Georgia Tech Sponsored Research Project E-16-N19 Project director Mavris Dimitri Title System Definition & Module Development for Comprehensive Aircraft Sizing . . . Close-out 7/31/1999 r NAG 1 1786 System Definition and Module Development for a Comprehensive Aircraft Sizing and Synthesis Tool Year 1 Progress Report November 1996 Dr. Dirnitri Mavris Principal Investigator Aerospace Systems Design Laboratory School of Aerospace Engineering Georgia Institute of Technology Atlanta, GA 30332-0150 Summary Page ii Summary This report summarizes the efforts lo dale of the first year in the System Definition and Module Development for a Comprehensive Aircraft Sizing and Symhesis Tool contract (NAG 1 1786). This year's tasks were as follows: • Establish evaluation criteria amongst ASDL, NASA Langley SAB, and NASA Ames SAB • Receive training in the ACSYNT, FLOPS • Model various aircraft classes in each of the two synthesis codes • Analyze each of these aircraft in the synthesis codes and critique the codes based on the results (i.e. address fidelity issues, ease of modeling, etc.) • Examine the possibility of incorporating modules from existing programs • Suggest a system architecture for a next generation synthesis program To achieve these tasks, members from the ASDL traveled to both NASA Langley and Ames Research Centers to receive training and to develop evaluation criteria that meet the needs of the two centers. In addition, a visit was made to the Air Force's Wright Laboratory to receive training in ICAD and IDAS, two codes used by the Air Force with similar capabilities. These codes are being reviewed to establish a point of reference for military vehicle modeling and sizing. Based on these visits, evaluation criteria were established and a survey developed and distributed to the various users. The results from these surveys are still being collected and expected to be in the report by the end of this years effort. Three configurations are being modeled in ACSYNT and FLOPS at this lime. The configurations are the B747-400, C17, and F16C and represent baseline commercial and military configurations. The particular vehicles were selected based on data availability. The modeling is proceeding in two directions. First, an input deck is generated for each Summary Page (U configuration without the use of technology factors (adjustments, correlation factors). This will test the default prediction capabilities of the codes. Then, these factors are applied to test the ability for these codes to match the aircraft performance based on actual data for this configuration. Initial modeling results are presented in this report. Based on the modeling results and the user survey, a side-by-side comparison will be made of ACSYNT and FLOPS based on rankings from the evaluation criteria. To complement the aircraft modeling, scaling laws used by these codes to carry out the sizing function are investigated. Scaling laws prove to be essential in aircraft codes because they dictate the final configuration and performance. These sizing laws, in addition to the ability to integrate new technology modules, determine the applicability of the code to modeling revolutionary (versus evolutionary configurations). Sizing laws for ACSYNT and FLOPS are summarized in this report and a recommendation is made to model a futuristic fighter concept to test the response of these codes to such a futuristic concept. In closing, arguments are made to investigate modularity and the use of supporting code to facilitate analysis. Acknowledgments Page iv Acknowledgments This research could not have been completed without the dedication of a number of individuals. In particular, the graduate research assistants of the Aerospace Systems Design Laboratory at Georgia Tech, George C. Mantis, Noel I. Macsotai, Dan DeLaurentis, Michelle Kirby, Nathan Hint s, Jimmy Tai, Dani Soban, and Lance Bays. The project was overseen by ASDL research manager Dr. Dimitri Mavris and research engineer Dr. Mark Hale. Special thanks to the technical ."nonitor for the investigation, Dr. Gary Giles. In addition, this study could not have been executed successfully without the overview and assistance of the personnel of NASA Langley, Sam Dollyhigh, Amie McCullers; and NASA Ames. Tom Galloway, Paul Gelhaussen, Mark Moore, Andy, Halm, and Dave Kinney. Help from the following Air Force personnel at Wright Patterson is appreciated: Gordon Tamplin, John Cathey, Dave Hammond, and Terry Smith. Also, Dr. Bob Schwanz frorr Rockwell International is assisting in the acquisition of IDAS. Table of Contents Pagev Table of Contents Summary ii Acknowledgments v List of Illustrations vi List of Tables vii 1. Introduction 1 1.1. General Programming Structure 4 1.2. Present Day Modular Strategies 5 1.3. Analysis Strategies 8 1.3.1. Analysis - Synthesis & Sizing 8 1.3.2. Sensitivities 10 1.3.3. Optimization 1.4. Modeling Strategies 1 1.4.1. Calibration 1.4.2. Low Fidelity Trade Studies 12 1.4.3. High Fidelity Trade Studies 1.4.4. Approximate Studies 3 1.5. Surveyed Codes 14 1.5.1. ACSYNT 5 1.5.2. FLOPS 8 1.5.3. ICAD 21 1.5.4. IDAS 2 1.6. Modeled Configurations 23 2. Evaluation Criteria Survey 5 3. Scaling Laws 7 3.1. ACSYNT 2 3.1.1. Convergence 3.1.2. Optimization 9 3.2. FLOPS 30 3.2.1. Sizing (Analysis) Mode: IOPT=l, IANAL=3 3 3.2.2. Optimization mode: IOPT=3, IANAL=3 1 3.2.3. Fuel Volume considerations 3 3.2.4. Fuselage "Design" 2 4. Configuration Modeling 33 4.1. Commercial Transport: B747-400 4 4.1.1. ACSYNT 4.1.2. FLOPS 5 4.2. Military Transport: C17 36 4.2.1. ACSYNT 4.2.2. FLOPS 8 4.3. Fighter: F16C 40 4.3.1. ACSYNT 4 4.3.2. FLOPS 6 5. Results and Recommendations 48 5.1. Side-by-Side Comparison 5.2. Isolation vs Supporting Tools 9 5.3. Modeling of a Revolutionary Concept 50 5.4. Independent Module Evaluation 6. References 52 APPENDICES 3 Table of Contents Page vi Appendix A. Survey 54 Appendix B. B747-400 ACSYNT Input & Output File 55 Appendix C. B747-400 FLOPS Input & Output File 6 Appendix D. C17 ACSYNT Input & Output File 7 Appendix E. C17 FLOPS Input & Output File 58 Appendix F. F16C ACSYNT Input & Output File 9 Appendix G. F16C FLOPS Input & Output File 60 Appendix H. Side-by-Side Assessment Details 1 Appendix I. IPPD Methodology 64 List of Illustrations Page vii List of Illustrations Figure 1. Stand-Alone Code 4 Figure 2. Sample Synthesis Toolkit 6 Figure 3. Initial Configuration 1 9 Figure 4. Modified and Sized Configuration' 9 Figure 5. Using a Code for Calibration 12 Figure 6. Using a Code for Low Fidelity Trade Studies 1 Figure 7. Using a Code for High Fidelity Trade Studies 3 Figure 8. Using a Code for Approximate Studies 4 Figure 9. ACSYNT Control Structure2 16 Figure 10. FLight Optimization System-* 8 Figure 11. FLOPS Module Capabilities 9 Figure 12. ICAD 22 Figure 13. IDAS System5 3 Figure 14. Typical Relationship Between Calculated Weight and Estimated Weight2 28 Figure 15. ACSYNT Weight Convergence Scheme 2 Figure 16. ACSYNT Wireframe Representation of C17 Model 37 Figure 17. C17 Mission Profile 39 Figure 18. F-16C Combat Air Patrol Mission ..41 Figure 19. Store Configuration for the F-16C Combat Air Patrol Mission 43 Figure 20. IPPD through Robust Design Simulation 64 List of Tables Page viii List of Tables Table 1. Analysis Strategies 8 Table 2. Modeling Strategies 11 Table 3. Surveyed Codes 5 Table 4. Modeled Configurations6 24 Table 5. Survey Categories and Feedback 6 Table 6. Suggested Design Variables in ACSYNT 30 Table 7. FLOPS Optimization Design Variables 1 Table 8. Status of Modeling 33 Table 9. FLOPS Technology Factors 36 Table 10. F-16C Geometry Input for FLOPS and ACSYNT 40 Table 11. Engine Characteristics for the Fl 10-GE-100 2 Table 12. F-16C Block 30 Combat Air Patrol Mission Weight Breakdown 44 Table 13. Mission Time/Fuel Bum Comparison 46 Table 14. Comparison of FLOPS Output to Actual Values 4 Table 15. Side-by-Side Assessment 49 Introduction Page 1 1. Introduction Significant investments have been made in the creadon and maintenance of aircraft sizing codes for use in early conceptual design activities. These codes permit a designer to rapidly trade-off new designs and perform mission analysis. FLOPS, ACSYNT, IDAS and ICAD are four leading synthesis and sizing codes used by government organizations within the US. The first two representing the only two "public domain" synthesis and sizing codes in existence outside of industry, which implies that they are the only ones available for government and academic use. These codes are described later in this section and will be the focus of this study. The effort for year one of this three year study has been focused on a side-by-side comparison of these codes as to independently quantify their differences and similarities; address issues associated with their for modeling accuracy, modularity, and user-friendliness; and identify possible shortcomings and suggest remedies to he carried out during subsequent phases of this study. This will eventually lead to a set of recommendations stating means by which these two programs can be enhanced to better serve the aerospace design community. These design tools may be considered as monolithic codes with an executive module managing a geometry and mission/sizing core with links to appropriate disciplinary modules. The executive has traditionally included the capability to do optimization and carpet plots in addition to single-point analysis. Graphical user interfaces have focused on geometric modeling and program control. These monolithic codes in general have been proven to have less modular capabilities when compared with modem-day programming techniques. To make up for these shortcomings, these codes are often not used in isolation but, rather, are combined with a number of supporting codes and used together as a system. For instance, FLOPS may be used in conjunction with RAPED, AER02S, and BDAP whereas ACSYNT may be combined with RAM, VORLAX, FELISA, and FPS3D depending on the level of desired analysis. This phase ofthe study will primarily focus on Introduction Page 2 the examination of the capabilities of these monolithic codes while future studies will concentrate on testing these codes as they are used collaboratively with their supporting tools. Significant factors in the selection of a design code are in its prediction and modeling capabilities. This is directly related to the level of fidelity (measure of prediction accuracy of the final vehicle size, performance, etc.) of the analysis. Obviously, accuracy is an important issue when doing conceptual design because the decisions that are made in this phase lock in the major features of the configuration and have a significant impact in the life-cycle of the vehicle. These design codes have varying degrees of accuracy because the historical databases they were based on regression analysis for different vehicle classes using similar technologies and simplified empirical analysis methods. In recent years, many users have felt that FLOPS is more appropriately used for the modeling of transports while ACSYNT is centered around the prsdiction of advanced technologies for fighter aircraft (e.g. ASTOVL vehicles, advanced short takeoff and landing vehicles). During this phase of the study, three evolutionary vehicles, the CI 7, B747-400, and F16C are modeled in each code and the results compared side-hy-side in order to test the accuracy of the tools as compared to known data. These three configurations were selected primarily due to data availability. Another factor in the selection of a design code is user-friendliness. The term "user-friendliness" can include traits such as complexity of input, usefulness of defaults, input modification, etc. There are a number of disciplines that are required to be defined for proper vehicle analysis. This task can be quite complex and the number of variables overwhelming. Ideally, a code should have default settings that minimize initial user input. The prediction capabilities of a code based on defaults will be one part of this study. Another consideration is the level of difficulty to modify program inputs to match a particular configuration. Each of the codes that will be surveyed has some form of user interface that facilitates vehicle modeling, which includes disciplinary information as well Introduction Page 3 as geometric modeling. A qualitative analysis of both the GUI and stand-alone interface will be done as the three selected configurations are modeled in-house and also based on user surveys. Given that these conceptual tools are the current baseline, it is important to understand that conceptual design is growing beyond the strict optimization and sizing for which these codes are based. Requirements are evolving to address such things as uncertainty and the need to include approximations of higher fidelity tools in earlier design processes. These requirements come from the need to perform an Integrated Product and Process Development (IPPD) approach in the early design phases. As IPPD will provide the impetus for innovation and technological advances during these early conceptual design phases, tools must also grow to accomrrodate these advances. Synthesis and sizing codes must thus be sufficiently modular so that they can accommodate these newer as well as future design techniques. During this phase of the study, the various disciplinary contributions/functions will be critiqued and modularity ofthe overall code assessed. An evolving vehicle base will also be required to be analyzed by these synthesis codes. Based on changing world threats, these codes must accommodate evolutionary as well as revolutionary configurations and technologies. These codes were developed during an era of strict evolutionary principles where statistical databases and sizing laws can be used effectively to analyze an appropriate aircraft configuration. Modem aircraft design requirements are providing these codes with configurations that are far outside of existing databases and technologies that are still developing. These revolutionary concepts will require that the modules have a strong, physics-based development so that their applicability remains valid for a larger pool of configurations. Because these concepts need to be included in the codes of the future, this study will also examine the vehicle scaling laws (e.g. how a vehicle configuration is changed internally by a code in order to fly a certain mission) that are inherent in each. In addition to looking at scaling laws, a highly- maneuverable fighter concept from Lockheed, Ft. Worth, representative of futuristic Introduction Page 4 configurations, will be modeled in each code during the later phases of this study. Also, the ability to integrate the required disciplinary modules to support the required technology developments based on physics will be investigated as discussed earlier. 1.1. General Programming Structure Synthesis and sizing codes tend to be predominately in FORTRAN and are based on a master executive with a number of disciplinary modules. This is commonly referred to as a "Stand-Alone Version" and an example is shown in Figure 1 where a configuration, defined by an input file and auxiliary files (for engine decks, etc.), is analyzed and results written to an output file. To perform the analysis, a number of disciplinary modules may be called. A user has the capability to add additional disciplinary modules. This basic structure is common not only for various vehicle synthesis codes but for individual disciplinary tools as well. | Auxiliary Files Input Hie Namelist Formatted Siruclures/Weighis Propulsion User - Defined Modules Figurel. Stand-Alone Code These original sizing codes can be extended to include a Graphical User Interface (GUI), commonly referred to as the "Graphical Version", to make modeling and execution easier for the end user. The GUI complements the geometry routines in the original code with a visualization tool as well as enhances the executive. Also, he GUI helps a user in Introduction Page 5 defining inputs and analysis post-processing. GUI's are written predominately in C and make use of the already existing sizing and disciplinary modules. In either version, the executive may also contain links for optimization and carpet plots. The optimization routines tend to be off-the-shelf, gradient-based optimizers. These optimizers favor well for traditional designs with limited search spaces as defined by a reasonably constrained problem. As a final note, the information structure for these codes plays an important role in modularity. Information is contained in and passed by global variables and/or common blocks. This makes information exchange easy programmatic ally. However, this type of information passing significantiy reduces the modularity and portability of the code. For instance, if a variable is added to a namelist in aerodynamics and the same namelist also appears in another disciplinary module, both modules must be re-compiled. Moreover, as any module changes the complete system must be re-linked. 1.2. Present Day Modular Strategies A synthesis and sizing tool can be visualized as a number of analysis modules linked via a geometric modeling and mission analysis core, as shown in Figure 2. Modules can be added, deleted, or modified in response to analysis requirements driven by aircraft configuration and technology. The modules are executed in a problem dependent synthesis network and are controlled by synthesis and sizing drivers. This strategy has subtle differences from the codes dr.scussed earlier and shown in Figure 1 in that no strict coupling of the modules exists. The framework is plug-n-play instead of being compiled into a single monolithic executable. Introduction Page 6 Figure 2. Sample Synthesis Toolkit Each module in the Synthesis Toolkit is a library of analysis programs. A particular choice of analysis program may be selected depending on problem analysis requirements and configuration, available data and files, find user preferences. Analysis modules can be interchanged as a design progresses from conceptual to preliminary to detailed design. Modules are determined by the particular problem to be analyzed or synthesized. In addition, new modules may be added as the level of detail in a design increases. For instance, initial weight estimates may be based on historical data and a module that determines weights based on production information could be integrated later. Notice that these modules are developed and analysis codes are selected independent from the software architecture. Codes will be validated and documented off line from the architecture by disciplinarians. After this process, these codes are integrated into the architecture. The synthesis network can be configured without having all of the Introduction Page 7 codes in place. As codes are selected, the final data and analysis sequences are determined. Disciplinarians will still be required to maintain and enhance their respective analysis codes as well as provide expert advice, when needed, about the validity of information. The importance of an architecture that can be configured with minimal effort is emphasized by the need to incorporate future technologies as they are identified and developed based on needs of revolutionary configurations. These codes do not exist as preliminary vehicle performance assessments are made. Rather, estimates are used with the understanding that codes will be integrated if the technologies provide system level benefits. An architecture organized in this way is flexible because modules are organized to leave particular code selections open. Using this technique, generic synthesis templates can be developed based on aircraft configurations or corporate design practices. As shown in the lower right of Figure 2, lower fidelity analysis codes comprise the inner ring of synthesis modules. As a design problem becomes increasingly more determinate, higher fidelity codes can be interchanged. This is emphasized by an outer ring of analysis codes. Response Surface Equations can be used to replace time consuming, higher-fidelity analyses. Or, they can be used to bring higher-fidelity information into design processes earlier. Usually, a concept progresses to a point where only a limited number of analysis cases are run on a detailed design. The number is limited by expense, man hours, and desired accuracy. These limitations can be overcome by systematically running a set of cases defined under the Response Surface Methodology (RSM) guidelines and by creating Response Surface Equations (RSE). In turn, RSE's can be substituted for analysis codes. This is shown in the lower right of Figure 2. There are at least two additional benefits gained from RSE's. The design space region of interest is continuous, allowing for robust design and simulation techniques to be used. Second, computational cost is reduced to the evaluation of algebraic expressions. An overview of a Response Surface Methodology is given in Appendix I. Introduction Page 8 1.3. Analysis Strategies A designer can employ several different strategies for using these conceptual design tools depending on the desired analysis. These are summarized in Table 1. These strategies are clarified in the following sections. Some example scenarios where a designer would use one or more of these modeling strategies include: Scenario 1. Match and verify Fl 6 performance numbers —> Point Design Analysis Scenario 2. Study the effect of different scenarios on an F16-like vehicle -> Analysis, Sensitivity Scenario 3. Match a configuration in which all geometry is not known —> Sizing Analysis Scenario 4. Determining a new configuration that will meet a designated mission —> Sizing Analysis Scenario 5. Finalizing a design based on certain performance parameters —» Analysis, Optimization Scenario 6. Technology trade-offs on a vehicle design —> Sizing Analysis These scenarios demonstrate that one cr more analysis techniques can be utilized by these codes to achieve a certain design task. Table 1. Analysis Strategies Strategy Use Analysis (§1.3.1) Sensitivity (§1.3.2) Opti mization (§1.3.3) Determine vehicle performance and point designs Determine robustness to vehicle parameters Detenriine optimal vehicle parameters for a given mission 1.3.1. Analysis - Synthesis & Sizing Synthesis involves the assembly of the effects of individual disciplines on the aircraft components so that performance characteristics about an aircraft can be obtained. A majority if not all of the vehicle parameters (geometry, mission, aerodynamics, propulsion, etc.) are known and input by the user. These parameters are normally enough for a sized configuration since the user also has the respective weights available to him. The difference between the final calculated and the known aircraft weights is an indicator of the Introduction Page 9 prediction capabilities of the code. In this case, a user commonly applies scaling parameters (a.k.a. fudge factors) to his inputs so that values determined by the design code matches known data. The degree to which these values match is a measure of the code to accurately predict the behavior of the configuration. This is very important for the selection of which design code to use and is emphasized in this study. Design codes have the ability to size an aircraft so that specific mission requirements can be met. For example, a fuel balance is required to make sure that an aircraft can fly an extended-range mission. During this process, the design code must add and distribute fuel and apply appropriate scaling laws in order to assess mission performance. For example, additional fuel in the wings will require additional structural weight to support the fuel bladders. Depending on the scaling laws that are applied, radically different configurations may be obtained. This process may not be altogether automated and requires the expertise of a designer. An example is illustrated in Figure 3 and Figure 4. An initial configuration is shown in Figure 3 of an aircraft that is not capable of flying a transcontinental route. To meet this mission, a user would have to select different engines and increase the wing area as shown in Figure 4. Internal to the code, ACSYNT in this scenario, sizing occurred as fuel added and performance and disciplinary metrics were recalculated. Figure 3. Initial Configuration Figure 4. Modified and Sized Configuration1 Introduction Page 10 1.3.2. Sensitivities It is often of interest to determine the effect of changing a single decision variable on the gross weight and performance of the aircraft.2 Examples include determination of change in gross weight due to a prescribed change in physical parameters such as aspect ratio, or mission parameters such as range. Sensitivity may be simply referred to as the variation, or partial derivative, of one parameter with respect to another. For example, if the sensitivity of gross weight to wing thickness-to-chord ratio is negative, the gross weight may be reduced by increasing the thickness-to-chord ratio. However, it must be noted that an increase in thickness-to-chord ratio may reduce vehicle performance, violating performance constraints on the design. Sensitivity is also related to a robust design. It is desired that the sensitivity be as low as possible in order to produce a more robust design. Therefore, the impact of product variance will be minimized on eventual performance. 1.3.3. Optimization The purpose of the optimization subprogram is to minimize or maximize some "objective11 function, subject to a prescribed set of hmits or "constraints" on the design.2 For example, given a mission, the gross weight of the vehicle may be minimized subject to performance and zing requirements. The variables changed by the optimization program are referred to as design variables and include parameters such as wing area, aspect ratio, thickness-to-chord ratio, and vehicle thrust-to-weight ratio. In general, any variables input to a discipline module may be treated as a design variable and these variables are usually bounded to insure a valid design space. Functions which are evaluated by the modules such as gross weight, performance, parameters or fuel weight may be treated as parameters to be extremized in the objective function or may be constraints which he within prescribed bounds. This formulation allows for considerable latitude in choosing the objective function, decision variables and constraints. Introduction Page 11 1.4. Modeling Strategies There are four basic modeling strategies that may be performed when using these sizing tools to predict aircraft performance. These are shown in Table 2. The differences in these strategies may be subtle at times but nonetheless important. For instance, designers often say they have modeled and studies a configuration (Low Fidelity Trade Study) when they have really matched their configuration (Calibration). Table 2. Modeling Strategies Strategy Use Calibration (§1.4.1) Low Fidelity Trade Studies (§1.4.2) High Fidelity Trade Studies (§1.4.3) Approximate Studies (§1.4.4) Match existing data and code validation Routine and rapid assessments Detailed or new technology assessments Robust simulation and design space search 1.4.1. Calilb ration Calibration is done when matching industry provided data for future studies or for validating code modifications. As shown in Figure 5, the baseline configuration is modeled in the input files and the outpu: analysis and performance data is compared against known values. Typically, calibration is done in two stages. First, non-scaled parameters are used in order to determine the b£.sic prediction of the code. Then, input scaling parameters are used so that the prediction matches the known aircraft data. In this phase of the survey, the selected design codes will be used for "Calibration" so that the prediction capabilities can be assessed. Introduction Page 12 •^^H^I^M I Ql/Jhil It : Figure 5. Using a Code for Calibration 1.4.2. Low Fidelity Trade Studies During a low fidelity trade study, a baseline configuration is modeled and entered into the design code. The code sizes the configuration so that the vehicle can fly the prescribed mission, This is represented in Figure 6. The user frequentiy varies configuration variables (geometry, airfoils, engine parameters, etc.) and mission parameters as trade studies are performed. By doing this, different classes of vehicles can be developed and carpet plots and other post-processing can be done so that a concept selection processes can take place. Figure 6. Using a Code for Low Fidelity Trade Studies 1.4.3. High Fidelity Trade Studies A designer may utilize disciplinary codes off-line from the design tool in order to provide higher fidelity analysis or prediction capabilities outside of those possible by the Introduction Page 13 design code. This scenario is illustrated in Figure 7. These codes may be run off-line or they may be combined with the design tool in an automated system. For example, a user may use RAM to model an aircraft configuration and pass the configuration into FELISA to generate a CFD grid. In turn, FPS3D can be used to generate the appropriate polars required for the aerodynamics module in ACSYNT. £^jade Studies^ Figure 7. Using a Code for High Fidelity Trade Studies 1.4.4. Approximate Studies During early conceptual design, a designer may wish to use approximate methods to reduce analysis time, facilitate program linking, and for robust simulation. In the example shown in Figure 11, Response Surface Equations can be used to approximate the design tool and higher-fidelity disciplinary analysis. Then, a Monte Carlo simulation can be used to determine a robust design based on probabilistic methods. The use of approximations, in this examples RSEs, gready reduces the amount of analysis time required. It is important to remember that approximate methods are valid in the domains of their approximations. A common approach for finding a design space is the use of screening tests which helps determine both the design space and to reduce the number of active design variables. Introduction Page 14 Figure 8. Using a Code for Approximate Studies 1,5. Surveyed Codes This study will involve four codes that represent the current state-of-the-art in conceptual design analysis. Each of these codes has a rather involved history and the current references are made with respect to the current versions at their respective centers. These four codes are shown in Table 3. The codes are described in the following sections. The remainder of this report will detar.1 specifics of each code in terms of modularity, prediction capabilities, and general usability. The configurations in this survey (B747-400, C17, and F16C) will only be modeled in ACSYNT and FLOPS at this time. ICAD has been acquired and users are still being trained. IDAS is still being acquired. Initial training in IDAS and ICAD has been received at ASC/XRED. Of the four codes, ICAD is the only one that is PC-Based. The others are workstation applications. Introduction Page 1\5 Table 3. Surveyed Codes Code Version Center ACSYNT 3.0 NASA Ames Research Center Systems Analysis Branch FLOPS 5.85 NASA Langley Research Center Systems Analysis Branch ICAD - Air Force Air Systems Command (ASC) Technology Support Group (XRED) IDAS - Rockwell International 1.5.1. ACSYNT AirCraft SYNThesis (ACSYNT) was originally created at NASA Ames Research Center in the early 70s to fulfill a need for the evaluation of advanced technologies on future aircraft and has been continuously enhanced and updated from that time forward. The ACSYNT Institute was founded in 1990 to advance the US capability for aircraft conceptual design and resided at the Virginia Tech CAD Laboratory. During this time, an interactive computer aided design interface to ACSYNT was developed and internal routines extended by the Institute. Institute control has been returned to the Systems Analysis Branch at NASA Ames and is also being co-developed by Phoenix Integration Systems in Blacksburg, VA. ACSYNT was designed to have the flexibility to analyze a wide range of civil and military aircraft, including fighters, bombers, and transports.2 ACSYNT is comprised of several discipline codes which can run either stand-alone for analysis of one aspect or be combined in order to evaluate the integrated results. As shown in Figure 9, these disciplines are Geometry, Weights and Structures, Aerodynamics, Propulsion, Takeoff Performance, Mission Performance, Cost, and Sonic Boom. ACSYNT includes a methodology for converging on a vehicle design and for optimizing the vehicle design for a particular objective function, subject to various constraints. Int, oduction Page 16 CONTROL ;ONVERGEKC= OPTJMIZATIOf SENSITIVITY GEOMETRY AERODYNAMICS PROPULSION STRUCTURES MASS PROPERTIES TRAJECTORIES ECONOMICS Figure 9. ACSYNT Control Structure2 The COPES/CONMTN (Control Program for Engineering Synthesis/Constrained Minimization program) optimization package is used and is a part of ACSYNT. In order to provide the optimizer with feasible and realistic information, the discipline modules of ACSYNT are parameter driven and, where possible, based on theoretical models, as opposed to table look-ups. An interactive computer aided design (CAD) interface is also included in ACSYNT. This permits the execution and control of the process via interactive graphics menus and, by visual inspection of data and aircraft model shaded images, allows rapid evaluation of design configurations. This CAD system is coded in a 3-D graphics standard, PHIGS. Thus, ACSYNT is designed to be used on the new generation, high-speed workstations. The graphical user interface allows one to create/modify geometry, specify other non- geometry inputs, execute a case, and generate graphs and plots of most numerical results of the analysis. Some limitations, however, do exist within the GUI which hmits its usefulness. Thus, ACSYNT is in the process of being equipped with a new geometry modeling capability, embodied in the Rapid Aircraft Modeler (RAM) tool. RAM is an interactive, parametric conceptual aircraft modeler that is useful for the generation of 3D designs for the conceptual design and optimization process. RAM is capable of producing geometries from which wetted surface areas, volumes, and volume distributions may be calculated. In addition, these models may be converted into gridded Introduction Page 17 surfaces and used in later CFD analysis. Unlike the traditional CAD modeling, where geometries are defined by sets of points, RAM allows the designer to define the configuration by a set of parameters which drive the shape of the wing planform and fuselage. Currently, RAM supports NACA 4-series, biconvex, wedge, and input airfoil types. Fuselage and external stores are defined by a series of cross-sections along a spine. For engine nacelles, a subsonic convergent inlets and convergent axisymmetric nozzles may be modeled. Components can be translated, scaled, and rotated. RAM also has the capability for a user to define a digitized picture or drawing for a background. Using this, a designer can simply lay out components over the background until the vehicle is modeled. Modeling is executed in a GUI where changes in geometric parameters are updated on the screen in "real time". The graphics were written in GL, the SGI standard graphics library, and the GUI was created using FORMS, a public domain GUI builder and code generator. When completely integrated with ACSYNT, the user will have the capability to send a configuration generated in RAM directly to ACSYNT for analysis. To extend these capabdities major efforts are planned to enhance ACSYNT. Some are already underway. These include: • A parametric component modeler for enhanced usability (this effort is RAM which was described above and the development is underway); • Using beam theory to represent major aircraft components such as the wing: fuselage, and horizontal and vertical tail; • Integration of advanced propulsion analysis such as NEPP and the capability for parametric cycle analysis; • Basic InfraRed analysis; and • Stability and control estimation. Some of these have been implemented for irj-house use and will be transitioning to general distribution. Introduction Page 18 1.5.2. FLOPS The NASA Langley developed FLight Optimization System (FLOPS) is a multidisciplinary system of computer programs for conceptual and preliminary design and evaluation of advanced aircraft concepts. It consists of nine primary modules: 1) weights, 2) aerodynamics, 3) engine cycle analysis, 4) propulsion data scaling and interpolation, 5) mission performance, 6) takeoff and landing, 7) noise footprint, 8) cost analysis, and 9) program control.3 Version 5.85 is used in this study. Figure 10. FLight Optimization System3 The capabilities of the individual modules are summarized in Figure 11. The weights module uses statistical/empirical equations to predict the weight of each item in a group weight statement. In addition, a more analytical wing weight estimation capability is available for use with more complex wing planforms. Centers of gravity and moments of inertia can also be calculated for multiple fuel conditions. Introduction Page 19 Propulsion •MOST ADVANCED DISCIPLINARY MODULE • BASED ON QNEP, WITH 5 CYCLE DEFINITIONS AVAILABLE OR OPTION FOR USER DEFI NED • KEY CYCLE PARAMETERS CAN BE DESIGN VARIABLES DURING OPTIMIZATION • ENGINE SCALING Economics LCC, DOC, IOC can be calculated • Weight Based Accounts for engine/performance S tructures/W eights • NV STRUCTURAI ANALSYIS • WEIGHTS BASED ON GEOMETRY DRIVEN, HISTORICAL DATABASE (WITH ABOUT 25 FIGHTERS AND 17 TRANSPORTS) • 'TECHNOLOGY" FACTORS AVAILABLE V CYCLE PARAMS. M, H THNISUFT ' GW, FNEJWT / WEIGHTS, MISSION / ECONOMICS COMP. WIS Mission Analysis/Sizing PERF: Sizing, mission performance GUID: simple cruise point opt,, optimal climb and descents S&C: None (DeLaurentis' work ?) RESULTS (WEIGHTS. PERT, ETC) DRAG GEOMETRY. M, VI SIZED AX I F uc, I [ANAL =3 Aerodynamics • INTERNAL- EMPERICAL DRAG BUILD-UP TECHNIQUE • SKIN FRICTION COMPUTED INTERNALLY • EXTERNAL- "HOOKS" EXIST FOR USER DEFINED POLARS TO FUEL, PORF: NOISE Executive j • ANALYSIS TNNGT. • OPTIMIZATION •I/O Miscellaneous • TAKEOF&LANDING {NOT PART OF SIZING CYCLE) BASED ON FAR 25 OR MS-1793 • NOISE, INCLUDING MULTIPLE SOURCES, SUPPRESSION, AND OBSERVER LOCATIONS Figure 11. FLOPS Module Capabilities The aerodynamics module uses a modified version of the EDET (Empirical Drag Estimation Technique) program to provide drag polars for performance calculations. Modifications include smoothing of the drag polars, more accurate Reynolds number calculations, and the inclusion of skin friction calculations. Alternatively, drag polars may be input and then scaled with variations in wing area and engine (nacelle) size. The engine cycle analysis module was developed by Karl Geiselhart and is base& on the QNEP program which is a modified version of NEPCOMP and its successors. It provides the capability to internally generate an engine deck consisting of thrust and fuel flow data at a variety of Mach-altitude conditions. Engine cycle definition decks are provided for turbojets, turboprops, mixed flow turbofans, separate flow turbofans, and turbine bypass engines, The propulsion data scaling and interpolation module uses an engine deck that has been input or one that has been generated by the engine cycle analysis module, fills in any missing data, and uses linear or nonlinear scaling laws to scale the engine data to the Introduction Page 20 desired thrust. It then provides any propulsion data requested by the mission performance module or the takeoff and landing module. The mission performance module uses the calculated weights, aerodynamics, and propulsion system data to calculate performance. Based on energy considerations, optimum climb profiles may be flown to start of cruise conditions. The cruise segments may be flown at the optimum altitude and/or Mach number for maximum range or endurance or to minimize NOx emissions, at the long range cruise Mach number, or at a constant lift coefficient. Descent may be flown at the optimum lift-drag ratio. In addition, acceleration, turn, refueling, payload release, and hold segments may be specified in any reasonable order. Reserve calculations can include flight to an alternate airport and a specified hold segment. For supersonic aircraft, sonic boom overpressures are computed along the aircraft track using an approximate method. The takeoff and landing module computes the all-engine takeoff field length, the balanced field length including one-engine-out takeoff and aborted takeoff and the landing field length. The approach speed is also calculated, and the second segment climb gradient and the missed approach climb gradient criteria are evaluated. Insofar as possible with the available data, all FAR Part 25 requirements are met. The module also has the capability to generate a detailed take-off and climb-out profile for use in calculating noise footprints. The noise footprint module uses the takeoff and climb-out profile generated in the takeoff and landing module to compute noise footprint contour data or noise levels at user specified or FAA locations. It is based on the FOOTPR program. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Through the program control module, FLOPS may be used to analyze a point design, parametrically vary certain design variables, or optimize a configuration with respect to these design variables (for minimum gross weight, mmimum fuel burned, Introduction Page 21 maximum range, minimum cost, or minimum NOx emissions) using nonlinear programming techniques. The configuration design variables are wing area, wing sweep, wing aspect ratio, wing taper ratio, wing thickness-chord ratio, gross weight, and thrust (size of engine). The performance design variables are cruise Mach number and maximum cruise altitude. The engine cycle design variables are the design point turbine entry temperature, the maximum turbine entry temperature, the fan pressure ratio, the overall pressure ratio, and the bypass ratio for turbofan and turbine bypass engines. 