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SUMMARY 

The purpose of this paper is to investigate the use of piston 

theory and the theory of characteristics, considering the entropy 

gradient across the attached shock, for the determination of the pres­

sure distribution along an accelerating flat plate at an angle of 

attack. Both the hypersonic and supersonic velocity regimes are con­

sidered. 

The general wave equations which describe the motion of plane 

pressure disturbance waves in the area between the flat plate and the 

shock wave are developed. The flat plate is considered as an acceler­

ating piston which-causes pressure disturbance waves to propagate to 

and be reflected from the Shockwave and resulting entropy interfaces. 

In the hypersonic regime, the angle between the shock wave and 

flat plate is assumed to be small so that the change in flow velocity 

is essentially perpendicular to the flat plate surface and the propa­

gating and reflecting waves are essentially parallel to each other. 

A numerical-graphical solution to the problem for the hypersonic 

regime is obtained by the numerical integration of the wave equations in 

the x-t plane. Sample calculations are presented for the case of an 

instantaneous deceleration of a flat plate at an angle of attack of 10° 

from a Mach number of 6»0 to a Mach number of 5*0. 

An analytic solution to the problem is then developed and the 

pressure change for zero, one and two reflections, divided by the 

steady state pressure change is plotted versus the Mach number and the 
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angle "between the f l a t p la te and shock wave, (£>-£). An expression for 

the time required for the ref lec t ions to take place is also developed. 

As a resu l t of t h i s work, an extension of L i g h t h i l l ' s work on the o sc i l ­

la t ing a i r f o i l , is presented. 

I t is shown in the hypersonic case tha t : 

(1) The hypersonic solution is accurate to within one per 

cent for values of Mach number grea ter than 5.6, 

(2) a modified piston theory could be used which would give 

accuracies within one per cent down to a Mach number of k-.O, 

(3) the f i r s t re f lec t ion of the disturbance waves from the 

shock wave accounts for the major correction of the pressure back 

toward steady s t a t e value, 

(k ) the second ref lec t ion also contributes a non-negligible 

correct ion, but higher order ref lec t ions may be neglected, 

(5) the ref lect ion time for a disturbance wave is so short 

that for normal acce lera t ions , the problem may be considered as 

e ssen t i a l ly a steady s t a t e problem, and 

(6) the hypersonic theory developed is d i r ec t ly applicable to 

the case of an osc i l l a t i ng f l a t p l a t e . 

In the supersonic case, the piston theory is shown to r e su l t in 

extreme e r ro r s . The theory of charac te r i s t i c s is developed for a com­

ple te step-by-step solution to the supersonic case. Equations are 

developed for the most d i f f i cu l t case, tha t of matching conditions a t 

the shock wave. The disturbance wave network exist ing between the f l a t 

p la te and the shock wave is discussed and a step-by-step solution for 

t h i s wave network and the resul t ing pressure d i s t r ibu t ion outl ined. 
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The solution of a complete problem for the supersonic case is recommended 

for further investigation. 
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CHAPTER I 

INTRODUCTION 

The high rate of acceleration and deceleration associated with 

the firing of today's missiles and rockets has made necessary a better 

understanding and a more accurate determination of the change in pres­

sure distribution which occurs along a surface as the surface changes 

velocities. It is known that, as a surface changes velocities in the 

supersonic and hypersonic range, pressure disturbance waves propagate 

from the surface to the shock wave, changing the strength of the shock 

wave. This results in an entropy interface. Subsequently, the pressure 

disturbance waves reflect between the shock wave, entropy interface, and 

surface until a new steady state is reached. There is a finite time 

lapse between the change in velocity and the arrival at a new steady 

state condition. The instability of some missiles during deceleration, 

a problem discussed by Force (l) , has suggested that the pressure dis­

tribution may change with time and position along the missile to such an 

extent that the stability derivatives may be adversely affected. 

Several studies have been made of this problem. Gardner, Ludloff 

and Reiche (2) used a perturbation potential theory on thin bodies and 

showed that the drag coefficient decreased as acceleration increased, the 

rate depending on Mach number and profile. The results were good only 

Numbers in parentheses following names refer to items in the Bibliography. 
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for small accelerations. Frankl (3) used retarded potential and small 

perturbation theory on elongated bodies of revolution and found that for 

velocities near the speed of sound, the added pressures arising from 

acceleration are negligibly small. Cole (k) used linearized theory of 

slender bodies and concentrated on the transonic range. It was shown 

that for sufficiently large accelerations, linearized theory is valid 

and there is little effect of acceleration on the pressure. Gardner and 

Ludloff (5) used a perturbation approach on slender two-dimensional air­

foils, showing that the influence of acceleration in the supersonic range 

was very small but that in the transonic range, the pressure curve 

depended heavily on acceleration. Lighthill (6) used piston theory to 

determine the pressure distribution on an oscillating airfoil, but did 

not consider the reflections of the pressure disturbance waves from the 

shock wave. The theory developed by Lighthill could easily be extended 

to the case of accelerating or decelerating surfaces. 

The purpose of this paper is to investigate the use of piston 

theory and the theory of characteristics, considering the effects of 

the entropy gradient across the attached shock, for the determination of 

the pressure distribution along an accelerating or decelerating flat 

plate at an angle of attack in the hypersonic and supersonic velocity 

regimes. A primary advantage of the piston theory method is the physical 

understanding it affords of the problem. In addition, only minor sim­

plifying assumptions are necessary in the solution. For simplicity, 

the flat plate is used for the development herein. The principles could 

be extended, however, to surfaces with other shapes. 
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In Chapter II, the physical problem will be described and the gen­

eral wave equations for the solution of the problem will be developed. 

In Chapter III, the hypersonic case will be considered and a numerical-

graphical solution and an analytic solution will be presented. In 

Chapter IV, the supersonic case will be considered. For the most general 

case, or supersonic case, expressions will be developed for the matching 

of conditions which exist at a point on the shock wave where an incident 

and reflected wave and an entropy interface meet. A general discussion 

of the pressure disturbance wave pattern in the area between the flat 

plate and the shock wave will be presented. 

Time would not permit a complete development of the theory of 

characteristics for the supersonic case. A discussion and some analysis 

for this case are included for record, however, in the belief that with 

additional effort, a practical solution can be developed. 

Finally, as a result of the work on the hypersonic case, an 

extension of the work of Lighthill (6) will be presented in the appendix 

for the case of an oscillating flat plate. 
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CHAPTER II 

THE PHYSICAL PROBLEM AND WAVE EQUATIONS 

A physical appreciation of the general problem may "be gained 

by picturing a flat plate, Figure 1(a), at an angle of attack, Q, 

traveling through a medium at some initial Mach number, M,. Attached 

to the leading edge of the flat plate is a shock wave with a strength 

and angle to the horizontal, (3, which is determined by the values of 

M and 8. 

The surface of the flat plate acts as a piston which moves in 

a direction perpendicular to the flat plate surface and induces a velo­

city of the medium in that direction. In addition, the fact that the 

shock wave is attached to the leading edge of the flat plate demands 

that there be a flow slippage, that is, a component of velocity tangent 

to the flat plate, in the area between the flat plate and the shock wave 

The resultant flow velocity in this area is given by the equation 

JS. = M S i n ° (1) 
a 1 Cos P-0 K ' 

and acts in a direction perpendicular to the shock wave. The velocity 

of the plane shock wave is given by the expression 

u 
— = Mn Sin p (2) 
3.-, X. 
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If the flat plate now -undergoes either an impulsive acceleration 

or deceleration, it is necessary that the flow conditions between the 

flat plate and the shock wave undergo changes tending to adjust toward 

the new steady state conditions. As the acceleration or deceleration 

occurs, plane pressure disturbance waves parallel to the flat plate 

surface travel in a direction perpendicular to the flat plate surface 

out toward the shock wave. The disturbance wave will travel at a 

speed u + a where u is the flow velocity in the direction of travel 

of the wave and a is the local speed of sound. This velocity is such 

that the disturbance wave will overtake and interact with the shock 

wave. The strength of the shock wave will be changed, an entropy 

interface will be created and a pressure disturbance wave will be 

reflected back toward the flat plate surface at some new angle. 

As the pressure disturbance wave propagates, it causes a change 

in the component of flow velocity perpendicular to the wave. In the 

case of pressure disturbance waves, just as in the case of shock waves, 

the tangential component of velocity is not changed as it crosses the 

wave. 

Subsequently, attenuated pressure disturbance waves will be re­

flected between the flat plate surface, the entropy interface and the 

shock wave until the new steady state condition corresponding to the 

new Mach number is reached. It is seen that there will be a finite time 

lapse between the time the flat plate reaches a new steady state velocity 

and the time the pressure reaches the new steady state pressure. 

