
VERTICAL INTEGRATION IN OPEN-SOURCE HARDWARE-SOFTWARE
CO-DESIGN FOR ACCELERATOR ARCHITECTURE RESEARCH

A Dissertation
Presented to

The Academic Faculty

By

Blaise-Pascal Tine

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Department of Computer Architecture

Georgia Institute of Technology

May 2024

© Blaise-Pascal Tine 2024

VERTICAL INTEGRATION IN OPEN-SOURCE HARDWARE-SOFTWARE
CO-DESIGN FOR ACCELERATOR ARCHITECTURE RESEARCH

Thesis committee:

Dr. Krishna Tushar
Department of Computer Science
Georgia Institute of Technology

Dr. Luca Carloni
Department of Computer Science
Columbia University

Dr. Sarkar Vivek
Department of Computer Science
Georgia Institute of Technology

Dr. Alexandros Daglis
Department of Computer Science
Georgia Institute of Technology

Dr. Hyesoon Kim
Department of Computer Science
Georgia Institute of Technology

Date approved: July 20th, 2023

If you can’t build it, then you don’t understand it.

Richard P. Feynman

To my godfather, Maurice Tchuente, whose inspiration kindled my passion for computer

science from childhood and continues to illuminate my path.

ACKNOWLEDGMENTS

I would like to thank the members of my thesis committee for their assistance in the

preparation of this work. Foremost, I would like to express my deepest appreciation to

my late advisor, Dr. Sudhakar Yalamanchili. When I joined Georgia Tech, he gave me a

chance to embark on this journey, and for that, I will be forever grateful. He was both a

father figure and an advisor; I will continue to cherish his memory and uphold his legacy.

I would also like to extend my deepest gratitude to my advisor, Dr. Hyesoon Kim, for her

tremendous support and mentorship, and more importantly, for her patience and sacrifice

in allowing me to work on what I truly loved and assisting me in creating value from it.

I would also like to thank Dr. Jeff Young for his invaluable assistance and support with

using FPGAs throughout the course of my research. I am grateful to Dr. Chad Kersey,

who served as both a colleague and mentor when I began my Ph.D. studies. I also received

significant support and mentorship from Dr. Seyong Lee at Oak Ridge National Labs and

David Sheffield at Intel Labs.

The considerable development effort required for this work would not have been possi-

ble without the contribution of many graduate and undergraduate students including Fares

Elsabbagh, Varun Saxena, Santosh Srivatsan, Joshua R. Simpson, Fadi Alzammar, Liam

Cooper, Krishna Yalamarthy, Apurve Chawda, Will Gulian, Yaotian Feng, Da Eun Shim,

Priyadarshini Roshan, Ethan Lyons, Lingjun Zhu, Sung Kyu Lim, Han Ruobing, Sam Ji-

jina, Swetha Rajagopalan, Tejaswini Anand Kumar, Montgomery Ashton Iyzik Carter, and

Burton Malik.

I would also like to extend my gratitude to the former and current members of the

HPArch lab, Dr. Bahar Asgari, Dr. Ramyad Hadidi, Dr. Prasun Gera, Yonghae Kim,

Jaewon Lee, Andrei Bersatti, Euna Kim, Sam Jijina, Liu XueYang, Lorimer Eric, Cao

Jiashen, and Jeong Shinnung, whom I’m grateful to have known during my time at Georgia

Tech.

v

Several individuals in my personal life have supported me emotionally throughout this

long journey, notably my mother, Veronique-Franique Makam, and my father, Jean-Claude

Tine, who did everything they could to foster my passion for technology from a very young

age and made it possible for me to leave Africa for the West to pursue a better education.

I would also like to thank my host parents, Jan Wojcik and Christine Zavgren, who wel-

comed me into their home when I arrived in America and have supported me throughout my

college and graduate school years. I have four siblings, my twin brother Francois Xavier,

and my sisters Stella Carine, Sandrine Nadege, and Marie Christelle, who encouraged their

big brother to persevere and complete this journey. I would also like to thank my personal

friends, especially Gladys Kenfack, Lionel Metchop, Patrick Ngatchou, and Patricia Sadate

for their unwavering friendship and support.

Finally, I would like to thank my 13-year-old daughter, Nefertiti, for granting me the

ultimate privilege of fatherhood, and extend my support to all fathers around the world who

are victims of parental alienation.

vi

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xiv

List of Figures . xvi

List of Acronyms . xxi

Chapter 1: Introduction . 1

1.1 Contributions . 3

1.2 Thesis statement . 5

1.3 Organization . 5

Chapter 2: Literature Survey . 7

2.1 Open GPU Microarchitectures . 7

2.1.1 RISC-V extension to support GPGPUs 7

2.1.2 FPGA-based GPUs . 8

2.1.3 Graphics Hardware Acceleration 9

2.2 Hardware Construction and Simulation . 10

2.2.1 Hardware Description Languages 10

2.2.2 Modeling Techniques for RTL Simulation 12

vii

Chapter 3: Open-Source Hardware for General-Purpose Computing on GPU . . 14

3.1 An Open-Source ISA Extension for SIMIT architectures 14

3.1.1 A Taxonomy of GPGPU ISAs . 14

3.1.2 A RISCV-based ISA Extension for SIMIT architectures 17

3.2 An Extensible Multicore GPGPU Hardware Implementation 18

3.2.1 Vortex Microarchitecture . 18

3.2.2 Support for Graphics Rendering 20

3.2.3 High-Bandwidth Caches . 22

3.2.4 Elastic Pipelines . 24

3.2.5 Hardware Simulation . 25

3.3 A Software Stack Support for Open-GPU Research 26

3.3.1 The Open-GPU Driver Stack Implementation 26

3.3.2 OpenCL Compiler and Runtime 27

3.3.3 The Native Kernel Runtime . 27

3.3.4 POCL Backend Compiler . 28

3.3.5 CUDA Support . 29

3.3.6 Graphics Support . 29

3.4 Evaluation . 30

3.4.1 Experimental Setup . 30

3.4.2 Microarchitecture . 31

3.4.3 High-bandwidth Cache . 34

3.4.4 Texture Sampling . 37

3.5 Using Vortex in Architecture Research . 37

viii

3.6 Porting Vortex to ASIC Design Flow . 38

Chapter 4: Open Hardware for Graphics Acceleration on GPU 40

4.1 Backgrounds on 3D graphics pipeline . 40

4.1.1 2D Homogeneous Rasterization 40

4.1.2 Depth/Stencil Tests . 40

4.1.3 Blending Operations . 41

4.1.4 Multisample Anti-aliasing . 42

4.2 An Open-GPU Hardware Extension for Graphics Rendering 44

4.2.1 Graphics Hardware Classi�cation 44

4.2.2 Hybrid Rasterization . 44

4.3 A Hardware Implementation of the Graphics Rendering Stack 47

4.3.1 Vortex Graphics Microarchitecture 47

4.3.2 ISA Extension for Graphics Acceleration 48

4.3.3 Rasterizer Unit Microarchitecture 49

4.3.4 Render Output Microarchitecture 51

4.4 The Software Stack to Support Graphics Rendering 54

4.4.1 Tile Renderer Pipeline . 55

4.4.2 Swiftshader JIT Compiler . 56

4.4.3 Texture mapping . 56

4.4.4 64-bit to 32-bit Domains Crossing 56

4.4.5 Hybrid Stack Extension . 57

4.5 Evaluation . 58

ix

4.5.1 Experimental Setup . 58

4.5.2 Performance Evaluation on FPGA 58

4.5.3 Area Cost of Synthesizations . 58

4.5.4 Software vs Hardware Acceleration 60

4.5.5 Design Space Explorations . 62

4.5.6 Effects of Hybrid Stack Extensions 65

Chapter 5: Implementing Hardware Extensions for Multicore RISC-V GPUs . . 67

5.1 A topology of Hardware Extensions . 69

5.1.1 Producer vs Consumer Extensions 69

5.1.2 Internal vs External Extensions . 70

5.1.3 Needing local storage . 71

5.1.4 Accessing Memory . 71

5.1.5 Complex Operands . 71

5.1.6 Con�gurable Extensions . 72

5.2 RISC-V ISA Extension . 73

5.2.1 Instruction Encoding . 73

5.2.2 Operands Extension . 74

5.2.3 Software Support . 75

5.3 Implementing External Extensions . 76

5.3.1 Local Agents . 76

5.3.2 Arbitration . 77

5.4 Hardware Performance Counters . 77

x

5.4.1 Hardware Implementation . 77

5.4.2 Software Support . 78

5.5 Sample Implementation . 78

5.5.1 ISA Encoding . 78

5.5.2 Microarchitecture . 79

5.5.3 Evaluation . 79

Chapter 6: Development Toolchain Optimizations for Open Hardware 81

6.1 An Open-source high-speed RTL Simulator based on JIT Compilation . . . 81

6.1.1 Tango Compilation Pipeline Overview 82

6.1.2 The Tango IR Description . 83

6.1.3 Walk-thru Fifo Example . 84

6.1.4 Tango Optimizations . 85

6.1.5 Evaluation . 89

6.2 Single-Source Hardware/Software Codesign 94

6.2.1 Background and Motivation . 95

6.2.2 A Taxonomy of Hardware Description Languages 98

6.2.3 Cash DSL Overview . 103

6.2.4 Software-Hardware Codesign . 110

6.2.5 Integration with Architecture simulators 117

6.2.6 Evaluation . 119

Chapter 7: Elastic Pipelines and the Future of Hardware Designs122

7.1 Background on Elastic Pipeline . 122

xi

7.2 The Bene�ts of Elastic Pipelines . 122

7.3 Vortex's Elastic Microarchitecture . 123

7.4 Using Skid Buffers in Elastic Pipelines . 124

7.5 Elastic Buffers Design Space . 128

7.5.1 Elastic buffers taxonomy . 128

7.5.2 Elastic buffers selection process 128

7.5.3 Automating elastic buffering across the design 129

7.6 The Case for ”elastic” registers as FPGA primitive 129

Chapter 8: Compiler Support for Open GPU .132

8.1 Extending the LLVM Compiler for OpenGPU 132

8.2 Compiler Support for Control-�ow Divergence 132

8.2.1 Split and Join De�ntions . 135

8.2.2 Split and Join Support in LLVM 135

8.2.3 If-Then-Else Transformation . 136

8.2.4 Loop Transformation . 136

8.2.5 Handling non-regional divergent branches 137

8.2.6 Divergence Analysis . 138

8.3 The challenges of split/join instrumentation 139

8.3.1 Code Reordering . 140

8.3.2 Branch Simpli�cation . 141

8.3.3 Hardware Dependencies . 142

8.4 Vortex's split/join redesign . 143

xii

8.4.1 Handling Divergent Branches . 143

8.4.2 Handling Divergent Loops . 144

Chapter 9: Conclusion & Future Work .146

References .150

xiii

LIST OF TABLES

2.1 Comparisons of open-source GPPGUs . 7

2.2 Comparisons with related work . 8

2.3 Taxonomy of Hardware Description Languages 11

3.1 Comparing mainstream GPU ISAs with Vortex. 15

3.2 Proposed RISC-V Vortex ISA extension. 18

3.3 Synthesis results for different core con�gurations. 32

3.4 Hardware synthesis for all core con�gurations. 33

3.5 Virtual multi-ported 4-bank cache synthesis results. 36

4.1 GPU Graphics Pipeline Summary (FF: Fixed-Function) 43

4.2 Proposed Vortex ISA extension. 48

4.3 Descriptions of scene demos . 60

4.4 Effect of varying the number of raster slices 63

4.5 Effect of varying the number of ROP slices (RTL sims) 65

5.1 A Classi�cation of Common GPU Hardware Extensions 68

5.2 Hardware Extension Signatures . 69

6.1 HDL Features Comparison . 98

xiv

6.2 Built-in Type System . 107

6.3 Cash Built-in Operators . 108

7.1 Elastic Buffers Design Taxonomy . 127

7.2 The area cost of using skid buffers on Vertex GPU 129

xv

LIST OF FIGURES

2.1 Event-Driven Simulation Loop . 11

3.1 Vortex microarchitecture. 18

3.2 Texture unit microarchitecture. 20

3.3 High-bandwidth cache. 22

3.4 Elastic pipeline request. 24

3.5 Vortex simulation stack. 25

3.6 Vortex driver stack and frame buffer connection. 26

3.7 Runtime system for Vortex. 27

3.8 Vortex binary generation steps for OpenCL applications. 28

3.9 CUDA compilation �ow . 28

3.10 Shader compilation pipeline. 29

3.11 A sample code kernel with texture rendering. 30

3.12 IPC results for different core con�gurations. 32

3.13 Area Distribution . 34

3.14 Vortex performance scaling . 35

3.15 The effect of multi-port caches . 35

3.16 HW Texture acceleration vs software. 36

xvi

3.17 The effect of memory scaling on performance. 38

3.18 GDS Layout . 39

3.19 Power Density . 39

4.1 3D graphics pipeline stages (baseline). The white boxes represent the �xed-
function units, and the orange boxes are programmable shaders. 43