1.5.3. ICAD ICAD is currendy being used at ASC/XRJED for concept evaluation. ICAD consists of a graphical interface called PARSET and an engineering analysis module as shown in Figure 12.4 PARSET has similar features to other modeling tools whereby a designer can specify a configuration in terms of parametric components. The parametric description is rather detailed since the PARSET is described in terms of pointwise hoops that are used in the analysis module. A feature that is found in PARSET and not in other applications is the ability to define relationships among parameters in the model via equations. For instance, a user can define an equation that specifies that the relative location of the landing gear on the aircraft. In addition to parametric components, a user also has the capabdity to use digitized profile and planform outlines or digitized cross-sections to define bodies. This simplifies vehicle configuration creation where geometry is relatively unknown, as is the case for competitors or threats. Introduction Pase 22 Engineering Analysis Trade Studies Post Processing Figure 12. ICAD Unfortunately, little documentation is available about the system in terms of engineering analysis. However, significant effort has gone into the creation of post processing tools that are useful for decision making. Engine performance maps, carpet plots, excess power diagrams, and other plots can be obtained easily. This reduces the amount of effort required during data reduction. 1.5.4. IDAS IDAS (integrated Design and Analysis System) is a system for the conceptual design and analysis of flight vehicles developed by Rockwell International.5 The system is a file-based and consists of the four modules: Configuration Development Module (CDM), Configuration Analysis Module (CAM), Parametric Synthesis Module (PSM), and Summary Report Module (SRM). The relationship among these modules in a conceptual design process is shown h; .-igure 13. A designer uses the CDM interactively to develop an aircraft configuration based on pre-defined component libraries. The CAM is used to perform weights and tierodynamic calculations. Parametric aircraft designs can be obtained from a baseline design using the interactive interface provided in the PSM. In addition to parametric studies based on typical configuration and performance parameters, the PSM allows for checks on constraint violations on a number of aircraft parameters as well as the capability to perform sensitivity studies. The final component of IDAS is the SRM which provides the tools needed by a designer to perform data visualization. These four modules PARSET Introduction Page 23 interact with a file manager which catalogs files in a database as data, projects, or libraries. These modules are shown in Figure 13. The Level II programs are stand-alone programs that can be ran to generate information required by IDAS. Requirements Geometric Definition CDM I Baseline Analysis CAM I Pert o rm ance/Synthesis PSM I Kr Trade Summary/Evaluate SRM F I L E M A N -I A J G E Level II Proarams Database Intentionally Omitted •Data •Projects •Libraries Level II Intentionally Omitted Figure 13. IDAS System5 Though some of the file-based technologies in IDAS have become outdated, the system provides some fundamental insight into mechanisms for cataloging files. The ability to efficientiy store and retrieve files limits the number of re-analysis and, therefore, reduces cycle time and expense, 1.6. Modeled Configurations For this initial study, three configurations are being modeled and are shown in Table 4. These configurations are representative of the classes of vehicles that can be analyzed by these codes and are within the scope of this survey. Each configuration will be modeled in each of the four selected design codes (at the time of this progress report, they only have been modeled in ACSYNT and FLOPS) to gain insight into the workings of each of the codes. A highly-maneuverable fighter will be modeled in each code during later Introduction Page 24 phases of this study. By modeling these configurations, the following are hoped to be achieved: • Side-by-side comparison of the codes in terms of accuracy and fidelity • Assessment of the modeling capabilities and limitations of each code • Ease of modeling in terms of user-friendliness • Comparison of the codes in isolation against using supporting disciplinary analysis codes • Investigate ability to model revolutionary vs evolutionary designs The actual modeling of each configuration will be discussed in more detail in Section 4. Table 4. Modeled Configurations6 Commercial Transport: B747-400 The largest airliner in the world, the 747-400 possesses extended range and capacity compared to earlier 747 variants. The -400's wing features increased span and winglets. Typical accommodation is for 421 in three classes, with a maximum take-off weight over 800,000 pounds. Military Transport: C17 The McDonnell Douglas C-17 Globemaster UI was designed for long-range and intra-theatre heavy cargo transport. Features include an externally blown flap system that helps provide the aircraft with STOL performance while carrying C-5 payloads. The structure of the C-17 is designed for survivability. Fighter: F16C An advanced version of the widely-used lightweight fighter, the F-16C has excellent ground attack, air-to- air, and all-weather capabilities. The -C has improved take-off weight and maneuvering characteristics. The F-16 features a cropped delta wing with vortex control strakes blended with the fuselage. Evaluation Criteria Survey Page 25 2. Evaluation Criteria Survey In an attempt to establish criteria amongst the ASDL, NASA Langley Systems Analysis Branch, and the NASA Ames Systems Analysis Branch for this research, visits were made by ASDL personnel to each of ihe branches. Discussions with both FLOPS and ACSYNT developers shed light on their approach to maintaining and improving the respective codes. In addition, ASDL personnel also visited ASC/XRED at Wright Patterson AFB in order to meet with ICAD and IDAS users and developers. Also, a list of issues and questions was generated by all parties to for the evaluation criteria needed for this study and eventually a user survey. As a final note, training was received by the developers during each of the visits as to the inner workings and modeling techniques used at these centers. Form these discussions, a user survey was generated that will provide feedback on the four design codes under study. The survey is provided in Appendix A. The survey is broken into the general categories shown in Table 5. The survey is currency being filled out by users across the country and results will be tabulated when they are returned. Additional surveys are being filled out by students at >'•-. Georgia Tech Aerospace Systems Design Laboratory so that new user feedback can be obtained. Evaluation Criteria Survey Page 26 Table 5. Survey Categories and Feedback Category Desired Feedback Program Which analysis codes are used Program Ratings General ratings in for source code, documentation, studies, and usability Program Capabilities General questions regarding platforms, execution times, which analysis modes are used User Considerations Questions concerning the level of design expertise of the user filling out the questionnaire Developer Considerations Questions concerning the level of programming expertise of the user fdling out the questionnaire Input/Output Format and Considerations How is the program in terms of I/O capabilities Program Modules Individual disciplinary modules are rated for their overall effectiveness, fidelity, and shortcornings in modeling certain configurations Program Enhancements Additional modules and modifications by the user to provide capabilities that do not exist Vehicle Modeling Survey the types of vehicles that have been modeled and the accuracy of the prediction capabilities of the code Code Capability / Deficiency Rank 19 areas of future research that the user would like to see developed Scaling Laws Page 27 3, SCALING LAWS The scaling laws within synthesis and sizing codes dictate the converged vehicle solution. Based on these laws, the code will size an aircraft until specific mission requirements can be met. During this process, the code will add and distribute fuel and apply appropriate scaling laws in order to assess mission performance. The eventual outcome is that the final vehicle configuration is direcdy effected by these laws and it is essential to understand how these laws vary between codes. 3.1. ACSYNT Of the seven control options in ACSYNT, two are used primarily. These are the convergence option, which is equivalent to running ACSYNT in analysis mode, and the optimization, which allows an objective function to be maximized or minimized. 3.1.1. Convergence To converge an aircraft, the user starts by entering the aircraft geometry and an estimated weight. ACSYNT then calls the Trajectory module, which, by additionally calling the Aerodynamics and Propulsion modules, calculates the mission performance at each mission point. The Weights module then calculates a new gross weight based on fuel needed and component butidups. The component buildups are calculated both as fractions of the gross weight and with empirical relationships. The initial estimate is then compared to the calculated weight, and if they do not agree to within a prescribed tolerance, the program iterates until the weights are converged. To do this, ACSYNT assumes that there exists a relationship between the estimated weight and the calculated weight. A typical relationship is shown in Figure 14. ACSYNT takes the initial estimate of the weight and plots it against the delta value between the estimated weight and the calculated weight (see Figure 15). The user inputs an initial slope value, and the program extrapolates from the point down to the Y=0 value, which will Scaling Laws Page 28 correspond to zero delta between the two weights. (It is important to note two things about this slope value: the user inputs a positive value, yet the program algorithm necessitates a negative slope, as shown in the figure. The change is made internally. Also, the slope shown in Figure 14, which is in the documentation, is not equivalent to the slope the user needs to input. Together, these two inconsistencies, which are not documented, make understanding the convergence process very difficult for the new user.) CO SJ •a u EsSmaiedWaght, WMt Figure 14. Typical Relationship Berweeo Calculated Weight and Estimated Weight2 CCD • D Input 3c£e\ Incut W=lc/fi rMcpdctetc Y=0 Nswfelimcfec Figure 15. ACSYNT Weight Convergence Scheme The point where Y=0 is selected as the new estimated weight. The modules are again called to calculate a new weight, and the two values are again compared. If they are not within tolerance, the new estimated weight and the new delta are added as a new point on the graph, and either linear or quadratic interpolation is used to extrapolate a new value Scaling Laws Page 29 for converged weight. This process continues until the weight is converged, or until the we:'.ght cannot be converged, in wl.ich case the weight is set at the maximum value input by the user. It is important to note that this method does not rely on knowing the exact shape of the curve that relates the estimated weight to the calculated weight. Therefore it is not necessary to carry empirical correlation data or equations as part of the source code. In addition, it is possible to converge new technology aircraft for which correlation data may be scarce, unattainable, or non-existent. Thus, the accuracy of the convergence depends heavily on the accuracy of the calculated weight. The documentation of the convergence is scarce and not easily understood. The actual convergence scheme cannot be deduced from the documentation provided. This becomes important when selecting appropriate input values, especially the slope (although the default value for slope is perfectly adequate and does not signiiicantiy impact either the time to converge or the accuracy of the convergence). The documentation in the source code is not adequate for rapid comprehension of the algorithms. 3. i. 1. Optimization ACSYNT is capable of optimization through the use of the COPES/CONMEJif program. An objective function is the parameter which is to be minimized or maximized, and is a function of design variables. Design variables are those parameters that are allowed to be changed in order to optimize the objective function. They may consist of dependent or independent variables. Constraints must also be functions of the design variables, and are limited to a target value or a range of values. ACSYNT has the capability to use any of its 487 design variables as optimization variables. However, only one objective function may be optimized at a time. As a practical limit, no more than ten design variables should be used at a time. A list of the most common optimization variables are shown in Table 6. Scaling Laws Page 30 Table 6. Suggested Design Variables in ACSYNT Variable Optimization Use Max Gross Weight Objective Function Aspect Ratio Design Variable Body Diameter, max Design Variable Body Lenth, max Design Variable Delta Fuel Volume Constraint Canard Area Design Variable Canard Sweep Design Variable Wing Area Design Variable Wing Sweep Design Variable Wing Root T/C Design Variable Wing Tip T/C Design Variable Wing Taper Ratio Design Variable Landing Thrust to Weight Constraint Engine Scale Factor Design Variable Wing Loading Constraint Aircraft Density Constraint 3.2. FLOPS FLOPS will scale a configuration with respect to the following parameters in order to size an aircraft. Again, these parameters effect the final performance characteristics and i should be taken into account when designing a particular vehicle. 3.2.1. Sizing (Analysis) Mode: IOPT=l, IANAL=3 FLOPS flies mission and adds/subtracts fuel until the sizing converges. To do this component weights are calculated. There is no change in geometry except if I • Specify W/S, thus SW (wing area) changes as GW changes I • HTVC or VTVC > 0; respective tail area is changed to satisfy the input tail „„_. HTVC'SW^ISW/AR . 1jrr volume coefficient according to: SHT = for HT as an FusLength example Fuselage is unchanged; Scaling Laws Page 31 3.2.2. Optimization mode: IOPT=3, IANAL=3 During optimization, there are 11 design variables that are available. These are the only parameters that can be varied and they are given in Table 7. Table 7. FLOPS Optimization Design Variables Variable Effect AR Aspect ratio THRUST Thrust per engine or T/W SW Wing reference area or W/S TR Taper ratio SWEEP 1/4 chord wing sweep TCA Thickness / chord ETJT Engine Turbine Inlet Temp. EOPR Engine Overall Pressure Ratio EFPR Engine Fan Pressure Ratio EBPR Engine Bypass Ratio ETTR Engine Throttle Ratio The relationship between SW, AR, SPAN, and GLOV is as follows: AR = SPAN 2 /(SW - GLOV) where, GLOV is the portion above the outboard sweep line continued inboard. Mach number and altitude for mission segments can be optimized via the Performance Module. In this case: • Fuselage is unchanged; • Wing changes shape and size if appropriate optimization variables chosen • Tails change only as described in Sizing (Analysis) 3.2.3. Fuel Volume considerations FLOPS sizing convergence is not dependent on having sufficient fuel volume. If there is insufficient volume, only a warning is issued. Fuel is carried as follows: • Wing: FULWMX (scales with AR, SW, TR, SPAN) Scaling Laws Page 32 ( FULWMX = FWMAX • TCA • SW 2\ 1 — TR (1 + TR2) SPAN • Fus.: FULFMX (fixed, unless LFUFU =1) • If IFUFU= 1, fuselage fuel capacity is adjusted to meet fuel reqmts. • External tanks: FULAUX (fixed) 3.2.4. Fuselage "Design" If user does not input fuselage length and width, FLOPS will calculate them if given the following information: • FPLTCFf (1 st class seat pitch) • TPLTCH (Tourist class seat pitch) • NFABR (# 1st class seats abreast) • NTABR (# Tourist class seats abreast) If needed, FLOPS will form a second deck. Configuration Modeling Page 33 4. CONFIGURATION MODELING Three configurations have been modeled in ACSYNT and FLOPS. At the writing of this interim report, ICAD has been acquired and users are still being trained. IDAS is still being acquired. Initial training in IDAS and ICAD has been received at ASC/XRED. The present status of the modeling is summarized in Table 8. Cost estimation is not being considered at this time. Table 8. Status of Modeling B747-400 C17 F16C ACSYNT Mission V V Geometry V V Aerodynamics Structures/Weights V V Propulsion V V V Performance Matching V FLOPS Mission V V Geometry V Aerodynamics S tructuresAV eights Propulsion Performance Matching ICAD Not Modeled at This Time IDAS Not Modeled at This Time Configuration modeling is being done in two directions. First, the baseline configuration is direcdy entered into the design codes and analysis and performance values are obtained. This will test the. non-scaled prediction capabilities of the codes. These results vary because these codes have different analysis routines and estimations based on different assumptions and historical databases. Second, appropriate factors can be applied based on the non-scaled numbers so that the performance can be matched to known data. Configuration Modeling Page 34 Using these results, it will be possible to assess the types of and the degree of accuracy of the analysis and performance data. The results in this progress report are non-proprietary. Input and output files from ACSYNT and FLOPS are given in Appendices B - G. These files contain the non-scaled technology factors. Performance for some of the configurations is still being matched so scale factors are not yet appropriate. Al: the time of the final report, a second document will be provided that contains any proprietary information. 4.1. Commercial Transport: B747-400 4.1.1. ACSYNT Information for the Boeing 747 was obtained both from Jane's All The World's Aircraft and from several existing ACSYNT 747 models of known fidelity. The matched model was completed first. The unmatched model was then created by deleting matched information and letting ACSYNT calculate the missing parameters based on its internal algorithms. First, the geometry was checked and found consistent with information in Jane's. As in the C17, the wing lets w^re not explicitiy modeled in the geometry; rather, the aerodynamic coefficients were changed to reflect their effects. Next, the existing ACSYNT models were compared for inconsistencies and/or completeness of information. For example, the weight slopes were found to be fixed in one model, and the weights themselves fixed in another. Although these two methods produced identical results, the slope factors were retained in order to allow other factors in the modeling to possibly affect the weight. Aerodynamic data was relatively consistent between the models, but one model had drag slope factors included and these were incorporated into the new model. A new mission was created to match the mission run in the FLOPS 747 case. The economic analysis of the model was not included. Configuration Modeling Page 35 4.1.2. FLOPS The Boeing 747-400 derivative modeled in FLOPS was based on the 412 passenger capacity, 7,300 nm mission with a cruise Mach number of 0.85 and altitude of 40,000 ft. The input file was a derivative of work performed by the Systems Analysis Branch at NASA Langley. The original file contained all pertinent information (geometry, aerodynamic drag polars, etc.) except for the engine definition. The engine used to size the B747-400 was the Pratt&Whitoey 4056. The engine information was obtained from NASA Lewis and in a form compatible with the FLOPS engine analysis routines. The B747-400 was sized based on a weight breakdown definition. Actual component weights were specified and FLOPS was manipulated to achieve those goals. The manipulation was accomplished through component weight factors. Within the FLOPS input namelists, factors exist which will either increase or decrease the resulting weights determined by the internal equations. These factors scale the results up or down depending upon the actual numbers needed. In this case, fourteen factors were utilized to either reduce or increase the component weights. The factors and a description are listed in Table 9. The resulting sized aircraft was less than 5,000 pounds from the actual aircraft. All component weights deviated from the actual values by less than 1%. Configuration Modeling Page 36 Table 9. FLOPS Technology Factors Namelist Name Variable Parameter WTLN Wing FRWI 1.015 Horizontal Tail FRHT 0.8 Vertical Tail FRVT 0.9 Nose Landing Gear FRLGN 1.5 Main Landing Gear FRLGM 1.7 Nacelles FRNA 1.45 Miscellaneous WPMSC 0.65 Surface Controls FRSC 1.55 Auxiliary Power Unit WAPU 0.9 Instruments WIN 1.0 Hydraulic Systems WHYD 1.3 Electrical Systems WELEC 0.8 Avionics WAVONC 1.7 MISSIN Fuel Flow Factor FACT 1.025 4.2. Military Transport: C17 4.2.1. ACSYNT The information used to model the McDonnell Douglas CI7 came from both published sources (such as Jane's All the World's Aircraft and Aviation Week and Space Technology) and from McDonnell Douglas directly. The amount and integrity of the information provided was such that a matched ACSYNT model of the aircraft was completed first. The fixed information was then stripped from the model and ACSYNT was allowed to calculate as much of the missing information as possible to create the unmatched model. The first step was to model the aircraft's geometry. While a rather sophisticated model may be created using the graphics interface to the code, ACSYNT is somewhat limited in what it can and cannot analyze from a geometric point of view. For example, ACSYNT does not currently model winglets. However, effects of winglets may be included numerically in the aerodynamics module by adding a multiplicative factor to the coefficients of lift and drag. The wireframe geometry of the model used in ACSYNT is Configuration Modeling Page 37 shown in Figure 16. Note, for example, the geometric lack of dihedral. Yet dihedral is a numerical input to the code, and its effects computed in the aerodynamics. After the geometric model of the aircraft was completed, propulsion data, aerodynamic data, weights, and mission data were added. Propulsion data was gathered from published sources, as well as some basic information provided by McDonnell Douglas. Aerodynamic data was provided by McDonnell Douglas in the form of some drag polars, Cl-alpha curves, and a parasite drag breakdown. The engine exhaust over the blown flaps provided a significant amount of lift, but as a direct function of thrust. Difficulty arose in precisely matching the aerodynamics because of this coupled nature of the thrust and lift. This resulted in some rather unusual drag polars, in which the drag curves and Cl-alpha curves were differentiated by a dimensionless drag coefficient. Attempts to extract Mach numbers out of these thrust coefficients led only to the conclusion that the curves provided were probably conducted at very small Mach numbers, not in the flight regime of interest (cruise). This precluded their use. ACSYNT, however, provides scaling factors that allow the user to change the aerodynamics to model effects such as the blown flaps. If the effect on lift and drag is known, the aerodynamic quantities may be scaled accordingly. Figure 16. ACSYNT Wireframe Representation of C17 Model Configuration Modeling Page 38 For the matched model, component weights were fixed based on component weights of similar aircraft and best engineering judgements. ACSYNT was then executed to converge the weight of the aircraft. The converged weight was very close to the actual weight of the aircraft due to the fixing of the component weights. Given the accuracy of the data, the matched model turned out well. ACSYNT provides technology factors that allow scaling of results to correspond to given data. The initial input process was relatively simple. Matching the scaling factors, however, was not easy and analyzing the output file to identify the results was difficult. After the matched model was completed, much of the fixed data was stripped out in order to check the accuracy of the equations in ACSYNT. The geometry remained the same. The fixed weights were completely removed, except the payload. Aerodynamics still needed a CI max. The propulsion was modeled using the General Electric CF6-80C2 as a baseline engine and using its cycle analysis parameters. The engine was then scaled to provide the thrust required. Three basic missions were performed. Each consisted of a climb segment, a cruise segment at altitude and with payload, a beam-down descent and unloading of payload, a second climb and cruise segment, and a final descent. Each mission had a specified payload and a range. 4.2.2. FLOPS The McDonnell Douglas C-17 transport was modeled in FLOPS based on nonj- proprietary information. Three missions were selected: • 2500 nmi range, 124,000 lbs. payload • 4600 nmi range, 50,000 lbs. payload • 3900 nmi range, 112,000 lbs. payload The range in each includes a 500 nmi leg to an alternate airfield for refueling. For each mission, the cmise conditions were specified at 28,000 ft. altitude and 0.75 Mach number. Configuration Modeling Page 39 In FLOPS, these values were fixed and the mission segments were optimized for minimum fuel flow. The mission profile is included in Figure 17. A problem arises because in FLOPS only one takeoff and one landing can be modeled; there is no capability for multiple take-offs and landings. Therefore, one specifies a refueling segment with a negative amount of fuel added to simulate the "middle" descent, landing, taxiing, takeoff, and climbout. The negative fuel added corresponds to the fuel needed to perform these mission segments. I As all propulsive data are proprietary, no engine deck was available. Therefore, the internal engine modeling capability of FLOPS was utilized. FLOPS provided several different types of powerplants, including a twin-spool bypass turbofan engine, like that used on the C-17. Basic parameters, such as overall pressure ratio and fan bypass ratio, were input. Modeling engines in this manner is fairly straightforward. All other inputs were starightforward, and performed as specified in the FLOPS manual. The only other difficulty came with the JJRW switch in the MISSION definition namelist. This swtich is set to either fix the aircraft weight, and calculate range based on it, or vice-versa. Initially, this was set to fix the weight, resulting in several cases of the aircraft failing at some point along the mission. In this mode, FLOPS is extremely sensitive 4. Descent X nmi 500 nmi —*\ Figure 17. C17 Mission Profile Configuration Modeling Page 40 to the input design gross weight. If input too high, the aircraft will not be modeled; too low, and the program provides erroneous output. Simply setting this to fix the range at the input value, and sizing the aircraft's weight accordingly, fixed this problem - FLOPS successfully modeled the aircraft on the first attempt thereafter. 4.3. Fighter: F16C The characteristics for the F-16C were taken from Standard Aircraft Characteristics for the F-16C Fighting Falcon for Block 30 through Block 30C. This document outlines the basic dimensions, weights, engine characteristics, loading and performance characteristics for various missions. Please refer to Table 10 for the some of the geometric characteristics of the F-16C. Table 10. F-16C Geometry Input for FLOPS and ACSYNT Group Parameter Value Unit Group Parameter Value Unit Fuselage Overall Length 49.3 H. Tail Area 63.7 feetz Overall Height 16.6 feet Aspect Ratio 2.114 Width 3.8 feet Taper Ratio 0.39 Sweep (L.E.) 40.0 Wing Area 300.0 feet2 Airfoil 4.5 % thick Span 30.0 feet V. Tail Area 54.75 feet2 Aspect Ratio 3.0 Aspect Ratio 1.294 Taper Ratio 0.2275 Taper Ratio 0.437 Sweep (L.E.) 40.0 degrees Sweep (L.E.) 47.5 degrees Airfoil 4.0 % thick Airfoil 4.0 % thick In addition, mission time, fuel burned and distances for these missions were provided. These missions included: Air Superiority, Air to Ground, Minimum Time Intercept, Close Air Support, Combat Air Patrol (CAP), and Ferry. The mission used to compare ACSYNT and FLOPS was the CAP mission. This demanding mission tests the performance of the F-16C at a variety of operating conditions. The details of mission are outlined in Figure 18. Configuration Modeling Page 41 45,600 ft * Reserve fuel for 20 min Loiter at Sea Level Figure 18. F-16C Combat Air Patrol Mission The total block time for this mission was 229.8 minutes (3.833 hours) and the block range was 644 nautical miles. Several mission rules were outlined in order to further specify how the mission segments were to be flown in ACSYNT and FLOPS. Naturally, the manner in which the mission was defined by each code differed, so these rules helped to maintain consistency between the codes. The mission rules are as follow: 1. Takeoff Fuel Allowance: 6 minutes of operation at sea level with a power setting equivalent to T/W=0.2. One minute allocated for takeoff run at mjUitary (maximum dry power) thrust setting and climbs at military thrust setting. 2. No distance credit for takeoff, landing, loiter, combat maneuvers, or descents. I 3. Cruises occur at speed and altitude for maximum range, with 50,000 ft as the maximum cruise altitude. 4. External fuel tanks are dropped when the weight of mission fuel burned equalt the weight of external fuel. The pylon is retained for the external centerline fuel tank. Configuration Modeling Page 4^2 5. Combat occurs at M = 0.9,10,000 feet, and for a sustained turn at a load factor of 5 g's 6. No time or distance credit for expending stores. 7. Return climbs are at military power from the post combat altitude. 8. Landing fuel allowance of 20 minutes loiter at best endurance Mach at sea level. 9. Ammunition casings are not expended, but are included as weight carried throughout the mission. For a consistent comparison of mission performance, engine characteristics should match. There were several problems in getting consistent propulsion characteristics for use in FLOPS and ACSYNT. The F-16C currently utilizes either the General Electric F110- GE-129 (GE129) turbojet engine or the Pratt & Whitney F100-PW-229 (PW229) turbojet engine. Both of these produce roughly the same maximum amount of uninstalled sea level static (SLS) thrust. The GE129 produces roughly 29,500 lbs of thrust at these conditions, while the PW229 produces 29,000 lbs of thrust. After considering installation losses for the GE129, the SLS thrust drops to 25,150 lbs. However, the baseline model for the F- 16C utilized an F110-GE-100 (GE100), precursor of the GE129, which produces 24,850 lbs of installed thrust at SLS. Please refer to the summary in Table 11 for the specifications of the GE100 power plant: Table 11. Engine Characteristics for the Fl 10-GE-100 Power Plant F110-GE-100 Manufacturer General Electric Aircraft Engines, Cincinnati, OH Type Twin Spool Axial Flow Turbofan Length w/ Afterburner 182.3 in Weight (Dry) 3,911.1 lbs Inlet Normal Shock (826.7 in2) Nozzle Convergent-Divergent Variable Geometry Augmentation Afterburner At the time of modeling, a GE100 engine deck was not available. This engine was simulated in ACSYNT using the internal analysis by letting it scale the engine to the Configuration Modeling Page 43 appropriate thrust rating. The GE129 in the form of a look-up table was used for the FLOPS analysis. This seems to be an inconsistency, and is thus noted, but at the time of modeling there were considerable difficulties in making ACSYNT accept the GE129 engine deck. The most appropriate comparison would be to use the same look-up tables for both codes. At present, it would seem that FLOPS has a slight advantage in the propulsion system equal to 300 lbs thrust at sea level. The stores for the F-16C were configured for the CAP mission as shown Figure 19. Two AIM-9's were installed on the wingtip launchers at stations 1 and 9. Aerodynarnically, this is considered to be the baseline configuration for store drag. Additional stores incrementally add drag to this baseline configuration. In addition to the wingtip AJM-9's, two AIM-120's were installed on wing launchers at stations 2 and 8. Two 370 gallon external fuel tanks at stations 4 and 6, and one centerline 300 gallon tank at station 5 supplement internal fuel capacity. Station Location for the F-16, Looking Forward Figure 19. Store Configuration for the F-16C Combat Air Patrol Mission The component weight breakdown for the configuration shown in Figure 19 is summarized in Table 12. The empty weight for the CAP mission configuration is 17,787 Configuration Modeling Page 44 lbs, the fuel weight is 13,732 lbs and the payload weight is 3,869 lbs. The takeoff gross weight is 35,388 lbs. Table 12. F-16C Block 30 Combat Air Patrol Mission Weight Breakdown Airframe Empty Weight (lbs) Airframe Structure (lbs) Wing 2,096 Fuselage 3,624 Hor. Tail 498 Vert. Tail 376 Nacelles 689 Ldg. Gear 992 Propulsion System Engines one ~~1 3,911 Fuel System 578 Fixed Equipment Hydraulics & Pneumatics 311 Electrical 686 Avionics 2,438 mstrumentation 107 De-ice & A/C 267 Aux. Gear 172 Furnish & Equipment 312 Flight Controls 730 17,787 Payload Fuel Drop Armament 20mm M-61A1 600 - Ammunition Casings & Dram 208.5 _ Projectile 78.5 78.5 Missiles (AIM9.120) xtwo 1,066 1,066 Bombs - - Pilot 215 - Ext. Tanks 370 gal.x two 950 950 300 gal. 579 579 Pylon 172 -Payload Weight (lbs) 3869 2673.5 Internal Fuselage 6,972 External 370 x 2 gal 4,810 300 gal 1,950 Total Fuel (lbs) 13,732 Takeoff Gross 35,388 Weight (lbs) 4.3.1. ACSYNT The F16C mission, as given in Figure 18, requires externally carried weapons and fuel. In ACSYNT the aerodynamic modeling consists of inserting appropriate values for the drag area, D/q, for the missiles and external fuel tanks. ACSYNT can make drag estimates in two ways. The first involves entering an array of drag values corresponding to ten different Mach numbers for each type of store. The second, which was the method Configuration Modeling employed, uses only one value of D/q for a Mach number below 0.5, and extrapolates using the Snodgrass method to obtain drag at higher Mach numbers. The AJM-9 missiles mounted on the wingtip launchers were assessed no drag penalty, as this is consider to be the baseline configuration. Drag for the ATM-120 missiles was obtained from the ACSYNT manual. Drag characteristics for the 300 and 370 gallon external fuel tanks were not available, and were estimated based on similarly sized external tanks in the ACSYNT manual. Unfortunately, the calculation of store drag is an aircraft dependent problem: the same missile on two different aircraft may generate different drag, as the installation may vary. At this point, the aerodynamics for the F-16C model have not been validated against polars for the real aircraft ACSYNT produced good agreement for overall fuel bum and mission times for the F16C mission. Both the total fuel burn and mission time agree to within one percent of the values given for the actual F -16C. Mission times and fuel burns for the F-16C are summarized in Table 13. When comparing the mission times per mission segment, minor to moderate departures from the actual times can be noticed. The first point is that although the mission time is less, the mission fuel bum is greater. Secondly, the estimates for the loiter segments are much greater, on the order of 2100 lbs, than the actual mission. And lastly, the estimates for the combat segment indicate that either ACSYNT's internally scaled turbojet engine does not accurately model the use of afterburners, or the drag values predicted are too low. Configuration Modeling Page 46 Table 13. Mission Time/Fuel Burn Comparison MISSION TIME (minutes) MISSION FUEL (pounds) BURN Segment ACSYNT Actual % ACSYNT Actual % takeoff 7.0 7.0 0.0% 651 719 -68 -9.5% climb 4.3 9.9 -56.6% 702 1068 -366 -34.3% cruise 26.4 32.5 -18.8% 1,663 1883 -220 -11.7% loiter 120 120 0.0% 7,242 5775 1,467 25.4% combat 2.0 2.0 0.0% 697 1996 -1,299 -65,1% climb 3.0 6.1 -50.8% 334 447 -113 -25.3% cruise 31.7 32.3 -1.9% 1,143 1092 51 4.7% loiter 20 20 0.0% 1,441 752 689 91.6% Totals 214.4 229.8 1.0% 13,873 13,732 141 1.0% 4.3.2. FLOPS The aircraft was modeled using FLOPS in the analysis mode. Each of the component weights was entered, as were the aerodynamics and engine decks. The modeler then simply ran FLOPS to compute the output parameters. A comparison of output with actual values is presented in Table 4 below. Table 14. Comparison of FLOPS Output to Actual Values Parameter FLOPS output Actual % Error Takeoff Weight (lb.) 34,306 35,388 -3.06% Empty Weight (lb.) 19,882 17,787 11.78% Fuel Used (lb.) 13,358 13,732 -2.72% Mission Time (rnin.) 212.3 229.8 -7.62% Wing Loading (lb./sq. ft.) 114.35 117.96 -3.06% The mission module in FLOPS does not have a combat segment. This problem was circumvented by using 360-degree turn maneuvers to simulate the two minute combat. Because of this, the output mission segments are not continuous. There are often jumps between the Mach number and altitude at the end of one mission segment and the beginning of the next segment. Additionally, only one descent segment is allowed per mission. There are no fuel penalties applied between mission segments with large altitude changes. For this mission, the modeler added an accelerate segment between the 2 hour loiter at altitude and combat at 10,000 feet to simulate descent. FLOPS does not have separate Configuration Modeling Page 47 entries for maximum continuous thrust and maximum thrust with afterburner because transport aircraft do not use afterburners. FLOPS could not read the entire engine deck used to model the F110-GE-129. Altitudes and Mach numbers were removed from the engine deck if the F-16C would not fly at those specific conditions in the given mission. Results and Recommendations Page 48 5. Results and Recommendations The final results will be summarized in a side-by-side comparison of ACSYNT and FLOPS. This comparison is based on the user surveys and the modeled configurations described in this report. Recall, that the modeling is based on initially non-scaled parameters and then a correlated configuration. As part of the future recommendations, the modeling of a revolutionary concept is desired. In addition, the assessment of ACSYNT and FLOPS used in conjunction with supporting codes is desired. Therefore, higher fidelity modeling is recommended. Finally, an internal examination module-by-module of these codes is also recommended so that the specific physics and statistical databases can be determined. Based on this, the ability for these codes to respond to futuristic configurations and technologies using existing modules can be seen. This will also include the ability to integrate new modules and/or use supporting codes. 5.1, Side-by-Side Comparison At the completion of Phase 1 of this study, a side-by-side comparison will be ready. This comparison has been brainstormed by NASA personnel at Langley and Ames and members of the Aerospace Systems Design Laboratory at Georgia Tech. This comparison will utilize an assessment of the items in Table 15 and will be filled in at the completion of this phase. An extended description of these elements can be found in Appendix H. ICAD and IDAS will be evaluated at a later date. The assessment will be made based on the results of the user surveys and the modeling done in-house at the ASDL with industry data. Results and Recommendations Page 49 Table 15. Side-by-Side Assessment FLOPS ACSYNT Category Portability Ease of Module Change-Out Optimization Geometric Modeling Customer Documentation Level of Design Consistency of Fidelity of Analysis Trends Identification Input Program Limitations No Fudge Rule Ease of Use of the Graphical User Interface (GUI) Readability, Traceability, and Tailorability of Source Code Flexibuity Computational Time Constraint and Design Variable Sensitivity To Be Determined To Be Determined Overall Rating 5.2. Isolation vs Supporting Tools Recall that one of the strategies for doing trade studies is the use of supporting analysis in higher fidelity analysis and the use of approximate techniques (Section 1.4). The modeling done so far in this study is the assessment of the monolithic codes in isolation, with the results to be summarized to one similar to Table 15. A continuation of this study where the monolithic codes are used in conjunction with supporting tools is recommended. This type if analysis strategy is more consistent with current industrial practice and also is coherent with the techniques being developed for computing frameworks. During this study, supporting codes for each of the disciplines will be identified. For example, FELISA and FPS3D are two codes which can be used for aerodynamic analysis. The three configurations used in this initial study will be modeled in these supporting tools as well. Following this, another assessment similar to Table 15 will be made. Results and Recommendations Page 50 5.3. Modeling of a Revolutionary Concept These codes also must accommodate evolutionary as well as revolutionary configurations and technologies. The configurations in this initial study represent traditional designs. Most concepts that are modeled within these codes tend to be evolutions of these standard configurations. If other configurations are used, it is often the case that modifications to the original code must be done or parameters must be scaled past their region of validity. Modem day aircraft design requirements are providing these codes with configurations that are far outside of existing databases and technologies that are still developing. An investigation was made during the first phase of this study to determine the scaling laws that are realized by the codes for sizing configurations. A highly- maneuverable fighter concept is suggested as one that will test these laws. In addition, such a fighter of the future will require revolutionary new technologies in order to meet the stringent requirements imposed on it. The modeling of this configuration, along with appropriate trade studies, will permit a fair assessment of the ability for new technologies to be integrated into the code or for information from supporting codes to be used. Again, the modeling of this fighter concept will truly test the claim that these monolithic codes are modular. 