For the case of low supersonic velocities, the magnitude of 

the angle (f3 - 0) is appreciable and as illustrated in Figure 1 (a), 
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there is a considerable difference between the direction in which the 

original pressure disturbance wave propagates out to the shock wave 

and the direction in which the pressure disturbance wave is reflected. 

As the Mach number of the flat plate increases, however, the shock 

wave becomes more nearly parallel to the flat plate surface and the 

angle (P - 0) decreases. As hypersonic velocities are reached, the 

angle (p - Q) becomes small and the shock wave may be assumed parallel 

to the flat plate surface. 

The significance of (p - Q) becoming small is that the component 

of flow velocity normal to the flat plate surface becomes essentially 

equal to the flow velocity since Cos (P - d) « 1.0. For instance, at 

(P - d) = 10°, only a 1.5 per cent error in the flow velocity results. 

Also, as the Mach number increases, the angle between the propa­

gating disturbance wave and the reflected disturbance wave becomes less, 

Figure 1 (b), until in the hypersonic case, Figure 1 (c), the propagated 

and reflected waves may be assumed to be parallel. The values of Mach 

number for which the hypersonic solution may be assumed will be more 

clearly defined in succeeding chapters. 

From this physical description of the problem, it is seen that 

the acceleration or deceleration of a flat plate induces a network of 

plane wave motion in the area between the flat plate surface and the 

shock wave. In the remainder of this chapter, the general equations 

which describe such a plane wave motion are developed. 

Following the development of Foa ("J), use is made of the equa­

tions of continuity, motion and energy given below. 
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i | £ + i | £ + |H . o (3) 
p dt p dx dx w ' 

^u + u ^U = - — ^p (k) 
d"t d"x 7 P d"x ^ 

^ i 2 da ds , c v 
d ^ p = — T • T ( 5 a ) 

^ n 2 ? da ds ,._, v 
d In p = -A=- — —— (5b) 

^ 7-1 a R w ' 

where the energy equa t ion , given by t h e f i r s t law of thermodynamics, 

i s expressed in t he two forms given by equat ions (5a) and (5"b). E l imi ­

n a t i n g p between equat ions (3>) and ( 5 a ) , and e l i m i n a t i n g p between 

equat ions (k) and ( 5 ^ ) , and adding and s u b t r a c t i n g the r e s u l t s g ives 

d / 2 , \ . / , \ d / 2 , v a / D s ^ a d S x /,% 
^ - ( —=- a ± u) + (u ± a) ^ - (—=- a ± u) = ^ ( ^ T - ± - *r-) (6) dt v 7-1 v dx v 7 - l ' RvDt 7 dx v ' 

where v i s c o s i t y has been n e g l e c t e d , a rea has been assumed cons tant and 

=rr denotes t h e s u b s t a n t i a l d e r i v a t i v e . 

Equations (6) a r e n o n l i n e a r p a r t i a l d i f f e r e n t i a l equat ions wi th 

t h e i r l e f t hand s ides being the t o t a l t ime d e r i v a t i v e s of the func t ions 

2 dx 
( —T- a ± u) in t h e d i r e c t i o n s -=— = u ± a . v 7 -1 ' d t 

The equat ions may then be numer ica l ly i n t e g r a t e d a long l i n e s of 

t h i s s lope in t h e x - t p lane and these l i n e s and the p a r t i c l e pa th l i n e s 

dx /d t = u, which a r e a l s o t h e entropy pa th l i n e s , a r e c a l l e d c h a r a c t e r i s ­

t i c s of equat ions ( 6 ) . The speeds dx /d t = u ± a a r e recognized as t h e 

speeds of propagat ion of small d i s t u r b a n c e s . C h a r a c t e r i s t i c s of s lope 

dx /d t = u ± a a r e paths of propagat ion of t h e d i s t u r b a n c e s in t he x-t 

p l a n e . 
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It will be convenient to non-dimensionalize equations (6) by 

making the following substitutions where the subscript 1 denotes 

conditions in front of the shock wave and D represents the in i t ia l 
so 

distance from the piston to the shock at any arbitrary point along the 

flat plate. 

A = a/a.. € = x/DQ 
1 so 

U -• u/a, T = a,t/Ds 

o 

S = s//R P = - ^ - A + U 
7 - l 

Q = -^r A - U 7-1 

If -^ denotes differentiation with respect to time along the 

characteristics, that i s , the operation -̂ 7- + (u± a) --r- , and if i t 

P>+ T) r̂  

is noted that -^ = •=-- ± a --r- , equations (6) may be written in the 

form 

& + P = A
 6 + S + ( 7 - 1 ) A ^ (7 ) 

V^ =AV^ + ̂ > A i <8> 
Equation (7) gives the rate of change of the variable P along 

the P characteristic -r— = U + A and equation (8) establishes the rate 

of change of the variable Q along the Q characteristic -*— = U - A. 

It is well to point out here, that if P and Q are known at any point, 

the values of A and U are also known at that point and thus, the slope 

of the P and Q characteristics are established. 
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Equations (7) and (8) are general equations which describe 

unsteady plane wave motion such as exists as a result of the deceler­

ation or acceleration of the flat plate and the corresponding deceler­

ation or acceleration of the simulated piston. While these equations 

could be numerically integrated to solve for the flow field and pres­

sure distribution for the flat plate for either the supersonic or hyper­

sonic case, their use in the supersonic case is extremely complicated 

because of the complex wave network involved. Their use in the hyper­

sonic case is simplified, however, and will be demonstrated in the 

next chapter. 
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CHAPTER III 

HYPERSONIC CASE 

In the preceeding chapter, equations were developed which des­

cribed the plane wave motion such as would exist as a result of an 

acceleration or deceleration of a piston face. In this chapter, the 

use of these equations will be demonstrated for the determination of 

the pressure distribution along a decelerating flat plate traveling 

at hypersonic velocities. The angle, (f3 - 0), will be assumed to be 

nearly zero so that the shock wave is essentially parallel to the wedge 

surface and the propagated and reflected pressure disturbance waves 

are essentially parallel, Figure 1 (c). 

As will be illustrated, the use of equations (7) and (8) requires 

time-consuming calculations carrying a large number of significant fig­

ures. Therefore, in the second part of this chapter, an analytic 

expression will be developed for the pressure distribution along the 

accelerating or decelerating flat plate after any number of disturbance 

wave reflections. 

Finally, an equation representing the time necessary for the pres­

sure disturbance wave to propagate from the piston surface to the shock 

wave and back to the piston surface will be presented. The range of 

hypersonic velocities for which either of these two solutions may be used 

will be determined. 

A. Numerical-Graphical Solution.--To illustrate the determination of 

the pressure distribution along a decelerating flat plate at an angle 
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of attack by means of the numerical integration of equations (7) and 

(8), the instantaneous deceleration of the flat plate from some initial 

Mach number, M , to some final Mach number, M , and the corresponding 

deceleration of the simulated piston surface is considered. The time-

distance plot for this situation is illustrated in Figure 2. The path 

of the piston is portrayed by the solid line starting from the origin 

and the instantaneous deceleration takes place at point A. Since X/D 
so 

is plotted versus a-.t/Ds , the shock wave will be at x/D = 1.0 and 
1 o sQ 

the piston surface at x/Da = 0 at time t - 0. The convenience of the 
so 

non-dimensionalizing parameters defined in Chapter I I is now apparent. 

The solution obtained can be made to apply to any point along the sur­

face by choosing the appropriate value for D . The solution w i l l also 
so 

apply for any value of a, . 
Until the deceleration takes place at point A, the conditions 

are steady. Knowing the piston velocity from equation (l), where Cos 

([3 - 6) » 1.0, and knowing from shock tables the speed of sound ratio 

corresponding to the shock Mach number obtained from equation (2), the 

values of P and Q and the slopes of the P and Q characteristics may be 

obtained in this steady state area. Since, in this area, the flow is 

isentropic, and U and A are constant, P and Q are constant along P and 

Q character is t ics of slope -=— = U± A respect ively. Equations (7) and 
dT 

(8) show that in any area where conditions are isentropic, P and Q are 

constant along characteristic lines of slope -r— = U ± A. Area 2, 

Figure 2, includes the entire area between the piston curve and the 

entropy interface and represents an area of constant entropy. There­

fore, P and Q are constant along the P and Q characteristics in this 
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area. Likewise, area 3 represents an area of constant entropy between 

the entropy interface and the shock wave and P and Q are also constant 

along P and Q characteristics in this area. 

