
Discovery Visualization and Visual Data Mining
William Ribarsky, Jochen Katz, Frank Jiang, and Aubrey Holland

Graphics, Visualization, and Usability Center
Georgia Institute of Technology

Abstract

This paper describes discovery visualization, a new visual data mining approach that has as a key element the
heightened awareness of the user by the machine. Discovery visualization promotes the concept of continuous
interaction with constant feedback between man and machine and constant unfolding of the data. It does this by
providing a combination of automated response and user selection to achieve and sustain animated action while
the user explores time-dependent data. The process begins by automatically generating an overview using a fast
clustering approach, where the clusters are then followed as time-dependent features. Discovery visualization is
applied to both test data and real application data. The results show that the method is accurate and scalable, and it
offers a straightforward, error-based process for improvement of accuracy.

1 Introduction

To attack the problem of dealing with increasingly
vast stores of information, we discuss in this paper a
new approach to data exploration that requires the
close coupling of man and machine. We call this
approach Discovery Visualization to emphasize the
importance of visual display and visual interaction
and the fact that the purpose is to discover new
relations, new features, new knowledge. A key
element in discovery visualization is to heighten the
awareness of the user by the machine so one has, for
example, focus-based manipulation (i.e., based on
where and how closely the user is looking) in
addition to direct manipulation. This process makes
no sense unless the machine is highly responsive.
Further, we promote the concept of continuous
interaction with constant feedback between man and
machine and constant unfolding of the data. Finally,
there must be a combination of automated response
and user selection to achieve and sustain animated
action, even in datasets of great or varying
complexity. This means not only smooth depiction
of time-dependent data but also depictions of motion
parallax, changes in pattern and shape, and other
behavior as one navigates through the data.

When one speaks of burrowing down into a data
collection, extracting features and then unfolding
those features to reveal inner details, one naturally
thinks of data mining. Indeed, there are methods
from this area that are applicable to the work
described here. Ganti et al., [Gan98] recently
showed how one could extract cluster features from
arbitrary, non-spatial information collections. The

clusters are characterized by a measure of their
contents (in the form of a generalized distance
metric) and their relations to other features. One can
build on-the-fly hierarchies [Zha96] of these
features, which are height-balanced and efficiently
traversable. Scalability has been considered [Gan98,
Est95; Ng94] by explicitly allowing for databases
that must exist outside of main memory, developing
clustering methods that are efficient and no more
than O(n), and deriving incremental update methods
for the clusters, their properties, and their
hierarchical structures.

However, there are fundamental differences
between the approach described here and data
mining. First, discovery visualization is centered
around the user, with responsiveness matched to
maximizing her capabilities. Our previous work
[Lin96, Lin99] shows that this requires considering,
from the start, the time budget and efficient structure
of the end-to-end system including data
organization, data transfer, compact representations,
and high efficiency in selecting and operating on
data. In particular our approach is coupled closely to
4D (time-dependent) visual display and visual
interaction, which requires close attention to the
organization of data for graphical representation and
fast, accurate selection via the visualization. In
effect we do not seek to support a query mechanism
of distinct call and response but rather an
exploratory method of continuous adjustment and
feedback. We believe this quite different approach
holds great promise.

2 Related Work

In general there is little work that has been done
that specifically considers the question of speed
versus accuracy in developing tools for exploration
and analysis of large-scale data, especially 3D data.
There is, however, relevant work on 2D systems.
Schneiderman and his group investigate dynamic
query interfaces (DQIs) [Tan97]. DQIs are a
database access mechanism that provides continuous
feedback to the user during query formulation. They
have proven quite successful for small databases but
slow down considerably for larger ones. In contrast
to this work, there is a significant amount of work
on cluster analysis of spatial or other (multivariate)
distributions and also relevant work on structure
recognition, shape analysis and spatial feature
extraction. In this section we will address the work
most relevant to the methods developed in this
proposal but will not attempt an exhaustive analysis
of this large field.

2.1 Clustering
Spatial clustering is the partitioning of a set of n

data points into m subsets such that the sum of
distances (or a similar metric) between each data
point and the center of its cluster is minimized
[Gro94, Hag94, Hof96]. Clustering achieves
simplification by replacing all the points in a cluster
with a single, average point at the center.