4.2 Vortex 3D Graphics Pipeline Stages. 43

4.3 Vortex Graphics microarchitecture. 48

4.4 Rasterizer System Overview. 50

4.5 Shader code example . 52

4.6 Render Output Unit . 52

4.7 Depth/Stencil Unit. 53

4.8 Blending Unit. 54

4.9 Swiftshader Render. original(left), Vortex (right). 54

4.10 Vortex DrawCall Invocation. 55

4.11 Vortex Hybrid Stack Extension. (Green portion is on the shared memory
and red portion is on the global memory) 57

4.12 3D demos rendering on FPGA at Full-HD. 59

4.13 Snapshot of evaluated demos (Vase, Filmtv, Skybox, Cover�ow, Evilskull,
Polybump, Tekkaman, Carnival). 59

4.14 Vortex area cost in LUTs, BRAMs, DSPs, and layout. 61

4.15 Software vs. Hardware Acceleration. 62

4.16 The effect of varying the rasterizer tile size. 63

4.17 Rendering performance with RCACHE + OCACHE, only OCACHE, and
only RCACHE on overall IPC . 64

xvii

4.18 Hybrid stack extension performance . 66

5.1 GPU Pipeline With Hardware Extension Units 68

5.2 RISC-V Machine0 008 Performance Monitoring Counters 72

5.3 RISC-V CSRs Address Mapping . 72

5.4 Operand Extension via Inputs Merging . 74

5.5 Operand Extension via Functions Merging 74

5.6 Operand Extension via CSRs . 75

5.7 Hardware Performance Monitoring Extension 77

5.8 Fixed-point mutliply-add hardware . 79

5.9 Fixed-point mutliply-add H/W vs S/W . 79

6.1 Tango Compiler Infrastructure . 81

6.2 SimJIT Optimization Pipeline . 82

6.3 The Tango IR Data Structure . 83

6.4 Proxies Elimination . 85

6.5 Coalescing Register Update . 86

6.6 Shift Register Lowering . 87

6.7 Switch Table Lowering . 88

6.8 Models Netlist Summary . 89

6.9 Data�ow Optimization Summary . 90

6.10 Runtime Latency Comparison . 91

6.11 Proxy Coalescing Speed Up Comparison 92

6.12 Sequential Node Opt. 92

xviii

6.13 Shift Register Opt. 93

6.14 Switch Table Opt. 94

6.15 Traditional Hardware Design . 96

6.16 Single-Source Hardware Design . 97

6.17 The Cash Framework . 103

6.18 Systolic MatMul Architecture . 104

6.19 The Cash Single-Source Design Methodology 109

6.20 Cross-Domain Data Types Translation . 110

6.21 Meta Object Static Re�ection . 110

6.22 Cash UDF Interface . 112

6.23 Cash-HLS Simulation . 116

6.24 Cash-CAS Simulator . 118

6.25 Cash vs Verilog Normalized Synthesis Metrics 119

6.26 Cash vs Bluespec Normalized Synthesis Metrics 119

6.27 Simulators Speed comparison (ms) . 120

6.28 FPGA Throughput . 121

6.29 Emulation Latency . 121

7.1 Elastic Communication. 122

7.2 Vortex Pipeline Tracing. 124

7.3 Using a skid register breaks the elastic communication 125

7.4 Using a skid buffer to register elastic interfaces 125

7.5 (A) Basic Elastic Buffer Design . 126

xix

7.6 (B) Unregistered Skid Buffer . 126

7.7 (C) Registered Skid Buffer with Full Throughput 127

7.8 (D) Registered Skid Buffer with Half Throughput 127

7.9 Elastic Buffers Decision Tree . 127

7.10 Basic Register vs Elastic Register . 130

8.1 Divergent Branch Transformation. 133

8.2 Divergent Loop Transformation. 133

8.3 Non-regional branches (Red basic blocks are divergent). 133

8.4 Performance overhead of disabling compiler divergence stack optimization
(using 640x480 framebuffer in cycle-level simulation). 134

8.5 Split/join resilience to branch ordering. 139

8.6 Split/join resilience to register spill. 139

8.7 Split/join elimination due to branch simpli�cation. 141

8.8 Rolling back min/max branch simpli�cation. 141

8.9 New split/join algorithm. 143

8.10 Divergent Branch Transformation. 143

8.11 Divergent Loop Transformation. 144

xx

LIST OF ACRONYMS

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

IL Intermediate Language

IPDOM Immediate Post-Dominator

ISA Instruction Set Architecture

JIT Just-in-Time

RTL Register Transfer Level

SIMD Single Instruction Multiple Data

SIMT Single Instruction Multiple Threads

xxi

CHAPTER 1

INTRODUCTION

The emergence of data-parallel architectures and General-Purpose Graphics Processing

Unit (GPGPU) has enabled new opportunities to address the power limitations and scal-

ability of multi-core processors [1], allowing for new ways to exploit the abundant data

parallelism present in emerging big-data parallel applications such as machine learning

and graph analytics. GPGPUs in particular, with their Single Instruction Multiple Threads

(SIMT) execution model, heavily leverage data-parallel multi-threading to maximize through-

put at a relatively low energy cost, leading the current race for energy ef�ciency (Green500

[2]) and application support with their accelerator-centric parallel programming models [3]

[4].

For the past decade, GPGPU architecture research has mainly focused on cycle-level

simulations [5] [6] [7] [8] [9] [10] that model the hardware architecture at the Intermediate

Language (IL) level (PTX [11], HSAIL [12]) because of the lack of open-source hardware

implementation. Simulating complex hardware at the IL level can obfuscate several aspects

of the micro-architecture that have a substantial impact on performance [13]. The recent

introduction of full-system Instruction Set Architecture (ISA)-based Graphics Processing

Unit (GPU) model simulations [14] has closed the evaluation gap with actual hardware but

still remains limited as it does not cover other important areas such as run-time evaluation,

power ef�ciency, reliability, and detailed microarchitecture evaluation that can be pursued

when using Register Transfer Level (RTL)-level implementation. Several implementations

of open-source GPGPU hardware [15] [16] [17] [18] [19] [20] have been proposed that pro-

vide a detailed micro-architectural description of various GPGPU's components. However,

these implementations lack a detailed description of the cache subsystem and command

processor, which are performance-critical components in the GPGPU. Also, the ISA used

1

in those implementations is custom or proprietary, restricting application support and wide

adoption.

Additionally, graphics acceleration, one of the primary applications of GPUs and a driv-

ing force for most of the technological innovations in GPU architecture, has not received as

much attention by the academic research community mostly due to the lack of an open ISA

to enable microarchitecture explorations. The current area of graphics rendering moving to

the cloud [21] [22] presents new challenges for graphics computation, including real-time

latency, scalability, and hardware security, raising the importance to expand the study in

this space.

Two recent technological trends provide an opportunity to revisit and expand open-

source GPGPUs for hardware research today:(1) The emergence of high-end Field-Programmable

Gate Array (FPGA)s in the consumer market. Today's high-capacity FPGAs with �oating-

point Digital Signal Processor (DSP)s and large memory provide high computational ca-

pability at a lower energy budget that makes implementing a full-feature GPGPU with a

detailed cache subsystem operating at a reasonable speed a possibility. (2) The advent of

RISC-V [23] with its free, open, and extensible ISA, provides a new level of freedom in

designing hardware architectures at a lower cost that leverages its rich ecosystem of open-

source software and compiler tools. Adopting the RISC-V ISA for a GPGPU processor

architecture presents a solid base for wide-range adoption.

However, hardware development presents two key challenges which have played an im-

portant role in limiting the development of open-source hardware in the past decade. The

�rst challenge is the steep learning curve and expertise required to use hardware program-

ming languages and development tools. The second challenge involves the limitations of

simulation and debugging tools for hardware, RTL simulations are two to three orders of

magnitude slower than cycle-level simulation, making it impractical for working on large-

scale designs like GPGUs.

2

1.1 Contributions

This research work has focused on expanding micro-architecture research on graphics pro-

cessing units by developing Vortex, an open-source low-level RTL implementation of a

full GU architecture. Additionally, this research work crosses disciplinary boundaries to

provide compiler, software, and simulation infrastructures to support this open-hardware

effort. Lastly, this work also tackles the design and development challenges that present a

barrier for open-hardware accessibility. Speci�cally, this research seeks to make the fol-

lowing contributions three contributions:

The �rst contribution of this work aims to explore the design and implementation of a

GPGPU on modern FPGAs. The main component of this contribution is [24], an extensi-

ble open-source framework for GPGPU hardware research. In this work, we �rst propose

an ISA extension to RISC-V that supports GPGPUs and graphics. The main goal of the

ISA extension proposal is to minimize the ISA changes so that the corresponding changes

to the open-source ecosystem are also minimal, which makes for a sustainable develop-

ment ecosystem. To demonstrate the feasibility of the minimally extended RISC-V ISA,

we implemented the complete software and hardware stacks of Vortex on FPGA. Vortex

is a PCIe-based soft GPU that supports OpenCL [4] and OpenGL [25]. Vortex can be

used in a variety of applications, including machine learning, and graph analytics. Vortex

can scale up to 32 cores on an Altera Stratix 10 FPGA [26], delivering a peak perfor-

mance of 25.6 GFlops at 200 Mhz. Other related contributions we proposed to support

the Vortex framework include a software stack for running OpenCL parallel programs on

RISCV-based processors [27], a compiler extension for running CUDA parallel programs

on RISCV-based processors [28], a hardware extension for security encryption targeting

Vortex RISC-V GPU [29], and our proposal for implementing hardware extensions for

multi-threaded RISCV-based processors [30].

The second contribution of this work extends the previous work [24] by focusing on

3

the graphics rendering hardware side of GPU computing, an area that has received much

less attention by the academic research community. We proposed Skybox [31] a full-stack,

open-source, 3D graphics framework with integrated software, compiler, hardware, and

simulation environment, that enables end-to-end GPU research. Using Skybox, we explore

the design space of software versus hardware graphics rendering and propose a hybrid

micro-architecture that accelerates the state-of-the-art Vulkan [32] graphics API. Skybox

also introduces novel compiler and system optimizations to support its unique RISC-V

ISA baseline. We evaluated Skybox on high-end FPGAs. We were able to synthesize and

execute a 32-core (512 threads) Skybox graphics processor on the Altera Stratix 10 FPGA

running at 230 Mhz, delivering a peak �ll rate of 29.4 GT/s. Skybox is the �rst open-source,

full-stack GPU software and hardware implementation that supports the Vulkan API.

The third contribution of this work aims at addressing the challenges facing open-source

hardware expansion, more speci�cally the limitations of the programming and simulation

tools. In the �rst part of this work, we introduced Tango [33], an Optimizing compiler for

Just-in-Time (JIT) RTL simulation. Tango implements unique hardware-centric compiler

transformations to speed up runtime code generation in a software-hardware co-design

environment where hardware simulation speed is critical. Tango achieves a 6x average

speedup compared to the state-of-the-art simulators. In the second part of this work, we

introduced Cash [34] [35], a single-source hardware-software co-design framework. Cash

leverages the unique ef�ciency and generative attributes of Modern C++ to provide a high-

level language for hardware design. We introduce new co-design programming abstrac-

tions that enable a uni�ed development environment for both hardware and software from

a single-source. We showcased the bene�ts of single-source development and how it is

used in the Cash framework to bridge the software and hardware design gap. Using the

proposed DSL, we implemented complex hardware designs including a 5-stage RISC-V

processor, a Sparse Matrix Multiplier accelerator, a 4-lane parallel Radix FFT accelerator,

and a network-on-chip router.

4

1.2 Thesis statement

In light of the burgeoning signi�cance of data-parallel architectures and the challenges

concomitant with GPGPU research and development, this research posits that supporting

open-source GPU for research by merely providing an open-source hardware implemen-

tation and leveraging new technological trends is insuf�cient. Instead, it is paramount to

adopt a holistic approach that encompasses every layer of the infrastructure, from hardware

design to software support. To this end, our research introduces ”Vortex,” an open-source

RTL implementation of a complete GPU architecture. Not only does Vortex offer a gran-

ular micro-architectural description, but it also bridges existing gaps by integrating com-

piler, software, and simulation infrastructures. Additionally, this work addresses both the

steep learning curve associated with hardware programming languages and the limitations

of current simulation and debugging tools. By adopting such a comprehensive approach,

we aspire to propel open-hardware research into new frontiers, ensuring scalability, power

ef�ciency, and more importantly wide adoption.