At point A, where the piston velocity changes, there is also a 

change in the variable P. At Point A, Q is a constant. Therefore, 

dQ = ° = 7§I dA - dU (9) 

and 

dP = -^p dA + dU = 2dU (10) 
7-1 v ' 

which for a deceleration would make dP negative. Knowing the new value 

of P at point A and the value of Q which still has its steady state 

value, the new value of the variable A existing immediately after the 

deceleration may be obtained along with the slope of the new P char­

acteristic emanating from this point. 

It is emphasized that there is actually a fan of P characteristics 

emanating from point A, each with its corresponding value of the variable 

P. The pressure solution is not affected by considering a finite step. 

However, a need for greater accuracy in the time solution would dictate 

that this fan be broken up into intervals and further calculations con­

tinued on this basis. Working with the total increment, though, makes 

the calculations far simpler and is felt to yield sufficient accuracy, 

particularly if small enough steps are taken in the deceleration. 

As a result of the deceleration, pressure expansion disturbance 

waves travel along the P characteristic in the e- T plane and overtake 

the shock wave, shown by the dot-dash line in Figure 2, causing a change 

in strength of the shock wave. Since the flow properties and conditions 
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after the disturbance waves are not compatible with a shock solution, a 

wave is reflected at the shock as a Q wave traveling along Q character­

istics. Furthermore, an entropy interface is created as the shock strength 

changes. Although there is a gradual change in shock strength between 

the points where the initial and final P disturbances emanating from 

point A strike the shock, the change in shock strength is assumed to 

occur at a point midway between the two points and the entropy interface 

is assumed to emanate from that point. 

The numerical value of the Q wave emanating from point B is still 

the same as the steady state value, that is, the entropy has remained 

constant. Knowing this value and the value of P at point B, the slope 

of this Q characteristic may be computed at the shock and its point of 

intersection with the P characteristic. Its intersection with the piston 

face at point C may then be determined. 

As P changes between points B and D, Q also changes. As illus­

trated in Figure 2, the Php wave passes through an entropy interface and 

strikes the shock wave. In order to make conditions compatible at this 

point, a Q wave originates which passes back through the entropy inter­

face and travels on to the piston face. The only condition known near 

point D is the value of the P, _ wave before it strikes the entropy inter­

face at D'. It is, therefore, necessary to iterate at this point in 

order to find the value of the & „ wave which is also assumed to meet the 

entropy interface at point D'. 

This iteration is performed by assuming initially, a value of Ms, 

the new Mach number at which the shock wave is propagating. Knowing 

M , the value of M-, and a^/a, can be obtained from shock tables, and, 
s' D y 1 

from these two quantities, the value of u /a, is determined. The sub­

script 3, in this case, refers to the area between the entropy interface 
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and the shock wave at point D. The value of u /a in area J at point D 

i s obta ined by s u b t r a c t i n g u_,/a, from the assumed u / a , . 
y L s ' 1 

I t i s known t h a t t he en t ropy i n t e r f a c e t r a v e l s a t the same speed 

as t he l o c a l flow v e l o c i t y and t h a t t h e p r e s s u r e s on t h e two s ide s of 

the ent ropy i n t e r f a c e must be equa l . The va lue of U, t h e n , must be the 

same in a rea 2 a t D' as i t i s in a r ea J a t D ' . I t remains to solve for 

t h e va lue of A in a rea 2 knowing t h e va lue of A in a rea J . 

The entropy in a r e a s 2 and J may be r e l a t e d t o t h e en t ropy in a rea 

1 by t h e fol lowing e q u a t i o n s . 

X ~ 4 T = ^~T luA i ' l n JL ( I I ) 
c (7-1) 7-1 3 7 P-L 

Sp - S-, p i P 
-=-, T 4 = - = T In A. - - In — (12) 
c (7-1) 7-1 2 7 p 1

 v 

Since p = p ac ros s t h e ent ropy i n t e r f a c e , equat ion (12) can be sub­

t r a c t e d from equat ion (11) and the r e s u l t solved for A /A ob ta in ing 

A3 
3 - = exp 

s3 " s2 
2c 

P 
(13) 

The values of A and U in area 2 at D' are now known and a value 

for P can be computed. If the calculated value equals the existing 

value of Php, conditions have been successfully matched at point D'. 

If not, a new value of M is assumed and the iteration is continued until 3 s 

conditions are matched. Once the correct values of A and U are known in 

area 2 at D', the value of Q and the slope of the Q characteristic can 

be computed and the intersection of the Q characteristic with the piston 
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face a t point E determined. At the same time, the value of Q in area 

3 a t D' is determined from the above i t e r a t i o n . 

At points C and E the values of the variable Q and the piston 

veloci ty U are known. The values of the P wave ref lected a t these 

points may be calculated, together with the values of the slopes of 

the P cha rac t e r i s t i c s . The P waves reflected a t points C and E t rave l 

out and s t r ike the entropy in ter face , where they are p a r t i a l l y passed 

through and p a r t i a l l y ref lected back toward the piston face as Q waves. 

At the same time, Q waves in area 3 , known from the i t e ra t ion outlined 

above, t r ave l from the shock to the entropy discont inui ty and are 

p a r t i a l l y passed through and p a r t i a l l y reflected as P waves back 

toward the shock. Again, a t the entropy in ter face , points F and G, 

conditions must be matched. This time, however, the matching may be 

accomplished in closed form. 

For example, a t point G, the values of Q̂  and Pd are known 

and the values of U and p on e i ther side of the entropy interface are 

again equal. Then 

Pd2 " r§I A2 + lJ2 W 

l*3 = FT A3 " U3 ( 1 5 ) 

Adding equations (Ik) and (15), 

Pd2 + «d3 • FT ( A 2 + V ( 1 6 ) 

Using this equation together with equation (13), A and A at G are 
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found. tL and U_ are solved for and Q,_ and Pn^ together with the slopes ' 2 . 3 ^2 d^ 

of the characteristics at point G are determined. 

To complete the solution of the problem, new reflections of the 

disturbance waves are considered until there is no significant change 

in the value of the P or Q variables and a new steady state is reached. 

At each point along the piston face where a P and Q wave inter­

sect, the value of A = a/a, is known. Since the entropy is constant in 

the region of the piston face, the pressure ratio at each of these 

points may be obtained from the isentropic expression 

Pl " Vpl. 

2? 

t/a 1 ^ 

(Vai j« 
(17) 

where the ini t ia l values of pp/p-, and ap/a, are obtained from the shock 

tables. 

The motion of the effective piston face and the variation of pres­

sure with the ordinate a,t/D are now known. It must be recognized 
1 so 

here that as the flat plate moves through the air, a section of the flat 

plate surface, considered as a piston face, moves aft along the flat 

plate surface and translates in the x direction as illustrated in Figure 

5 (a). The relation between these two motions is obtained in terms of 

the initial distance from the flat plate to the shock wave, D , and the 
o 

angles |3 and 0 by considering Figure 3. 

From Figure 3 (a), it is seem that 

*o • r- tst? W 
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From Figure 3 ( b ) , i t i s found t h a t 

V, 

y o " t an (P - Q) (19) 

Equating these two expressions for y gives 

D 
o _ 
y 

i - * l 
y tan Q 

tan O-0) (20) 

The relationship of the flat plate surface to a simulated piston 

moving through space has now been developed. In addition, the method 

for determining the pressure distribution on the simulated piston face 

has been presented. It remains to combine the results so that the pres­

sure distribution along the flat plate may be obtained. 

Two plots of the pressure distribution along the flat plate 

would be of interest. One plot would show pressure as a function of 

time at any position y along the flat plate. The second plot of inter­

est would show pressure versus distance y along the flat plate at any 

time t. The two plots may be combined by plotting pressure distribu­

tion versus the dimensionless parameter a,t/y. This is done as follows. 

The angles 9 and p are known for any case under consideration. 

If various values for x/y are assumed, values for D /y are obtained 
so 

from equation (20). From these two values, a value of x/D , is com-
so 

pu ted . Knowing the motion of t h e p i s t o n , x/D , as a func t ion of t h e 
so 

parameter T, a value of T corresponding to the computed value of x/D 
so 

may be determined. Also, at this same value of T, the value of the 

pressure ratio may be found from a plot of the pressure ratio versus T. 
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Finally, knowing ta /D , x/y, and D /x, the parameter ta /y may be 
-L o S -L 

o o 
determined and a plot of pressure ratio versus a,t/y may be made. 

To illustrate the above procedures, a sample problem was com­

puted using a flat plate at an angle of attack 6 = 10°, decelerating 

from M, = 6.0toMp= 5*0. In the sample problem, the effective piston 

velocity was determined from equation (l), where Cos ((3 - 6) was not 

taken equal to 1.0. Other values in the solution, however, were 

determined as outlined above. Plots of the e-T plane, pressure ratio 

versus rt and pressure ratio versus a.,t/y are shown in Figures k, 5 , 

and 6. The pressure coefficient used is given by 

c %=6 - p 

p PM=6 " %=5 

where p , is the steady state pressure at M = 6.0 and p ^ is the 

steady state pressure at M = 5.0. 