The disadvantage of clustering is that it can be

very computationally expensive. There are kn/k!
ways to assign n points to k clusters, and choosing
the optimal clustering among these is an NP-
complete problem [Gro94, Hag94]. One reason for
the complexity of the problem is the interaction
between each decision -- changing the assignment of
one point to a cluster will change the centers of both
clusters and thus affect the merits of other decisions.
The only way to ensure complete optimality is to
consider all or at least a large subset of all possible
point assignments.

Many sophisticated approximation techniques,
such as simulated annealing and cluster-finding
neural nets, are relatively good at escaping local
minima, but they are generally too slow or have too
high overhead for interactive use. A faster method is
k-means clustering perhaps combined with
algorithms based on Voronoi diagrams of cluster
centers. K-means starts with a fixed number k of
essentially arbitrary clusters, and it chooses one

point at a time to move from cluster to cluster,
improving the arrangement step by step until a local
optimum or error bound is reached. Since a formula
exists for the effect of each candidate move on the
error function, the worth of a move can be evaluated
in constant time [Gro94]. Choosing the initial cluster
center positions is a key to both fast and optimal k-
means operation. In the basic algorithm these
centers are allocated either on a regular grid or
randomly. Our method, described in the next
section, provides a fast clustering approach based on
a preliminary analysis of where these centers should
lie. We show that this provides a faster path to
optimal clustering than the arbitrary methods used in
the basic approach.

More recently there has been some work on the
visualization of cluster hierarchies [Hec98] that is
similar to the methods developed here. In this
previous work an eigenvector analysis finds
principal components for determining subclusters.
Our approach (see Sec. 3) is to divide a cluster
region into sub-boxes for quick analysis of
orientation and extent (leading to assignment of
subclusters). We use this instead of principal
components because it provides a fast analysis with
strict time limits. Our approach also differs from
that of Hec98 and others because it is scalable and
because real-time constraints are applied throughout
the analysis and display processes in support of
discovery visualization.

2.2 Feature Analysis
A straight cluster analysis may not bring out

certain features very well. For example, there may
be certain shapes (e.g., annular regions or long
filaments in the data) that would not be well
represented by collections of clusters unless the
number were rather large. However, if one had a
highly interactive means to change the number of
clusters and thus the amount of detail in the
clustering, the lack of optimality in describing
certain shapes would be less of an issue, since one
could easily adjust detail for any feature of interest
(assuming that one had an effective mode of
interaction and display).

Of course the clusters themselves can be features,
can be given an identity or meaning, and will have a
set of properties that can be tracked. They then
become a sort of “visual shorthand” for the data
collection as a whole, except they will have (for a
given error threshold) a complexity that is typically

much less than the complexity of the whole data
collection. Simple feature extraction and feature
tracking techniques have been developed by Silver
and her colleagues [Sil95, Wal96]. Silver points out
the utility and importance of "object-oriented
visualization" techniques for segmenting and
analyzing complex datasets. van Walsum et.al.
develop iconic feature extraction methods for
identifying and following 3D features. This work is
directly applicable to the clustering approach we
offer here. However, neither this nor other feature
analysis approaches address what happens when
datasets become very large, nor do they directly
assess or constrain the complexity and time cost of
their methods. Furthermore neither the simpler nor
more exact feature analysis methods extend beyond
direct spatial clustering to the distribution of other
variables, including completely non-spatial
distributions. Our clustering approach is
generalizable.

3 Discovery Visualization Framework

We start by considering a framework for optimal
interactivity for exploration. Successful navigation
or other interaction in a variety of contexts requires
a system responsiveness (time between user input
and display of the result) of 0.1 second or less
[Bry93]. To achieve this regime of time budgets for
very large data, one must apply a sampling to reduce
the number of elements from N to M where M<<N.

The sampling itself must be fast—we assume O(N).
Obviously beyond some value of N even this will
exceed the time budget, and we must resort to a
method that does not touch every data element, such
as random sampling.

The user now explores using the sample data. Our
approach is to apply a fast clustering and feature
extraction method that is O(M). As the user narrows
her focus, homing in on details of interest, the
analysis might be more complicated and more
quantitatively accurate. One could find isosurfaces
or volume visualizations, for example. At this point
the user might do a subsampling at finer resolution
or even look directly at a small subset of the original
data.