Often, when discussing open-source development, the emphasis on accessibility is rel-

egated to the background. However, it's not merely about obtaining access to the software;

true accessibility encompasses ease of use, intuitive understanding, seamless integration

with other platforms, and straightforward maintenance. As accessibility underpins broader

adoption, it becomes a critical determinant of a project's enduring practical in�uence. With

Vortex's development, we ensured that the principle of accessibility remained paramount. It

informed every decision—be it the choice of ISA, the nuances of microarchitecture design,

the intricacies of compiler construction, or the facets of software development.

1.3 Organization

This dissertation is organized as follows:

In Chapter 2, we present the literature and survey related to different subjects discussed

5

in this thesis.

In Chapter 3, we introduce the Vortex open-source GPU with its ISA extension and

microarchitecture.

In Chapter 4, we introduce the SkyBox open-source Graphics pipeline for Vortex, fo-

cusing on the �xed-function hardware additions to speed up graphics rasterization and its

support software.

In Chapter 5, we introduce the extension architecture implemented in Vortex to expand

the microarchitecture with the custom hardware blocks for research exploration.

In Chapter 6, we present our contribution to the hardware development toolchain, in-

cluding the programming interface and the simulation environment for open-source.

In Chapter 7, we present Vortex's elastic micro-architecture and the advantages that this

design paradigm enables in promoting accessibility, extensibility, and maintenance.

In Chapter 8, we present Vortrex's compiler effort to support control-�ow divergence

with the RISC-V ISA and the challenges of reducing the ISA cost.

Chapter 9 summarizes the dissertation by reexamining some of the core decisions we

made at the beginning of this project like the adoption of RISC-V. This section also dis-

cusses future research endeavors which relate to this work.

6

CHAPTER 2

LITERATURE SURVEY

This section describes the state of the practice regarding open-source GPUs and the devel-

opment tools to support it. These prior works lay out the framework for the thesis, outlining

current trends in modeling as well as exposing gaps that the proposed work will address.

2.1 Open GPU Microarchitectures

Table 2.1: Comparisons of open-source GPPGUs

GPGPU ISA
Exec

Model
Cache
System

Memory
System

Graphics
Suppport

Threads
x Cores

RTL
Host

Interface
Software

Stack
Cycle-level
Simulation

HWACHA RISCV Vector L1,L2 Simulated No N/A Yes No N/A No
Simty RISCV SIMT No No No 1x1 Yes No N/A No

MIAOW AMD SIMT No Simulated No N/A Yes N/A OpenCL No
FlexiGrip Custom SIMT sharedm Simulated No 32x1 Yes SoC Custom No

FGPU Custom SIMT L2 FPGA No 64x8 Yes SoC Custom No

NyuziRaster Custom SIMT L1,L2 FPGA
Fixed-Function

Rasterizer
4x1 Yes N/A Custom No

Vortex RISCV SIMT
sharedm
L1,L2,L3

FPGA
Shaders

Texture Units
16x32 Yes PCIe

OpenCL
OpenGL

Yes

Table 2.1 contrasts Vortex with other open-source GPGPU implementations, highlight-

ing the provided features and performance characteristics. The details about each project

and comparison with Vortex are summarized below.

2.1.1 RISC-Vextensionto supportGPGPUs

HWACHA [36] and ARA [37] are RISC-V-based co-processors that implement a SIMD

execution model, where vector instructions are streamed into vector lanes. Their design is

based on the open-source RISC-V Vector ISA Extension proposal [38] taking advantage of

its vector-length agnostic ISA and its relaxed architectural vector registers.

Simty [16] implements a specialized RISC-V architecture that supports `glssimt exe-

cution similar to Vortex. However, in the authors' work, only the microarchitecture was

7

Table 2.2: Comparisons with related work

API Sim HW Graphics Open
Skybox Vulkan yes FPGA rendering yes
Vulkan-sim [40] Vulkan yes no ray-tracing yes
Vortex [24] OpenGL yes FPGA texture yes
BCW-FGPU[41] OpenGL FPGA rendering
ZJX-RGPU[42] OpenGLES chip rendering
AccelWatch [43] CUDA only yes no no yes
Emerald [44] OpenGL yes no rendering yes
Multi2sim [8] OpenCL yes no rendering yes
TEAPOT [45] OpenGLES yes no rendering no
Attila [10] OpenGL yes no rendering yes

implemented as a proof of concept without any software stack.

2.1.2 FPGA-basedGPUs

MIAOW [20] is an FPGA soft GPU that implements the AMD Southern Islands GPGPU

ISA and is capable of running unmodi�ed OpenCL-based applications. The authors pro-

posed a partial architecture in which most of the on-chip network and memory subsystems

are simulated. Their main goal was to provide the closest realistic implementation of the

reference architecture for the components written in RTL. On the other hand, the goal of

Vortex is not to replicate a speci�c GPGPU architecture but instead to provide a complete

comparable implementation that is optimized for FPGAs. Furthermore, MIAOW doesn't

support graphics.

FlexiGrip [18], FGPU [15], and Harmonica [39] are also soft GPUs that are imple-

mented for FPGAs. They all have a SIMT-based architecture, but they have their own

custom ISA, which requires porting existing applications and benchmarks. They do not

support graphics.

8

2.1.3 GraphicsHardwareAcceleration

Table 2.2 shows comparisons with other work using a GPU simulator or FPGA. Vortex [24]

extends the RISC-V ISA to support GPU, however, Vortex only provides hardware tex-

ture units, whereas Vortex has hardware rasterizer and ROP units. Vortex supports only

OpenGL, but Vortex also supports Vulkan, which is the latest GPU API. Recently, Vulkan-

Sim [40] was released as an open-source for the simulation of Vulkan graphics, but it is

a cycle-level simulator that executes Vulkan traces (converted as PTX) without any RTL

design. Zhou et al. demonstrate an extension to the RISC-V ISA for GPGPU tasks speci�-

cally with low-power embedded systems [42]. The extension consists of a programmable

vertex engine and a �xed-pipeline fragment engine to accelerate the graphics rendering

pipeline. The work is demonstrated with assembly code (no software stack support) on

only one GPU core.

NyuziRaster [19] is an open-source soft GPU with graphics rendering support. Nyuzi-

Raster integrates a simple multi-threaded in-order processor that supports a custom ISA.

NyuziRaster doesn't implement any texture unit and does texture sampling completely in

the software. NyuziRaster implements a �xed-function rasterizer with no programmable

shader support. Vortex supports programmable shaders via OpenGL that execute as par-

allel tiles on its computing platform. It also has hardware-accelerated texture sampling.

NyuziRaster can support up to four threads in its processor design, while Vortex can scale

up to 512 total threads on FPGA.

Several researchers have implemented GPUs on FPGAs [46, 47, 48, 49, 50, 41]. Most

of the work focuses on implementing �xed-graphics pipelines which provide very limited

programmability and often do not support graphics APIs such as OpenGL.

NVIDIA Research has found that acceptable results are achievable with a fully software-

based graphics pipeline, achieving performance within a factor of 2-8x compared to mod-

ern GPUs [51]. This research provides insight on how hardware space and rasterization

performance can best be balanced to �t the design on more FPGAs with limited area.

9

2.2 Hardware Construction and Simulation

2.2.1 HardwareDescriptionLanguages

Table 2.3 compares the language features of prominent HDLs, including Verilog, VHDL,

SystemC, PyRTL [52], Cl� ash [53], Chisel [54], Bluespec [55], PyMTL [56], LegUp [57],

and Spatial [58]. We focus on productivity features natively supported by each HDL.

LegUp is an HLS framework that converts C++ programs directly to RTL, its main ad-

vantage is its design productivity, however, its generated RTL is sub-optimal compared to

handwritten RTL. Spatial is another HLS framework that converts hardware from a high-

level language abstraction. Spatial's application domain is restricted to Data�ow designs

only, as such its generated RTL is often more ef�cient than Legup, however still falls short

compared to handwritten RTL. Bluespec is a full-featured HDL that takes a radical ap-

proach to hardware design with a non-traditional RTL abstraction, which can introduce a

steep learning curve for developers and often produce sub-optimal designs compared to

handwritten RTL [54]. C� ash, PyRTL, and Chisel have a rich set of advanced language

features that make their hardware abstractions productive, however, they lack in levels of

abstraction and co-design features. SystemC, on the other hand, has great co-design fea-

tures, including the ability to also interface with CAS simulators, however, it is held back by

its limited and verbose RTL abstraction and the fact that it doesn't export to Verilog, which

has restricted its application to System-Level prototyping and Veri�cation. The Cash's

hardware abstraction implements the advanced language features of HCLs like Chisel to

increase the productivity of hardware development but also implements the advanced co-

design features of SystemC, which, coupled with its single-source productivity features

provides a unique development that optimizes the entire software/hardware design cycle.

10

Table 2.3: Taxonomy of Hardware Description Languages

Features Ve
ril

og

V
H

D
L

P
yR

T
L

C
�a

sh

C
hi

se
l

B
lu

es
pe

c

P
yM

T
L

S
ys

te
m

C

C
as

h

Le
gU

p

S
pa

tia
l

Levels of Abstraction
Gate-Level Modeling Y N N N N N N N N - -
RTL-Level Modeling Y Y Y Y Y Y Y Y Y - -
Cycle-Level Modeling N N N N N Y Y Y Y - -
Functional Modeling N N N N N N Y Y Y - -
Elastic Modeling N N N N N Y N N Y - -
Adv. Language Features
Module Interfaces N Y N - Y Y N Y Y Y Y
User-De�ned Types N N N Y Y Y N N Y Y Y
I/O Bulk Connection N N N - Y - N N Y - -
Higher-Order Functions N N N Y Y Y N N Y Y Y
Integrated Veri�cation Y Y N Y N Y N Y Y Y Y
Tools Integration
Verilog Export - - Y Y Y Y Y N Y Y Y
Verilog IP Reuse - - N N N Y N N Y Y Y
C/C++ Interopability Y N N N N N N Y Y Y Y
SW/HW Type Sharing - - N - N - N N Y Y Y
HLS Integration - - N N N N N N Y - -
CAS Integration - - N N N N N Y Y N N
Design Quality
RTL Code Size 3 3 8 9 8 6 6 2 7 - -
Synthesis Quality 9 9 8 7 8 7 8 - 8 5 6

Figure 2.1: Event-Driven Simulation Loop

11

2.2.2 ModelingTechniquesfor RTL Simulation

Prominent RTL simulators [59] [60] [61] employ event-driven simulation as their simula-

tion methodology to evaluate RTL netlists during veri�cation. Event-driven simulation pro-

vides an ef�cient mechanism for processing large and complex networks like RTL netlist

by only scheduling the execution of components whose inputs have changed after each it-

eration. Figure 2.1 illustrates a typical event-driven simulation loop. The RTL simulator

starts by initializing all the states in the system, the loop begins with the process stage

where all nodes whose input signals have been asserted in the prior iteration are scheduled

for execution, then an update stage follows where changes are processed and affected nodes

are noti�ed, then the clock is updated to advance the simulation. This loop iterates until the

desired simulation time is reached or a custom event occurs. Mainstream RTL simulation

engines include:

1) Verilator [62] is an open-source RTL simulator that translates Verilog [63] into a

C/C++ program that the user can compile with any native compiler for execution. It imple-

ments some high-level transformations on the Verilog netlist to partition the computation

graph and reduce the update cost during the simulation. To the best of our knowledge, Ver-

ilator is currently the fastest RTL simulator in use today and has shown great adoption with

recent hardware construction languages such as Chisel [54], PyMTL [56]. Verilator's main

speed advantage comes from the fact that it only simulates binary signal states '01' instead

of using the four '01XZ' Verilog states, allowing it to ef�ciently map RTL primitives to

C++.

2) Icarus Verilog [61] is an open-source RTL simulator for Verilog. It supports the full

four-state Verilog model giving the simulator an edge for accuracy over Verilator. Icarus

Verilog doesn't use native compilation to generate its binaries, it uses highly optimized

code blocks for the various RTL primitives in the Verilog Netlist, allowing it to execute

interpreted code at a reasonable speed.

3) Synopsys VCS [60] is a proprietary RTL simulator for Verilog. It is an industry-

12

standard fast simulator with support for the complete Verilog speci�cation. VCS uses native

compilation to lower its netlist into an executable which allows it to leverage additional

low-level optimizations to improve its performance. VCS is on average 10x faster than

Icarus Verilog.