It is seen from Figure 6, that the pressure on the flat plate 

immediately after the deceleration is considerably less than the steady 

state pressure at IVL = 5-0. However, the first reflection of the dis­

turbance waves from the shock wave to the flat plate surface is seen to 

account for the major correction of the pressure back toward the steady 

state value. It is also noted that there is one reflection of the pres­

sure disturbance wave from the entropy interface before the second reflec­

tion from the shock wave takes place. This reflection has little effect, 

however, on the pressure solution. Finally, it is pointed out that this 

single plot illustrates the variation in pressure with time for a fixed 

position if y is held constant and the variation of pressure with posi­

tion if t is held constant. With practical values of y, the time 
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to establish the new steady state pressure is measured in milliseconds. 

For example, if y = 10 feet and a-, = 1000 feet per second, steady state 

is essentially reached in 1.9 milliseconds. 

The method outlined above can be readily extended to a flat plate 

undergoing linear or non-linear accelerations or decelerations. For 

example, results for a particular continuous deceleration can be readily 

obtained from the preceeding results by a simple geometric adjustment 

of the network of Figure 4. Imagine that a streamline between points 

A and B is replaced by the surface. The surface deceleration then 

occurs over a finite time interval and the scale adjustment is made by 

simply translating the subsequent P and Q characteristics such that 

points C, E, H, I, L and M intersect the new surface. 

In addition, the method can be extended to cover shapes other 

than the flat plate. However, it will be noted by the reader that to 

perform the calculations by hand requires many computations. Furthermore, 

the single case considered illustrates that several significant figures 

must be carried in order to assure reasonable accuracy. In fact, avail­

able shock tables have an insufficient number of significant figures. 

Although it is possible to machine program the method, considerable 

effort would be required and it is felt to be beyond the scope of this 

paper. 

Attention is now turned to the development of an analytic expres­

sion for the pressure distribution along the flat plate and to the devel­

opment of an equation for the time lag which exists between the time the 

deceleration or acceleration takes place and the time the reflected 

disturbance wave strikes the piston face. 
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B. Analytic Solution.--As the deceleration or acceleration takes place 

an expansion or compression pressure disturbance wave immediately pro­

pagates from the flat plate surface out toward the shock wave. There 

is a resulting immediate change in the pressure along the surface 

which can be expressed analytically. 

Starting with the condition that initially the variable Q 

remains constant as the surface velocity changes, equation (9) gives 

dA = d — = III dU (21) 
al d 

From equation (l), where Cos (p - 0) » 1.0 for the hypersonic case, 

d^- = dU = sin 0 dMn (22) 
al L 

Combining equations (21) and (22), 

dA = 2£i sin 9 dM (25) 

For isentropic conditions which exist along the flat plate surface, 

k • (fef 
or 

d — 
al 7-1 d P/Pl 

a 757- = ^ ~¥7if (25) 

Substi tut ing equation (25) into equation (2^) , 
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7 P/P 
d P— = — T — I sin 0 dMn (26) 

p a/a-i -L 

Changing dM, to dM, /2M, for later convenience and noting that p/p, 

and a/a are the initial steady state values, the following expres-

2 
sion for the change in pressure ratio with respect to M resulting 

immediately after an acceleration or deceleration is obtained. 

d 2-
Pn 7(Pp/Pi)n Sin 9 

— i = 2 X ° (27) 
dM^ 2 M1(a2/a1)Q 

The initial surface velocity change generates a P wave propa­

gating from the flat plate surface to the shock. Corresponding to 

this P wave intersecting the shock wave, there is a Q wave reflecting 

from the shock wave. This reflected Q wave strikes the flat plate 

surface, changing the surface pressure and reflecting as a P wave. 

It remains to express this reflected Q wave as a function of the P 

wave and then to arrive at an expression for a corresponding change in 

pressure. 

First, considering changes across the shock wave, Figure 7 } 

the following relations from Liepmann and Roshko (8) apply. 

(28) 

and 
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'1 \*1 

f pa » i f 

Mr 
(29) 

Now let subscript 3> ( )*> represent conditions immediately downstream 

of the shock wave. 

From equation (28) 

= f\ 

o J 

P 3 d -2- (30) 

where 

f = f 
1 1 

o_ 

2y_ 
7+1 

1/2 

2 7 ^ + ̂ i 
Pi J 7+1 '1 

o 

w 
(31) 

From equation (29) 

a3 
dir = f

2 
i * 

(32) 

where 

f = f 2 2 m ' o 

+ 

Mi 
7+1 ( V \ 
7~x V P U 

(33) 

7+1 
7-1 

, + 7+1/ P2N i 



In equations (31) and (35), the functions f, and fp are expressed in 

terms of (p n /p n ) and (a 0 / a n ) since for an inf ini tesimal disturbance, K 2' l ' o 2' 1 o ' 

(PO/P-I)
 artd (a p /a ) becomes exactly equal to P^/p-, and a /a . From 

equations (30) and (32), i t is seen that 

-P u 

3 2 p3 
d - ^ = - £ d —^ 

a i f i a i 

(3*0 

Also in area 3 , the entropy is known from the following expression 

Vsi _£_ in ! l . I in h 
7-1 an " 7 pn 

(35) 

where S is a constant. 

From equation (35), making use of the functions f and fp, 

dS. 2 2 1 1 
7-1 f± /a 2\ 

v 0 Vi ; 0 

u 

(36) 

that 

Now, if region 2 is considered, it is known from equation (10) 

*P 
P, 0 - P 0 = AP = 2A -b2 a2 a. 

A (37) 

Also, from def in i t ion , i t is known that 

b2 a2 
2 ab2 V 

7'1 a l a l , 
'-2_ !^£ + ^£ 
7 - 1 a l aly 

(38) 
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o _ Q = /_2_ ! b 2 . M _/2_ !a2„V\ ( } 

^ 2 ^a2 ^-1 ax a 1 ̂  U-l a1 a± j K^J 

Since the piston velocity on either side of the entropy discon­

tinuity is the same, u _ = u , and u p = u^. Subtracting one from 

the other and dividing by a. , 

!^2. v = ^ 3 . j& m J V) (lK)) 
an a, an a, \ an 
i i i i \ i 

and equations (38) and (39) become 

Ph .p . 2 r ^ ' a ^ + A!p3 ( 4 1 ) 
b2 a2 7-1 V a! y a! 

^-^•^(H^)-^ <*> 

Subtracting and rearranging equations (4l) and (42), 

^ 2-«a2 " (
P
b2-

Pa2>-
2A'v5f) ^ ) 

Across the entropy interface where the pressures on either side 

are equal, equation (35) s^y be differentiated and expressed as a finite 

difference equation to yield, 

/ ab3 " ab2 N 
2 M / a i 2 \ ai / 

^ab2 " aa2 
Recognizing that a = a , from equations {hi) and (42.) 

a2 a3 &-i 



25 

may be expressed as 

ab2 " aa2 _ ab2 " ab3 + ab3 " aa2 _ ab3 " ̂ 2 t
 afr3"aa3 

a l a l a l a l 
(^5) 

Making equat ions (3*0 a n ^ (36) f i n i t e d i f f e r e n c e equat ions and sub­

s t i t u t i n g t he se along wi th equat ion (kk) i n to equat ion (h-5), t h e f o l ­

lowing express ion i s ob t a ined . 

a, ,-. — a _ 
b2 a2 7-1/V 2 W. 

f 
2 _2_ 

7-1 fn 

1 1 

$ " # 

A P3 

(̂ 6) 

a. 

U P 5 S u b s t i t u t i n g equat ion (4-6) in to equat ion (hi), so lv ing f o r A — 
a l 

and s u b s t i t u t i n g t h i s express ion i n to equat ion (h-j) f
 a n express ion 

i s f i n a l l y obta ined fo r t h e Q wave as a funct ion of t h e P wave. 

Taking the l i m i t i n g case and conver t ing to d i f f e r e n t i a l s , the exp re s ­

s ion becomes 

(dQ)x = dPf F (W 

where 

= 1 -
^Wo 
7 f l<Vp l 'o 

(W) 
+ 1 

The s u b s c r i p t 1 r e f e r s t o t h e f i r s t r e f l e c t i o n from t h e shock. 