5.4. Independent Module Evaluation A side-by-side comparison will be made that assess the capabilities of ACSYNT and FLOPS. To complement this effort, a side-by-side assessment of the individual disciplinary modules should also be made. This will include such things as: • Physics, • Assumptions, • Range of applicability, Results and Recommendations Page 51 • Fidelity, and • Ease of generating data required for the analysis. This assessment can be made, in part, through the configuration modeling that was already done. An in-depth study of the individual modules within ACSYNT and FLOPS will be required. This will entail breaking apart the codes by subroutine, tracing variable flow, and evaluating the theory that went into the routine's development. This portion of the study continuation also proves to be beneficial from a technology advancement viewpoint. Currently, computing frameworks are providing the modular capabilities that will support the analysis tools of the future. This study will serve to provide ACSYNT and FLOPS developers the detailed information that will be required to transition to such a framework in the future. Future studies may involve the categorization of these modules into an architecture such as that shown in Figure 2 References Page 52 6. REFERENCES 1. "Basic Aircraft Design (BAD) - Web," NASA Ames Research Center, http://fornax.arc.nasa.gov:9999/badweb/badweb.html. 2. "ACSYNT Overview and Installation ManuaI,,, ACSYNT Institute, Virginia Polytechnic Institute and State University, May 1992. 3. McCullers, L. A., "FLight Optimization System, User's Guide, Version 5.41," NASA Langley Research Center, December, 1993. 4. Cathey, J., "VAX ICAD User's Guide," ASC/XRED, Obtained 1996. 5. Maira, R., "IDAS User's Manual," Rockwell International - North American Aircraft, April 30, 1991. 6. Ed. Lambert, M., Jane's: All the World's Aircraft. Jane's Information Group Limited, 1993-1994 I i i Appendices Page 53 APPENDICES Survey Page 54 Appendix A. Survey FLOPS/ACSYNT IDAS/ICAD DESIGN CODE SURVEY Company Name Corporate Contact Code Point-of-Contact Page 1 of 4 Please return by December 5, 1996 to: c/o: Dr, Dimitri Mavris; School of Aerospace Engineering, Georgia Institute of Technology, Atlanta Georgia 30332-0150 Program Select the one code to which responses to this survey apply: ACSYNT FLOPS ICAD IDAS Version Version Version Version • Stand-alone • Graphical •Stand-alone • XFLOPS Program Ratings Rate this code in the following cate gories: Low Hi Source code easy to modify? I 1 3 4 5 Program logic easy to trace? 1 2 3 4 5 Confidence in program results? 1 2 3 4 5 Easy of replacing modules? 1 2 3 4 5 User's manual? • None 1 2 3 4 5 Programmers manual? • None 1 2 3 4 5 Theory manual? • None 1 2 3 4 5 Applications manual? • None 1 2 3 4 5 Sample input cases / examples? • None 1 2 3 4 5 1 Verification studies? 1 2 3 4 5 Output readability? 1 2 3 4 5 Organization of output? 1 2 3 4 5 Rags for plots & chart creation? 1 2 3 4 5 Rags for extended output/debug? 1 2 3 4 5 Adequate error warnings? 1 0 3 4 5 f/ser Considerations Indicate your experience with this code; Level of user expertise; • Novice •Intermediate ^Advanced What is your area of expertise? In which disciplines are you most familiar? Developer Considerations If you are a developer, indicate the following: Level ot expertise: • Modify existing module theory • Integration/Architecture development • Graphical User Interface Indicate the disciplines which you are familiar with: • Geometry • Mission • Aerodynamics • Structures Q Propulsion • Performance • Economics • Optimization • Other, please specify Program Capabilities Indicate this codes' capability: Current operating platforms: • Sun • SGI • HP • RS6000 • PC • Mac Level of required expertise: • Novice • Intermediate • Advanced Time to create a new input deck from "scratch" • Minutes • Hours • Days Time to create a new input deck from an existing configuration • Minutes • Hours • Days Code capability: • Analysis • Design • Parametric Study Any additional comments: Input/Output Format and Considerations Rate the overall input/output of this program: What are the input formats feir ihis code? (Check all that apply) • Namelist • Fixed-Formatted • Free-Formatted D Interactive • Spreadsheet • Combination Briefly describe the files required for analysis of a "typical" configuration: Briefly describe the code output and any additional output capability: (i.e. post-analysis, plotting, etc.) What additional input/output capability do you desire or require? FLOPS/ACSYNT IDAS/ICAD DESIGN CODE SURVEY Page 2 of 4 • Program Modules Check the modules that you have worked with in this code, rate (he module characteristics, and comment nn (he capabilities and extensions, '••If..' '.• Raic Module Characteristics Low High Analysis equations developed for which class of vehicles? Comment on modeling cap abilities, consistency with current technologies, and module upgrades. • Geometry Fidelity; Ease of Input: Input Format: GUI (if available): Component Library: 1 2 3 4 5 1 2 3 4 5 12 3 4 5 1 2 3 4 5 1 2 3 4 5 • Fighter • Gen. Aviation • Bomber • Business Jet • Tiltrotor • Cargo • UAV Transports: • Missile • Low Capacity • Recon. • High Capacity • Trajectory/Mission Fidelity; Ease of Input; Input Format: Output Format; Mission Definition: 1 2 3 4 5 12 3 4 5 12 3 4 5 12 3 4 5 1 2 3 4 5 • Fighter • Gen. Aviation • Bomber • Business Jet • Tiltrotor • Cargo • UAV Transports: • Missile • Low Capacity • Recon. • High Capacity • Aerodynamics Fidelity: Ease of Input: Input Format; Output Format: Low Speed Aero: High Speed Aero: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 • Fighter O Gen. Aviation • Boraber • Business Jet • Tiltrotor • Cargo • UAV Transports: • Missile • Low Capacity • Recon. Q High Opacity O Structures Fidelity: Ease of Input; Input Format; Output Format: Weight Estimation: 12 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 • Fighter • Gen. Aviation • Bomber • Business Jet • Tiltrotor • Cargo • UAV Transports: • Missile • Low Capacity • Recon. • High Capacity • Propulsion Fidelity: Ease of Input: Input Format: Output Format; Table Lookup: Cycle Analysis: 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 12 3 4 5 DFighter • Gen. Aviation • Bomber Q Business Jet • Tiltrotor D Cargo • UAV Transports: • Missile • Low Capacity • Recon. • High Capacity 0 Performance Fidelity: Ease of Input: Input Format; Output Format: Size to Performance: 1 2 3 4 5 12 3 4 5 1 2 3 4 5 1 2 3 4 5 12 3 4 5 • Fighter • Gen. Aviation • Bomber • Business Jet • Tiltrotor • Cargo • UAV Transports; • Missile • Low Capacity • Recon. • High Capacity • Economics Fidelity: Ease of Input: Input Format: Output Format: Single v. Fleet LCC: 12 3 4 5 • Fighter • Gen. Aviation • Bo mber • Business Jet riTillmfn, HI Pornn 1 Z J •+ j QUAV Transports: 12 3 4 5! Q Missile • Low Capacity 1 2 3 4 5 12 3 4 5 URecon. U High Capacity • Optimization Fidelity: Ease of Input: Input Format: Output Format: 12 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 • Fighter • Gen. Aviation • Bomber • Business Jet • Tiltrotor • Cargo • UAV Transports: • Missile • Low Capacity • Recon. • High Cuiacity FLOPS/ACSYNT IDAS/ICAD DESIGN CODE SURVEY Page 3 of 4 Program Enhancements Indicate any additional modules that you or someone else has added: Module Rate Module Characteristics Law High Analysis equations developed for which class . of" vehicles? ... Comment on analysis and modeling capabilities: Have yen or someone else extended ihe capabilities of , jhis module? If so, explain. Fidelity: Ease of Input: Input Format: 3 4 5 3 4 5 3 4 5 • Fighter • Bomber • Transport • UAV • Helicopterd Missile Fidelity: Ease of Input: Input Format: 12 3 4 5 1 2 3 4 5 12 3 4 5 • Fighter • Bomber • Transport • UAV • HelicopterCJ Missile Vehicle Modeling Check the vehicles that you have worked with using this synthesis code, rate the ability of the code to model the vehicle type accurately for different studies, and describe the configurations modeled. Vehicle Type Rate code on Ihe ability to perform these studies Low High Which vehicles have you modeled using this code, and whai were.the corresponding analysis times? . • Fighter • Analysis 1 2 3 4 5 • Design 2 3 4 5 • Parametric Study 1 2 3 4 5 • Bomber • Analysis 1 2 3 4 5 • Design 2 3 4 5 • Parametric Study 12 3 4 5 • Tiltrotor • Propeller Driven • Analysis 1 2 3 4 5 • Design 2 3 4 5 • Parametric Study 1 2 3 4 5 • UAV • Analysis 1 2 3 4 5 • Design 2 3 4 5 • Parametric Study 12 3 4 5 • Missile • Analysis 1 2 3 4 5 • Design 2 3 4 5 Q Parametric Study 1 2 3 4 5 • Recortnaisance • Analysis 12 3 4 5 • Design 2 3 4 5 • Parametric Study 12 3 4 5 • General Aviation • Analysis 12 3 4 5 • Design 2 3 4 5 • Parametric Study 12 3 4 5 • Business Jet • Analysis 12 3 4 5 • Design 2 3 4 5 • Parametric Study 12 3 4 5 • Cargo • Analysis 1 2 3 4 5 • Design 2 3 4 5 • Parametric Study 12 3 4 5 Transports: 1 • Analysis 1 2 3 4 5 • Design 2 3 4 5 • Parametric Study 12 3 4 5 FLOPS/ACSYNT IDAS/ICAD DESIGN CODE SURVEY Page 4 of 4 Code Capability/Deficiency Rank from I (highest) to 20 (lowest) the following categories in the areas for finther development Code imnrovemcnt ;ircn Kale the code on (lie need for improve [uenS in the following areas • Clean up coding/Remove obsolete code • Validation • Enhance Graphic User Interface • Simplify executive to make module integration easier. • Incorporate more stand-alone codes Which ones? • Update statistical databases Which ones? O improvements on existing modules • Visualization tools for output • Incorporate sensitivity analysis • Incorporate approximate methods • Incorporate probabilistic methods • Incorporate more optimization tools Which ones? • Provide translators for other codes Which ones? • improve documentation • Tutorial/Beginner's guide • Provide sample configurations Suggestions? • Standardize internal data format • Ease of preparing input • Standardize output data format • Comments Appendix B Page 55 Appendix B. B747-400 ACSYNT Input & Output File , Nov 18 96 14:53:03 747-ACSYNT-IN SDATA BLOCK A 1989 BOEING 747-400 TRANSPORT ****** SDATA BLOCK B 1,1 SDATA BLOCK C 5,10, ,5 SDATA BLOCK D .05,.02,,.001 SDATA BLOCK E 1,570,-1 SDATA BLOCK F 1.8,5., SDATA BLOCK G 1, 60,1. SDATA BLOCK H 1 SDATA BLOCK I 581,581,1 30.,,90., SDATA BLOCK V END TRANSPORT 5 4 5 570 585 0 0 .0002 .6 10E8 1 2 3 4 6 12 6 1 3 4 2 6 ***** GEOMETRY FOR BOEING 747-400 *** SWING SWEEP=37.5,KSWEEP=1,TAP£R=0.1752,TCROOT=0.1344,TCTIP= ZROOT=-01.0,DIHED=7,0,AREA = 5814.,AR = 7,688, WFFRAC-.80, XWING=0.45, SEND SHTAIL SWEEP=41.0,KSWEEP=1,AR=3.44,TAPER=0.27,TCROOT=0.11,TCTIP=0, ZROOT=0.69,AREA=1470.O,SIZIT=F,XHTAIL=0.84, SEND SVTAIL SWEEP=41.O,KSWEEP=1,AR=1.23,TAPER=0.29,TCROOT=0.11,TCTIP=0.09, ZROOT=0.6,AREA=830,0,SIZIT=F, SEND SFUS FRN=2.5,FRAB=3.5,WALL=0.4,DRADAR=2.0,LRADAR=2,0,BODL=225.2 , BDMAX=20.2, ITAIL=1, SEND SCREW NCREW=2, SEND SENGINE N=4, SEND S EL-EC LENGTH= 3.0, $ END SPASS NFIRST=34, NCOACH=378, SEATWC=20. SWPOD =0.08, 09, SEND LENGTH Z LENGTH Z 15.000, -0.830, 15.000, -0.830, X SWFACT X SWFACT 0.631, 1.000, 0.631, 1.000, DIAM Y SEND SWPOD DIAM Y SEND SSS$$S$$$$S$$$S$$$$SSSS$$$$SS$SSSS$$$$$SSS$$S$$$SSSSS$S$SSSSS$$$SS$SSSS$$ STRDATA FRFURE=0.06, XDESC=100.O, MMPROP=L, NMISS = 2, TIMTOL=30 WFEXT=0.0 IPST01=5, LEGRES=3 , SEND 9 8.000, 0.241, 6.200, 0.441, TIMTO2=0.5, WFTRAP=0.0, IPST02-2, IBREG = 0, RANGE=3 800,0 , CRMACH=.85, IP£IZE=0, QMAX=400., NLEGCR=30, NLEGCL-20, 96000. MACH NO. ALTITUDE HORIZONTAL CLIMB 0 .00 0. 85 -1 35000 0 .0 O.C 0.0 250 0 1.0000 1 3 -1 0 0 0 0 CRUISE 0 . 85 0 . 85 -1 -1 250.0 0.0 0.0 0 3 1.0000 1 •i 0 0 0 0 3 LOITER 0 .30 0,30 1500 1500 0.0 30.0 0.0 0 0 1.0000 1 4 0 0 0 0 0 9 96000. MACH NO. ALTITUDE HORIZONTAL NO. VTND PHASE START END START END DIST TIME TURN "G" S WKFUBL M IP IX W B A P CLIME 0 .42 O.OO 0 10000 0.0 0.0 O.O 250 0 1.0000 1 2 -1 0 0 0 0 ACCEL -1 0.51 LOOOA 100O0 0.0 0.0 0.0 0. 0 1.0000 1 2 -1 0 0 0 0 CLIMB 0 .42 0.00 -L 33000 0.0 0.0 0.0 270. 0 1.0000 1 2 -1 0 0 0 0 CRUISE 0 ,85 O.OC -I 40000 1800.0 O.C 0.0 0. D 1.0000 1 4 0 0 0 0 0 CRUISE 0 .85 0.00 -L 40000 3000.0 0.0 0.0 0 0 1.0000 1 1 -1 0 0 0 0 DESCENT 0 .85 0. 00 -L 0 0.0 0.0 0.0 0 0 1.0000 1 5 0 0 0 0 0 CLIMB 0 .00 0 .85 -I 350OC 0.0 0.0 0.0 250 0 I .OOOO 1 3 -1 C 0 0 0 CRUISE 0 . 85 0 .85 -L -1 250.0 0.0 0.0 0 C 1.0000 1 4 0 0 0 0 C LOITER A ,30 0.30 1500 1500 0.0 30.C 0.0 0. 0 1.0000 1 4 0 0 0 0 0 ***** AERODYNAMICS OF THE BOEING 747-400 **** * SACHAR ABOSE = 0 .18 ALMAX=20.0, AMC=40 .0, BDNOSE= 0.0, BTEF=0.00, CLO=0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000, CLOC=0.000,0.000,0.000,0,000,O.000,0.000,0.000,0.000,0.000, 0.000, 86,0.87,0.89,0.91, XCDC=0.60, XCDW=0. 0, 0.0, 0.0, 0.0, FCDL=1.0, , FENG=1.000, .000, FMDR=1 PHASE START END START END DIST TIME TURN "G S WKFUEL M IP IX W B A p ICDO=0, SEND SATAKE CLLAND=-1.00, CLT0=-1.00, DELFLD=45.0 , DELFTO=45.0, CLIMB 0.42 0.00 0 10000 0.0 0.0 0.0 250 0 1.0000 1 2 -1 0 C 0 0 DELLED=30.0, DELLTO=30.0, LDLAND=-1.0, LDTO=-1.0, SEND ACCEL -1 0.51 10000 10000 0.0 0.0 0.0 0 0 1.0000 1 2 -1 0 0 0 0 SAPRINT ECHOIN=L, ECHOUT=0, INTM=0, IPBLNT=0, IPCANSO, IPENG=0, IPEXT=0, CLIMB 0.42 0.00 -1 33000 0.0 0.0 0.0 270 0 1,0000 1 2 -1 0 0 0 0 IPFLAP=0, IPFRIC=0, IPINTF=0, IPLIFT=0, IPMIN=0, IPWAVE=0, KERROR CRUISE 0.B5 0.00 -1 40000 2230.0 0.0 0.0 0 0 1.0000 1 4 0 C 0 0 0 SEND CRUISE 0.85 0.00 -1 40000 5000.0 O.O 0.0 0 0 1.0000 1 4 -1 0 0 0 0 ***** GENERAL ELECTRIC CF6-80C2 TURBOFAN ***** DESCENT 0.85 0.00 -1 0 0.0 0.0 O.C 0 0 I.OOOO 1 5 0 0 0 0 0 5 CLOW=0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0 CMO=0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.OOC RALOIT= 0.00, RCLMAX=1.000, ROC=.05, ROCAN=.020, SFWF=1.00, SMNSWP=0.10,0.76,0.80, 0.82, 0.84,0.85,0 SPANAC= 0.0, SWPMAX=6O.0, SWPMIN= 0.0, YSWP= O.O, 0.0, 0.0, 0.0, 0.0, 0.0, 0 AJCAN=0, ALELJ=5, INORM=L, ISMNDR=0, ISUPCR=0, ITRAP=0, IXCD=1, ELLIPC=F, ELLIPH=F, ELLIPW=F, $END SAMULT CSF=1.000, ESSF=1.000, FCD=1.00, FCDF=1.00 FCDRA=10*1.0, PCDO=1.0, FCDW=0.600, FCDWB=1.000 FLBCOR=L.000, FLD=1.000, FLECOR=L SATRIM CAND= 0.0, CFLAP=10.00, CGM=0.25, FLDM= 10*1.09, FVCAM=10*1.OO, IT= 0.0, SFLAP= 950.0, SM=0.20, SPANFS 95,0, ZCG= O.O, ITRIM=10*1, IVCAM=1, SEND ALIN= 0.,.5,1.0,2.0,3.0,4.0,5.0,5.5,6.0,7.0, ALTV= 6*25000.0,3S000.,40000., CLINPT=0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0 SMN=0.70,0.76,0.80,0.82,0.84, 0.85,0.85, 0.85, ICOD=L, IPLOT=L, 0,0,0,0,0, 0,0,0,0, 0,0,0,0, , SEND O.OO, O.OO, O.OO, O.OO 0.00, 0.00, O.OO, 0.00, 0.0, 0.0, 0 OO, 0.000,0 OOO, 60, FINTF=O.700, 045, SEND SADET IALF=0, IALP=2, ISTRS=0,0,0,0,0 ITB=O,0,0,0,0,0 ITS=0,0,0,0,0,0 NALF=10, NMDTL= SADRAG CDBMB= 0.00, CDONPT= 0.00 CDSTR= 0.00, CDTNK= 0.00, CDEXTR= 0.0, SMNCDO-0.00,0.00 SMNBMB=0.00,0.20 SMSTRS=O.00,0.20 SMTANK=0.00,0.20 SMEXTR=0.00, 0.20 0.00, , 0.00 O.OO, O.OO, ,O, O.O O.OO, O.OO, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.0, 0.0, O .OO, 0 . 00 0.00, 0 .00, O.O, O.OO, O.OO, O.OO, O.OO 0,00, 0.00, 0,00, 0.00, 0.0, 0.0, 00, 0.00, O.OO, 0 .00, 0 .00, 0.00,0.00,0.00,0.00,0.00,0.00,0.00,0 0.40,0.60,0.80,1.00,1.20,1.40,1.60,1.80, 0.40,0.60,0.80,1.00,1.20,1.40,1.60,1.80, 0.40,0.60,0.80,1.00,1.20,1.40,1.60,1.80, 0.40,0.60,0.80,1.00,1.20,1.40,1.60,1.80, Nov 18 96 14:53:03 SLEWIS TWTO=.266, BA = 7.00, ETAF1=.92S, DIA1=7.75, 747-ACSYNT-IN YREN = 84. P11P1=2.12 ETAC1 = .9 SFINSP-1.0 XMACH-0.0,0.75, 0.775,0 NEWINL = 1 OO, SODG = 4 . , MINPR=0, SFBTP =0 SEND $ INLET INTYPE=1, LM=1 SEND SAFTSD SEND TRANSPORT 747-400 WEIGHTS ** PRFD=1.62, P2P1-30.4, SCPR= 0, ETAT1=.93, EB1=.95, T3 = NDTAIL=6, RLENG = 1,2, B, 0.82S,0.85,ALTD=0.,5*35000.0, SFDIVP=0.20. SFIP = 0.20, 1 .21, 2800., SFPRFP =0.0, >PTS ITAIL=1, WGTO=870000. , SLOPE!1) = 1 150, SLOPE(2) = 1 360, SLOPE(19) « 1 250, SLOPE;3) 1 000, SL0PE(4) 1 075, SLOPE(5) = 0 800, SLOPE(6) 1 000, SLOPE(7) = 1 000, SLOPE(8) = 1 360, SLOPE(9) 1 056. SLOPE(10) = 1 056, SLOPE(ll) = 1 056, SLOPEU2) = 1 055, SLOPE(13) = 1 056, SLOPE(14) = 1 056. SLOPE(15) = 1 056, SL0PEU6) = 1 056, SLOPE(171 = 1 056, AFMACH 2 400, KWING = 2, KBODY 2, ITHRV 4, ITAIL 0, AFMACH .90, WBPPAS 40. , WPPAS = 168 , WCPPAS 50 SEND SFIXW WCARGO=10307., SEND Nov 18% 15:07:47 j CCCCCCC 0000000 PPPPPPP EEEEEEE C 0 0 P E E C 0 0 P P E C 0 0 PPPPPPP EEEE C 0 0 P E C 0 0 P E CCCCCCC OOOOOOO P EEEEEEE CONTROL PROGRAM FOR ENGINEERING SYNTHE TITLE 1989 BOEING 747-400 TRANSPORT **«*«* CARD IMAGES OF CONTROL DATA 'ARD IMAGE 1) $T) AT A BLOCK A 2) 1989 BOEING 747-400 TRANSPORT *** 3} $DATA BLOCK B 4) 1,1 4) 1 1 5) SDATA BLOCK C 6) 5,10, ,5 6) 5 10 7) $DATA BLOCK D 8) -05,.02,,.001 8) ,05 ,02 91 9) 10) SDATA BLOCK E 11) 1,570,-1 747-ACSYNT-OUT ID 570 12) SDATA BLOCK F 13) 1.8,5., 13) 1.8 5, 14) SDATA BLOCK G 15) 1,60,1. 15) 1 60 1. 16) SDATA BLOCK H 17) 1 17) 1 18) SDATA BLOCK 1 19) 581,531,1 19) 581 581 1 20) 30.,,90., 20) 30. 90, 21) SDATA BLOCK V 22) END TITLE: 1989 BOEING 747-400 TRANSPORT ****** CONTROL PARAMETERS; CALCULATION CONTROL, NCALC = 1 NUMBER OF GLOBAL DESIGN VARIABLES, NDV = 1 NUMBER OF SENSITIVITY VARIABLES, NSV = 0 NUMBER OF FUNCTIONS IN TWO-SPACE, N2VAR = 0 NUMBER OF APPROXIMATING VAR. NXAPRX = 0 INPUT INFORMATION PRINT CODE, IPNPUT = C DEBUG PRINT CODE, IPDBG = 0 CALCULATION CONTROL, NCALC VALUE MEANING 1 SINGLE ANALYSIS I OPTIMIZATION 3 SENSITIVITY 4 TWO-VARIABLE FUNCTION SPACE 5 OPTIMUM SENSITIVITY 6 APPROXIMATE OPTIMIZATION * * OPTIMIZATION INFORMATION GLOBAL VARIABLE NUMBER OF OBJECTIVE = 570 MULTIPLIER (NEGATIVE INDICATES MINIMIZATION) = -.1000E-O1 CONMIN PARAMETERS (IF ZERO, CONMIN DEFAULT WILL OVER-RIDE) 747-ACSYNT-OUT I PRIM': FTMAK IQTDIR NSCAT . ) IOOOOE-O: .AAAOOETOO ] •: FUN . DDFLDOK-TOO FDCELM .200006-01 CTLKIH . 00000E*OO DAB:- : I .DOOJOE+00 ITRM LIKOBJ MACRT^L 0 3 CT NFDG 0 . OOOOOETOO THETA .0D00OE+O0 ALPHAX .OOFLNRJEFOO CTMIN .10RJ0.GS-02 PHI .0000(1)'.! 00 ABOBJ1 .OOOOOETOD PFCSIGN VARIABLE INFORMATION NCN-ZPFLO IHLTTAL VALUE WILL OVES RIDE MODULE INPUT D. V. LOWEK NO. BOUND 1 . 180QOE+01 DESIGN VARIABLES D. V. GLOBAL ID NO. VAR. HO. 1 1 60 BOUND . 500003+01 MULTIPLYING FACTOR .10CG0E+01 INITIAL VALUE . OOD0OE+00 SCALE -OOO00E+O0 C0N9TJU INT INFORMATICS THERE ARE 1 CONSTRAINT SETS GLOBAL GLOBAL I.JKKAR LOWER RMALISAI)ON 10 VAR, 1 VAR. 2 ID BOUND FACTOR 1 5BT. 581 1 .30000E+02 . 900002I02 TOTAL NUMBER OF CONSTRAINED PARAMETERS = NORMALIZATION FACTOR -3(JQ00FR*02 CMS NO BOUND . 90000E+02 * ESTIMATED DATA STORAGE REQUIREMENTS INPUT' EXECUTION ) 9 19 AVAILABLE 5000 INTEGER EX?: :v\ ION AVAILABLE 1000 NLIKBRR MODULE AAAAAAA CCCCCCC S55SSSE V Y N N 1 R.LKTRY A A C a Y Y WN N T 2 TRAJECTORY A A C s Y Y UN N T 3 AERODYNAMICS AAAAAAA C SS3SSSS Y N N M T 4 PSI'LPUI.PTON A A C S Y N N N T 5 STABILITY AND CONTROL A A C S Y N N T 6 WEIGHTS A A ccccccc SSSS3SS Y N N R 8 9 11 14 SONIC BOOM ECONOMICS SUMMARY OUTPUT TAKEOFF AND LANDING FOR AIRCRAFT SYNTH ]'•: SIS A a E S PRO TITLE 1989 BOEING 747-400 TRANSPORT **'* AIRCRAFT TYPE - TRANSPORT 1 TITLE: 19S5 BOEING 747-400 TRANSPORT *** AIRCRAFT TYPE - TRANSPORT CONTROL PAHAJIETEKS : READ CONTROL, BREAD = EXECUTION CONTROL, SESEC = WHITE CONTROL, MWLII'TE = NUTFBER IDENTIFYING CONVKRGKJJCE VARIABLE FOR CONVERGED VEHICLE. I'JBJ - NUMBER IDENTIFYING COMPARISON VJUTLASNE FOR CONVERGED VEHICLE, JC-BJ - SUMMARY OTRRROR PRINT COPE, IPSUM = GTOBAL ERROR PRINT CODE, KGLOBP - GLOBAL COMMON INITIALIZATION CODE, I.N IT = DEBUG PRINT CODF,, IPDBG = GLOBAL PLOT CONTROL, IGFLT = DATA TRANSFER INFORMATION FILE, IRCDTR DATA TRANSFER INFORMATION PRINT, 1FDTR VEHICE CONVERGENCE INFORHATIQMJ CONVERGENCE TOLERANCE, TUL - .2O000EO3 ESTIM WCALC VS WEXT SLOPE = .60O«.°'K+UO BOUKE'ING WEIGHT, WGHAX = .100D&E+08 MODULE IDENTIFICATION NUMBERS: 5 4 5 570 585 0 0 0 2 1 1 C KCWI • ARE 1 2 "ALL ED FOP. EH PUT IN THE POFCLOWTHG OKDEB 3 4 i Nov 18 96 15:07:47 747-ACSYNT-OUT 00 00 OC 2 53 1 76 9 76 MODULES ARE CALLED FOR EXECUTION IN THE FOLLOWING ORDER; 5 05 2 91 26 54 12 6 0 7 58 3 86 46 85 10 10 4 69 69 22 12 62 5 43 92 14 MODULES ARE CALLED FOR OUTPUT IN THE FOLLOWING ORDER: 15 15 6 10 116 72 1 3 4 2 6 17 67 6 69 140 64 20 20 7 23 164 08 22 73 7 71 186 68 25 25 8 14 208 15 INPUT £OR MODULE # 1 27 78 8 52 228 24 * *********** 30 3C 8 86 246 72 32 83 9 16 263 43 GEOMETRY INPUT DATA 35 35 9 41 278 20 I »**». GEOMETRY FOR BOEING 747-400 ***** 37 88 9 62 290 90 40 40 9 30 301 44 2 SWING SWEEP=37.5,KSWEEP=1,TAPER=0.1752,TCR00T=0.1344,TCTIP=0.08, 42 93 9 93 309 72 4S 4B 10 02 315 68 3 ZROOT=-01.0,DIHED=7.0,AREA = 5814.,AR = 7.688, WFFRAC=.80, 47 97 10 08 319 27 50 50 10 10 320 47 4 XWING=0,45, SEND 60 90 10 10 320 47 71 30 10 10 320 47 5 SHTAIL SWEEP=41.0,KSWEEP=1,AR=3.44,TAPER=0.27,TCROOT=0.11,TCTIP= 0 .09, 81 70 10 10 320 47 92 10 10 10 320 47 6 ZROOT=0.69,AR£A=1470.0,SIZIT=F,XHTAIL-0.84, SEND 102 50 10 10 320 47 112 90 10 10 320 47 7 SVTAIL SWE£P=41.0,KSWEEP=1, AR=1.23,TAPER=0.29,TCROOT=0.11,TCTIP= 0 .09, 123 30 10 10 320 47 133 70 10 10 320 47 8 ZROOT=0.6,AREA=830.0,SIZIT-F, SEND 144 10 10 10 320 47 154 5C 10 10 320 47 9 SFUS FRN=2.5,FRAB=3.5,WALL=0.4,DRADAR=2.0,LRADAR=2.0,BODL=225.2, 158 03 10 08 319 27 161 57 10 02 315 68 10 BDMAX=20.2, ITAIL=1, SEND 165 10 9 93 309 72 11 SCREW NCREW=2, SEND 168 172 64 17 9 9 80 62 301 290 44 90 175 71 9 41 278 20 12 $ENGINE N=4, SEND 179 24 9 16 263 43 182 78 8 86 246 72 13 SELEC LENGTH=3.0, SEND 186 31 8 52 228 24 189 85 8 14 208 15 14 $PASS NFIRST=34, NCOACH=378, SEATWC=20.0, SEND 193 38 7 71 186 68 196 92 7 23 164 08 15 SWPOD 200 46 6 69 140 64 203 99 6 10 116 72 16 DIAM = 8.000, LENGTH = 15.000, X 0 . 631, 207 52 5 43 92 14 211 06 & 69 69 22 17 Y - 0.241, Z = -0.830, SWFACT = 1 .000, 214 60 3 86 46 85 218 13 2 91 26 54 18 SEND 221 225 66 20 1 76 00 9 76 00 19 SWPOD 21 22 DIAM SEND 6.200, LENGTH 0.441, Z 15.000, X -0.830, SWFACT 631, 000, MAX. DIAMETER.. FINENESS RATIO. SURFACE AREA... VOLUME, FUSELAGE 20.200 11,149 . 12180.937 . 56207.191 END OF GEOMETRY DATA CARDS 22 LINES READ GEOMETRY INITIAL OUTPUT FUSELAGE DEFINITION X R AREA GEOMETRY INITIAL OUTPUT DIMENSIONS OF PLANAR SURFACES (EACH) WING H.TAIL V.TAIL CANARD UNITS NUMBER OF SURFACES. 1.0 1.0 1.0 PLAN AREA 5814.0 1470.0 830.0 SURFACE AREA 11694.6 2069.8 1072.9 VOLUME 15392.0 2442.9 1717.0 (SQ.FT.) (SQ. FT . ) (CU.FT.) Nov U96 J5.07.47 747-ACSYNT-OUT SPAN 211.419 71.111 L.E. SWEEP 40.650 46.024 C/4 SWEEP 37.500 41.000 T.E. SWEEP 26.264 20.204 ASPECT RATIO 7.688 3,440 ROOT CHORD 46.800 32.554 ROOT THICKNESS 75.480 42.971 ROOT T/C . 134 .110 TIP CHORD 8.199 8.790 TIP THICKNESS 7.871 9.493 TIP T/C . 080 .090 TAPER RATIO .175 .270 MEAN AERO CHORD... . 32.015 22.949 LE ROOT AT 89.640 193.721 C/4 ROOT AT 101.340 201,859 TE ROOT AT 136.440 226.275 LE M.A.C. AT 124.405 208.615 C/4 M.A.C. AT 132.409 214.352 TE M.A.C. AT 156.420 231.564 Y M.A.C. AT 40.490 14.372 LE TIP AT 180.404 230.570 C/4 TIP AT 182.4S4 232,767 TE TIP AT 188.603 239.359 ELEVATION -10.100 6.969 GEOMETRIC TOTAL VOLUME COEFF EFFECTIVE TOTAL VOLUME COEFF . 647 . 647 31.952 47.545 41.000 11.20 1 .230 40.274 53.162 . 110 11.680 12.614 . 090 , 290 28.600 184.926 194.994 225.200 199.184 206.334 227.784 13.045 219.850 222.769 231.52 6.O60 ,050 .050 .000 .000 (FT. ) (DEG.) ,000 (DEG,) ,000 (DEG.) .000 .000 (FT.| .000 (IN.) . 000 .000 (FT. I .000 .ooo . 000 .000 (IN. ) (FT. ) .000 (FT.) .000 (FT.) .000 (FT.) ,000 (FT.) 0 (FT.) ,000 (FT.) .000 .000 (FT.) .000 (FT.) .000 (FT.) (FT. ) . 000 .000 .000 EXTENSIONS Strake Centroid location at .00 Area .00 Sweep Angle .0 Wetted AreaVolume .00 Total Wing Area 5814.00 Total Wetted Area 27018.25 Rear Extension .00 .00 ,00 .00 Tank Wing Fus#l Fus#2 Total FUEL T Volume 7965 . 0 . 0. A N K S weight 398253. 0. 0. 398253, Mission Fuel Required = Available Fuel Volume in Wing Density 50. 00 50 .00 50 .00 0. 9956. Aircraft Weight = .000 lbs. Aircraft Volume = 75759.141 cu.ft. Aircraft Density = .000 lbs./cu.ft. ICASE = 4 (Fineness Ratio Method) Input for Module # 2 ********************** ****************** TRAJECTORY INPUT TIMTOl =30.0 TIMT02 = .5 FRFURE = .06 MENDUR = 0 . QMAX = 400. XDESC = 100.0 NCRUSE = 2 IPSIZE * 0 IPSTOl = 5 ********** IPLOT = 0 HMINP = 0. HMAXP = 40000. DESLF = 2,50 WKFUEL = l.ooc IPST02 = 2 DELHP = 4000. ULTLF = 3 .75 CRMACH =• .850 IBREG = 0 SMMINP .300 RANGE = 3800. WKLAND = .570 IENDUE = 0 SMMAXP = .900 WFUEL = 10000. FLFAC = ,60C I PRINT = 0 DELMP = .100 WFEXT 0. DECEL = .250 KERROR = 2 WCOMBP = WFTRAP 0. NLEGCL =20 NLEGCR = 30 NLEGLO = C FWGMAX = 1.200 TOL = .001 MILCOM = 0 NMISS NCODE : 2 0 MMPROP = 1 MISSION MACH NO. ALTITUDE HORIZONTAL NO. VINO PHASE START END START END DIST TIME TURN "G"S WKFUEL M IP IX w B A P CLIMB .42 .00 0 10000 ,0 .0 .0 250.0 1 .0000 1 2 -1 0 0 0 0 ACCEL -1 . 51 10000 10000 .0 .0 .0 .0 1 .0000 1 2 -1 0 0 c 0 CLIMB .42 .00 -1 33000 .0 ,0 .0 270 .0 1 .0000 1 2 -1 0 0 0 0 CRUISE .85 .00 -1 40000 2230.0 .0 .0 .0 1 .0000 1 4 0 0 0 0 CRUISE .85 , 00 -1 40000 5000.0 .0 .0 .0 1 .oooo 1 4 -1 0 0 0 0 DESCENT .85 .00 -1 0 .0 .0 .0 .0 1 .oooo I 5 0 0 0 0 0 CLIMB .00 .85 -1 35000 .0 .0 .0 250 .0 1 .0000 1 3 -1 0 0 0 CRUISE .85 .85 -1 -1 2 50.0 . 0 .0 ,0 1 .oooo 1 4 0 a 0 0 c LOITER ,30 . 30 1500 1500 . 0 30.0 .0 .0 1 .oooc 1 4 0 0 0 0 MISSION 2 (PAYLOAD = 96000. LB) PHASE MACH NO. ALTITUDE START END START END HORIZONTAL DIST TIME NO. VIND TURN "G"S WKFUEL M IP IX W B A F CLIMB .42 .00 0 IOOOO 0 .0 .0 250 0 1 oooo 1 to -1 0 0 0 0 ACCEL -1 .51 10000 10000 0 . 0 .0 0 1 oooo 1 2 -1 0 0 0 0 CLIMB .42 .00 -1 33000 0 .0 .0 270 c 1 oooo 1 2 -1 0 0 0 c CRUISE .85 ,00 -1 40000 1800 0 .0 .0 0 1 oooc 1 4 c 0 0 0 0 CRUISE ,85 .00 -1 40000 2000 0 .0 .0 0 1 oooo 1 4 -1 0 0 0 0 DESCENT .85 .00 -1 0 0 . 0 .0 0 1 oooo 1 5 0 0 0 0 0 CLIMB .00 .85 -1 35000 0 .0 .0 250 0 1 oooo 1 3 -1 c 0 0 0 CRUISE .85 .85 -1 -1 250 0 . 0 ,0 0 1 oooo 1 4 0 0 0 LOITER .30 .30 1500 150C 0 30 .0 .0 0 1 oooo 1 4 0 0 0 0 Input for Module # 3 ***********it**************************************** AERODYNAMIC INPUT DATA ***** AERODYNAMICS OF THE BOEING 747-400 FACTORS FALEL = 1.000 - 25.000 FBLNT = .010 .200 FCD = 1.000 . 900 FCDF = 1.000 INTEGERS AND LOGICALS ALELJ = 5 NALF = IALF = 0 NMDTL = IALP = 2 ECHOIN = IAXE = 0 ECHOUT = 10 ABOSB B ALMAX 1 AMC D BTEF REALS .180 SHK 20.000 SM 40,000 SMNDR .000 SWPMA Novl 15:07:47 = 60.000 747-ACSYNT-OUT FCDL = 1 OOO ICDO = 0 ELLIPC = F CGM 250 N = 000 FCDLH = 1 OOO RCOO = 1 ELLIPH = F CLLANE = -1 000 = 000 FCDO = 1 000 INORM = 1 ELLIPW = F CLTO = -1 000 = 000 FCDW = 600 INTM 0 CSF 1 000 FCDWE = 1 OOO IPBLNT 0 DELFLD = 45 000 FCL 1 000 I PENG 0 DELFTO 45 OOC FCLH 1 000 IPFRIC 0 DELLETJ = 30 OOO FDNOSE 1 OOC IPTEXT = 0 •ELLTC 30 OOO FENG = 1 OOC IPINTF 0 ESSF 1 OOO FEXF •780 IPLIFT = 0 EXA = 667 FINTF TOO I PLOT = 1 EXC 2 000 FLBCOR = 1 000 IPMIN 0 IT 000 FLD 1 000 IPWAVE = 0 LDLANTJ = -1 OOO FLECOR 1 OOO ISMNDR = 0 LDTO = -1 OOO FLNOSE = 1 000 ISUPCR 0 MACHN 75C FLSCOR = 1 000 ITRAP = 0 QHOQ1 OOO FMDR = 1 045 IVCAM = 1 RCLMAX 1 OOO FSEP = 1 OOC IXCD 1 ROC 050 FTRIM 1 OOO KERROR = 0 SFWF = 1 OOO AL1N 7 ,000 ALTV 0. CDBME .0000 CDEXTR .0000 CDONPT .0000 CDSTR .0000 CDTNK .0000 CLINPT .000 CLO .000 CLMIN ,000 CHO .000 FCDRA 1.000 FCLRA 1 . 000 FLDM 1.000 FVCAM 1 . 000 ISTRS 0 ITB 0 ITS 0 ITRIM 1 SMEXTR 1.800 ARRAYS ,000 25000. .OOOO .OOOO .0000 ,0000 .OOOO .000 .OOO .000 .OOC 1.000 1 .000 1. 000 1 .000 0 0 0 1 .000 .500 25000. . OOOO .OOOO . OOOO .0000 .OOOO .000 ,000 . 000 .000 I.OOO 1 . 000 1 .000 I.OOO 0 0 0 1 .200 I .OOO 25000. . OOOO .0000 . OOOO , OOOO .0000 .OOO ,000 .000 .000 1 ,000 1 . 000 1 .000 1 . 000 0 0 0 1 .400 2.000 25000. .OOOC . OOOO .0000 .0000 .0000 .000 .OOO .000 ,000 1 .000 1 .000 1.000 1.000 0 0 0 1 .600 3 .000 25000. .0000 . OOOO .0000 .0000 .0000 .000 .000 .000 . 000 1 .000 1 .000 I .OOO I .OOO 0 0 0 1 ,800 4 .000 25000, .0000 .0000 .0000 .0000 .0000 .000 .OOO .000 .OOO 1.000 1.000 1.000 1 .000 0 0 0 1 1 . 000 5.000 35000. ,0000 .OOOO .OOOO .OOOO .0000 .000 .000 .000 .000 L .OOO 1.000 1.000 1.000 0 0 0 1 1.200 5.500 4000O. .0000 .0000 .0000 .0000 .0000 .000 . 000 .000 . 000 1.000 1 .000 1.000 l.OOC 0 0 0 1 1.400 6.000 0. ,OOOO .0000 .0000 .0000 .0000 .000 .000 ,000 .000 1.000 1.000 1 . 000 1.000 0 0 0 1 1 .600 SMN .250 SMNBMB = 1. 800 SMNCDO = .000 SMNSWP = . 910 SMSTRS = 1.800 SMTANK = 1. 80C YSWP .000 .700 .760 .800 .820 .000 .200 .400 .600 .000 .000 .000 .000 ,100 .760 .800 .820 .000 .200 .400 .600 .000 .200 .400 ,600 .000 .000 .000 .000 .840 800 1 OOO .840 800 1 800 1 000 .850 , OOC . 000 ,850 .000 ,000 OOO , 850 .200 .000 .860 .200 .200 .000 .850 .250 ..400 1.600 .000 .870 400 400 OOC .OOC ,890 1.600 1.600 .OOO rnpue for Module # 4 PROPULSION INPUT VERSION 04-76 GENERAL ELECTRIC CF6-80C2 TURBOFAN AENDIA 000 AENLE ALT I OOO AM AENTW = 000 AUAENG = OOO AWAENG DELPR OOO DELTS7 • IA1 7 750 EAfil EDI = 750 ETAC1 ETAT1 c 930 HTR MACK1 = 1 OOO MACH2 POSA = 29 920 PRFU P11P1 = 2 130 P2P1 R32 = 940 R54 R711 980 R711N SFADP 1 000 SFADSP SFBEP = 1 000 SFBPP SFDIVP = 200 SFINSP nlnl 4 InType SfSplP = 1 000 spFrfP Lm = 15 000 YcOYm theta = 10 000 psi lipRat 010 SFSFC1 1 000 SFSFC2 SMI = 500 SODG TR = 520 OOO TWAB TWTO 266 T3 T51 = 0, T7M VC1 = 980 WCWA1 XMT 850 YREN FRPN = OOO RDIAM I PR 3 I PR INT KERROR - 0 KODE KT7 0 MINPR N02.Z 0 NPROP . 000 AENWT . 000 ATURB .157 100.000 ,750 .900 .300 1.100 1.62 0 30.400 .940 ,980 1.000 1. 000 1.000 1 .000 .900 .000 BA DEPWCC EB1 ETAF1 HVF PCDFAC PWCC R10A R54N SCPR SFAUXP SFBTP SFIP sf InlF sfWavE AR eta ,000 .385 7.000 2 . 000 .950 . 925 18600.000 1.000 100.000 1. 000 . 920 1 .210 1 .000 .000 ,200 1 .000 1.000 1.000 13.000 THESE VARIABLES ARE USED BY TABLE LOOK UP l.OOC SFSFC3 = 1 .000 4.000 TOSA 518.000 0, TWOAB = 50280. 2800. T5M 3400. 3400. T71 0. .020 XMDES = 1 . 600 84 . FRBT = .000 1.150 RLENG = 1 .200 0 IPLOT = 0 2 KT5 0 0 NAB 6 6 NSUMM = 15 IENG 5 LOOK U (CF6 ) 747-ACSYNT-OUT ESF AL"'L) = XMACH = XMPRI * XPHI = XHPRI1 = .000 XI.'TL .560 XI • >R ,ooc XPRI2 = .000 1.000 WHTAITJ .ooo . 000 1 .000 . OCO .ACO . OUO . OOO , 00:5 . 000 . 000 .OOO 35000. .750 . 300 1. 000 .ooo .000 ,000 . 000 .OOO . OOO .OOO .OOO IPDBTXI 35C.0.U . .77 5 . 60D 1.000 .ooo .OOO .000 I5050. .800 ,900 I. ooo .000 .000 .OOC .000 35000. .825 1.200 1.000 ,000 .000 .OOC .000 INPU" F-:-i !'ODU_U 4 F ******* • I I +1 I I* ************ * •* INITIAL WEIOHTS INPUT DATA ACSYNT MODULE NUMBER N AIRCRWT 1VPE: TRANSPORT TITLE: ***** 747-JQ0 WEIGHTS 0COJ1TROL OPTIONS I r-RINT IDELT KB FR =1 STRESS = DPCAUIW » TMNTET1 M TECHI = 1.00 SLOPE 11) = L.W SLOPE(9) - 1.06 SLOPE US)- .00 1)INITIAL ESTIMATES I.:- CODE = 1, WTUI . IGRAPH = IOBLIQ I 00 K2 00 K6 00 KP1 DO .'SCHQ = 30000. 5.00 IGEAR ITAIL = 00 K3 0 0 AFKACH = 00 KP2 = 00 WGTO DENS 1 JFL'I'YP 0 KHT 2 KBO 1 .0 KT .90 1'IAXZI . 00 B70000. .100 1 OR Y 0 2 1 . 0 1 :?:TGR 1 .00 1.36 1 . 06 1.25 00 08 06 .00 . 80 .06 . 00 . 00 .06 00 OO 36 1.00 3 5101:. . 850 4 .000 1 .000 . 000 . 000 . OOO .000 .OOO .000 .000 QUANTITY VALUE QUANTITY .000 00 36 06 L* BEGIN VEBICL* CONVERGENCE .'II'IK *06 ESTIMATED GROSS WEIGHT = Calling K<-,DULN S 1 CALLING MODULO IF 2 CALLING MODULE ft 6 CALCULATES GROSS WEIGHT = .84037E+06 SLOP^: OL Hop : VS . WEST LINE 70000E+OC ESTIMATED GROSS WEIG!;T CALHHG MODULE T I COLLING MODULE # 2 CALLING MODULE # 6 CALCULATED GROSS WEIGHT SLOPE OF WCALC VS. WA^T ESTIMATED WEIGHT CALLING HADIILO * 1 COLLING MODULE 1 2 CALLINY MODULE # 6 CALCULATED GRTSS WEIGHT = .7 SLOPIT OF WCA^C VS. WEST 1 IHT; ESTIMATED GRASS WEIGHT CALLING MODULO # 1 CALLING MODULE T 2 CULLING MODULE * 6 CAL.ELATED GROSS WEIGHT . 77122E + 06 .77808E+06 LINE = .6305SHOC .78978E+06 1-06 . 61484E+O0 . 78SS2E+06 . 7S884E+06 ** END VEHICLE CONVERGENCE ** 3 CONVERGENCE ITERATIONS REQUIRED CNLLIDSJ MODULE K CALLING MODULE * CALLING MODULU # OUTPUT FOR MODUI WAF 261000. 0 WAPO 348 . 0 WARM = 0 , 0 WBB2 = 0. 0 WCAKD 0. 0 WCREW = 6090. 0 WELT = 7 81 3 . A WIITANX - A. 0 WFS » 6090 . 0 WG EAR = V 0 WHT 6960 . 0 WLG 43500. 0 WNA 8700 . 0 WPA^S I3050D. 0 WP? - 696HJ0. 0 WTSI1H 870000, 0 6960.J. 0 W: JV = 0. 0 W[,IFTF C C WTUFLV 119FC2. 0 WA1RC = 8700 . 0 WAMMIJN = Q 0 WBAG -- 26100. G WHOI.1Y 1041DD. LJ WCARGO - 10307. ] WE - 52200• 0 BBS = 43IOD. 0 WFEQ = 121300. 0 WCA = 2*10 . 0 WHOP 6960. 0 WINST = 4350. 0 WKISS 0. 0 W PA 52200. 0 WPL 15660*. n WSC * 17400. . T - 8700 . 0 WBOMB = 0. 'J WP1V - 0. 0 WBB2 - 0 . 0 Nov IS 96 15:07:47 747-ACSYNT-OUT FUSELAGE DEFINITION NACELLE DEFINITION NACELLE LOCATION DIMENSIONS OF PLANAR SURFACES (EACH] X R AREA 00 00 00 2 53 1 76 9 76 5 05 2 91 26 54 7 58 3 86 46 85 10 10 4 69 69 22 L2 62 5 43 92 74 15 15 6 10 116 72 17 67 6 69 140 64 20 20 7 23 164 08 22 73 7 71 186 68 25 25 8 14 208 15 27 78 8 52 228 24 30 30 8 86 246 72 32 83 9 16 263 43 35 35 9 41 278 20 37 88 9 62 29C 90 40 40 9 80 301 44 42 93 9 93 309 72 45 45 10 02 315 68 47 97 10 08 319 27 50 50 10 10 320 47 60 90 10 10 320 47 71 30 10 10 320 47 81 70 10 10 320 47 92 10 10 10 320 47 102 50 10 10 320 47 112 90 10 10 320 47 123 30 10 10 320 47 133 70 10 10 320 47 144 10 10 10 320 47 154 50 10 10 320 47 158 03 10 08 319 27 161 57 10 02 315 68 165 10 9 93 309 72 168 64 9 80 301 44 172 17 9 62 290 90 175 71 9 41 278 20 179 24 9 16 263 43 182 78 8 86 246 72 186 31 8 52 228 24 189 85 8 14 208 15 193 38 7 71 186 68 196 92 7 23 164 08 200 46 6 69 140 64 203 99 6 10 116 72 207 52 5 43 92 74 211 06 4 69 69 22 214 60 3 86 46 85 218 13 2 91 26 54 221 66 1 76 9 76 225 20 00 00 X-XNOSE R AREA .00 3 17 31.51 2.21 3 17 31.51 6 . 63 3 17 31. 51 8.84 RN 17 31. 51 X 135.17 135.17 148.45 148.45 Y 25 . 48 -25.48 46.62 -46.62 Z -12.73 -12.73 -12.73 -12.73 FUSELAGE MAX. DIAMETER 20.200 FINENESS RATIO 11.149 SURFACE AREA 12180.937 VOLUME 56207.191 NACELLES 6.334 175.906 (EACH) WING H.TAIL V. TAIL CANARD UNITS NUMBER OF SURFACES. 1.0 1,0 1.0 1. 0 PLAN AREA 5814.C 1470.0 830.0 .0 (SQ.FT. SURFACE AREA 11694.6 2069.8 1072.9 .0 (SO.FT. VOLUME 15392.0 2442.9 1717.0 .0 (CU.FT. SPAN 211 .419 71 111 31 .952 .000 (FT. ) L.E. SWEEP 40 , 650 46 024 47 .545 .000 (DEG.) C/4 SWEEP 37 .500 41 ooo 41 .000 .000 [DEG.1 T.E. SWEEP 26 .264 20 204 11 ,204 .000 (DEG. ) ASPECT RATIO 7 688 3 440 1 .230 .000 ROOT CHORD 'IT . 800 32 554 40 .274 ,ooc [FT. ) ROOT THICKNESS 75 .480 42 971 53 .162 .ooo (IN, ) .134 110 , 110 .000 TIP CHORD 8 .195 CO 790 11 .680 ,000 (FT. ) TIP THICKNESS 7 871 9 493 12 .614 ,000 (IN, ) TIP T/C ,080 090 .090 .ooc TAPER RATIO .175 270 .290 ,000 MEAN AERO CHORD.... 32 .015 22 949 28 .600 .000 (FT. | LE ROOT AT 89 . 640 193 721 184 ,926 .000 (FT. ) C/4 ROOT AT 101 .340 201 859 194 .994 .ooc IFT. ) TE ROOT AT 136 .440 226 275 225 .200 ,000 (FT. ) LE M.A.C. AT 124 .405 208 615 199 , 184 ,000 (PT. I C/4 M.A.C. AT 132 .409 214 352 206 .334 .000 (FT. ) TE M.A.C. AT 156 .420 231 564 227 .784 .000 (FT. ) I M.A.C. AT 40 .490 14 372 13 .045 .000 LE TIP AT 180 ,404 230 570 219 .850 .000 (FT. ) C/4 TIP AT 182 .454 232 767 222 .769 .000 (FT. ! 188 .603 239 359 231 .529 ,000 (FT. ) ELEVATION -10 . 100 6 969 6 .060 .000 (FT. I -GEOMETRIC TOTAL VOLUME COEFF EFFECTIVE TOTAL VOLUME COEFF EXTENSIONS , 647 . 647 STRAKE .050 .050 .000 .000 CENTROID LOCATION AT. ..... . .00 AREA .0 SWEEP ANGLE 0 WETTED AREA .00 VOLUME .OC TOTAL WING AREA 5814.00 TOTAL WETTED AREA 27721.88 REAR EXTENSION .00 .00 .00 .00 TANK WING FUS#L FUS#2 TOTAL FUEL TANKS VOLUME 7965 . 0. 0. WEIGHT DENSITY 398253. 50.00 0. 50.00 0. 50.00 398253. MISSION FUEL REQUIRED = AVAILABLE FUEL VOLUME IN WING 335241, 9956. AIRCRAFT WEIGHT AIRCRAFT VOLUME AIRCRAFT DENSITY = 788821.062 LBS. - 75759.141 CU.FT. 10.412 LBS./CU.FT. ICASE = 4 (FINENESS RATIO METHOD) 747-ACSYNT-OUT Detailed Aerodynamics Output Mach Altitude = Parasite Drag .25 0. Takeoff Configuration: Flaps and Slats Induced Drag Friction .0117 Alpha CI Cd L/C Cm e Cdtrim Deltrira Zone Body .0042 0 1 038 .4856 2 1 ,000 .09 .0066 -4.7 Wing T .0059 5 1 088 .5001 2 2 .000 .10 .0070 -4.9 Strakes . oooo 1 0 1 137 .5145 2 2 ,000 .11 . 0074 -5.1 H. Tail .0011 2 0 1 235 . 5428 2 3 .000 .12 .0083 -5.4 2 V. Tail .0005 3 0 1 331 .5705 2 3 .000 . 13 . 0091 -5.7 canard t .0000 4 0 1 427 .5987 2 4 .000 . 14 .0099 -6.C 6 Interference .0024 5 0 1 522 . 6263 2 4 . ooo . 16 .0107 -6.3 Wave .0000 5 5 1 569 .6400 2 5 .000 .16 .0111 -6.4 2 External .0000 5 0 1 616 . 6537 2 5 . 000 .17 .0114 -6.5 Tanks .0000 7 0 1 710 .6811 2 5 . 000 . 18 . 0122 -6.7 2 Bombs Stores Extra Camber .0000 .0000 .0000 . oooo Cdmin ft Mach Altitude = Parasite Drag .25 0 . Slope Factors Cl/Alpha (per radian) Cdl/Cl'2 Alpha Transition Zone 2- Flap Setting Slat Setting Flap Type Single Landing Configuration: Flaps and Slats Induced Drag 5.4982 .2282 38 .124 45. 30. 886. sq. Friction Zone Body 2 .0117 .0042 Alpha .0 1 CI 038 Cd , 4 8S6 L/D 2 .1 Cm ,000 e .09 Cdtrim ,0066 Deltrim -4.7 Wing 2 .0059 5 1 088 .5001 2 2 . OOC . 10 .0070 -4 . 9 Strakes .0000 1 0 1 137 .5145 2 2 .ooo ,11 .0074 -5.1 2 H. Tail 2 ,0011 2 0 1 235 ,5428 2 3 .000 .12 .0083 -5.4 V. Tail 2 .0005 3 0 1 331 .5709 2 3 . 000 . 13 .0091 -5.7 Canard .0000 4 0 1 427 .5987 2 4 .000 ,14 .0099 -6.0 Interference 2 .0024 5 0 1 522 .6263 2 4 ,000 . 16 .0107 -6.3 Wave 2 .0000 5 5 1 569 .6400 2 5 .000 . 16 .0111 -6.4 External .0000 6 0 1 616 . 6537 2 5 .000 ,17 .0114 -6.5 4 Tanks . 0000 7 0 1 710 ,6811 2 5 , 000 . 18 .0122 -6.7 2 Bombs Stores Extra .0000 ,0000 .0000 Slope Factors Cl/Alpha (per radian) Cdl/Cl~2 Alpha Transition zone 2 5.4982 .2282 3 38.124 Nov I 15:07:47 Camber Cdmin Et .0000 Flap Setting Slat Setting Flap Type 747-ACSYNT-OUT Detailed Aerodynamics Output Single 45 . 30 . 886. sq- Mach = .70 Altitude = 25000. Parasi te Drag Friction .0112 + Zone Body .0040 to Wing . 0056 + 2 Strakes .0000 2 H. Tail .0010 + 2 V. Tail .0005 2 Canard , 0000 + 2 Interference .0024 + to Wave .0000 2 External .0000 2 Tanks .oooo + 2 Bombs .0000 Stores .oooo Extra ,0000 Camber .0000 Cdmin .0136 Mach ,76 Altitude = 25000. Parasite Drag Friction .0111 t Zone Body .0040 4-2 Wing .0056 + 2 Strakes .oooo + 2 H. Tail .0010 + 2 V. Tail .0005 + 2 Canard .0000 + 2 Interference .0024 + 2 Wave ,0000 + 2 External .oooc + 2 Tanks .0000 + 2 Bombs .0000 Stores .0000 Extra ,0000 Induced Drag Induced Drag pha CI Cd L/D Cm e Cdtrim Del trim .0 ,000 .0136 .0 .000 . 00 .0000 .0 .5 .051 . 0137 3 . 8 .000 .79 . 0000 - .3 1.0 .102 .0141 7.3 .000 .79 .0000 -.5 2.0 .203 .0157 12.9 , 000 .79 .0002 -1.0 3.0 .302 .0183 16.5 .000 ,79 .0004 -1.5 4.0 .399 .0219 18.2 . 000 .79 .0007 -1.9 5.0 .495 .0264 18 .8 .000 .79 .0010 -2.3 5.5 . 542 .0290 18.7 .000 .79 .0012 -2.5 6.0 .589 .0317 18 . 6 .000 .79 .0014 -2.7 7.0 . 682 .0380 18.0 .000 . 79 .0018 -3.0 Slope Factors CI/Alpha (per radian! Cdl/Cl"2 Alpha Transition 2one 2-3 programmed Flap Setting Flap Type Single 5 . 5841 . 0525 12.177 0. 886. sq. pha CI Cd L/D Cm e Cdtrim Deltrim ,0 .000 , 0134 .0 .000 .00 .0000 .0 .5 .053 .0136 3.9 .000 .79 . oooo - .3 1.0 .105 .0140 7.5 .000 .79 .0001 - .6 2.0 .208 .0157 13 .3 .000 ,79 .0002 -1.1 3.0 .310 .0185 16.8 .000 .79 .0004 -1.6 4.0 .410 .0222 18.5 .000 .79 .0007 -2.0 5.0 ,508 .0269 18,3 .000 ,79 .0011 -2.4 5.5 .557 , 0296 18.8 ,000 .79 .0013 -2,6 6.0 . 60S .0325 18 . 6 .000 .79 ,0015 -2.8 7.0 .701 .0390 17.9 .000 .79 .0020 -3.2 Slope Factors Cl/Alpha (per radian) 5.7347 Cdl/C1A2 .0521 Alpha Transition Zone 2-3 10.925 Nov 18 96 15:07:47 CAMBER CDMIN FT . 0000 PROGRAMMED FLAP SETTING FLAP TYPE SINGLE 747-ACSYNT-OUT 0. 386. SQ. DETAILED AERODYNAMICS OUTPUT MACH . 80 ALTITUDE = 25000. PARASITE DRAG FRICTION .0110 4 ZONE BODY .0039 + 2 WING . 0055 4 2 STRAKES .0000 4 TO H. TAIL . 0010 4 2 V. TAIL .0005 4 TO CANARD . 0000 4 2 INTERFERENCE .0024 4 2 WAVE . 0000 + 2 EXTERNAL .0000 4 2 TANKS .0000 + 2 BOMBS .OOOO STORES .0000 EXTRA .0000 CAMBER .0000 CDMIN .0134 4 FT MACH .82 ALTITUDE = 25000. PARASI TE DRAG FRICTION .0110 4- ZONE BODY .0039 + 2 WING .0055 + 2 STRAKES .0000 4 2 H. TAIL .0010 + 2 V. TAIL .0005 4 2 CANARD .OOOO T 2 INTERFERENCE .0024 + 2 WAVE . OOOO 4 2 EXTERNAL .0000 4 TO TANKS .OOOO + 2 BOMBS .0000 STORES .0000 EXTRA .0000 INDUCED DRAG PHA CI CD L/D CM E CDTRIM DELTRIM .0 .000 .0134 0 .000 .00 .0000 .0 .054 ,0135 4 0 .OOO . 80 . 0000 -.3 1.0 .107 .0140 7 7 . 000 .80 .0001 - . 6 2.0 .213 ,0157 13 5 ,000 .80 ,0002 -1.1 3.0 .316 .0186 17 0 .000 .80 .0005 -1. 6 4.0 ,418 .0225 18 6 .000 .80 .OOOA -2 .1 5.0 . 519 .0273 19 0 .000 . 80 . 0012 -2.5 5.5 .568 .0301 18 9 .OOC .80 .0014 -2.8 6.0 .617 .0332 18 6 .000 .80 .0016 -3.0 7.0 ,715 .0399 17 9 . 000 .80 .0021 -3.3 INDUCED DRAG SLOPE FACTORS CL/ALPHA (PER RADIANL CDL/CL~2 ALPHA TRANSITION ZONE 2-3 PROGRAMMED FLAP SETTING 5,8517 .051S 10.177 0 , FLAP TYPE SINGLE PHA CI CD L/D CM E CDTRIM DELTRIM .0 . 000 ,0134 0 ,000 . 00 .0000 .0 . 5 .054 . 0135 4 0 ,000 . 80 ,0000 -.3 1.0 .108 .0140 1 8 .000 .80 .0001 - . 6 2.0 ,215 ,0158 13 6 .000 .80 .0002 -1.2 3.0 .320 . 0187 17 1 .000 . 80 .0005 -1.7 4.0 , 423 .0226 18 7 .000 .80 .0008 -2.2 5.0 .524 , 0276 19 0 .000 ,80 .0012 -2.6 3.5 .574 ,0304 18 9 .000 .80 .0014 -2.8 6.0 . 624 .0335 18 6 .OOO .80 .0017 -3.0 7.0 . 723 .0404 17 9 .000 .80 .0022 -3.4 SLOPE FACTORS CL/ALPHA (PER RADIAN) 5.9162 CDL/CL~2 .0517 ALPHA TRANSITION ZONE 2-3 9.325 15:07:47 . OOOO FT . D134 PRQ^RARAJTIED PL DP SO''TING FLAP TYPE SINGLE 747-ACSYNT-OUT A86. SQ. DETAILED AERODYNAMICS OUTPUT AL "_I TUDE .$4 250D5. PARASITE DR*C INDUCED DIDU FRICT ION DODY 2 WING . C 1 0G .0039 A .>H:; . 0 CL .POL' CJ .0138 L/D .0 OIL .000 E . 00 CDTRJJU .0000 ;:V.: RIM .0 .0053 5 . 055 . 0140 3.9 .000 .80 .OOTTO - . 3 STRAKES •> ,0*00 1 0 . 110 .0145 7 . 6 ,000 . 80 . C • •.' - . 6 C H. TAIL . 0010 2 .0 ,217 .0163 13 .4 .000 .80 . 0002 -1 .2 V. TAIL 0005 3 0 .324 .0192 16.8 . OOO .30 , 0005 -1.7 CANARD 2 . OOOO 4 0 .428 .0233 18.4 .000 . 80 .0003 -2 .2 TJITR>RF ?RU2 L ENF IKK S'JMMAFY ••• 315C. 3188 . .546 . OOO 2 •2 . 2515. 2555. .591 .532 .0002 90. 1826. 1873 . . 6B7 . 670 .0003 ENGIKE L) [ AMETHR 5. SI FEET 38. 1313. 1403. .77 9 .716 ,0004 ENGINE LENGTH 7 . 37 FEET 86. 1098. 1176. .782 ,73D . 00D5 ENGINE WEIGHT = ;• \* A. 9 5 POUNDS 84 . B52 . 551 . .S10 .726 . 0006 IIYPAM.S RATIO - 7 . 00 32 , 603 . 726 . . 895 . :3 .OUOFL NO OF ENGINES 8 . :0. 34FI . 497 . 1 . 173 . 816 .0009 •RAG REF AREA ! 00 SQ FEET •1 P. . 73 . 256. 3 .917 L . 122 , 0011 L"WCC A PERCENT OF HNGINE CORRECTED AIRFLOW THRU ^T - ME T!: ( POUNDS; .»HK • ' SINE) SFC ™ ENGINE SPECIFIC F03L CONS .IMPTINN .825 350QO. IOO. 5053 . 5094 . ' ;r. .3J9 ,0002 : • • L T.HTTOST PER ENGINE IH LBS. W/O INS TAL DRAG CORR 9R; 4421. 44 67 . .543 518 ,0002 SFCU = SFC , 1 'HR, W/C INS 1' AL DRAG CORK 96 . 3802 . 38'; B . . 549 . 512 .0003 COINS = TOT INSTALLATION DRAG COEF PEA A/C (SWING ,,•«••) '. 