4) SystemC [59] is a C++ library for hardware modeling and simulation. It supports

multiple modeling abstraction levels which include RTL level, System level, and Functional

level. SystemC is widely used for systems and functional modeling where it excels remark-

ably because of its runtime ef�ciency and its effective application in software-hardware co-

design. SystemC implements an event-driven simulator based on user-de�ned processes

and threads emulating the parallel behavior of the target hardware and a sensitivity list of

signals that trigger the processes to execute when the value of a signal changes. SystemC

simulator is ef�cient at rendering very large models leveraging its built-in threading system.

The simulator has a high setup cost that makes it sub-optimal for average-size models.

13

CHAPTER 3

OPEN-SOURCE HARDWARE FOR GENERAL-PURPOSE COMPUTING ON

GPU

3.1 An Open-Source ISA Extension for SIMIT architectures

3.1.1 A Taxonomyof GPGPUISAs

Table 3.1 shows a comparative evaluation of the different ISAs: Nvidia PTX [11]1, AMD

RDNA [64], AMD CGN [65], Intel GEM [66], and PowerVR mobile GPU [67]. We ex-

cluded debugging, exception handling, and other systems management instructions.

The Threading Model: AMD GCN implements 64-thread wavefronts that are grouped

into compute units (CU). RDNA extended GCN's compute units with a WorkGroup that

comprises two CUs. It also introduces a new mode for 32-thread wavefronts. PTX uses

Warp structures to represent wavefronts, each having 32 threads, and cooperative thread

array (CTA) structures representing a group of warps. CTAs are grouped into grids. GEN

architecture is CPU-centric with root threads that are dispatched and managed by hard-

ware, and child threads that are spawned dynamically from their parent root thread during

shader execution. PowerVR de�nes a Uni�ed Shading Cluster (USC) structure that groups

multiple threads.

The Memory Model: In addition to global and constant memories, AMD GPUs im-

plement a dedicated local memory (LDS) that is shared by all threads within a workgroup

and a global shared memory (GDS) across all workgroups. PTX has one shared memory

structure available at the CTA level and an additional dedicated memory space for textures.

GEM ISA only de�nes a global memory space as on traditional CPU architectures, leav-

ing its management and organization up to the software. On PowerVR, shared memory is

1We should note that using PTX to infer the underlying ISA description is an approximation.

14

Table 3.1: Comparing mainstream GPU ISAs with Vortex.

ISA
Memory
Model

Threading
Model

Register
File

Thread
Control

Synchro-
nization

Flow
Control

ALU
Operations

Memory
Operations

GPU
Operations

RDNA [64]
GDS, LDS
Constants

Global

Workgroup
Wavefront

32/64 threads

Vector/Scalar
256 VGPRs
106 SGPRs

end threads
thread mask

barrier
wait cnt
data dep

branch
theead mask

arithmetic
conditional

bitwise

load
store

prefetch

interpolate
tex-sampler

GCN [65]
GDS, LDS
Constants

Global

Compute unit
Wavefront
64 threads

Vector/Scalar
256 VGPRs
102 SGPRs

end threads
thread mask

barrier
wait cnt
data dep

branch
theead mask

split/join

arithmetic
conditional

bitwise

load
store

prefetch

interpolate
tex-sampler

PTX [11]
Shared, Texture

Constants
Global

Grid/CTA
Warp

32 threads
Scalar predicate

barrier
membar

branch
predicate

arithmetic
conditional

bitwise

load
store

prefetch

tex-sampler
tex-load
tex-query

GEM [66]
SW

Managed
Root thread
Child tread

256-bit Vec
128 GRFs
predicate

send msg
Wait
Fence

branch
SPF Regs
split/join

arithmetic
conditional

bitwise

load
store

interpolate
tex-sampler

PowerVR [67]
Global

Common St
Uni�ed St

USC
32 threads

Vector
128-bit

predicate fence
branch

predicate

arithmetic
conditional

bitwise

load
store

tex-sampler
iteration

alpha/depth

Vortex
Shared
Global

Compute Unit
Wavefront

Scalar
32-bit

thread mask
Barrier
Flush

Split/Join
arithmetic
conditional

bitwise

load
store

tex-sampler

modeled by two register banks: a uni�ed store local to ALUs and a common store local to

a USC.

Register Files:All ISAs support Single Instruction Multiple Data (SIMD) vector regis-

ters, with AMD having a separate scalar register �le. On RDNA, 256 32-bit vector registers

and 106 32-bit scalar registers are accessible to shader programs. GEM has larger 128 256-

bit vector registers per thread and supports predication with predicate registers. PowerVR

has 128-bit SIMD vector registers and predication is also supported.

Thread Control: GEM ISA uses message-passing instructions to handle thread com-

munication with other hardware components inside the processor. It is used to control

thread spawn and termination. AMD uses a thread mask to control threads' activation and

provides a dedicated ENDPGM instruction for terminating a wavefront. PTX uses predi-

cation to control thread activation.

Synchronization: Barrier and memory fence are supported on all architectures. AMD

ISA de�nes an explicit WAITCNT instruction for �ushing previously issued instructions

and data dependency counter instructions (VMCNT, VS CNT). GEM uses message pass-

ing for thread synchronization and memory fence. PTX provides explicitbarrier andmem-

bar instructions for thread synchronization and memory fence, respectively.

Flow Control: Standard branch instructions are provided on all ISAs. For the special

15

cases of control-�ow divergence, predication or thread masks can be used by applications

to control thread activation. GCN and GEM provide explicit split/join instructions for

compilers to annotate the code blocks at divergent and convergent points, respectively.

ALU Operations: Standard integer and �oating-point arithmetic operations are sup-

ported on all ISAs. Double, single, and half-precision �oating-point formats are also sup-

ported, with the exception of PowerVR, which doesn't have double precision. Vector-

speci�c instructions are also supported for shuf�ing elements or performing a reduction

operation.

Memory Operations: GEM ISA implements memory load/store and atomic opera-

tions via message passing. Prefetching is done in hardware automatically. In addition

to standard load/store operations, RDMA, CGN, and PTX ISAs provide explicit memory

prefetching instructions.

GPU Operations: Texture sampling instructions are de�ned on all ISAs, the same as

for non-texture resources like depth and stencil buffers. PTX adds explicit instructions for

loading pre-�ltered texture data and querying texture states. On GEM, all texture query

and �ltering operations are handled via message passing. RDNA, CGN, and GEM provide

explicit instructions for interpolating gradient values. PowerVR has dedicated graphics

instructions for pixel iteration, alpha testing, and depth testing.

In summary, most GPGPU architectures that support the SIMT execution model share

the following features: 1) some threading and memory hierarchy, 2) thread control and

synchronization structures, and 3) memory synchronization. In designing the Vortex ISA,

we couldn't support predication because of RISC-V dependency. To support thread di-

vergence, we couldn't rely on using registers to store the divergence stack as it is done in

AMD GPUs because RISC-V doesn't have enough free registers. We opted for an explicit

split/join instruction within the internal hardware architecture. We also opted to support a

texture sampling instruction for graphics workloads because texture lookup operations are

usually a performance bottleneck in the software rendering pipeline. For memory synchro-

16

nization, we leveraged the RISC-V fence instruction.

3.1.2 A RISCV-basedISA Extensionfor SIMIT architectures

Vortex extends the RISC-V ISA to support GPGPUs by adding six new instructions:ws-

pawn, tmc, split, join, bar, andtex, as shown in Table 3.2. They are all RISC-V R-Type

instructions and �t in one opcode. They provide minimal ISA addition to handle wave-

front activation, thread control, control divergence, synchronization, and texture �ltering,

the essential computational primitives to support SIMT execution model and graphics pro-

cessing.

Wavefront Control: We propose awspawninstruction to activate a number of wave-

fronts at a speci�c program's PC value, enabling multiple instances of that program to

execute independently.

Thread Control: We propose atmcinstruction to activate or deactivate threads within a

wavefront via a thread mask register, which is also accessible via the control status registers

(CSRs).

Control Divergence: We propose thesplit andjoin instructions to handle control diver-

gence. Thesplit instruction pushes information about the current state of the thread mask

and the branch predication result for all threads into a hardware-immediate post-dominator

(IPDOM) stack [39], and thejoin instruction pops this out during re-convergence.

Synchronization: We propose abar instruction to synchronize wavefront execution at

barrier locations. A barrier is released when an expected number of wavefronts reach it.

In addition, the barrier ID encodes whether it has local scope (intra-core) or global scope

(inter-core).

Texture Filtering: We propose atex instruction for texture lookup. The instruction

follows the R4 type format of RISC-V ISA, currently used for FMA operations. It has

three source operands, namely,u, v, lod, which specify the normalized coordinates of the

source texel and the texture mipmap to use for the lookup. Other texture states (dimension,

17

Table 3.2: Proposed RISC-V Vortex ISA extension.

Instructions Description
wspawn%numW, %PC Wavefronts activation

tmc %numT Thread mask control
split %pred Control �ow divergence

join Control �ow reconvergence

bar %barID, %numW Wavefronts barrier
tex %dest, %u, %v, %lod Texture sampling/�ltering

Figure 3.1: Vortex microarchitecture.

format, �ltering mode, addressing mode, and memory address) are con�gurable via CSRs.

3.2 An Extensible Multicore GPGPU Hardware Implementation

3.2.1 Vortex Microarchitecture

Figure 3.1 details the various components of the Vortex microarchitecture, which imple-

ments a standard �ve-stage in-order RISC-V pipeline augmented by the following SIMT

hardware components: 1)hardware wavefront schedulerthat contains the PC, thread mask

registers, and an IPDOM stack - 2)banked GPRsthat contain the general-purpose registers

for each thread in each wavefront - 3)high-bandwidth cacheswith parallel access by the

threads in the active wavefront - 4)barrier control modulefor wavefront-level synchro-

nization. The processor implements a scalable architecture that allows the clustering of

multiple cores with optional L2 and L3 caches. A command processor (AFU) manages the

onboard memory system and the communication with the host processor via PCIe.

18

Wavefront Scheduler

The wavefront scheduler in the fetch stage decides what to fetch from the I-cache (see

Figure 3.1). It has two components: 1) a set of wavefront masks to choose the wavefront to

schedule next and 2) a wavefront table that includes private information for each wavefront.

The scheduler uses four thread masks: 1) an active wavefront mask, each bit indicating

whether or not a wavefront is active, 2) a stalled wavefront mask indicates which warps

should not be scheduled temporarily, 3) a barrier mask for stalled wavefronts waiting at

a barrier instruction, and 4) a visible wavefront mask to support hierarchical scheduling

policy [68]. In each cycle, the scheduler selects one wavefront from the visible wavefront

mask and invalidates that wavefront. When a visible wavefront mask is zero, the active

mask is re�lled by checking which wavefronts are currently active and not stalled.

Threads Masks and IPDOM Stack

To support SIMT, a thread mask register and an IPDOM stack have been added to the

hardware, similar to other SIMT architectures [69]. When a split instruction is executed

by a wavefront, the predicate value for each thread is evaluated. In the case of divergence,

1) the current thread mask is pushed into the IPDOM stack a as fall-through; 2) the active

threads with false predicate are pushed into the stack with the next PC; and 3) execution

resumes with the thread mask set to the active threads withtrue predicate. When a join

instruction is executed, the stack is popped and the thread mask is set to the stored value.

If the popped entry it is not a fall-through, execution resumes at the stored PC.

Wavefront Barriers

Barriers are provided in the hardware to support synchronization between wavefronts. A

barrier table keeps the following information for each entry: 1) a counter of the number of

wavefronts left that need to execute the barrier, and 2) a mask of wavefronts stalled by the

barrier. A similar table is also used for global barriers in multi-core con�gurations where

19

Figure 3.2: Texture unit microarchitecture.

the MSB of the barrier ID indicates global scope. When a barrier instruction is executed,

the processor updates the barrier counter and mask accordingly. If the counter is zero, the

mask is used to release the stalled wavefronts.

Memory system

Each core has an instruction cache and data cache. An optional shared memory is also

available that can act as scratchpad memory or a stack depending on the application. Cores

can be grouped into a cluster that can optionally be attached to a shared L2 cache. Clusters

can share an optional L3 cache. Flush operations among caches are provided as a means of

providing weak coherent memory space.