Our discovery visualization approach thus starts
with an initial bin sort, which requires two steps,
both O(N). (See Fig. 1.) For spatial clustering the
first step determines the extent of the dataset in
x,y,z. The second step uses these extents to form the
bins and sort the data. Each bin contains a weighted
centroid, the number of points, an error value,
weighted averages for selected variables, and ranges
for each variable. The bin sort is simple and highly
parallelizable and, quite importantly, enables the
uniform handling of data in any format (e.g.,
multiple meshes or observational and simulational
data in completely different formats).

Fast clustering
“Optimal” clustering

 Fig.1 Applying bin sort to a data collection Fig. 2 Number of clusters (horizontal axis) versus
 total error.

3.1 Clustering Method
We give a brief description of the clustering

method used in the discovery visualization
approach. A fuller exposition is in Ref. Rib99. To
identify 3D cluster centers, we define a spatial
vector and average:

ri = [xi , yi , zi], rc =
1

kc

r i
i ∈c
∑ ,

where c denotes the cluster and kc is the number of

data points in the cluster. We then define a distance
metric D for each data point in terms of the spatial
vector, and a total error R, which is the sum over all

clusters of the (unnormalized) root mean square
deviations:

Di,c = [(ri − rc) ⋅ (r i − rc)]1/ 2
 and

R = Di ,c
2

i ∈c
∑


 



1/2

=
c

∑ ri ,c
2 − rc

2

i∈c
∑


 

 c
∑

1/ 2

. (1)

These definitions are enough to select "optimized"
cluster centers based on either minimizing R for a
given Nc (number of clusters) or choosing Nc such
that R / N ≤ τ where τ is some threshold value
and N is the total number of points in the dataset.
For the former, one would specify Nc, and R would
decrease with increasing Nc. For the latter, Nc
would not be fixed but would depend on the value of
τ . In either case, the data points closest to a given
cluster center (i.e., for which Dc is smallest) would
belong to that cluster.

This formulation just gives spatial clustering. To
include the effect of a variable, say V2, we could
define a new error RV:

RV =
1

kc

Si,c
2

i ∈c
∑ Di,c

2

i ∈c
∑



 




1/ 2

c
∑ ,

Si,c
2 = (V2i − V2c)

2
 (2)

 RV is invariant under spatial translation or addition
of a constant to V2 and tends to zero in a region
where either V2 is constant or the points are tightly
clumped. Thus a cluster placed in such a region
could encompass a wider spatial volume without
raising its total error much. If one were exploring
the distribution of V2 on a uniform mesh, for
example, this would be desirable since the
underlying spatial distribution would be
uninteresting. Yet Eqs. 2 retain a spatial dependence
for regions where V2 does vary. To bring out
different characteristics for different types of data,
one might use a different formulation for RV.
Alternatively, one could combine V2 with ri and use
this extended vector in Eqs. 1. The problem with
this approach is that it is not clear, in general, how
to combine the different units associated with V and
r (although one could certainly do this for specific
variables and applications). This is related to a
problem from data mining where one tries to find a
mapping into a coordinate space for a set of
disparate variables [Fal95]. The problem is that this
general mapping often does not produce clusters of
good quality [Gan98]. However, whatever the form
of RV, we include time-dependence by treating t as a
parameter and assuming all variables and

coordinates depend on t. We then use spatial and
time coherence to track features.

3.2 Clustering Algorithm
Using weighted bins and the error measures of

Eqs. 1 and 2 (depending on whether the application
data is totally spatial or has a strong variable
dependence), we have developed a fast clustering
approach to perform a rough analysis of cluster
extent and orientation for each cluster. The steps
are:
1 Determine cluster extent in x,y,z and define a

box enclosing the cluster.
2 Subdivide the box into 27 sub-boxes; a central

one and 26 nearest neighbors.
3 Compute the number of weighted samples, their

centroids, and error in each sub-box.
4 Using a table of rules for the pattern of sub-

boxes, define the orientation and shape of the
cluster.

5 Use the orientation, shape, and relative errors to
decide how to subdivide the cluster.

6 Locally iterate a fixed number of times to
determine optimal position of the new clusters
with respect to existing clusters.

7 Choose candidates for further subdivision (a
priority list of candidates based on number of
sample points and error) and repeat from step 1
for the new clusters and any clusters whose
weighted averages (including number of points)
have changed significantly.