3175 . 3227 . ,5S<; .557 .0003 1 92. 2529 . 25S7 . .604 .593 ,001)3 SI 1835 19/02 . .706 .681 . 0D04 1 348 . I03O . . EEL .7 " .(• •I . 10S6 . 1198 . ."->•--, .740 . DOOC MACH ALT PWCC THR'J.ST TURUSTU SFC SFCU CDIN5 <<•; 844 . •• . . 844 .73- .0007 ... 589 . T40 . .945 .753 . 0009 90. 327 . 507. 1 .281 ,826 . 0010 .000 0. 100 . 2622 3 . 26258. .293 .293 .0000 73 . 50. 26-1 . 5 .981 L . 126 .0012 9B. 24697 . 21697. .237 .297 . 0000 c 22202. 22202. 2 7 .287 ,0000 a A 19510. 19510. .282 .282 .0000 .850 35000. 190 , 5163. .556 .549 .0003 16365 - .287 .287 . OOOO 98. 4466 . 4527 . . IJA .558 . DOD3 10 . USAC. I U86. .335 . 335 . OOOO 96. 3334. 3898, . 5L2 . 5II2 0004 SE. 5637. 5637 , .569 .969 . OOOO 94 . •• 199, 3269 . .540 .567 .0004 SE. 4906. 4906 . . 557 .OOOO 92 . 2545 . 2623 , , 622 .6U4 .0004 84 . .56 29717 . 0004 16 17 . 60 1 00 179 . LOITER .30 1 500 . 643 0 7 33 8518.4 TO r. 333 . . 64 26621. 0362 HI- 463495.0 671 125 . CYCLE . 64 2*667. 0001 •:• . 16 99 . IJLFIURNG .22 0 . 2 1616 12 ,0 24 5 . .35 I 80446. 8150 17 3 ] 531198.9 '•8 71. .35 IFTD5T3 . NNO3 2 65 1.00 1 00 5937. RESEI'JE Fuel = 299J7. TNJIPED Fuel * 101D. BLOCK TIME SLOCK RANGE BLOCK FUN] TAJCAOE 6 8.375 HRS = 1196.7 RI.M. = 14B1J1 fi lb. 5937. 292 . . 'LAKEOFF FIELD LENGTH (TOTAL RUN) LANDING FIELD LENGTH I TOTAL RUN) LANDING PIULD LENGTH (GROUND RUJIL HEIGHT FOR LAJIILLNG CAL Z-^LATI CN - 531199. LANDING THRUST TO WEIGHT RATIO - .I40 TAKESFF WEIGHT = 632732. LANDING WEIGHT - 4634J5. i L IT FT LBS LBS FUEL -•sU^VR.ARY TOTAL PU«l • :7JIFC8. Takeoff FUAL: LOT MISSION FUEL = 169237. WARNIUP = 6490. EXT 747-ACSYNT-OUT OUTPUT FOR MODULE # 6 ******** QMAX: DESIGN LOAD FACTOR: ULTIMATE LOAD FACTOR: STRUCTURE AND MATERIAL; WING EQUATION; BODY EQUATION: COMPONENT WEIGHT STATEMENT - TRANSPORT ***** 747-40O WEIGHTS »**»* 400, 2 .50 3 .75 ALUMINUM SKIN, STRINGER AIR FORCE EQUATION AIR FORCE EQUATION POUNDS KILOGRAMS PERCENT SLOPE TECH FIXED AIRFRAME STRUCTURE 226308. 102654. 28 69 NO WING 104204. 47267. 13 21 1 15 1 00 NA FUSELAGE 70405. 31936, B 93 1 36 1 00 NO HORIZONTAL TAIL ( LOW) 7989 . 3624. 1 01 1 00 1 00 NO VERTICAL TAIL 4140 . 1878. 52 1 08 1 00 MO NACELLES 4778. 2167, 61 80 1 00 NO LANDING GEAR 34793. 15782. 4 41 1 00 1 00 NO PROPULSION 40262. 18263. 5 10 NO ENGINES ( 8) 33215. 15066. 4 21 1 00 1 00 NO FUEL SYSTEM 3796 . 1722 . 48 1 36 1 00 NO THRUST REVERSER 3251 . 1475 . 41 1 25 NO FIXED EQUIPMENT 65504. 29713. 8 30 1 00 NO KYD & PNEUMATIC 4998. 2267. 63 06 NO ELECTRICAL 4859. 2204 . 62 1 06 NO AVIONICS 2238. 1015. 28 1 06 NO INSTRUMENTATION 1339 . 608. 17 1 06 NC DE-ICE & AIR COND 5341. 2423 . 68 1 06 NO AUX POWER SYSTEM 762 . 345 . 10 1 06 NO FURNISH & EQPT (11408 . 18782. 5 25 1 06 NO SEATS AND LAVATORIES 21585. 9791 . 2 74 1 06 NO GALLEY 6773 . 3072 . 86 1 06 NO MISC COCKPIT 247 . 112 . 03 1 06 NO CABIN FINISHING 9398 . 4263. 1 19 1 06 NO CABIN EMERGENCY EQUIP 2349. 1066. 30 1 06 NC CARGO HANDLING 1055. 479 . 13 1 06 NC FLIGHT CONTROLS 4560 . 2069 . 58 1 06 NO EMPTY WEIGHT 332074. 150629. 42 10 OPERATING ITEMS 0. 0. oo NO FLIGHT CREW ( 2) 340. 154 . 04 NO CREW BAGGAGE AND PROVISIONS 475 . 215. 06 NO FLIGHT ATTENDENTS ( 131 1690. 767 . 21 NO UNUSABLE FUEL AND OIL 1802 . 817. 23 NO PASSENGER SERVICE 20600. 9344 . TO 61 NO CARGO CONTAINERS 1649. 748. 21 NO OPERATING WEIGHT EMPTY 358630. 162675. 45 46 FUEL 178129. 80799. 22 58 PAYLOAD 96003. 43547. 12 17 NO PASSENGERS (412) 69216 . 31396. 8 77 NO BAGGAGE 16480, 7475, 2 09 NO CARGO 10307. 4675. 1 31 RES CALCULATED WEIGHT 788834. 357B15. B0 21 NO ESTIMATED WEIGHT PERCENT ERROR 788821. 357809. .00 CALCULATED WEIGHT DOES NOT EQUAL 100% BECAUSE A GROUP WEIGHT IS BEING FIXED. OY 18% 15:07:47 747-ACSYNT-OUT OUTPUT FOR MODULE J J. 1 K./MMARY AC<:'-'::'.' OUTPUT FN'ULISH UNITS - 1989 BOP. 1 .TO 747-400 "RAMSPORT DISTANC1; IN FEET WEIGHTS IN ! RS. GENERAL FUSELAGE '•'ORCES IN LBS . PRESSURES IN LBS/FT*- NASA, AMES STEF CENTER HTAIL VTAIL WG 788B3 4. LENGTH 225 ,2 AREA 5B14 O 1470.0 3 3 0.0 W/S 135.7 DIAMETER 20 .2 WETTED AREA 11614 F 2069.8 1072.S T/W .27 VOLUME 56207 .2 SPAN 211 .4 71.1 32 .0 N (Z) ULT 3 . B WTTTEP AREA 12180 .9 L.E, SWEEP 40 .7 46 . 0 47 .5 CREW 2. FINENESS RATIO 11 .1 C/4 SWEEP 37 .5 41.0 41 .0 PASKNGERS412 . ASPECT RATIO 7 . 69 3.44 1 .23 TAPER RATIO 1 I; .27 . 29 E11G :NE WEIGHTS T/C ROOT I? .11 .11 T/C TIP U- .09 . OS NUMBER 1. W WG ROOT C90RE 46 .8 32 . 6 40.3 LENGTH 7,4 STRUCT. 22 6308. 28 .7 TIP CH0RC 8 .2 8. 1 11 .7 1 IL AM . 5.1 PROPLIL. 402 62. 5 .1 M.A. CHORD 32 ,0 22 . J 29.6 WEIGHT 34S8.9 i ••:. KO. •). 8 .3 LOC. OF L.E. 89 .6 19 3.7 IE4 .9 TSLS 26228. FUEL 179168. 22 7 SFCSLS .29 PAYLOAD 96003. 12 2 TFRSSION SUMMARY PRASE MACH VAKEOFF .00 CLIMB . 16 ACCEL . 5I CLIMB . 80 CRUISE . 35 CRUISE . 85 DESCENT .49 CLIMB .78 CRUISE .85 ] VJ.1 THR . 3 0 UV-KJ :.'JG ALT FUEL 0 . 7013 10000. 2141 10000. 201 3300U. 5825 35*48. 66595 38454. 64772 0 , 164 5 35000. 6480 35000. 6047 1500 . 8518 TIME DIST ~ _ R • - 30 5 4 ( 8 M 2 9 9 2 1 2 9 3 61 6 210 9 1727 3 235 1 1910 2 14 3 88 1 11 1 71 3 21 S 178 7 30 0 98 7 5987 3 L/D THRUST -- =— =- " = 1 8 37 117489 .9 17 :'4 1 ! 5 2 1 0 18 74 52 543 . 6 17 31 31930 . 5 17 42 28012 . 5 i 44 16078 .0 ii 31 39672 . 9 IF 17 2 9 187 . 1 17 75 26621 .1 SFC Q .442 212.0 .4B"0 265.0 .57 0 54.7.2 .1-54 248.5 .554 214.9 .729 J 4 3 . 3 .524 2I2.C S65 252.5 .640 12», 3 BLOCK TIME = 8.375 HR (WITHOUT AIR AND GROUND MAMJEVER ALLOWANCES) BLOCK RANGE = 3798.7 NM Appendix C Page 56 Appendix C. B747-400 FLOPS Input & Output File 15:07:48 67*7-400 (PW4056J REV <,.'.! SOPTIQN I0PT-.1, IANAL*3, TN5NG- I , 5. MB SWTTN VRIMO: ) . ':•, SE>AN=2U7.6667, DIH 7.5, WFJIFKP , 244 , NETAW=5, BTW- -413, ,66, .888, 1.0. CUL= 54.33, JFI-JB. 20.'J6, 14.71, 13.33, T0C= .134, .030, .07S6, .08, .08, SWL^,: I. .31. ,3 4.,34., ETAE-.IS,.67. SHT-1470-. SWPRLT=J7 . 9, I' = 3.6. TR4T=. 3 V TCJW=.05, HHT=0. , SVT=83,0 . , SWPV: -45. , ARVT=1.25, L-RVR = .3I, TCV;'^.08, NFJK*2, SFIN=56.4, ARFTN^O .84, TRFIN=C.35, SWPF.IN-55 . , TCFIN=.03, XL-225.1667, WF=21.33, DF=2 5.75, XLP-187, XHLG=141.8, XMLG-LLL.7 , NT3N=4, TKRSO=56570., WENG=3800.0, XNAC=17.33, DKAC=11.67, NTANK=8, FULWKLK=2S0227 . , IFUFU»1, TWF"^34 , NPT=37 8, NFLCR-2, WSEVN . , WTHSU5390. , WFURK-41050• , WAC= 1 . , WAI-I., SCONFIM I- :•-IR,=7300 . , HTVC=1. , VTVC-1 . , OFO=1, QFT^O, GW'BIOOOO.. SW=5651., B747-FLOPS-IN TR=.245, S-rf£EF=37 .5, T \=,08, VCMN-0.85, CH=40000., SEND SAERIN MYAERQ=1 , WRATI0=O.4, ITPAEF.- 2 , IBD=1, >HHD SENGDIK IGEHEN-1, NCHUG^I, EMALH^. .85, .6, 0., AJ T (1,31 - 4000 . , 0 . , ALT(1,2> = 20000., 15000., ALTFL,1) = 39000.. 35000., SEND SEWGINE IENG=0, ITHP.OT=0, FLTFIL--1 PW4056 ,PS ' . IWTPKT=3, XWTPLT=0, IF1LE='FW4000.CONFIG', TPILS='PW400C MAP', IL?NIWT=L, NGINWT=-! , NITKAX=7 5, HPEXT=.0, COSTL3L=0, OFI[,fc>'OUTPUT', YEAR-19^5, . DESFN^I 5750. , 4.0, OPRDES=27.7, HPCPR=11,5, FPB.-ES= I . 560, TETDE£=2 572., WCOOL=2 310., TTRDR,PS = L , 03, DTCE=15., ALC-1O0OJ. , XMDSFC- . G5 , XADES = 3J000 . , XKMAX-J.9, AMAX=40GQD , 0 , AINC-5000., XTF7NR=0.1, QKAX=800.0, U7IPI=1150 . , RH2T1=.35, TP.DAN2 = 3 .5, JILR=L .1, XHLOD=.611, XBLD2-1 . 58, RADJ.-= . 17 3 , IMAOL, Nov J8 96 15:07:48 NVAB*4, SHI3SIM B747-FLOPS-IN I FLAG >-2 , MSUMPT=0, IRW-1, IATA-^0 , FCD0=L.0, FCDI^L,JR TAXOTM=10.0, TAKOTM=2.0, NCLIMB=I, CLMMIN=0.3, C1,AMIN=0 . 0, FWF = 1.0, IPPCL-1, NCRUST=3 , IOC- 0, 3 , CRALT= 40000.. 30000., CRKACH- '1 ?1, 0. 85 CRMMIN= 0.5. S. i, CRDCD= 0.0, 0.0, FLRCR- 1.0, 1,0, CRCLMX= 0.8, 0.8, KCIN-300 . , IVS=1. DEAMIN^O.0, DEMMIN-0.3, DEDCD-0.003B, IRS=1, RESTRP=.05, TIMMAP=2.0, ALTRAN=30Q.0, NCLRES=1, NCRRES=2, HOLDTM=30 .0, N(.:RJIOL=:T, 1JI0P0S=1, ICRON '), EREALT-1500,, 4, 1500., 0.7, 0 .25, 0 .0, 1 .0. 1.0, $ENE START C CLIMB 1 CRUISE 1 DESCENT END E N 0 .30 0 .00 0.80 0.01930 0.01810 0.05520 0,01750 0.01630 0 . 0542V: 0.01720 0-01600 0,06100 0.01730 O.L'1&40 0.06470 0.01800 0.01650 0.07260 0,01840 0.0168C 0.17620 0.01940 O.QLHLQ 0.08960 0.5C O. IC 0.70 0 . 13 0.O1800 0 .01 R,::I- 0.01590 0 .01630 0.O1640 0.01670 o, L'LIOO 0.80 0, 20 0.01840 0 0.056*0 0 0.01630 0 0.01670 0 0 . 01 6 S 0 0 0.01720 0 0.01840 0 0,84 0.86 0.88 0.90 0.30 0.40 0.44 0.50 0.60 ,02020 0.02300 0.02480 0.0278O O.O3430 .01840 0 0^120 0.02320 Q.0JJG60 0.03330 .01810 0.02090 0.02260 0,02550 0.03330 1.11850 0.02 L20 O.02310 0.02620 0.03440 .01870 O.02140 0.02320 0.O2680 O.O3450 .01900 0.02180 0.0235O 0.02730 0.03690 .02020 0.02300 O.M^U 5.02950 0.04160 0.70 0,04320 0.0420C 0.04520 0.04370 0.O5180 0.05570 0.06400 0,02100 0.10830 0.01970 Q.OLSFIO 0.0VO0O 0.02210 O.025RO 0.O2S9Q 0.031QQ 0,04950 0,07 40000.0 45000.0 10 8 0.0 5000.C IOOOO.O 15000.0 20000.0 25000,G 30000.0 35000.0 0.30 0.50 0.70 0.8O 0.84 0.36 0 .88 0 . 90 -0 0017 -0 0016 -0 0014 -0 0014 -0 0014 -0 0014 -0 0013 -0 0013 -0 0015 -0 0013 -0 0012 -0 0012 -0 0012 -0 0012 -0 0012 -0 0011 -0 0012 -0 0011 -0 OOIO -0 0010 -0 OOIO -0 0010 -0 0009 -0 0009 -0 OOIO -0 0008 -0 0008 -0 0008 -0 0008 -0 0007 -0 0OO7 -0 0007 -0 0007 -0 0006 -0 0005 -0 0005 -0 0005 -0 0005 -0 0005 -0 0005 -0 0003 -0 0003 -0 0003 -0 0003 -0 0003 -0 0003 -0 0003 -0 0003 0 OOOO 0 OOOO 0 OOOO 0 OOOO 0 OOOO 0 OOOO 0 OOOO 0 OOUO 0 0004 0 0003 0 0003 0 0003 0 0003 0 0003 0 0003 0 0003 0 O009 0 0008 0 0007 0 0007 0 0007 0 0007 0 0007 0 0007 0 0014 0 0013 0 0012 0 0011 0 0011 0 0011 0 0011 0 OOII B747-FLOPS-OUT 1 ENUINE LOCATIONS ETAE . JBO0 •TITLE, BEGIN INPUT DATA ECHO LOAD DISTRIBUTION CONTROL PDIST 2.0C B747-4DD (FW405*) REV 2.0 HORIZONTAL TAIL DATA AREA SHT 1470.00 SQ FT 1/4 CHORD SWEEP ANGLE SWtHT J7 ,Su DEG ASPECT RATIO AKHT 3 . GO * NAMELIST 90PTIGN 3A:-L.-. RATIO TRHT .250D PROGRAM CDHTRCL, EXECUTION, ANALYSIS AND PLOT OPTION DATA T/C TCKI .0800 LOCATION ON VERTICAL TAIL HHT , 0000 DESCaiPTION NAME VALUE DIMENSIONS VERTICAL T\IL DATA TYPE OF PKOHT.f.M IOPT 1 NUMBER OF VERTICAL TAILS NVSRT 1 ANALYSIS OPTION I ANAL 3 AflSA SVT 830 SQ FT MAIM ENGINE DECK SWITCH 1:. • NG 1 1/4 CHORD SWEEP ANGLE SWPVT 45 . JO DEG Le.iAILED TAJT-Jur-T SWITCH ITAKOF 0 ASPECT RATIO AEVT 1.2500 DETAIIiED LAMIJING SWITCH I LAND •': TAPER RATIO T'RVT . 3400 COST CALCULATION irosT 0 T/C TCVT . 0800 TRAUSPOKT/FIGHTER SWITCH TFITE 0 TAKEOFF PROFILE TOK NOISE NOPRO •: WING K'-N DATA PftOFlLE OUTPUT FILE SWITCH NPF1LE '.: ''A SFIN 56,40 SQ FT NOISE CALCULATION;; 3WITCH NOISE 0 ASPECT RATIO ARFIN . 8400 KASTE3 PRINT CONTROL MFKINT 1 TAPER RAT 10 TRFIN .3 500 XPLOPS DATA PLOT SWITCH T.XFL n T/C TCF J .0800 AERO POLAR PLOT SWITCH IPOLP 17 ]/4 CHORD SWEEP ANGLE SWPFIN 55.00 DEG THHU.^T DATA PLOT SWITCH I PLTTH !.! NUMBER OF FINS NF N 2 HISTORV DATA PLOT SWITCH IPLTHS 0 EXCESS POMES PLOT SWITCH i PiiTfS 0 FUSELAGE DATA NUT5BER OF FUSELAGES NFUSE 1 TOTAL, LKNtffH XL 225.17 FT MAXIMUM WIDTH WF 21.33 F'i t NAMHLIST ?WTIM MAX T MUM DEE'Til DF 2S.75 FT. GEOMETRIC, WEIGHT, BALANCE AND INERTIA DATA CARGO AIRCRAFT FACTOR CARGF .GOOD PASSENGER COMPART LfcMGTH XLP 187.00 FT DESCRIPTION NAME VALUE DIMENSIONS LANPTNiS G:- • • DATA MAX OPER KAC'ji NUMBER VMMO . 8500 LENGTIT CP MAIN GEAT> XMLG 141.60 IN UiTIMATE LOAD FACTOR UL.- 3.7500 LENGTH OF NOSE GEAR XNLG 1 .70 IN REF WEIGHT MUMfiER N'.'.'REF 39 DESIGN Lk'..': • '• WEIGHT WLDG 3480DO.0 LBF CG REFERENCE LENGTH CGREFL 2702.0 IN SET WLDG TO END OF DESCENT KT.DWT 0 X KOR START OF CGREFJ. CGREFX .0 IN CABRtE* BASED AIRCRAFT CT.RBAS . 00 SWITCH TO COMPUTE WEif-H'fJi WYWT5 0 DtilcU GROSS WT, 1 RATIO) DGW i. ooo PROPULSION SYSTEM DATA HYDRAULIC SYSTEM PRESSURE HYDPR 3000. NUMBER OF ENUINE9 ON WING NEW 4 NUMBER OF ENGIKES ON FUSE 0 WING DATA BASELINE ENGINE THRUST TIIR-JO 56570.0 I.SF DIH3DRALIPOSITIVE) DIH 7.000 DEG BASELINE ENGINE WEIGHT WENG .•800.0 i.SF GLOVE AND BAT AREA GLOV .00 SQ PT WEIGHT SCALING PARAMETER EEXP 1.15000 SPAN SPAN 207.67 FT BASK1.IWE INLET WEIGHT WINL .0 LBF CONTROL SURFACE AREA RATIO FLAPR . 2440 INLET WT SCAL:NG -KXPOWENT EIN1 1.00000 FRACTION OF COMPOSITES FCOMP .0000 BASELINE NOZZLE WEIGHT WNOZ .0 LBF A5ROEI.ASTIC TAILORING FACT FAERT .0000 MOAITLE WT SCALING EX FOMENT SNOZ 1.00000 STRUT BRACING FACTOR FSTRT .oooo BASEL!ME NACELLE LENGTH XKAC 17 . 33 FT VARIABLE SWEEP FACTOR VAPSWP .OOOO BASELINE NA-ELLK DTAMETKH PHAC 11 . 67 FT FUEL CAPACITY OF WING FULWMX 2502/7.0 LBM DETAILED WING "EFT "M DATA FOR 5 ST! iTTONS IFOEL. CAPACITY FACTOR •..MAX 24.151: CAPACITY OF FUSELAGE FUUHX .0 LBM STATION DATA 7 2 3 4 5 AP>J"JiT FUSE FUEL CAPACITY IFUFU 1 0 V/SEMISPAN ETAW .4130 . r.roo .S8S0 1 L'UOL' AUXIL TANK KOBE, CAPACITY FULAUX . 0 LBM 0 CHORD/SEMISPH.' CUB 54.3300 28.98C0 20.5£00 14. • : 13 3 7 00 NUMBER OF FUEL TANKS NTANK 8 THTCKNEv.* • h'-'r.O TOC . 1^,40 .0900 , 07K6 . OBOO O&oo AL4JED H1SC PROP SYSTEM WT WPKISC . 000 LBF 0 LOAD PATH SWEEP SWL 21 .00 34.00 34.00 34 .00 . 00 0 fiKPSflENCE ASPECT RATIO AKREF 7 . 6.1 CKKW AWP PAYLOAD DATA REFERENCE THICKNESS/CrtTJRp TCKF.r . IJSOOO FIRST CLASS FASSl-^ERS NPF 34 FRACTION OF LOAD ON DEFINED TOURIST PASSENGERS MPT J !i Iv'lUG (OH PEF WING AREA) PCTL 1.0000 STEWARDESSES VSTU -1 HO. OF INTEGRATION STEPS N . I J0 GALLEY CREW N;;ALC -1 I-70C Nov 18 96 15:07:49 B747-FLOPS-OUT FLIGHT CREW NFLCR 2 AUXILIARY GEAR CGAI .0 IN WEIGHT PER PASSENGER WPPASS 165 .0 LBF AUXILIARY TANKS CGAUT ,0 IN BAGGAGE PER PASSENGER SPP 44. 0 LBF AMMO AND NONFIXED GUNS CGAMMO .0 IN CARGO IN WING CARGOW .0 LBF MISCELLANEOUS USEFUL LOAD CGMIS .0 IN CARGO IN FUSELAGE CARGOF .0 LBF OVERRIDE PARAMETERS FOR WEIGHTS It NAMELIST SCONFIN WING - TOTAL FRWI 1 .OOOC GEOMETRIC RATIOS, OBJECTIVE FUNCTION FACTORS, AND DESIGN VARIABLES WING WEIGHT FIRST TERM FRWI1 1 ,0000 WING WEIGHT SECOND TERM FRWI 2 1 .0000 DESCRIPTION NAME VALUE DIMENSIONS WING WEIGHT THIRD TERM FRWI3 1 .0000 HORIZONTAL TAIL FRHT 1 ,0000 DESIGN RANGE DESRNG 7300.0 N MI VERTICAL TAIL FRVT 1 . OOOO WING LOADING REQUIRED WSR .00 WING VERTICAL FIN FRFIN I .0000 THRUST/WEIGHT REQUIRED TWR .00000 CANARD FRCAN 1 .0000 GLOVE/WING AREA REQUIRED PGLOV .00000 FUSELAGE FRFU 1 .0000 HORIZ TAIL VOLUME COEF HTVC 2.152473 NOSE LANDING GEAR FRLGN 1 .0000 VERT TAIL VOLUME COEF VTVC .159254 MAIN LANDING GEAR FRLGM 1 ,0000 COST CALCULATION SWITCH ICOST 0 NACELLES - TOTAL OR FRNA 1 .0000 AIR INDUCTION SYSTEM FUNCTION TO BE OPTIMIZED - 9BJ = 1. OOOO*(RAMP WEIGHT) + .0000*FUEL 4 .0000" THRUST REVERSERS - TOTAL WTHR 5390 ,0000 + ACHML/D) 4 MISC PROPULSION SYSTEMS WPMSC 1 .0000 0000*RANGE 4 .0000*COST 4 .0000* (NOX EMI FUEL SYSTEM WFSYS 1 .0000 4 SIONS) SURFACE CONTROLS FRSC 1 .0000 AUXILIARY POWER UNIT WAPU 1 .OOOC INSTRUMENT GROUP WIN 1 .OOOC DESIGN VARIABLE DATA HYDRAULICS GROUP WHYD 1 .0000 ELECTRICAL GROUP WELEC 1 .OOOO VARIABLE NAME VALUE ACTIVITY LOWER BOUND UPPER BOUND AVIONICS GROUP WAVONC 1 .OOOO + SCALE FACTOR ARMAMENT GROUP WARM .0000 FURNISHINGS GROUP WFURN 41050 .0000 RAMP WEIGHT, LBF GW 870000.0 0. .0 .0 AIR CONDITIONING GROUP MAC 1 ,0000 + .00000 ANTI-ICING GROUP OR WAI 1 .OOOO WING ASPECT RATIO AH 7.6315 0. .0000 .0000 AUXILIARY GEAR + .00000 UNUSABLE FUEL WUF 1 .0000 THRUST PER ENGINE, LBF THRUST 56570.0 O, .OOO .000 ENGINE OIL WOIL 1 .0000 4 ,00000 PASSENGER SERVICE OR AMMO WSRV 1 .OOOO REF WING AREA, SQ FT SW 5651 .0 0, .0 .0 AND NONFIXED WEAPONS 4 .00000 CARGO AND BAGGAGE CONTAIN, WCON 1 .0000 WING TAPER RATIO TR ,24500 0. .00000 .OOOOO OR MISCELL. USEFUL LOAD 4 .00000 AUXILIARY FUEL TANKS WAUXT 1 .0000 WING 1/4 CHORD SWEEP, DEG SWEEP 37.50 0. .00 . 00 FLIGHT CREW AND BAGGAGE WFLCRB 1 .0000 4 .00000 CABIN CREW AND BAGGAGE WSTUAB 1 .0000 WING T/C TCA .08000 0. .00000 .OOOOO 4 .00000 HORIZONTAL CENTER OF GRAVITY DATA CRUISE MACH NUMBER VCMN .85000 0. .00000 .OOOOC KING CGW .0 IN + .00000 HORIZONTAL TAIL CGHT .0 IN MAX CRUISE ALTITUDE, FT CH 4O000.0 0. .0 . 0 VERTICAL TAIL CGVT .0 IN + .00000 WING VERTICAL PINS CGFIN ,0 IN TURBINE INLET TEMP (RI ETIT .00 0. .00 .00 CANARD CGCAN .0 IN 4 .00000 FUSELAGE CGF .0 IN OVERALL PRESSURE RATIO EOPR .000 0. .000 ,000 NOSE LANDING GEAR CGLGN ,0 IN 4 ,00000 RAIN LANDING GEAR CGLGM .0 IN FAN PRESSURE RATIO EFPR .OOOC O. .OOOO .OOOO TWO FORWARD ENGINES CGEF . 0 IN + ,00000 ONE OR TWO AFT ENGINES CGEA , 0 IN BYPASS RATIO £8 PR , OOOO 0. .0000 .OOOO AUXILIARY POWER UNIT CGAP .0 IN 4 .00000 AVIONICS GROUP CGAV .0 IN THROTTLE RATIO ETTR .00000 0. ,00000 .00000 ARMAMENT GROUP CGARM .0 IN 4 .00000 FLIGHT CREW CGCR .0 IN PASSENGERS CGP .0 IN CARGO/EXT STORES IN WING CGCW .0 IN CARGO/EXT STORES IN FUSE CGCF .0 IN f NAMELIST $AERIN FUSELAGE FUEL CGZWF .0 IN AERODYNAMIC OPTIONS AND APPROXIMATE TAKEOFF AND LANDING DATA WING FUEL CGFWF ,0 IN AIR INDUCTION SYSTEM CGN .C IN DESCRIPTION NAME VALUE DIMENSIONS AIR CONDITIONING CGAC .0 IN v 18 96 15:07:49 AERODYNAMIC INPUT NKTHOT) MYAERO 1 WAVE DRAG INPUT SWITCH [WAVE 0 WAVE DRAG FACTOR FWAVE 1 . OOOO LLFJLAR/^AR.-V:.: I!. 1 r IN .-KL'.P ITPAER 2 AERO MATE IK FORKAT SWITCH 160 1 MAX SFTMBB* AT 70 PERCENT SEKISPAM CAM OOOOO AIRCRAFT LYALJE AREA B'BASE . 0 .SQ WJNC TECHNOLOGY S. :• K 1 . 0 HODIFV EDET DATA HODARO 0 FIXED DESIGN CL FCLDES -1 .OOOO TURBULENTiLAM ZNAR FLOW HLLAH .0 .'.KP.N -FK LC1FNCY FACTOR E 1 . OOOO OVERRIDE PARAM1'': EI<3 FOR WETTED AREAS WTJBO WF.TTED AREA SW- ;1 1 .OOOO HOR. TAIL WETTED AREA ! ... . H 1 . OOOO VERT. TAIL WETTED AREA 5WETV 1 . 0DO0 FUSELAGE WETTED AREA sww 1 . OOOO NACELLE WETTED AFEA S'N • N 1 . OOOO TAKEOFF AND LANDING DATA RATIO OF MAX. LANTUHG WT. TO MAX. TAKEOFF WT. WWATTQ .4000 MAX. LANDING VELOCITY VAPPR 150 . 0000 KTS KBTH. TAKEOFF FIELD LIBKCHB FLTO 12 OOO.O FT MAX. LAN]!TNG FIELD LENGTH FLLDG 12000.0 FT MAX. •-- L.'JDIUR'F CONFIG. CL" 1 2 . OOOO MAX. CL LANDIN3 CONFI!-. C DM 3 , OOOO APPHI^CH CL CLAPP . OOOO AIR DENSITY RATI!) DRAT 10 1 . 0D00 L/D RATIO 2KD SEG. CLIMB EIJCIKJS . OOOO L/D RATIO MIESED APPROACH ELCDMA , OOOO THRUST PER ENGINE TAKEOFF THROFF . OOOO THRUST PER ENGINE 2ND SEG. CLL'MB THRSS . 0 LBF THRUST PER ENGINE MISSF.D APPROACH THRMA .0 LBF NAMELIST SLNGDIN ENGINE DECK CONTROL, SCALING AND USAGE DATA DESCRIPTION VALUE DIMENSIONS ENGINE DECK PRINT CONTROL NGPAT 1 ENGINE DECK SOURCE SWITCH 1'GKNEN SLOPT: FACTOR FOR EXTRAPOLATING FUKL EKTFAC 1.0000 SUBSONIC FUEL FLOW FACTOR FPPSUTJ 1.0000 SUFESSONIC FL':-::. FLOW FACT FFFSUP 1.0000 FLIGHT IDLE SWITCH IDLE 1 TUNOPE NEGATIVE THRUSTS N::NEG L MTU ILLE FUEL FLOW FRACT FIDMIN .0800 MAX IDLE FUEL FLOW FSACT FIDMAX 1.0000 SFC IIXTMPOLATION SWITCH IXTRAP 1 PART POWER DATA SWITCH IFILL 2 MAX. CRUISE POWER SWING HAXCR BOOST ENGINE SWITCH BOOST .0000 FUEL FLOW SCALING CONSTANT TERM DFFAC .0000 . LOW SCALING LINEAR TERM FFFAC .0000 NITROGEN OXIDES SWITCH WOX 0 INSTALLATION DWG T'V;ITCC -NSIMG B747-FLOPS-OUT MAC] I NUMBERS AND ALTITUDES POP. FCBHGFFL DECK GENERATION MACH ALTITUDES .SI 3SD00. 25D0D. .60 20000. 15000. .00 4DOD. 0. NAMELIST SEHGIUE ENLILNE CYCLE ANALYSIS INPUT DATA DESCRIPTION V?\L.UE DIMENSION? USER L^.J-LRF.]".- ENGINE ENGINE CYCLE DEF. FILE IENG IFILE COMFUNXNT MAP TABLES FILE TFILE PRINT LCVEL INDICATOR IPR1NT PRINT VIB/ANOJ'F I::ATA SPRINT PPINT LEVEL FOR HEIGHTS IW7PRT PLOT ENGINE SCHEMATIC IWTPLT CYCLE ANALYSIS OUTPUT PILE OFILE PW4000.CONFIG PW400Q.MAP 1 0 2 0 OUTPUT FLAG TO GENERATE A DECK GENDER F SWITCH FOR HEIGHT CALCS NGJNWT 4 (0=NONE, L^ENGINE, 2=1 + INL1-T, 3=2 +NACEI.LE, If PART POWER BATA CONTROL ITHRCT 0 NUMDER OF A/3 POINTS NL'AB NUMBER OF DRY POINTS NPDRY 15 PART POWER THRUST CUTOFF X1DLE .05000 MAX ALLOWABLE ITERATIONS NITMAX DE.7IGW POINT DATA DESIGN POINT NET THRUST DE5FN 56750.0 OVERALL PRESIRJ.KK HATIO 0PE3ES 27.7000 FAN PRESSURE :\ATIO FPTTUFLS 1.5600 BY?ASS RATIO BPRTJES 4.000' DESIGN TURBINE INLET T.-.Ki' TETDES 2572, 0 DESIGN THROTTLE HA'I'IO TTRDBS 1.O300 OTHER J-IGINE CONFIGURATION DEFINITION DATA 3+NOZZLEI FLAG FOR AFTERBURNER. AEURN F FLAG FOR DUCT B'JKNEP. C URN F AFTERBURNER EFFICIENCY T,.-FAB 85000 MAX APTESBURMEN TER? .'ABKAX 3 500. 0 DEG R FLAG FOR VARIABLE NUZZLE VEN F CUSTOMER COMPRESSOR BLEED COSTHI, . OOOO LB/SEC TURHINE. COOLING (FROM HFC) WCOOL 2310 .OOOO FKAC'TL ON (OR T41 R) CUSTOMER POWER EX'-'P-ACT 1 CN HFEKT .00 . P FUEL HEATING VALUE FHV 18 500 0 STU/LD TECHNOLOGY AVAILABILITY YEAR 19R5 . . • \R FLAG TO DO BCATTA F J. DRAG BOAT F DELTA TEMPERATURE DTCE 15 .00 CEG C DTCE VARIES TO 3£RO AT ATC 1 OOOO. FT FLAG TO OO SPILLAGE CKAB STILL F FLAG TO DO LIP DRAG LIP F USED TO DEFINE MACH-ALT I T' IDE ARRAY POINTS MAXIM'IM MACH NUMBER XMMAX .9000 MAXIMUM ALTITUDE AMAX 40000.0 FT INCREMENT IN MACH NUMBER XHINC .1000 INCREMENT IN ALTITUDE AINC SOOO.O PT MINIHUH DYNAMRC PRESSURE QMIN 150.00 FSF XAHIMUW DYNAMIC PRESSURE: Q.IWX 800. DO PSF Nov 18 96 B747- ENGINE CYCLE OPTIMIZATION CRUISE CONDITION MACH NUMBER ALTITUDE XMDES XADES , 8500 39OO0.0 ENGINE CYCLE BEHAVIORAL CONSTRAINTS MAX COMPRESR DISCHARGE TMP CDTMAX 99999.0000 R MAX COMPRESR DISCHARGE PRS CDPMAX 99999.0000 PSI MAXIMUM JET VELOCITY VJMAX 99999.0000 FT/SEC MINIMUM SPECIFIC THRUST STMIN 1.0000 LB/LB/SEC MAXIMUM BYPASS/CORE AREA ARMAX 99999.0000 DESIGN CONSIDERATIONS USED IN ESTIMATING ENGINE WEIGHT LPC RPM / FAN RPM GRATIO COMPRESSOR/FAN TIP SPEED UTIP1 HUB TO TIP RADIUS RATIO RH2T1 TURBINE MAXIMUM AN^2 TRBAN2 TURBINE USABLE STRESS TR8STR COMPRESSOR USABLE STRESS CMPSTR INLET GUIDE VANES IGVW 1.0000 1150.0 FT/SEC .3500 3.5000"10 IN"2-RPM"2 15000. PSI {LOWER LIMIT) 25000. PSI (IF POSSIBLE] 0 (0=NON2, 1=YES, 2-VARIABLE) # NAMELIST SNACELL NACELLE GEOMETRY AND WEIGHT DATA DIMENSIONS ARE REFERRED TO THE INLET RADIUS (HEIGHT FOR 2D) !0=FIXED, 1 TRANSLATING, 2=COL INLET VARIABLE GEOM SWITCH I VAR LAPSING, 3=1+2) FLAG FOR NACELLE GEOMETRY INAC EXTERNAL PORTION OF CONE X1R INTERNAL PORTION TO THROAT X2R CONE HEIGHT AT COWL LIP R1R CONE HEIGHT AT THROAT R2R ANGLE FROM THROAT TO ENG ANGLE COWL LIP ANGLE CLANG COWL THICKNESS AT ENGINE RADD < 1) NOZZLE VARABLE GEOM SWITCH NVAR 2) WEIGHTING FACTORS AND LENGTH TO DIAMETER RATIOS ARE COMPUTED IF < 0 CENTERBODY TO THE THROAT WTCB1 -10.00000 LB/SQ.IN CENTERBODY THROAT TO ENG. WTCB2 COWL TO ENGINE FACE WTINT NACELLE EXTERNAL SURFACE WTEXT NOZZLE WTNOZ NOZZLE LENGTH / DIAMETER XNLOD FAN NOZZLE LENGTH / HEIGHT XNLD2 1 (AXISYMMETRIC) 1.10000 1.58000 .35400 .58500 7.00 DEG. .00 DEG. .173 IN. (% COMPRESSOR TIP RADIUS IF 4 (0=FIXED, l=THROAT, 2=EXIT, 3=1+ -10.00000 LB/SQ.IN -10.00000 LB/SQ.IN -10.00000 LB/SQ.IN -10.00000 LB/SQ.IN .611 1 . 580 # DESIGN INPUT SUMMARY DESIGN BYPASS RATIO FOR SPLITTER COMPONENT NUMBER 3 SET BY BPRDES IS 4.OO CUSTOMER HP EXTRACTION FOR LOAD COMPONENT NUMBER 14 SET BY HPEXT IS .0 DESIGN PRESSURE RATIO FOR COMPRESSOR COMPONENT NUMBER 2 SET BY FPRDES IS 1.56 DESIGN PRESSURE RATIO FOR COMPRESSOR COMPONENT NUMBER 4 SET BY OPRDES/FPRDES/HPC PR IS 1.54 DESIGN PRESSURE RATIO FOR COMPRESSOR COMPONENT NUMBER 5 SET BY HPCPR IS 11.50 MAXIMUM ADIABATIC EFFICIENCY FOR COMPRESSOR COMPONENT NUMBER 2 IS .8988 MAXIMUM ADIABATIC EFFICIENCY FOR COMPRESSOR COMPONENT NUMBER 4 IS .8990 MAXIMUM ADIABATIC EFFICIENCY FOR COMPRESSOR COMPONENT NUMBER 5 IS .8558 JPS-OUT DESIGN BURNER TEMPERATURE SET BY TETDES IS 2572.0 # CONFIGURATION DATA 16 STATIONS, 25 COMPONENTS. COMPONENT NKIND COMPONENT NUMBER TYPE UPSTREAM STATIONS DOWNSTREAM STATIONS 1 1 INLET 1 0 2 0 2 4 COMPRESR 2 0 3 0 3 7 SPLITTER 3 0 4 12 4 4 COMPRESR 4 0 5 15 5 4 COMPRESR 5 0 6 16 6 2 DUCT B 6 0 1 0 7 5 TURBINE 7 16 8 c 8 5 TURBINE 8 15 9 0 9 2 DUCT B 9 0 10 0 10 9 NOZZLE 10 0 11 0 11 2 DUCT B 12 0 13 0 12 9 NOZZLE 13 0 14 c 13 11 SHAFT 5 7 14 0 14 IC LOAD 0 0 C 0 15 11 SHAFT 2 4 8 0 16 12 CONTROL 10 0 8 0 17 12 CONTROL 8 0 7 0 18 12 CONTROL 7 0 5 0 19 12 CONTROL 5 0 4 0 20 12 CONTROL 4 0 2 0 21 12 CONTROL 2 0 1 0 22 12 CONTROL 13 0 3 0 23 12 CONTROL 13 0 13 0 24 12 CONTROL 15 0 15 c 25 12 CONTROL 0 0 1 0 * CONTROL INFORMATION 16 VARY CDAT 1 OF .O00OOE+OO 17 VARY CDAT 1 OF .00OO0E+0O 18 VARY CDAT 1 OF .000O0E+00 19 VARY CDAT 1 OF .OOOOOE-i-OO 22 VARY CDAT 1 OF .00O0OE+00 20 VARY CDAT 1 OF .00O00E+OO 21 VARY CDAT 1 OF .OOOOOE+00 2 5 VARY CDAT 1 OF .10000E+05 23 VARY CDAT 1 OF .OO00OE+O0 24 VARY CDAT 1 OF .O0OO0E+O0 * DESIGN OUTPUT SUMMARY ALTITUDE MACH FN T9 PR9 A9 RR 0. .000 56750. 1185. 1 1642 1.000 COMPONENT 8 SO THAT STATP B OF FLOW STATION 10 EQUALS COMPONENT 7 SO THAT STATP 8 OF FLOW STATION 8 EQUALS COMPONENT 5 SO THAT STATP 8 OF FLOW STATION 7 EQUALS COMPONENT 4 SO THAT STATP 8 OF FLOW STATION 5 EQUALS COMPONENT 3 SO THAT STATP 8 OF FLOW STATION 13 EQUALS COMPONENT 2 SO THAT STATP 8 OF FLOW STATION 4 EQUALS COMPONENT 1 SO THAT STATP 8 OF FLOW STATION 2 EQUALS COMPONENT 1 SO THAT NET JET THRUST (LBS) EQUALS COMPONENT 13 SO THAT DA TOUT 8 OF COMPONENT 13 EQUALS COMPONENT 15 SO THAT DATOUT 8 OF COMPONENT 15 EQUALS 8SHP WF SFC R FLOW BPR BOT T19 PR19 Al 9 NIT V9 AEXIT 0. 19379. .341 1995.9 4.000 2572. 600. 1.515 3447. 5 988. 1921 STATION PROPERTY OUTPUT DATA Km 18% 15:07:49 B747-FLOPS-OUT FLOY. MEIWHT TOTAL TOTAL MACH STATIC INTERFACE RELATIVE STATION FLOW PRESSURE TEMPERATURE UMBER PRESSURE FLOW EHRQR STATPl STATP2 STATP3 TATP6 STAT P 7 STATE*B 1 .1995JE+04 . ".J696E+02 . r,i^67E-03 oOOoe+dg- . oooDORt;;:- . ooooOe+oo .L9959E-D4 .I469&E+02 .51867E+03 ocpnr.no .oooooe+cc . ;>:•::•:•:•£+-:••. 3 .19959E+04 .2292«E*D2 .599822+03 ooooe+oo oooooe+oo .oooooe+oo 4 .IrPiBEfO.l .22BI3E+02 .5996JE+03 ooooe+oo .oooooe+oq . ooccoe+qo 5 .3991liE + 03 -35221J?>r!2 .69O76E+03 ooooe+co .oooooe+od .oooooE+on 6 .2974&K+03 .105U(EiC3 .146B0E+04 OOOOE+OO .00QD0E+OO .OOOOOE+OO 7 .302£4E*O3 .4009SE+03 .25720S+04 QOCUE+OO .0OO0OK+00 .O000DE+00 8 .40457B+03 .76141E+02 .16269E+04 OOOOE+OO . 0OD00E+.O0 .OOOOOE+OO 9 .40»dVE-U3 .iaaa7E+02 .11S51E+04 O000E+0O .O0000E+O0 .OOOOOE+OO 10 .40457E+O3 .18887E+02 .11851E+U4 1486E+QO .14C9.GF+Q3 .UOOOOE-GQ 1 .40457B+0J .188B7E+02 ,11E51E+04 1179E+00 .14696E*02 .OD000E+00 12 -15967E+04 .2J490E+02 .59983E+03 OO0OE+00 .000O0E*O:' .QOuDOb+OO i', .l'ji!67E + 0i . 222 65E+02 .59983E+03 5>2BlHoO .14696E+02 . OOuOUE+OL 14 . l'.s367E+04 .222S5E+02 . S999JE+03 8884E + 00 .14696E+02 .QQOOOE+CO 15 .OOOOOE+OO .OOOOOE+OO .0OO0OE+00 OOOOE+DO .OOOOOKtOO . O'Jl'OOE+Oi, 16 .LO173S+0" .40504E+03 .1468OE+04 ooooe+oo . oooooe+ou .oooooe+oo FUEL/MR RATIO STATP4 .OOOODEhQO .O0O00E+00 .000055*00 .OOQOCE+CO .O0O00E+O0 . OCOOOE-OO . 190'.>7E-Ol .134B5E-01 .13485E-0I .13435E-01 .13485E-01 .OOOOOE+OO .O000OE+O0 .O0O00E+00 .000003+00 .OQOOOE+OD COMPONENT OUTPUT COMFOMENT NO. TYPE DATOUTl DATOUT2 DATOUT3 ATOIJT6 DATOLT7 DATOUTB DATOUT3 1 INLET .OOOOOE+OO .ODOOOE+00 .009C0E+OO qoooe-oo .loooiit-.. i .iooooe+01 oooooe+oo i CCMFRESR -.553O9K+05 .1O00OE+01 .OOOOOE+OO 7OO0E+D0 .76B&5E+01 .S6405E+00 .15600E+Q! 3 SPLITTER .40000E+Oi .5OU0UE-02 .19000E-O1 ooQQE+tfQ . oooooe+oo . oooooe+oo .oooooe+oo 4 CdMPRftSH - . 12 J72.E+05 .1O000E+01 .OOOOOE+OO jCOOEiOO .110BJE+0I .S7039E-Q0 . 154SUE+01 5 EQHEflJgSB H03BE + 06 .IOOOOE+01 .OOOOOE+OO 500DE+00 .141156*01 .64.BO4E-0O .11500E+02 6 DUCT D .OOOOOE+OO -lOOOOE-Ul .OOOOOE+OO 9379E+05 .OOOOOE'OO .10500E+O5 7 TURBINE . ] ) P-3 Bj"+06 . 10000 E* ooooE+oi ,aay36E+oo .89oode+co 8 TURBINE .673R13+0S .10000E+ "J. 99 0O0E+OO Ui .0' 100] .52664E+0T 0 .OfilOOE + 00 .40313E+01 DD00E+D3 . 4976JEH-01 .90000Et00 9 duct b .oooooe+00 .oooooe+00 .oo000e+0o ooooe+oo .oooooe+oo .issooe+ds .oooooe+oo 10 NOZZLE .12426E24E + 05 . 39.1 : •• ii • )3 .3-1472E+04 DAT0UT4 .lOOOOEiOl .22DOQE+01 . OD5D0E+00 .99500E+O0 .OGOOOEtOO .15I51E+01 13 SHAFT .DOOOQErOO .1000UE+01 .l^OCOE-Dl + 0050E+QQ .OOOOOE+OO .OOOOOE+OO .OOOOOE+OO ii U^AD .OOOOUE+00 .IDPOOE+OJ .OOOOOE+OO * (100dH*0O .DDDPOE+00 .O0O0UE1OO .OOOOOE+OD 15 S:'.n.FT .OOOOOE+OO .j.OOOOE+01 .lOUOUE+01 + ooooe+oo .oooooe+oo .oooooe+oo .ooocqe+oo PERFORMANCE OUTPUTS .lOODDE+Oa . OOOOOE+OO . IOOOOE+01 MACH 0 . FT (1) NET JET TMRUET (LBS] {3> AIRFLOW (LE^SEC) [*) TSFC (LB/HK/LBJ (0) FUEL FLOW (LE/HR) (7) NET THRUST/AIRFLOW (91 TOTAL CfLWi (LPS) 567M.QC 1995.91 19378.55 23. 43 .00 (2) MET BRAKE SHP (5) BSFC (LB/RR/HP) (8) NET BSHP'AIRFLOW 5 tr-W-.TIONS 14 .IOOOOE+01 .0 .oooooe+oo ,o •IOOOOE+01 .0 ,000 / ALT = .00 .oooo .c TURBINE COOLING AIRFLOW COMPUTED AT 25.48%. # COMPRESSOR COMPONENT NUMBER 2. WARNING - BLADE CENTRIFUGAL STRESS FCH COMPRESSOR 7. HAS SEEN EXCEEDED. COMPHaaSOft Til' SPEED WILL DE INDUCED TO 1119.6 ; i/SEC ;OR A HUB TO TIP + z m : • oc DESIGN PARAMETERS DESCRI P'J-JON NAHE VALUE MASS FLOW WTFWT 1994'. 91 STAGE FLOW ANGLE ALFI 23.6390 DIFFUSION FACTOR DTFFF .600000 POLYTROPIC EFFICIENCY PEFF .B7231 IGV ENTRAUCE NACH XMO .50000 SOLIDITY SIGMA 1.00000 HUH TO TIP RADIUS RATIO FJJ2T .35000 REOOIflElt PRESSURE RATIO SEQPR 1.5E0DO TIP SPEED UT IJ.19 - 64 ROTOR ENTRANCE MACH XMEF ,57000 I'.j MENS I ON L.B/SEC DEG FT/SEC STAGE MATERIAL DENE I TV .0980, USABLE STRESS HOB RAH I US TIP RADIUS TOTAL TOTAL Al OLE MACH PRESSURE WEIGHT DENSITY'TEMP STAGE/rffl (IN) (IN) TEE? !R) PRES (PST) '"': EG) NUMBER RAT]0 (LB) (LB/CI)/(R) 700. : IN) AN (D 1 / 45 .570 IS. 60 •.• . i 1.55 3227. 599 . 1 .0980/ 672. 2 .81 7734.37 TOTAL = 1227. RESULTS AFTER S5 ITERATIONS 2 EAXTMUM AN = ROTATIONAL SPEED = ROTATImjAL SPEED TIP SPEED KEAW RADIUS HAJtlHUH RADIUS ASPEC1' RATIO, FIRST / LAST = 10 •S X 10 252.84 2414.4 111S.64 35.87 53 .14 5-00 )N-RPM RAD/S EC FT/SEC IN '5.00 15:07:49 RDTOR INLET HEL LENGTH vn • Gi R (f COWPRBSSCP COMPONENT NUMBER E- rnN U1ETERS DESCRIPTION M71SS FLOW STAGE FLOW ANGLE DI FPUS J ON FACTOR POLVTROWC EFFICIENCY IGV ENTRANCE MACH SOLIDITY HU3 TO TIP RADIUS RATIO REQUIRED PRESSURE AA'flQ TIP SPEED ROTOR ENTRANCE MACH 47- FLOPS-OUT NAME WTFWT ALF1 I. .[••!•• V PEFF XMU SIGMA RFI2T (tlCPR UT XMEF .8497 15. OC I22t .88 VALUE 399 .18 5.7723 554319 .87809 .500C0 .00000 .66936 .54404 S58.51 . 57000 IN LB DIMENSION Lil/SEC PEG FT/SEC 1 - MATERIAL DENSITY = . 1430, HUB RADIUS GLE MACH PHES^UH! STAGE/NB (IN) EG) NUMBER RATIO USARl.S STRESS TOTAL IP RADIUS TOTAL WEIGHT DENSITY/TEMP (IN) TEHP (R) PRES (PSI) (LU) (LB/CI)- PRESSURE rati:' RFXjHR 11.50 0 T.-1K: •:- • TEH? (R) P (P.ST) P (PSI) NUMBER (DEG) TIP SPEED UT 2 . 13 FT/SEC + N) HUB (IN) (IN*IN) H' N HC.-r ~. • "ACH XMEF .57000 4 STAGE - 1 - MATfcftJAL DENSITY = 29 60, USA&fJv .STRESS = 30000. STATOR INLET 2309.2B 2187.45 400.993 318.806 . 6000 .ooo + 0 22.445 111.3 .34178E10 HUE RADIUS TIP RADIUS '1 J'I'AI TOTAL AREA 7 AN ROTOR INLET 2309 . 2B 1991.45 391.971 211. 5 J :', 1.0053 59.970 GLE MACH PRESSURE WEIGHT DENS ITY/TEH I* + 6 ,'.2.169 190.4 .5S475E10 MAGE/NB (IN) (IK) TEMP (R) PRES (PSI) (IN*TN) A*K ID ROTOR EXIT 1968.06 1340.43 192 . 5^7 145.628 . 6568 17.029 EG] NUMhLK RATIO 1 LB) (LB/ ii/ io .36 21 . ji lual.5 ] 5U 36 365 BS 1 1I353E10 34 . S4 471 4 .27 80 . .1430/1217. 18 . 66 21 . 03 1.188.1 198 33 294 31 90374E10 34 . • " 448 5.63 73 . .1430/3322. /103 18 . 88 20 .81 1203.2 255 79 241 38 74!21E10 34 . ' 4 429 7.26 93 . .J430/I4i«. 7 /ill 19 .04 20. 65 1376.9 323 69 201 15 61769F.10 34 BI 412 9 . 19 19 j . .i^60/1527. w /H9 19 .16 2.0 . 53 14*9.1 403 04 169 89 52170E10 34 .84 39B 11.44 ltd . .2360/1627. 3; 12s! Ko'l'R ANL> I"-5 oi'ATR BLADES) STAGE - 2 - MATERIAL DENSITY = + S RADIUS * N) HUB (IN) TOTAL AREA TEMP 1R) I WIN) STATIC 2 TEMP (RI P IPSII A*M 2960, USABLE STRESS = 22435. TOTAL STATIC MACH P (PSI) NUMBER 23 , 22 23 .49 23 .57 = . 44 ALPHA RABID (DEG) TIP (T ST. " INLET * 0 22.094 ROTOR INLET + 8 21.307 ROTOR EKET +9 21.10€ TOTAL - 1083 . RESULTS AFTER 49 ITtHATjONS 2 MAXIKUM A N E0TATIOMAL 3PEE0 ROTATIONAL SL'EED TIP SPEED MEAN RADIUS MAXIMUM. PAPIUS ASPECT RATIO, FIRST / LAST ftPTOR INLET REL MACH NO. LENGTH WEIGHT S TURBINE COMPONENT NUMBER 7 . DESIGN PARAMETERS DESCRIPTION NAME MASS FLOW WTFWT STATOR ENTRANCE MACH XM1IN NOMINAL ROTOR MACH XH3tN REQUESTED EXIT SWIRL ANGLE ALF3E AXIAL VELOCITY RATIO U3U2 i.NI IT TOTAL TEMPERATURE TTWT IULET TOTAL PXASSURE PTWT EXIT TOTAL TEMPHHAI'JHS TTEX 10 2 . 573 X 10 560 .30 5641.4 1122.13 19.05 23 .20 2 .57 .5923 27 .71 1083.40 VALUE 4 04.57 .£0000 1 .03000 . oooo 1 .20000 2309.28 400.99 1626.B5 2 2 IN-RFH RAD/KFC RPM FT/SEC IN IN / 1 .29 i,: I 7. ITMKN.S'I OH If'oli.Of; 1840.3 9 .'ill.7 . 65OZ2E10 1968.06 K-*6.9S 437.3 1.34434E10 11)26.85 1544.33 495.4 1.53119610 (STAGE WT •- 398. ITS; ROTR EXIT REL 80 F.OTR AND 9 6 -S'CATR BLADES) 192.557 188.192 83.371 146.171 100.885 67 . 538 . S 5 6 8 1,0074 . 5628 ,946; DEGREE OF 17.029 23.57 65.343 24.35 20.514 24.55 HFACTION = .41 RESULTS AFTES 345 ITERATIONS 2 MAXIMUM A N ROTATI :• SPEED ROTATIONAL SPEED MEAN RADIUS MAXIMUM RADIUS I.BW WEIGHT LMHPRESSOR FRAME WEIGHT TURBINE FRAME WKr'D'T 10 .521 X 10 580.30 5541.4 22 . 83 24.56 7 . 13 1097.39 2 2 IN-RPM PAD/SEC RPM IN IN IN LP- DEG R p.7;:. K * SPLITTER C'-MPONENT NUMBER 3. DESI0W PARAMETERS (PRIMARY DESCRIPTION MASS FLOW INLET TOTAL PRESSURE FJIT TOTAL TEMPERATURE FUEL TO AtR RATIO BYPASS DUCT HASS PLOW BYPASS DUCT MACii NUMULR RESULTS WALL THICKNESS SPlj • -..I • TH TREAM) NAME WTFWT PTWT :• TWT FARWT WTFSEC xmach 906. "S3 LB 487.68 L'S VALUE 1)1MENSION ', 9J/S.9] LB / SEC 22.91 PSI 599 . 0 DEG fi .00000 1536.72947 LB/SEC .52806 . LD0OC TTI 3.34 ;n Nov 18 96 15:07:49 B747-FLOPS-OUT SPLITTER WEIGHT HP-LP TURBINE DUCT WEIGHT # BURNER COMPONENT NUMBER 6 . DESIGN PARAMETERS DESCRIPTION NAME MASS FLOW WTFWT INLET TOTAL PRESSURE PTWT EXIT TOTAL TEMPERATURE TTWT FUEL TO AIR RATIO FARW INLET MACH NUMBER XMACH RESULTS AREA RATIO (EXIT/REFERENCE) OUTER DIAMETER INNER DIAMETER = OUTER WALL THICKNESS BURNER LENGTH TOTAL LENGTH = BURNER WEIGHT FRAME WEIGHT = TOTAL WEIGHT HP-LP TURBINE DUCT WEIGHT = TOTAL BARE ENGINE WEIGHT1 9.63 LB 13.85 LB INLET 297.46 405.04 1468.0 .00000 .09481 EXIT 302.84 400.99 2572 .0 .01810 DIMENSION LB/SEC PSI DEG R .224 45 .14 40.21 ,20000 20.07 25.13 984.17 502.42 IN IN IN IN IN LB LB 1486.59 LB 70.90 LB 11854.38 LB INITIALIZE CRUISE THERMODYNAMIC AND PERFORMANCE DATA AT MACH NUMBER + UDE = 39000. FT. BPR BOT ALTITUDE MACH FN BSHP WF SFC R FLOW T9 PR9 A9 RR NIT V9 AEXIT 39000. .850 10498. 0. 6803. .648 2183.5 3.838 2396. 1045. 2 1642 1.000 1 1436. 1646 (t WEIGHT AND DIMENSION SUMMARY T19 531 . NACELLE WEIGHT AND DIMENSION SUMMARY +• WT/A THICKNESS + (PSI) (IN) INTERNAL SURFACE OF COWL TO ENGINE + 02352 .080000 EXTERNAL SURFACE OF COWL TO ENGINE + 02352 .080000 EXTERNAL SURFACE FROM ENGINE TO FAN NOZZLE + 02352 .080000 EXTERNAL SURFACE FROM ENGINE TO NOZZLE + 02352 .080000 CORE NOZZLE + 02145 .050000 PAN NOZZLE * 02352 .080000 TOTAL NACELLE WETTED AREA NACELLE LENGTH (EXCLUDES SPIKE) INLET WEIGHT NACELLE WEIGHT CORE NOZZLE WEIGHT FAN NOZZLE WEIGHT (LB) 374.0 446 .4 135.6 516 .4 117 .5 853 .2 970. 6 LENGTH (IN) 49 .5 49 . 5 15.1 116.7 27 .9 104 . 7 209 .2 .85, ALTIT PR19 A19 2.569 3447. AREA (SQIN) 15899. 18978. 5767 . 21956. 5476, 36274. 61019. SQ.IN. 209.2 IN, 374.0 LB 1098.4 LB 117.5 LB 853 , LE INLET CAPTURE RADIUS EBU + CONTROLS + ETC. JET VELOCITY WEIGHT PENALTY INLET WEIGHT (+MOUNTS, ETC.) NOZZLE WEIGHT ENGINE WEIGHT TOTAL PROPULSION SYSTEM WEIGHT 45.0 IN 3574.3 LB . 0 LB 1472.4 LB 970 . 6 LB 11854,4 LB 17871.7 LB # MACH - ALTITUDE POINTS WHERE PROPULSION PERFORMANCE DATA WILL BE COMPUTED. AT MACH = ,850 THE 2 ALTITUDES ARE 39.OK 35.OK AT MACH = ,600 THE 2 ALTITUDES ARE 20.OK 15.OK ,000 THE 2 ALTITUDES ARE 4.OK ,0K OFF DESIGN POINT DATA FOLLOWS » DATA AT MACH ALTITUDE MACH 55, 39000. FT FN T9 39OO0 1045 . 39000 1009 . 39000 975. 39000 952 . 39000 930 . 39000 908 . 39000 888. 3 9OO0 868, 39000 849 . 39000 831 . 39OO0 B13 , 39000 796. 39000 780. 39000 765, 39000 750. PR9 A9 RR .850 10498. ? 1642 1.000 ,850 9510. 1642 1.000 .850 8579. 1642 1.000 .850 7929. 1642 1.000 .850 7252. 1642 1.000 .850 6588. 1642 1.000 .850 5946, 1642 1.000 .850 5308. 1642 1.000 850 4695. 1642 1.000 .850 4128. 1642 1.000 850 3600, 1642 1.000 850 3081. 1642 1.000 850 2590. 1642 1.000 850 2127, 1642 1.000 850 1682. 1642 1.00C # DATA AT MACH .85, 35000 ALTITUDE MACH FN T9 PR9 A9 35000. 1056 . 35000. 1021. 35000. RR .850 12725. 2 1642 1.000 .850 11527. 1 1642 1.000 ,850 10399. BSHP WF SFC NIT V9 AEXIT 0. 6803 . .648 1 1436 . 1646 0. 6155, , 647 B 1405. 1642 0 , 5550. . 647 2 1310 , 1648 0. 5142. . 649 14 1245 . 1658 0 . 4743 . . 654 17 1179 . 1675 0. 4361 . .662 8 1115 . 1698 0. 3999 . . 673 2 1052, 1728 0, 3652 . .688 2 990 . 1766 0. 3325. .708 2 930 . 1813 0 . 3021. .732 2 573 . 1867 0. 2738 , ,761 4 318, 1929 0, 2472 . .802 3 765. 2001 0 . 2221. .858 3 713 . 2085 0. 1984 , .933 2 662 , 2185 0 . 1764 . 1 .049 3 614 . 2299 . FT BSHP WF SFC NIT V9 AEXIT 0. 8296. .652 1 1444 . 1646 0 . 7505. . 651 e 1414 . 1642 0. 6767 , .651 R FLOW 2183.5 2136.2 2089.9 2054.7 2014 .2 1972 .0 1929.1 1883.5 1837.6 1793 .4 1750.6 1706.1 1662 .0 1618.5 1574 .3 R FLOW 2183.6 2136 . 4 2090.1 BPR BOT 3.838 2396 , 3.984 2322. 4.140 2248. 4.251 2195. 4.368 2143, 4.491 2090, 4 . 623 2038. 4.762 1935. 4.911 1933. 5.068 1880, 5.233 1828. 5.405 1775. 5.601 1723. 5.828 1670. 6.070 1618. BPR BOT 3.838 2419. 3.984 2344, 4 .140 2270. T19 531 . 527. 522 . 518 . 515. 511 . 507, 503 . 500 . 496. 492 , 489 . 485. 481 . 478. T19 537 . 532 . 527. PR19 A19 2.569 3447. 2.521 3447. 2.473 3447. 2.435 3447. 2.391 3447. 2.344 3447. 2.297 3447. 2.246 3447. 2.194 3447. 2.145 3447 . 2.097 3447, 2.046 3447. 1.997 3447. 1.949 3447. 1.900 3447, PR19 A19 2.569 3447. 2.521 3447. 2 . 474 3447. Nov 18% | 15:<)7:49 B747-FLOPS-OUT 986. 1 1642 1.000 2 1318. 1648 15000 .600 22477. 0 . 13602. .605 2070 5 4 .148 2481. 580. 1 946 3447 3SOO0. .850 9611. 0 . 6269 . . 652 2054 .9 4 .251 2217 . 524. 2 .436 3447. 4 1108. 1 1642 1.000 17 1168 . 1731 963. 1 1642 1.000 14 1253 . 1658 15000. .600 20646. 0 . 12530. . 607 2025 .6 4 .264 2422 , 575. 1 .906 3447 350OQ. .850 8792. 0 . 5782 . .658 2014 .5 4 ,3 68 2164 . 520 . 2 392 3447 . 4 1084 . 1 1642 1.000 12 1103. 1767 940 . 1 1642 1,000 17 1187 , 1675 15000 .600 18879. 0. 11514. .610 198C 1 4 .385 2363 . 571. 1 .866 3447 35000. .850 7986. 0. 5317. .666 1972 2 4 .491 2111 . 516. 2 .345 3447 . 4 1062 . 1 1642 1.000 12 1040. 1810 918. 1 1642 1.000 8 1122 . 1698 15000. .600 17145. 0 . 10549. . 615 1932 6 4 509 2304, 566 . 1 824 3447 35000. .850 7208. 0. 4875 , . 676 1929 .3 4 .623 2058 . 512. 2 297 3447. 1 1040. 1 1642 1.000 2 980. 1861 897 . 1 1642 1.000 2 1058 . 1728 15000. .600 15409. 0. 9625. .625 1881 5 4 637 2245 . 562 . 1 781 3447 35000. .850 6435. 0. 4451 . ,692 1883 8 4 .762 2005. 509. 2 246 3447 . + 1019. 1 1642 1.000 2 920. 1921 878. 1 1642 1.000 2 996. 1766 15000. .600 13761. 0 . 8759. .637 1830 2 4 .771 2186. 557 . 1 738 3447 35000. .850 5692. 0. 4052 . .712 1837 8 4 .911 1952 . 505. 2 195 3447. + 999. 1 1642 1.000 2 862, 1990 859 . 1 1642 1,000 2 936. 1812 15000. .600 12232. 0. 7956 . . 650 1780 1 4 907 2126 . 553 . 1 698 3447 35000. .850 5004. 0 . 3682 . .736 1793 6 5 068 1899. 501. 2 145 3447 . + 979. 1 1642 1.000 5 808. 2067 840 . 1 1642 1.000 2 878. 1866 15000. .600 10757. 0 . 7203 . .670 1728 6 5 048 2067 . 549 . 1 657 3447 35000. .850 4363. 0. 3337 . .7 65 1750 7 5 .233 1846 . 497 . 2 097 3447 . 4 959 . 1 1642 1.000 3 755 . 2154 822 . 1 1642 1.000 4 822. 1928 15000, .600 9346, 0. 6500 . , 695 1676 2 5 193 20O8 . 544. 1 617 3447 3 5000. .B50 3734. 0. 3012 , . 807 1706 1 5 .406 1793 . 494 . 2 047 3447. + 941. 1 1642 1,000 2 705, 2252 805. 1 1642 1.000 3 769 . 2000 15000, .600 8065. 0, 5854 , .726 1626 0 5 341 1949 . 540 . 1 580 3447 35000. .850 3137. 0. 2706. .863 1661 9 5 603 1740 . 490. 1 997 3447 , 4 923 . 1 1642 1.000 3 658. 2359 789. 1 1642 1.000 3 717 . 2085 15000. .600 6857. 0, 5255 . .766 1575 7 5 494 1890. 536 . 1 544 3447 35000. .850 2575. 0. 2416 . , 938 1618 2 5 831 1687 . 486. 1 949 3447 . + 905 . 1 1642 1.000 3 613. 2477 773 . 1 1642 1.000 2 666 . 2185 15000. .600 5604. 0. 4673 . .834 1519 2 5 668 1831 , 532 . 1 506 3447 35000. .850 2036. 0 , 2148. 1.055 1574 1 6 072 1634. 483 . 1 900 3447 . + 890. 1 1642 1.000 4 568. 2621 758. 1 1642 1.000 3 617 . 2299 + 150OO. B74 . 1 .600 4478. 1642 1.000 0. 4 4140. 525. .925 2780 1465 1 5 855 1772 . 529 . 1 47C 3447 DATA AT MACH .60. 20000 . FT ALTITUDE MACH FN BSHP WF SFC R FLOW BPR BOT T19 PR19 A19 * DATA AT MACH .00, 4000 , FT T9 PR 9 A9 RR NIT V9 AEXIT ALTITUDE MACH FN BSHP WF SFC R FLOW BPR BOT T19 PR19 A19 20000. .600 22191. 0 , 132S1. . 598 2174 0 3 846 2553. 570 . 2 034 3447 . 4 T9 PR9 A9 RR NIT V9 AEXIT 1130. 1 1642 1.000 1 1318. 1668 4000. ,000 49017. 0 . 16777. .342 1995 9 4 000 2581. 602 . 1 515 3447 20000, .600 20149, 0 . 11991, .595 2121 0 3 994 2474 . 564. 1 989 3447. + 1190 . 1 1642 1.000 1 990. 1921 1096, 1 1642 1.000 9 1227 . 1695 4000 , .000 44921. 0. 15062 . ,335 1916 6 4 092 2502 . 596, 1 473 3447 20000. .600 18263. 0. 10798. .591 2070 0 4 149 2395 . 558 . 1 945 3447 , + 1162. 1 1642 1.000 10 918 . 2001 1064. 1 1642 1.000 17 1141 . 1733 4000. .000 40941. 0. 13469. .329 1834 8 4 178 2422 . 590. 1 432 3447 20000. ,600 16776. D. 9948. . 593 2025 2 4 264 2337 , 553 . 1 905 3447 . 4 1134 . 1 1642 1.000 3 850. 2095 1041 . 1 1642 1.000 12 1078 . 1770 4000. .000 37712. 0. 12259. .325 1764 3 4 243 2359 . 585 . 1 397 3447 20000. .600 15341. 0 , 9142. .596 1979 7 4 385 2280. 549 . 1 865 3447 . 4 1113 . 1 1642 1.000 3 796 . 2182 1019 . 1 1642 1.000 12 1017 . 1813 4000. .000 34665. 0. 11138. .321 1694 7 4 304 2296 . 581 . 1 365 3447 20000. .600 13931. 0. B376 . . 601 1932 1 4 509 2223 . 545. 1 823 3447. 4 1093 . 1 1642 1.000 3 745. 2279 998. 1 1642 1.000 2 958. 1864 4000, ,000 31691. 0 . 10090. ,318 1623 1 4 356 2233. 576. 1 333 3447 20000. .600 12512. 0 , 7641. .611 1880 7 4 638 2166 , 540. 1 779 3447. + 1073, 1 1642 1,000 2 696. 2386 978 . 1 1642 1.00C 2 899. 1925 4000. .000 28745. 0. 9110 , .317 1548 2 4 398 2170. 572 , 1 301 3447 20000. ,600 11168. 0 . 6952. ,623 1829 1 4 772 2108 . 536 , 1 737 3447 . 4 1054. 1 1642 1.000 3 650 , 2 507 959. 1 1642 1,000 2 843 , 1994 4000. .000 25990. 0, 8209 . .316 1474 4 4 430 2107 . 568 . 1 271 3447 20000. .600 9922. 0. 6313 . . 636 1778 8 4 909 2051. 532 . 1 696 3447 . + 1036 . 1 1642 1.000 3 607 . 2637 940, 1 1642 1.000 5 790 . 2071 4000 . .000 23415. 0. 7377 . .315 1401 7 4 456 2044 . 564 . 1 243 3447 20000, .600 8717. 0. 5714 . . 656 1727 0 S 052 1994 , 527 . 1 655 3447. 4 1017 . 1 1642 1.000 1 565 . 2782 921 . 1 1642 1.00C 3 738. 2159 4000. .000 20977. 0. 6612 , .315 1328 9 4 468 1981. 560 , 1 217 3447 20000. ,600 7570. 0 . 5156. , 681 1674 5 5 197 1937 . 523 , 1 615 3447 . 4 998. 1 1642 1.000 3 526, 2939 904 . 1 1642 1.000 4 689 . 2257 4000 . .000 18525. 0. 5878. .317 1250 1 4 482 1917. 556. 1 191 3447 20000. .600 6530. 0. 4644 . .711 1624 4 5 345 1879. 520. 1 579 3447 . 4 981. 1 1642 1.000 4 487. 3127 886. 1 1642 1.000 3 643 . 2364 4000. ,000 16078. 0. 5179. .322 1166 9 4 485 1854. 552 . 1 165 3447 20000. .600 5546. 0, 4168. .752 1573 9 5 497 1822 . 516 . I 543 3447 . 4 965. 1 1642 1.000 3 447 . 3350 869. 1 1642 1.000 3 599. 2483 4000, .000 13797, 0. 4537 , ,329 1082 6 4 486 1791. 548, 1 141 3447 20000. ,600 4532. 0. 3708 . .818 1517 7 5 670 1765 . 512. 1 504 3447 . 4 949, 1 1642 1.000 3 409. 3610 854 . 1 1642 1.000 4 555 . 2 62 6 4000 . .000 11661. 