3.2.2 Supportfor GraphicsRendering

Algorithm 1: Trilinear Filter
1: function TRILINEAR(stage, u, v, lod)
2: a TEX(stage;u;v;lod)
3: b TEX(stage;u;v;lod+1)
4: return LERP(a, b, FRAC(lod))
5: end function

20

Hardware Texture Filtering

The hardware implements con�gurable texture units for graphics support. Each texture unit

implements point sampling and bilinear sampling on 1D and 2D textures given(u, v)source

coordinates and alod operand to specify the level of detail in the texture. Advanced �lter-

ing algorithms like trilinear or anisotropic �ltering are implemented as pseudo-instructions,

invoking multipletexinstructions to average �ltering operations across mipmaps (see algo-

rithm algorithm 1). The implementation supports various texture formats and texture wrap

modes as de�ned by OpenGL[25].

Texture Unit Microarchitecture

Figure 3.2 shows the microarchitecture of a texture unit. It implements three main stages

- the texture address generator1 , the texture memory system2 3 4 , and the texture

sampler 5 . The device is con�gured via CSRs by the kernel, and the number of active

texture states is con�gurable.

When atex instruction is issued to the texture unit, theu, v, lodarguments are used to

retrieve the relevant control information for the texture operation from the CSRs0 . The

mipmap-speci�c base address, along with wrap and stride information from the CSRs, are

passed to the address generator, where, given the �ltering mode, point or bilinear, the (u,

v) values are converted to texel addresses (single for point and quad for bilinear) for all the

threads in parallel1 . These texel addresses, along with metadata - wavefront-id, format,

and blend values - are passed to the texture memory unit. The texture memory unit �rst

de-duplicates memory accesses that are repeated across threads2 . The batch of unique

addresses, along with instruction metadata, are passed to the texel memory scheduler for

issue to the data cache3 . Upon the cache response, the returned texels are duplicated and

piped into a buffer waiting to feed the texture sampler4 . Only when all the texels in the

batch have returned does the scheduler begin servicing the next batch. The texel sampler

performs a format conversion and a two-cycle bilinear interpolation on incoming texels.

21

Figure 3.3: High-bandwidth cache.

Finally, a �ltered RGBA color is generated per thread and sent out of the texture unit5 .

This sampler closely resembles the sampler in [70], the difference being that their imple-

mentation runs on a different mobile graphics API with custom bit-widths, whereas our

sampler supports OpenGL color formats. The texel sampler implements only bilinear �l-

tering. Point sampling is executed using bilinear �ltering with blend values of 0. Although

point sampling would have only taken one cycle, the overhead of muxing and synchroniza-

tion required to support a variable-latency sampler delay is not worth a single-cycle gain.

The texture unit microarchitecture is inspired by [71] and [70].

3.2.3 High-BandwidthCaches

Modern GPGPUs [72] [73] [74] today integrate non-blocking high-bandwidth (NBHB)

caches to mitigate the memory pressure, allowing the cache subsystem to process multiple

independent requests concurrently. NBHB caches implemented on FPGAs use different

22

techniques to reduce the high cost of ports in memory devices: 1) multi-banking [75],

the common solution, partitions the cache into single-ported banks, which introduces bank

con�icts; 2) virtual multi-porting or multi-pumping [76] exploits the higher clock speed

of memory devices to process multiple requests using bus time-sharing. This solution is

constrained by the clock speed of the memory to operate at 2x the base frequency; 3) the

Live-value Table (LVT) [77] approach replicates the memory for each read and write port

and maintains separate LVT storage to keep track of the memory block holding recently

written addresses. LVT caches have higher area and storage requirements compared to

the previous approaches. Our implementation uses a hybrid solution that extends multi-

banking with virtual ports exploiting cache line locality.

Figure 3.3 describes the high-bandwidth cache microarchitecture used in Vortex. It

is a multi-banked, non-blocking pipelined cache architecture. Each bank maintains its

own miss status holding register (MSHR) to reduce the miss rate, a solution adapted from

[78]. The pipeline has four stages: 1) schedule, where the next request into the pipeline is

selected from the incoming core request, the memory �ll, or the MSHR entry, with priority

given to the latter; 2) tag access; a single-port access to the tag store; 3) data access, single-

port access to the data store; 4) response, handling core response back to the core. At the

backend is the bank merger where outgoing responses from the banks are coalesced based

on their request tag. The frontend of the cache is the bank selector where the incoming

core requests are assigned to individual banks based on their address. The bank selector

also resolves bank con�icts by selecting a single request going into a bank at the time. If

virtual ports are enabled, the bank selector will coalesce requests that map to the same bank

23

Figure 3.4: Elastic pipeline request.

and the same cache line. Algorithm 2 shows the pseudo-code of the virtual port selection

where a modulo operation is used to update the matching valid bit of each port. Using

virtual ports in this scheme is ef�cient in two ways: 1) minimal storage is needed for the

virtual ports as we only need to store the word offsets for each port in the MSHR; 2) the

output of the data access, which is a full block, can now be fully utilized during reads. A

deadlock inside the cache can occur in two ways: 1) when the MSHR is full and a new

request is already in the pipeline, and 2) when the memory request queue is full and there

is an incoming memory response. We mitigate the MSHR deadlock by using an early

full signal before a new request is issued. We mitigate the memory deadlock similarly by

ensuring that its request queue never �lls up.

3.2.4 ElasticPipelines

Vortex was designed with the primary goal of architecture research; it was important at the

beginning to set the foundations that would make it easier to maintain and modify the hard-

ware architecture. We originally explored using a hardware construction language (HCL)

[54] [55] [33] but reverted back to using Verilog for greater adoption and reach. We imple-

mented Vortex from the ground up enforcing elastic [79] [80] [81] design patterns across

all main architecture components, sub-components, including libraries (arbiters, muxes,

crossbars, etc.). Maintaining this consistency throughout the codebase makes it possible

to support the following features: 1) extensibility: the elastic handshake protocol is simple

and intuitive, allowing �exibility for easy extensions, and 2) tracing and debugging sup-

port: elastic-based pipeline requests are assigned tags, which consist of the instruction PC

and wavefront identi�er that track the life cycle of instructions and other request types in-

24

Figure 3.5: Vortex simulation stack.

side the processor. We leveraged SystemVerilog's Interface construct to implement all the

elastic connections in the design. Figure 3.4 illustrates an example of the instruction fetch

request issued from the wavefront scheduler as it enters the instruction cache and exits as

a new response interface carrying the fetched instruction while still preserving its original

tag as it enters the decode stage.

3.2.5 HardwareSimulation

Vortex integrates an advanced simulation infrastructure to validate the implementation and

perform design-space exploration. Figure 3.5 shows the Vortex simulation stack, which

includes four simulation environments: 1) OPAE driver uses Intel's proprietary AFU Sim-

ulation Environment (ASE) [82] to simulate the full design; 2) VLSIM driver uses Verilator

[62] to simulate the full RTL design and implements the AFU interface and memory sim-

ulation in software; 3) RTLSIM driver simulates the processor RTL without the command

processor (AFU) to emulate SOC environment where the host and accelerator share the

same memory interface; 4) SIMX driver implements a cycle-level simulator for Vortex and

is ideal for architecture design-space exploration. All drivers share a common API that

25

Figure 3.6: Vortex driver stack and frame buffer connection.

applications use when executing on the platform, whether it is targeting the actual FPGA

or a speci�c simulator.

3.3 A Software Stack Support for Open-GPU Research

3.3.1 TheOpen-GPUDriver StackImplementation

The Vortex software stack primarily integrates a driver for handling the kernel interface to

access the FPGA via the PCIe bus. Figure 3.6 shows the FPGA driver connections.

We use OPAE (Open Programmable Acceleration Engine) [82], a lightweight user-

space open-source C library, as a driver to provide abstractions of FPGA resources as a set

of features accessible for software running on the host. It con�gures the FPGA, read/write

instructions, and data to/from the RAM present on the FPGA. It uses the CCI-P (Core

Cache Interface) protocol to assign a shared memory space, accessible by the Accelerator

Functional Unit (AFU) and host, for data transfer. The data is read from the shared space

and written into FPGA local memory. Vortex is then reset to start execution, and once the

operation is complete, the result is stored in local memory. The result data is then moved

from local memory to the shared space accessible by the host using MMIO.

26

Figure 3.7: Runtime system for Vortex.

3.3.2 OpenCLCompilerandRuntime

OpenCL is the main parallel API supported on Vortex. We used the POCL [83] open-

source framework to implement the compiler and runtime software for OpenCL. The POCL

compiler back-end was modi�ed to generate kernel programs targeting the Vortex ISA and

the POCL runtime was modi�ed to access the Vortex driver, enabling communication with

the FPGA via PCIe.

3.3.3 TheNativeKernelRuntime

The Vortex software stack implements a native runtime that exposes the new SIMT func-

tionalities provided by the RISC-V ISA extension and basic resource management API to

kernel programs running on Vortex. Figure 3.7 shows an overview of the runtime system.

We statically link the runtime library with OpenCL kernels during POCL compilation.

We modi�ed the POCL runtime, adding a new device target to its common device

interface to support Vortex. The new device target is essentially a variant of the POCL

basic CPU target with support forpthreads and other OS dependencies removed to target

the NewLib interface. We also modi�ed the single-threaded logic for executing work items

to use Vortex'spocl spawnruntime API.

27

Figure 3.8: Vortex binary generation steps for OpenCL applications.

Figure 3.9: CUDA compilation �ow

3.3.4 POCLBackendCompiler

The POCL back-end compiler is responsible for generating the OpenCL kernel binaries

given their source code, as shown in Figure 3.8. We modi�ed POCL to achieve the follow-

ing goals: (1) support RISC-V by adding new devices and compiler support (the details of

RISC-V support are discussed in [27]), (2) support new Vortex instructions, (3) integrate

with Vortex runtime system.

28

Figure 3.10: Shader compilation pipeline.

3.3.5 CUDA Support

We implemented a CUDA to SPIR-V [84] translator [28] to support running CUDA ap-

plications on Vortex. The translator takes a CUDA source code as input and converts it to

NVPTX IR [85] using clang. The translator then parses the NVPTX's DAG and replaces

CUDA built-in functions with the corresponding SPIR-V equivalent. The generated SPIR-

V kernel is then compiled into Vortex binary using POCL. Figure 3.9 shows the overall

structure.

3.3.6 GraphicsSupport

The Vortex graphics API implements the OpenGL-ES speci�cation with the geometry pro-

cessing running on the host processor and the rasterization pipeline running as a kernel on

the Vortex parallel architecture. Running geometry processing on the host allows the accel-

erator to fully utilize its processing resources for the more compute-and-memory-intensive

rasterization tasks. The rasterizer implements basic point, line, and triangle primitives,

and fragment processing including depth, stencil, fog, and alpha tests. Texture sampling

is accelerated via the newtex instruction, which executes as part of the fragment shader.

The rasterizer's implementation follows Larrabee [86]'s tile-rendering algorithm, with the

rasterization tiles generated on the host.

Figure 3.10 shows an overview of the compilation pipeline for Vortex programs, which

also includes a step for compiling the graphics shaders. The LunarGLASS [87] compiler

internally uses LLVM [88] Clang as part of its front-end to process the source kernel code

29

1 int main(kernel_arg_t * arg) {
2 // configure texture unit
3 csr_write(TEX_ADDR(0), arg->src_ptr);
4 csr_write(TEX_MIPOFF(0), 0);
5 csr_write(TEX_WIDTH(0), arg->srcW);
6 csr_write(TEX_HEIGHT(0), arg->srcH);
7 csr_write(TEX_FORMAT(0), arg->format);
8 csr_write(TEX_WRAP(0), arg->wrap);
9 csr_write(TEX_FILTER(0), arg->filter);

10

11 shader_state_t state;
12 state.arg = arg;
13 state.tileW = arg->dstW;
14 state.tileH = arg->dstH;
15 state.deltaX = 1.0f / arg->dstW;
16 state.deltaY = 1.0f / arg->dstH;
17

18 // launch rendering tasks
19 spawn_tasks(shader, state);
20 }

Figure 3.11: A sample code kernel with texture rendering.

into the LLVM IR (through SPIR-V to LLVM IR conversion). The LLVM-IR program is

passed to the LLVM compiler with additional information, including the Vortex runtime

and the graphics kernel template, to generate the �nal Vortex binary. Figure 3.11 shows a

code-snippet of a kernel that invokes a shader with texture �ltering. The texture sampler

states are programmed via CSRs (lines 3-9); then, the kernel spawns the shader execution

on the available hardware threads (line 19).