8 Stop when the predetermined number of clusters
has been reached or when the error threshold is
reached.

The 27 sub-boxes permit an omnidirectional
analysis of orientation and shape. By quickly
applying a set of rules to the boxes with the highest
weights (weighted centers and errors are used for
each box), one can determine whether the cluster is
flat, round, or long and thin. Further, the sub-boxes
reveal orientation information. The algorithm
subdivides (step 5) into 2 or 3 clusters, depending on
how the sub-boxes with the highest weights are
distributed. If we had, for example, 3 largest centers
in a row either diagonally or along a box edge
direction, we would subdivide the cluster along this
axis.

Time tracking is implemented by starting with the
clustering for the initial time step and then keeping
an error close to the threshold τ for subsequent
time steps. For coherent behavior over the time steps

the clusters will tend to move smoothly. When two
clusters come together spatially, they will merge,
whereas a cluster that spreads will tend to break into
subclusters. If a variable is included in the error, its
dynamic changes will also affect the clustering.
Including time dependence entails adding the
following steps:
1 If the total error is above the threshold plus a

buffer value, divide the cluster with the largest
error.

2 If the total error is below the threshold plus a
buffer value, merge the clusters that will give
the smallest combined error.

3. After iteration, repeat the procedure if the total
error remains above or below the threshold (plus
buffer).

Breaking clusters with the largest error but merging
clusters with the smallest error helps keep the
clustering near its optimum distribution for a given
error threshold or number of clusters. The buffer
values reduce the possibility of repeated jumping
above and below the threshold. In addition we have
imposed a limit to these jumps, should they occur.
In practice this buffer method work well.

3.3 Timing and Accuracy
To test the timing and accuracy of the fast

clustering in our discovery visualization framework,
we have analyzed 3D test data, where the clustering
was based just on the spatial distribution of the data
and there was no time-dependence. The number of
data points in the datasets ranged from 5K to 200K,
and for each set of data points we found 50-60
clusters and partitioned the dataset into 10x10x10 or
20x20x20 bins. For larger datasets, the total time did
not depend much on the number of bins since the
time to touch and sort each data point dominated. As
an example, for 100,000 points using an SGI
R10000 processor, the initialization time (to set up
bins and sort data) and total time (including
clustering) were 1.64 sec and 1.69 sec for ASCII
data and 0.22 and 0.27 sec for binary data. In
contrast the total times for clustering without the bin
sort were over 60 times greater, showing the
effectiveness of our approach in producing fast
clustering. Since the bin sort is easily parallelizable,
there could be a parallel approach that would
significantly lower timings. However for a finite
number of processors, there will still be an upper
limit above which a statistical sampling approach
must be used. Note that after the bin sort, the
clustering and feature tracking do not depend on the
original size of the dataset and will be quite fas t.

Fig. 2 compares, for one of our 3D test datasets,
fast clustering to “optimal” clustering, showing
behavior as the number of clusters changes. Optimal
clustering is determined by finding cluster centers
through several cycles of random placement and
then iterating until centers do not move any more
and errors are constant. The cluster arrangement
with the lowest error for each number of clusters is
chosen as the optimal clustering. We see that the
shapes for fast and optimal clustering are nearly the
same and, for these data, fast and optimal clustering
are quite close. This offers a criterion for quality of
fast clustering. The shape of error versus number of
clusters should be close to the shape in Fig.2. (Tests
with other types of data all give similar shapes.) In
addition the error for a given clustering should not
be “too far” from optimal. The latter is harder to
determine for general cases.

4 Application to Large-Scale Data

We have found that the discovery visualization as
implemented in the clustering algorithm provides
effective visual data mining. We considered the
movement of large collections of independently
moving objects in 2D, such as vehicles moving on a
terrain. This is an important application, for
example, where one may need to quickly track the
distribution and formations of large numbers of
vehicles in a large-scale battlefield simulation. Here
the features might be battalions at one level and
platoons at a lower level. Discovering how these
collections form and how they move is as important
as seeing the movements of individual vehicles.
Figs. 3 show clustering applied automatically to
moving groups of objects over a 2D surface and then
represented by simple boxes. The clusters describe
well the underlying dynamic structure and are
computed quite fast—at least 20 frames per second
for over a thousand objects even on a small SGI or
PC. One can interactively change the threshold to
get larger or smaller clusters. In the first frame of
Figs. 3 all cluster boxes are made transparent to
show the data distribution. One can see and then
follow the underlying data by selecting a cluster, as
shown in the last two frames. One could also do this
selection automatically, based on distance of the
eyepoint from the cluster. This application shows
two main aspects of visual data mining, being able
to see features in context and being able to
selectively and directly unfold them to reveal inner
detail.