0 , 3 959 . .339 996 9 4 453 1728. 545. 1 118 3447 20000. .600 3623. 0 . 3286. ,907 1464 0 5 855 1708. 508 . 1 469 3447 . 4 934 . 1 1642 1.000 4 374 . 3899 839. 1 1642 1.000 4 5T4 . 27735 4 4000. 921. 1 .000 9643. 1642 1.000 0. 3 3417. 337 . .354 4268 907 8 4 43 6 1665. 541 . 1 097 3447 DATA AT MACH .60, 15000 . FT ALTITUDE MACH FN BSHP HF SFC R FLOW BPR BOT T19 PR19 A19 # DATA AT MACH .00. 0 . FT T9 PR 9 A9 RR NIT V9 AEXIT ALTITUDE MACH FN BSHP WF SFC R FLOW BPR BOT T19 PR19 A19 15000. , 600 27327 . 0. 16739. .613 2174 8 3 844 2645. 592 , 2 034 3447 . 4 T9 PR 9 A9 RR NIT V9 AEXIT 1177 . 1 1642 1.000 2 1349 . 1666 0. .000 54281. 0. 18925. .349 1954 5 4 051 2649. 628. 1 «92 3447 15000. .600 24805. 0. 15109. . 609 2121 6 3 992 2563 . 586. 1 990 3447 . 4 1233 . 1 1642 1.000 10 977 . 1959 1142 . 1 1642 1.000 9 1256 . 1693 0. .000 49747, 0. 16997. .342 1876. 6 4 140 2568 . 621. 1 . 452 3447 15:07:49 B747-FLOPS-OUT • 1205 . 1 1642 1.000 ; 306. ; -* 4901€,9 14921.4 10940.7 3 7 71 ? 0 JlCfS i 316JO.J! 2B714.7 25990.4 .iii1.» 2D97-6 .5 0 000 45120. 0. 15172. .236 17°1 .6 22 2 24 98 615 . 1 410 3447. + 18525.0 16077.8 1JTJ6.7 11661.4 9643.5 .0 + 1177 . 1 1642 1.O0C 2 83B. 2144 1&776.6 15062.1 13469.0 12258.8 11137.6 100B9.8 9109.8 B20B.S 7377.1 6612.2 0 000 41566. 0. 13816. .3^2 1722 8 4 283 2423 . 111 . 1 377 3447 . 5877.7 5178.9 4537.0 3 ^8 8 3416.9 1342.1 + 1156. 1 1042 1.000 3 785 . 2215 .342 .335 ,32i .325 .321 .318 .317 .AN .315 • 5 0 000 38 164. 0 . 12554. .3S9 1653 7 4 338 2359. 606 . 1 3.46 3447 . + .317 .322 .329 .339 .354 .000 + 1135 . 1 1642 1.00D 3 73-9 . 2336 0 000 34734. 0. 11370. .327 1581 3 4 384 2294 . 601 . 1 31S 3147. MACH -- .000, ALTITUDE-: =• 0,, THRUSTS/FUEL FLOWS/SFCS/NOX RAT.i.S FOLLOW + 1115 . 1 1642 1.000 2 637 . 2448 54280.7 49747.0 45120.1 41S65.9 3,611 4.1 34,84.5 31556.0 28538.2 25713,0 22983.O 0 OOO 31556. B . 10274. .226 1508 4 4 £ ?. i: 2230. 597 . 1 284 3447 . + 20153.2 17412.5 14919.8 12480.3 1034D.3 .0 + LOST. ' 1643 1.000 2 6*2, 2571 38925.3 16997.2 15171.9 13315.7 12554.2 11369. FL •11274.3 9262.8 ,1332.S 7165.3 0 000 28518. 9261. .325 113 6 7 4 449 216S. 593 . 1 25u 3147 . + 6617.3 5819.4 5109.3 4438.4 3^45.u j.514.0 1077 . 1 1642 1.OD0 2 600 . 2705 .34 9 .3 42 .336 .3 32 .329 .327 .326 .325 .324 .325 0 000 257i". 0. S3 33 . .r-2 4 13S6 1 4 466 2101. 1 23C 3447 . .338 334 .342 .356 .372 .000 1057 . 1 1642 1.300 3 . 9. 2851 0 000 S29B3. 0 . 74 S5 . .325 1293 5 4 477 2 • <" 585 . 1 205 3447 . 8 RSVJ-..7.0 PROPULSION SYSTEM DATA 1033, 1 1S42 1.000 2 520. 3015 BASELINE ENGICE THRUST THRSO 54ZB0.7 LHF 0 OOO 20153. 0. 661B . . 32! 1213 0 4 483 1972 . 5B1 . 1 179 3447 . HA.SRMNF F.NGI1TE WEIGHT KKNC 3623.7 LDF 1021 . 1 1642 1,MOO 4 4 3. 3216 DA.SELINL INLET WEIGHT HTNL 50JO. 7 LBF 0 000 17413. 0 . 5819 . .3:34 1129 1 4 495 IS 07 . 577 . 1 154 3447 . BASELINE NOZZLE WVKJUT WNOZ 970,6 LBF 1D05 . 1 1642 1.000 4 440 . 3459 BASELINE NACELLE LENGTH HfAC 17.44 PT 0 OOO 14920. 0, 5110. .3,2 1046 8 4 470 1. • ' 3 . 573 . Z 131 3447 . BASELINE NACELLE DIAMETER BRAC 7.74 FT + 989 . 1 154 2 1.000 3 404. 371E 0 OOO 12480. 0 . 443 6 . .356 958 8 4 453 1773. 569 . 1 109 3447 . 975. 1 1642 1.000 4 3 67 . 4 16 0 000 10340. 0 . 3845 . .372 874 2 4 410 1714 . 566 . 1 089 3447 . * NAM EL IJ 1 SKISSJiK + 960 . 1 1642 1.000 5 332 . 4409 PERFORMANCE CONTROLS AND FACTORS AND MISSION SEC KENT DEFINJT ! ON ; "A I.PVEL STATIC MAXIMUM T : UKT 542 F.0, 7 :,B GENESAItD PHOPULSTON SV.^TEM WT (NEW BASELINE ENGINE THHUST - ALL POINT ENGINE DEC* SUMMARY 1787:: 7 Ll OVERRULES THkSOl LI OW MACH = .950, ALTITUDE - 39000., THRUSTS / •" , FLOWS'SFC S/NOX RATIC 10498 0 3. 3.6 8579.0 7928.8 7252.3 65B7.fi 5945.7 5307.6 4 6 ii ^ . 1 112.7.9 3539.7 3081,2 2590.3 2126,8 1682.0 .0 6803.1 ol54.6 5549.6 5142.0 4742.7 4361.0 3998.6 3651.6 3324.5 3020.7 2738.2 2472.4 7221.5 19B3.7 1763.9 932.5 .648 .647 .647 .549 .654 .662 .673 .68B .708 .732 .761 .802 .358 .933 1.049 .000 MACH = .f ., ALTITUDE = 35O00., THKU3T3/FUEL FLOWS/SFCS/NOX PAJ'J, ! 1'OLLOW 12724.8 11526.7 10398.8 9611.4 8791.7 7936.2 7207.9 6434.7 5A91.7 5003.6 4361!.9 3731.'! 513V,1 2574.9 0 1 5 . 9 . U B296.2 7504.8 6706.1 T26A.4 5782.4 5316.7 1P74.5 4451.4 4052.3 3681,6 3336.8 JOLZ.S 2706.0 >.416.0 2148.0 1135.8 ,651 .63 1 .652 .653 .666 .676 .692 .712 .736 .765 -807 .6C 3 ."18 1.055 .000 MACH = .500, ALTITUDE T 20000., THSUSTS/FUEl, FL0W5/SFCE7N0X RATIOS FOLLOW 23191 1 2U149.1 1*262.9 16776.4 15341.3 13930,9 12512.0 11167.7 9921.6 8716.6 7569,7 6529.6 1545.B 4532.4 3622 . 8 .0 13280.3 11990.9 10798.1 3947.8 9141.7 8376.:'• 7640.9 6952.1 6313.5 5714.1 5156.0 4613.9 4168.5 3707.8 3285.1.- 1603.8 ,598 .595 .551 .593 .596 .601 .611 .623 .636 .656 . 63 J .711 .7 52 .SIV .907 .000 MACH - .600, ALTITUDE - 150OO., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 27326.9 24804.5 22477.5 20646.2 13878.6 17145.0 15408.9 13761.3 12232.4 10757.4 9345.9 8055.5 685S.6 56U3.7 4478.0 .0 2;TY>. 2 3-108.7 L3C01.8 1<52J.9 U 5 I ? . ? 1054LJ.3 9625.5 B7S9.4 7956.1 7202.6 6499.6 5354.2 S3 55,2 4673.3 414D.D 2018.7 -613 .603 .605 .607 .610 .615 .625 .637 .650 .670 ,695 .726 .766 .834 .925 .000 DESCPT PTT^JFL NAfiF. VALUE DIMEN kMJUHANCE MISSION GWITCH INDR 0 OVERALL FUEL FLOW FACTOR FACT 1 .OOQO CDO FACTOR FCDO 1 .0000 CDI FACTOR f : I 1 .0000 SUBSONIC CD FACTOR FCDSUB .oooo SUP?:KS0NIC CD FSCTOR FCDSU? 1 .0000 ENGINE SCALING SWITCH 1 OWE FACTOR OWFACT 1 . uooo PRINT FLAG IFIAG 2 DETAILED MISSION PRINT M3DKPT 0 TEMPERATURE DEVIATION DTC .0 DEG C CALC RAMP WT OR RANGE IRW 1 RANGE TOLERANCE RTOL . 0C1C N MI ATA TFAFFIC ALLOWANCE LATA F> WEIGHT :1JCRKME2NT DWT 1. LBF GROUND OPERATIONS AND TAKEOFF INPUT TAKEOFF TIME TAX j -OUT TIME APPROACH TIMS APPROACH FUEL FLOW TA>;-IN TIME TAKEOFF FUEL. PLOW TAXI FUEL FLOW TAKOT:: TAXI 'M APPRTM APPFFF PAJflTM TAKOi-'F TV.PUFL HAL!. DE = 4 000. THRUSTS/LI: I'LOWS/SFCS/NOX RATIOS FOLLOW INPUT FOR 1 CLIMB SCHEDULES MINIMUM CLIMB HACH NUMBER C1J4KJN MAXIMUM CLIMB MACH NUMBER CLMMAX MINIMUM CL1MR ALTITUDE CLAN IN FT MAXIMUM CL.MB ALTITUDE CLAMAX FT NUMBER OF CLIMB STEPS NIMCL CLIMB OPTIMIZATION FACTOR PUP FOLLOWING CRIUSE SSUHEMT NCRCL DKA3 C: liFFIC 7EMT IHCREHIi-JT RI.uCr 2 . 0 10.0 .0 2,00 .0 . 0 .0 (1) . JODO .0000 0. 31 1 .0000 1 . ooooo VILLI MIN MIN UN I.^M/h'R/ENGINE l.HM/HR/ENGINE 1.2) .3000 . 0000 0. • . 0010 I .00000 (31 . 3 000 .0000 0. ni .DOIO . 3000 .0000 0. 31 -.0010 1 . 000 Nov 18% B747-FLOPS-OUT NO. OF POWER SETTINGS IPPCL 1 1 1 1 HOLD CRUISE SCHEDULE NCRHOL 3 STORE DRAG DURING CLIMB ISTCL 0 0 0 0 HOLD POSITION SWITCH IHOPOS 1 MAX CLIMB POWER SETTING MAXCL 1 CRUISE ONLY SWITCH ICRON 0 FAA CLIMB ENFORCED IFAACL 1 2ND RES HOLD TIME OR FRAC THOLD .000 MIN FAA DESCENT ENFORCED IFAADE 1 THOLD CRUISE SCHEDULE NCRTH 1 MINIMUM CLIMB RATE SWITCH NODIVE 0 MINIMUM CLIMB RATE DIVLIM 0 . FT/MIN Q LIMIT IN CLIMB CLIM .0 PSF MAXIMUM RATE OF DESCENT RDLIM -99999.0 FT/MIN (t MISSION SEQUENCE DEFINITION INPUT FOR 3 CRUISE SCHEDULES (1) (21 13) (41 START MACH NUMBER = ,5170 ALTITUDE = 1500. FT (5) (6) CLIMB USE CLIMB SCHEDULE 1 CRUISE OPTION SWITCH IOC 0 3 4 1 CRUISE USE CRUISE SCHEDULE 1 END CRUISE DISTANCE . 0 N Ml + 1 1 DESCENT CRUISE OPT FUEL FACTOR FFUEL i.ooo 1 .000 1 . 000 i.ooo END MACH NUMBER = .3000 ALTITUDE = 0. FT + 1.000 1.000 CRUISE OPT NOX FACTOR FNOX .000 . 000 .000 .000 + .000 .000 MAXIMUM MACH NUMBER CRMACH .8500 .8500 .7000 .0000 ft USER-DEFINED AERODYNAMIC DATA + .0000 .OOOO MAXIMUM ALTITUDE CRALT 40000. 30000, 1500. -1. DRAG DUE TO LIFT + -1. -1. FT DRAG COEFFICIENT INCREMENT CRDCD .00000 .00000 .00000 .ooooo MACH/CL ,000 .100 .130 .200 .300 .400 . 4 40 . 500 . 600 t .00000 .00000 + .700 .300 STORE DRAG DURING CRUISE ISTCR 0 0 0 0 .300 ,01930 .01810 01800 01840 .02020 .02300 .02480 ,02780 .0343C t 0 0 + .04320 .05520 LONG RANGE CRUISE FACTOR FLRCR 1.000 1.000 1.000 1 .000 .500 .01750 .01630 01620 O1660 .01340 . 02120 .02320 .02660 .03330 1.000 1.000 •+ .04200 .05420 MINIMUM MACH NUMBER CRMMIN .5000 .5000 .2500 .0000 .700 .01720 .01600 01590 01630 .01810 .02090 .02260 .02550 .03330 + .0000 .0000 + .04520 06100 MAXIMUM LIFT COEFFICIENT CRCLMX .8000 . 8000 1.0000 .oooo .800 .01780 .01640 01630 01670 .01850 ,02120 .02310 ,02620 .03440 + .0000 .0000 .04870 .06470 ENGINE FEATHERING ALLOWED IFEATH 0 0 0 0 .840 ,0130C .01650 01640 01690 .01870 ,02140 .02320 .02680 .03450 +• 0 0 + ,05180 .07260 ENGINE FRACTION REMAINING FEATHF .5000 .5000 .5000 . 5000 .860 .01840 .01680 01670 01720 .01900 .02180 .02350 .02730 .03690 + .5000 .5000 + .05570 .07630 CD INCREASE FOR FEATHERING CDFETH .00000 .00000 .00000 .ooooo .880 .01940 •O1810 01800 01840 .02020 .02300 .02540 .02950 .04160 + .00000 .00000 + . 06400 ,08980 MINIMUM CRUISE ALTITUDE HPMIN looo. 1000 . 1000. 1000. , 900 .02100 .01970 01960 02000 .02210 .02580 .02890 .03400 . 04930 1000. 1000. FT + .0767C .10830 INCREMENT IN CRUISE WT, DCWT 1.0 LBF RATE OF CLIMB CEILING RCIN 300. 0 FT/MIN LIFT INDEPENDENT DRAG INCLUDING WAVE DRAG, IF ANY INPUT FOR DESCENT SCHEDULE ALT/MACH ,300 . 500 .700 .800 .840 . 860 .880 .900 DESCENT OPTION SWITCH IVS 1 0. -.00170 -.00160 - 00140 - 00140 -.00140 - .00140 -.00130 - .00130 DESCENT LIFT COEFF. DECL ,8000 5000. -.00150 -.00130 - 00120 - 00120 -.00120 - .00120 -.00120 - .00110 MINIMUM DESCENT MACH NO. DEMMIN .3000 10000. -.00120 -.00110 - O01OO - 00100 -.00100 - .00100 -.00090 - .00090 MAXIMUM DESCENT MACH NO. DEMMAX .0000 15000. -.00100 -.00080 - 00080 - 00080 -.00080 - .0007C -.00070 - .00070 MINIMUM DESCENT ALTITUDE DEAMIN 0. FT 20000. -.00070 -.00060 - 00050 - 00050 -.00050 - .00050 -.00050 - .00050 MAXIMUM DESCENT ALTITUDE DEAMAX 0. FT 25000. -.00030 -.00030 - 00030 - 00030 -.00030 - .00030 -.00030 - .00030 NUMBER OF DESCENT STEPS NINDE 31 30000. .00000 .00000 ooooo ooooc .ooooo .00000 ,00000 .00000 DRAG COEFFICIENT INCREMENT DEDCD .00380 35000. ,ooo4o .00030 00030 00030 .00030 .00030 .00030 .00030 STORE DRAG DURING DESCENT ISTDE 0 40000. .00090 .00080 00070 OOO70 .00070 .00070 .00070 .OO070 45000, .00140 .00130 00120 00110 .ooiio .00110 .ooiio .00110 RESERVE SEGMENT INPUT RESERVE CALC. OR CONST IRS RESERVE FUEL RESRFU FRACTION OF TRIP FUEL RESTRP MISSED APPROACH TIME TIMMAP RANGE TO ALTERNATE AIRPORT ALTRAN RESERVE CLIMB SCHEDULE NCLRES RESERVE CRUISE SCHEDULE NCRRES START RESERVE MACH NUMBER SREMCH END RESERVE MACH NUMBER EREMCH START RESERVE ALTITUDE SRJEALT END RESERVE ALTITUDE EREALT RESERVE HOLDING TIME HOLDTM , 000 LBM .050 2.0 MIN 200.0 N MI 1 2 .3000 .3000 0 . FT 1500. FT 30.0 MIN #TITLE, BEGIN OUTPUT OF RESULTS B747-400 (PW4056) REV 2.0 FINAL ANALYSIS It CRUISE OPTIMIZATION RESULTS SUMMARY DATA FOR CRUISE SCHEDULE 1 B747-FLOPS-OUT WEIGHT RATE OF CLIMB ALTITUDE THRUST FUEL CL L/D ENGINES NOX AVAILABLE REQUIRED FLOW OPERATING RATE MACH VELOCITY SPECIFI NUMBER SUMMARY DATA FOR CRUISE SCHEDULE 2 WEIGHT ALTITUDE THRUST : RATE OF CL L/D ENGINES NOX AVAILABLE REQUIRED SFC MACH VELOCITY SPECIFI NUMBER 416000. 39574. 26547. 22055 . 13600. . 6166 .7523 431 5 .0317 4 CLIMB OPERATING RATE + 3 471 .9 .4632 18 86 4 0 .00 432000. 40000. 28580. 23122. 14435. . 6243 . 7781 446 3 .0309 416000. 30000. 48385. 22028 14480. , 6574 . 6598 388 9 .0268 4 2 571 .0 .45B8 18 6S 4 0 .00 4 6 2495 .5 ,3836 18 89 4 0 .00 448000. 40000, 29912, 24047. 15093. .6276 .7888 452 4 .0299 432000. 30000. 48839. 22772 14923. .6553 .6683 393 9 . 0264 4 B 599 .7 .4630 18 63 4 0 .00 4 0 2407.2 .3883 18 97 4 0 .00 464000. 40000. 30960. 24964. 15729. . 6301 .7972 457 3 .0290 448000. 30000. 49278, 23516 15365. .6534 . 6765 398 8 .0259 4 7 593 .4 .4695 18 59 4 0 .00 4 s 2322.1 .3930 19 05 4 0 ,00 480000. 40000. 35158. 26032. 16857. .6476 .8309 47 6 6 .0282 464000. 30000. 49701. 24261 15809, .6516 . 6844 403 A .0255 + 7 917.6 .4471 18 44 4 0 ,00 + 2 2240.0 .3977 IS 13 4 0 .00 496000. 40000, 36027. 26916. 17492. .6499 .8379 480 6 , 0274 480000. 30000. 50219. 25065 16306. .6505 . 6941 409 1 .0250 4 7 894,0 .4543 18 43 4 0 .00 4 9 2171.2 .4000 19 15 4 0 .00 512000. 39900. 36466. 27810. 18051. . 6491 . B396 481 6 .0266 496000. 30000. 50B33. 25927 16856. . 6501 .7056 415 9 . 0246 4 8 824 .5 .4648 18 41 4 0 .00 4 7 2114.8 . 4000 19 13 4 0 .00 528000. 39402. 37634. 28649. 18609. . 6495 . 8403 482 0 .0259 512000. 30000. 51437, 26790 17411. . 6499 .7169 422 5 .0242 4 0 830 .7 . 4672 18 43 4 0 .00 4 7 2059.9 ,4000 19 11 4 0 .00 544000, 38737. 39079. 29445. 19149. .6503 .8403 482 0 .0251 528000. 30000. 52246. 27788 17934. . 6454 .7320 431 5 .0240 4 7 864 .4 .4 663 18 48 4 0 .00 4 6 2023.9 .3956 19 00 4 0 .00 560000. 38274. 40095. 30285. 19678. . 6498 .8404 482 1 . 0245 544000. 30000. 52226. 28374 18223. . 6422 .7316 431 2 .0236 4 0 855.2 .4694 18 49 4 0 .00 4 6 1914.7 .4080 19 17 4 0 .00 576000. 37764. 40787, 31109. 20139. , 6474 ,8366 479 9 .0238 560000. 30000. 52226. 29048 18563. .6390 .7316 431 2 .0232 l 3 816 .5 . 4754 18 52 4 0 .00 4 3 1807.5 .4200 19 28 4 0 .00 592000, 37250. 41874. 31934. 20689. .6479 .83 62 479 6 , 0231 576000. 30000. 52225. 29765 18927. .6359 .7316 431 2 .0227 4 B 815.5 .4772 18 54 4 0 .00 4 8 1702.8 .4321 19 35 4 0 .OC 608000. 35699. 45641. 32529. 21387. . 6575 .8400 482 8 .0225 592000. 30000. 52225. 30511 19307. . 6328 .7316 431 2 ,0223 4 7 1054.4 . 4510 18 69 4 0 .00 4 3 1601.7 .4441 19 40 4 0 .00 624000. 35109. 46924. 33325. 21941. .6584 .8400 484 1 . 0220 608000. 30000. 52295. 31275 19723. . 6306 .7329 432 0 . 0219 4 6 1068.3 .4500 18 72 4 0 ,00 4 0 3.512 .5 ,4544 19 44 4 0 .00 640000. 34600. 48031. 34135. 22490, . 6589 . 84O0 485 2 ,0215 624000, 30000. 52814. 32163 20375, . 633 5 ,7426 437 7 ,0214 4 7 1066.8 .4506 18 75 4 0 .00 4 8 1466,9 .4543 19 40 4 0 . 00 656000. 34005. 49322. 34935. 23047. .6597 .8400 486 5 .0211 640000. 30000, 53335. 33064 21038 , . 63 63 ,7522 443 5 .0210 4 1 1080.4 .4491 18 78 4 0 .00 + 8 1422.4 .4540 19 36 4 0 .00 672000. 33456, 50515. 35738. 23598. .6603 .8400 4 87 7 .0206 656000. 30000. 54042. 34032 21815. .6410 .7655 451 2 . 0206 4 7 1086 .0 .4484 18 80 4 0 .00 4 B 1393.9 .4494 19 28 4 0 .00 688000. 32903. 51718. 36537. 24148. .6609 .8400 488 9 .0202 672000. 3 0000. 54594. 34970 22528. .6442 ,7759 457 3 .0203 4 t 1092.4 . 4 473 18 83 4 0 .00 4 0 1352.4 . 4482 19 22 4 0 .00 704000. 32361. 52895, 37336. 24696. .6615 .8400 490 0 .0198 688000. 30000. 55189, 35936 23277. . 6477 .7870 463 9 .0199 ^ 4 1096.8 .4464 18 86 4 0 .00 4 3 1314.5 ,4460 19 14 4 0 .00 720000, 31843. 54043. 38140. 25250. .6620 . 8403 491 4 .0194 704000. 30000, 55209, 36731 23719, .6458 ,7873 464 1 ,0195 + 6 1099.0 .4454 18 88 4 0 . 00 4 7 1233 .5 .4559 19 17 4 0 .00 736000. 31309. 55182. 38929. 25784. ,6623 .8400 492 3 .0190 720000. 30000. 55209. 37534 24159. . 6436 .7873 464 1 ,0192 4 9 1100.9 . 4446 18 91 4 0 .00 4 1 1153.7 .4663 19 18 4 0 .00 752000. 30799. 56292. 39725, 26325. , 6627 , 84O0 493 4 .0187 736000. 30000. 55216, 38354 24611. . 6417 .7875 464 2 .0188 4 4 1100.8 .4437 18 93 4 0 .00 4 6 1076.9 .47 65 19 19 i 0 .00 768000. 30297. 57382. 40519. 26863. ,6630 .8400 494 5 .0184 752000. 30000. 5S216. 39186 25078. .6400 .7875 464 2 .0185 4 1 1099.5 .4429 18 95 4 0 ,00 4 1 1002.0 .4869 19 19 4 0 .00 784000. 2979S. 58528. 41331. 27433. .6637 .8411 496 2 .0180 768000. 30000. 55217. 40033 25554. .6383 .7875 464 2 . 0181 + 9 1102.2 .4408 18 97 4 0 .00 4 6 929.4 .4972 19 18 4 0 .00 800000. 29429. 59367. 42147. 27981. .6639 . 8420 497 5 . 0177 784000. 30000. 55217 . 41010 26102. .6365 .7875 464 2 .0177 4 B 1084.5 .4415 18 98 4 0 .00 4 8 851.8 . 5076 19 12 4 0 .00 816000. 2 9009. 60345. 42976. 28558. .6645 . 8436 499 3 .0174 800000. 30000. 58344, 42306 28064. . 6634 .8459 498 6 ,0177 + 9 1076.4 . 4402 18 99 4 0 .00 4 7 1012.3 .4488 18 91 4 0 .00 832000. 28630. 61213. 43801. 29119. .6648 .8448 500 9 ,0172 816000. 30000. 58562. 43274 28710. .6634 . 8500 501 0 . 0174 4 C 1061.5 .4400 18 99 4 0 .00 4 5 950.6 .4534 18 86 4 0 .00 848000. 2 82 61 . 62047. 44626. 29675. .6650 .8459 502 3 .0169 832000. 30000, 58562. 44193 29244. . 6617 ,8500 501 0 .0171 4 3 1045.0 .4400 19 00 4 0 .00 4 3 876 .3 .4623 18 83 4 0 .00 864000. 27896. 62865. 45450. 30229. . 6651 .8469 503 7 ,0166 84BO00. 30000. 58562. 45162 29816. .6602 .8500 501 0 ,0168 4 6 1028.1 .4400 19 01 4 0 .00 4 0 801.8 .4712 18 78 4 0 . 00 880000. 27534. 63668. 46274. 30781. .6652 .8478 505 0 ,0164 864000, 30000, 58562. 46182 30425, .6588 , 8500 501 0 .0164 4 1 1010.9 . 4400 19 02 4 0 .00 4 7 727.0 B80000. .4801 30000. 18 71 58562. 4 0 47253 .00 31065. . 6574 .8500 501 0 .0161 Nov 18% 15:07:49 B747-FLOPS-OUT +3 652.0 .1890 18.62 4.0 . 00 + 2 4026.4 880000. + 6 3955.5 . 600C 1500, .5993 13 .75 168250. 18.77 4.0 46888. 4.0 .00 29926. .00 .6382 .4304 283.2 SUMMARY DATA FOR CRUISE SCHEDULE 3 WEIGHT ALTITUDE CL + C RATE OF L/D THRUST ENGINES FUEL SFC MACH VELOCITY SPECIFI CRUISE SCHEDULE RANGE AND TIME SUMMARY AVAILABLE REQUIRED FLOW NUMBER RANGE WEIGHT RANGE -1- TIME RANGE -2- TIME RANGE -3- TIME CLIMB OPERATING RATE (POUNDS) (N.MI.) (HR) (N.MI.) (HR) (N.MI. | (HR J 880000. 0 00 0 00 0 OO 416000. 1500, 178132. 22657. 17136. .7563 .2957 194 6 .0113 872000, 131 8 26 129 7 26 75 8 27 + 6 7365 .7 . 600C 18.36 4 0 00 864000. 264 5 52 260 7 52 151 9 54 432000. 1500. 177718. 23501. 17543. .7465 .3014 198 3 .0113 856000. 398 4 79 393 1 78 228 2 81 + 0 7169.6 .6000 18 .38 4 0 00 848000, 533 2 1 06 526 9 1 05 304 . 8 1 09 448000. 1500. 177312. 24344. 17953, .7375 .3069 202 0 .0112 840000. 669 2 1 33 662 0 1 32 3 81 6 1 36 4 5 6983.4 .6000 18.40 4 0 00 832000. 806 2 1 60 798 4 1 59 458 7 1 64 464000. 1500. 176914. 25186. 183 64. .7291 .3123 205 5 .0111 824000, 944 4 1 88 936. 1 1 87 536 1 1 92 + 9 6806.3 .6000 18 .42 4 0 00 816000. 1083 7 2 16 1075 0 2 15 613 7 2 21 480000, 1500. 176522. 26027. 18777. ,7214 .3177 209 0 .0111 808000. 1224 2 2 44 1215 2 2 43 691 6 2 50 + 3 6637,5 . 6000 18.44 4 0 00 800000, 1365 8 2 72 1356 7 2 71 769 7 2 78 496000. 1500 . 176136. 26867. 19192. .7143 .3229 212 5 .0110 792000. 1508 7 3 01 1498 9 3 00 848 1 3 08 + 7 6476.4 .6000 18 ,46 4 0 00 784000. 1652 8 3 30 1641 1 3 30 926 8 3 37 512000. 1500, 175757, 27707. 19609. .7077 .3281 215 9 .0110 776000. 1798 1 3 59 1784 2 3 61 1005 8 3 67 + 1 6322.3 . 6000 18 .48 i 0 00 768000. 1944 7 3 89 1928 7 3 92 1085 0 3 96 528000. 1500. 175384. 28546. 20028. ,7016 .3332 219 3 ,0109 760000. 2092 6 4 19 2074 7 4 23 1164 5 4 27 + 5 6174.8 . 600C 18.50 4 0 00 752000. 2241 9 4 49 2222 1 i 55 1244 3 4 57 544000. 1500. 175016. 29385. 20448. , 6959 .3382 222 6 .0108 744000. 2392 5 4 80 2370 a 4 87 1324 4 4 88 4 8 6033.4 .6000 18.51 4 0 00 736000, 2544 6 5 11 2521 0 5 20 1404 1 5 19 560000. 1500. 174654. 30222. 20871. .6906 .3431 225 8 .0108 728000. 2698 0 5 42 2672 6 5 52 1485 4 5 50 + 2 5897 . 5 . 6000 18.53 4 0 00 720000. 2853 0 5 73 2825 5 5 85 1566 3 5 81 576000. 1500 , 174297, 31060. 21296. . 6857 . 3480 229 0 .0107 712000. 3009 4 6 05 2979 9 6 18 1647 5 6 13 + 5 5767.0 . 6000 18.54 4 0 00 704000. 3167 4 6 37 3135 7 6 52 1729 0 6 45 592000. 1500. 173944. 31896. 21723. .6810 .3528 232 2 .0106 696000, 3326 9 6 70 3293 0 6 86 1810 a 6 78 + 9 5641.3 , 6000 18.56 4 0 00 688000. 3488 1 7 03 3451 1 7 20 1892 9 7 10 608000, 1500. 173597. 32733. 22152. . 6768 .3575 235 3 .0106 680000. 3650 9 7 36 3611 a 7 55 1975 3 7 43 f 2 5520.2 .6000 18 .57 4 0 00 672000. 3815 3 7 7C 3773 5 7 90 2058 0 7 77 624000. 1500. 173254. 33568. 22583. .6727 .3622 238 4 .0105 664000. 3981 5 8 04 3936 6 8 26 2140 9 R 10 + 5 5403.3 .6000 18.59 4 0 00 656000, 4149 5 8 39 4101 3 a 62 2224 1 8 44 640000. 1500. 172915. 34404 . 23016. .6690 .3668 241 4 .0104 648000. 4319 3 8 73 4267 6 8 99 2307 6 8 79 9 5290.5 . 6000 18.60 4 0 00 640000. 4490 5 9 09 4435 4 37 2391 4 9 13 656000. 1500 . 172581. 35239. 23451. . 6655 . 3714 244 4 .0104 632000. 4664 5 9 45 4604 8 9 75 2475 4 9 48 + 2 5181.5 ,6000 18.62 4 0 00 624000. 4840 0 9 81 4775 8 10 14 2559 7 9 83 672000. 1500. 172250. 36074. 23892. . 6623 .3759 247 4 ,0103 616000, 5017 5 10 18 4943 5 10 54 2644 3 10 19 5 5076.0 . 6000 18 . 63 4 0 00 608000. 5197 a 10 55 5122 9 10 94 2729 2 10 55 688000. 1500. 171924. 36908. 24345, .6596 ,3803 250 3 .0102 600000. 5378 8 10 92 5299 0 11 35 2814 3 10 91 + 8 4973.9 . 6000 18 . 64 4 0 00 592000, 5563 0 11 31 5476 8 11 76 2899 6 11 28 704000. 1500. 171601, 37742. 24805. .6572 .3847 253 2 .0102 584000. 5749 8 11 70 5656 3 12 18 2985 2 11 65 1 4874.9 . 6000 18.65 4 0 00 576000. 5939 1 12 09 5837 7 12 60 3071 1 12 02 720000, 1500. 171282. 38576. 25268. . 6550 .3891 256 0 .0101 568000. 6131 0 12 49 6020 S 13 02 3157 3 12 40 + 3 4778,9 . 6000 18.66 4 .0 00 560000. 6325 6 12 90 6205 8 13 45 3243 7 12 78 736000. 1500 . 170966. 39410. 25729, .6529 .3934 258 9 ,0100 S52000. 6522 9 13 30 6392 5 13 88 3330 4 13 17 + 6 4685.7 .6000 18.68 4 0 00 544000. 6722 9 13 72 6580 9 14 32 3417 3 13 56 752000. 1500. 170654. 40243. 26189. . 6508 .3976 261 7 ,0099 536000, 6925 7 14 14 6771 0 14 76 3504 5 13 95 + 9 4595.2 , 6000 18.69 4 .0 00 528000. 7131 4 14 57 6962 7 15 20 3592 0 14 35 768000. 1500 , 170346. 41077, 26651. .6488 .4018 264 4 .0099 520000. 7340 2 15 00 7155 5 15 65 3679 7 14 75 4 2 4507.3 .6000 18.70 4 0 00 512000, 7552 0 15 44 7349 3 16 11 3767 6 15 15 784000. 1500. 170040. 41910. 27114. . 6470 . 406C 267 2 ,0098 504000. 7767 0 15 89 7544 2 16 57 3855 a 15 56 4 5 4421.8 . 6000 18 .71 i 0 00 496000. 7985 2 16 34 7740 8 17 04 3944 3 15 98 800000. 1500. 169737. 42743. 27579. . 64 52 .4101 269 9 .0097 488000. 8206 5 16 80 7939 0 17 52 4033 0 16 40 + 9 4338.5 .6000 18.72 4 0 00 480000. 8431 1 17 27 8138 a 18 01 4121 9 16 82 816000. 1500. 169438. 43576. 28044. , 6436 . 4142 272 6 .0097 472000, B653 8 17 76 6340 4 18 50 4211 1 17 25 2 4257.5 . 6000 18 .73 4 0 00 464000. 8889 7 18 25 8543 7 19 01 4300 5 17 68 832000. 1500. 169141. 44409, 28512, . 6420 .4182 275 2 .009 6 456000. 9124 0 18 77 8748 7 19 52 4390 2 18 12 + 5 4178.5 . 6000 18.73 4 0 00 448000, 9361 9 19 29 8955 4 20 03 4480 1 18 56 848000. 1500. 168848. 45242, 28980. . 6406 .4222 277 9 .0095 440000. 9603 6 19 83 9163 9 20 56 4570 2 19 01 9 4101.5 , 6000 18 .74 4 0 00 432000. 9849 0 20 38 9374 2 21 09 4660 5 19 47 B64000, 1500, 168557. 46075. 29451. , 6392 .4262 280 5 .0095 424000. 10097 9 20 94 9586 3 21 63 4751 0 19 92 .0094 15:07:49 B747-FLOPS-OUT S15000. 10350.0 21.52 9800.2 Z2. 18 # RESERVE NUMMARY MISSED APPROACH FUEL START HOLDING RESERVE -vHD RESERVE FUEL FUEL RESERVE MACH WEIGHT HEIGHT NUMBER 0. LB. CLIMB CLIMB CRUISE DIST FUEL DIST ALTITUDE VELOCITY 416000. 8619. 29.6 5334.8 79.9 L 95 L?0, 3964=0. . I 8 30000. 388.42 . 100764. K16246. 14387. 331706. 14615. 847158. * ITEHAT!OH * ITERATION * ITERATION * ITERATION * ITERATION * ITERATION * ITERATION * ITERATION * ITERATION . f S7 .85C- 1DO .3500 104 . 8500 RANGE = RANGE = RANGE H RANGE ± RANGE = RAT • RANGE = RANGE = RANGE = 30000. 4 15226. 30000. ? 15743. 50,0,00. 5 162-6. 30000. 8226.463 7602.859 7304.941 73(12 .734 7296.458 7300.080 7299.967 7299.991 7299.999 7 . C a -.2 501 . 0 3 -3.5 501.0 7 -7.0 501.0 -14 -210 -424 » OUTPUT FROM THE WEIGHTS MODULE DESCRIPTION CALCULATED WIN:: CALCULATED ASPS .REA r RATIO WING LENDING FAC ENGIE^ INERTIA RELIEF FACfQS WING WEIGHT BREAKDOWN TERM 1 TERM 2 I'M i WING SPAN WING GLOVE AREA HORIZONTAL TAIL AREA WPIFIED volue: .•OEFFICISN." VERTICAL TA3I. AKEA MODIFIED VOLUME COKFFI!' LENT NACELLE LENGTH NACELLE DIAMETER LENGTH OF MAIN UEAR LENGTH OF NOSi. 7E/-R MAXIMUM LANDING k'ELGHT WING .-TEi- CAPACITY FUSELAGE FUEL CAPACITY AUXILIARY TANK CAPACITY TOTAL FU--;:, CAPACITY * * * INSUFFICIENT FUEL CAPACITY KASS AND BALANCE SUMMARY i/:EF HORi CU-INCHES FOR GROSS WEIGHT - FOR GROSS" WEIGHT = FOR GROSS WEIGHT - FOR GROSS WEIGHT = FOR GROSS WEIGHT = FOR ::KT.vS ".-.!• :G.::T = FOR GROSS WEIGHT = FOR GROSS WEIGHT = FOR GROSS WEIGHT = VA : DIMENSIONS 60Q4.2 SQ FT 7 . 18254 10.1508 . 8743 53 49402.0 I Li 27598.7 LB 14368.1 L3 207.67 FT .00 SO FT 1470.00 SQ FT 2.152473 810.00 SQ FT .159254 17.80 FT 7.90 FT 102 .9 102.7 102 . 5 87C0C0.00 821413. .51 797817.08 797425.77 796940.77 797214.49 797208.45 797210.23 7,J77i0.91 141 . 7N 111.70 IN 318B84.4 LB 210227.0 LB 116556.1 .0 " (.1 LB 2132.5 2374.5 2364,4 PERCENT WFUEP ?EhCEN ; NOV IS % 15:07:49 B747-FLOPS-OUT WING .0 .0 .0 .0 .0 .0 .0 .0) . 0 4.C .0 .0 .4] .0 .0 . o ,c . 0 .0 .0 .0 . c HORIZONTAL TAIL .0 VERTICAL TAIL .0 VERTICAL FIN . 0 FUSELAGE .0 LANDING GEAR .0 NACELLE (AIR INDUCTION! .0 STRUCTURE TOTAL ( .0) ENGINES .0 THRUST REVERSERS 106.8 MISCELLANEOUS SYSTEMS .0 FUEL SYSTEM-TANKS AND PLUMBING .0 PROPULSION TOTAL ( 11.5) SURFACE CONTROLS .0 AUXILIARY POWER .0 INSTRUMENTS .0 HYDRAULICS ,0 ELECTRICAL .0 AVIONICS .0 FURNISHINGS AND EQUIPMENT . 0 AIR CONDITIONING .0 ANTI-ICING . 0 SYSTEMS AND EQUIPMENT TOTAL 0) < .0) WEIGHT EMPTY 1 1.8 CREW AND BAGGAGE-FLIGHT, 2 , 0 -CABIN, 13 .0 UNUSABLE FUEL . 0 ENGINE OIL .0 PASSENGER SERVICE . 0 CARGO CONTAINERS .0 . 0 .0 .c .0 .c .0 OPERATING WEIGHT .1 1.7 PASSENGERS, 11.52 1.11 .60 .12 9 .91 2.31 ,91 I 26.48) 5. 05 .68 . 17 .39 I 6.29) .75 .24 . 13 . 48 .69 .30 5 .15 .55 .05 [ 8.34) 41.12 .06 .26 .16 .05 1 . 09 . 44 43 . 18 8.53 91869. 8851 . 4799 . 938 . 78968. 18443. 7225. ( 211141.) 40284. 5390. 1387 , 3102 . ( 50164.) 5983 . 1905, 1055. 3829. 5473 . 2392 . 41050. 4402 . 414 . ( 66503.) 327808. 450 . 2105. 12 69 . 403 , 8686 . 3500. 344220. 67980. + .0 .0 PASSENGER BAGGAGE + .0 .0 CARGO t .0 .0 ZERO FUEL WEIGHT t .0 1.3 MISSION FUEL t .0 .0 RAMP (GROSS) WEIGHT + .0 .7 t NONCRUISE SEGMENT RESULTS CLIMB PROFILE DATA FOR SEGMENT 1 - - CUMULATIVE - - - WEIGHT ENERGY ALT MACH 2 . 27 .00 53 . 98 46. 02 100.00 18128 . 0. 430328 . 366383. 797211. - - INCREMENTAL- - TIME DIST FUEL TIME DIST FUEL CL L/D THRUST /TMAX 797211 6624, 1500 517 340.2 5970. 1 ,00 0 0 375 0 .00 0 .0 376 19.93 173132 1.000 796963 7411. 4286 408 265.7 4339 . 1 .15 6 247 9 210 5 .15 6 247.9 670 17.69 173565 1 .000 796420 8971. 5714 418 271 .2 4175 . 1 .37 1 6 543 4 210 0 .52 2 2 791.3 671 17.65 166168 1 .000 795873 10538. 7143 429 276 . 9 4004 . 1 ,38 1 7 546 9 209 5 .90 4 0 1338.2 672 17 .62 158809 1,000 795321 12110. 8571 441 282 .7 3825. 1 .40 1 9 551 5 209 0 1.30 5 8 1889.7 673 17 . 58 151491 1.000 794764 13690. 10000 452 2 88 .7 3639 , 1 .42 2 0 557 5 208 4 1.73 7 8 2447.2 675 17 .54 144216 1.000 794255 15224. 10000 538 343 .5 4344 . 1 .38 2 0 508 6 295 1 2.11 9 9 2955.8 476 19.92 139048 1 .000 793787 16759. 10000 612 390.7 4666. 1 .34 2 1 468 5 381 8 2.45 11 9 3424.3 3 68 19 .57 134152 1.000 793331 18294. 1000C 673 432.8 4566. 1 .33 2 3 4 55 9 4 68 5 2 .7B 14 2 3880.2 300 17 . 59 127752 1.000 792875 19828. 10901 706 449.1 4323. 1 .35 2 5 455 9 490 2 3.13 16 8 433 6.0 286 17 .02 121946 l.OOC 792413 21363. 12362 713 450.9 4070. 1 .37 2 7 461 9 471 8 3 .50 19 5 4797.9 297 17 .32 116371 1 , 000 791945 22898. 13995 713 448.5 3816 . 1 ,39 2 9 467 7 442 8 3 .88 22 4 5265.7 317 17 . 90 110790 1.000 791471 24433. 15470 720 450. 0 3569 . 1 . 42 3 1 474 6 424 9 4.30 25 5 5740.2 330 18 . 22 105435 1. ooo 790987 25967. 16961 725 451 .0 3321. 1 .45 3 3 483 3 406 5 4 .75 28 8 6223.5 344 18.53 100197 1 .000 790494 27502. 18453 731 452 .1 3074 . 1 ,48 3 6 493 9 388 7 5.23 32 4 6717.5 360 18.81 95092 1.000 789987 29037. 19952 737 4S3 .0 2828. 1 .52 3 9 506 9 371 0 5.75 36 4 7224.3 377 19 .08 90110 1 .000 789464 30571. 21480 742 453 .2 2584 . 1 .57 4 3 522 4 352 5 6 .31 40 6 7746.7 396 19.39 85179 1 ,000 788925 32106. 22713 758 460 . 6 2398 . 1 , 62 4 7 539 6 349 C 6.93 45 3 8286.3 400 19 .36 81315 1.000 788367 33641. 23870 777 469 .8 2238 . 1 . 66 5 1 557 7 348 8 7 .59 50 4 8843.9 400 19 .26 78015 1.000 787789 35175. 25012 796 479.1 2093 . 1 .71 5 6 577 5 348 5 8 .30 56 0 9421.5 400 19.15 75105 1.000 787189 36710. 26193 814 4 87 .4 1948 . 1 .76 6 1 600 4 345 9 9 .06 62 2 10021.9 403 19.05 72393 1.000 NovJKn 15:07:49 B747-FLOPS-OUT 786561. 38245. 27436. ,829 494.1 1803, 1 t 9.88 68.9 10649.5 .409 18.98 69774. 1.000 785897. 39780. 28873. .838 496.3 1616. 1 + 10.78 76.3 11313.5 .427 18,99 66653. 1.000 785490. 40666. 29761. .841 496.3 1490. 1 + 11.35 81.0 11720.6 .441 18.97 64692. 1.000 DESCENT PROFILE DATA FOR SEGMENT - - - CUMULATIVE - - - WEIGHT ENERGY ALT MACH VEL TIME DIST FUEL CL L/D THRUST 11 15 19 28 32 36 40 ,8 45 466992 .00 467323 -2.03 46751C -3.20 467687 -4.36 467856 -5.49 468015. -6.61 24 468166. -7.70 468308 -8.78 468438 -9 .80 468560 10.80 468673 11.78 468779 12 .74 468878 13.66 468971 14 .52 469061 15.36 469150 16 . 17 469237 16.97 469322 17 .75 469405 18.50 469479 19 . 19 469537 19.79 469584 20.34 469628 20 .89 469670. 21.42 98 469709. 21.95 102 469747. 22.47 105 469783, 0 0 2272 3 3739 9 5208 2 667a 6 B150 2 9622 1 11097 49 53 57 61 .8 56 70 74 78 82.8 86 .8 90 94 1743 , .0 4309 . ,0 -331 5857 , .2 -517 7411 . .4 -695 8971. .7 -863 10538, .0 -1023 12110. .2 -1174 13690 .S -1316.4 15224. 12528 .7 -1446.3 16759. 13955 1567.9 18294. 15379 .0 -1681.4 19828. 16782 .1 -1787.2 21363. 17792 ,3 -1885.8 22898. 18880 .5 -1978.9 24433. 20218 2069.2 25967. 21559 .0 -2157.8 27502. 22894 .2 -2244.8 29037. 24224 .4 -2330.2 30571. 25279 .7 -2413.2 32106. 25704 2487.4 33641. 26244 -2544.8 35175. 27504 6 -2591.8 36710. 28749 4 -2636.0 38245. 30002 2 -2677.7 39780. 31262 0 -2717.1 41314. 32509 8 -2754.7 42849. 33768 .300 198 .620 16.32 .327 214 .568 16.68 .335 218 .571 16,65 .343 223 .574 16.62 .352 227 .577 16.59 .361 232 ,580 16.56 .371 237 .583 16,54 .381 242 .586 16.51 .390 246 . 590 16.48 .400 251 .594 16.45 .410 256 .598 16.41 .422 262 .600 16.39 .458 284 .529 16.67 .488 301 ,488 16.77 .503 308 487 16.78 .517 315 .487 16.78 .531 322 488 16.78 .546 325 .490 16.78 .575 345 462 16.78 .633 380 3S3 16.17 .683 408 342 15.08 .699 416 345 15.09 .716 424. 348 15.08 .732 431. 352 15.10 .748 438. 357 15.14 .765 446. 362 15.16 .781 452. 0. 5 - 0 . 6 - 0. 6 - 0 . 7 - 0. B - .3 1 - RCI PC /TMAX 1231. 0 .000 1303. 0 .000 1330. 0 .000 1359, 0 .000 1389. 0 .000 1420. 0 .000 1452. 0 .000 1484. 0 ,000 1516. C ,000 1550. 0 .000 1584. 0 .000 1620, 0 .000 1725. 0 .000 1820. 0 .000 1862. 0 .000 1904. 0 .000 1947. 0 , 000 1990. 0 .000 2087. 0 .000 2381. 0 .000 2745. 0 .000 2794. 0 .000 2847. 0 .000 2894. 0 .000 2935. 0 . 000 2978. 0 ,000 3014. 0 .82 6.7 627.6 340.0 .90 7.4 664.0 325.7 .57 4.7 407.1 315.3 - - INCREMENTAL- - TIME DIST FUEL Q ,00 -2.03 -1.18 -1.16 -1 .14 -1,12 -1.10 -1.08 -1.02 -1. 00 -.98 -.96 -.92 -.87 -.83 - . 82 - .80 -.78 - .75 -.69 - .60 - .55 - .54 -.53 -.53 - . 52 - .51 .0 7,0 4.2 4 .2 4.3 4.3 4.3 4.3 4.2 4,2 4 . 1 4 . 1 4.2 4.2 4.2 4 . 2 4.2 4,2 4.2 4 . 2 3.9 3 . 8 3.8 3.8 3 .8 3 . 8 3.8 .0 -331.3 -186.5 -177 .4 -168,4 -159.5 -150.9 -142.4 -129 . 8 -121.6 -113.6 -105.8 -98.6 -93 .2 -90.3 -88. 6 -87 . 0 -85.4 -83 . 0 -74 .1 -57.5 -47.0 -44.2 -41.7 -39.5 -37.6 -36.0 133.3 145.7 145 . 0 144 .3 143 . 6 142.9 142.2 141,4 140.6 139. 6 138.6 138 ,3 156.8 170.1 170.6 170.4 170,1 169 .7 179 . 8 214 .2 242.8 240.7 238.8 236 .2 233 .0 229.9 226 .1 + 22.98 109.7 -2790.7 .368 15.22 0. .000 469820. 44384. 35172. .792 456.2 -2987. 0 -.51 * 23.49 113.5 -2827.7 .383 15.46 0. .000 469859, 45918. 36666. .797 457.2 -2928. 0 -.52 + 24.01 117.5 -2866.7 .405 15.81 0. .000 469897. 47453. 37906. ,810 464.4 -2967. 0 -,52 + 24.53 121.5 -2905.0 .417 15.85 0. .000 469935. 48988. 39439. .810 464,4 -2937. 0 -.52 + 25.05 125,5 -2942.6 .449 16.02 0. .000 469948, 49549, 40000. .810 464.4 -2928. 0 -.19 *• 25.24 127.0 -2956.4 .461 16.06 0. .000 3.9 3.9 4.0 4.0 1 . 5 -37 ,0 -39.0 -38,3 -37 . 6 -13 .8 217.3 - 205.1 - 199.4 - 185.3 - 180.4 - » ITERATION 10 RANGE = 7300.000 FOR GROSS WEIGHT 797210.95 It SIZING AND PERFORMANCE RESULTS CONFIGURATION DATA AFTER RESIZING (IF ANY) OPERATING WEIGHT EMPTY PAYLOAD MAXIMUM FUEL GROSS WEIGHT REFERENCE WING AREA WING LOADING THRUST PER ENGINE ENGINE SCALE FACTOR THRUST-WEIGHT RATIO 344219.8 LB 86108.0 LB 366883.2 LB 797211.0 LB 5651,00 SQ FT 141.07 LB/SQ FT 56S70.0 LB 1 . 0422 .2838 MISSION SUMMARY + H NUMBER SEGMENT + T END TAXI OUT TAKE OFF + .517 CLIMB +7 .841 CRUISE <• 1 .810 DESCENT + 0 INITIAL FUEL(LB) TIME(MIN) ALTITUDE(FT) NOX EMISS(LB) WEIGHT(LB) SEGMT TOTAL SEGMT TOTAL START END SEGMT TOTAL DISTANCE(N Mil SEGMT TOTAL 797211. 797211. 1500. 797211. 11721. 1500. 29761. 785490. 315542. 29761. 40000. 469948. 2956. 0, ,300 40000. 466992 . 430328. RESERVES TAXI IN ZERO FUEL 36664. 0. 11721. .00 327263. , 00 330219. .00 366883 . 10.0 2.0 11.3 878 .2 ,00 25.2 .00 .0 10. 0 12 .0 23 .3 901 . 5 926.7 926 ,7 B1.0 7092.1 127 .0 BI .0 7173 , 0 7300.0 MAC STAR ,51 .84 .81 DESIGN RANGE FLIGHT TIME 7300.0 914.7 BLOCK TIME = 15.45 HOURS BLOCK FUEL = 330219,0 POUNDS TOTAL NITROGEN OXIDES EMISSIONS ATA TRAFFIC ALLOWANCE = AIR MANEUVER = 46.4 AIRPORT TRAFFIC ALLOWANCE =17.4 AIRWAY DISTANCE FACTOR = 146.0 0. POUNDS 209.8 NAUTICAL MILES ATA RANGE 7300.0 NAUTICAL MILES Nov 1896 15:07:49 B747-FLOPS-OUT DOBJ/VAR/CONSTR SUMMARY FUEL RANGE VAPP FAROFF FARLDG AMFOR SSFOR GW AR THRUST SW TR SWEEP TCA VCMN CB W/S T/W 366883.2 7300.0 96.9 9206. 4475. 111994. 64987, 797211.0 7.631 56570.0 5 651.0 .245 37.50 .0800 .850 40000. 141.1 .284 DESIGN - TIT OPR FPR BPR TTR (SLS) ST VJET (CRUISE) MACH ALT THRUST SFC OVEFF CDT CDP 2572.0 27.700 1.5600 4.0000 1.0300 28.4 988.2 .85 39000. 10498. .6480 .3176 1358.0 148.62 VAPP= FAROFF= FARLDG= 96.9 9206. 4475 . Appendix D Page 57 Appendix D. C17 ACSYNT Input & Output File Nov 18 96 C17-SHORT-ACS YNT-IN 5 D; . . NLEGCR 0, WNT& * 1, * FALSE MCDONNELL 7LA.7 C- 17 TRANSPORT MISSION ** SEND S DATA BLOCK B 6 1 .24E+05 I 0 a 0 0 c 0 MACH NO. ALTITUDE HORIZONTAL MO. VIND S 1 Vi'A BLOCK V PHASE SI iSfl END START END DIST TIME TURN •U"S WKFUEL M TP :X W B END - - - - -.:,AM5P0RT CLIMB 0- 50 o,oo 0.0 0. :, 0.0 230,0 1 ODOO 1 2 -10 0 5 3 5 57D F." 1 0 0 2 C, 7 C CLIMB o. • 0 0.00 -1 28000 0.0 0.0 0.0 310.0 1 tfOOO 2 -1 D 0 a.oooi 0 . SO BSOOGG.OO 0 . 00 0. 00 0.00 CRUISE 0. I U.75 28000 -1 2000.0 0 . 3 o.o 0.0 1 oooo 1 4 0 0 9 6 1 2 1 4 0iC 0 . 00 1000D 0.0 0,0 0.0 2S0.O 1 ^ 1 2 -10 0 : 2 6 CtWB 0. 3 0.00 -1 28000 0.0 L . 0.0 1O.M 1 1 2 -too 0 13 1 C:U-:SE o. 75 0.75 2 8000 -1 500. a.o 0.0 0.0 1 0000 1 4 ooo TRANSPORT *• WCDAC C -17A THAKSFORT AERODYNAMICS MODULE K • * • " ' FjCriflC C-17 TRASSPORT SACHAR SOFTS ABOSH m 0.220, ALMAX 20 .000, AMC = 3i.O00, KGTO =5BD0DD 000, 1C-RAPH = 1, EDNOSE 21.060, BTEF i ooo. RALOIT = Q .000, SEND RCLMAX I.OOO, ROC = 0 075, ROCiMJ - .0,70. SFIXW : 1.000, SMNDR 0 . 860, HACHN - 0 .750, IJCRLW 500 ooo. WCAKGO = 124.000.0 SPAMAC O.uoo, SWPMAX 6(: . 000, SWPM1N 0 .ooo, SEND XCDC o.soo, MCDW = 0 . 600, AJCAH - 0, > *-** MCDONNELL DOUGl IS c -17A TRANSPORT GEOMT.TKY * + * * * ALLLJ 3, INORM 1, ISHPDR • SWING ISUPCR 0, ITHAP • 0, IKCD - 1, AR = 7 200, AREA = 3300,000, DINED 000. ELLIPC =F ELLIM • CLO - 0 . 000, L FLA PC 0 110, SHEEP 25 000, TAPER = :"'. 300, o.ooo. 0 .000, 0 .000, TCP.OQT 0 135, TCTIP 0 107, TFLAi-C 0 . 170, 0.000, 0 0 .ouo, VlttKAC 0 soo. XM7NG 0 290, ZROOT 0 900, o.ooo. 0 ooo. 0 .000, KSWEEP 1, CLOC o.ooo. 0 .ooo. o.ooo, •TvEND 0.000, 0 . 000, 0 .000, SHTAIL o.ooo. 0 .000, " .ooo, AR 000, AREA 000, CV1 T 1. ooo. 0.000, CLOW 0 000, o .000, SHBEJ 27 000, TAPER = 0 400, TCROOT 0 C90, o.ooo. 0 000, 0 .000, TCTIP O 080, X- ; ML -0 010, ZROOT i. 765. 0.000, 0 .ooo, Q.0O0, J(SHEEP 1, 0.000, 0 .ooo. CMO = D . 000. SEND o.uoo, D .000, 0 . 000, 5 VTAIL o.ooo, 0 ooo, 0 .000, Alt 1 000, AREA 685 000, CWT 0 iop. O.OOD, 0 ooo, 0 ,ooo. SHEEP 41 000, SWFACT 1 000, TA5ER 0 . 9*0, SMNSWP o.ooo, 0 .000. 0 .ooo, TCRCOT = 0 110, TCTIP 0 110, VTNO . ooo, 0.000, 0 ooo, 0 .000, XV. ill = o .37 i , YROOT 0 000, ZKOOT = . 700, ,, ™-1 a ooo, 0 .007. KSV L:EP 1, o.ooo, YSWP ) ooo, 0 .c SEND o.ooo. 0 ooo, 0 .000, Sv: : 3 o.ooo. Q .coo. c .ooo, ; 1AM 10 ooo, .JGTK 10 000, X -0 . 750, 0.000, 0 .000, V 0 301 , Z = 0 23 3, SWFACT 1. 0O0, SEND SEND SAMUTT :•' -7 CSF i.ooo, ESSF 1 ooo. • .) = i .000, DIAM 10 000, LENGTH 10 000, X -1, 000, FCEF i.ooo, KM, 1 .000, pew i .ooo, Y = 0. 591, Z 0 230, SWFACT = 1. 000, FCDU 1.000, FCDWB 1 .ooo, FENG = i .ooo, •v-ENE FINTF i.ooo, FLBCOR = 1 .Oi i, FLO = I . 002, f Kirs H Ef-.R i.ooo, FMSR 1 .010, FCDRA - I .ooo. 67DMAX 21 060, l-'JDl 160 >.: .'0, FRAE 3 . 590, l.ooo, 1 ooo. 1 .000, FRATIO 0 000, FRN = 1 000, 1,000, 1 .000, i .000, SKNO i.ooo. 1 .000, . 3, $ENGINE SEND DIAM 3 ooo, N = 4, OUTCOD 3, SATRIM SEND CAND o.ooo, CF1AP 10 000, CGM = 0 250, 5$:5SS$S$SSS$ IT 0,000, SFLAP 700 .000, SM = 1 .000, 5TRDATA SPANF 70.000, ZCG 0 .000, SVCAW » , i.'KHACH 0. BSO, DELHP = 5000.000, PELMP 0.20O, ITAIX. i, DESLP 6 007. HMAXP = 50000.000, HMrNP = o.ooo. I. 1, 4AX ai o • '0, SMHAXP 1.100, SMMINP = 0.200, i, 1, TIMTOl 5. 500, TIKT02 - O.S00, OLTLF • ).000, I , i. 1, WCDMBP ( oio. WPTEAP 900.000, NFUEL -182724! .000, XEZ9C 3. 000, IBREG - a, IPLOT s, IPi"-7.E -3, T PRINT - 0, JFSTOl * 3 , IALV = t, IALP 2, 1COD - 1, IPST02 2 , KERJiDR 2. KMPROP = 1, I PLOT I. HALF 10, NHDTL - NCR'JSE 2 , NLEGCL = 0, NLEGLO 0, ALtN o.ooo, -.000, 2 . ooo, Nov 18 96 15:08:58 CI7- 3 000, 4 000, 6.000, B 000, 10 ooo. 12.000, 14 000, ALTV 0 000, 0,000, 0 ooo, 0 000, o.ooo, 0 000, 0 000, 0.000, 30000 000, 30000 000, CLINPT 0.000, 0 000, 0 000, o,ooo, 0 000, 0 000, o.ooo, 0 000, 0 000, o.ooo, SMN 0 400, 0 500, 0.600, 0 700, 0 800, 0.900, 0 700, 0 800, 0.850, 0 900, ISTRS 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ITB 0, 0, 0, o, 0, 0, 0, 0, 0, 0, ITS 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, SEND $ADRAG ICDO 0, CDBMB 0 000, 0.000, 0 000, 0 000, 0.000, 0 ooo, 0 000, o.ooo, 0 000, 0 000, CDONPT 0.000, 0 000, 0 ooo, o.ooo. 0 000, 0 000, o.ooo, 0 000, 0 000, 0.000, CDSTR 0 ooo. 0 000, o.ooo, 0 ooo, 0 000, 0.000, 0 000, 0 000, 0.000, 0 000, CDTNK 0 000, 0.000, 0 ooo, 0 000, o.ooo, 0 000, 0 000, o.ooo, 0 000, 0 ooo, CDEXTR 0.000, 0 000, 0 000, 0.000, 0 000, 0 000, 0.000, 0 000, 0 000, 0.000, SMNCDO = 0 000, 0 ooo, o.ooo, 0 ooo. 0 000, o.ooo, 0 000, 0 000, 0.000, 0 000, SMNBMB 0 000, 0.800, 0 900, 0 930, 0.950, 0 980, 1 000, 1.100, l 400, 1 600, SMSTRS 0.000, 0 800, 0 900, 0.930, 0 950, 0 980, 1.000, I 100, 1 400, 1.600, SMTANK = 0 000, 0 ooo, o.ooo, 0 000, 0 ooo, 0.000, 0 ooo. 0 ooo, o.ooo, 0 000, SMEXTR 0 D00, 0.800, 0 900, 0 930, 0.950, 0 980, 1 000, 1,100, l 400, 1 600, SEND SATAKE CLLAND -l 000, CLT0 -1 000, DELFLD 45.000, DELFTO = 25 000, DELLED 30 000, DELLTO = 10.000, LDLAND -1 000, LDTO -1 ooo, SEND SAPRINT ECHOIN 1, ECHOUT = 0, INTM 0, C17 -SHORT-ACS YNT-IN IPBLNT = 0, IPEXT = 0, IPINTF = 0, IPWAVE = 0, SEND ***•> C-17 PROPULSION MODULE 3 SLEWIS TWOAB = 40700,0, IPCAN IPFLAP IPLIFT KERROR 0, 0, 0, 0, I PENG IPFRIC IPMIN USING CF6 ENGINE (CYCLE ANALYSIS) AENDIA BA = 5 . SCPR YREN MODPRT ALTD XMACH SEND SAFTBD SEND 6.21, AENLE = 15.5, AENWT = 4200.0, , IPR = 1, SFADP = 1.4, SFADSP =1.4 WCWA1 = 0.O3O, EN = 4, NAB - 6, 10000.000, 40000.000, 0.400, 0.750, 1.350, 95.000, 1, 0.000, 30000.000, 0. 0, .200, , 650, KT5 = 0, KODE = 2, SFBPP = 1,4, ETAF1=0.90, XMDES = 1.400, KT7 = 0, NDTAIL = 6, 20000.OOO, 50000.000, 0.500, 0.800, Nov 18 96 15:09:01 ccccccc ooooooo PPPPPPP EEEEEEE SSSSSSS C 0 OP P E £ C O 0 P P E S C 0 0 PPPPPPP EEEE SSSSSSS C OOP E S C P ccccccc ooooooo p EEEEEEE sssssss CONTROL PROGRAM FOR ENGINEERING SYNTHESIS TITLE MCDONNELL DOUGLAS C-17 TRANSPORT MISSION ****** CARD IMAGES OF CONTROL DATA CARD IMAGE 1) $ DATA BLOCK A 2) •«** MCDONNELL DOUGLAS C-17 TRANSPORT MISSION ***** 3) $ DATA BLOCK B 4) 1 0 0 0 0 5) S DATA BLOCK V 6) END TITLE; **** MCDONNELL DOUGLAS C-17 TRANSPORT MISSION ****** CONTROL PARAMETERS; CALCULATION CONTROL, NCALC = 1 NUMBER OF GLOBAL DESIGN VARIABLES, NDV = 0 NUMBER OF SENSITIVITY VARIABLES, NSV - 8 NUMBER OF FUNCTIONS IN TWO-SPACE, N2VAR = 0 NUMBER OF APPROXIMATING VAR. NXAPRX = 0 INPUT INFORMATION PRINT CODE, IPNPUT = 0 DEBUG PRINT CODE, IPDBG = c CALCULATION CONTROL, NCALC VALUE MEANING C17-SHORT-ACSYNT.OUT 1 SINGLE ANALYSIS 2 OPTIMIZATION 3 SENSITIVITY 4 TWO-VARIABLE FUNCTION SPACE 5 OPTIMUM SENSITIVITY 6 APPROXIMATE OPTIMIZATION ESTIMATED DATA STORAGE REQUIREMENTS REAL INPUT EXECUTION 9 9 INTEGER AVAILABLE INPUT EXECUTION AVAILABLE 5000 1 1 1000 AAAAAAA CCCCCCC SSSSSSS Y Y N N A A c s Y Y NN N A A c s Y Y N N N AAAAAAA c sssssss Y N N N A A c s Y N N N A A c s Y N N A A ccccccc sssssss Y N N T T T T T T NASA-AMES PROGRAM FOR AIRCRAFT SYNTHESIS TITLE *«** MCDONNELL DOOGLAS C-17 TRANSPORT MISSION ***»*« AIRCRAFT TYPE - TRANSPORT 1 TITLE: '*** MCDONNELL DOUGLAS C-17 TRANSPORT MISSION ****** AIRCRAFT TYPE - TRANSPORT CONTROL PARAMETERS: READ CONTROL, MREAD = 5 EXECUTION CONTROL, MEXEC = 3 WRITE CONTROL, MWRITE = 5 NUMBER IDENTIFYING CONVERGENCE VARIABLE FOR CONVERGED VEHICLE, IOBJ = 570 NUMBER IDENTIFYING COMPARISON VARIABLE FOR CONVERGED VEHICLE, JOBJ = 585 C17-SHORT- ACS YNT-OUT SUMMARY OUTPUT PRINT COPE, IPSI.W GLOBAL ERROR PRINT CODE, KG LOB P GLOBAL COMMON INITIALIZATION COOS, INIT DEBUG PRINT CODE, IFBBG GLOBAL PLOT CONTROL, IGHJ.T DATA TftAKSFER INFORMATION FILE, IRDDTR DATA TRANSFER INFORMATION PRINT, IPDTR VtH:Ci.E CONVERGENCE INFORMATION : COUVERGENCt: TOLERANCE, TOL ^ .1OO00E-03 t.STIN WCALC VS NEXT S^OPE - .aQOQOE+00 BOUNDING WEIGL'T, WGMAX = . 850OOF.+06 MODULE 1LENT'FTCATION NUKSERS: NUMBER moduli; 1 (JSOmETRY 2 TRAJECTORY 3 AERODYNAMICS 4 PROPULSION 5 STABILITY /IWD CONTROL 6 KIK1 IJH'I'S M SONIC BOOM 9 eeoMQmCfi . 11 SUMMARY OUTPUT 14 TAKEOFF AND LANDING OINITIAL ESTIMATES if code = l, vnttatrr is fixed MODULES Al:;-: CALLED FOR INPUT IN THE FOLLOWING ORDER: 6 12 3 4 MODULES ARE CAL)..-:.V FOR EXECUTION IN THE FOLLOWING ORDER; 12 6 MODi.I.IRS ARE CALLED FOR OUTPUT IN THE FOLLOWING ORDER: 6 2 3 4 1 Inpuh. Ear Moaule # 6 + + (FI l *****TT*^ + ^**F • ***** & + l 1 INITIAL WEIGHTS INPUT DATA ACSYNT MODULE NUMBER 6 )• ' RCRAFr ' ;: TRANSPORT TITLE: »*•* MCDAC C-17 TRANSPORT ****** OCOMTROL OPTIONS IPRJMT - IBELT = Kl = K5 KB FR STRESS = DPCABIN = IMNTEN = TECKJ SLOPE[1) = SLOPS 19 I -¬ SLOPE lilt* 1 IG-I-J; 11 0 JOBLIQ 1.00 K2 l.OC K6 .00 KP1 1.00 TECHG 3 0000. ( .0 uO •ro oo I GEAR 1 KTGR 1 . 00 i .00 1 . 00 1 I TAIL = 0 KWING = 1.00 Kj = 1.00 AT MACH = .OO KP2 = 1 . OO WOTO = DENS 1 JFLTYP 1 .00 .00 . 30 0 K ERROR 0 KS0»Y 1.0 K4 .85 MAXIT . 00 530000. . :0O » 1 0 1 1.0 1 FLIFTF = .000 00 00 0L 00 00 oo 0" o -Vv 00 09 00 00 i.oo 1 .00 QUANTIT'i VALUE CODE QUANTITY VALUE COD WAF 174000. 0 WAIRC 5800 , 0 WAPU 232 . 0 V.'AMMUH = 0. 0 WARM 0. 0 WBAG = 17400. 0 WE El = 0. 0 WBODY 69600. 0 IICAHD = 0 . 0 WCARGO = 124000. i WCREW 1500. 1 WE = 31BOO. 0 WELT = 5320. 0 WEP 29000, 0 '. • ANK 3 . 0 WFEQ = 81200. 0 HFS 4060 . 0 WCA = i?40 . p WGEAR 0. 0 WHDP S 4640 . 0 WKT 4640. 0 WINST = 2900 . 0 WLG — 29000. 0 WMISS = 0. 0 WNA 5800 . 0 WPA 34800. 0 V.'PASS - 1:7000 , 0 WPL s 104100. 0 WPS - 46100. 0 WSC 11600. 0 KTSUM = 580000. 0 WVT S80O, 0 WWTNG = 46100. 0 llOmb 0. 0 WSNVP * . 0 WPIV 0 . 0 WLIFTF 0 WBS2 - 0. 