3.4 Evaluation

3.4.1 ExperimentalSetup

Our evaluation setup consisted of a 3.5 GHz Intel Xeon E5-1650 for the host processor. For

the benchmarks, we use a subset of the Rodinia [89] OpenCL kernels. We classi�ed the

benchmarks into a compute-bounded group that includessgemm, vecadd, ands�lter , and

a memory-bounded group that includessxapy, nearn, gaussian, andbfs. To evaluate the

texture engine, we use three synthetic benchmarks to exercise the supported �ltering modes,

30

including point sampling, bilinear �ltering, and trilinear �ltering. The texture benchmarks

all use a 1080p source texture as input and render its content into a destination render target

of the same size. We synthesized Vortex RTL on both Intel Aria 10 GX FPGA and Intel

Stratix 10 FPGAs with speed grade 2.

3.4.2 Microarchitecture

Design Space Con�gurations

In Vortex design, we can increase the data-level parallelism by either increasing the number

of threads or increasing the number of wavefronts. Increasing the number of threads is sim-

ilar to increasing the SIMD width and involves the following changes to the hardware: 1)

increasing the GPR memory width for reads and writes, 2) increasing the number of ALUs

to match the number of threads, 3) increasing the register width for every pipeline stage

after the GPR read stage, 4) increasing the arbitration logic required in both the cache and

the shared memory to detect bank con�icts and handle cache misses, and 5) increasing the

number of IPDOM entries. Increasing the number of wavefronts does not require increas-

ing the number of ALUs because the ALUs are multiplexed among wavefronts. Increasing

the number of wavefronts involves the following changes to the hardware: 1) increasing

the logic for the wavefront scheduler, 2) increasing the number of GPR tables, 3) increas-

ing the number of IPDOM stacks, 4) increasing the number of register scoreboards, and 5)

increasing the size of the wavefront table. It is important to note that the cost of increasing

the number of wavefronts is dependent on the number of threads in that wavefront; thus,

increasing wavefronts for larger thread con�gurations becomes more expensive. This is

because the size of each GPR table, IPDOM stack, and wavefront table is dependent on the

number of threads.

Table 3.3 shows the area costs of various con�gurations of a processor core as we

increase the number of wavefronts (i.e. 4W, 8W) or the number of threads (i.e. 4T, 8T).

Figure 3.12 shows the corresponding performance at the different con�gurations. Moving

31

Table 3.3: Synthesis results for different core con�gurations.

4W-4T 2W-8T 8W-2T 4W-8T 8W-4T
LUT 21502 36361 16981 37857 24485
Regs 32661 54438 24343 57614 34854

BRAM 131 238 77 247 139
f(MHz) 233 224 225 224 228

Figure 3.12: IPC results for different core con�gurations.

32

Table 3.4: Hardware synthesis for all core con�gurations.

cores ALM Regs BRAM DSP fmax FPGA
(%) (%) MHz
1 13 78K 10 2 234 A10
2 19 111K 15 5 225 A10
4 30 176K 25 9 223 A10
8 53 305K 45 19 210 A10
16 85 525K 83 38 203 A10
32 70 1057K 23 20 200 S10

from a 4W-4T con�guration2 to a 2W-8T con�guration, maximizing threads, introduces a

69% area cost increase in LUT and registers, as well as a speedup of 20% for SGEMM.

However, changing the con�guration to 8W-2T, maximizing wavefronts, generate cheaper

hardware, about a 27% area reduction. This comes with a reduction in performance in

terms of IPC, 36% for SGEMM in the extreme case. The 8W-4T con�guration has some

performance gains and a relatively less expensive area. We picked 4W-4T primarily to

allow scaling to 16/32 cores on the target FPGAs while achieving good performance.

Area Cost

We managed to �t a baseline processor con�guration with up to 16 cores on the Intel Arria

10 (A10) and up to 32 cores on the Intel Stratix 10 (S10) FPGA where we reached scaling

up to 32 cores at a 200 MHz clock speed.

Table 3.4 shows the synthesis summary of the processor at different core con�gurations,

and a breakdown of the area utilized by the main components is shown in Figure 3.13. At

eight cores, 53% of Arria 10 FPGA's logic is utilized and that cost is occupied primarily by

the texture units and caches (16KB for L1 caches and shared memory). The FPU area is

relatively low because we utilize the existing �oating-point DSP blocks on the device for

FMA computations.

2the con�guration is per core.

33

Figure 3.13: Area Distribution

Performance Scaling

Figure 3.14 shows the performance scaling of the Vortex processor at various core con-

�gurations on the FPGA in terms of IPC. For the compute-bounded benchmarks, the IPC

increases almost linearly with the addition of cores into the processor. For the memory-

bounded benchmarks, the results still see some IPC increase with the core count, with the

exception of thenearn program, which is also compute-bound with an expensive long-

latency �oating-point square-root operation inside its kernel.

3.4.3 High-bandwidthCache

We analyzed the performance of our high-bandwidth caches for our baseline 4W-4T proces-

sor con�guration. For this setup, we focused only on single-core performance and varied

the number of virtual ports on the data cache bank. We need to point out that only the data

cache implements virtual multi-porting. The instruction cache doesn't need it since SIMT

execution needs to fetch only one instruction at a cycle. Table 3.5 shows the synthesis sum-

mary of a 4-bank data cache, with 1-port, 2-port, and 4-port virtual multi-porting enabled.

four ports is the maximum setting possible, which improves the worst-case scenario where

34

Figure 3.14: Vortex performance scaling

Figure 3.15: The effect of multi-port caches

35

Table 3.5: Virtual multi-ported 4-bank cache synthesis results.

1-port 2-port 4-port
LUT 10747 11722 13516

Registers 13238 13650 14928
BRAM 72 72 72

Frequency (MHz) 253 250 244

Figure 3.16: HW Texture acceleration vs software.

all four requests go to the same bank and occupy the four individual virtual ports on that

bank. The port increase from one to two adds a 9% increase in logic area and from one to

four adds a 25% increase. Figure 3.15 shows the data cache bank utilization for each virtual

port con�guration. A 100% bank utilization means that all requests that were issued did

not directly experience bank con�icts and that all stalls originated from the banks' input

FIFOs being full.sgemmandvecaddare the two benchmarks that mainly experienced high

bank con�ict with bank utilization at 67% and 71%, respectively. Increasing the number

of virtual ports linearly increases the bank utilization of those benchmarks up to 100%.

Figure 3.15 shows each benchmark performance for each virtual port con�guration, and

we observe thatsgemmconsiderably bene�ts from this optimization VECADD IPC also

increases by a slight amount, but the change doesn't show well due to chart scale. The

2-port con�guration has the best balance between improved utilization and cost.

36

3.4.4 TextureSampling

Our evaluation of the texture acceleration is based on synthetic benchmarks that directly ex-

ercise the custom hardware. We evaluated point sampling, bilinear sampling, and trilinear

sampling. As discussed in Section subsubsection 3.2.2, trilinear sampling is implemented

as a pseudo-instruction around the accelerated bilinear sampler. We compare Vortex accel-

eration (HW) with a rendering pipeline with no acceleration where the texture unit is im-

plemented fully in software(SW). Figure 3.16 shows the performance difference between

software and hardware texture acceleration for different processor core con�gurations. We

observe that the point-sampling difference is very negligible across all core con�gurations.

This is expected because, as mentioned in Section subsubsection 3.2.2, point sampling ac-

celeration shares the sample �lter back-end with bilinear sampling to reduce area cost along

with the fact that the feature is not commonly used. Also, the source texture used in this

experiment has an RGBA format, meaning format conversion is unnecessary, causing the

point-sampling software code to turn into a simple copy operation. The bilinear �lter, on

the other hand, shows more improvement, with an almost 2x speed up on a single core

where the memory bandwidth is less saturated. As the core count increases, that speed is

slightly reduced due to memory bandwidth. Trilinear �ltering is also better with hardware

acceleration although the gains are not as strong when compared with bilinear �ltering,

mainly due to memory bandwidth since trilinear doubles the number of requests to the

memory. Looking at texture acceleration standalone, we also observe the effect of memory

contention as the number of cores increases.

3.5 Using Vortex in Architecture Research

The Vortex infrastructure provides a complete implementation of a GPU stack on an FPGA

that enables the exploration of full-system optimizations across the application, compiler,

driver, and hardware stacks in both desktop and SoC environments. To the best of our

37

Figure 3.17: The effect of memory scaling on performance.

knowledge, this is the �rst soft GPU implementation that supports a PCIe interface, which

opens new scenarios that deal with CPU/GPU communication, command buffer manage-

ment, and kernel of�oading. Its high-bandwidth cache subsystem connected to the FPGA

multi-bank memory system (2 on A10 and 8 on S10) provides a solid platform for explor-

ing memory optimizations. Vortex can be easily extended to evaluate HBM-based FPGAs

[90] to further evaluate different memory systems. The simulation tools in Section subsec-

tion 3.2.5 enable the design-space exploration of more complex architectures that cannot

�t on FPGAs. Figure 3.17 shows the effect of memory scaling for a 16-core, 16-wavefront,

16-thread processor con�guration as we increase the memory latency and bandwidth using

SIMX (Section subsection 3.2.5) with the baseline RTL design parameters.

3.6 Porting Vortex to ASIC Design Flow

A solid simulation platform coupled with a comprehensive FPGA prototyping environment

provides a robust infrastructure for exploring ASIC development. Early during Vortex de-

velopment [91], we synthesized an 8-wavefront-4-thread single-core Vortex con�guration

using a 15-nm educational cell library, obtaining a 46.8mW design running at 300 MHz.

(See Figure 3.18 and Figure 3.19 for the GDS layout and power design distribution, re-

38

Figure 3.18: GDS Layout Figure 3.19: Power Density

spectively). However, Vortex's microarchitecture was optimized for FPGAs, and porting

the design to ASIC requires changes to address platform differences with FPGAs such as

clock tree, reset distribution, power management, memories, and performance, which is

outside the scope of our current work.

39

CHAPTER 4

OPEN HARDWARE FOR GRAPHICS ACCELERATION ON GPU

4.1 Backgrounds on 3D graphics pipeline

4.1.1 2D HomogeneousRasterization

The algorithm uses the triangle edge equations to check if a pixel overlaps a triangle prim-

itive with adjoin matrix [a,b,c] [92]:

E< 1;2;3> = [a< 1;2;3> ; b< 1;2;3> ; c< 1;2;3>] (4.1)

E(x; y) = [a; b; c][x; y; 1]T (4.2)

whereE i represents the edge between the two vertices opposite vertexvi and E(x,y) is the

edge equation value at position (x; y). Edge equationsE0; E1; E2 are evaluated for each

pixel fragment (x; y). If all three results are negative the fragment lies inside the triangle,

otherwise it is excluded.

4.1.2 Depth/StencilTests

The depth test selects visible pixels by comparing the incoming fragment's depth with the

current depth buffer value (3). The stencil test is an extension to the depth test that enables

masking-out certain portions of an image to simulate re�ection or shadows (4) [93].

zbufx;y =

8
>><

>>:

z; if compare(z; zbufx;y)

zbufx;y ; otherwise
(4.3)

40

stencilOp =

8
>>>>>><

>>>>>>:

depthFailOp; if zfail

failOp; if zpass& sfail

passOp; if zpass& spass

(4.4)

wherez is the depth value of fragment(x; y) andzbufx;y is its corresponding depth

buffer value. Stencil operations (depthFailOp; failOp; passOp) are selectively executed

based on thepassor fail status of the depth or stencil tests.

4.1.3 BlendingOperations

This stage modulates generated pixel colors with destination buffer using either prede�ned

blending equations (Add, Subtract, Reverse Subtract, Min, and Max) or logical operations

(And, Or, Xor, etc.) [93].

The blending stage of the graphics-rendering pipeline combines the outputs of the frag-

ment shader with their corresponding pixel colors in the framebuffer to generate the �nal

output color of each pixel [94]. This process implements blending operations through pre-

de�ned blending equations or logical operations. The blending operation to be performed

is determined by the blend mode, of which there are �ve: Add, Subtract, Reverse Subtract,

Minimum, and Maximum. An independent blend mode can be selected for both the RGB

and Alpha portion of the pixel value. All �ve blend modes listed above take as an input

the output pixel value from the fragment shader called the source value (Rs; Gs; Bs; As)

and the current pixel value in the framebuffer called the destination value (Rd; Gd; Bd; Ad).

The modes Add, Subtract, and Reverse Subtract also require two extra inputs called the

source blend factor (Sr ; Sg; Sb; Sa) and destination blend factor (D r ; Dg; Db; Da). These

blend factors are set according to the selected blending function referenced in [95]. The

41

GPU Year APIs
Rendering

Model
ISA

Geometry Stage
Vertex
Fetch

Vertex
Shading

Tessel-
lation

Geo.
Shading

Triangle
Setup

Tiling

Intel Larrabee [86] 2010 OpenGL 3.2 Tile-based X86 GPU GPU GPU GPU GPU GPU
Nvidia GeForce 30 [97] 2022 Vulkan 1.3 Immediate Proprietary FF GPU FF GPU FF N/A
SkyBox this paper Vulkan 1.0 Tile-based RISC-V GPU GPU GPU GPU GPU GPU

following brie�y describes each blend mode.