Figs. 3 Fast clustering applied to movement of collections of objects on a 2D surface.

Figs. 4 Global atmospheric model at time steps 0, 50, and 17 0.

Figs. 5 Global atmospheric model showing movement cluster in successive time steps.

For a different application, we ran the discovery
visualization method on some real data obtained
from a global atmospheric simulation. This is a
time-dependent simulation of N2O comprising
several months of time steps [Jea95]. Since the N2O
concentration is an important analysis variable, we
ran the clustering using Eqs. 2. The simulation
produces time steps marked 15 minutes apart so a
massive amount of data is collected when the
simulation is run for several months. These data are
a good candidate for discovery visualization because
the developers of the global atmospheric model have
found the data too large and complicated to produce
overviews for the complete set of time steps.
Because of limited disk space, we restricted our data
collection to one time step every four hours and
accumulated time steps for September, October, and
November. Still this amounted to over 550 time
steps. The collection of a complete set of cluster
information, however, took only 40 minutes for all
550 time steps on an R10000. (The clustering
algorithm was not optimized; we expect the total
time can be significantly lower.). Figs. 4 show the
cluster results at time steps 0, 50, and 170. At the
bottom is a map projection of the earth oriented so
that the latitude axis is along the horizontal
direction. (The vertical axis is altitude; the top of the
clustering is at about 30 miles.) The plane in the
middle shows color contour slices of N2O
concentration and can be set interactively. The
coloring goes from blue (high concentration) to dark
red (low concentration). The clustering in Figs. 4
shows a characteristic peaked N2O distribution at the
equator, but in addition it shows how this
distribution shifts rapidly from the North Pole
towards the South Pole (right to left in the figures)
and changes shape. Since the N2O distribution is
similar to that of ozone, the cluster visualization
shows how the southern ozone hole fills in after the
southern winter. The first frame of Figs. 4 also
shows the complete distribution of N2O. The
uninteresting lower altitude (blue) clusters are easily
clipped away in subsequent frames.

Figs. 5 show the cluster visualization over time
from a different orientation. The longitude axis is
now along the horizontal direction, and the view is
from the North Pole. By interactively rotating the
view from north to south while stepping through
time, one can easily see that the flow of N2O in the
upper atmosphere is along the longitudinal direction
near the poles (i.e., circulating around the poles) and
is significantly greater around the North Pole. The

black arrows in Figs. 5 show the progression of a
particular cluster feature over successive time steps
at the North Pole. The N2O contour slice reinforces
this flow pattern. As a variation of the unfolding
detail capability discussed for the 2D data, we have
implemented a transparent 3D box whose shape and
position can be set by direct manipulation. Clusters
within the box can be shown in greater detail or with
another variable (e.g., the windfield vectors). Quite
importantly for visual data mining there is high
interactivity—the animation proceeds smoothly on
an SGI IR and produces several time steps per
second even on an O2.

5 Hierarchical Structure

A complete visual data mining approach needs a
structure that will support a highly interactive
exploration and discovery process for data of any
scale. The structure must also support fast queries
and collection of data, where necessary. An
appropriate hierarchical structure can fulfill these
needs. However, the hierarchical structure must be
designed in a way appropriate to visual data mining,
which means supporting rapid display and providing
the data in the appropriate context. (For example, a
query does not just return a piece of data but rather
returns that data so it can be displayed in relation to
other data.)

zoom

zoom

zoom

final leaf cluster

Viewpoint

Fig. 6 View-dependent tracking of a cluster

The discovery visualization hierarchy is built (at
least in the initial, automatic phase) as a height-
balanced feature tree [Gan98], with the clusters
defining the features. To obtain an efficiently
balanced tree we apply a branching factor B such
that each non-leaf node will have at most B
children. If a cluster is broken into subclusters
during application of the error threshold and this
increases the number of children beyond B, a new
leaf node is formed. To preserve the clusters as
persistent features, the leaf node is formed from the

subclusters of the broken cluster (rather than by
reorganizing all the clusters in the previous level.)
The initial, automatic clustering builds a tree with a
certain predetermined number of leaf clusters. After
that deepening of the tree is based on either direct or
focus-based user manipulation. This whole process
is shown schematically in Fig.6. The hierarchy
permits navigable visualizations where the user can

zoom in, see detail in context, or back up to gain an
overview. We are using a branching factor of B=3,
but more study is needed to find which branching
factors and automatic hierarchy depths are most
efficient. Although these will depend to some extent
on the nature of the data, we hope to find general
criteria that may be used as guides, as well as
specific criteria tied to particular data types.