0 WTHRV O. 0 input, Module 1 1 ,. r * • * * * * * * ************* ********* * * ********** * * * * + Geometry Inpu- D^ita 1*'*" MCDONNELL T30UGLAS C-17A TRANSPORT GEOMETRY 2 SWING AR LFLAPC TCROOT 6 WFFRAC 7 KSWSEP 8 SEND 9 SHTAIL 10 AR 11 SWES'P 12 TCTIP 13 K ..: ••• 14 SEND 15 SVTAIL 16 AR 17 SWEEP 1 3 TCROOT 7.200, AREA 0.110, SWEEP 0.135, TCTIP 0.800, XWING 1, 5.000, AREA 27.000, TAPER 0.080, XHTAIL 1, 1.000. AREA J1.000, SWFACT 0.110, TCTIP 3800.000, 25.000, 0.107, 0.290, D:H>:o TAPER TFLAPC ZROOT 845.000, 0,400, -0.010, CVHT TCROOT ZROOT 685.000, 1.000, 0.110, CWT TAPER VINO -6.000, 0.300, 0.170, 0.800, 1.000, 0.090, 1.765, 0.1DO, 0,990, 1.000, JNIIV 13 96 C17-SHORT-ACS YNT-OUT 33 86 10.53 348 34 19 XVTAIL 0 871, YROOT = 0 000, ZROOT 0 900, 4C 26 10 .53 348 34 46 66 10. 53 348 34 20 KSWEEP 1, 53 06 10.53 348 .34 59 46 10 .53 348 34 21 SEND 65 86 10.53 348 34 72 26 10.53 348 34 22 SWPOD 78 66 10.53 348 34 85 06 10 .53 348 34 23 DIAM 10 000, LENGTH 10 ooo, X = -0 750, 88 84 10.63 355 01 92 63 10.69 359 07 24 Y 0 301, 2 = 0 230, SWF ACT = 1 000, 96 41 10 .71 360 47 100 19 10.69 3 59 18 25 $END 103 97 10.63 355 15 107 75 10. 53 348 40 26 SWPOD 111 53 10.39 338 94 115 31 10 .20 326 80 27 DIAM = 10 000, LENGTH 10 ooo. X -1 000, 119 09 9.97 312 05 122 87 9.69 294 77 28 Y = 0 591, Z 0 230, SWFACT = 1 000, 126 65 9.36 275 05 130 43 8.97 253 04 29 SEND 134 21 8.54 228 89 137 99 8.03 202 82 30 $FUS 141 77 7 .46 175 05 145 55 S.81 145 86 31 BDMAX 21 060, BODL = 160 670, FRAB 3 590, 149 33 6.07 115 60 153 11 5.19 84 63 32 FRATIO 0 000, FRN 1 000, 156 39 4.12 53 26 160 67 2 .40 18 10 33 SEND Fuselage Max 21.060 34 SENGINE Fineness Ratio.. 7 . 629 Surface 9511.863 35 DIAM 8 000, N - 4, OUTCOD = 3, Volume.. 45999,004 36 SEND Geometry Initial Output END OF GEOMETRY DATA CARDS 3 6 LINES READ Geometry Initial Output Fuselage Definition X R Area 00 00 00 1 05 1 84 10 61 2 11 3 03 28 85 3 16 4 03 50 92 4 21 4 89 75 24 5 26 5 66 100 80 6 32 6 35 126 87 7 37 6 98 152 87 CO 42 7 53 178 35 9 48 8 04 202 92 10 53 8 49 226 26 11 58 8 89 248 09 12 64 9 24 268 18 13 69 9 55 286 34 14 74 9 81 302 39 15 80 10 03 316 20 16 85 10 21 327 65 17 90 10 35 336 65 18 95 10 45 343 13 20 01 10 51 347 04 21 06 10 53 348 34 27 46 10 53 348 34 Dimensions of Planar Surfaces (each) Wing H. Tail V, Tail Canard Uni ts NUMBER OF SURFACES 1.0 1.0 1.0 1.0 PLAN AREA 3 8OO.0 845.0 685 .0 .0 [SQ.FT, SURFACE AREA 6779.8 1696.1 1135.6 .0 (SQ.FT. VOLUME . 7652.7 704 . 6 1380.5 ,0 (CU.FT. SPAN . 165 .409 65 .000 26 .173 .000 (FT. ) L.E. SWEEP 28 .418 30 .763 41 .082 .000 (DEG.) C/4 SWEEP 25 .000 27 .000 41 , 000 .000 (DEG,) 13 . 601 14 .165 40 .753 .000 [ DEG. ) ASPECT RATIO . , 7 ,200 in .000 1 .000 .000 ROOT CHORD 35 .344 18 .571 26 .304 ,000 (FT. ) ROOT THICKNESS 57 .257 20 .057 34 .721 .ooo (IN.) ROOT T/C .135 .090 , 110 .000 TIP CHORD 10 . 603 7 . 429 26 .041 .000 (FT . ) TIP THICKNESS 13 ,614 7 . 131 34 .374 .000 (IN. ) TIP T/C .107 .080 .110 ,000 TAPER RATIO .. 3 00 .400 . 990 .ooo MEAN AERO CHORD... 25 . 194 13 .796 26 . 173 .ooo (FT. ) LE ROOT AT 37 .758 135 .071 113 .640 .000 (FT. | C/4 ROOT AT . 46 594 13 9 .714 120 .216 .000 (FT. | TE ROOT AT 73 102 153 .643 139 . 944 .000 (FT. ) LE M.A.C, AT , 56 .118 143 .362 125 .029 .000 (FT. ) C/4 M.A.C. AT 62 .416 146 .811 131 ,572 .000 (FT. ) TE M.A.C. AT 81 311 157 ,158 151 202 .ooo (FT. ) Y M.A.C. AT 33 930 13 . 929 13 064 .000 LE TIP AT . 82 509 154 .416 136 .457 .000 (FT. ) El Nov W 96 15:09:01 C17-SH0RT-ACS YNT-OUT C/4 TIP AT. TE TIP AT.. ELEVATION.. 85.160 156.274 142.967 93.112 161.845 162.498 8.424 29.499 9.477 GEOMETRIC TOTAL VOLUME COEFF EFFECTIVE TOTAL VOLUME COEFF EXTENSIONS ,745 .745 .075 . 075 .000 IFT.) .000 (FT.) .000 (FT.) .000 .000 CRUISE .75 .75 28000 -1 500.0 .0 .0 .0 1.0000 1 4 0 0 0 0 0 Centroid location at .00 Area .0 Sweep Angle .0 Wetted Area 0 Volume .0 Total Wing Area 3800.00 Total Wetted Area 22219,92 Strake Rear Extension .00 .00 .00 .00 input for Module tt 3 *********************************************************** 1 AEKQDttlAHlC INPUT DATA ** MCDAC C-17A TRANSPORT AERODYNAMICS MODULE ** FACTORS INTEGERS AND LOGICALS REALS FALEL = 1 .000 ALELJ = 3 NALF 10 ABOSB 220 SHK FUEL TANKS = 25 000 Tank Volume Weight Density FBLNT = . 010 IALF = 0 NMDTL = 6 ALMAX = 20 ooo SM Wing 5292 264612. 50 . 00 + = 000 Fus#l 0 0. 50 .00 FCD = 1 .ooo IALP = 2 ECHOIN = 1 AKC 35 000 SMNDR Pus#2 0 . 50.00 + = 860 Total 264612. + FCDF X = 60 000 1 .000 IAXE c ECHOUT = 0 BTEF 1 ooo SWPMA Mission Fuel Required = 91184 , FCDL = 1 .000 ICDO = 0 ELLIPC = F CGM 250 •SWPMI Available Fuel Volume in Wing 6815. N = 000 FCDLH = 1 ,000 ICOD 1 ELL1PH = F CLLAND = -1 ooo YO Aircraft Weight - 580000.000 lbs. 4 = 000 Aircraft Volume = 55736.773 cu.ft, FCDO = 1 .ooo INORM = 1 ELLIPW = F CLTO = -1. 000 ZCG Aircraft Density - 4 .764 lbs./cu.ft. + FCOW 000 1 .000 INTM _ 0 CSF _ 1 000 ICASE = 4 (Fineness Ratio Method) FCDWB = 1 .000 IPBLNT = 0 DELFLD = 45 ooo FCL 1 .000 I PENG = 0 DELFTO = 25 ooo FCLH 1 .ooo IPFRIC = 0 DELLED = 30. ooo FDNOSE = 1 .000 IPTEXT = 0 DELLTO = 10. 000 Input for Module tt 2 FENG 1 .000 IPINTF = 0 ESSF = 1. ooc HI.).,,,,..,.... ************ ***************** ********** * * * ** ** .* * FEXP = .780 IPLIFT 0 EXA = 667 TRAJECTORY INPUT FINTF = 1 .000 I PLOT - 1 EXC 2 ooo FLBCOR = 1 .ooo IPMIN = 0 IT ooo FLD = 1 .000 IPWAVE = 0 LDLAND -1 . 000 TIMTOl =5.5 MENDUR = 0. NCRUSE = 2 I PLOT = 2 FLECOR 1 . 000 ISMNDR = 0 LDTO = -1 . 000 TIMT02 = .5 QMAX = 800. IPSIZE =-3 HMINP = 0 FLNOSE = 1 .000 ISUPCR - 0 MACHN = 750 FRFURE = .05 XDESC = 80.0 IPSTOl = 3 HMAXP - 50000 FLSCOR = 1 .000 I TRAP = 0 QHOCjl = OOC DESLF =6.00 WKFUEL = 1.000 IPST02 = 2 DELHP = 5000 . FMDR = 1 .010 IVCAM = 0 RCLMAX = 1. ooo ULTLF =9.00 CRMACH = 990 IBREG = 0 SMMINP = .200 FSEP = 1 .000 IXCD = 1 ROC = 015 RANGE = 1000. WKLAND = 570 IENDUR = 0 SMMAXP = 1 ,100 FTRIM = 1 . 000 KERROR = 0 SFWF = 1. ooo WFUEL = 182720. FLFAC = 600 IPRINT = 0 DELMP = .200 WFEXT = 0. DECEL ^ 250 KERROR = 2 WCOMBF = 01 WFTRAP = 900. NLEGCL = 0 NLEGCR ^ 0 NLEGLC = 0 ARRAYS FWGMAX = 1.200 TOL = 001 MILCOM = 0 NMISS = 1 NCODE = 0 ALIN = .ooo 1.000 2 . 000 3 000 4.ooo 6.000 8.000 10 .000 12 .000 MMPROP = 1 + 14.000 ALTV = 0. 0. 0. 0. 0. 0. 0. 3 30000. * 30000. CDBMB = . oooo .0000 .oooc .oooo .oooo .oooo . 0000 oooo oooo MISSION 1 + .0000 CDEXTR = .0000 . OOOC . oooo .0000 .0000 .0000 .oooo oooo oooo MACH NO. ALTITUDE HORIZONTAL NO. VIND + .0000 PHASE START END START END DIST TIME TURN "G"S WKFUEL M IP IX B A P CDONPT .0000 .oooo .0000 .oooo .oooo . oooo .0000 oooo oooo ,0000 CLIMB .50 .00 0 10000 .0 .0 .0 2 5O.0 1. oooo 1 2 -1 C 0 0 0 CDSTR = .0000 .0000 ,0000 .0000 .0000 .0000 .oooo oooo oooc CLIMB .60 ,00 -1 28000 .0 ,0 .0 310,0 1 . oooo 1 2 -1 0 0 0 0 * . 0000 CRUISE .75 .75 28000 -1 2000.0 .0 .0 .0 1 . oooo 1 4 0 0 0 0 0 CDTNK = ,0000 .oooo .oooo .0000 .0000 . oooo .0000 oooo oooo CLIMB .50 .00 0 1000C .0 .0 .0 250.0 1 . oooo 1 2 -1 0 0 0 0 + .0000 CLIMB .60 .00 -1 28O00 .0 ,0 .0 310.0 1 , oooo 1 2 -1 0 0 0 0 CLINPT = ooo .ooc ,000 000 .000 .ooc .ooc .ooc .000 15:09:01 C17-SHORT-ACS YNT-OUT 4 .000 SFSFC1 = 1.000 SFSFC2 = 1.000 SFSFC3 = 1.000 CLO . 000 OOC OOO OOO OOC 000 000 000 000 SMI .500 SODG 1.000 TOSA 518.OOC + .000 TR 520.000 TWAB = 0. TWOAB = 40700. CLMIN .000 000 000 OOO 000 .000 000 000 000 TWTO = , 500 T3 2800. T5M 3400 , 4 .000 T51 0. T7M 3400. T71 0 . CMO . 000 000 OOC 000 000 000 000 000 000 VC1 .980 WCWA1 = ,030 XMDES = 1 .400 4 .000 XMT .350 YREW 95. FRBT .OOC FCDRA = 1.000 1 OOO 1 000 1 000 1 000 1 000 1 OOC 1 OOO 1 OOO PRPN .000 RDIAM = 1.150 RLENG = 2 .000 4 1 .000 FCLRA 1 . 000 1 000 1 OOO 1 000 1 000 1 OOO 1 DOO 1 OOO 1 OOO + 1 . 000 IPR 1 IPRINT = 0 IPLOT = 0 FLDM 1.000 1 D00 1 OOO 1 OOC 1 000 1 000 1 000 1 OOO 1 OOO KERROR - 0 KODE 2 KT5 0 4 1 .000 KT7 0 MINPR = 0 NAB 6 FVCAM = 1.000 1 000 1 000 1 000 1 000 1 000 1 OOO 1 000 1 000 NOZZ 0 NPROP = 6 NSUMM = 15 4 1 .000 IENG 5 ICF6 ) ISTRS r 0 0 0 0 0 0 0 0 0 ITB 0 0 0 0 0 0 0 0 0 THESE VARIABLES ARE OSED BY TABLE LOOK UP T 0 ESF i .OOO HDTAIL 6 IPDBUG - 0 IIPRINT = 0 ITS = 0 0 0 D 0 0 0 0 0 D ITRIM 1 1 1 1 1 1 1 1 1 ALTD = 0. 10000. 20000. 30000. 40000, 50OOO. 4 1 XMACH = .200 .400 .500 .650 .750 .80C SMEXTR .000 BOO 900 93C 950 980 1. 000 1 100 1 400 XMPRI = .000 ,300 .600 .900 1 .200 4.000 4 1 . 60C XPRI = i. OOO 1.000 1.000 1 -OOC 1 .000 i. OOO SMN .400 500 600 700 800 900 700 800 850 XMPRI1 = .000 .000 ,000 ,000 .000 .000 .000 4 .900 4 .OOO .000 .000 SMN 3KB = .000 800 900 930 950 980 1. OOO 1 1O0 1 400 XPRI1 = .000 .OOO ,000 .000 .000 .000 .000 4 1 .600 + .OOO .000 . 000 SMNCDO = .OOC OOO 000 000 OOC 000 000 000 OOO XMPRI2 = .000 .000 .000 .000 .000 .OOO .000 4 .000 4 .OOO .000 .000 SMNSWP - .000 000 OOO 000 OOO 000 000 000 OOO XPRI2 = .000 .000 .000 .000 .000 .000 .000 4 .000 + .000 .000 .000 SHSTRS = .000 800 900 930 950 980 1. 000 1 100 1 400 4 1 . 600 SMTANK = .000 OOC OOO OOO 000 000 OOO OOO 000 + .000 *********** ******** *********** ********** ********* ********** *********** ******** YSWP = .000 000 000 000 000 000 000 000 OOO ** Begin Vehicle Convergenc e ** 4 .000 Estimated Gross Weight = .58000E406 Calling Module # 1 Calling Module # 2 Calling Module # 6 Input for Module 4 Calculated Gross Weight - . 52978E+06 ****** **, ******* .**« * * * * * * * * " -** **** * * A * * * * * * * * * *** * * * * * *.»* **** * * Slope o£ Wcalc vs. West line = .80000E+00 PROPULSION INPUT VERSION 04-76 •* C-17 PROPULSION MODULE - USING CF6 ENGINE (CYCLE ANALYSIS) Estimated Gross Weight = .4O6O0E+06 Calling Module # 1 Calling Module # 2 Calling Module # 6 Calculated Gross Weight = .46161E406 AENDIA - 6 210 AENLE 15 500 AENWT 4200 000 Slope of Wcalc vs, West line = .39180E400 ALTI 000 AM 000 ATURB 385 AENTW = 000 Estimated Gross Weight = .49743E+06 AUAENG = OOO AWAENG 157 BA 5 900 Calling Module # 1 DELPR = OOO DELT57 = 100 000 DEPWCC = 2 000 Calling Module # 2 DIA1 B 200 EAB1 750 EB1 = 940 Calling Module # 6 EDI 750 ETAC1 820 ETAF1 900 Calculated Gross Weight = .49735E+06 ETAT1 = 920 HTR = 300 HVF = 18600 000 Slope of Wcalc vs. West line = .3919OE+O0 MACH1 = 1 000 MACH 2 1 100 PCDPAC = 1 000 POSA 29 920 PRFD 1 560 PWCC 100 000 Estimated Gross Weight = .49729E406 P11P1 = 1 720 P2P1 = 30 OOC R10A = 1 000 Calling Module # 1 R32 940 R54 = 940 R54N = 920 Calling Module # 2 R711 980 R711N = 980 SCPR 1 350 Calling Module # 6 SFADP = 1 400 SFADSP 1 400 SFAUXP = I OOC Calculated Gross Weight = .49729E406 SFBEP = 1 000 SFBPP = 1 400 SFBTP = OOO SFDIVP = 1 000 SFINSP 1 000 SFIP = 1 000 ** End Vehicle Convergence ** Nov J8 96 C17-SHORT-ACS YNT-OUT 3 COMRNRFFWICFL itaratitHft-* Riqjuirod CALLINCF MODULE P 1 CALLING MFLDUL^ # 2 CALLING MODULE # 6 OUTPUT FOR MODULE # 6 2RCIAX: DESIGN LOAD FACTOR: ULTIMATE LOAD FACTOR: ^RUCIRURE AND MATERIAL : WING £• • S.TION: BODY ELATION: WEIYHT STATEMENT - TRANSPORT MCDAC C-17 TRANSPORT *** 800 . 6 . 00 9 .00 ALUMINUM SKIN, STRINGER SANDERS EQI LA T I •:):"; SANDERS E-JU-LION COMPONENT POUNDS J CILOGRIME yi ONT SLOPE RECH FIX AIRIRAJR.O STRUCTURE 187373 . 84993. 37 68 NC WING 81135. 36803. 16 32 1 00 1 00 NO PUNNLAGE 57789. 2621J. 11 62 1 00 1 oo NO HOTLZINTNL T*IL ( LOW) ' jBJJ . 5395. 2 3S 1 oo 1 oc NO VERTICAL TALL 7263 , 3. 14. 1 46 1 00 1 00 NC NACFLL1 6024 . 273:,: . 1 21 1 oc 1 00 NC LANDING GEAR 23270. 1055^. i 58 1 00 1 00 NO PROPULSION 21672. 91 .0. 4 36 NO ENGINES { 4) 19992. 150&H,. 4 02 1 oo 1 00 NC FUEL SYSTEM 1680. 762 . 34 1 00 1 oo NO FIXED EQUIJ -::I^NT 26641. 12034. 5 36 1 oo NO HYD ix PNEUAIATIC 2984 , 13S3 . 60 1 oo NO 1 :<_•• RIR-AL 3799 . 1723 . 76 1 00 NC AVIONICS 1835 . 832 . 37 1 00 NO INSTRUMENTATION 1041 . 472 . 21 1 OC NO DE-ICE & AIR COND 0. oo 1 00 NO AUX POWER SYSTEM 6', J . I« 1 00 NO FURNISH & EQPT 122S3. 5574, 2 47 1 00 NO S^ATS AND LAVATORIES 0 . 0. oo 00 NO GIIIIY 0. 0. 00 1 00 NO MISC CC~K. IT 0 . 0 . 00 00 NO CABIN FINISHING 6620 . 3003 . 1 33 1 OO NO CABIN F.TIERGENCY EQUIP 9 . 0 . 00 1 00 HO CARGO HANDLING 5669 . 2571 . 1 14 1 oo NO FLIGHT CONTROLS 4021 . 1824 . 81 1 00 NO EMPTY WEIGHT 235686. 106907. 47 39 OPERATING ITEMS 0. 0. 00 NO FLICRHL CREW ( 0) 1500 . 580 , 30 ¥•:: CREW BAGGAGE AND PROVISIONS 25 . 11 . 01 HE FLIGHT ATTENDENTE i 0) 0 . 0. op NO UNUSABLE FUEL AND OIL 9 00. 408. P NC PASSENGER SERVICE 0. • 3 NO CARGO CONTAINERS 19840. 8999 . 3 99 NO OPERATING WEIGHT EMPTY 257951. 117007. 51. 87 115337. 52317. 23 19 i'Tiy LOAD 124000. 5621 , . 24 . 94 NO PASSENGERS SIIGGJGE Calculated Wei-IHT Estimated Weight Percent Error ( 0) 0. . 56216. .00 .00 24 . 94 124000. 497388. 225570. 100.00 197289. 225570. Kr. YES No Nov IS 96 ismm CL7-SH0R T-ACSYNT-OUT . .... It for Module tt 2 ******* * * * * * * *********** ********* * * * * • *»* ********* T T • • • ********** TRAGEC1CRY OU' '.T MISSION 1 (PAYLOAD = 124000. LB) FUASE M H CL ALPHA WFUEL (K~ VEL SFC(I) TKEirSTm CD D uMMA W WA Q sFcru) iu) CDIN5T L/D TUB/ TIL IT/; X WARM-UP 0. 4902.8 5 , 50 33 162800. TAKEOFF .25 0 . 2 . 0256 12 . 00 450.1 . 50 278 . . 41 133707. .4557 3 . 00 4919.14,5 1411 .92 92 . .41 133707. .0030 4 .45 1.00 1 . 00 5196, 2ND SEC- .25 4 0 0 . 2.0256 12 .00 278 . .41 100280. . 4557 6 . 91 491936.5 1411 . 92 92 . .41 133707. .0030 4 .45 1 .00 . 00 CLIMB . 46 10000. . 6070 5 .35 2067.7 2 . 56 •191 . . 50 89427. .0377 6 .91 !: il s 6 8 . 9 1096 .13 212 . Cycle .49 90853. .0018 16 .09 1 . 00 1 . 00 12 . CLIMB .82 28000, .4009 2 .81 5022.7 a .55 825 . . 65 48 • 1 . .0332 . 84 484846.2 721 .40 326. Cycle , 63 49995 .0014 12 1 .00 1 .00 64 . CRUISE . 75 280C0. .4107 3 .06 75593.4 258 .96 753 . . 65 25759. , 0250 .oo 40S852,8 586 .00 271 . cycle . 62 27165. . 0014 16 . 44 . 53 1 .00 1924 . CLIMB ,46 100OD. .5027 A .38 1588.4 1 .97 491 . 50 i : 7 .' . . 030B 9 .12 407264.5 109 6 . 13 212 . Cycle .43 908S3. , 0013 16 .31 1.00 1 .00 9 . CLIMB .82 28000. .3239 2 .25 3431.3 5 .77 825 . .65 4S237. . 0301 1 55 403833.2 721 40 -••26. Cycle .63 49995. . 0014 10 76 1 . 00 1 00 43 . CRUISE .75 28000. 3798 2 .82 16388.6 60 .35 753. . ii 24308. .0236 00 387444.6 582 .34 271. Cycle . o3 25710. . 0014 16 09 .50 1 00 448 . LAND!NG .22 0 . 2.5935 12 00 2 50. .40 136692. .9724 18 .47 431547.3 1401 .74 74 . .40 137607. . 0033 2 67 1.00 1 00 6201 . Landing Field Length (ground run) Height fg.r Landing caiculaxIon Lanjjiiu Thrust to Weight ratio Takeoff Weight Landing Weight 3027. ft 431547. lbs .317 497239. lbs 3B7445. lbs Fuel Summary --i-al Fuel = 116237, Takeoff Fus". : Fuel Load: Hi3si;i« Vuel - I0»fi45. Wsnsup 4903. External - 0. Reserve Fue 1 - 5492. TakeoTf = 450. Internal = 116237. Trapped Fuoi = 900. fllouk 'J'inw - 5.736 hrs 5lock Ranye = 2500.0 n.m. E*.ln~k fuel 109844.8 lb, TakeoLI Field Length [total ru.'ii = S I ' G . ft Landing Field Lrnigth (total rur. = 6201. ft Decel 4 .250 Gs Nov IS 96 15:09.01 C17-SHORT-ACS YNT-OUT Output for Modult | 3 l>e tailed Aert*Iynj±mioutp*j; Mach - . 8b Altitude = 3 0000. Takeoff Coiitigurjtion: aps and Slats Par; lite Drag Friction 1 us Body 2 Wing 2 STRAKES 2 H. Tail 2 V. Tall 2 Canard 2 InL^rf rjrenre 3 Wave 3 F.x'f ^riin ]. 4 Tanks 4 Bombs .-.'i "res . .. ra CnTTber .0111 . 00 ' .0038 .0000 .0014 . 0008 .OOOO . 0031 . 0266 . 0000 . oooo .oooo .oooo .0000 . oooo Indiittd Drag Alpha CI .0 .784 1.0 .934 2.0 1.078 3.0 1.220 4.0 1.357 S.O 1.621 8.0 1.614 10.0 1.772 12.0 1.705 14.0 1.792 Cd .2249 .2418 .2792 ,3004 .3470 .3777 .4558 .4814 . 5702 L/D 3 . 5 3 .9 4.2 4.4 4 . 5 4 .7 A.3 3 . 9 3 .5 3.1 Cm .000 .000 .000 .000 . ooo . 000 .000 .ooc .000 ,OON e Cdtrim Deltrim .15 . 19 . 23 .28 .31 .38 .34 .33 .29 .27 .0050 . 0067 .0037 .0109 . 0132 .0171 . 0137 .0189 .0262 .0366 -4.3 -5.1 -6.0 -6.9 -7.7 -9 . 4 -9.6 -11.1 -13 .0 -15.0 Cdmin ft . 0407 Slope Factors Cl/Alpha (PER radial-.) 4.1726 Cdl/Cl"2 .1649 Alpha Transition Zone 2-3 7,165 Flap Setting 2!. Slat Set ting 10 Flap Type Single 519. so; Mach = .90 Altitude = 30000. Parasite Drag T'riction .0110 Alpl ia CI Sons Body . 0050 0 1 293 + 2 wing .0038 1 0 1 456 + 2 Strakes .0000 2 0 1 613 + 2 H. Tail . 0013 3 0 1 767 + 2 v. TIN. .0008 4 C 1 917 + 2 Canard . oooo 6 0 2 206 Interference .0023 8 0 1 721 + 4 Wave , 0719 10 0 1 853 Fxtemal .O00D 12 0 1 972 T=inks . oooo 14 0 2 082 4 Bombs . 00 " SroreH .oooo Extra ,oooo Landing Configuration: Indnr-ed Drag Cd .6474 . 67 88 .7093 .7411 .7740 .B41B .SS98 . 639S .72H9 .82B9 Flaps and Slats L/C 2.0 2 . 1 2.3 2 . 4 2 . 5 2 . 6 3 . 1 2 .9 2.7 2 . 5 Cm . ooc .000 . ooo . ooo .000 000 .000 .00 3 . 000 .000 . 13 .16 .18 .21 . 24 .28 .28 . 27 .27 .26 Cdtrim Deltrim .0130 -t,M . 0155 .0183 . 0211 .0241 . 0302 . 0154 . 11214 .0293 . 0400 -7.6 -8.4 -9 .2 -10.0 -11 . 6 -10 .0 -11.6 -13 .4 -15 . 4 Slnpe Factors CI'Alpha (per radian) 3.2262 Cdl'Cl~2 .1716 ftlph* Transition Zune 2-3 6. 514 Nov IS 96 l5:U9;tH Camber CDMIN FT . oooo Flap Setting Slat Setting Flap Type C17-SHORT- ACSYNT-OUT Detailed Aerodynamics Output Single 45 . 30 . 519. sq. Mach = .40 Altitude = 0. Parasite Drag Friction Zone Body 2 Wing 2 Strakes 2 H. Tail 2 V. Tail 2 Canard 2 Interference 2 wave 2 External 2 Tanks 2 Bombs Stores Extra Camber .0118 . 0053 .0041 . oooo .0014 .0009 .0000 . 0042 .0000 .0000 .0000 .0000 .0000 .0000 .oooo Cdmin ft Mach = Altitude = Parasite Drag Friction Zone Body 2 Wing 2 Strakes 2 H. Tail 2 V. Tail 2 Canard 2 Interference 2 Wave 2 External 2 Tanks 3 Bombs Stores Extra . 0160 .50 0, Induced Drag Alpha Cl Cd L/D Cm e Cdtrim Del trim .0 .000 .0160 0 .000 .00 .0000 . 0 1 . 0 118 . 0168 7 0 . 000 .76 .0001 - .8 2 .0 233 .0192 12 1 ,000 .75 .0004 -1. 6 3.0 .345 .0230 15 0 .000 .75 .0008 -2.4 4.0 454 .0282 16 1 .000 .75 . 0014 -3.1 6.0 665 .0424 15 7 .000 .74 .0030 -4 . 6 8.0 867 .0611 14 2 .000 .74 .0052 -6.2 10 .0 1 060 .0840 12 6 .000 ,73 .0077 -7,7 12 .0 1 246 ,1107 11 2 ,000 .72 .0107 -9.3 14 ,0 1 424 .1410 10 1 . ooo .72 .0140 -11 .1 Slope Factors Cl/Alpha (per radian) Cdl/Cl-2 Alpha Transition Zone 2-3 Programmed Flap Setting Flap Type Single 5 .8299 .0616 16.894 0. 519. sq. Induced Drag 0116 Alpha Cl Cd L/D Cm E Cdtrim Deltrim 0053 0 000 .0159 0 .000 .00 . 0000 .0 0040 1 0 121 .0167 7 3 . 000 ,76 .0001 -.8 oooo 2 0 240 ,0192 12 5 .ooo .76 .0004 -1 .7 0014 3 0 355 .0232 15 3 . 000 .76 . 0009 -2 .5 0009 4 0 4 68 .0287 16 3 .000 .76 .0015 -3.3 0000 6 0 685 .0436 15 7 .000 .75 .0033 -4.9 0042 8 0 892 .0632 14 1 , ooo .74 .0056 -6.4 0000 10 0 1 090 .0872 12 5 .000 .74 .0084 -8.1 oooo 12 0 1 280 .1150 11 1 , 000 ,73 . 0116 -9.8 oooo 14 0 1 433 .3257 4 4 .ooo .29 .0161 -11 .8 oooo oooo oooo Slope Factors Cl/Alpha (per radian) Cdl/C1^2 5.8634 . 1509 Alpha Transition Zone 2-3 13.323 Nov IS 96 15.09:01 C17-SHORT-ACSYNT-OUT Camber Cdmin Et .0159 Programmed Flap Setting Flap Type Single 0. 519. SQ. Detailed Aerodynamics Output Mach = Altitude = Parasite Drag Friction Zone Body 2 Wing 2 Strakes 2 H. Tail 2 V. Tail 2 Canard 2 Interference 2 Wave 2 External 3 Tanks 3 Bombs Stores Extra Camber Cdmin ft .60 0 . .0115 .0052 .0040 .OOOC .0014 .0009 .0000 .0042 .0000 .0000 .0000 .0000 .0000 . OOOO .OOOO . 015E Induced Drag Alpha Cl Cd L/D Cm e Cdtrim Deltrim .0 OOO .0158 0 .000 .00 .0000 .0 1.0 126 .0167 7 6 .000 .77 . 0001 - .9 2.0 250 . 0193 12 9 .000 .77 .0004 -1.7 3.0 370 .0236 15 6 .000 ,77 .0010 -2.6 4.0 487 .0295 16 5 .OOO .76 .0017 -3.4 6.0 712 .0453 15 7 . OOC .76 .003 6 -5.1 8.0 927 .0662 14 C .000 .75 .0062 -6.8 10.0 1 132 .0916 12 4 .000 .75 . 0092 -8.5 12.0 1 277 ,2501 5 1 .000 .31 .0125 -10 .4 14.0 1 407 .3249 4 3 .OOO .28 .0165 -11.7 Slope Factors Cl/Alpha (per radian) Cdl/Cl*2 Alpha Transition Zone 2-3 Programmed Flap Setting Flap Type Single 5.7573 .1562 10.880 0. 519. sq. Mach Altitude = Parasite Drag .70 0 . Induced Drag Friction Zone Body 2 .0113 .0052 Alpha ' .0 Cl 000 Cd .0156 L/D .0 Cm . OOO e , OO Cdtrim .0000 Del trim .0 Wing ,0039 1 0 133 .0166 8, 0 . 000 .79 ,0001 -.9 Strakes 2 .0000 2 0 263 .0195 13 5 .000 .78 .0005 -1.8 H. Tail . 0014 3 0 390 .0242 16 1 .000 .78 .0011 -2 .7 V. Tail ,0009 4 C 513 .0306 16, 8 . 000 .78 .0019 -3.6 Canard 2 . 0000 6 0 750 ,0478 15 . 7 .000 .77 . 0041 -5.4 Interference 2 .0042 8 0 975 .0705 13 . 8 .000 ,77 .0069 -7 .1 Wave .0000 10 0 1 148 .1903 6. 0 . 000 .33 .0087 -8.7 External .OOOO 12 0 1 298 .2602 5 . 0 .000 .30 . 0134 -10. 4 3 Tanks 2 . OOOO 14 0 1 435 . 3412 4. 2 .OOO .28 .0197 -12 .2 Bombs Stores Extra .0000 .0000 . OOOO Slope Factors Cl/Alpha (per radian) Cdl/Cl"2 5.3743 .1580 Alpha Transition Zone 2-3 9.077 Nov 18 96 15:09:01 Camber Cdmin Et .0000 . 0156 Programmed Flap Setting Flap Type Single C17-SHORT-ACSYNT-OUT 0. 519. sq. Detailed Aerodynamics Output Mach Altitude = Parasite Drag .80 0. Induced Drag Friction Zone Body 2 .0112 .0051 Alpha .0 CI ooo Cd .0168 L/D .0 Cm .000 e .oc Cdtrim , oooo Deltrim .0 Wing .0039 1 0 143 .0179 8.0 , 000 .80 .0002 -1.0 Strakes 2 .0000 2 0 233 . 0212 13 .3 .000 .80 . 0006 -2 .0 H. Tail .0014 3 0 419 .0265 15. 8 .000 . 80 .0013 -2.9 V. Tail ,0008 4 0 551 .0337 16 .4 .000 ,79 . 0022 -3.9 Canard .0000 6 0 804 .0530 15.2 . 000 .79 .0048 -5.7 Interference .0041 8 0 1 042 .1337 7 . 8 .000 .41 .0077 -7.9 Wave .0016 10 0 1 189 .2052 5.8 .000 .33 .0108 -9.2 3 External ,0000 12 0 1 342 .2793 4.8 .000 ,30 . 0163 -11.0 Tanks .oooo 14 0 1 482 .3649 4.1 .000 .28 .0235 -12.8 3 Bombs Stores Extra Camber .oooo .0000 . oooo Slope Factors Cl/Alpha (per radian) Cdl/Cl-^2 Alpha Transition Zone 2- Programmed Flap Setting 3 6.0661 . 1585 7.667 0 . Cdmin .0168 Flap Type Single 519. sq . 90 0, ft Mach Altitude = Parasite Drag Friction Zone Body 2 wing 2 Strakes 2 H. Tail 2 V. Tail 2 Canard 2 Interference 4 Wave 4 External 4 Tanks 4 Bombs Stores Extra Induced Drag 0110 Alpha Cl Cd L/D Cm s Cdtrim Deltrl m 0050 0 000 . 0852 0 .000 .00 ,0000 0 0038 1 0 159 .0866 1 8 . 000 ,83 .0002 -1 1 0000 2 0 315 . 0905 3 5 .000 .82 .0007 -2 1 0013 3 0 465 .0969 4 . 8 .000 .82 ,0016 -3 1 0008 4 0 612 .1054 in CO .000 .82 . 0027 -4 2 0000 6 0 893 . 1285 6 . 9 .000 .81 .0058 -6. 2 0023 8 0 i 082 .2440 4 . 4 .000 .33 . 0131 -9. 5 0719 10 0 i 189 .3036 3 . 9 .000 .29 .0195 -11. 3 0000 12 0 l 285 .3720 3 . 5 .ooc .25 . 0280 -13 . 3 oooo 14 0 l 371 .4496 3 . 1 , 000 .23 .0396 -15. 5 oooo oooc Slope Factors Cl/Alpha (per radian) Cdl/Cl"2 5.6120 .1938 Alpha Transition Zone 2-3 6 . 514 C17-SH0RT-ACSYNT-0UT CDLLLLJKI .0000 IDRNIN IT . Q852 PROGRASONLFLD FL*P Setting FLAP TYPE SINGLE 0. 519, SQ. Output tor Module V 4 1 BUG JUS SUMMARY SR = 6,21 FEET 15.50 FEET = 4200. (.0 P<::JN"3 5.90 4 . 3800.00 SQ FEET .EMT OF ENGINE CORKKLTF! A i RFLOW THRUST •- FJ«::HE THRUST [POUNDS PER ENGINE) SFC = EKGINE SPBC3KIC FUEL. CONSUMPT £C •'. THRUSTU- THRUST PER ENGINE IN LBS, W/O In.:-. Al, DRAG CORR SFCU = SFC.l/HR, W/O INSTALLATION DRAG CORft COINS = TOT INSTALLATION :>HA3 COEF PER A/C (JWIIIG REF) ENGINE DIAM ENGINE LENGM-. ENGINE HEIGHT HYPASS RATIO HO OF ENGIK-S DRAG REF AREA PWCC = PER1 ALT .400 10000, .500 20000. PWCC THRUST TrIRUSTu SFC SFCU CDINS 100 . 335". 33712. 404 .402 .003 1 9;?. 3ZI72. 32320. 420 . 418 .002 5 96 . 2 909V. 29232, 421 .419 .0024 94 , 25361. 25484. 422 . 420 .D022 9 2 , 21337. 21446. 434 .431 D019 90 . 16654. 16717, 477 .474 .UUIV SA. 9877 . 9948 . 682 .677 .0013 86 . 7781 . 7852 . 726 .720 . 0013 94 . 6421 . 6494 . 727 , 719 .0013 a.:. 5000 . 5073. 757 . 716 0 "••-•< EO. 3 417 . 3493 . 876 . B5R ,.!01I 78 . 1362 . HIS 1 679 1 .613 , 0D10 100. 2 !H5 . 22251. 494 . 4B8 .0017 98 , 20100. 20350. 498 . 492 .0016 96 . I76E0. !7900. 498 .491 .0015 94 . 15177, 15104. 505 .497 .0015 92 . 12582. 12793, 527 : isle .0014 90. 973 5. 992 8 . .572 .0012 88. 6298. 6470 . 766 . 745 ,0011 86. 5072 . 5246, 797 . 770 .0011 84. 4094 . 4273 . 815 .781 .0012 82 . 3077 . 325a. 878 . 833 .0012 80 , 1983 . 2163 . 1 073 [JR5 . 00)2 78 . 821 2 4 i;., .00 30 100 . J 4G74. 1*320. 523 .515 ,0015 98 . .3028. 13268. 520 . 0015 °6 . 113 • . JI622. 522 .511 . 0014 9 4 . 5-737 9960 . 532 . 52D . 0014 12 . 6036 8248. 557 . 513 .OOU 90. 6218 . 6417 . 617 . 597 .0012 8B , 4140 . 1321 795 .752 .0011 96 . : 24 . 331. . aid .775 . 0( 2 .650 30000. .750 40000. .800 50000. 'A 2615. 2817 818 .791 .0012 1947 . 2112 .931 -917 .0012 80. 1200 . ,.393 1 191 1.025 .003 2 78 330, 507 3 : • 2.111 .00 100. 9500 . 9738 5 62 . 548 .0013 98 . 8387. 8621 36: . 546 . 0013 96. 7269 . 7L23 566 .549 . 5013 94 6196 . 6426 580 .560 . 0013 92 5091 . 5317 610 • -4 .0013 ,0. 3547 . 4166 674 .639 .0012 ? T: 2716 . 2 919 830 .77; .001] fl 5 . 2160 . 2379 874 . >'J3 , 0012 84 . It89 , 1910 920 .814 .001^ 82 1210 . 143.-! 1 037 . 877 .0013 80. 710 . 92H 1 391 1 . 064 .0012 73 . 15b , 359 4 723 2 .080 .0011 100 fi061 . 625'' 587 .569 .0013 98 5330 . 5r- 539 , 56 8 .0014 96 . , • L3 . 4B1C 597 . 572 ,0014 34 . ,D' . 4110 614 .583 .0014 92 . 3201 . 3402 647 .6 39 . 0D14 90. 2482:. 2 679 714 . BL'2 .0013 88 17?-* . 191 j 870 . 7P5 .0013 86. 1358 , 156 3 926 . 804 ,0014 B4 . 1012 , 1252 993 . 827 ,0014 32 . 730 . 937 145 .891 . 0014 80, 108 . 609 1 608 I 077 .0014 78. B*. 250 7 569 i._!87 .0013 100. 3823 . 3973 6!2 . 589 ,0011 3356 . • 615 . 589 .0015 96 . 2899 . 3055 625 . 593 ,0015 2449 . 2607 644 .605 .0015 92 . 2002 . 21(0 £31 . 631 .0015 90. 15 50. 1706 753 . HA .001S n'i . :<.-• .:'.5.A ) 000, ROC 0 015, ROCM 0 020, SFIXW SFriF 1 OOO, S>! NDR = 0 860, MACHN - 0 750, WCREW = 1500 000, WCARGO - 112000.0, SPANAC C 000, SWPMAX 60 000. SWPM[N - 0 000, SEND XCDC 0 600, XCDW 0 600, AJCAN = 0, ***** MCDONNET L DOUGLAS C- 17A TRANSPORT GEOMETRY ***** AT LL.I 3. IUORH 1, Ti ••• • IR = , SWING : ;J: :R = 0, ITRAP = 0, IXCD - 1, AR 7 AREA - 3AOO 000, DIHED -6 005, ELLlfC =F , Kl.LTPN =F , CLO - 0 OOO, LFLAPC 0 110, 3WBBF 25 000, TAPER 0 300, 0 000, 0 OOO, 0 OOO, TCROC'T 0 I 2 T, TCTIP 0. 107, TFLAPC 0.170, 0 OOO, 0 000, 0 WFFRAC = 0 800, XWING 0. 290, ZROOT •= 0,800, 0 OOO, 0 000, 0 OOO, KSWEEP 1, CLOC = 0 OOO. 0 OOO. u 000, 0 OOO. 0 OOO, ••: 000, 5HTATL 0 000, 0 ooor 0 000, AR 5 000, AREA 845 000, CVHT 2 ooo, 0 OOO. PLOW O.OOO, 0 00 , SWEEP = 27 OOO, TAPER 0 400, TCSWOT 0*0, 0 000, 0 000 r 0 OOO, TCTrp = 0 OHO, XHTAIL -0 OIO, ZROOT = 1 765, 0 OOO, ( OOO. 0 ... , KSWEEP 1, 0 OOO, 0 000, CMO 0 000, SEND 0 OOO. 0 OOO. 0 000, SVTAIL AR 1 000, AF.FA 685 000, (*WT 0 100, 0 i: OOO, OOO, 0 0 OOO, 000, •:• 0 000, DOO, 41 00Q, SWFACT i 000, TAPER 0 990, SMNSWP = 0 OOO. 0 OOO, 0 000, TCROOT = J 110, TCT TP 0 NO, VTNO I 000, 0 OOO. 0. OOO, 0 000, XVTAIL 0 871, YRDOT 0. 000, ZROO'I' ii S".'0. :• OOO, 0 OOO, 0 OOO, KSRFEEP 1. V OOO, YSWP 6 OOO, (; 000, SEND 0 OOO. 0 OOO, 0 OOO, SWPOD 0 OOO. 0 OOO, " OOO. DIAM = 10 000, LENGTH 10. 000, X -0 750, 0 OOO, 0 OOO, Y 0 301, Z 0, 230, SWFACT = 1 000, SEND . iD SAMULT SWPOD CSF = 1 OOO. ESSR i OOC. FCD 1 OOO. DIAM 10 000, LENGTH 10, 000, X = -1 000, FCDF - 1 OOO, 1-. -- I- ooo, FCDO = 1 OOO. Y 0 591, Z 0, 230, SWFACT 1 DOO, FCDW = 7 OOO, FCTJK6 = I OOO, FENG 1 000, SEND FINTF = 1 OOO, FLBCOR L OOO, FL.) = 1 OOO, 5FUS FLECOR 1 000, FMDR = i. 010, FCDRA = 1 OOO. KDV.:\y, 21 OGO, BODL 160. 670, FRAR 3 590, 1 OOO, I OOO. : OOO. FRATIO 0 000, FRN t, 000, 1 000, I OOO, i AOO. JFJ7D 1 OOO, L OOO, i OOO. $ENGINE SEMD DIAM 8 000 , N - 4, CUTCOD 3, SATRIM CAND - 0 OOO. CFLAP 10. 0 10, CGM = O.S50, SSSSSSISSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSJSSSSSSSSSSSSSSSSSSSSSSSSSSSS IT = 0 OOO. SPLAP 700 COO, SM - 0 OOO. STRT.ATA SPANF = 70 OOO. ZCG 0 OOC. IVCAM - 0 CRMACK = 0 9^0, DELHP = 5000.00 - 0.200, ITRIM = i. DS51# 6 000, HMAKP = 5005 CJ.OOO, rii'llNP O.OOO. I, 1, I. QMAX BOO OOO, SM)'. ..• F : .100, SMMINP - O.2.Q0, I. 1, I, TIMTTJl 5 - 0, TIMT02 U.500, ULTI.F = 9.000, l. 1, I, BCOS*6P = 0 OIO. WFTRAP 300,000, WFUEL '720.000, SEND XDE3C = 8( OOO. I BUBO = O, :?LOT = 2, SAPET 1F6IZE - 3, IPRINT - 0, IPSTOl 3 , IALP - 0, TAIIP = 3, 1COD l, LPSTQ2 v.vy.y :• - HMRROP * i, 1PLCT - 1, ••• 10, NMDTL = 6, HCRU3E 2, MLEGCL = 0, NLKGLO = 0, Al N - 0 OOO, I 000, 2 OOO, Nov 18 96 15:08:57 SEND SAD RAG ICDO SMTAMK SEN:.' SATAKE DELPTO LDLAND SEND 3APRINT EOJOIN 3 .000, ? 000, 14.000, 0.00D, o. ooo, 30000.oeu, o.DGO, o.ooa, o.ooa, 0.400, TOO, 700, 900, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, o.ooa, o.ooo, o.ooo, 0.00D, u ooo, Q.OOO, O.ooo, • no.-, o.ooo, o.ooo, o.ooo. o.ooo, 0.ooo, 0,000, o.OOP, o.ooo, o.ono, o.ooo, o.ooo, o.oao, 0.900, 0.980, 1.400, 0,eoo, 0.950, 1.100, o.ooo, 9.000, o.ooo, 0.000, 0.900, 0.960, J.400, -1.000, 29.000, -l.ooa, CDEKH CDTNK SHEXTR CLTO DEL LEI LDTO 4.000, io.ooo, 0,000, 0.0D0, o .ooo, 30000.000. o.ooo, o.ooo, o.ooo, 0.500, 0.800, o.fico, o, 0. 0, o, o, o, 0, o, o. o.ooo, o.ooo, o.ooo, o.ooo, 0.ooo, o.ooo, o.ooo, 0.000, o.ooo, o.ooo, o.000. o.ooo, o.ooo, 0.ooo, o.ooo, o.ooo, o.ooo, o.ooo, o.ooo, o.ooo. o,ooo 0.930, 1.000, 1,600, 0. 900, 0. 980, 1.400, o.ooo, o.ooo, o,ooo, o. ooo, 0.330, 1.000, 1.600, -1.000, 30,000, -i.ooo, CLINPT CDONPT SMSTRS DELFLD JX-'LLTO C17-MIDDLE-ACS YNT-IN 6 .000 12.000, 0.000, o,ooo, o.ooo, o.uoo, o.ooo. o.ooc, o. ooo, 0.600, 0.900, 3 . 8 50, o, 0, 0, o, o, 0, 0, 0, o, 0, o.ooo, o. ooo, 0.000, o.ooo, o.ooo, o. ooo, 0,000, o.ooo, o.ooo, o. ooo, 0 , 000, 0.000, o.ooo, o. ooo, o.ooo, o .ooo, .000, .ooo. loo. loo, . 800, 0.950, 1 . 100, o.ooo, 0.930, i.ooo, 1 . too, D.000, 0.000, o.ooo, 0.800, 0.950, 1.100, 45 . 000, io.ooo. = 0, IPCWJ = 0, IPEW3 I PEST = 0, IPFliAP = 0, IPFRIC II7INTF • 0, 1FLIFT = 0, ] I'MIN [PlJAUE = 0, KSRHCR = 0, SEND " C-17 PROPULSION MODULE - USING CF6 ENGINE (CYCLE ANALYSIS) SLEWIS MWOAB : AESJDIA BA = 5 . SCFF YREN MODPRT ALTD XMACH SEND SAFTllEi SEND 407OO.0. = 6.21, AENLE = 15.5, AENWT ^ 4?.00.0, 9, 1P8 = ], SFALiP - 1,4, SFADSl' • .4 = 1.350, WCWA1 - O.03O, 95.000, EN - 4. = 1, NAB = 6, = 0.000, 10000.000, 300OO.000, 40000.000, 0.200, 0.400 0.650, 0.750, KT5 = 0, SFBPP = XMDES XT7 KODE - 2, 1.4, ETAF1=0.90, 1.400, 0, 6, 20000.000, 50000.000, 0.500, 0.800, J 5:09:00 ccccccc c c <-. c c OOOOOOO i'PFPPPP EEEEL.L.L O 0 D ) r p p FFPFFPP F ccccccc ooooooo E.EEE E £ CONTROL V R O G R ;•, M FOR E N G I KEEP TNG SYNTHESIS TITLE MCDONNELL DOUGLAS C-1V THJUMSQiB1 MISSION ] CARD IMAGES DF CONTROL OATA 0 M 1) $ DAT,". "LOCK A 2) H0DOHN3LL DOUGLAS C-17 TRANSPORT MISSION 3) .'- TATA BLOCK E 4) 1 0- 0 O 5) t DATA <JCK V 6) EMU 1 TETLKi • MClXJHiJl£«. DOU3LAS C-17 TRANSPORT M1S3JON *••«"« COHTfiflt, PARAMETERS; CALCULATION CONlftOL. NOAI.C - KCnBER OF GLOBAL yESJO) VAEIAFLES, MDV = 0 RFTMESFI of sensitivity variables, nsv =- O IH'JMBEH OF FUNCTIONS IN TOO-SPACE, NJVftR - NUMBER OF APPROXIWiTlUa VAR, NXAPRX = 0 INPUT INFORMATION MINT COOE, IPNFUT • G DEBUG PRINT CODE, IFDBG • 0 CALCTJLATtOrt COMTPOL, NCALC VALUE 14EAK .HG C17-MTDDLE- ACS Y NT-OUT 1 SINGLE ANALYSIS S 0JT1X12AT10W 3 SENSITIVITY i TWO-VARIABLE FUNCTION SPA 5 OPTIMUM SENSITIVITY S APPROXIMATE OmXIZATION KST1 HATED DATA SCCRAGE PEOtllKKMSPTTS INPUT 9 :ion 9 AVAILABLE 5000 IHTSGER EXECUTION 1 AVAILABLE 1U00 AAAAAAA ccccc:c sssssss Y Y N r: Twtr A A C 5 Y Y NN Li T A A C a Y Y N N [«. T AAAAAAA c sssssss Y N N K f A A S Y N ! . •: A A Y N H T A. A ccccccc Y N N 7 NASA-AMES PROGRAM AIRCRAFT SYNTHESIS TITLE »*' MCPT-tONELL DOUGLAS C-17 TRANSPORT MISSION Ai;\:'' . . .-)•: - vk.-.n.-; 1 Tl'J ; MCDOHMELL DOU3LAS C 1/ TP MiPO: 1' KISPTON AIRCRAFT TYPE - TRANS POP.'." CONTROL PARAMETERS: READ CONTROL, UREAL EKflCUTION CGMTKOL, MfiJEC WRITE CONTROL. MWkiTE NLTHBEK IDEMTlt-'YIMQ CONVEFGENCE VARIABLE FOR COMVESOEB VEHICLE, IOSJ MUWBEB IDENTIFYING COMPARISON VARIABLE FOH CONVERGED VEHICLE, JOBJ = 585 570 i Nov 18 96 15:09:00 C17-MI DOLE-ACS YNT-OUT TAKEr.FF AND LANDING MODULES ARE CALLED FOR IHPUT IN THE FOLLOWING ORDER: 6 12 3 4 MODULES ARE CALLED FOR EXECUTION IN 12 6 E FOLLOWING ORDER: MODULES 6 ARE 2 W.LF.D FOR OUTPUT IN 3 4 1 Input for Module # 6 1 initial WEIGHTS IWPUT pata ACSYNT MODULE NUMBER 6 AIRCRAFT TYPE: TRANSPORT TITLE: **** MCCAC C-17 TRANSPORT * *' OCOHTRCL OF:IONS orjUKARY OUTPUT FHfNT CODE, IPSTJK = J OINTTTAL ESTIHATBS GLOBAL. ERROR PRINT CODE, Ku JL 336 6 95 10 15 343 ,*•> ..3 Dl TO 51 347 2; 06 10 53 318 . 1 2 7 . 46 :O :3 *4H 3 4 13 ,8« 40.26 46.66 53.06 • . 4. 65. 86 72.26 7 95.06 38.84 92.61 98.41 100.19 103.97 107.75 ILL LIS: 119 . f\" ! 22 . B'7 126,65 11D.43 134.21 137.99 141.77 145.55 149.33 153.11 56. B9 : 60 . 67 53 IL 10.53 10.53 10.53 10-53 10.53 0.53 . 0. R3 10.53 10.33 10, 61 10 . 69 10.71 10.59 10. 63 10.13 10 .39 0.20 9 . 97 9.69 9.36 8 . 97 8.54 8 . 03 7 . 46 6.81 6. 07 5.15 4.12 2 .40 Max. Diameter . . Fineness Hntio. Surface AIM . . . Volume 34FL .14 348.34 348.34 318.34 315.34 149.34 340 .14 348.34 346.34 355.01 359.07 160.47 359.18 355.15 348.40 358.94 326.65 312.05 294.77 275,05 253.04 228 .89 202.82 175.05 US .-86 115.60 4 . :>3 53 .26 18.10 Fusol.ige 21 .060 7 . 629 9511,863 . . 45999.004 G- • V 1N Ail 0. TW3AB - 40700. 500 T3 2800. T5H - 34O0 . 0 . T7M 34 0. T71 = 0, 9R0 WCTfAl = .030 XM02S 1 .400 850 YREtJ 95. FRBT .000 000 M = 1.150 P.LENG - 2.000 1 IPRINT = 0 >T .PF\ _ 0 0 RODE 2 KT5 - 0 0 MINE'S F 0 NAB = 6 0 NPHOP = 6 NSUMM 15 IENG • 5 THPiS VARIABLES ARE USED BY TABLE LOOK UP ESF = 1.000 NDTAII-, 6 IPDBUG = IIPRINT = 0 ro = XT'. H = XMPRI * XPRI = MJPSlIl = ,000 Xl-'RIl = . 000 XMPRI2 = .000 XPRI2 = .000 O. .200 . OOO 1 .000 .000 .000 .000 . 000 000 . ODD .oo, .ooo 10000. . 400 .300 1.000 .ooo . ooo .000 .ooo . CM .000 . 000 .000 * * BEE • R 200U0. . 5 00 . 600 1 . 000 .000 . 000 .00;, .ooo 30OO0. .650 . 900 1.000 . 000 . 000 .ooo 4 0 0 0 0 . .700 1 .200 1 . 000 .OOC .000 .000 .000 (CF6 ) 50000. .800 4 . 000 1 . 000 .000 .ooo .000 , 000 Vehicle Co.r/crgence *Y .5800OE+O6 Eaf.imntpd Gr< is Weight Calling Module I* 1 Call.liy Modu". •• if 2 IN CRUISE, PI 6, DRAG = .26433E+G5 LEG 1, TN = TtWUST DOES NOT MATCH DRAG WITHIN .231SDE+05 IN CRUISE, PHAiL 6, LEG 2, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCENT • ' c- 17 PROP!.: S 1 ON MODULE USING CF6 ENGINE [CYCLE ANALYSIS) **•* DRAG => 260B9EH-05 TN = .233 1..E+05 AllM ' A 6 210 AENLE 15 500 AENHT _ 4200 000 IN CRUISE, PHASE 6, LEG 3, THRUST DORS NOT MATCH ALT I = ooo AM = 000 ATUKB = 385 DRAG = .25753E+G5 TN = .2J1LOE+05 AENTH 000 AUAHNG Q D 0 AWAENG - 157 DA - 5 900 D3LPR = ooo DE: J 1 = 100 000 DEPWCC 2 000 IK CRUISE, PEiftSE 6, LEG 4, THRUST DOES NOT MATCH DIA1 CO 200 EAB1 = 75C EHA - 940 DRAG = .25425E+05 TN = .23110E+O5 EDI 750 ETAC1 S20 ETAF1 9CC ETAT1 * 920 HTR = 300 HVF 18600 OOD Calling Module H 6 MACU1 1 000 MACH2 1 100 PCUFAC * 1 OOU Calculated Gruyt Weight - .5719 h06 POEA 7.3 «••• 3 PRFD 1 560 Pl-JCC - 100 000 Slope of Wcalr vs. Went, line = .80000E+00 P11PI = 1 720 P2771 = 30 000 R10A 1 ooo R32 = 940 R54 940 R54N Eatiroafed Gross Weighl: = .53949E+06 R711 980 R V11N 7180 SCPR = 1 350 Calling Module * 1 SFADP 1 400 SFADSP 1 SFAUXP = 1 000 Csil 1 ing Module 1 SI DF.p = 1 000 SPfiPP 1 400 SfBTP - i 000 HI 'VP * :. 000 SFINS? = 1 000 SFIP = 1 0DO IN CRUISE, PHASE 6, LEG 1, THIOST DOF.S NOT H\1C;£ .i3110E*0!b C17-MIDDLE-ACS YNT-OUT DRAG = ,I.4S»4EJ05 Calling Module 1 Calling Module # 2 . 5t40lE-05 TN = .23110EPOS IN Ci-.JIoE, .• -IASE 6, ISO 4, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCENT. IN CRUISE, PEIASE £. LEG 4, THPUST DOES NOT MATCH DRAG WITHIN 3 PERCE* DRAG = .24388Et05 TM = .2311DE+05 Calling Module # 6 OUTPUT FAR MPRFULE 1 6 Q:R.ax: resign LoaJ factor: '.litinute Lead Fiitov: Structure and Material: W±r>g Ecjuatinn: EI^y Equation: Weight Statement - Transpor'- **** MCDAC C-17 TRANSPORT 800. 6 .00 •) .\i0 ATuminuro. Ski.., Stringer Sanders Srnjfltion Sanders Equation DRA; = . ;-4444E+05 TW = . 23J.10E+05 Component Pounds Ki loo. rams PercenL S lopt, Fixec Calliny Module * o Airfra^IAJ Structure 200955 91153. 3 5 69 i<- r^l-ruldted Gins; = Weigh: = .56355E+06 Wing 83026 39928. 1 7, n n 1 OV/I: of WtalC ._. del 3in*> - .5010FIE+00 Fuse 1 • ge 6039/5 273=15 . 10 73 1 .00 1 CC Kj Horizons . Tail ( Low] 12 742 5780. 2 26 1 .00 1 00 Ho Estimated Gross Wei ght = .56309E+OS Vertical Tail 7781 J. . 1. 1 38 1 . ri0 1 00 No Calling Module » I NaceJ. e^ 6024 ;<732. 1 07 1 . 30 1 00 Mo Callin-j Module 1 2 Landing Gear 25937 11788. ( 1 . 00 1 00 No IN CRUISE, PHASE 6, LEG 1, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCENT. Propulsion 21672 •W'l.'I . 3 85 No DRAG = .25327E+05 TN = .23110E+05 Engines ( 4) 19992 9068. 3 55 1 . 00 1 00 No Purl System 163(J 762 . 30 1 .00 1 00 No IN CRUISE, PHASE 6, LEG 2, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCENT. Fixed Equipment 26909 12206. 4 78 1 00 No DRAG ^ . 25006KO5 TN = .23110ETOS Hyd £. Pneumatic 3379 1532 . 60 1 .oo No Electiicai 4000 1815. 7 3 1 .00 Nc Avioni cs 1899 861. 34 1 .00 No IN CRUISE, PHA.1!? 6, LEG 3, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCENT. Instx_un,en' 'iii on 1078 489. 19 1 .oo NO l'J(/-.:: -- . 2469453+05 TN - ,23110E+05 De-ice & Air cond 0 0. 1 . 00 No Aux Power System 634 310 . .2 1 . 00 Nc Furnish t t-:c*pt 11345 5374. 2 10 1 .00 Ko IN CRUISE, PilASE 6, LEG 4, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCKMT . Seats and Lavatories 0 0 . OO 1 .00 No DRAG * . 24388E' ..-3 TN = .2311OE+05 Ga]ley 0 0 . oo j .00 No Wise Cockpi t 0 0 . 00 1 . 00 No Calling Module # 6 Cabin F. Ting 6620 3003 . 1 18 1 .oc No Calculated Cross Weight = ,56311E*06 Cabin Emergency Equip 0 0 . 00 1 .00 NO Cargo Handling 5229 2372 . 93 1 . 00 HI' ** End Vehicle Convergence ** Flight Controls 4021 1 824 . 71 1 .00 3 Convergence It :- "HC ' L:LS 1 , • : Empty Weight 249536 113190. 44 Jl ******** *****««•*» ******** **************** .... ******* * ***************** Calling Moduli.' 4 1 Operating Ittoms 0 0. 00 No Calling Module D 2 Flight Crew ( 0) 1500 680. 27 IT is; Crew fingg^ge and Provisions 100 45 . 02 J IN CRi;; EE, PRASE 6, liEG 1, THRUST DOR'S NOT MATCH DRAG WITHIN 3 PERCENT. Flight Ai 1-indent:s ( 0| 0 0 . 00 No DRAG = .25327E^5 -23llOE*05 Unusable Fuel and Oil 900 408 . 16 No P< jsrnger rvice 0 0 . oc No Cargo Containers 17920 8129 . 3 18 No IN CRUISE, PHASE 6, LEG 2, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCE''.11 . DRAG • .2 50O6E+Q5 TN = .2311 i+U5 Operating weight Ejnp-.y 269956 122452. 47 94 Fuel 181151 H2170. 12 n 114 CRUISE, PHASE (-,, LEG i. i-HKUST DOES NOT MAT::H DRAG WITHIN 3 i>FRCEI4T. Nov 18 96 15:09:00 C17-MTODLE-ACSYNT-OUT Payload Passengers aaggage Cargo Calculated Weight Estimated weight Percent Error ( 0] 112000. 0. 0. 112000, 50803. 19.89 0. .00 0. .00 50803. 19.89 563108. 255426. 100.00 563086. 255416, .00 No No No Yes No Output for Module # 2 TRAJECTORY OUTPUT MISSION 1 (PAYLOAD = 112000. LB) PHASE M H CL ALPHA WFUEL TIME VEL SFC(I) THRUST(I: CD GAMMA W WA Q SPC(U) THRUST(U) CDINST L/D THR/THA PR X WARM-UP 0. 4902.8 5 .50 .33 162800, TAKEOFF .27 0. 2 0300 12 ,00 450 .1 .50 296 . .42 131925. .4569 5 .07 557733.6 1418 . 87 104 . .42 131925. .0028 4 . 44 1 .00 1 .OC 6237 . 2ND SEG .27 400. 2 0300 12 ,00 296 . .42 98944. 4569 8 .49 557733.6 1418 .87 104 . .42 131925. 002a 4 . 44 1 .00 1 .00 CLIMB .46 10000. 6889 6 .13 2536.1 3 . 15 491. . 50 89427. 0441 5 .57 555197.5 1096 ,13 212. Cycle .49 90853. 0018 15 . 62 1. 00 1 .00 14 . CLIME .82 28000, 4363 3 .07 6824 ,9 11 .74 825 . .65 48237. 0348 , 53 548372.6 721 .40 326 . Cycle . 63 49995. 0014 12 .53 1.00 1 .00 88, CRUISE ,75 28000. 4190 3 .13 137476.1 443 .69 753. .65 26153. 0254 . 00 410896.5 587 .OC 271. Cycle .62 27559. 0014 16 .52 .54 1 .00 3297 . CLIMB .46 10000. 5053 4 . 40 1599.0 1 . 98 491. .50 89427. 0310 9 .05 409297.5 1096 .13 212, Cycle .49 90853. 0018 16 .31 1.00 1 .00 9 . CLIMB .82 28000. 3255 2 27 3459.1 5 . 82 82 5, .65 48237. 0302 1 . 53 405838.3 721 .40 326. Cycle ,63 49995. 0014 10 79 1.00 1 .00 43 . CRUISE .75 41000. 7032 5 40 15276.7 62 . 49 72 6. .59 23110. 0435 00 390561.7 354 ,58 148 . Cycle .57 23857. 0013 16 .17 . 80 1 .00 448 . LANDING ,23 0. 2 5956 12 00 257 . . 40 135854, 9733 19 77 459830.4 1404 .43 79 . .40 136803. 0032 2 . 67 1.00 1 .00 6588. Fuel Summary Total Fuel = 182051. Mission Fuel = 172525. Reserve Fuel = 862 6. Trapped Fuel = 900. Block Time Block Range Slock Fuel Takeoff Fuel: Warmup = Takeoff = 4903 . 450, Fuel Load: External = 0 Internal = 182051 8.914 hrs 3900.0 n.m. 172524.8 lb. Takeoff Field Length (total run) = 6237. ft Landing Field Length (total run) = 6588. ft Decel @ .250 Gs Nov 18 96 15.09:00 C17-MIDDLE- ACS YNT-OUT Landing Field Length (ground run) = 3222 . ft Weight for Landing calculation = 459830. lbs Landing Thrust to Weight ratio = .295 Takeoff Weight = 563086. lbs Landing Weight 390562. lbs Output for Module # 3 Nov 18 96 15:09:00 C17-MIDDLE-ACSYNT-OUT • Detailed Aerodynamics Output Camber .0000 MACH Altitude . 85 30000. Parasite Drag Takeoff Configuration: Induced Drag Flaps and Slats Friction Zone Body 2 .0111 . 0050 Alpha .0 Cl 784 Cd .2249 L/D 3.5 Cm .000 e . 15 Cdtrim .0050 Deltriis -4,2 Wing 2 .0038 1.0 934 .2418 3 9 .000 . 19 . 0067 -5 .1 Strakes ,0000 2.0 1 078 , 2595 4 2 .000 . 23 .0087 -6.0 H. Tail .0014 3.0 1 220 .2792 4 4 .000 ,28 . 0109 -6.9 V. Tail 2 .0008 4.0 1 3 57 .3004 4 5 ,000 .31 .0132 -7.7 Canard ,0000 6.0 1 621 ,3470 4 7 . 000 .38 ,0181 -9 . 4 2 Interference .0031 8.0 1 614 .3777 4 3 .000 ,34 .0137 -9.6 Wave .0266 10 ,0 1 772 .4558 3 9 ,000 . 33 .0189 -11.1 External ,0000 12 .0 1 705 ,4814 3 5 .000 .29 ,0262 -13.0 1 Tanks .0000 14.0 1 792 . 5702 3 1 .000 ,27 .0366 -15 .0 4 Bombs Stores Extra Camber .0000 .0000 . 0000 .0000 Cdmin ft .0407 Slope Factors Cl/Alpha (per radian) Cdl/Cl~2 Alpha Transition Zone 2-3 Flap Setting Slat Setting Flap Type Single 4 .1226 . 1649 7 .065 25. 10. 519. sq. Mach = .90 Altitude = 30000. Parasite Drag Landing Configuration: Induced Drag Flaps and Slats Friction ZONE Body 2 .0110 .0050 Alpha .0 1 Cl 293 Cd . 6474 L/D 2.0 Cm .000 e .13 Cdtrim .0130 Deltrim -6.8 Wing 1 .0038 1 0 1 456 .6788 2 1 .000 .16 ,0155 -7.6 Strakes .0000 2 0 1 613 .7093 2 3 .OOC . 18 .0183 -8.4 2 H. Tail 2 .0013 3 0 1 767 .7411 2 4 ,000 .21 .0211 -9.2 V, Tail . 0008 4 0 1 917 .7740 2 5 .000 .24 , 0241 -10.0 Canard .OOOC 6 C 2 206 . 8428 2 6 . OOC .28 .0302 -11. 6 Inter ference .0023 8 0 1 721 .5598 3 1 . 000 ,28 .0154 -10,0 4 Wave .0719 10 C 1 853 .6396 2 9 .OOC ,27 .0214 -11 .6 External A ,0000 12 0 1 972 .7289 2 7 . 000 .27 ,0293 -13 .4 1 Tanks . 0000 14 0 2 082 .8289 2 S .000 .26 .0400 -15 ,4 4 Bombs Stores Extra .0000 .0000 , 0000 Slope Factors Cl/Alpha (per radian) 3.2262 Cdl/Cl~2 .1716 Alpha Transition 2one 2-3 6.514 Cdmin ft .0852 Flap Setting Slat Setting Flap Type Single 45. 30. 519. Detailed Aerodynamics Output: C17-MIDDLE-ACS YNT-OUT Mach Altitude = Parasite Drag .40 0. Induced Drag Friction Zone Body 2 .0118 . 0053 Alpha .0 Cl . ooo Cd .0160 L/D .0 Cm .000 e .00 Cdtrim .0000 Deltrim ,0 Wing .0041 1 0 .118 .0168 7 0 .000 .76 . 0001 - . 8 4 Strakes . oooo 2 .0 .233 .0192 12 1 .000 .75 .0004 -1.6 H. Tail 2 ,0014 3 0 ,345 .0230 15 0 . 000 .75 .0008 -2 . 4 V. Tail .0009 4 .0 .454 . 02B2 16 1 .000 .75 . 0014 -3 .1 4 Canard .0000 6 0 665 .0424 15 7 .ooc . 74 .0030 -4.6 Interference 2 , 0042 a 0 .867 .0611 14 2 . 000 .74 . 