R = f (Rs � Sr ; Rd � D r) (4.5)

G = f (Gs � Sg; Gd � Dg) (4.6)

B = f (Bs � Sb; Bd � Db) (4.7)

A = f (As � Sa; Ad � Da) (4.8)

wheref = AddjSubjRevSubjMin jMax (4.9)

If logical operations are used instead of blending operations, blending operations will

be disabled entirely. Each �nal pixel component's value is then the result of a logical

operation (and, or, xor, etc) between the source and destination pixel components.

4.1.4 MultisampleAnti-aliasing

Anti-aliasing is the process of reducing the jagged edges that generally exist in the out-

put image after rasterization. Those artifacts are reduced using various methods of super-

sampling where the image is rendered at a higher resolution and then down-sampled to

produce a smoother result. MSAA [96] is an optimization of super-sampling where raster-

ization is performed at a higher resolution and the coverage weights from those fragments

are factored with the output color from only a single invocation of the fragment shader.

42

Table 4.1: GPU Graphics Pipeline Summary (FF: Fixed-Function)

GPU
Fragment Stage

Rast-
erization

Early Z
Inter-
polation

Fragment
Shading

Texture
Mapping

Late Z Blending
Uni�ed
Shaders

Multi-
Sampling

Compute
Shader

Ray
Tracing

Tensor

Intel Larrabee CPU CPU CPU CPU FF CPU CPU Yes Yes Yes No No
Nvidia GeForce 30 FF FF FF GPU FF FF FF Yes Yes Yes Yes Yes
SkyBox FF GPU FF GPU FF FF FF Yes Yes Yes No No

Figure 4.1: 3D graphics pipeline stages (baseline). The white boxes represent the �xed-
function units, and the orange boxes are programmable shaders.

Figure 4.2: Vortex 3D Graphics Pipeline Stages.

43

4.2 An Open-GPU Hardware Extension for Graphics Rendering

4.2.1 GraphicsHardwareClassi�cation

The GPU graphics pipeline is very complex and consists of several components that are

chained together to execute graphics workloads. Depending on the implementation, graph-

ics components are implemented as �xed-function hardware, as programmable GPU shaders,

or even as emulation software on the CPU. Deciding on how to implement these various

components has a considerable impact on the performance and die area of the accelerator,

but also programmability. Table 4.1 shows a taxonomy of commercial GPUs, highlighting

the implementation model of their graphics pipeline components.1 Early GPUs [98] [99]

had their geometry front-end executing on CPU to reduce the cost of the die. In the decade

that followed, several pipeline components migrated from �xed-function units to execute as

a programmable shader. Similar to modern GPUs, Vortex implements uni�ed shader cores

with programmable fragments and compute pipelines. Similar to Larrabee [86], Vortex's

graphics pipeline is tile-based, and its geometry front-end executes on the programmable

shader cores.

Figure 4.2 illustrates the Vortex 3D graphics pipeline, highlighting its programmable

software (orange) versus �xed-function (white) hardware boundary. The �xed function

units inside the GPU implement rasterization, interpolation, depth/stencil testing, and blend-

ing. The programmable shader cores handle early-Z testing and fragment shading. Explor-

ing the design space of software versus hardware rendering was a key motivation for the

Vortex hybrid graphics architecture.

4.2.2 Hybrid Rasterization

The traditional rasterization pipeline performs primitive setup and interpolation to generate

per-fragment color values.

1More GPU architectures are compared in Appendix.

44

Triangle Setup

Vortex's tiling implementation uses the edge equations (Appendix subsection 4.1.1) of each

triangle primitive to perform the coverage test [86] [92] [51] and determine which tiles are

discarded. Vortex implements 2D homogeneous rasterization [100] [92] which also uses

edge equations for the triangle setup. Because of this, we merged the tiling and triangle

setup on the programmable shader cores. This design presents the following advantages:

1) We avoid having to re-compute the edge equation of each primitive during rasterization.

The edge equation algorithm involves 18 multiply-add arithmetic operations plus 3 for

the determinant. 2) We have some savings in memory bandwidth when storing the edge

equation parameters (E0, E1, E2) instead of the primitive vertex positions (X, Y, Z, W)

to memory for rasterization. 3) We can also move backface culling into the front-end to

execute together with the triangle setup using the sign of the edge equation determinant

(Eq. (Equation 4.1) in Appendix subsection 4.1.1) to reject culled primitives, therefore

saving additional memory bandwidth.

= Design decision: Merge tiling, triangle setup, and culling to the programmable

shader front-end

] Reason: Avoid recompute, improve memory bandwidth

Attribute Interpolation

To perform interpolation, the typical GPU rasterizer will fetch each attribute from memory,

apply the interpolation, then store the result in a register �le for the fragment shader to ac-

cess. Vortex moved attribute interpolation from the rasterizer stage into the fragment stage

to execute together with the fragment shader for the following reasons: 1) The area cost

of the attributes register �le is signi�cant: 64� 4 � 4 = 1024 bytes for each pixel. On a

multi-threaded platform where each thread operates on a pixel, this cost is multiplied by the

total active threads on the system, occupying a much larger area than the general register

45

�le. 2) The interpolation performance is mainly driven by 2 operations: the memory trans-

action to load the attribute and the actual computation that involves several multiply-add

calls. The memory transfer is the main bottleneck regardless if it is done inside the raster-

izer or not and using the available shader cache. Although the interpolation takes place in

the fragment stage, Vortex implements a custom integer multiply-add (imadd) instruction

to speed up the interpolation of �xed-point attributes that are prevalent in the majority of

applications.

= Design decision:Move attribute interpolation to the fragment stage

] Reason: Reduce register requirement

Early-Z Optimization

Early-Z Optimization is one of the �xed functions in the graphics fragment processing

stage where the pixel depth value is tested against the depth buffer to check for visibility.

Rejecting hidden pixels at this stage allows skipping the fragment shader invocation. Vortex

performs early-Z optimization inside the programmable shader for the following reasons:

1) Doing early-Z outside the shader requires adding special hardware just for interpolating

the Z-coordinates. 2) Early-Z is an optimization that is not always enabled because some

applications compute the depth value inside the fragment shader. 3) When MSAA multi-

sampling is enabled, performing early-Z interpolation in �xed-function adds storage cost

to the pixel attributes for the per-sample generated depth values.

=Design decision:Convert Early-Z optimization from �xed-function to the programmable

shader

] Reason: Remove storage and additional hardware cost

46

Render Output

The render output stage of the graphics pipeline integrates the depth/stencil and blending

�xed-function units. Vortex implements these components in �xed-function for the fol-

lowing reasons: 1) Their area cost can be controlled if the supported destination formats

are kept to a minimum. Vortex supports a single 32-bit depth/stencil format, S8D24, with

24-bit depth value and 8-bit stencil value, and a single 32-bit A8R8G8B8 color buffer for-

mat. 2) Performing the render output stage in software is actually sub-optimal in terms of

performance.

= Design decision:Keep depth/stencil and blending as �xed-function units

] Reason: Bene�t exceeds the hardware cost

4.3 A Hardware Implementation of the Graphics Rendering Stack

4.3.1 Vortex GraphicsMicroarchitecture

Figure 4.3 shows the overview of the Vortex microarchitecture. At the top level, the pro-

cessor implements a command processor for interfacing with the host CPU and local video

memory, a device con�guration register �le that stores the con�guration parameters of the

�xed-function units, and a con�gurable number of clusters, each containing a con�gurable

number of cores. We modi�ed the baseline microarchitecture [24] to move the texture units,

the �oating point units, the instruction cache, the data cache, and the shared memory from

the core into the shared cluster to enable better control of the area utilization by controlling

the amount of sharing of hardware resources. For instance, a con�guration may have an

8-to-2 sharing ratio between cores and texture units (TEX) within a cluster if texture per-

formance is not critical to the desired target application domain. Design �exibility applies

to all other resources inside the cluster, including the L1 caches and the shared memory.

Likewise, the ability to disable any of these components is also supported, enabling a wide

range of con�gurations when doing design space exploration.

47

Figure 4.3: Vortex Graphics microarchitecture.

Table 4.2: Proposed Vortex ISA extension.

Instructions Operands Description
vx rast Raster Load
vx rop %pos,%face, %color, %depth ROP Store

vx imadd %a, %b, %c, %shift Interpolate

Inside each core, we introduced lightweight hardware components that we call “agents”,

which are responsible for servicing requests going to or coming from external correspond-

ing �xed function units. A �xed-function agent will often integrate local storage to hold

per-thread registers that enable data transfer between its corresponding �xed-function unit

and the programmable shader via RISC-V CSR [101] instructions.

Vortex graphics extension introduces a con�gurable number of rasterizer (Raster) units

and render output (ROP) units at the cluster level with their respective agents in each core.

4.3.2 ISA Extensionfor GraphicsAcceleration

Table 4.2 summarizes the proposed ISA extensions.

48

vx rast queries the rasterizer to request pixel stamps. The call is forwarded to the raster

agent which will fetch the next pixel stamp generated by the rasterizer and save them into

its local CSRs for the fragment shader to access.

vx rop submits the fragment shader result (position, face, color, and depth data) for

each pixel to the ROP agent for it to be forwarded to the ROP unit. That result will even-

tually be written by the ROP unit to the destination render target at the provided pixel

position. The face operand is a boolean value that indicates if the primitive is front-facing

or back-facing during stencil operation. This instruction uses four source operands, but

the RISC-V ISA only supports 3 operands at most, so we combined the position and face

argument into a single register operand.

vx imadd extends the RISC-V ISA with an integer multiply-add instruction. We added

an additional 4th immediate operand to apply an optional left shift before the addition to

support �xed-point multiplication. Ashiftvalue of zero enables the integer operating mode.

This instruction is used to accelerate the interpolation of �xed-point attributes.

4.3.3 RasterizerUnit Microarchitecture

The main role of the rasterizer unit is to convert the triangle primitives generated from the

frontend into screen-space pixel quads. Figure 4.4 shows its architecture overview.

Data Structure Layout: The tile data is stored in two different data structures: a tile

buffer 1 , and a primitive buffer2 . The tile buffer contains a consecutive list of tile data

consisting of a primitive count (Prim count) that denotes the number of triangles covered

by the tile followed by their indices (pid) in the primitive buffer. The primitive buffer

is an indexable array of the primitive data consisting of edge equation coef�cients, and

interpolation attributes.

Raster Cache:The tile binning process performed on the GPU is optimized for sorting

the tile data such that tiles that share the same primitives are placed closer, leading to a

higher hit rate in the cache.

49

Figure 4.4: Rasterizer System Overview.

50

Memory Unit (RMU): The memory unit 3 sequentially accesses the tile buffer to

fetch the tile data and accesses the primitive buffer to fetch the primitives using a �nite-state

machine (FSM). The FSM generates memory addresses until all tiles with their associated

primitives are fetched.

Raster Slice (RS):The raster slice4 recursively traverses each triangle primitive from

the RMU by recursively subdividing the tile (TE)5 to generate 2x2 quads of pixel stamps

that are covered by that primitive. The primitive edge equation coef�cients are used to test if

the primitive is covered by the current tile and are updated every time the tile is subdivided.

This traversal is implemented using an FSM and takes several cycles to complete. Typical

rasterizer implementations [10] will perform this traversal until it reaches quad elements.

However, for Vortex, we added an optimization to the traversal by introducing a block

abstraction, which consists of a 2-dimensional grouping of consecutive quads. Instead

of iterating recursively until we reach each quad, the tile traversal will stop at the block

boundary and statically evaluate all the quads (QE) in the block in parallel in the one cycle

(BE) 6 , improving the dispatch throughput. The generated quads are pushed into an output

queue7 to be sent to the cores. The block size is con�gurable to allow a trade-off between

throughput and area cost. The tile size is also con�gurable and directly controls the number

of recursive-descend iterations to reach the block. In our evaluation, we found that a tile

size of 32 and a block size of 4 was the sweet spot.

4.3.4 RenderOutputMicroarchitecture

Render output units (ROP) compute per-sample fragment operations in the last stage of the

rendering pipeline and write the resulting color and depth to destination buffers. Each ROP

slice contains a deadlock handler, a memory unit, a depth-stencil test unit, and a blending

unit, as shown in Figure 4.6.