This Q wave s t r i k e s t h e f l a t p l a t e s u r f a c e , caus ing a r e s u l t a n t 
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change in pressure. The effect of t h i s Q, wave on the surface pressure 

is now obtained by holding the piston veloci ty constant during the sur­

face-wave in terac t ion . Therefore 

a« - frx^ - jrx*\ {k9) 

Substi tut ing equations (^9), (10), (22), and (25) into equation (^7), 

2 the pressure r a t io change with respect to M, for the f i r s t re f lec t ion 

becomes 

7 ( y P l ) s i n e / \ 

^ / ^ o \ V ) ( 5 0 ) 

I t is recognized tha t the dQ which resu l t s from the f i r s t r e f l ec ­

t ion a t the shock is reflected from the f l a t p la te surface as a P wave, 

where the ref lected dP equals the incident dQ. Thus, again employing 

the above r e s u l t s , the dQ for the second ref lec t ion is given by 

( \ 2 
(dQ)2 = dP « Fj (5D 

\ / 

and this same reasoning may be carried on to succeeding reflections. 

2 
Thus, the total change in pressure with respect to M-, may be obtained 

by adding the original pressure change, equation (27), to the pressure 

change resulting from the reflections and the final expression becomes 

/ p \ 

n 

2 • * * - ' • " + ^ 
(52) 
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where n is the number of reflections considered. 

Equation (52) expresses the surface pressure change for n reflec­

tions following an infinitesimal velocity change. However, assuming 

that linearized theory holds within the region between the shock and 

surface, the differentials can be replaced by finite differences, that 
7(P2/P1)Q 

is, it can be assumed that -; r—~t—rr- and F are approximately con-
( V V o Mi 

stant during the time required for the significant reflections to occur. 

As will be shown subsequently, changes occurring during decelerations or 

accelerations which occur at reasonable rates are sufficiently small so 

that the linearized theory is justified in most cases. 

As a basis for evaluating the above equation, and illustrating 

the effects of reflected waves, a direct comparison to steady state 

shock solutions can be made. The pressure change across an oblique shock 

is given by 

"HT̂  = f+T ( Mi 2 Sin2 p " 1} (55) 

In addition, the equation giving the relation between 0, M , and p is 

2 2 M Sin p-l 
tan 9 = 2 Cot p • • 1 (5k) 

M (7 + Cos 20) + 2 

2 2 
Letting M-. Sin p = Z, the der ivat ive of both sides of equation (5^) 

2 
is taken with respect to M, , obtaining 

d ^ 
P l - ^ aZ (55) 

dM 2 7 + 1 dM 2 



28 

Then, with 9 constant, the derivative of both sides of equation (5*0 is 

taken with respect to M, and the resulting expression solved for dZ/dM, 

Substituting this expression for dZ/dNL into equation (55)> letting 

7 = l.k and simplifying, the following expression is obtained 

f2. 
Pi 

(-.7Z2 + .2Z + .5) + .6M 2(Z-1) 

dM 

_ s2*f 
2 [M-^-.TZ2 - l.OZ + .5) + .6M 4(2H-1) -.5(2-1) 

(56) 

This expression gives the exact change in steady state pressure ratio 

2 
across an oblique shock for a change in M.. . 

d p2/pl 
Figures 8, 9> and 10 show a plot of _•— obtained from the 

dM} 

d P 2 / P X 

t h e o r y , equat ion ( 5 2 ) , d iv ided by t h e value of «— from equat ion 
dM 

(56) versus Mach number and the angle ((3 - 9). These results illustrate 

the effect of differential or linearized step changes in Mach number on 

the surface pressure lag, that is, the effect of wave reflections on the 

corresponding surface pressure lag. Furthermore, they directly demon­

strate the accuracy of the unsteady flow, hypersonic theory since the 

ordinate should approach 1.0 when the number of reflections becomes 

large. 

In Figures 8 (a), 9 (a), and 10 (a), the abscissa is the angle 

between the flat plate and the Shockwave, (p - 0). This choice is 

dictated by the fact that the accuracy of the hypersonic piston theory 

is dependent upon the approximation that Cos (p - 9) « 1.0, as previously 

discussed. Thus, it is expected that this plot should correlate results 

reasonably well regardless of M, or the angle 0. It can also be shown 
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that the angle ({3 - 9) is essentially dependent only upon M for ranges 

of M-. and 9 of most interest. Since M, is a more convenient and des­

criptive parameter, the results plotted in Figures 8 (b), 9 (b), and 10 

(b) employ M as the abscissa. 

The plot of the pressure ratio versus ({3 - 9) and M-. for no wave 

reflections, that is, the pressure ratio existing immediately after a 

change in velocities, is presented in Figure 8. This corresponds to 

the so-called shock expansion theory and it can be seen that there is 

considerable error, particularly at the higher Mach numbers. 

Shown in Figures 9 and 10 are the pressure ratio curves for one 

and two reflections of the pressure disturbance waves. It is seen that 

the first reflection again accounts for the major correction of the 

pressure back toward steady state values. The first reflection results 

in a pressure ratio within one per cent of steady state value for M 

greater than 5*60. The second reflection makes a further non-negligible 

correction to the pressure ratio, but, succeeding reflections have little 

effect. 

The solid lines of Figures 8, 9, and 10 were computed for 9 = 10°. 

In order to illustrate the effect of 9, however, one calculation was made 

with 9 = 15° and two calculations were made with 9 =20° for values of 

((3 - 9) and M, near the limits of good accuracy. These points are plotted 

on Figures 9 and 10, illustrating that good correlation is obtained with 

the solid curves for the cases of one and two reflections, 

Figure 9 shows that if one reflection is considered, this hyper­

sonic theory will result in accuracy within one per cent for values of M 

between 5»6 and 11.7* If two reflections are considered, the theory gives 
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an accuracy within one per cent for values of M greater than 5-8 

with no apparent upper limit on M. It is interesting to note that 

the theory apparently results in about the same degree of accuracy for 

values of 0 up to at least 20°. 

It was pointed out earlier that in the steady state case, the 

flow velocity between the flat plate and shock wave was in a direc­

tion perpendicular to the shock wave. When a change in velocity of 

the flat plate occurs, there is a resultant change in piston velocity 

perpendicular to the flat plate which has a component perpendicular to 

the shock of 

dun 
— £ = sin 0 Cos (p - 0) dMn (57) 
al i 

It is this component of the change in flow velocity which one might 

expect to be of significance in establishing the pressure change. 

If the rotation of the shock, that is, the change in (f3 - 0), is 

negligible, a modified piston theory is obtained by multiplying equation 

(52) by the factor Cos (|3 - 0). The plot of the pressure ratio versus 

M and (|3 - 0) for two reflections using this modified theory is pre­

sented in Figure 11. This Figure shows that the modification extends 

the theory so that good accuracy is obtained for considerably lower 

values of M. Correlation is still shown to be good for values of 0 of 

15° and 20°. It is important to point out, however, that this approach 

neglects the effect of the component of initial velocity perturbation 

tangential to the shock wave. That is, if the theory accurately pre­

dicts the steady state surface pressure after several reflections, this 
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tangential component must necessarily be attenuated. Since this compo­

nent is initially neglected, the time-pressure variations associated with 

this attenuation process are neglected. 

The preceding comparisons illustrate the limits of applicability 

of the small perturbation or linearized theory which has been developed. 

It remains, however, to establish the corresponding time-pressure rela­

tionship for acceleration or deceleration and to investigate the extent 

to which the small perturbation or linearized theory may be applied. 

To determine the time involved for the pressure disturbance wave 

to travel from the flat plate to the shock wave and back to the flat 

plate after a change in flat plate velocities, consider Figure 12. If 

At is the time it takes for the disturbance wave to travel from the 

piston to the shock wave, then during this time the shock wave moves 

B1 = ug At1 (58) 

and the pressure disturbance wave moves 

D + D = (u + a) At (59) 
o L 

During the time At, described above and the time Atp which it takes 

the disturbance wave to travel from the shock wave to the flat plate, 

the piston travels a distance 

D2 = up (At1 + At2) (60) 

Also, during time At , the disturbance wave travels a distance 

Dl + Ds " D2 = (Up"a) At2 ( 6 l ) 
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Equations (58), (59), (60), and (61) maybe solved for the time 

T) = At, + At,*, in terms of u , u , a, an and D giving 1 1 2 p ' s ' ' 1 s B ^ 

u 
2 -E 

alTi a 1 
Da / u \ /u u N 

so ( 2 ^ - 2_Y-£ + 2 £ 
v a i a i A a i a i a i 

(62) 

The expression has been made non-dimensional so that the param-
ajjl 

eter ^— is independent of position along the plate. This equation 
s o 

represents the time lapse from the initial change in velocity and sur­

face pressure until the first reflection strikes the flat plate result­

ing in the second pressure change along the flat plate surface. Equation 

(62) would also be applicable for the second, third and subsequent 

reflections. In fact, it can readily be converted to a single equation 

for the general case of n reflections. 
a±n 

A plot of - — versus M, is included as Figure lj5 for the same 
so 

values of M, for which equation (52) is assumed accurate. I t is noted 
again, assuming realist ic values for a, and D0 , that this time lapse 

1 so 
is measured in milliseconds. 