Set 1

Set 2

Set 3

Figs. 7 Sets resulting from cluster breaking as error is lowered.

In order to provide context, the hierarchy needs
capabilities not found in the usual data mining.
These include the ability to present for visualization
all features at a selected error threshold, either in
overview or for a selected region of the data. As the
user changes the error threshold or moves the
selected region, these features must be quickly
updated. Thus the hierarchy is not just a structure for
quickly passing attention to the appropriate leaf
nodes, as it is in query systems. It also must provide
enough information at intermediate levels to carry
out feature tracking and visualization. Consider the
clustering scenario depicted in Figs. 7. The
clustering breaks apart from set 1 to set 2 to set 3 as
the error is lowered. The right cluster remains in sets
2 and 3. However, in general the center and other
properties of the right cluster may change slightly
due to exchange of elements between clusters during
the iteration process. The system must pick up all
this information during traversal of the hierarchy.
This is done by enhancing the information stored at
each node. Each node has the list n, n+k, Cn, i,
Cn+i,.... Here n is the beginning cluster set and n+k
the ending cluster set for this node (e.g., 2 and 3 for
the right cluster in Figs. 7). Cn denotes properties
for the cluster including center, error value, number
of points contained, maximum dimensions, and
average values and rms extents for any variables of
interest; and n+i is a set for which the property list
Cn+i changes (e.g., due to exchange of elements

during iteration). Note that there may be only a few
such changes. Separately there is a list of all cluster
sets containing the number of clusters in the set,
total error, and a pointer to the topmost node in the
set. When the user chooses an error threshold or
target number of clusters, the system finds the
appropriate pointer from this list. It then searches
only nodes at that level or below and only for ranges
of sets {n,n+k} that contain the target cluster set.

Feature Server Feature Manager

Distributed Hard Disk

Main Memory

Skeleton Tree

Properties

Skip

Fig. 8 Paging structure for feature-based hierarchy.
down to a leaf node.

For complete scalability, we also need a paging
mechanism. This will be tied to the hierarchy as
shown in Fig. 8, which depicts a tree with B=4. The
main idea is that only the top structure of the tree
plus sections being explored at the moment are in
main memory. The rest of the tree plus the data are

out of core. All that is kept in memory is a “skeleton
tree” with a sufficient set of linking properties so
that the manager can retrieve the next section of the
tree or associated data. The manager then watches
the user-controlled visual exploration process and
decides what should be read in next. Once the
appropriate nodes are located, the associated cluster
data and sample bin data is read in, which may
cause the discarding of older data. We have applied
a similar model with good success to the specific
case of large scale terrain navigation [Lin99,
Dav98], where the terrain data can be 20 GB or
more.

6 Conclusions and Future Work

We have shown how our discovery visualization
approach can be used for visual data mining. Our
approach permits automatic, fast generation of
overviews in terms of clusters, which can then be
followed as time-dependent features. The clustering
can be in terms of spatial distribution or any variable
in the data. Users can interactively select the number
of clusters or the total cluster error. Furthermore,
they can select regions of the data for more detailed
clustering and feature tracking.

The discovery visualization results can be given a
hierarchical structure that can be generated during
the initial automatic phase. The user can then
explore this structure with high interactivity by
changing error thresholds or choosing cluster regions
to dig deeper. In addition the user can deepen the
hierarchy by selecting features or regions of the data
space.

By applying discovery visualization to both test
data and real application data, we show that the
clustering methods used are fast and scalable.
Further we show that the automatically generated,
time-dependent overviews have sufficient accuracy
for their task and a straightforward, error-based
process for improvement.

The hierarchical structure developed in this paper
does not include time-dependence, although there is
a mechanism for creating and tracking time-
dependent clusters. What is needed is a process that
permits the dynamical development over time of the
hierarchical structure and the associated list of
cluster sets. This will take advantage of the fact that
often much of the cluster structure will not change,
except for small modifications of cluster center

positions and other properties, from time step to
time step. More generally, one can treat time as
another dimension on the same footing as the spatial
dimensions. We will be looking at these issues. In
addition, the clustering methods presented here can
be extended to non-spatial data. We will look first at
data with a limited number of important variables,
since mappings to a coordinate space and
subsequent visual representations will be easier to
handle.