0052 -6.2 Wave 2 .0000 10 0 I 060 .0840 12 6 .000 .73 .0077 -7 .7 External . oooo 12 0 l 246 . 1107 11 4 .000 .72 .0107 -9.3 4 Tanks 2 .oooo 14 0 I 424 , 1410 10 1 .000 .72 .0140 -11.1 Bombs Stores Extra Camber , oooo .oooo .0000 .0000 Slope Factors Cl/Alpha (per radianj Cdl/Cl-2 Alpha Transition Zone 2- Programmed Flap Setting 5.8299 .0616 -3 16.894 0 . Cdmin Et ,0160 Flap Type Single 519. sq Mach = Altitude = . 50 0. Parasite Drag Friction Kone Body 2 ,0116 .0053 Induced Alpha .0 Drag CI .ooc Cd .0159 L/D .0 Cm .000 e . 00 Cdtrim .0000 Deltrim .0 Wing 2 .0040 1 0 121 .0167 7. 3 ,000 .76 .0001 -.8 Strakes 2 ,0000 2 0 240 .0192 12 5 .ooo .76 .0004 -1.7 H. Tail 2 .0014 3 0 355 .0232 15 3 ,000 .76 . 0009 -2.5 v, Tail .0009 4 0 468 ,0287 16 3 .ooc .76 .0015 -3.3 2 Canard .oooo 6 0 685 .0436 15. 1 .ooo .75 .0033 -4.9 Interference .0042 8 0 392 .0632 14. 1 ,000 .74 .0056 -6 .4 4 wave .0000 10 0 i 090 , 0872 12 . 5 .000 .74 .0084 -8.1 External ,0000 12 0 i 280 .1150 11. 1 .000 .73 .0116 -9.8 2 Tanks .oooc 14 0 l 433 .3257 4 . i .000 .2S .0161 -11.8 3 Bombs Stores Extra .0000 . 0000 .oooc Slope Factors Cl/Alpha (per radian) 5.8634 Cdl/Cl'2 .1509 Alpha Transition Zone 2-3 13.323 Cdmin ft . 0159 Programmed Flap Setting Flap Type Single Camber .0000 Nov iS 96 15:09:00 C17-MIDDLE-ACS YNT-OUT Detailed Aerodynamics Output Mach = Altitude = Parasite Drag . 60 0. Induced Drag Friction Zone Body 2 .0115 . 0052 Alpha . 0 Cl ooo Cd .0158 L/D .0 Cm . 000 e .00 Cdtrim .0000 Deltrim .0 Wing .0040 1 0 126 ,0167 7 6 ,000 .77 . 0001 -.9 Strakes 2 . 0000 2 0 250 .0193 12 9 . 000 ,77 .0004 -1.7 H. Tail . 0014 3 0 370 .023 6 15 6 .000 .77 ,0010 -2.6 4 V. Tail .0009 4 0 4 87 .0295 16 5 .000 .76 .0017 -3.4 Canard , 0000 6 0 712 .0453 15 7 ,ooo .76 .0036 -5.1 Interference .0042 8 0 927 .0662 14 0 .ooo .75 . 0062 -6.8 Wave .0000 10 0 1 132 . 0916 12 4 .000 .75 .0092 -8.5 C External .0000 12 0 1 277 .2501 5 1 .000 .31 ,0125 -10.4 Tanks .oooo 14 0 1 407 ,3249 4 3 .000 .28 . 0165 -11.7 3 Bombs Stores Extra Camber .0000 , 0000 .0000 .0000 Slope Factors Cl/Alpha (per radian) Cdl/Cl-2 Alpha Transition Zone 2-3 Programmed Flap Setting Cdmin ft Mach Altitude .0158 ,70 0. Flap Type Single 5.7573 .1562 10.880 0 . 519. sq. Parasite Drag Induced Drag Friction Zone Body t .0113 .0052 Alpha .0 Cl ooo Cd . 0156 L/D .0 Cm .000 e ,00 Cdtrim .0000 Deltrim .0 Wing .0039 1 0 133 ,0166 8 0 .000 .79 .0001 -.9 2 Strakes .0000 2 0 263 .0195 13 5 .000 .78 ,0005 -1.8 2 H. Tail .0014 3 0 390 .0242 16 1 .000 .78 .0011 -2.7 V. Tail . 0009 4 0 513 .0306 16 8 .ooo ,78 . 0019 -3.6 2 Canard . oooo 6 0 750 .0478 15 7 .ooo .77 .0041 -5 .4 Interference . 0042 a 0 975 .0705 13 8 .000 .77 ,0069 -7.1 Wave .oooo 10 0 1 148 . 1903 6 0 .000 .33 .0087 -8.7 j External .oooo 12 0 1 298 .2602 5 0 .000 .30 .0134 -10.4 3 Tanks .oooo 14 0 1 435 .3412 4 2 .000 .28 .0197 -12 .2 3 Bombs Stores Extra .0000 . oooo .0000 Slope Factors Cl/Alpha |per radian) 5.8743 Cdl/Cl-2 .1580 Alpha Transition Zone 2-3 9,077 Camber .0000 Cdmin ft .0156 Programmed Flap Setting Flap Type Single 0, 519. sq. C17-MIDDLE-ACSYNT-0UT DETAILED AERODYNAMICS OUTPUT MACH = .80 ALTITUDE = 0, PARASITE DRAG INDUCED DRAG FRICTION ZONE BODY .0112 .0051 ALPHA .0 CL 000 CD .0168 L/D .0 CM .000 E .00 CDTRIM .0000 DELTRIM ,0 WING .003 9 1 0 143 .0179 8 0 .000 .80 .0002 -1.0 & STRAKES I .0000 2 0 283 .0212 13 3 .000 .80 .0006 -2.0 H. TAIL .0014 3 0 419 .0265 15 8 .000 .80 .0013 -2.9 2 V. TAIL -5 .0008 4 0 551 .0337 16 4 .000 .79 .0022 -3.9 Z CANARD .0000 6 0 804 .0530 15 2 .000 .79 .0048 -5.7 2 INTERFERENCE .0041 8 0 1 042 .1337 7 8 .000 .41 .0077 -7.9 3 WAVE .0016 10 0 1 189 ,2052 5 8 .000 .33 .0108 -9,2 J EXTERNAL .0000 12 0 1 342 .2793 4 8 .000 .30 .0163 -11 .0 3 TANKS .0000 14 0 1.482 .3649 4 1 .000 .28 .0235 -12.8 3 BOMBS STORES EXTRA CAMBER .0000 .0000 .0000 .0000 SLOPE FACTORS CL/ALPHA [PER RADIAN) CDL/CL"2 ALPHA TRANSITION ZONE 2- PROGRAMMED FLAP SETTING 3 6.0661 .1585 7.667 0. CDMIN ,0168 FLAP TYPE SINGLE 519. SQ FT MACH ALTITUDE .90 0. PARASITE DRAG INDUCED DRAG FRICTION ZONE BODY .0110 .0050 ALPHA .0 CL .ooo CD .0852 L/D .0 CM ,000 E .00 CDTRIM .0000 DELTRIM .0 WING •> .0038 1 0 . 159 .0866 1 8 .000 .83 .0002 -1.1 Z STRAKES .0000 2 0 .315 .0905 3 5 .000 .82 .0007 -2.1 H. TAIL ,0013 3 0 .465 .0969 4 8 .000 .82 ,0016 -3.1 2 V. TAIL .0008 4 0 .612 .1054 5 8 .000 .82 .0027 -4.2 2 CANARD 2 .0000 6 0 . 893 .1285 6 9 .000 .81 .0058 -6.2 INTERFERENCE . 0023 8 0 1.082 .2440 4. 4 .000 .33 .0131 -9.5 4 WAVE .0719 10 0 1.189 .3036 3 9 ,000 .29 .0195 -11.3 4 EXTERNAL .0000 12 0 1.285 .3720 3 5 .000 .25 .0280 -13 .3 4 TANKS .0000 14 0 1.371 .4496 3 X .000 .23 ,0396 -15.5 BOMBS STORES EXTRA ,0000 .0000 .0000 SLOPE FACTORS CL/ALPHA {PER RADIAN) CDL/CL-2 5,6120 .1938 CAMBER .0000 CDMIN FT .0352 PROGRAMMED FLAP SETTING FLAP TYPE SINGLE 519. SQ. OUTPUT FOR MODULE # 4 A****************************************** ENGINE SUMMARY ************ ENGINE DIAMETER ENGINE LENGTH ENGINE WEIGHT BYPASS RATIO NO OF ENGINES DRAG REF AREA 6.21 FEET 15.50 FEET 4200.00 POUNDS 5.90 4 . 3800.00 SQ FEET PWCC = PERCENT OF ENGINE CORRECTED AIRFLOW THRUST = ENGINE THRUST (POUNDS PER ENGINE) SFC = ENGINE SPECIFIC FUEL CONSUMPTION THRUSTU= THRUST PER ENGINE IN LBS, W/0 INSTAL DRAG CORR SFCU = SFC, 1/HE, W/O INSTALLATION DRAG CORR CDINS = TOT INSTALLATION DRAG COEF PER A/C (SWING REF) MACH .200 ALT 0. .400 10000. .500 20000. ALPHA TRANSITION ZONE 2-3 6.514 PWCC THRUST THRUSTU SFC SFCU CD IMS 100. 33535. 33712, .404 .402 .0031 98. 32172. 32320. .420 .418 .0026 96 . 29097, 29232. .421 .419 .0024 94. 25361. 25484. .422 .420 .0022 92. 21337. 21446. .434 .431 .0019 90. 16654. 16747. .477 .474 .0017 88. 9877. 9948. .682 .677 .0013 86. 7781. 7852. .726 .720 .0013 84 . 6421. 6494 . ,727 .719 .0013 82. 5000. 5073. .757 .746 .0013 80. 3417 . 3488. .876 .858 .0013 78. 1362. 1418 . 1.679 1.613 .0010 100. 21985. 22251. .494 .488 . 0017 98. 20100. 20350. .498 .492 .0016 96 . 17660. 17900. .498 .491 .0015 94. 15177. 15404. .505 .497 .0015 92. 12582. 12793. .527 .518 .0014 90. 3735. 9928 . .584 .572 .0012 88. 629S. 6470. .766 .745 .0011 86, 5072. 5246. .797 .770 .0011 84. 4094. 4273. .815 ,781 . 0012 82. 3077. 3258. .878 .829 .0012 80 . 1983. 2163. 1.075 .985 .0012 78. 665 , 825. 2 .440 1.969 .0010 100. 14674, 14920 . . 523 , 515 .0015 98. 13028. 13268. .520 .511 .0015 96 . 11388. 11622. .522 .511 .0014 94. 9737 . 9960. .532 .520 .0014 92 . 8036. 8248 . .557 .543 .0013 90. 6218. 6417 . .617 .597 .0012 88. 4140. 4324 . .785 .752 .0011 86. 3324 . 3511. .819 .775 .0012 d 2645. 2837. .tit 791 .0013 1947. / . ' .932 B47 .0012 0. 1200 . .393 . 1.131 1 02 5 .0012 b . 330. 507 . 3 .284 2 141 .0011 .650 30000. 100 . 9500. 9738 . . 562 548 .0013 98, 8387 . 8 62 4 . .561 546 .0013 96 . :-. 3 3. 752 3 . . 566 549 .0013 94 . 6196 , 6426 . . 580 560 . 0013 92 . 5091. 5317 . . 6J0 584 .003 3 • 0. 3947 . 4lfiG. . 674 fiJ9 .0012 i- : 2716 . 2919 . ,830 7 73 . 0011 1 . 2160. 2379 . . 974 793 .0012 84 . 1689. 1910 . .920 R14 .0012 82 . 1210 . 1432 . 1 .037 »"J7 . 0013 80. 710 . 928 . 1.391 1 064 2 78 . 53 . 359 . 4 .723 2 080 .0011 750 40000. 100 . SQ61 . 5Z57 . . 587 5 0 9 .0013 t 8 , 5 JO. .. (0. .539 368 .0014 96 . 4613 . 4816. .597 572 . 0014 94 . 3906 . 4110. . 614 583 .0014 92 . 3201. 3402 . . 647 609 .0014 90. 2433 . 2679 . .714 662 .0013 BP . 1727 . 1915 . .8 0 785 .0013 B6. I -.) r> . i 55-i , . 926 •o .0014 bi. 104 2 . 1252 . .993 827 .0014 82 . 730 . S37 . 1 . 14 5 891 ,00! 4 30 . 408 . 609 . 1 . 6D8 1 077 .0014 78 . 66 . 250 . 7 . 5b9 i 9S7 .5013 .800 50000. 100 . 3823 . 3973. . r.i.2. 539 . Ml 1 9£. 3356 . 3510. .6^5 .0-J15 16 . 2899. 3055 . . 625 5 9 3 • WIS 94 . 2449 . 2 60/. . 644 b05 .0015 92 . SOC-2 . 2160 . .681 631 .001! 90 . 1550 . 1706. .7" 1 684 -00.15 88 . 1079 . 1231 . .916 803 . 0015 86. 812. 1006 . . 9 83 823 .0016 84 . 638. 807 . 1 . 072 844 .0017 82 , 437 . 606. 1 .25? 9C3 .0016 80 . 23 4 . 398. 1. 845 1. 086 .0016 78 . 23 . 15 5 . 14.339 1. 887 .0015 SEA-LEVEL STATIC H"sT'i (ST = 40700. [MAX) SFC .328 Output tor Module ft 1 ....... Fuselage Definition (Type 2) Nos^ Length Nose Fiii.rLLt.-orj Kjtio. 1 Constant Sec: J:I i.ingth 64 Afterbody |Hen3th 75 Afterbody Fineness Ratio 3 Overall Length ISO MaXirtrun Diameter 21 Body PlahlDrrn Area 2556 21.060 000 005 605 ... > 670 060 015 C17-MIDDLE-ACS YNT-0 UT PAYLOAD NIHTH PAYLOAD HEIGHT THICKNESS OF WNG ROOT MAX THICKNESS OF VJ11MG FOR FREE FIT DIAMETER REO'JIRED FOR WIDTH. OF EMBEDDED F.NGTNISS . . DIAMETER HEOUIRED FOR HEIGHT OF EKBEEEED ENGINES. DJAMETER REQUIRED TO ENCLOSE BOX HEQUTSED CIAME.ER. . (MAX OF 3 ABOVE) RADIUS OF ENGINE POD AMOLE OF ENGINE PLACEMENT I ABOVE HORIZONTAL) STAND-OFF DISTANCE (NON-UJWENSIONALI STAMB-OFF DISTANCE (FT.) LOC. OF CENTER CF EWGi[Hii .OO00E-0D .00ODE*00 4.771 .O0ODE*Q0 ,OODOE+Ofl .OOOOEi 00 4.77 .1 4.77 1 3.975 .2JD0 . .3010 . i, is'* . 7.557 13 ATRCSAFT INTERNAL AH>"AJ"*J.ENENT ITEM LENGTH INITIAL STATION RADAR .000 .000 ENGINE 15.500 .000 FINAL STATION .000 15.500 NOSE LENGTH AFTEKSDDY BEGINS AT OVERALL T.KNGTH MAX. AFT FUEL LOCATION DELTAX CUE TO PAYLOAD AFTERBODY MISMATCH. DFLTAX L70E TO PAYLOAD-FUEL OVUF.LAP DSCLTAX DUE TO FINENESS RATIO REQ ACTUAL - R &3U I RED CREW J1AKFTFR ACTUAL - P EOO IREIJ PAYLOAD r rAMETEK ACTUAL-KEQOIPED POWER Prj.NT DIAMETER WING ROOT THICKNESS IN BODY FUSE:_AGK WALL THICKNESS VOLUME OF FORWARD FL:EL VOLUME OF REAR FUEL ACTUAL-Hr-. • i! RED FUEL VOLUME ACTUAL DIAM . 030 .000 21 .OS 4S.06 150.7 122 .9 64 . 00 2.1 .06 1G .29 -1( 94 4,771 .UUOOE+00 .ooaiiKtoo .0OO0E+00 1651 . REQD DIAM . COO 10.597 .-•Ij:'.l-:.,AGE CROSS SECTION SIZING TO ACCOMODATE PAYLOAD Nov 18 96 15:09:00 r U 3 e Del init} CON X R Area 00 no ( i. 05 1 • i 7 3 ( . 3 3 7 3 JB1BS 3 16 4 "3 50 %Z A <:1 4 •9 75 24 a 26 5 TOO.ao 6 32 6 35 126 <• 7 37 r ?S lb 2 17 8 42 7 53 17A, 9 48 8 04 202 J2 10 Si 8 49 226 26 11 58 8 89 248 09 12 64 9 24 268 iij 13 69 9 55 266 34 14 74 9 s: 302 39 13 50 10 03 31fi 20 it 85 10 21 327 65 17 90 3 0 35 336 65 18 95 10 45 343 13 20 01 10 51 347 04 21 06 10 53 348 & 2 7 46 10 53 348 34 31 86 10. 53 348 34 47 24 10.53 3iB 34 46 66 10 53 716 '4 S3 06 10. 53 348 J4 49 46 10 53 348 34 t'5 86 10 57 34S 34 7/a 26 10. 5 1 348 34 78 66 10 53 348 34 8* 06 10 53 348 34 Bfl 84 10 61 353 92 92 6 3 10. < 356 88 96 A ! 10 oO 357 19 10'. : 7 JO < • 354 81 101 77 10 . 55 349 72 507 75 io. 43 34 7 96 111 57 10 27 31 L 53 IIS 31 10. 07 318 49 1 19 c • 9 . 82 302 9 2 132 ! 9 52 2 ti 1 j 126 44 9 •j R 2 R SO 130 4.-. S. 7E 242 ^2 1J4 2 ! 8 . 32 217 66 ] 17 57 n 81 131 45 141 7 7 7 . 22 1 6 } 76 145 5 6 . 5C 134 90 149 33 5 79 109 27 15J 1 1 4 . 9,7 7^ 3 3 156 S9 81 45 54 ISO 6 7 2 . 07 13 Si C17-MI DOLE-ACS YNT-OUT NACELLE EEFINIRIRN Mnzeille Location X-Xnose R Area X Y 7 .00 7 .97 49.63 30 30 24 9 "'4 7.75 7 .97 49 . 63 30 -2 4 3 ... 34 23 .25 J .97 49 . 63 43 4 48 p- 9 34 31 .OC 3 . 97 49.63 4l i -48 B( 9 34 Max. Diameter 21.06 3 Finenea* Kstio 7.329 Surface Aiea S434.ll*; Volume 454 n . 780 Nacelles 7.949 774.161 (each) Dinensicns oil: Planar Surfac»s (each) wing H.Tail NUMBER Of SURFACES. i.0 PLAN AREA 3800. 0 SURFACE A37.EA 6779.8 VOLUME 7652.7 SPAN 165.409 L.E. SWEEP 2 9.416 C/4 SWEEP 25.000 T.E. S !P 13.6 01 AfFfiCT RATIO 7.200 ROOT CHORD 3 5.344 ROOT THICKNESS 57.257 ROOT T/C .135 TIP CHSttB 10.603 TIP THICKNESS 13.614 TIP T/C . 107 TAPER RATIO .3 00 WEAN" AERO CHORD. ... 25. 194 LE ROOT AT 37.758 C/4 ROOT AT 46 . b94 TE ROOT AT 73 . 102 LE M.A.C. AT 58.11* C/4 M.A.C. AT 62.416 TE M.A.C. AT 81.311 Y V A . C . AT 33 . 930 LE n P AT 82 .509 C74 TIP AT 5 . 160 Tl TIP AT SJ . 112 ELEVA'.-H 6.424 SIGMBUUC TOTAL VOLUME CCEFi' EFFECT!up TOTAL VOLUME COSFF 1.0 845.0 "90.1 /04 . 6 65.000 30.763 27.000 14.165 5 . 000 18.571 20.077 .090 7.429 7.131 .080 .400 13.796 135.071 139.714 153.643 143.162 146.811 157.158 13.929 154 .41-7 156.274 161.845 29.499 .745 .745 : .0 685.0 1135.6 13H0.5 26.173 41.082 41.000 40,753 1.000 26.304 34.721 . 110 2S.041 34.374 .110 . 990 26.173 113 . 640 120.216 139.944 121.029 131,572 151.202 13.0E4 ] 6.457 142.967 162.498 9 .477 .075 .075 Canard Units 1.0 .0 (SQ.FT.) .0 (SQ.FT.1 .7 (CU.FT.) .000 (FT.) .OD0 (DEG.) .000 (DEG.) ,000 (DEG) . 0OD . OOO (I-'T . ) ,050- (IN.) . 000 .000 (FT.) .000 (IN.) .000 , 000 .ooo (FT. ] .000 (FT.) .000 (FT.) .000 (FT.) .000 (ET.) .000 (FT,) .000 ,000 .000 (FT. ) (ST. .000 (FT .000 jFT .07! .000 .000 ) (FT. ) (FT . ) fiXTENSIONS Strake Centroid location at...... . .00 Area .0 SWRI=P Any i. e .0 Wetted Area 0 Volume .0 Total Wing Area 3 800.00 Total WETTED Area 22142.18 Rear Extension .00 .00 .00 , 00 Tank Wing :•. • L SUA ! TOW I FUEL Vol* ,7e 5292 0 •'i T A M K S Weiflhc 264612. 0 . 0 , 264612. Mission Fuel Re8t>, XHTML -0 030, ZROOT 1 765, Ksr-- 1 , SEND SVTATL AR = ' QDO, AREA 685 •' , CWT 0 100, SWEEP 4 000, SWFACT 1 ooo, TAPER 1} 990, TCROOT = 0. 110, TCTIP - n 110, VTNO = 1 000, XVTAIL = 0 871, YROOT ooo, ZROOT 0 900, MSWEEP 1, SFND SWPOD i;rAM 10 DUO, LENGTH 10 000, X -0 750, Y 0 301, 2 0 230, SWFACT 1 OOO, SEN1J SWPOD DIAM = 10 000, LENGTH 10 000, X -: 300, Y = 0 591, Z 0 230, SWFACT = 000, SRNIJ SFUS r.wMAX q 060, 30DL 160 670, FRA& 3 590. FflATJQ = '.• FRN = 1 ooc. $EKL SiNC fNE DIAM = 000, N = 4, OUTCOD 3, S-KND SSSSSS- ,$$$$SS$SS$$S$S$$S$$$SSSS$$$$$$$$$$S$SSS$$$$SSSSJ}SSSSS5J$:3$S$S$$$$$$$$S$ STRDATA 'HKACH 0.990, l.hi JP - 5000.000, DELMP = 0 200, OP-SLF 4,000, IIMAXP - 40OO0.000, I": ':? 0 ODO, GMAX = ••00 .coo, SMMAXP 1.100, SMHINP =; 0 200, TIMTOl = 5.500, TItlT02 = O.BuU, ULTLF • 9 • 0 il, WfOKBP 0.010, WPTRAT = 900,000, WFUEL -182720 000, X3E8C - 30.OOO, IBREG o, I PLOT = 2, IPSI3E = -3, TPRINT 0, :• t--I = IPST02 = 2, R. •-:}• = 2 TO: :• • = JJCK0SE - 2, NLEGCL 0, NLEGLO = 0, ACSYNT-IN HL£tSCS 0, NMISS = 1, LEMUEL Wf FALSE - SEND S 0 .5QE.+Q5 MACH WO. ALTITUDE KOH140NTAL NO. V.'.LD PHASE START END START RND DIST TT:-' TURN "G"S WKH.'H. M IP IX W D A p CLIMB 0 .50 p. DO 0 IDDOO 0. 0 0 . 0 o.o 250,0 1 oooo 1 2-100 n 0 1 CLIMB 0 6U O.OO -1 26000 0. 0 0. 0 0.0 210.0 1 oooo 1 2-100 u 0 CRUISE 0 .75 0.75 2 3000 -j. 411 J . 0 . 0 0.0 0.0 1 oooo J 4 U 0 0 0 0 CLIMB 50 0.00 0 ioooo ) . SAMULT CSF 1.000, ESSF = 1 .000, FCD = 1.000, FCSJF 1,000, FCDL = 1 .000, FCDQ i" 1.000, FCDW 1.00D, F'TJWB = 1 .ooo, ?EW3 = i,ooo, FTNTF = 1.000, FL&COR 1 .000, FLI 1,000, FLBCOB i.000, Y.R 1 • ill FCCR/'. ]-000, i .0:»o, 1 . Ouu, i.ooo. l.00R., 1 .000, 1.000, I. ooo. 1 .ooo, i.ooo. SEND SATRJH CANE •J.OcO, CFLAP • 10 .000, CSH _ 0,250, IT o.ooo, a.-' = "0 .002, SM - o.ooo. SPANF 70.000, z:-G - 0 . 050, IVCAM = 0, ITRIM 1, 1, 1, l. 1, i. 1. , i, SEND JABOT IALF 0, IALF - 2, ICOD - i, IPLOT l, HALF 10, NMET1, - •j, Al, L" 1.000, 2,000, C17-LONG $ DATA BLOCK A **** KCDOHWELL OOUULAE C-17 TRANSPORT MISSION -•*'*' $ DATA BlVJCK E 0 0 0 0 0 S DATA BLOCK V 15.08:56 SEND SAD RAG ICDO CDSTR SMNCDC SMTANK SEND SATAKE CLLANE DELFTO LDLAND SEND SAPRINT ECHOIN C17 3 000, 4 000, 6 000, S 000, 10 000, 12 000, 14 000, ALTV 0 000, 0 ooo, 0 000, 0 000, 0 000, 0 000, c 000, 0 000, 30000 000, 30000 000, CLINPT 0 000, 0 000, 0 000, 0 000, 0 000, 0 ooo, 0 000, 0 ooo. 0 000, 0 000, 0 400, 0 500, 0 600, 0 700, 0 800, 0 900, 0 700, 0 800, 0 850, 0 900, ISTRS 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ITB = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, CDE-MB 0 ooo, 0 000, 0 ooo, 0 000, 0 000, 0 000, 0 000, 0 ooo, c 000, 0 000, CDONPT 0 000, 0 000, 0 ooo, 0 000, 0 000, 0 ooo. 0 ooo, 0 ooo, 0 000, 0 000, 0 ooo, 0 000, 0 ooo, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000 , 0 000, CDTNK 0 ooo, 0 ooo. 0 ooo. 0 ooo, 0 000, 0 000, 0 000, 0 ooo, 0 ooo, 0 000, CDEXTR 0 000, 0 000, 0 000, 0 ooo, 0 000, 0 ooo, 0 000, 0 000, 0 000, 0 000, 0 ooo, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000, 0 ooo, 0 000, SMNBMB 0 000, 0 800, 0 900, 0 930, 0 950, 0 980, 1 000, 1 100, 1 400, 1 600, SMSTRE 0 000, 0 800, 0 900, 0 930, 0 950, 0 980, 1 000, 1 100, 1 400, 1 600, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000, 0 000, SMEXTR 0 000, 0 800, 0 900, 0 930, 0 950, 0 980, 1 000, 1 100, 1 400, 1 600, -I 000, CLTO = -1 000, DELFLD 45 000, 25 000, DELLED 30 000, DELLTO 10 000, -1 000, LDTO -1 ooo, 1, ECHOUT - 0, INTM 0, C17-LONG- ACS YNT-IN IPBLNT = 0, IPCAN = 0, I PENG IPEXT = 0, IPFLAP = 0, IPFRIC IPISTF = 0, IPLIFT = 0, IPMIN IPWAVE = 0, KERROR = 0, SEND ** C-17 PROPULSION MODULE - USING CF6 ENGINE (CYCLE ANALYSIS) SLEWIS TWOAB = AENDIA BA = 5 . SCPR YREN MODPRT ALTD XMACH SEND SAFTBD SEND 40700.0, •• 6.21, AENLE = 15,5, AENWT = 4200.0, I, IPR = 1, SFADP =1.4, SFADSP =1.4 1.350, 95.000, 1, 0.000, 30000.000, 0.200, 0.650, WCWA1 EN HAS 0.030, 10000.000, 40000.000, 0.400, 0.750, KT5 = 0, SFBPP = XMDES KT7 NDTAIL KODE = 2, 1.4, ETAF1=0.90. 1.400, = 0, 6, 20000.000, 50000.000, 0.500, 0,800, C17-LONG- ACS YNT-OUT CECCCCC C C C : C CECCCCC out) 15 CTO 0 o O Q' D 0 0 D QOUDOOO PPPRPPP p p 7 P PPPPPI>P P EEi-:i!'ffiE E EJiEl:. SSSi S L:SSSS S EEEEEEH SSSSSSi SIMttLE ANALYSIS OPTIMIZATION SENSITIVITY TWO-VARIABLE FUNCTION SPACE OPTIMUM SENSITI1/ITY APPROXIMATE -.-I1MIZATION jyTIMATED DATA STORAGE REQUIREMENTS INPUT 9 REAL EXECUTION AVAILABLE 5000 INTEKEP. EXECUTION 1 AVAILABLE MOO CONTROL PROGRAM FOR ENGINEERING SYNTHESIS TITLE ' 1 • •'CDOMNHLL if'>ui:,S C-U 'IVRBSPCKT MISSION ***« 1 CARD IMAGES OF CONTROL DATA IMAGE CARD 1) S DATA BLOCK A J) * 1 MCDONNELL DOUGLAS C-17 TRANSPORT MISSION 3) S DATA BLOCK B 4) 1 5) S DATA BLOCK V 6) END TITLE: MCDONNELL DOUGLAS C-17 TRANSPORT MISSION ** CONTS.QL yAHAMETSR1.-: ; CALCULATION CONTROL. NUMBER Of GLOBAL DE-SIGN VARIABLES. NUMBER OF SEKSITIVITY VARIABLES, NUMBER OF PNTFCTIOWS IM W6-SPACE, NUKBEh OF APPROXIMATING VAR. 1HPUT INFORMATION PR3MT COSE, DEBUG PRINT CODE, CALCULATION COiJTHNCALC VALUE MEANING NCALC NDV t*sv NZVAK •. • APRX IPNPUT IPDBG AAAAAAA CCCCCCC SSSSSSS Y Y N N TTTTTTT A A C s r Y NN N T A A C S Y y H N N T AAAAAAA C SSSSSSS y N N N T A A C s Y N N H T A A C S Y N N T A A CCCCCCC SSSSSSS Y N N T NASA-AMES PROGRAM FOR AIRCRAFT SYNTHESIS TITLE *«** MCDONNELL DOUGLAS C-17 TRANSPORT MISSION AIRCRAFT TYPE - TRANSPORT •j LE: MCDONNELL DOUGLAS C-17 TRANSPORT MISSION AIRCRAFT TYPE - TRANSPORT CONTROL PARAMETERS: READ CONTROL, EXECUTION CONTROL, WRITE CONTROL, TIMBER j DENTl>'i! INC CONVERGENCE VARIABLE FDR CGNVEftOED VEHICLE, NUMBER IOBUTIFYING COMPARJKiTJ VARIABLE FOR CONVERGED VEHICLE, MREAD = MEXEc - MWRITE = JOi" = = 3 5 57C 585 Nov 18 % 15:0«:5H C17-LONG-ACS YNTOUT SUMMARY OUTPUT PRINT CODE, IPSUM - I OIN1TIAL ESTIMATED GLOBAL EfiJWft PRINT CODE, KGLOBP = D IF CODE - 1. WEIGHT IS FIXED GLOBAL COMMON INITIALIZATION CODE, LNIT = 0 LitUIJr: PRINT •'.- DE, IPDEG - 2 QUANTITY VALUE CODC QUANTITY VALiJH CODE GLOBAL PLOT CONTROL, TGPLT = 0 DATA TRANSFER INFORMATION FILE, IRDDCR 7 WAF = 174OU0 • WAIRC = I TOO. 0 DATA TRANSFER INFORMATION PRINT, IFDTR 0 WAPU 222 P WAMMUN = 0. C WARM 0 D - - L74C0. 0 WBB1 0 0 WB0DY - 69600. D WCAKD = 0 0 WCAKGO = 50000. 1 VEHICLE CONVERGENCE INFOKMAT.ON: HCtUflf = 1300 1 WE 34600. 0 CONVERGENCE TOLEkANCE, TOL = .10000E-O3 ...-.LI 5220 0 W:-;P = 29DO0. 0 ESTIM FIIIX VS WE*T SLOPE ' .AAOOOH*'JO 7IETANK 0 0 WFEQ 81200. 0 LuUNDING WEIGHT, WGHAX = .8SDODE'-06 WFS = 4060 0 WCA = 1 740 . 0 WGrlAR 0 0 WRDP = 4640 . 0 WHT 4640 0 WINST = 2900 , 0 WLG = 29000. 0 MISS = 0. 0 MIA 5S0O 0 WFA = 348D0. 0 MODULE IDENTIFICATION NUMBERS: WPASS > 87O00 0 '.-.PL 104400. • WPS = 46400 0 W3C IL600. 0 NUMBER MODULE WTSUM 580000. 0 WVT 5800. 0 1 GEOMETRY W.'ING 46400 0 WL3CMB = 0 , 0 2 VRA.TEi.'TORY WENVP 0. 0 WPIV O. 0 3 AERODYNAMICS WLIKTF 0. 0 WHH2 = O. 0 4 PROPC ISIOK WT'IRV = 0. C 5 STABILITY ATO CONTROL 6 WEIGHTS S01\:JC BOOM 9 ECONOMICS 11 SUMMARY OUTPUT |il TAKEOFF AND LANDING MODULUS .ARE CALLED FOR INPUT] 6 12 3 4 •PHP. FOLLOWING QRDBS: MODULES ARE CALL 1 3 6 FOR EXECUTION IN THE FOLLOWING ORDER: MCOCLFS ARK CAL! ". 70. OUTPUT IN THE FOLLOWING ORDER: 6 2 3 4 1 In(j'_L. 1 .: Module # 1 IKITIM, HEIGHTS INPUT DATA ACSYNT MODC'.. K N1 'MBER 6 AIRCRAFT TYPE: TRANSPORT TITLE: •*-' MCDAC C-:7 TRANSPORT *»«*»• 0CONTROL OPTIONS Input tox Models F 1 Geometry TPPBR Data 1""" MCD0NNKLL DOUGLAS C-17A TRANSPORT GEOMETRY **** 2 SWING 3 AR 4 LFLAPC 5 TCROOT 6 WFFRAC 7.200, AREA 0,110, SWEEP 0.135, TCTIP 0.800, XWING • .OOO, I:; ••• 25.000, TAPER 0.107, TFLAPC 0.290, ZROOT IPRINT = IDELT = KL KS KB FR STRESS = DPCABIN '.HMTEN = TECHI SLQPEUJ - StJOPEfSl = SLOPE (It) - 1 1GRAPH = 0 IOBLIQ = .00 K2 . 00 Kb ,00 KP1 .00 TKCHG • 3D0DO. 5.00 IG3AR 0 IMTGR 1.00 1.00 1.00 1.00 I.OO T.EO I.CO I.OO 1 ITAIL = 0 KWING = .00 K3 .00 AFKAC^ • .00 KP2 ,00 WGTO DENS = 1 JFLTYP 1 i .00 1 .00 1.00 0 KEKi«OR 0 KHODY 1.0 K4 .85 MAXIT . 00 580000. .100 F 1 1 . 00 . . 1 .00 1 . 0Q 00 00 00 1, OD 1 .00 1,00 I .OC 1.00 I .OO O I 1.0 I i. OO 1.00 1.00 .000 1 .00 1 .00 7 KSWEEP 8 ..,••.•:.) 9 SHTAIL 10 AR 11 SWEEP 12 TCTIP 13 KSWEEP 14 SEND 15 SVTAIL 16 AR 17 SWKKT' IB TCROOT 5.000, AREA 27,000, TAPER 0.080, XHTAIL 1, 1.000, AREA 41.000, SWFACT 0.110, TCTIP 64i.OOO, CVMT 0.400, TCROOT -0.010, ZROOT 685.000, CWT 1.000, TAPER -6.000 0.300 O. NO 0.800 1.000 0. 090 1 . 765 0. 100 0 .990 0.110, VTKO 15:08:58 C17-LONG-ACS YNT-OUT 19 XVTAIL 20 KSWEEF 21 SEND 22 $WPOD 23 DIAM 24 Y 25 SEND 2 6 SWPOD 27 DIAM 28 Y 29 SEND 30 SFUS 31 BDMAX 32 FRATIO 33 SEND 34 SENGINE 35 DIAM 3 6 SEND 0.871, YROOT 1, 10.000, LENGTH 0.301, Z 10.000, LENGTH 0.591, 2. 21.060, BODL 0,000, FRN B.000, N 0.000, ZROOT 0. 900, 10.000, X 0.230, SWFACT 10.000, X 0.23 0, SWFACT 160.670, FRAB 1.000, 4, OOTCOD -0.750, 1 .000, -1.000, 1.000, 3 . 590, 33 86 10 53 348 34 40 26 10 53 348 34 46 66 10 53 348 34 S3 06 10 53 348 34 59 46 10 53 343 34 65 86 10 53 348 34 72 26 10 53 348 34 78 66 10 53 348 34 85 06 10 S3 348 34 88 84 10 63 355 01 92 63 10 69 359 07 96 41 10 71 360 47 10C 19 10 69 359 18 103 97 10 63 355 15 107 75 10 53 348 40 111 53 10 39 338 94 115 31 10 20 326 80 119 09 9 97 312 05 122 87 9 69 294 77 12 6 65 9 36 275 05 130 43 8 97 253 04 134 21 3 54 228 89 137 99 co 03 202 82 141 77 7 46 175 05 145 55 6 81 145 86 149 33 6 07 115 60 153 11 Ln 19 84 63 156 89 4 12 53 26 160 67 2 40 18 10 END OF GEOMETRY DATA CARDS Max. Diameter,. Fineness Ratio. Surface Area... Volume Fuselage 21.060 7.629 9511.863 . 45999.004 Geometry Initial Output Dimensions of Planar Surfaces (each] 36 LINES READ wing H.Tail V.Tail Canard Units Geometry Initial Output NUMBER OF SURFACES. 1.0 1.0 1.0 1.0 Fuselage Definition PLAN AREA 3800.0 845.0 685.0 .0 (SQ.FT. SURFACE AREA 6779.8 1696.1 1135.6 .0 (SQ.FT. X R Area VOLUME 7 652.7 704 .6 1380.5 ,0 (CU.FT. .oo 00 00 SPAN 165 409 65 000 26 173 .000 (FT. ) 1.05 1 84 10 61 L.E. SWEEP 28 418 30 763 41 082 .000 (DEG.) 2.11 3 03 28 85 C/4 SWEEP 25 ooo 27 000 41 000 .000 (DEG.) 3.16 4 03 50 92 T.E. SWEEP 13 601 14 165 40 753 ,000 (DEG.1 4.21 4 89 75 24 ASPECT RATIO 7 200 5 000 1 000 .000 5.26 5 66 100 80 ROOT CHORD 35 344 18 571 26 304 . OOC (FT. ) 6 .32 6 35 126 87 ROOT THICKNESS 57 257 20 057 34 721 .000 (IN. ) 7.37 6 98 152 87 ROOT T/C 13 5 090 110 .000 8.42 7 53 178 35 TIP CHORD 10 603 7 429 26 041 .000 (FT. } 9 .48 8 04 202 92 TIP THICKNESS 13 614 7 131 34 .374 ,000 (IN. ) 10.53 8 49 226 26 TIP T/C 107 080 110 .000 11.58 8 89 248 09 TAPER RATIO 300 400 990 .000 12 . 64 9 24 268 18 MEAN AERO CHORD.... 25 194 13 796 26 . 173 . ooo (PT. ) 13 .69 9 55 286 34 14 .74 9 81 302 39 37 758 135 071 113 640 .000 (FT.) 15 . 80 10 03 316 20 C/4 ROOT AT 46 594 139 .714 120 .216 ,000 (FT. ) 16.85 10 21 327 65 73 102 153 643 139 .944 .000 (FT.) 17 .90 10 35 336 65 LE M.A.C. AT 56 118 143 362 125 029 .000 IFT.) 18.95 10 45 343 13 C/4 M.A.C. AT 62 416 146 .811 131 .572 ,000 (FT. ) 20 .01 10 51 347 04 TE M.A.C. AT BI 311 157 158 151 .202 .000 (FT. ] 21.06 10 53 348 34 Y M.A.C. AT 33 93 0 13 929 13 .064 .000 27 . 46 10 53 348 34 LE TIP AT 82 509 154 416 136 457 .000 [FT. ) Nov J 8 5 15:0$ 5* C/4 TIP AT 85.160 156.274 142.967 TE TIP AT 93.112 161.345 162.498 ELEVATION 8.424 29.499 9.477 GEOMETRIC TOTAL VOLUME COEFF .745 .075 EFFECTIVE TOTAL VOLUME COEFF ,74 5 .075 C17-LONG-ACS YNT-OUT .000 (FT.) .000 (FT.) .000 (FT.) ,000 .000 EXTENSIONS Strake Rear Extension Centroid location at .00 .00 Area .00 ,00 Sweep Angle .00 Wetted Area 0 .00 Volume .00 .00 Total Wing Area 3800.00 Total Wetted Area 22219.92 FUEL TANKS Tank Volume Weight Density Wing 5292. 264612. 50.00 Fustl 0. 0. 50.00 Fus#2 . 0. 50.00 Total 264612. Mission Fuel Required = 182051. Available Fuel Volume in Winy - 6615. Aircraft Weight = 5BO00O.0OO lbs. Aircraft volume = 5573 6.773 cu.ft. Aircraft Density = 10.209 lbs./cu.ft. ICASE = 4 (Fineness Ratio Method) Input for Module # 2 r * * * * * ***************x** TRAJECTORY INPUT k ****** * TIMTOl = 5.5 MENDUR 0 . NCRUSE 2 IPLOT - 2 TIMT02 - .5 QMAX = BOO. IPSIZE = -3 HMINP = 0 FRFURE = .05 XDESC 80.0 IPSTOl = 3 HMAXP = 50000 DESLF : 6.0C WKFUEL = 1. DOO IPST02 = 2 DELHP = 5000. ULTLF = 9.00 CRMACH .990 IBREG = 0 SMMINP = .200 RANGE = 1000. WKLAND .570 IENDUR = 0 SMMAXP = 1.100 WFUEL = 182720. FLFAC = .600 IPRINT 0 DELHP = . 200 WFEXT 0 , DECEL = ,250 KERROR 2 WCOMBP = WFTRAP 900. NLEGCL - 0 NLEGCR 0 NLEGLO - 0 FWGMAX » 1.200 TOL = . 001 MILOOM 0 NMISS = NCODE = 1 0 .01 HMPROP = 1 MISSION 1 MACH NO. HORIZONTAL PHASE START END START END DIST TIME CLIMB .50 .00 0 10000 .0 .0 CLIMB .60 .00 -1 28000 .0 , 0 CRUISE .75 .75 28000 -1 4100.0 .0 CLIMB .50 . OO 0 10000 .0 . 0 CLIMB . 60 . 00 -1 28000 .0 .0 NO. VIND TURN -G"S WKFUEL M IP IX W B A P .0 250.0 .0 310.0 .0 .0 .0 250.0 .0 310.0 1 oooo i 2 -1 0 a 0 0 1 oooo I 2 -1 0 0 0 0 1 oooo I 4 0 0 0 0 0 1 oooo i 2 -1 0 0 c 0 1 oooo i 2 -1 0 0 c 0 .75 .75 41000 500.0 .0 .0 . 0 1.0000 1 4 0 0 0 0 0 Input for Module ft 3 AERODYNAMIC INPUT DATA ** MCDAC C-17A TRANSPORT AERODYNAMICS MODULE FACTORS INTEGERS AND LOGICALS FALEL = 1 .000 ALELJ 3 NALF 10 ABOSB 220 SHK = 25 .ooo FBLNT = .010 IALF 0 NMDTL = 6 ALMAX = 20 ooo SM = 000 FCD = 1 .ooo IALP 2 ECHOIN = 1 AMC = 35 000 SMNDR = .860 FCDF = 1 .ooo IAXE = 0 ECHOUT = 0 BTEF = 1 000 SWPMA X = 60 000 FCDL = 1 ooo ICDO 0 ELLIPC = F CGM = 250 SWPMI N = ooo FCDLH = 1 .ooo ICOD 1 ELLIPH = p CLLAND = -1 000 Y0 = 000 FCDO = 1 000 I NORM 1 ELLIPW = F CLTO = -1 000 ZCG = ooc FCDW = 1 000 INTM 0 CSF 1 ooc FCDWB = 1 000 IPBLNT = 0 DELFLD 45 ooo FCL = 1 ooo I PENG 0 DELFTC 25. 000 FCLH = 1 ooc IPFRIC 0 DELLED = 30 000 PDNOSE = 1 000 IPTEXT = 0 DELLTO 10 000 FENG = 1 ooo IPINTF = 0 ESSF = 1 ooc FEXP = 780 IPLIFT 0 EXA = 667 FINTF 1 000 I PLOT = 1 EXC 2 . ooo FLBCOR = 1 000 IPMIN 0 IT = 000 FLD = 1 000 IPWAVE 0 LDLAND -1 ooo FLECOR = 1 ooo ISMNDR = 0 LDTO = -1. 000 FLNOSE = 1 000 ISUPCR • 0 MACHN 750 FLSCOR 1 ooc ITRAP = 0 0HOQ1 = ooo FMDR 1 010 IVCAM = 0 RCLMAX = 1. ooc FSEP = 1 000 IXCD 1 ROC 015 FTRIM - 1 000 KERROR 0 SFWF = 1. ooo ARRAYS ALIN ooo 1 . 000 2.000 3.000 4.ooo 6.000 8.000 10 .000 12 .000 14.000 ALTV 0. D. 0. 0. 0. 0. 0 . 0 . 30000. 30000. CDBMB = .0000 , oooo .0000 .0000 .oooo .0000 .0000 oooo oooo .0000 CDEXTR = .oooo .0000 .oooo .oooo .oooo .0000 .0000 oooo oooo .0000 CDONPT .oooc . oooo .0000 ,0000 .0000 . oooo ,0000 oooo oooo .0000 CDSTR = .0000 , oooo ,0000 .0000 .0000 .oooo .0000 DOO0 oooo . 0000 CDTNK = .oooo .0000 .0000 .oooo .oooo .0000 .0000 oooo oooo .0000 CLINPT = ooo .000 .000 .000 .000 .ooo .ooo ,000 .000 C i 7-LONG-ACSYNT-OUT .000 cuo * .ODD CLKIN = . ooo .ooo FCDRA = 1.000 FCLRA = 1 .000 FI.DM .; .000 FVCAM = 1 .000 ISTRS = 0 I •• 0 TTS -0 l SMF.KTR = 1.600 , 900 SKIMS = 1.S0O KMJJroo = .OOC SMWSI.T" = .000 SUSIES = l. eoy SMTAMX •¬ .COO YSHP .000 . 000 .000 1.000 l.ooc i. ooo l .ooo o o o i .ooo .400 n n ft .000 .000 .000 . 000 .000 .ooo ,000 i. 00 .J i.ooo 1.000 1.000 0 0 0 1 . 800 .500 . nsc .ooc . ooo • 80C . ooo .ooo ooo .ooo 1 .000 1 . GOu 1.000 1 . 000 0 0 0 1 . 900 .6 . ooo .000 . 900 .000 .000 .000 .ooo .000 1.000 1.000 i. ooo 1.000 0 0 0 1 . 930 .700 .930 . 000 .000 . 930 . 0 00 . 000 7? 7 .000 .000 i. ooo i.ooo 1 . ooo 1.000 0 0 0 1 . 950 . 800 .950 .ooo . ooo .98% . 000 .000 .ooo ,000 .000 1 . 000 1.000 ! . :>Oi, 1 .000 0 0 0 1 .980 . 900 .lie .ooo .000 . 980 , 000 .ooo Inpj: Cor Module # 4 + it***!****.* * -ft t * * > .ooo ,000 . 000 1 . COO i.ooo 1.000 l.OO-O 0 0 0 1 1 .000 ,700 1. OOu . ooo .000 1 . 000 .000 .000 .000 . 7 00 . 000 1 0(H) 1. ooo 1 . jOO 1 . 000 0 0 0 1 l. loc .800 1. 100 . ooo .000 1.100 .000 .ooo .000 ,000 .000 i .ooo i. ooo 1.000 1.000 0 0 0 1 1.400 1.400 . 000 .000 1 . 400 , 000 .ooo PROPULSION INPUT VERSION 04-7 6 --- • ooo SFSFC2 - 1 .000 SFSfcJ 1 .000 SMI 500 SODG 1.000 TOSA 518.000 TR « 520 000 THAB 0 . TWOAB = 40700. TWTO = 500 T3 - 2800. TSW 34DD. T51 0. T7M 3400. T71 0, VC1 = 980 WCWA1 ^ .03 0 XMDES 1 . 400 WT = 950 YREN 95 FRBT .000 FRPN - boo RDIAM = 1 . 150 RI -:. ; = 2.000 IPR i rpfciMT = 0 : T, - J _ 0 K ERROR = 0 KODH • 2 RT5 0 KX7 = 0 HINFR =! 0 NAB = 6 NO/.Z 0 NFROP = 6 NSUKM = 15 1ENG = 5 ICF6 ) THEStl VARIABLES FJjL USED HY TABLE LOOK UP ESF = 1.000 HDTAIL = 8 I PFBUG = A1TD = XMACH = XHPBI « KPHJ = XHPfcll B .000 XPRI1 = . ooo XM1RT3 = .OUO XPRI2 = . 000 0. .200 .000 1.000 . ooo .000 . ooo .000 . 000 .ooo . DC"! .001 10000. . 400 .300 1 .000 . OOO . ooo .000 .000 .ooo .000 ,ooo .000 20000, .500 . 600 1 .000 .000 .000 .000 .ooo 30'000 . , 550 ,900 1 . ODD .000 . OOC .000 . 000 400CO. . 750 1.200 1 .000 .000 . ooo 000 .000 50000. . 800 4 .0*0 1.000 . ooo . 000 oor, .000 . 000 .000 .ooc .000 tt** c-17 PROPULSION MO. USING CF6 ENGINE (CYCI K ANALYSIS! ** Bajlft V*tlicl« CGrivercjjriCF. ** llHiaated Gross Weight = .5SQOOE + 06 Col] Ins Moduli: # 1 Calling Koduls * 2 IN CRUISE, PHASE 6, LEG 1, THRUST DOES NOT MATCH DRAG WITHIN 3 PERCENT. DRAG = .24243E+05 TN = .231IOE+05 IN CRUISE, PHASE 6, L'iG 2, THRUST DOES MOT MATCH DRAG WITHIN 3 PERCENT , DRAG - .2394313*05 TN = .23 ilOF* 05 Calling N.-.d,il = H 6 AENUIA = 6 210 aek:.:-: 15 500 AEHWT = 4200 000 Calculated Girr>ss Weight ^ .524iae+06 ALTI = ooo AM 000 A'lMUfi — 385 Slo] L: Wcalc vs. West line = .SOOOOEi-00 MSNTW :G = 00 0 AWAkSU 157 :-.-. = 5 900 Estimated Gross Weight a .40600E+06 DELPR - ooo DELT57 100 000 LIS PWCC = 2 odd ca 1' inc Module 11 1 DIA1 - 8 200 EAB1 - 750 • u = 940 Calling Module fl 2 EDI 75f'. ETftCl = B20 E7AF1 = 900 Cal 1 Inn noil-, .e # 6 ETAT1 = S 2 0 HI.. = 3( HVT' 86U0 Calculated Gross Vfeiyht = . 43924E-I-06 MACHJ 1 0 00 MACH2 - 1 ice ?C FAC = 1 coo Slope o£ Wcalr VF . We:it line F .48816E+00 POSA 29 9.20 PRFD = 1 560 PWCC 100 00D P11P1 1 72 0 P2P1 - 30 000 R.10A = 1 000 Estimated Groes W&i^ht = ,47094E*0S R32 §40 R54 = 940 H54N = 920 Calll.na MLidula k 1 R7I1 9ao R711N = 9EO SCPR 1 350 Calling Module » 2 SFADP = 1 1 SFADSP - 1 400 SFAUXP = 1 )00 Calling Module 4 6 5K8F.P 1 ODD SFBPP - 1 400 EFBTP = 1 000 Ciluulatud Ore SB W«iyl:*: = .4G9'74E*0S SFDltfp - 1 01 1 1 000 IL' = 1 000 Slope ol Hcalc vs. Wsist line = .479fi7F*00 "smJ C17 -LONG-ACS YNT- OUT Passenger Service 0. 0. 00 No Estimated Gross Weight = . 46863E+06 Cargo Containers 8000 , 3629 . 1 71 No Calling Module # 1 Calling Module # 2 Operating Weight Empty 236079. 107085. 50 38 Calling Module # 6 Calculated Gross Weight = .46861E+06 Fuel 182533, B2797. 3B 95 ** End Vehicle Convergence Payload 50000. 22680, 10 67 No Passengers ( 0) 0 . 0. 00 No 3 Convergence Iterations Required Baggage 0 , 0. 00 No ***************************** ************************************************* Cargo 50000. 22680. 10 67 Yes Calling Module # 1 Calling Module ft 2 Calculated weight 468611. 212562 . 100 00 NO Calling Module # 6 Estimated Weight 468628. 212570. Percent Error ,0C Output for Module # 6 *********************** ******** weight Statement - Transport **** MCTJAC C-17 TRANSPORT ****** Qmax: Design Load Factor: Ultimate Load Factor: Structure and Material: Wing Equation: Body Equation: 800. 6 . 00 9 . 00 Aluminum Skin, Stringer Sanders Equation Sanders Equation Component Pounds Kilograms Percent Slope Tech Fixed Airframe Structure 180447. 818S1. 38 51 No wing 78036. 35397. 16 65 1 00 1 00 No Fuselage 56583. 25666. 12 07 1 00 1 00 No Horizontal Tail ( Low) 11508. 5220. 2 46 1 oc 1 00 No Vertical Tail 7027 . 3188. 1 50 1 00 1 00 No Nacelles 6024 . 2732 . 1 29 1 00 1 00 No Landing Gear 21269, 9648. 4 54 1 00 1 00 NO Propulsion 21672. 9830. 4 62 No Engines ( 4) 19992. 9068. 4 27 1 00 1 oc NO Fuel System 1680. 762 . 36 1 oc 1 00 NO Fixed Equipment 23459. 10641. 5 01 1 00 No Hyd & Pneumatic 2812 . 1275, 60 1 00 No Electrical 3707 . 1681. 79 1 oo NO Avionics 1807 . 820 . 39 1 oo No Instrumentation 1025. 465. 22 1 00 No De-ice & Air Cond 0. 0. 00 1 oo No Aux Power System 668. 303. 14 1 00 No Furnish k Eqpt 9420 . 4273 , 2 01 1 00 NO Seats and Lavatories 0. 0. 00 1 00 No Galley 0. 0. 00 1 oo NO Misc Cockpit 0 . 0 , oc 1 00 No Cabin Finishing 6620. 3003 . 1 41 1 00 NO Cabin Emergency Equip 0. 0. 00 1 00 No Cargo Handling 2801. 1270. 60 1 00 No Flight Controls 4021 . 1824. 86 1 00 NO Empty Weight 225579. 102322. 48 .14 Operating Items 0. 0. .00 No Flight Crew ( 0} 1500. 680. .32 Yes Crew Baggage and Provisions 100. 45 . .02 No Flight Attendents ( 0) 0. 0. .00 No Unusable Fuel and Oil 900, 408 . . 19 NO No* 18 96 15:08:58 C17-LONG-ACSYNT-OUT Output for Module # 2 **********************! ****************** TRAJECTORY OUTPUT MISSION PHASE (PAYLOAD 50000. LB) M SFC(I) SFC(U) THRUST(I) THRUST(U) CL CD CDINST ALPHA GAMMA L/D WFUEL W THR/THA TIME WA PR VEL Q x WARM-UP 0. 4902.8 5 50 .33 162800. TAKEOFF . 24 0, 2 0236 12 00 450.1 50 270 .41 134541. 4551 1 91 463274.9 1408 90 87 .41 134541. 0031 4 45 1.00 1 00 4781 2ND SEG .24 400 . 2 0236 12 00 270 .41 100905. 4551 6 09 463274.9 1406 90 87 .41 134541. 0031 4 45 1. 00 1 00 Landing Field Length (ground run) = 2562. ft Weight for Landing calculation = 364584. lbs Landing Thrust to Weight ratio = .3 81 Takeoff Weight = 468628. lbs Landing Weight 294787. lbs CLIMB .46 10000. .5712 5 01 1890.5 to 34 491. ,50 89427. .0352 7 60 461384.4 1096 13 212. Cycle .49 90853. . 0018 16 22 1 .00 1 00 11. CLIMB .82 28000. .3778 7 64 4395.0 7 45 825. .65 48237. .0322 1 05 456989.5 721 40 326 . Cycle , 63 49995. .0014 11 73 1.0C 1 00 55. CRUISE .75 28000. .3225 2 38 147237.0 542 83 753 . .68 21971. ,0213 00 309752.5 576 46 271, Cycle .64 23362. .0013 15 12 .45 1 00 4034 . CLIMB .46 10000. .3765 3 24 1122.6 1 39 491. .50 89427. .0243 13 08 308629.9 1096 13 212 . Cycle .49 90853. .0018 15 52 1.00 1 00 6 , CLIMB . 82 28000. .2473 1 71 2301.3 3 85 B25. .65 48237. .0277 2 61 306328.6 721 40 326 , Cycle .63 49995. . 0014 B 93 1.00 1 00 28 . CRUISE .75 41000, ,5308 4 00 11541.3 64 94 726 . .60 17606. .0314 OC 294787,3 340 44 148 . Cycle ,57 18380. .0014 16 92 . 61 1 00 466. LANDING .21 0 . 2.5886 12 00 230 . .39 138858. , 9702 14 63 364584.2 1395 37 63 . .39 139686. .0035 2 67 1.00 1 OC 5283 . Fuel Summary Total Fuel Mission Fuel Reserve Fuel Trapped Fuel 183433. 173841. 8692 . 900. Takeoff Fuel: Warmup - Takeoff = Fuel Load: 4903. External = 0. 450. Internal = 183433. Block Time = 10.480 hrs Block Range 4600.0 n.m. Block Fuel 173840.5 lb. 4781. ft 5283. ft Decel @ .250 Gs C17-LGNG-ACS YNT-OUT Detailed Aerodynamics Output Output for Module # 3 ft**************************************************** Mach = .85 ftltitude = 30000. Parasite Drag Takeoff Configuration; Flaps and Slats Induced Drag Friction .0111 Alpha Cl Cd L/D Cm e Cdtrim Deltrim Zone Body 2 .0050 0 784 ,2249 3 5 .000 , 15 .0050 -4.2 Wing 2 .0038 1 0 934 .2418 3 S .000 .19 .0067 -5.1 Strakes 2 .0000 2 0 1 078 .2595 4 2 .000 ,23 .0087 -6.0 H. Tail 2 ,0014 3 0 1 220 .2792 4 4 ,00C .28 . 0109 -6.9 V. Tail .0008 4 0 1 357 .3004 4 5 .000 .31 .0132 -7.7 Canard .0000 6 0 1 621 .3470 4 7 .ooo .38 . 0181 -9.4 Interference 2 .0031 8 0 1 614 .3777 4 3 . 000 ,34 .0137 -9.6 Wave . 0266 10 0 1 772 .4558 3 9 .ooo .33 . 0189 -11.1 3 External .0000 12 0 1 705 .4814 3 5 .000 .29 ,0262 -13.0 Tanks .0000 14 c 1 792 .5702 3 1 .ooo . 27 . 0366 -15.0 4 Bombs Stores Extra Camber .0000 . 0000 .OOOC . 0000 Cdmin ft Mach Altitude Slope Factors Cl/Alpha (per radian) Cdl/C1A2 Alpha Transition Zone 2- Flap Setting Slat Setting Flap Type Single 4.1226 .1649 7 .065 25. 10. 519. sq. ,9C 30000. Parasite Drag Landing Configuration: Flaps and Slats Induced Drag Friction Zone Body 2 .0110 .0050 Alpha .0 1 Cl 293 Cd , 6474 L/D 2.0 Cm .000 e .13 Cdtrim .0130 Deltrim -6.8 Wing n .0038 1 0 1 456 .6788 2 1 .000 .16 .0155 -7.6 c Strakes .0000 2 0 1 613 .7093 2 3 .ooc .18 .0183 -8.4 A H. Tail 2 .0013 3 0 1 767 .7411 2 4 . 000 .21 .0211 -9.2 V. Tail ,0008 4 0 1 917 .7740 2 5 ,ooc .24 . 0241 -10.0 i. Canard 2 .0000 6 0 2 206 .8428 2 6 . 000 .28 ,0302 -11.6 Interference .0023 3 0 1 721 ,5598 3 1 .000 ,28 . 0154 -10.0 Wave ,0719 10_ 0 1 853 . 6396 2 9 .000 .27 .0214 -11.6 4 External .0000 12 0 1 972 .7289 2 7 .ooc .27 .0293 -13 .4 4 Tanks .0000 14 0 2 082 .8289 2 5 .ooo .26 .0400 -15. 4 4 Bombs Stores Extra ,0000 .0000 . 0000 Slope Factors Cl/Alpha (per radian) Cdl/Cl"2 Alpha Transition Zone 2- 3.2262 .1716 3 6.514 .0852 Flat Setting Slat SettitlQ Flap Typo C17-LONG-ACS YNT-OUT Single '5. 30. 519 . Detailed Aerodynamics: Altitude = 0. Output Parasif.^ Dia.j Friction tane B iv 2 wing 2 Strikes H. Tail 2 V. Tail 2 Canard 2 Intarfcrence 2 Wave External 2 Tanks 2 •ibs Eh ores Extra Cairier .0118 , 0053 , 0041 ,0000 . 0014 ,0009 . oooo . 0042 .0000 . oooo .0000 . oooo . oooo . oooo .oooo cdmin Mr'ich = Altitude = Parasite Drag Frier i nn Zone tody 2 Wi ng Strakes ;i. Tail 2 V. Tail 2 Canaid 2 Ijit«rf erance 2 Wave 2 External 2 : 3 Storea Extra . 50 0 . . one .0053 . 0040 . oooo .0014 .0009 .oooo .•042 .0000 .0000 .oooo .oooo .0000 . oooo Induced Drag Alplia '-. . 0 1.0 2.0 3 .C 4 . 0 6.0 8 .0 .000 .118 . 233 .3 45 .454 .665 .867 10.0 1.060 12.0 1.246 14.0 1.424 Induced Drag Alpha Cl .0 1. 0 2.0 3.0 4.0 6.0 8.0 10 . 0 12 .0 .000 . 121 .240 .355 .468 . 685 .892 1 . 090 1 .280 14.0 1.433 Cd L/D .OlfG .0168 .0 7 . C 0192 12.1 .0230 15.0 .0282 16.1 .0424 15.7 .0611 14.2 .0840 12.6 .1107 11.2 .1410 10.1 Cm .ooo . ooo .ooo . ooo .ooc .000 . ooo .ooc . ooo e cdtrim Deltrim .00 .76 .75 .75 .75 ,74 .74 .73 .72 . 72 . coon .0001 .0004 . 0008 . 0014 .0030 .0052 .0077 .0107 . 0140 -1 . 6 -2 . 4 -3.1 -4 . 6 -6.2 -7 . 7 -9.3 -11. . 1 Slope factors Cl/Alpha (per radian) 5.82J3 Cdl/cl"2 .0616 Alpha Tranaition Sone 2-3 16.894 Programmed Flap SuLting 0. Flap Type Cd L/D .0159 .0 .0167 7.3 12.5 .0232 15.3 ,0M? 16.3 .0436 15.7 .0632 14.1 .0872 12.5 .1150 11.1 .325 7 4.4 Single Cm . 000 .000 .000 .000 .000 .000 .000 .ooo .01:0 .000 .00 .76 . 76 .76 .76 .75 ,74 .7-5 .73 .29 Cdtrim Delt 0000 .0001 .0004 . 0009 .0015 .0033 .005b . 003 j .0116 . D161 Slopa Factors Cl .'Alpha (pur radian i 5.86H Cdl/Cl"2 .1509 AIJJDJI Transition Zone 2-3 13,323 15:08:58 C J 7 - LONG - ACS YNT- O U T Camber .00DD ft .015S eraordrntjied vlap set tins 0. Flap !'YPA Single 519. sq. Detailoa Aerodynamics Ou'j:-jt Mach = Altitude = Parasite Drag Frit'- i on Bftdy 2 King ?. Strikes 2 H. Tail 2 V. Tail 2 Ci.- 2 2 Irktcr.f r.rence 2 Wave 2 External Tar.ks BE: bs States fcXtra Camber Cdnin 0. . 0115 .0052 .0040 .oooo .0014 . QD03 .0000 . 0042 . oooo .oooo .0000 .0000 . oooo . oooo .iii Induced Drag Alpha . 0 1.0 2.0 3.0 4 .0 6.0 B.O Cl .ooo .126 .250 .370 .487 . 712 .927 10.0 1.132 12.0 1.277 14.0 1.407 Cd .015! . 0167 L/D .0 7 . 6 .0193 12.9 .0236 15.6 .0295 16.5 .0453 15.7 .0662 14.0 .0916 12.4 .2501 5.1 .3249 4.3 Cm .000 . 000 . OOC . ooo .ooo . ooo .ooo . ooo .000 . ooo e Cdtrim Deltrim .00 .77 .11 .77 .76 .76 . 75 .75 .31 ,28 .0000 . 0001 .0004 . 0010 .0017 . 0036 .0062 .0092 .0125 . 0 - .9 -1 . 7 -2 . 6 -3.4 -5 . 1 -6.8 -8.5 -10. 4 -H7 M-I^ Factors Cl/Alpha (por radian) Cdl/Cl"2 Alpha Transition Zone 2-3 Piogran^.ied Flap Ssttiny .0153 fjap Type Sim; j e 5,7573 .1562 10.880 0. 519. 3q. Mach = Al tit-vide = Parasi v Dra^f Friction Zone- Body 2 Wing 2 Strakes 2 H. Tail 2 V. Tail 2 Canaid 2 \. • ••[,-r-i.ce 2 Wave 3 Exteri:a 1 3 Tanks 3 >.oiobs STORES Extra .70 0. .01 13 . 0052 .0039 .0000 .0014 . 0009 .oooo , .••" I. .0000 .0000 . •:: OT .0000 .ooi • .O^'O Induced Alpha . 0 1.0 2 . C 3 .0 4 . 0 6.0 8.C 10.0 12.0 14 . 0 Drag Cl .000 . 133 .263 .390 .513 .750 .975 1 .Mi 1.298 1.435 Cd . 0156 .0166 .0195 . 1903 . 3U2 . 3412 L/D . 0 8.0 13.5 .0242 16.1 .0306 16.8 0478 15.7 .0705 13.B 6.0 5.0 4.2 Cm .000 . OOC . OOC . OOO ,000 .00,; . OOC 000 . OOD .000 .oc . 79 .78 .78 .78 . 77 .77 . 33 . 30 .28 Cdtrim Dsltiiis . 0000 . 0001 . 0005 .0011 . '.y. '•. 9 .0041 .0069 .0/857 . 9134 .0197 .0 - .9 -1. 8 -2 .7 -3,6 -5.4 -7 . 1 -S . 7 -IO. 4 -12.2 Slope Factors Cl/Alpha Lper radian! 5.6T43 CDI/CI*A .1580 Alpha Transit lull Zone 2-3 9.077 Nov 18 96 15,08:58 Camber Cdmin ft .0000 . 0156 Programmed Flap Setting Flap Type Single C17-LONG- ACS YNT-OUT Detailed Aerodynamics Output 0 . 519 . Mach Altitude = Parasite Drag Friction Zone Body 2 Wing 2 Strakes 2 H. Tail 2 V. Tail 2 Canard 2 Interference 3 Wave 3 External 3 Tanks 3 Bombs Stores Extra Camber .80 0. .0112 .0051 . 0039 .0000 . 0014 ,0008 .0000 . 0041 .0016 .oooc . 0000 .oooo .0000 . oooo ,0000 Induced Drag Alpha Cl Cd L/D Cm a Cdtrim Deltrim .0 000 .0168 ,0 . 000 .00 . oooo .0 1.0 143 .0179 8.0 .000 .80 .0002 -1.0 2.0 283 .0212 13 .3 .000 . 80 .0006 -2.0 3.0 419 .0265 15.8 .000 ,80 .0013 -2.9 4 . 0 551 .0337 16.4 .000 .79 .0022 -3.9 6.0 804 .0530 15.2 . ooo ,79 .0048 -5 .7 8.0 1 042 .1337 7.8 .000 .41 .0077 -7.9 10.0 1 189 .2052 5.8 .000 .33 .0108 -9.2 12 .0 1 342 .2793 4.8 .000 .30 .0163 -11 .0 14 . C 1 482 .3649 4.1 . ooo .28 . 023 5 -12 . 8 Slope Factors Cl/Alpha (per radian) Cdl/Cl"2 Alpha Transition Zone 2-3 Programmed Flap Setting Cdmin ft Mach Altitude = Parasite Drag , 0168 .90 0. Flap Type Single 6.0661 . 1585 7 . 667 0. 519. sq, Induced Drag Friction Zone Body 2 .0110 .0050 Mpha .0 Cl ooo Cd .0852 L/D . 0 CM .000 e .oo Cdtrim .0000 Del trim .0 Wing .0038 1 0 159 .0866 1 8 ,000 . 83 .0002 -1 .1 2 Strakes 2 .0000 2 0 315 .0905 3 5 .000 .82 .0007 -2.1 H. Tail .0013 3 0 465 .0969 4 8 .000 .82 .0016 -3 .1 £ V. Tail . oooa 4 0 612 . 1054 5. B ,ooc . B2 .0027 -4.2 Canard .oooo 6 0 893 . 1285 6 9 .000 .81 .0058 -6.2 2 Interference .0023 8 0 1 082 .2440 4 . 4 .000 .33 .0131 -9.5 Wave * .0719 10 0 1 189 .3036 3 . 9 .000 .29 .0195 -11 .3 External ,0000 12 0 1 285 . 3720 3. 5 .000 .25 .0280 -13 .3 Tanks .0000 14 0 1 371 .4496 3 . 1 .000 .23 .0396 -15.5 Bombs Stores Extra .0000 .0000 ,0000 Slope Factors Cl/Alpha (per radian) Cdl/Cl~2 5.6120 , 1938 Alpha Transition Zone 2-3 6.514 Nov 1S<* ; 15M.SS C17-L0NG-ACS YNT-OUT Camber . oooo Programmed Flap Setting 0. 84. 2645. 2837 .848 ,791 .0012 82. 1947. 2142 . 932 .847 .0012 Cdmin .0852 Flap Type Single 519. sq. 80. 1200, 1393 1 . 191 1 .025 .0012 * ft 78 , 330. 507 3 .284 2 .141 , 0011 .650 30000. 100. 9500, 9738 .562 .548 .0013 Output Eor Module * 4 98 . 8387 , 8624 .561 ,546 . 0013 ******* ************** * ******** ******* * * * ********** ****** ********************** 96, 7289 . 