Equation 62 can now be utilized to illustrate the rate at which 

disturbances are reflected for reasonable values of the parameters and, 

thus, to justify the utilization of small perturbation or linearized 

theory. The criterion is that the relative change in flow velocity ahead 

of the flat plate over the interval of time required for the effects of 

the change to be attenuated must be small. This can be stated by 



33 

J J- = |H 1 - 8 < < l . o (63) 
dt u dt u v -" 

P 

This can be wri t ten as 

du 1 
^ D dt s0 

""a1T)-

d t u 
M i a l 2 W 

= 5 (64) 

or 

du 
l i = oM y = 5M Cot (ft - 6) 

(a./lOOO)2 go V \ V 
1 s. o & • 

o o 

(65) 

where the acceleration du/dt is normalized by the standard acceleration 

due to gravity and a is normalized by dividing by 1000. This equation 

is plotted in Figure Ik for the case of a single reflection and 0 = 10° 

in order to illustrate the general characteristics for 5 «= 0.01. These 

results show that extremely high rates of acceleration or deceleration 

are required over the entire M-. range if 5 is as high as 0.01. For more 

reasonable accelerations, 6 will be extremely small. It is apparent, 

that within this range of M,, essentially steady state conditions exist 

during the deceleration or acceleration. 

Equations (52) and (62), then, allow the computation of the pres­

sure distribution along the decelerating or accelerating flat plate 

using a finite difference method. It has been shown that conditions 

during the change in velocities, for reasonable accelerations or decel­

erations, are essentially steady state. Thus, it is not felt by the 
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author that the problem of the deceleration or acceleration of a flat 

plate at hypersonic velocities is of great importance. It would appear, 

however, that the situation may be considerably different in the low 

supersonic regime. 

It is felt that the problem of oscillating airfoils in the 

hypersonic velocity range could be of importance. As a side light to 

this investigation, therefore, the methods investigated above are 

applied to extend the theory of Lighthill (6) to include the effect of 

any number of reflections of the pressure disturbance wave. This 

extension is contained in the Appendix. 

The methods outlined in this chapter apply only to Mach numbers 

in the. hypersonic velocity range. It is seen that as supersonic velo­

cities are approached, the piston theory results in errors of ten per 

cent or more. In the succeeding chapter, an approach is outlined for 

the supersonic case. 
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CHAPTER IV 

SUPERSONIC CASE 

The supersonic case is much more complex than the hypersonic 

case "because, as explained earlier, the shock wave can not be assumed 

parallel to the flat plate surface, and the propagating and reflecting 

pressure disturbance waves can not be assumed parallel to each other. In 

fact, changes in the velocity tangential to the surface may become quite 

substantial in comparison with the changes normal to the surface. The 

theory of characteristics seems to provide the only method for accurately 

calculating the unsteady flow field behind a shock attached to a flat 

plate in supersonic flow. Since the author knows of no attempt to set up 

the theory of characteristics for this case, and since considerable ef­

fort was spent in studying this situation in an effort to understand the 

physical problem, some ideas and results will be presented herein. 

Time would not allow a complete development of the theory of char­

acteristics, although the most difficult analytical solution involving 

interactions at the shock wave is solved. In addition, the physical sit­

uation and remaining analytical developments, believed to be required 

for a solution, are established. In the subsequent paragraphs, the sol­

ution involving the interaction at the shock will first be developed. 

Then the physical wave situation existing between the shock wave and 

the flat plate surface will be discussed and a method for the solution 

of the wave motion in this area will be briefly outlined. 



Shown in Figure 15 ( a ) , i s a f l a t p l a t e a t angle of a t t a c k 0, 

which has undergone an a c c e l e r a t i o n . For purposes of c l a r i t y , f i n i t e 

changes a r e i l l u s t r a t e d and o c c a s i o n a l l y used in the d e r i v a t i o n . At 

po in t A, a propagat ing wave, w.., coa le sces wi th the shock wave, s , 

caus ing a change in s t r e n g t h of t h e shock wave and a new p r e s s u r e d i s ­

turbance wave, w t o r e f l e c t . Also o r i g i n a t i n g a t t h i s po in t because 

of t h e change in shock s t r e n g t h i s an ent ropy i n t e r f a c e shown by t h e 

do t t ed l i n e . 

Since p o i n t A i s , and must remain, common t o both shock s, and 

wave w , , an equat ion may be w r i t t e n for t h e motion of po in t A along 

shock wave s . I f t h i s motion i s denoted by d Z . / d t , then 

dZA w1 s 1 

d t~ = Sin(P - 6) " t an (P - Q) ^> 

In a s i m i l a r manner, po in t A must remain common t o both wave wp and 

shock s , . For t h i s c a s e , 

A<7 C C 

lh _X + _Jl_ (M\ 
d t Sin 6 + t an 6 K°{' 

Equating equa t ions (66) and ( 6 7 ) , and n o t i n g t h a t in t h e l i m i t i n g c a s e , 

or case of smal l p e r t u r b a t i o n s , 

C / \ 
w i / a o \ ur, 

371 - ( 57 ) + 57 Cos (P - 9> <68> 
^ 'O 

Cs u 
— I - _ £ Cos (P - e) Sin fi , . v 
a x "" a x Sin 9 K°y' 
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and 

w, a£] _ J? Cos 6 
>V0

 &1 
(70) 

t h e fol lowing r e l a t i o n s h i p for 6 i s obta ined a f t e r some a l g e b r a i c 

s i m p l i f i c a t i o n . 

Sin 5 = . i / o 

3T + Y2 X2 + y2 ¥+^ -
&

2 \ 2 

(71) 

where 

and 

X = & * 1 
Sin 8 - Sin P Cos (p - 0) 

Sin (0 - Q) ' 

Y = M. 1 
CMT, O S i n 9 
S l n P " Cos (p - 0) 

(72) 

(73) 

In t h e same manner, a r e l a t i o n may be found between t h e ang le dc|> 

and C p . Considering wave w, and shock s , d Z . / d t i s aga in given by 

equat ion (66). The corresponding s o l u t i o n f o r shock s and shock s, i s 

d t 

C n + dC s i s ' s i 
Sin d<t> t a n d<j> W 

S e t t i n g equa t ions (66) and (7^-) equal t o each o t h e r and using t h e i d e n t i ­

t i e s s i n d$ = t an d<t> = d<l>, t he fol lowing r e l a t i o n i s ob t a ined . 



dC 
= d<t> G 

_ -
(75) 

where 

H-
— ) + Mn S in 9 

.Vo ' M1 Sin p 

(Sin (p -e ) " t a n (P-e) (76) 

A second express ion involv ing dC i s obta ined from t h e shock 

r e l a t i o n s from Liepmann and Roshko (8) given below. 

IS. - flzl | 7+1 P g 

a1 " I 27 + 2y px 

1/2 

(77) 

u P _ - 1 (78) 

Differentiating equations (77) and (78), gives 

d P2 

i /7+r 
2 1ST, 

r Zli 
7+1 + -r 

Vo 

-1 /2 

27 
7+1 

(79) 

__l 
27 

S2L 
7+1 

P Jo 7+1 

1/2 l £ | 37-1 
.Vo ^ 

? ) o + ^ 
(80) 

From equat ions (79) and ( 8 0 ) , i t i s found, t h a t 



d — = 
al 

H 
u 

(81) 

where 

H 
7+1 
2 

P-, J 7+1 

L\*i 

37-1 
7+1 

(82) 

Substituting equation (81) into equation (75) gives 

d -1 = do 
al 

H 
ra 

= dct> H (83) 

which represents the change in flow veloci ty in area "b of Figure 15 

( a ) . 

The angle \jr can also be determined by the compatibil i ty condi­

t ion a t point A. The compatibil i ty condition for the entropy interface 

and shock s is 

tan (6 - t ) = 
Cs2 - Up 

dt 

C , - u 
s i p 

wl s i 
Sin (p-0) " tan (p-0) 

( & ) 

After simplifying, the r e l a t ion for tan (6 - ty) is given by 

tan (5 - ty) = 
R, Sin R - M, „ Sl.̂  % 1 H 1 Cos (ft-9)  
(a0/an ) + K. Sin 6 IL Sin 6 v 2' l/o 1 1 ^ 

Sin (p-0) tan (p-0) 

(85) 



The equations developed up to this point establish the wave 

geometry and a relationship between d C /a and d u /a,. Additional 

conditions are now required before either d C /a, and d u /a,, and 

thus, the strength of wave w can be determined. 