References

Bry93 S. Bryson. Implementing virtual reality.
SIGGRAPH 1993 Course #43 Notes, pp.
1.1.1-1.6.6, 16.1-16.12.

Dav98 Douglass Davis, William Ribarsky, T.Y
Jiang, and Nickolas Faust. Intent,
Perception, and Out-of-Core Visualization
Applied to Terrain. Report GIT-GVU-98-
12, pp. 455-458, IEEE Visualization ’98.

Est95 Martin Ester, Hans-Peter Kriegel, and
Xiawei Xu. Knowledge discovery in large
spatial databases: Focusing Techniques for
Efficient Class Identification. Advances in
Spatial Databases. 4th International
Symposium, SSD ’95, pp. 67-82.

Fal95 C. Faloutsos and K.I. Lin. Fastmap: A Fast
Algorithm for Indexing, Datamining, and
Visualization of Traditional and
Multimedia Databases. Proceedings of
SIGmod 95, pp. 163-174.

Gan98 V. Ganti, R. Ramakrishnan, J. Gehrke, A.
Powell, and J. French. Clustering Large
Datasets in Arbitrary Metric Spaces.
Technical Report , U. of Wisconsin-
Madison, 1998
(www.cs.wisc.edu/~vganti/birchfm.ps).

Gro94 M. Gross. Subspace Methods for the
Visualization of Multidimensional Data
Sets. Scientific Visualization, pp. 172-185
(Academic Press, New York, 1994).

Hag94 H. Hagen. Visualization of Large Data
Sets. Scientific Visualization, pp. 186-198
(Academic Press, New York, 1994).

Hec98 B. Heckel and N. Hamann. Visualization of
Cluster Hierarchies. Proc. of SPIE, vol.
3298, pp. 162-171 (1998).

Hof96 T Hofmann, J. Puzicha, and J. Buhmann.
"Unsupervised Segmentation of Textured
Images by Pairwise Data Clustering.
International Proceedings of IEEE

International Conference on Image
Processing Vol. III, pp. 137-140.

Jea95 Yves Jean, William Ribarsky, Thomas
Kindler, Weiming Gu, Gregory Eisenhauer,
Karsten Schwan, and Fred Alyea. An
Integrated Approach for Steering,
Visualization, and Analysis of Atmospheric
Simulations. Report GIT-GVU-95-15,
Proceedings IEEE Visualization ’95, pp.
383-387.

Lin96 Peter Lindstrom, David Koller, William
Ribarsky, Larry Hodges, Nick Faust, and
Gregory Turner. Real-Time, Continuous
Level of Detail Rendering of Height Fields.
Report GIT-GVU-96-02, Computer
Graphics (SIGGRAPH 96), pp. 109-118.

Lin99 Peter Lindstrom, David Koller, William
Ribarsky, Larry Hodges, and Nick Faust
(1997). An Integrated Global GIS and
Visual Simulation System. Report GIT-
GVU-97-07, submitted to Transactions on
Visualization and Computer Graphics.

Ng94 Raymond Ng and Jiawei Han. Efficient and
Effective Clustering Methods for Spatial

Data Mining. Proc. of VLDB, 1994.
Rib99 William Ribarsky, Jochen Katz, Frank

Jiang, and Aubrey Holland. Fast Clustering
and Feature Tracking for Exploration.
Report GIT-GVU-99-21.

Sil95 D. Silver. Object-Oriented Visualization.
IEEE Computer Graphics and Applications,
15, 3 pp. 54-64.

Tan97 Tanin, Egemen, Richard Beigel, and Ben
Schneiderman (1997). Design and
Evaluation of Incremental Data Structures
and Algorithms for Dynamic Query
Interfaces. Proceedings IEEE InfoVis ’97,
pp. 81-86.

Wal96 T. van Walsum, F. Post, D. Silver, and F.
Post. Feature Extraction and Iconic
Visualization. IEEE Transactions on
Visualization and Computer Graphics, 2,2
pp. 111-119.

Zha96 T. Zhang, R. Ramakrishnan, and M. Livny.
Birch: An Efficient Data Clustering Method
for Large Databases. Proc. SIGmod 96, pp.
103-114.

