\7 H-I, Pregsure Correctiqn, First
Refiectipmr 1T tropy
Ing rfacF
‘l.%
- L-M,| Pregsure| Correction, ?econi
Peg " F Reflectipn from Shock |
Ppeg ~ Pres
1.04 \ !_ j
e S o S
E 3l I ]
\\
1.00 -
12 16 . 20 24 28
Figure 5. Pressure versus T for Step Deceleration

of Flat Plate From M= 6.0 to M= 5.0,

09



61

1.12 i |
| |
S S U S
' )
I Iie = .|.0°
1.20 | R B R P
i H
i T
! . ;{ )
1_08 . e J,_ U
. L L
E [ Sec@nd Shock
1.06 ! Rbfleni_tion_}l
i Ihtersects :
Prg~P ] Surface
- e : T T
Prg “Pres Firgt | T
1.00 |- | Reflection From | t | ..
y Entrppy Interface | | |
Intersects Surface : !
(ﬁﬂ ”Wm_w__wr - | :
L N ‘ Lo
1002 | I— L‘_ S ': T ‘._ . . .|___.::‘.__|____...___...__ .......L...__-__.__.:..._.;
First Shqck Refleckion: N |
Int}erééq § Surfacg Y
A i f \ I O |
.005 “.145 .150 160 .170 .180 .190
1
J

Figure 6. Pressure versus Time and Distence
for Step Deceleration cof Flat Plate
from M = 6.0 to M= 5.0.



62

Figure 7. -7 Plane for Development of
Analytic Solution
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Figure 8. Pressure versus M and (f - 6)
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Reflections with Modified piston Theory
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