First, wave w? is a plane wave which can only induce changes 

normal to the wave front. Thus, a required condition is that the 

tangential component of du across the wave wp must remain unchanged 

and equal to that in region d in Figure 15 (a). Second, the component 

of du normal to the entropy interface and the static pressure must be 

the same on both sides of the entropy interface. 

The entropy interface will first be considered. Since flow 

slippage may occur at the entropy interface, 

u u , u . 
d-P* = d J±+ d ^ i (86) 

al ai ai 

du 
where — - — is the change in slip velocity along the entropy inter -

al 
face. Let ( ) n o r represent the component of velocity normal to wave w? 

w2 

and ( ) represent the component of change in velocity tangent to "can 
w2 

wave wp. Then 

( ^ = (^ + (*^r) w 
\ 1/ nor V 1/nor \̂  1/nor 

w 2 w2 w2 

(d^t. -(d¥) t
 + ( d ^ ) t

 (88) 
\ 1/tan \ 1 /tan \ 1 / tan 

w2 ^ 2 w2 



From Figure 15 (a) it is seen that 

u pb\ 

1 J nor 
w_ 

u u pb u 
_* + d -^-) Cos (5 + do) - -E cos & (89) 
ai al / al 

u pb u 
Sin (& + dd>) sin & 

al 

(90) 

After simplifying, eliminating second order terms, and substituting 

from equation (83) for d«J>, the following expressions are obtained. 

§ nor 
w^ 

u 
Cos 5 - ^ 

a 
1 

Sin 5 Pb 
(91) 

o- R , P Cos 5 Sin o + — — = — a, J 
> 

(92) 

Wow noting that 

d —-— ) s in ty (93) 

and 

u pa t cos \|r (9*0 

equat ions (87) and (88) become 



u 
Pa 

1 / n o r 
Wo 

n R p S in 5 
Cos 8 — 

J 
Pb u p a t 

s i n xjr ( 9 5 ) 

u P a = 

'1 / t a n 
Wo 

o- & . P Cos 6 S in 8 + -£• — = — 
u pb p a t 

C O S Tjf (96) 

Second , c o n s i d e r t h e c h a n g e s a c r o s s wave w p . The component o f 

change i n v e l o c i t y i n a r e a d , F i g u r e 15 ( a ) , t a n g e n t t o wave w i s g i v e n 

in t h e l i m i t b y 

'd -E 
U 

1 / t a n 
w2 

d -£• s i n ( 8 + p 
a l 

(97) 

( U 

Now, s i n c e f d - £ 
1 / t a n 

Wo 

i s t h e same on "both s i d e s of wave w 0 , e q u a t i o n s 

u 
( 9 6 ) and ( 9 7 ) can be e q u a t e d . S o l v i n g f o r d ~ — g i v e s , 

p a t 
Cos \jr 

u 
d -& s i n ( 8 + p - 0) - d - ^ ( S i n 8 

a l a l 

u 
p Cos 8 N 

+ a x J ; 

(98) 

Now consider changes normal to wave w p for which the variable P 

would be constant. Holding P constant gives 

7-1 a, V a, J 

' \ \ \J nor 
Wo 

pa \ 2 d _ a + / d ^ a 
7'X al \ al /nor 

W2 " 

(99) 



h3 

2
 a

a 
The value of — T d — can be obtained from the constant pressure con-

7-1 a± 

dition that exists across the entropy interface 

a, a 
d — d —- d —— 

ds, = -L. —!i = 2 ^ . ai (ioo) 

(si 
Substi tut ing for dS, from equation (36) and for d a , / a , from equation 

(;&)* the following expression is obtained. 

o a V a n / U
 -K 

FT ^ " ̂ ^ T * f <1 0 1> 
7 ^ ' 

In area d, the component of the change in piston velocity normal 

to wave Wp is given by 

U -^ ) = (d JL\ Cos ( 6 + 0 - 0 ) (102) 
y a l / nor \̂  aly 

Wo 

If it is noted that across wave w,, where the variable Q is a constant, 

2 a U-o 
that — r d — = d -£- and if equations (95), (101), and (102) are 

7-1 &1 ax 

substituted into equation (99)^ a second equation for d —^— 

obtained giving 

u 
Dat 

is 
a i 



kk 

pat _ 1 
S i n i|f 

1 . u 

: * < & 

+ Cos 5 - ja Sin 5 

i J 
u 

d - 2 k 
a l 

(103) 

1 + Cos (6 + P - 0) 
u 

d - i 
a i 

Equation (103) can then be s e t equal t o equat ion (98) and the fol lowing 

express ion fo r d —£— ob ta ined . 
a l 

u P* _ K 
u 

d - £ 
a l 

(1C4) 

where 

K = 
1 + Cos (5 + P - 6) + Sin ( 8 + 0 - 0 ) t a n j 

(105) 

*jj° + Cos & - -Z ^ _ & + fs in o + J& ^ 1 ) t an * 
/ p \ a J \ a l J 

7 f n e 1 p 1 

In t roduc ing equat ion (1C4) i n t o equat ion ( 9 8 ) , 

pat _ 1 
a Cos i 

Sin (5 + P - 0) - K (Sin & + ^ £os_& d ^ 

1 

(106) 

Then s u b s t i t u t i n g equa t ions (1C4) and (106) i n t o equat ion (95) g ives 

u _pa \ 
Ll / n o r 

w^ 

d -£<( K (Cos 6 
a l 

s i n (5 + P -

J S^_8 ) . t o t 

a l 

» " « (sin & + ^ î 

(107) 
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Finally, since 

(dQ) = ^ d \ _ / d Vj (1Q8) 
v 'nor 7-1 a, \ e. J K 

' 1 \ 1 / n o r 
2 w2 

equations (101), (104) and (107) may be substituted into equation (108). 

Recognizing that dP = 2 du /a , the following expression results 
IT •*• 

tan \|r [sin (8 + P - 0) - K (sin 6 + ^ ^ f ^ ) 

It is interesting to note that in the limit when 8 = \|r = (P - 0)- 0, the 

above expression for (dQ) reduces to the same expression as derived 

w2 

for the hypersonic case. This is, of course, a necessary condition. 

Equation (107) or (109) expresses the strength of the reflected wave in 

terms of initial conditions. K, 6, J, and \|r, are all explicitly defined 

by initial conditions. 

The equations outlined above, are valid for the matching of con­

ditions at a point on the shock wave where a propagating wave, a reflected 

wave and an entropy interface meet. Also, the equations can immediately 

be applied in a finite difference solution. For M = 2.0, it is found that 

5 = 15^.6° and \|r = 81.95°. If M were decreased further, 5 would become 

larger, whereas, if M were increased, 5 would become smaller until in the 

hypersonic case, & would become approximately zero. 
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To carry the solution further, the reflected wave at point A 

must be a continuous part of the wave front which originated at the nose 

of the flat plate at the time of the change in velocity and traveled 

downstream along the plate surface to point D in Figure 15 (b). That 

is, the wave generated at the tip of the flat plate at time t = 0 has 

grown and moved downstream and is now a part of the same wave which is 

reflected at point A at some time later. This entire wave network grows 

continuously with time, maintaining similarity. It is possible to cal­

culate the distance along the flat plate which the wave, generated at 

t = 0, has traveled. Rough scaling for the case M = 2.0, indicates that 

the reflected wave from point A must curve toward the nose of the flat 

plate as it travels toward the flat plate, in order for there to be 

compatibility at the plate surface. That this must be true is also seen 

from the fact that if the reflected wave from point A were allowed to 

strike the flat plate at an angle greater than 90% measured clockwise 

from the flat plate surface, there would be no reflected wave solution 

which would keep the point of incidence and reflection in contact with the 

flat plate as the flat plate moves through the air. 

The equations necessary to establish compatibility at the shock 

wave are now known and the condition for compatibility at the flat plate 

surface has been discussed. Conclusions made thus far indicate that the 

reflected wave from the shock wave to the flat plate surface is curved in 

order to satisfy compatibility requirements at both end points. It 

remains to discuss a method by which the wave pattern between the flat 

plate and shock wave may be determined. 



It may be postulated that in the case of the infinite flat plate, 

just as in the case of the infinite cone, there is no scale factor and, 

that between the flat plate and shock, similarity must exist along radial 

lines, originating at the nose of the flat plate. The area between the 

flat plate and shock may then be divided into a finite number of areas 

by radial lines as indicated in Figure 15 (b). The strength and direc­

tion of travel of wave wp are known at point A and these same values may 

be assumed to exist at point B, similar to the case of steady flow char­

acteristics. Wave w , propagating into area 2, joins with wave wp at 

point B. 