Memory Unit : The memory unit generates memory requests to retrieve the depth/s-

tencil values and destination color for each incoming pixel coordinate. It utilizes the ROP

51

1 void shader_function(kernel_arg) {
2 // arguments to get pid, attributes
3 prim_ptr = kernel_arg.prim_addr;
4 for (;;) {
5 // rasterized quad stamp fetch
6 __DIVERGENT__ status = vx_rast();
7 // check for rasterization completion
8 if (0 == status)
9 return;

10 pid = CSRS[PRIMITIVE_ID];
11 prim = prim_ptr[pid];
12 f = prim.face;
13 attribs = prim.attribs;
14 // gradients calculation
15 bcoords = CSRS[BARYCENTRIC_COORDS];
16 (dx,dy) = GRADIENTS(bcoords);
17 // attributes interpolation
18 z = INTERPOLATE(dx,dy,attribs.z);
19 u = INTERPOLATE(dx,dy,attribs.u);
20 v = INTERPOLATE(dx,dy,attribs.v);{}
21 // texture access
22 c = TEXTURING(u,v);
23 // render output
24 mask = CSRS[COVERAGE_MASK];
25 pos = CSRS[POSITION];
26 for (i in mask) {
27 vx_rop(pos[i],f,c[i],z[i]);
28 }
29 }
30 }

Figure 4.5: Shader code example

Figure 4.6: Render Output Unit

52

Figure 4.7: Depth/Stencil Unit.

cache to reduce the DRAM traf�c. The depth, stencil, and color values retrieved are sent

in parallel to the depth-stencil and blend units. The memory unit is also responsible for

generating write requests for the depth-stencil and blending unit outputs.

Depth-Stencil Unit: The depth test (Figure 4.7) compares the current fragment's depth

value to its corresponding value in the depth buffer1 . If it fails, the fragment is discarded.

The stencil test is an optional extension to the depth test. If the depth test fails, the fragment

is no longer drawn, but the stencil buffer can still be affected. The stencil operation3 is a

function of the depth comparison and the stencil comparison2 . The result of the stencil

operation is written to the stencil buffer.

Blender Unit: As shown in Figure 4.8, this unit combines the current fragment's

color with the destination color stored in the framebuffer using the blend equations in Ap-

pendix subsection 4.1.3. The hardware schedules this operation on a two-stage pipeline

where stage 1 produces the source and destination blend functions and stage 2 implements

the blend equation.

Deadlock Handling: The memory unit services both read and write requests to the

depth, stencil, and color buffers. The deadlock unit ensures that a possible deadlock does

not arise when the memory unit's request queue is populated entirely with read requests,

thereby blocking the depth-stencil and blend unit's write requests to memory.

53

Figure 4.8: Blending Unit.

Figure 4.9: Swiftshader Render. original(left), Vortex (right).

4.4 The Software Stack to Support Graphics Rendering

Swiftshader [102] is a high-performance CPU-based implementation of the Vulkan graph-

ics API. The framework uses just-in-time (JIT) compilation to speed up execution on the

target architecture. Its software architecture (Figure 4.9) includes: 1) implementation of

the Vulkan runtime API, 2) the rendering pipeline that integrates a scanline rasterizer

[103] generated at JIT time, 3) Reactor, a platform-independent JIT library with Single-

Instruction-Multiple-Data (SIMD) support, that internally uses the LLVM [88] back-end

to generate native binaries, and 4) A front-end compiler, Glslang [104], translates GLSL

[105] shader programs to SPIR-V [84] instructions.

We added the following major changes to Swiftshader to support Vortex:

54

Figure 4.10: Vortex DrawCall Invocation.

1. Convert scanline render to tile-based render to save memory bandwidth (section sub-

section 4.4.1)

2. Extension of the JIT engine for RISC-V (section subsection 4.4.2)

3. Explicit hardware mapping (section subsection 4.4.3)

4.4.1 Tile RendererPipeline

The original Swiftshader rasterization model was scanline-based, where during the exe-

cution of the setup JIT routine, the edge information for each horizontal scanline in the

destination surface is generated. This original design does not scale well for Vortex be-

cause of the large memory bandwidth needed to transfer the scanlines to the rasterizer. We

implemented a tile-based setup stage where we perform binning [106] and generate the

tile buffer and primitive buffer data structures (see Figure 4.4) to send to the rasterizer.

Figure 4.10 shows the execution �ow taking place during a typical draw call: 1) gather

pipeline render states, 2) check the JIT cache if JIT'ed binary matching the current render

states is present, 3) if JIT is needed, the JIT compilation is started to generate a new kernel,

4) of�oad kernel binary with argument and shader resources to the GPU, 5) invoke the GPU

execution, 6) Gather updated render targets.

55

4.4.2 SwiftshaderJIT Compiler

We made the following modi�cations to Swiftshader's JIT compiler stack to support RISC-

V code generation for Vortex:

RISC-V JIT Support enables the compilation of the programmable shaders (geometry,

pixel, and samplers) to RISC-V. The JIT functions are generated as separate object �les and

linked into a kernel binary during the draw call.

Scalarization Support enables the JITer to generate both SIMD instructions for the

host CPU and scalar instructions for the GPU RISC-V architecture.

Types Alignment Support is an extension of scalarization that conditionally relaxes

the memory alignment restriction on data types, whether the target architecture is the host

CPU or the RISC-V GPU.

4.4.3 Texturemapping

Because Vortex supports hardware texture acceleration, we need to tell the compiler when

to use the hardware. We also need to consider that the texture unit doesn't support all

texture formats and interpolation modes, e.g. anisotropic �ltering. The compiler must

provide a software fallback for texture mapping when not supported on hardware. Vulkan's

VkDescriptorImageInfo provides an object encapsulation for the texture states and format

used during texture mapping. We analyze the object once at creation time to identify the

type of sampler code (S/W or H/W) to generate.

4.4.4 64-bit to 32-bitDomainsCrossing

To support of�oading the graphics kernel to the GPU, several data structures are shared

between the host of the JIT compiler. These data structures are passed to the GPU kernel

as arguments to provide constant resources and control states for the generated shader.

These data structures are updated on the CPU and transferred during every draw call if their

content changes. The challenge is that the host CPU is a 64-bit machine while Vortex is 32-

56

Figure 4.11: Vortex Hybrid Stack Extension. (Green portion is on the shared memory and
red portion is on the global memory)

bit, which creates a mismatch for embedded pointers. We �agged all domain-crossing data

structures and implemented a static compilation pass that traverses those data structures'

object hierarchy to generate the 32-bit equivalent types with their associated marshaling

routines for data transfer.

4.4.5 Hybrid StackExtension

We observed that the generated Vulkan shaders tend to be large. One reason is that Vortex

is a scalar processor, and to support pixel quad execution, we have to replicate all generated

instructions four times, which can cause a lot of register spills for complex shaders. This

is even more challenging in a RISC-V-based GPU since each thread has a �xed number of

registers (32), unlike NVIDIA's architecture. The Vortex stack originally resided on per-

thread local shared memory, which is allocated at startup time. Because this local memory

is expensive, supporting a per-thread 8 KB is unpractical, which means that for a typical

core with 4 wavefronts and 4 threads, 16 x 8KB = 128KB of local memory will be needed.

As a solution, we implemented a hybrid stack extension where the stack address space for

each thread is mapped to global memory, but the higher addresses of each space allocated

to a thread are mapped on the local shared memory (see Figure 4.11). This provides the

�exibility of resizing the local stack space on demand without recompiling the application.

57

4.5 Evaluation

4.5.1 ExperimentalSetup

Our evaluation setup consisted of a 3.5 GHz Intel Xeon E5-1650 for the host processor.

We synthesized Vortex RTL on the Intel Stratix 10 FPGA at 230 MHz. The default con-

�guration is a 32-core system; 2 clusters of 16 cores connected to a Rasterizer and ROP

units. Each core has 4 wavefronts with 4 threads each. The tests are done with a mixture of

simulations (using simX, a cycle-level simulator, and RTL simulation) and running them

on the FPGA. Section subsection 4.5.2 shows the results of running demo programs on the

FPGA.

4.5.2 PerformanceEvaluationonFPGA

We use eight 3D demos (Figure 4.13) from the PowerVR SDK [107] that we ported to

our software library for evaluation and custom samples of our own. They provide a good

mix of polygon counts and rendering features that exercise the major components of the

graphics pipeline. The detailed descriptions of each sample are provided in Table 4.3, with

the rightmost columns indicating if the depth/stencil and blend units are in use. The FPGA

render time for each scene at Full-HD resolution is shown in Figure 4.12, showing good

scaling with increased core count. Our 32-core con�guration on Stratix 10 can have up to

128 ROP units running at 230 Mhz, producing a total peak �ll rate of 29.4 GT/s (128�

230M).

4.5.3 AreaCostof Synthesizations

Figure 4.14 shows the relative area cost of the rasterizer and ROP units, along with their

corresponding caches: RCACHE and OCACHE. The cache sizes are RCACHE (4KB),

OCACHE (4KB), TCACHE (texture cache) (8KB per core), and ICACHE (16KB per core).

Together with these caches, the rasterizer and ROP additions account for more than a third

58

Figure 4.12: 3D demos rendering on FPGA at Full-HD.

Figure 4.13: Snapshot of evaluated demos (Vase, Filmtv, Skybox, Cover�ow, Evilskull,
Polybump, Tekkaman, Carnival).

59

Table 4.3: Descriptions of scene demos

Name Draws Verts Prims Tex D/S Blend
vase 6 1198 1643 5 1 1

�lmtv 16 1282 1086 11 1 1
skybox 4 704 791 9 1 1

cover�ow 11 157 73 13 1 1
evilskull 7 566 699 5 1 1

polybump 3 332 276 3 1 1
tekkaman 2 2269 757 2 1 0
carnival 1 4 2 1 1 0

of the combinational LUTs, BRAM, and DSP slices used by the Vortex hardware. Fig-

ure 4.14d shows a synthesis layout of the design on Xilinx Alveo U280 FPGA.

4.5.4 Softwarevs HardwareAcceleration

Figure 4.15 shows the average software versus hardware cycle time when we selectively

disable �xed function components and use the programmable shader implementation when

running the Skybox benchmark. Using Vortex baseline hardware and disabling the �xed-

function rasterizer to use software rendering results in about an 85% decrease in cycles

which shows the bene�t of a hardware-based rasterizer. Our S/W rasterizer doesn't scale

well due to the resulting large shader program it produces. When we instead only disable

the render output �xed-function, the performance decreases by 67%. This is signi�cant

considering that the ROP is about the size of the FPU in terms of area. When we disable

the customvx imadd interpolation instruction, we observe a degradation of 36%. Al-

though Vortex does not have full hardware interpolation, the customvx imadd instruction

introduces considerable performance improvements. These results show that all three units

make effective use of the hardware, with hardware rasterization having a higher impact.

Although the difference between S/W interpolation and the hardware is not high, the area

cost of the IMADD unit is negligible, making that unit very effective since it can also be

used for generic computation.

60

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	1 | Introduction
	Contributions
	Thesis statement
	Organization

	2 | Literature Survey
	Open GPU Microarchitectures
	Hardware Construction and Simulation

	3 | Open-Source Hardware for General-Purpose Computing on GPU
	An Open-Source ISA Extension for SIMIT architectures
	An Extensible Multicore GPGPU Hardware Implementation
	A Software Stack Support for Open-GPU Research
	Evaluation
	Using Vortex in Architecture Research
	Porting Vortex to ASIC Design Flow

	4 | Open Hardware for Graphics Acceleration on GPU
	Backgrounds on 3D graphics pipeline
	An Open-GPU Hardware Extension for Graphics Rendering
	A Hardware Implementation of the Graphics Rendering Stack
	The Software Stack to Support Graphics Rendering
	Evaluation

	5 | Implementing Hardware Extensions for Multicore RISC-V GPUs
	A topology of Hardware Extensions
	RISC-V ISA Extension
	Implementing External Extensions
	Hardware Performance Counters
	Sample Implementation

	6 | Development Toolchain Optimizations for Open Hardware
	An Open-source high-speed RTL Simulator based on JIT Compilation
	Single-Source Hardware/Software Codesign

	7 | Elastic Pipelines and the Future of Hardware Designs
	Background on Elastic Pipeline
	The Benefits of Elastic Pipelines
	Vortex's Elastic Microarchitecture
	Using Skid Buffers in Elastic Pipelines
	Elastic Buffers Design Space
	The Case for "elastic" registers as FPGA primitive

	8 | Compiler Support for Open GPU
	Extending the LLVM Compiler for OpenGPU
	Compiler Support for Control-flow Divergence
	The challenges of split/join instrumentation
	Vortex's split/join redesign

	9 | Conclusion & Future Work
	References