Now the similarity condition demands that the wave pattern grows 

with time such that B moves to B', A moves to A', D moves to D', etc., 

expanding but maintaining similarity. This change with time is illus­

trated in Figure 15 (b). Thus, the compatibility condition at point B 

establishes the direction of wave w^. Furthermore, a third wave, w^, 

must intersect point B such that conditions in region k as obtained by 

the flow passing through waves wp and w. in series, are the same as those 

obtained by the flow passing through wave w . The direction of w, is 

again established by the compatibility condition at point B. With the 

direction of waves w and w. established, only one solution of the plane 

wave equation exists for the strength of w, and w, . 

Wave w_, will then be known after the above solution at point B 

is known. The same process may be repeated at point C and the reflected 

wave carried on, step-by-step, to the flat plate surface. At the sur­

face, the boundary condition dictates that the only component of flow 

velocity must be the component tangent to the surface. The solutions 



at points B, C, etc., may also be iterated as in standard steady state 

characteristic solutions. 

At the same time, wave w« is known from the solution at point B. 

The solution for wave w, across the entropy interface may be found from 

equations previously developed and the intersection of wave w. with the 

shock wave at point E may be determined. The equations developed in the 

first part of this chapter may again be used to find a solution at point 

E which is compatible with existing conditions. 

By following a step-by-step procedure similar to that outlined 

above, the entire wave pattern in the area between the flat plate and 

shock wave may be determined, and the pressure distribution calculated. 

The solution of a sample problem is left to later investigations. 
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CHAPTER V 

CONCLUSIONS 

Piston theory, incorporating the theory of characteristics 

and considering the entropy gradient across the attached shock, has been 

used to obtain a numerical-graphical and an analytic solution which give 

good results to the problem of pressure distribution along an accelerating 

flat plate at an angle of attack in the hypersonic velocity regime. For 

y = 1.4. it was shown that: 

(1) The hypersonic solution developed herein, is good to within 

an accuracy of one per cent for values of Mach number greater than 5*6, 

(2) a modified piston theory could be used which gave accuracies 

within one per cent down to a Mach number of k.O, 

(3) the so-called shock expansion theory solution to the problem 

contains considerable error, 

(k) the first reflection of disturbance waves from the shock wave 

accounts for the major correction of the pressure back toward steady state 

value, 

(5) the second reflection also contributes a non-negligible cor­

rection but higher order reflections may be disregarded, 

(6) the reflection time for a disturbance wave is so short that 

for normal accelerations, the problem may be considered as essentially a 

steady state problem, and 

(7) the hypersonic theory developed is directly applicable to the 

case of oscillating flat plates and can be used to extend the theory of 



50 

Lighthill (6). A sample extension is illustrated in the Appendix. 

In the supersonic case, the piston theory method resulted in poor 

accuracy because of the effect of changes in the velocity component tan­

gent to the plate surface. It was shown that the theory of character­

istics could "be developed for a complete step-by-step solution to the 

supersonic case. Equations were developed for the most difficult 

problem, that of matching conditions at the shock wave. In addition, 

a discussion was presented concerning the disturbance wave network 

existing between the flat plate and the shock wave, and a step-by-

step solution for this network and the resulting pressure distribution 

was outlined. A complete solution of an example problem was left to later 

invest igat ions. 
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A P P E N D I X 



52 

APPENDIX 

EXTENSION OF THE METHOD OF LIGHTHILL 

In reference (6), Lighthill uses piston theory to determine the 

pressure distribution on an oscillating airfoil at high Mach numbers. 

Essentially, use is made of the first three terms of the binomial 

expansion of the "simple -wave" condition 

27 

h - h2^ hT < i io> 
where u/a.. is the perturbation velocity of the airfoil normal to the 

stream. Thus, no reflections of the pressure disturbance wave are con­

sidered in the solution. 

As a result of the work presented in Chapter III, Lighthill' s 

results can now be extended to account for the pressure change resulting 

from wave reflections from the shock wave for the flat plate case. The 

value of the ratio a/a-, will be determined as a function of time on the 

flat plate surface. Since the entropy is constant in the area of the flat 

plate surface, the isentropic relation, equation (2^), may be used to give 

the pressure at any time t. 

Initially it is known that along the flat plate surface 

Q = -̂ r ~ - — (HI) 
7-1 a1 &1 

and 
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P = J L ±- + iL 
7-1 a ax 

(112) 

Differentiating with respect to time, 

A a ^ u 

d — d — 
dQ = _2__ al al 
dt 7-1 dt " dt 

(113) 

and 

d 2L. d ^ 
dP _2_ al al 
dt 7-1 dt dt (11*0 

From equation (̂ 7)> 

dQ(t 
dt H dP(t-ri) 

dt (115) 

where rj is the time required for the reflection of a disturbance wave, 

Substituting from equations (113) and (H*0> 

d a - ( t ) d i - ( t ) 
2 a i a l 

7-1 ^ d t M 
" d a" ^ - ^ 

2 a i 
7-1 dt 

(116) 

d £- (t-Tj) 
a l 

dt 

If the flat plate is assumed to have a velocity normal to the free 

stream 

u u — (t) = — + A sin 2 it ft 
a l a i 

(117) 
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where A is the maximum perturbation amplitude and u/a is the steady 

state velocity, the velocity may be differentiated with respect to time 

yielding, 

a - ( t ) 
a i 
d t 

= 2rtf A Cos 2rtft (118) 

and 

* ^ ( t - T j ) 

d t 
2:rcf A Cos 2itf ( t - T]) (119) 

S u b s t i t u t i n g equat ions (118) and (119) in to equat ion (116) and r e a r r a n g i n g , 

2 
7-1 

r d 2 _ ( t) d±- ( t ^ ) 
a l _ . F ^ 
d t d t 

2itf A Cos 2*ft 

+ 2icfAF Cos 2itf( t-r i) 

(120) 

I f F i s z e ro , L i g h t h i l l 5 s s o l u t i o n i s ob ta ined , t h a t i s 

— ( t ) 
a l 

7 - 1 Sin 2jtft + C (121) 

o r 

/ a, 
S- ( t ) - ^ J + ( ^ A Sin 2«ft (122) 

where t h e boundary cond i t i on used i s t h a t a t t - 0, a / a , = ( a ^ / a , ) . 

I f F i s smal l and assumed c o n s t a n t , t h a t i s , i f t h e v e l o c i t y 

changes a r e sma l l , a s o l u t i o n of t he fol lowing form may be assumed. 

a ~ ' t } 

a l 

7-1 
2 

A s i n 2itft + F f ( t ) + F2 f ( t ) + . . . + F n f r i ( t ) 
n 

(123) 
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where n in this case would, represent the number of reflections. By 

differentiating the assumed solution with respect to time and substituting 

into equation (120), expressions may be obtained for the functions f'(t), 

fp
:(t), ».<,, f '(t). Performing this operation and substituting into the 

differential equation obtained from differentiating the assumed solution 

for a/a (t) with respect to time, it is found that 

a i 
dt ^ 2*fA Cos 2rtft + F Ĵt fA Cos 2itf ( t - rtf (12*0 

F2 hxf A Cos 2itf(t-2T]) + . . . + F n^fA Cos 2rtf(t-nT])| 

Equation (120) is a l inear d i f f e r en t i a l equation. The solution of 

equation (120), however, d i f fers from the solution of a standard differen­

t i a l equation in that boundary conditions must be specified over a f i n i t e 

in te rva l of time. As a typical example of a solut ion, i t is assumed that 

the osc i l l a t i ng motion has been going on for an indefini te period of 

time, and that a t t = 0, a/a, = ( a p / a , ) . Equation (12^) may then be 

integrated to obtain the solut ion for a/a, ( t ) as follows. 

+ Sin 2itf T) 

Sin 2jtf(t-Ti) 

+ F^ Sin 2*f(t-2r)) + Sin knfr\ 

(125) 

+ . . . + F11 Sin 2Jtf(t-nT]) + Sin 2nnfr\ 

The pressure may be obtained a t any time t , then, by the expression 

!— ( t ) 
Lai _ 

27 
7 - l 

(126) 
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Figure 1. The Physical Problem. 
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Figure 2. Numerical Integration of Wave Equations 
in e - T plane for a Sudden Decrease in 
Piston Velocity. 
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(a) 

(*) 

Figure J. Relation between x, j , Ds , (3 and 
0 for Flat Plate. ° 
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Figure 4. £-T Plane for Step Deceleration of 
Flat Plate From M = 6.0 to M = 5.0. 
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Figure 7* £-T Plane for Development of 
Analytic Solution 
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