7523 ,566 .549 .0013 1 ENGINE SUMMARY 94 . 6196. S426 .580 .560 ,0013 92 . 5091. 5317 .610 .584 .0013 90. 3947 . 4166 , 674 .639 , 0012 ENGINE DIAMETER 6 .21 FEET 88. 2716. 2919 .830 .773 .0011 ENGINE LENGTH 15 . 50 FEET 86 . 2160, 2379 .874 ,793 .0012 ENGINE WEIGHT = 4200 ,00 POUNDS 84. 1689. 1910 . 920 .814 .0012 BYPASS RATIO 5 .90 82 . 1210 . 1432 1 .037 .877 .0013 NO OF ENGINES - 4 . 80. 710 . 928 1 .393 1 .064 . 0012 DRAG REF AREA = 3800 ,00 SQ FEET 78 . 158. 359 4 .723 2 .080 .0011 PWCC PERCENT OF ENGINE CORRECTED AIRFLOW THRUST ENGINE THRUST { POUNDS PER ENGINE) SFC ENGINE SPECIFIC FUEL CONSUMPTION .750 4O000, 100, 6061 . 6257 .537 .569 . 0013 THRUSTU - THRUST PER ENGINE IN LBS, W/O INSTAL DRAG CORR 98 . 5330. 553C .589 .568 ,0014 SFCU = SFC.l/HR, W/O INSTALLATION DRAG CORR 96 . 4613 . 4816 .597 .572 ,0014 CDINS -TOT INSTALLATION DRAG COEF PER A/C (SWING REF) 94. 3906 , 4110 , 614 .583 .0014 1 92 . 3201. 3402 .647 .609 .0014 90 . 2483 . 2679 .714 ,662 .0013 88 . 1727 . 1915 .870 .785 .0013 86 . 1358 . 1563 . 926 ,804 .0014 MACH ALT PWCC THRUST THRUSTU SFC SFCU CDINS 84. 1042 , 1252 ,993 .827 ,0014 82 . 730. 937 1 . 145 .891 , 0014 80 . 408 . 609 1 .608 1 .077 .0014 .200 0. 100 33535. 33712 .404 .402 .0031 78. 66 . 250 7 . 569 1 .987 .0013 98 32172. 32320 ,420 .418 .0026 96 29097. 29232 .421 .419 .0024 94 25361. 25484 .422 .420 .0022 .800 50000, 100. 3823 . 3356 3973 3 510 .612 , 615 .589 . 589 .0014 . 0015 9 2 90 213.3 7 . 16654. 2144 6 16747 .434 .477 .431 .474 . G &19 .0017 96. 2899 . 3055 . 625 .593 .0015 88 9877, 9948 .682 ,677 .0013 94. 2449 , 2607 . 644 .605 .0015 86 7781. 7852 .726 .720 .0013 92. 2002 , 2160 ,681 .631 .0015 84 6421 . 6494 .727 .719 .0013 90 . 1550. 1706 .753 .6B4 ,0015 32 5000 . 5073 .757 .746 .0013 88. 1079. 1231 .916 .803 ,0015 80 3417. 3488 .876 ,858 .0013 86 . B42. 1006 .983 ,822 .0016 78 1362. 1418 1.679 1 . 613 .0010 84, 636. 807 1 .072 .344 .0017 82 . 437 . 606 1 .259 .908 ,0016 80. 234, 398 1 .845 1 , 086 .0016 .400 10000. 100 21985. 22251 .494 .488 .0017 78. 23 . 173 14 .339 1 .887 .0015 98 20100. 2O350 . 498 . 492 .0016 96 17660. 17900 .498 . 491 .0015 94 15177. 15404 .505 .497 .0015 SEA-LEVEL STATIC THRUST = 40700. (MAX! 92 12582. 12793 ,527 ,518 .0014 SEA-LEVEL SFC = .328 90 9735. 9928 . 584 .572 .0012 B8 6298 , 6470 .766 .745 .0011 86 5072 . 5246 .797 .770 .0011 84 4094 . 4273 .815 .781 .0012 Output for Module # 1 82 3077 , 3258 . 878 . 829 ,0012 ************************* ******* * n * * n * * * * * **** * * * * ***** 30 1983. 2163 1.075 .985 .0012 78 665 . 825 2.440 1 .969 . OOIO Fuselage Definition (Type 2) 21. 060 1 . 000 ,500 20000. 100 14674. 14920 .523 .515 .0015 Constant Section Length 64 . 005 98 13028 , 13268 ,520 ,511 .0015 Afterbody Length. 75. 605 96 11388. 11622 . 522 . 511 ,0014 Afterbody Fineness Ratio 3. 590 94 9737 , 9960 .532 .520 .0014 Overall Length... 160. 670 92 8036 . B248 . 557 .543 . 0013 Maximum Diameter. 21, 060 90 6218. 6417 . 617 . 597 ,0012 2956. 015 88 4140. 4324 .785 .752 .0011 B6 3324. 3511 .819 .775 .0012 FUSELAGE CROSS SECTION SIZING TO ACCOMODATE PAYLOAD Nov IS 96 15:08:58 C17 -LONG-ACS YNT- OUT PAYLOAD WIDTH OOOOE + 00 PAYLOAD HEIGHT OOOOE+OO THICKNESS OF WING ROOT 4.771 MAX THICKNESS OF WING FOR FREE FIT OOOOE+OO DIAMETER REQUIRED FOR WIDTH OF EMBEDDED ENGINES.. .OOOOE+OO DIAMETER REQUIRED FOR HEIGHT OF EMBEDDED ENGINES. -OOOOE+OO DIAMETER REQUIRED TO ENCLOSE BOX 4.771 REQUIRED DIAMETER. . (MAX OF 3 ABOVE) 4.77 RADIUS OF ENGINE POD 3.975 ANGLE OF ENGINE PLACEMENT (ABOVE HORIZONTAL) 2300 STAND-OFF DISTANCE (NON-DIMENSIONAL) 301 STAND-OFF DISTANCE (FT.) 1.196 LOC. OF CENTER OF ENGINE 7.557 AIRCRAFT INTERNAL ARRANGEMENT ITEM LENGTH INITIAL FINAL ACTUAL STATION STATION DIAM RADAR .000 .000 .OOO .000 ENGINE . 15.500 .000 15.500 .000 NOSE LENGTH 21.06 AFTERBODY BEGINS AT 85.0 OVERALL LENGTH 160.7 MAX. AFT FUEL LOCATION 122.9 DELTAX DOE TO PAYLOAD AFTERBODY MISMATCH .... 1000. DELTAX DUE TO PAYLOAD-F'OVERLAP 1000 DELTAX DUE TO FINENESS RATIO RHQ 64. 0C ACTUAL-REQUIRED CREW DIAMETER 21.06 ACTUAL-REQUIRED PAYLOAD DIAMETER 16.29 ACTUAL-REQUIRED POWER PLANT DIAMETER -10.94 WING ROOT THICKNESS IN BODY 4.771 FUSELAGE WALL THICKNESS OO0OE+00 VOLUME OF FORWARD FUEL OOOOE+0 VOLUME OF REAR FUEL OOOOE+0 ACTUAL-REQUIRED FUEL VOLUME 1624. REQD DIAM . 000 -138.246 Fuselage Definition X R Area 00 00 00 1 05 1 84 10 61 2 11 3 03 28 85 3 16 4 03 50 92 4 21 4 89 75 24 5 26 5 66 100 80 6 32 6 35 126 87 7 37 6 98 152 87 3 42 1 53 178 35 9 48 6 04 202 92 10 53 8 49 226 26 11 58 8 89 248 09 12 64 9 24 268 18 13 69 9 55 286 34 14 74 9 81 302 39 15 80 10 03 316 20 16 85 10 21 327 65 17 90 10 35 336 65 18 95 10 45 343 13 20 01 10 51 347 04 21 06 10 53 348 34 27 46 10 53 348 34 33 86 10 53 348 34 40 26 10 53 348 34 46 66 10 53 348 34 53 06 10 53 348 34 39 46 10 53 348 34 65 86 10 53 348 34 72 26 10 53 348 34 78 66 10 53 348 34 85 06 10 53 348 34 88 92 84 63 10 10 61 66 3 53 356 92 88 96 41 10 66 357 19 100 19 10 63 354 81 103 97 10 55 349 72 107 75 10 43 341 96 111 53 10 27 331 53 115 31 10 07 318 49 119 09 9 82 302 92 122 87 9 52 284 92 126 65 9 18 264 60 130 43 8 78 242 12 134 21 8 32 217 66 137 99 7 81 191 45 141 77 7 22 163 76 145 55 6 55 134 90 149 33 5 79 105 27 153 11 4 90 75 33 156 89 3 81 45 54 160 67 2 07 13 51 Nacelle Definition Nacelle Location x-Xnose R Area X Y .00 3 97 49 .63 30 30 24 89 7 .75 3 97 49 . 63 30 30 -24 39 23.25 3 97 49.63 43 48 48 88 31.00 3 97 49 . 63 43 48 -48 B8 Fuselage Max. Diameter 21.060 Fineness Ratio 7.629 Surface Area 9434.115 Volume 45419.180 Nacelles - 7 . 949 774.161 (each) C17-L0NG-ACSYNT-0UT Dimensions of planar Surfaces (each Output for Module § 11 ************ ft*********************** ************** ******* *************** Wing H. Tail v.Tail Canard Units 1 SUMMARY ACSYNT OUTPUT -- - NASA, AMES RESEARCH CENTER NUMBER OF SURFACES. 1 .0 1.0 1.0 1.0 4 ENGLISH UNITS - PLAN AREA 3800.0 3 45.0 685 .0 .0 (SQ.FT.) .... MCDONNELL DOUGLAS C-17 TRANSPORT MISSION ***** « SURFACE AREA 6779.8 1696.1 1135.6 .0 ISQ.FT. ) 4 DISTANCES IN FEET VOLUME 7652 .7 704.6 1380,5 .0 (CU.FT.) SPAN 165 409 65 .000 26.173 .000 (FT. ) 4 WEIGHTS IN LBS. L.E. SWEEP 28 418 30 .763 41.082 ,000 (DEG.) GENERAL FUSELAGE WING HTAIL VTAIL C/4 SWEEP 25 DOO 27 . 000 41.000 .000 (DEG.) + FORCES IN LBS. T,E. SWEEP 13 601 14 ,165 40.753 . 000 1DEG.) ftSPECT RATIO 7 200 5 .000 1. 000 .000 4 PRESSURES IN LBS/FT**2 ROOT CHORD 35. 344 IS .571 26.304 .000 (FT. ) WG 468611. LENGTH 160.7 fcREA 3800.0 845 . 0 685.0 ROOT THICKNESS 57 . 2 57 20 .057 34,721 .000 (IN. I W/S 123.3 DIAMETER 21.1 WETTED AREA 6779.8 1696.1 1135.6 ROOT T/C 135 .090 .110 .000 T/W .35 VOLUME 45419.2 SPAN 165.4 65 .0 26.2 TIP CHORD 10. 603 7 .429 26.041 .000 (ET. ) N(Z} ULT 9,0 WETTED AREA 9434.1 L.E. SWEEP 28.4 30.8 41.1 TIP THICKNESS 13. 614 7 . 131 34.374 .000 (IN. ) CREW 0. FINENESS RATIO 7.6 C/4 SWEEP 25.0 27.C 41.0 TIP T/C 107 ,080 . 110 .000 PASENGERS 0. ASPECT RATIO 7 .20 5.00 1.00 TAPER RATIO 300 .400 .990 .ooo TAPER RATIO . 30 .40 .99 MEAN AERO CHORD .... 25. 194 13 .796 26.173 000 (FT. ) ENGINE WEIGHTS T/C ROOT .14 .09 .11 T/C TIP . 11 .08 .11 LE ROOT AT 37. 758 135 .071 113.640 .ooo (FT. > NUMBER 4 , W WG ROOT CHORD 35.3 18. 6 26.3 C/4 ROOT AT 46. 594 139 , 714 120.216 .000 (FT. ) LENGTH 15.5 STRUCT. 180447. 38.5 TIP CHORD 10,6 7.4 26.0 TE ROOT AT 73. 102 153 ,643 139.944 .000 (FT. ) DIAM. 6.9 PROPUL. 21672. 4.6 M.A. CHORD 25.2 13 .8 26.2 LE M.A.C. AT 56 . 118 143 .3 62 125.029 .000 (FT. ) WEIGHT 4200.0 FIX. EQ. 23459. 5.0 LOC. OP L.E. 37.8 13 5.1 113 .6 C/4 M.A.C. AT 62 . 416 146 , 811 131.572 000 (FT. ) TSLS 40700. FUEL 183433. 39.1 TE M.A.C. AT 81 , 311 157 . 158 151.202 ooo (FT. ) SFCSLS .33 PAYLOAD 50000. 10,7 V M.A.C. AT 33. 930 13 .929 13.064 000 LE TIP AT 82 . 509 154 .416 136.457 000 (FT. ) C/4 TIP AT 85. 160 156 274 142.967 000 (FT. ) MISSION SUMMARY TE TIP AT 93 . 112 161 845 162.498 000 (FT. ) ELEVATION 8 , 424 29 499 9.477 000 (FT. ) PHASE MACH ALT FUEL TIME DIST L/D THRUST SFC Q GEOMETRIC TOTAL VOLUME LUTL'T EFFECTIVE TOTAL VOLUME COEFF . 745 745 . 075 .075 000 000 TAKEOFF .00 0. 5353. 6.0 4781.3 CLIMB .46 10000. 1891. 2.3 10.7 16.22 89426 6 .502 212 CLIMB .82 28000. 4395. 7.4 55.4 11.73 48236 8 .648 325 E X T E N S I O N S CRUISE .75 28000. 147237. 542.8 4033.9 15.12 21971 1 .685 271 Strake Rear Extension CLIMB .46 10000. 1123. 1.4 6.2 15.52 89426 6 .502 212 Centroid location at. .00 .00 CLIMB ,82 28000. 2301. 3.8 28.2 8.93 48236 8 .648 325 .00 .00 CRUISE .75 41000. 11541. 64.9 465.6 16.92 17605 9 .597 147 Sweep Angle .00 LANDING 5283.3 .00 .00 .00 .00 Block Time = 10.480 hr (without air and ground manuever allowances) Block Range - 4600.0 ran Total Wing Area 3 iOO.00 Total Wetted Area.... 22142.1 8 FUEL T A N K S Tank Volume Weight Density Wing 5292. 264612 50 . 00 Fusil 0 0 50 ,00 Fus#2 . 0 SO .00 Total 264612 Mission Fuel Required 183433, Available Fuel Volume : • Wing - 6615. Aircraft Weight = 468627.812 lbs. Aircraft Volume = 55156.949 cu.ft. aircraft Density = 8 . 49 6 lbs./cu.ft, ICASE = 4 (Fineness Ratio Method) Appendix E Page 58 Appendix E. C17 FLOPS Input & Output File 15:09:03 C17-SHORT-FLOPS-IN C17 Short Mission SOPTIOM MPRINT=1, IOPT=l, IANAL=3, NOPRO=0, NOISE=0, ICOST-0, IFITE= 0, INENG-1, ITAKOF=0, ILAND=0, $END SWTIN MYWTS=0, LTLF=2 .25, SPAN=167.4, FCOMP=0.15, NETAW=2 , ETAW=0.0, 1.0, CHD=32.82, 13.13, TOC=0.135, 0.107, ETAE=0.301, 0.591, SHT'845.0, SWPHT=27 .0, ARHT-5,0, TCHT=0.085, HHT=1., SVT-685.0, SWPVT=41.0, ARVT=1.0, TCVT=0.11, NFIN=2, SFIN=72.55, ARFIN-1.09, TRFIN=0.325, SWPFIN=50.0, TCF1N=0.10, XL=159.1, WF=21,06, DF=23 .00, NEW>4, NEF=0, WENG=7100., XNAC=12.23, DNAC=6.23, FULWMX-182720.0, FULFMX=0.0. NFLCR=3, CARGF=1,, CARGOF=124000.0, SEND SCONFIN DESRNG=2500., KTVC=1.0, VTVO0 , 10, GW-=650000 . , THRUST=40700., AR=7.2, SW=3800.0, SWEEP=25.0, TCA=.121, VCKN=0.75, CH-45000.0, SEND SAERIN MYAERO=0, AITEK=1.2 VAPPR=115 FLTO=4400., FLLDG=3200. CLTOM=3.585 SEND SENGDIN IGENBN=1, IDLE=1, NONEG=l, IXTRAP=0, DFFAO0 . , EMACH=0.80, SEND o, 0.7S, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.0 SENGINE I£NG=2, IFILE-'TFNSEP' TFILE='ENGTAB' OFILE- ' ENGOUT 1 OPRDES=30.8, BPRDES=5.9, TETDES = 2 8O0. , YEAR=1995 . , IGVW=-1, SEND SMISSIN FACT=1.0, 1SKAL=1, MSUMPT=1, IATA=0, IFLAG-2, IRW=1, ITTFF-1, TAXOTM=15.0 TAK0TM=2.0, TAXITM=2.0, NCLIMB=1, CLMMIN=0.3, FWF»-1., IFAACL=0, IFAADE=0, NCRUSE=1, IOC=2, CRMMIN=0.3 , CRMACH=0.75 CRALT=28000 IVS=1, IRS=1, TIMMAP=2.0, ALTRAN=500. SEND START CLIMB 1 CRUISE 1 RELEASE REFUEL CRUISE DESCENT END 2000. 124000. -2000, 500. 105 . Nov 18 96 i e NAMELIST SOPTION PROGRAM CONTROL, EXECUTION, ANALYSIS AND PLOT OPTION DATA DESCRIPTION NAME VALUE DIMENSIONS TYPE OF PROBLEM IOPT 1 ANALYSIS OPTION IANAL 3 MAIN ENGINE DECK SWITCH INENG 1 DETAILED TAKEOFF SWITCH ITAXOF 0 DETAILED LANDING SWITCH ILAND COST CALCULATION SWITCH ICOST 0 TRANSPORT/FIGHTER SWITCH IFITE TAKEOFF PROFILE FOR NOISE NOPRO 0 PROFILE OUTPUT FILE SWITCH NPFILE NOISE CALCULATIONS SWITCH NOISE 0 MASTER PRINT CONTROL MPRINT 1 XFLOPS DATA PLOT SWITCH IXFL 0 AERO POLAR PLOT SWITCH IPOLP THRUST DATA PLOT SWITCH IPLTTH 0 HISTORY DATA PLOT SWITCH IPLTHS EXCESS POWER PLOT SWITCH IPLTPS 0 » NAMELIST SWTIN GEOMETRIC, WEIGHT, BALANCE AND INERTIA DATA DESCRIPTION NAME VALUE DIMENSIONS MAX OPER MACH NUMBER VMMO .0000 ULTIMATE LOAD FACTOR ULF 2,2500 REF WEIGHT NUMBER NWREF 39 CG REFERENCE LENGTH CGREFL 1909.2 X FOR START OF CGREFL CGREFX .C SWITCH TO COMPUTE WEIGHTS MYWTS C DESIGN GROSS WT. (RATIO) DGW 1.OOC HYDRAULIC SYSTEM PRESSURE HYDPR 3000. IN IN WING DATA DIHEDRAL(POSITIVE) GLOVE AND BAT AREA SPAN DIH GLOV SPAN CONTROL SURFACE AREA RATIO FLAPR FRACTION OF COMPOSITES FCOMP AEROELASTIC TAILORING FACT FAERT STRUT BRACING FACTOR VARIABLE SWEEP FACTOR FSTRT VARSWP .000 -92.05 167.40 .3330 .1500 .0000 .0000 . 0000 DEG SQ FT FT DETAILED WING DEFINITION DATA FOR 2 STATIONS STATION DATA 1 to 0 Y/SEMISPAN ETAW 0000 1.0000 0 CHORD/SEMISPAN CHD 32 8200 13.1300 0 THICKNESS/CHORD TOC 1350 .1070 0 LOAD PATH SWEEP SWL .00 .oo 0 REFERENCE ASPECT RATIO ARREF 7.20 REFERENCE THICKNESS/CHORD TCREF . 12100 FRACTION OF LOAD ON DEFINED WING (OR REF WING AREA] PCTL 1.0000 NO. OF INTEGRATION STEPS NSTD 50 FLOPS-OUT ENGINE LOCATIONS LOAD DISTRIBUTION CONTROL HORIZONTAL TAIL DATA AREA 1/4 CHORD SWEEP ANGLE ASPECT RATIO TAPER RATIO T/C LOCATION ON VERTICAL TAIL VERTICAL TAIL DATA NUMBER OF VERTICAL TAILS AREA 1/4 CHORD SWEEP ANGLE ASPECT RATIO TAPER RATIO T/C WING FIN DATA AREA ASPECT RATIO TAPER RATIO T/C 1/4 CHORD SWEEP ANGLE NUMBER OF FINS FUSELAGE DATA NUMBER OF FUSELAGES TOTAL LENGTH MAXIMUM WIDTH MAXIMUM DEPTH CARGO AIRCRAFT FACTOR PASSENGER COMPART LENGTH LANDING GEAR DATA LENGTH OF MAIN GEAR LENGTH OF NOSE GEAR DESIGN LANDING WEIGHT SET WLDG TO END OF DESCENT CARRIER BASED AIRCRAFT PROPULSION SYSTEM DATA NUMBER OF ENGINES ON WING NUMBER OF ENGINES ON FUSE BASELINE ENGINE THRUST BASELINE ENGINE WEIGHT WEIGHT SCALING PARAMETER BASELINE INLET WEIGHT INLET WT SCALING EXPONENT BASELINE NOZZLE WEIGHT NOZZLE WT SCALING EXPONENT BASELINE NACELLE LENGTH BASELINE NACELLE DIAMETER FUEL CAPACITY OF WING (FUEL CAPACITY FACTOR FUEL CAPACITY OF FUSELAGE ADJUST FUSE FUEL CAPACITY AUXIL TANK FUEL CAPACITY NUMBER OF FUEL TANKS ADDED MISC PROP SYSTEM WT CREW AND PAYLOAD DATA FIRST CLASS PASSENGERS TOURIST PASSENGERS STEWARDESSES GALLEY CREW ETAE . 3010 PDIST 2 .00 SHT 845,0C SQ SWPHT 27.00 DEG ARHT 5.00 TRHT .0000 TCHT .0850 HHT 1 .0000 NVERT 1 SVT 685.00 SQ SWPVT 41 .00 DEG ARVT 1.0000 TRVT .0000 TCVT .1100 SFIN 72 .55 SQ ARFIN 1.090C TRFIN .3250 TCFTN .1000 SWPFIN 50.00 DEG NFIN 2 NFUSE 1 XL 159.10 FT WF 21 .06 FT DF 23 .00 FT CARGF 1.0000 XLP 120.01 FT XMLG .00 IN XNLG .00 IN WLDG 528125.0 LBF MLDWT 0 CARBAS .00 NEW 4 NEF c THRSO . 0 LBF WENG 7100.0 LBF EEXP 1.15000 WINL .0 LBF EINL i.ooooo WNOZ .C LBF EMOZ 1.00000 XNAC 12 .23 FT DNAC 6 .23 FT FULWMX 182720.0 LBM FWMAX 17.506) FULFMX .0 LBM IFUFU 0 FULAUX .0 LBM NTANK 7 WPMISC ooo LBF NPF 0 NPT 0 NSTU -1 NGALC -1 (CALC) STITLE, BEGIN INPUT DATA ECHO C17 Short Mission Nov 18 96 15:09:06 C17-SHORT-FLOPS-OUT PLIGHT CREW NF1.CR WIGHT PER PASSENGER MP PASS A»i •• ? !• AVENGER SPP CAyuo IN WING CARGOW CARGO IN FUSELAGE CARGO P" ITVUSr-i IDE PARAMETERS FOR WEIGHTS WING - TOTAL FKWl WING WEIGHT FIRST TERM S-'RWIl WING WEIGHT SECKID TERM FRWI2 WING WEIGHT THIRD TERM HORIZONTAL TAIL FKH'F VERTICAL TAIL FRVT WU. ) W:-.. • FIN FRF IN CANARD ••• RCAN F0SELAG3 FRFU NOSE LANDING GEAR FRLGN HI IK LANDING GEAR FPLUM NACELLES - TOTAL OR FRNA Alt. ;NlJU(.-RTON SYSTEM T]]R"JST REVERTERS - TDTAL W'J'HR M.-5C PROPULSION SYSTEMS WPMSC FUEL SYSTEM WFSYS SURFACE CONTROLS FRSC AUXILIARY POUHft [/H]T WAPU INSTRUMENT GROUP WIN HTfiUWUiJCS GROUP W1IYD ELECTRICAL CROLJt1 WE 11 EC AVIONICS GROUP IvAVON AP.MAHr-JJT GSOUP WAR* FURNISHINGS GBOU?P WPURN AIR C0MDITIQM1W3 GROUP MAC ANTI-L:"[NG GROUP OR WAI AUXILIARY OEM UNUSABLE FUEL ENGINE OIL PASSENGER SERVICE QH AMNO AND NONFIXED WEAPONS CAittJO AND LAGGAuE CONTAIN. OR HISCELL. USEFUL LOAD AUXILIARY FUEL TANKS FLIGHT L'kSW AND BAQTSAI.E CABIN CREW AND BAGGAGE HORIZONTAL CENTER OF GRAVITY WING HORIZONTAL TAIL V • CAL TAIL WINE VERTICAL FINS CANARD NCSE LAi.DINC GEAR HAIN LAUDING GEAR TWO FORWARD ENGINES CHE OR TWO AFT ENCflNKS AUXILIARY POWER UNIT AVIONTQS OFTOUP ARMAMENT GROUP FUOKT CREW PASSENGERS CARGO/EXT STORES :-AF :, EX s\: FUSELAGE FUEL WING FUEL AIR JHOUCTIOtt S*tt AIR CONDITIONING IN KING IN FUSS WUF WOIL WSP.V WCON KAUXT WEI • ••• • LATA CGW CGE'l CGVT CUFIN CGCAN CGF L'ULGN C'GLGM CGEF r-CEA CGA? TGAV IA—: CGSCR C! ' CGCW r.'CCF CfiSWP CG.FWF CON CGAC J 165.0 10.0 .0 OOOO oooo 0D00 JOOO oooo ODOO oooo oooo oooo oooo oooo oooo .0000 l.oono 1.0000 1 .0000 i .oooo 1 .0000 I . ODDD loooo 1.000 ;l . 00OD 1.0000 1 . 0DO0 i .oooo 1 .0000 1.0000 i. oooo l.Oi. ID i. oooo 1 . oooo 1 . oooo . 0 . 0 . 0 .0 . 0 .0 .0 .0 .0 . 0 . 0 .0 . 0 . 0 . 0 . 0 .0 . 0 . 0 . o . 0 LEF L6F IN FN IN IN IA IN IN IN IN IN IN IN : i :-! IN :N IN IN ADXEUAitY GEAR CGAI AUXILIARY TANKS CUAUT ANMO AND NONFIXED GUNS CGAMMO KlRCKI.LANFOi'S USEFUL LOAD COKIS 0 IN o . o IN , 0 IN IT MANELIST SCONFM GSCMETHli; RATI US. OBJECTIVE FUNCTION FACTORS, AND DESIGN VARIABLES DESCRIPTION NAME DESIGN RANGE OfLSRNG WING LOADING REQUIRED V1SR THRUST/WEIGHT REQUIRED TKR GLOVE/WING AREA BjtfpJJiREQ PGLOV MORI2 TAIL VOLUME CQEP HTVG VERT TAIL VOLUME COEF VTVC COST CALCULATION SWITCH ICOST FtlrJr.'T]ON TO BE OPTIMIZED - OBJ ACHML/T1 + 8 LONS) DESIGN VARIABLE DATA VARIABLE SCALE FACTOR NAME RAMP WEIGHT, LBF GW .00000 WTNG ASPECT RATIO AR .00000 THRUST PER ENGINE, LBF THRUST .00000 REF WING AREA, SQ FT SW ,00000 WING TAPER RATIO TR .00000 WTMS 1/4 CHORD SWEEP, DEG SWEEP ,00000 WTHU T/C TCA .ooooo CRUISE MACH NUMBER VCMN .00000 MAX CRUISE ALTITUDE, FT CH .00000 TURBINE INLET TEMP (R) .00000 OVERALL f RE.SSI.'HF. RAT I !j EOPR . OOOOO FAN PRESSURE RATIO EFPR .00000 •YPASS RATIO EBPR .00000 THROi'TLE RATIO KTi'K .U0ODO VALUE J-HENSIONS 25Q0.0 N MI .00 .00000 19 •> . 1OO0O0 0 .0000*(RAMP WEIGHT) . 0000'RANGE + .001 1 . 0000 -FUEL + . 000O* TfiST H .0000*(NOX EH1 VALUE ACTIVITY LOWER BOUND UPPER BOUND 650000.0 7.2000 40700.0 S i u u, o .ooooo 25 . 00 . 12100 .75000 45000.0 ,0C . ooc .0000 , of.NO noooo .0 .0000 .ooo . 0 . ooooc . 00 .ooooo .ooooc c .00 .000 .0DOO .0000 .00000 .0 . D000 . on .ooooc .oo . 00000 . ooooo , 0 . 00 . 0o.j . oooo .0000 . 0AER IBO CAM SDA5E AITE* MODARO FCLDES XI.t.AM LL OVERRIDE PJLKAKST kk.S FOR WETl'ky AjiKAS WING WETTED AREA SWETW B0«. TAIL WETTED AREA SWETH VKKT. TnlL WETTED AREA 5HETV FUSELAGE WETTED AREA SWETP NACELLE WETTED AREA SWETH TAKEOFF AND LANDING DATA RATIO OF MAX. LANDING WT. TO MAX LANDING TAKEOFF MAX MAX MAX MAX MAX TAJCSOFF WT. WRATIO VELOCITY VAPPR FIELD LENGTH l"LTO [ " . LJING FIELD LENGTH i-i.LLG CL TAKEOFF CONFIG. CLTOM CL 1-AN IN CONFIG. CLL' M APPRCACJI CL ClA^P A Iii DENSITY RATIO DFATIO L/D RATIO 2ND SEE. CLIMB ELODSS L/O RATIO MISSED AEPPOACH ELODMA THRUST PER ENGINE TAKEOFF THROFF THRUST PER ENGINE 2ND YS\. <-| !•• • THRSS THRUST PEH T.NGINE MISSED APPROACH THRMA t NAMELIST SENGDlJJ ENGINE DECK CONTROL, SCALING AND USA DESCRIPTION EhX~.:NL JECK PRINT COKTHOL NGPkT ENGINE DECK SOURCE SVJITCH ICFNEW SLOPE FACTOR EOS EXTRAPOLATING FrJEL FLOWS EXTPftC SUBSONIC FUEL FLOW FACTOR FFF5UB SUPERSONIC FUEL FLOW FACT FPFEUP FLIGHT IDLE SWITCH IDLE IGNORE NEGATIVE THRUSTS NONEG MIN i:>L>: FUEI FLOW r RACV Y I HMTN MAX IDLE FUEL FLOW FRACT FIDMAX SFC EXTRAPOLATION SWITCH IXTRAP PART PDWrK IV,TA SWITCH IF ILL MAX. CRLilSE POWER SETTING MAXCR BOOST ENGINE SWITCH DOOST FJFL FLOW SCALING CONSTANT TERM 1 • • : FUEL FLOW SCALING LINEAR TtFM AC NITROGEN OXIDES SWITCH MOX INSTALLATION DRAI3 SWITCH INSCFG -SHORT-FLOPS-OUT KALTH N'.Jnii:Hk ,,N:I \:.WW~\YY. FOX ENGINE DECS GENERATION MACH ALTITUDES .80 .75 .30 . 20 . 10 .oo -1. -1. 1. -1. # NAMELIST SENGINE KN;:I^K •:YI-:.E-: ANALYSIS RU™IT7 DATA DESCRIPTION 2-COMP SEP FLOW TURBOFAN ENGINE CYCLE DEF. FILE IENG IFILE VALUE DIMEN: COMPONENT MAP TABLES FILE TFILS PRINT LEVEL INDICATOR PRINT VIB/ANOPP DATA NPRINT 0 • PRINT LET/EL FOR WEIGH IHTPI r 1 PLOT ENGINE SCHEMATIC IWTFLT 0 CYCLE ANALYSIS OUTPUT FILE Ol ... E ENGOUT ! : ,\G 'I") CENE. VTW. A Dl IK GkKDEK F SWITCH FOR WEIGHT CALCS NGINWT 0 l*,&*y?tNlS, S^l+INT.^1 Vt2+Tjarwi,l.lr. d_ PART POWER DATA CONTROL 1THROT 1 NUMBER OF A/B POINTS NPAD 0 NUMKXR ;;>- DRY POINTS :. DRY 15 PART POWER THRUST CUTOFF XTDLE .05000 MAX ALLOWABLE ITETtATlONS KITMAX 50 DESIGN POINT DATA L^SIOU POINT NET THRUST DFISPW 40700.0 LBF OVERALL PRESSURE RATIO =RDFS 30.8000 FAN PRESSURE RATIO FPRDE3 1.5000 BYPASS RATIO K.-3 5,9000 DESIGN TURBINE INLET TEMP 1 ETDJBS 2800.0 DEG R DESIGN THBOTTLE RATIO TTRBES 1.0000 OTHER ENGINE CONFIGURATION DEFINITION DATA FLAG FOR At-l-ESIitJkNKk ;,i- i:-N F FLAG FOR DUCT BUHNER lliURN F AFTERBUSNER EFFICIENCY EFFAB .aiooo MAX AFTSR&ypNKR TEMP TAEMAX 3500.0 DIE[j K FLAG FOR VARIABLE NOZZLE VEN F CUSTOMER COMPRESSOR BLEED C03TBL 1.0000 i.B'SEC TURBINE COOLlNU (IRON UK] WC00L -.0001 FKA '" CUSTOMER POWER F.XTRACTICW HPEXT 2oa.oo HP FUEL HEATING VALUE FHV 13500.0 BTU/LD TECHNOLOGY AVAILABILITY YEAR 199$. YEAH FLAG TO DO BOAT.*.:!, DRAG : >AT J. DELTA TEMPERATURE DTCE . 00 DEG C BVZ-Y- VARIES TO ZERO AT ATC J00OO. PT FLAG TO DO fPJLLAGE DRAG SPILL p FLAG TO DO LIP DRAG LIP (OR I Nov 18 15:09: C17-SHORT-FLOPS-OUT USED TO DEFINE HACH-ALTITUPE ARHAY PPINT5 MAXIMUM MACH NUMBER XXKAX .7500 MAXIMUM ALTITUDE JUQtX 45000. 0 INCREMENT IN MACH NUMBER XMINC .2000 INCrRUFNT 1H ALTITUDE AIKC 5000.0 MINIMUM DYNAMIC PRESSURE OMIN 1 ' i . J MAXIMUM DYNAMIC PRESSURE QMAX 1200.00 ENGTNR CYCLE OPT IMTV.rti'. IN CF.1ITSE CONDITION MACH NUMBER AT g T TUDE XM3ES XADES ENGINE CYCLE BEHAVIORAL CONSTRAINTS MAX COHFRESH DISCHARGE TMP CDTHAX MAX CCHPKESR DISCHARGE PRS COPMAX MAXIMUM JET VELOCITY VJMAX y. IN I MUM SPECIFIC THRUST STMI.N MAXIMUM BYPASS/CORE AREA ARMAX S£A LEVEL STATIC MAXIMUM THRUST GENERATED PROPULSION SYSTEM WT. .7500 41500.0 99939.0000 99999.0000 93939.0000 1.0000 99999,0000 40700.0 7500.0 FT FT PSF psf R p;;j FT/SEC L3/LB/SEC La ) 1 (NEW BASELINE ENGINE THRUST - GVERRTDEB THRSO) ft /.r.I. PO^H'l ENGINE DECK SUMMARY MACH = . BOO, ALTSTUiJfc = 40000. . TKH"STS' tr'UEL FLOWS/SPCS/NOX RATIOS FOLLOW 5064.8 4405.2 3779.3 3469.7 3169.2 2851.9 2535.6 2244.9 1977.3 1730.0 :502.4 1393.9 1103.1 917.8 741.8 .0 3142.1 2B21.3 24B.9.9 J331-6 21*0.8 2025.4 1872.7 1731.9 1601.6 1430.9 136U.9 1165.0 1161.4 1077.2 991.6 629.3 .628 .640 .E59 .672 .-.38 .710 .739 .771 .810 .856 .ill .975 1.059 1.174 1.335 .000 MACH = .800, ALTITUDE = 35000., THRUSTS/FUEL FLOWS.'.SFCS/NOX KATIOS FOLLOW 6*1"'.9 S60B.1 41-11.J 4417.2 4034. 6 3 630.6 3224.0 2B57.9 L7.2 2202.4 IS 12.7 1147,2 14(14,4 1168.5 94S.5 .0 i'-iA.l j: -.'I 31/. -i ;--'"0.8 .-'7:.7 2580.6 2386.0 2206.7 2040.7 1HR6.8 1744.; mi, a ijse.7 1S372.5 1263.7 sex. a .629 .641 .659 .673 .689 .711 .739 .772 .81/ . bi.7 .912 .978 1.060 1.175 1.336 .000 MP.ch = .800, ALT 1 WE = 30000., THRUSTS/FUEL FL0WS/3FCS/MOX RATIOS FOLLOW HIc.:.4 7100,2 6091.4 5592.5 5108.1 4596.6 4046.B 3616.3 31H7.0 2784.3 242 .•' 2085.'. 1778.1 1479.4 1.197.2 .0 £25! .2 4655.4 4 LOR.7 3347.4 3598.6 3)42.J 3090.1 2857.8 2642.9 2443.6 2258.8 2087.4 192-1.1 ".777.5 1S36.6 1C34.4 .643 .656 .675 .666 .704 .727 .756 ,790 .829 .876 353 1.001 1.084 1.201 1.367 .000 NAGH = .800, ALTITUDE = 21.000.. THRUSTS/FUEL FL0WS/SFCS/NOX RATIOS FOLLOW 10227.4 SS9S.4 7613 . 6 70!;6.0 6-°°.6 5758. R 5120.1 4533.2 3995.8 J493.3 3(133.J 2611!.7 2227,6 1P33.4 1499.9 .0 6/30.3 5966.7 5240.9 4931. J. 4612.2 4-:»J.S 3!J60.b 3662.8 jiJ,.3 3131.9 2895.0 2675.3 2471.1 227H.2 209 ;.=, 1330.9 .668 .671 .690 .704 .721 .744 ,774 .80" .848 .897 .954 1.024 I 107 :,:'.:9 i.^*8 .000 i/AC'I = . BOO, AMTTJrsS » 30000., 1HH UST?/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 12701.3 11047,1 9477.6 8701,3 7547.6 7151,8 6358.6 5629.7 4958.6 4338.3 3767.7 3244 '; i7C5.5 2301 .7 1862.7 .0 8550.0 75/9.9 6689.7 t>264 .4 b8a9.3 5441.7 5031-3 4653.1 4303,1 3978.6 3677.3 1398.7 >339.2 2894.3 2664.i I690.B .673 .646 .706 .720 .737 .761 .791 .827 .868 .917 .976 1.047 1.13$ 1.257 1.431 .000 »A/::i - .1(00, ALTITUDE = 15000. . THRUSTS/FUEL FLOWS/SFCS/NOX P.ATJOE FOLLOW 1065J.7 ISfcl'J.O 11680.6 10723.9 9795.0 6811.2 7B36.7 6936.4 611 1.2 5346.8 4643.6 3999.0 3409.6 2936.7 2295.7 .0 10777.2 9551.4 8432.3 7896.2 73B5.5 6459.1 6342.0 5465.2 4635.8 4234.0 3957.0 3648.0 335'6.7 2131.2 .688 -702 .722 .736 .754 .778 .809 .845 .998 1.071 1.161 1.286 1.463 .000 MACH = .800, ALTITUDE == 10000., THRUSTS/FUEL FLOWS/SFCS/NOX 17EE5.7 15556.3 13346.1 32.252.9 11191.6 10071.0 8954,1 7927,/ 5305.7 4369.2 3695.7 3211.2 2623.0 .0 12677.8 112:39.4 9919.4 9288,7 868.8 . C 8068.8 7460.4 6899.6 5453.4 5039.5 4654.8 4291.4 39.51.1 2507. n .709 .723 .743 .753 .776 .801 .833 .670 0>'l !,.••' 1 .195 1.324 1.506 . 000 MACH = .800, ALl'ITUTE - 500.'. , THRUSTS/FUEL FLOWS/SFCS/NOM 18913.5 16450.2 14113.1 11957.0 11834,8 106*9.7 9468.7 8383.2 5610.6 1631.8 4119.6 3J27.5 2773.4 .0 13954.6 12371.3 10918.4 10224.1 9562.9 B68.1 t 8211.7 7594.4 fi 0 02 .6 5547,0 51-33.6 1723,6 4349.0 2759.5 .73B .752 .774 .789 .80R .834 .557 .906 1.070 l.iiS 1.241 1,37b 1.568 .000 MACH = .800, ALTJ'J'JDE - 0., THRUSTS/FUEL FLOWS/SFCS/NOX 19837.8 17254.1 14802.8 13590.3 12413.1 11170.2 4 8732.9 5444.7 5067.9 4.320.9 3595.0 2909.3 .0 11315.2 13577.5 1I9B2.9 11221.0 10495.4 9747,4 9012.4 8334.9 •'"187.8 6087.9 5623.2 5134.1 4773.U 3028.6 .772 .7*7 .810 .826 .846 .873 .907 .948 1.119 1.21-1 1.301 1.442 1.641 .000 MACH = .750, ALTITUDE » 400O0., THRUSTS/FUEL FLOWS/SFCS/NOX 4941,1 4295.4 JhR6.8 3390.8 3103,S 2798.1 2493.4 2212.3 1489.5 1286.7 1100.4 908.2 736.7 .0 3006.4 2665.3 2331.4 2204.C 2062.9 1917.2 1775.8 1641.1 129B..2 120D.O 3IDB-4 1020.7 939. 5j 592.0 .60S .620 .636 .650 .665 .685 .711 .742 .«72 .933 1.007 1,124 1.276 .000 MACH - .730, ALTITUDE - 30000., THRU!TS/FUEL FLOWS/SFCS/NOX 6290.5 5468.f 4693.7 4316.9 3951.1 3563.3 3174.4 2816.£ 1B.H5.3 1638.2 1400.9 1155.2 937.9 .0 3829,3 3395.3 2996,7 2807,7 2628.0 2442.3 2259.6 2090.6 1653,3 1538.6 1*12.0 1300.3 1197.2 754.2 .609 .621 .6:8 .650 .66:. .686 .712 .742 .872 .933 l.OOd 1.125 1.276 .000 MACH = .750, ALTITUDE = 30000., THRUSTS/FOE.L FLGWfc/SFCS/NOX 7964.6 6923.9 3J42.9 5465,7 5O02,6 4510.4 4019.2 3565.2 24DI.0 2174 1.773,7 14(13.9 1187.5 .0 4959.7 4397.0 3880.8 3636.1 3403.3 3162.H 2320.3 2707.4 2141.7 13/9.6 1-128,6 1683,9 Is: .4 976.7 .623 .635 .653 .665 .670 .70] .728 .759 . •• ' • ••')•! 1 331 1.150 1 .306 . 000 MACH = .750, AL.?:T'JD3 = 2 5000,, THRUSTS/FUEL FLOWS / SFCS ,'NOX 3978.0 8671.2 7445,1 6847.3 6267.2 5650.5 5035.2 4467.6 3007.9 2598.4 2222.0 1831.9 1437,7 .0 6355.7 5631.6 4973.1 4659.5 4361.2 4053.0 3749,9 3459.4 2714.5 2516.4 2313.2 2157.9 1986.8 1U0I.5 .637 ,650 .668 .690 .696 .717 .745 .777 .932 .976 1.055 1.177 1.335 .000 RATIOS 5982 . 6 6380 . J . J11 RATIOS 7383 .8 7023 . 1 . 951 RATIOS 7744 .7 7707 . 9 . 995 115 .0 . 938 FOLLOW S109.1 5999.5 FOLLOW 6160 .2 6 4 93.6 1 ,005 FOLLOW 6775 . 9 7126.7 1.Q53 RAT [OS 1951 .5 FOLLOW 17. .8 MACH = .750, Al :T I TULlE = 20O00., THR1 'SIS/ FUH 1238E.2 10769.4 9243.5 8501.3 7781.0 7015.5 3734.S 3226.1 2756.S 2276.9 1B47.1 .0 ROTO.a 715E.1 6311.1 5916.9 5536,1 5146.7 3435.1 1221.4 2975.5 2710.2 2522.9 1589.3 . EI.OWS/SFOS/lOOX 6251.5 5546.8 1518 .1 . 778 RATIOS 1933 .9 .778 RATIOS 1145 .7 25D4 . 5 . 796 - YTIOS 3940.9 •20".4 . 814 RATIOH 4892 . 9 1404.0 . 821 ;-;,OLLOK 217 8.1 1788.6 . 821 FOLLOW 2757.7 FOLLOW -•ou-ow 42B9.3 ..4 37K9.2 Nov 18 96 15:09:06 C17-SHORT-FLOPS-OUT .65'. .664 .681 -III .711 .933 .995 1.079 1.203 1.366 .734 .000 MACi i, AL' ' •; DC . , 'CJ l/KJJii. I . .'.-.'i/SFCS/NOX 15203.4 13269.0 11388.9 10474.4 95B7.0 864J.7 7702.4 6834 2 56*1.3 3974.H 3399.1 2BD5.4 2275.7 .0 10169.0 SOIL.I 7956.8 74SS.1 6977.8 6464.7 5599.8 5551.0 •I,si,2 1 54.a 3749.1 3452.6 3178 . t 2002.4 666 ;I7S .699 .713 .728 .750 .779 ,812 .954 1.021 1.101 1.231 1.397 .000 MACH -: .750, ALTITUDE = 100OD., THRUSTS/ FUEL FLOWS/SFCS/NOX L8359.2 15960.2 1369b.t 12 •.•:'<( . 1- 11531.4 10396.8 9264.7 B220.3 5534.5 4761.0 40S8.5 3374.4 2737.3 .0 12S2S.0 11103.9 9B00.3 9132.3 8594.5 7987.2 7389.9 6837.1 5408.5 4993.2 4617.7 4252.5 391.:.3 2466.4 .542 .696 .715 .729 .713 .768 .798 .832 .977 1.046 1.129 1.260 1.430 .000 MACH = ,750, ALTITUDE = 5005,, THH(JSTS/FUEL FLOWS/SFCS/NOX 19452.9 16911.0 14514.9 13349.5 1221B.4 11016.2 9315-6 8710,0 •'•••'. 3 50-5 . 9 4 3 )2. j j.4 ,J900.4 .0 137F4.7 12230.7 10785.9 10105.9 9458.9 8790.5 8133.1 7524.H 3952.5 5502.0 5082.1 46OT-2 4309.1 2714.4 .7-.19 .723 .743 .757 .774 .798 .829 .864 l.o,; 1.01.6 1.173 1.309 1.486 .000 HHZH = .750, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX 20470.4 17795.5 15274.G 14047.7 12 357.5 11592.4 1C330.O 9365.6 6171.0 5130,3 4558.7 3762.4 3052.1 .0 151^7.S 13411.0 11836.6 11090.2 10380.2 96-16.7 8925.3 3257.7 6532.3 0D37.3 5577.2 5136.0 .'?.. 3. J 2^73.8 .739 ,734 .775 .739 .807 .832 .864 .901 1.0:9 1.133 1.2J3 1.365 1.549 .OOO M^CH = .700, ALTITUDE - 35000,, THRUSTS/FUEL FLOWS/SFCS/NOX 5165.7 5374,1 4G34.6 4275.4 3922.3 3542.8 3167.0 2&17,0 1914.0 1665 6 1415.4 1174.2 955.5 ,0' 3628.4 3217.6 .041.6 266..9 24L .2 1 ,.6 2144.0 1982.9 1566.5 1447.0 1133.7 1227.2 LI 2 3.0 692.H .488 .599 .614 ,624 ,636 .654 .677 .704 .•9.17 .869 .942 1.045 1.179 .000 MACH = .700, ALTITUDE 30000., THRUSTS/FUEL FLOWS/SFCS/NOX 7807.7 6804.1 5867.9 5413.0 4966.0 4485.6 4009,8 35*6.« 5428.1 2103.8 17*2.0 I486.7 L 211.0 .0 4698.3 4166.4 3613.3 1452.0 3230.9 3001.0 2776.2 2567.6 2028.5 1673.7 1726.9 1589.0 1460.6 896.7 .602 .612 .423 .638 .651 .669 .692 .720 ,835 ,889 .354 : .0I\2?0.1 J5S9.3 2401.0 2212.9 2D3S.2 1871.7 J149.C .615 .626 .642 .452 .663 . 6K4 .701! .736 .854 S09 .986 1,093 1 S14 .000 MACH = .700, ALTITUDE = 2U000., THRUSTS/FUEL FLOWS/SFCS/NOX 12.11.?. lf>! M .) » 1.-5. 8417.9 7722.7 6975. 5 623 3.6, 51,06.4 3776. 31.79.4 2786.3 231.1. .9 1KB3.2 0 7642.7 6777.5 5991.7 5515.4 52 55.8 tLMil.a 4516.0 4176.7 3299.7 2D4B.O 2809-i 2584.9 237S.O U5S-6: .529 .641 .65 .667 .681 ,700 ,724 .75;. .17 .329 1.005 1.118 1.262 .300 RATIOS FQl. :,•'/> 60/8 5 5284.9 513 4.9 474 9.1 ,852 .899 RATIOS FOLLJC™ 7251.2 6356.8 6324,6 5849.4 .872 .920 RATIOS FOLLOW 768.3.2 6735.5 6960.7 6437.7 .906 .956 RATIOS FOL1/ 8085.0 T06F 7638.7 7064.8 .945 .997 RATIOS FOLLOW ::492.5 21*3.2 1E13.6 1695,0 .73 .773 RATIOS FOLLOW 3155.8 2776.8 2374.2 2194.9 .752 ,790 RATIOS FOLLOW 3353.6 3478.8 3042.3 2812.5 .770 .808 RATIOS FOLLOW •i 9 0 .' 6 4 316.2 3 362.1 3 570.4 ,787 .927 MACH = .700, ALTITUDE » 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 14551.B 13032.5 11259.4 10368.4 9511.ft 3591.6 76*0.1 6*31.4 5044,6 511B.7 4601.3 4039.2 3432.4 2347,5 2319.5 .0 9625 , 3 8535.7 7546.0 707.2.2 6519,2 5148,2 5657.5 5250.2 4864.0 4496.6 4155.7 3338,6 3538.0 3255.5 2992.4 1*137.0 .644 .653 .671 .682 .696 .716 .741 ,770 ,805 ,845 .39:1 .950 1.031 l.iOJ 1.290 .CUU MACH - .TOO, ALTITUDE = 10000., THRUSTS /FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 133R7.J ir. 2233.0 1844 1 1499.1 .0 5498.0 4884.9 4326.1 4041.9 3775.3 3493.5 3221.6 2969.3 2735.1 2518.4 2317.3 2124.4 1944.5 1778.2 1625.6 961.6 .-in" ,575 ,585 .593 .501 .615 .632 .653 .678 .708 .742 .797 .871 .964 L.0"4 .000 >'4ACH > .600, AM1 :.!•!.:•:•!•; = 20000., THRUSTS/FUTL FLOWS/SPCS/BOX RATIOS FOLLOW 120O1.5 10542.5 91','0.5 8463.8 7790.3 7051.7 6324.1 5643.2 5005.0 4417.6 33/7.9 3309.4 2771.3 2283.7 1851.0 .0 6978. D SJ9S.9 5490.7 5]" 1.2 479 i. 5 4 434.0 43*F\.{L 3768.7 1471,5 1196.3 2941.i 2696.2 2467.9 2256.5 2063.2 1220.4 .581 .584 .599 .6M6 .615 .629 .647 .668 .694 .724 ,753 . :' : : .34 1 . '736 1.105 . 000 MACH = 605, ALTITUDE = 15000., THRUSTS / FUEL f[/)WS / KJ-'L'S / NOX KATlil-S FOLLOW 14773.5 12r77.5 1I2BB.5 I041B.6 95B9.6 B630.4 7734.7 5946.6 6163.0 5417.9 4773.6 4073.S 3411.4 2817.3 2290.8 .0 8782.4 7 303.1 6910.5 64 5B.1 603D.6 5530.6 5146.1 4743.2 43H9.0 4022.8 3701.7 3393.5 3106.1 26J0.5 2596.7 1536.0 .594 .£01 -L-±2 .620 .629 .643 .661 .683 .709 .740 .775 .333 .911 1,008 i.L24 .000 MACH * .600, ALTITUDE * 10000.. THRUSTS / FUEL FLOWS /SFCS/NOX RATIOS FOLLOW IR055.3 15(1(0.3 13796.2 12733,0 11719.9 1D6D4.7 9514.0 848?. 6 7519.* 6645.9 5B34.0 4974.7 41E9.2 3443.1 2799.7 .0 Nov 15:09:06 C17-SHORT 10971.8 9748.4 8633.3 8068.0 7533.9 6971.7 6429.0 5925.7 5458.2 5025.7 4624.5 4239.4 3880.4 3548.6 3244.1 1918.9 .608 .615 .626 .634 .643 .657 .676 .698 .725 .756 .793 .852 .931 1.031 1.159 .000 MACH = .600, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 21508.6 18893.9 16434.9 15168.4 13961.5 12637.8 11333.7 10113.4 8969.7 7917.0 + 6949.9 5931.0 4966.6 4101.7 3335.2 ,0 13368.8 11878.0 10519.3 9830.6 9179.8 8494.8 7833.5 7220.2 6650.6 6123.6 +• 5634.8 5165.6 4728.1 4323.9 3952.8 2338.2 .622 .629 .640 .648 .658 ,672 .691 .714 .741 .773 .811 .871 ,952 1.054 1.135 .000 MACH = .600, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 22932.0 20144.2 17522.5 16172.2 14885.4 13474.1 12083.7 10732.7 9563.3 8440.9 *• 7409.8 6323.5 5295.3 4373.1 3555.9 .0 14692.6 13054.2 11561.0 10804.0 10088.9 9336,0 8609.2 7935.2 7309.1 6730.0 H- 6192.7 5677.1 5196.3 4752.0 4344.2 2569.7 .641 .648 .660 .668 .67B .693 .712 .736 .764 .797 + .836 .898 .981 1.087 1.222 ,000 MACH .500, ALTITUDE 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 12279.6 10898.4 9607.3 8876.8 8171.1 7390.0 4047.4 3447.9 2878.4 2371.0 1917.6 .0 6523.6 5808.6 5156.8 4797.4 4456.8 4098.6 2628.9 2391.2 2169.8 1967.0 1780.6 992.1 .531 .533 .537 ,540 ,545 .555 .650 .694 .754 .830 .929 .000 6628.2 5922.0 5270.0 4669,2 3756.5 3441.5 3151.4 2383.4 MACH = .500, ALTITUDE = 15OO0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 15110.5 13410.8 11822.1 10923.2 10054.8 9093.6 8156.2 7287.2 6484.9 5745,6 * 4980.5 4242,8 3542,0 2917.6 2359.7 .0 8207.6 7308.0 6488.0 6035.8 5607.3 5156.6 4726.2 4329.9 3964.9 3627.8 * 3307.5 3008.4 2729.9 2474.8 2240.2 1248.2 .543 .545 .549 .553 .558 .567 .579 .594 .611 .631 + .664 .709 .771 .848 .949 .000 MACH .500, ALTITUDE 10000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 18456.3 16380.3 14439.7 13341.9 12281,1 11107.1 6083.2 5182.3 4326.2 3563.7 2882.2 .0 10247.5 9124.4 8100.5 7535.9 7000.9 6438.2 4129.6 3756.2 3408.3 3089.8 2797,0 1558.5 .555 .557 .561 .565 .570 .580 .679 .725 .788 .867 .970 .000 9962.2 8900.8 7920.8 7017.8 5900.8 5406.0 4950.3 4529,4 .592 .607 .625 MACH = .500, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 22387.6 19869.3 17515.5 16183.7 14897.1 13473.0 12084.2 10796.7 9608.0 8512.6 + 7379.0 6286.1 5247.7 4322.8 3496.1 .0 12703.7 11311.4 10042.1 9342,2 8679.0 7981.4 7315,2 6701.8 6136.8 5615.1 + 5119.4 4656.5 4225.3 3830.5 3467.4 1932.0 .567 .569 .573 .577 .583 .592 .605 .621 .639 .660 + .694 .741 .805 .886 .992 .000 MACH = .500, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 24956.3 22149.2 19525.2 18040.7 16606.4 15018.9 13470.7 12035.5 10710.5 9489.3 t 8225.7 7007.4 5349.9 4818.8 3897.2 .0 14480.5 12893.5 11446.7 10648.9 9892.9 9097.8 8338.4 7639.1 6995.1 6400.5 * 5835.4 5307.8 4816.3 4366.2 3952.4 2202.2 ,530 .582 .586 .590 .596 .606 .619 .635 .653 .674 * .709 .757 .823 .906 1.014 .000 MACH = .400, ALTITUDE = 10000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 19383.6 17374.6 15462.0 14297.1 13170.0 11919.3 10704.3 9577.1 8534.5 7486.4 643S.2 5489.0 4620.9 3793.9 2974.1 .0 9759.2 8703.1 7734.3 7157.0 6612.0 6040.5 5498.7 5001.8 4545.3 4117.7 3717.1 3351.0 3014.8 2703.8 2397.4 1285.7 .503 .501 .500 .501 .502 .507 .514 .522 .533 .550 -OUT .577 .610 .652 .713 .806 .000 MACH = .400, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 23508.6 21066.6 18747.6 17335.2 15968.6 14452.1 12978.9 11612.2 10348.0 9077.2 7806.3 6655.4 5602.8 4600.0 3606.1 .0 12093.9 10785.1 9584.6 8869.2 8193.8 7485.5 6814.2 6198.4 5632.7 5102.8 4606.3 4152.6 3736,0 3350,6 2970.9 1593.3 .514 .512 .511 .512 .513 .518 .525 .534 .544 .562 .590 .624 .667 .728 .824 .000 MACH = .400, ALTITUDE = 0.. THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 27293.1 24462.5 21769.7 20129.6 18542.7 16781.7 15071.1 13484.1 12016.1 10540.5 9064.6 7728.2 6506.0 5341,5 4187.4 .0 14316.7 12767.4 11346.2 10499.3 9699.7 8861.3 8066.6 7337.6 6668.0 6040.6 5453.0 4915.9 4422.7 3966.5 3517.0 1886.1 .524 ,522 .521 .522 .523 .528 .535 .544 .555 .573 .602 ,636 .680 .743 ,840 .000 MACH ~ ,300, ALTITUDE - 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 25221.8 22780.4 20475.9 18952.7 17477.0 15844.1 14241.2 12748.9 11289.8 9828.3 8497.4 7252.9 6113.1 5047.1 3865.9 ,0 11717.0 10457.3 9303,6 8565,0 7869.8 7146.8 6460.9 5833.8 5253.4 4713.4 4222.2 3772.6 3360.8 2978.2 2533.2 1290.2 .465 .459 .454 .452 .450 .451 .454 .458 .465 .480 ,497 .519 .550 .590 .668 .000 MACH = .300, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 29925.9 27029.1 24294.9 22437.5 20736.6 18799.2 16897.3 15126.7 13395.4 11661.4 10082.2 8617.5 7253.3 5988.4 4586.9 .0 14181.3 12656.7 11260.3 10366.3 9524.9 8649.9 7819.7 7060.8 6358.3 5704.8 5110.2 4566.0 4067.7 3604.6 3126.4 1561.6 .474 .468 .463 .461 .459 .460 .463 .467 ,475 .489 .507 .530 .561 .602 .682 .000 MACH = .200, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 27500.8 25037.4 22681.3 20972.5 19316.9 17487.4 15698.9 14038.7 12320.6 10738.9 9250.9 7887.4 6650.8 5293.1 3997.4 .0 11508.8 10281.6 9152.3 3369.9 7636.9 6879.8 6166.8 5519.7 4917.3 4371.7 3874.7 3423.4 3014.4 2597.6 2220.9 1058.6 .418 .411 .404 .399 .395 .393 .393 .393 .399 .407 .419 .434 .453 .491 .556 .000 MACH = .200, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 32951.1 29999.5 27176.4 25129.0 23145.3 20953.1 18810.2 16821.0 14762.4 12S67.2 11084.3 9450.6 7968.9 6342.1 4789.7 .0 14080.4 12579.0 11197.4 10240.1 9343.4 8417.1 7544.8 6753.1 6016.1 5348.6 4740.5 4188.4 3687.9 3178.0 2717.1 1295.2 .427 ,419 .412 .408 .404 .402 .401 .401 .408 .416 .428 .443 .463 .501 .567 .000 MACH = .100, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 30350.4 27786.1 25342.0 23469.4 21650.2 19624.5 17640.2 15716.2 13786.2 12025.3 10391.6 8896.4 7409.2 5784.9 4429.6 .0 11408.3 10192.8 9075.9 8258.4 7495.0 6707.9 5971.3 5299.8 4683,3 4130.5 3629.4 3178.8 2750.0 2330,0 1968.8 912.7 .376 .367 .35B .352 .346 .342 ,339 .337 .340 ,343 ,349 .3S7 .371 .403 .444 .000 MACH = .100, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 36489.0 33406.0 30467.6 28216.2 26029.1 23593.7 21208.0 18894.9 16574.5 14457.5 12493.4 10695.7 8907.8 6954.9 5325.6 .0 14016.5 12523.1 11150.9 10146.4 9208.5 8241.5 7336.4 6511,4 5754.0 5074.8 4459.1 3905.5 3378.8 2862,7 2418.9 1121.3 .384 .375 .366 .360 .354 .349 .346 .345 .347 .351 .357 .365 .379 .412 .454 .000 MACH = 000, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW Nov 1896 C17-SHORT-FLOPS-OUT 13S24.6 31141.5 2B571.=> 26*69 1 24422.6 22105.5 19B79.3 17675.0 15512:.9 * 11702.1 10019.1 B071.S $34,2,6 4893.$ .0 11J77.9 10146.3 S052.A 8136.1 7180.5 6545.0 577S.4 5081.5 4452.1 + 33- >.8 2 IL^A. 0 2465-9 2055.1 1721.0 910.2 .236 ,126 ,.317 .309 . J 02 .296 .291 .288 .287 + ,2S3 .292 .305 ,326 .352 .000 MACH - .000, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS 46700.0 37471.4 34379.6 3)8-48.5 29386.8 26598.8 23920.0 21267.7 13666.1 • 140-30 B 12055,6 9712.5 7613.9 5R37.5 .0 13995.6 12505.9 11135,6 10069.4 907B.6 8050.8 7109.0 t*S3 .1 5476.4 T 4161.0 3(01.6 3033,2 2540.3 2118.0 1113.7 .344 .334 .324 .316 .309 .303 .297 .294 .293 : - JEAB.9 .287 FOLLOW 16285,S 4783.6 .294 . 29b . 299 .312 .333 . 360 # REVISED PROPULSION SYSTEM DATA BASELINE ENGINE THRUST THRSO •.••Ay;-:; .: ; yr.-:~ . r w NG BASELINE INLET WEIGHT WIN;, BASELINE NOZZLE WEIGHT WNOE BASELINE NACELLE LENGTH XNAC PASEL'NF NACELLE DIAMETER DNAC .000 40700.D 7100.0 .0 .( 12 . 2j 6 .23 LBF LBF i.3F LBF # NAME!IST SMISSIN PERFORMANf*>: CONTROLS AND FACTORS AND MISSION EEOMENT DEFINITION VALUE DI MENS I ONO DESCF.I PT'JON NAME ENDURANCE MISSION SWITCH IN::R OVERALL FUEL FLOW FACTOR FACT CDO FACTOR FCDC CDI FACTOR FCDI 5UB50NIC CO FACTOR FCDSUB SUPERSONIC CD FACTOR FCCSUP fcifl^RNE SCALING SWITCH ISKAL OWE FACTOR OWFACT PRINT FLAG I FLAG 0PTA1LED MISSION PRINT MSUMPT TEMPERATURE DEVIATION DTC TALC RAMP WT OR RANGE IRW RAMGE TOLERANCE HTDL ATA TRAFFIC ALLOWANCE I ATA WEIGHT INCREMENT DWT 0 OOOO OOOO OOOO GROUND OPERATIONS AND TAKEOFF INPUT TRXFOJ/F TIME TAKOTM TAXI-OUT TIME TAX01W APPROACH TIME APPRTM A 'ROACH FL FLOW FACTOR APPFFF TAXI-IS TIME TAXITH 1 .C0OC 1.000C 1 1.000C 2 1 .0 1 .0010 0 1. 2 .0 15 . 0 .0 2 . 00 2.0 KIN KIN MIN MIN iAKEOFE MOWER SETTING ITTFF 1 TAXI FUEL FLOWS W3LL BE FROK THE ENGINE DECK IN. JT FOR : CL -.. r'.'HE. '".E:- MINIMUM CLTNS MACH NUMsER CLMMIN MAXIMUM CLIHF3 MACH NUK5ER CLMMAX MINIMUM CLIMB ALTITUDE CLAMIN FT MAXIMUM CLIMB ALTITUDE CLAMAX FT NUKB-ER DP CLIMB STEPS NINCL CLIMB OPTIMIZATION FACTOR FWF FOLLOWING CRUISE SEGMENT NCRCL (1 .3000 . 0000 0. (2! .3000 .0000 0 . 0 . (3) -3000 . 00DD 0. 0. " • . D010 1 {4 1 .0000 0 . 31 0 DRAG COEFFICIENT INCREMENT CLDCD .0000D .ooooo . DOOOO .00000 MO OF POWER 6ETTINCS I PRCL 1 1 1 1 STORE DRAG DURING CL 1 KB ISTi.'L 0 0 0 0 MAX CLIMB POWER SETTING MAXCI, 1 FAA CL1KH ENFOHCEB IFAACL 0 FAA DESCENT ENFORCED 1 PAADE 0 MINIMUM CLIMB RATE SWITCH NODIVE 0 MINIMUM GLIMS RATE DIVLIM 0. FT/MIN Q LIMIT IN CLIMB Ol ' 1 . 0 PSF MAXIMUM RATS OF DESCENT RDL1M -99999.0 F'F/jilN IHUT 1 CRUiSE SCK?IVJLES AT (2) (3! 14) [51 (6J CRUISE OPTION SWITCH IOC 2 1 1 1 1 1 CRUISE OPT FUEL FACTOR FFU'EL 1 .000 1 .0.10 1 . 000 1.000 1.000 1.000 CRUISE OPT NOX FACTOR FNOX .000 .000 .000 .000 . ODO .000 MAXIMUM MACH NUMREIR CRHACH .7500 .0000 .0000 . OOOO .00DO .0000 MAX"-MUM ALTITUDE CRALT 28000 -1. -1 . -1. -1 . -1. FT DRAG COEFFICIENT INCREMENT OI-aXH:I .00000 . OOOOO .00000 .OOOOC .00000 .00000 STORE DRAG DURING CRUISE 1STCR 0 0 0 0 0 0 LONG ttflJSGE CRUISE FACTOR FLRCR 1.000 1.000 1 . 000 1.000 1.000 1.000 MINT Ml.*! MAOH NIlHHEH r.. 3000 .0000 .( • • .•OSO .0000 .0000 MAXIMUM LIFT COEFFICIENT CRCLMX .0000 .0000 . OOOO . OOOO .0000 -OOOO ENGINE FEATHERING ALLOWED IFEATH 0 0 0 0 ENGIEE FRACTION REMAINING .5000 . 5000 .5000 . 5 000 .5000 5000 I'DEFTH .OOOOC . OOOOO . OOOOO .000OO . OMUO .00000 MTNJH-IJM CRUISJ3 ALTITUDE HPMIN 1000. 1000 . I-JOC . 10 00 . 1000. 1000. FT INCREMENT IN CRUISE WT. DCWT 10 LBF .-.ATE OF CL.LHH f'ElLING KC III 100. Q FT/MIN INPUT ]-'-.-. DESCENT SCHEDULE DESCENT OPTION SWITCH DESCENT LIFT COEFF. MINIMUM DESCENT MACH NO. MAXIMUM DESCENT MACH NO. MINIMUM DESCENT ALTITUDE MAXIMUM DESCENT ALTITUDE NUMBER OF DESCENT STEPS DRAG COEFFICIENT INCREMENT STSBE DRAG DURING DESCENT RESERVE SEGMENT INPUT RESERVE CALC. OR CONST RESERVE FUEL FRACTION OF TRIP FUEL MISSED APPROACH TIME RANGE TO ALTERNATE AIRPORT RESERVE CL I.NS SCHEDULE RESERVE CRUISE SCHEDULE START RESERVE MACK NUMBER ENL RESERVE MACH NUMBER START RESERVE ALTITUDE ENU RESERVE ALTITUDE IVS DECL DEMHIN DFNHAX DEAMIN DEAMAX NINDE DEDCD TS7DE ' RESRFU RESTRP TIMMAP ALTRAN NCLEES NCRRES SREMCH .-KK :•:•:' S P. EALT EKEALT FT FT 1 , 800D .3000 . 000D 0. 0. 31 .00000 0 .000 LBM .000 7.0 WIN 50O. 0 N MI 1 1 .3000 . 3000 0. 0. FT FT C17-SHORT-FLOPS-OUT RESERVE HOLDING TIHE HOLDTM . 0 MIN I5D00. -.00310 -.00281 -.00262 -.0024B -.0C23" -.00228 -.00225 -.00223 HOLD CRUISE SCHEDULE NCR.HOL 1 * - .00221 -.00219 -.00217 HOLP POSITION SWITCH OHCPOS 1 20DDO. -.00272 -.00246 -.00210 -.O0S1B -.00208 -.00199 -.in' .00196 CRUISE ONLY SWITCH ! CREW 0 + - . 0019$ - .00192 -.O0190 2ND RES HOLD TIME OR PRAC THOLL 000 NIK 25000. •.00231 -.00200 -.00195 -.00.185 -.OCl'.'o -.00169 -.00167 -.00166 '"HI • I CROIR: .'"OHEPULE NORTH 1 -. • : " -.COI63 -.00161 30000. -.00187 -.00169 -.00150. -.00149 -.00142 - .00J.37 -.00135 -.n >; - .00133 .0C13I -.00130 3C •'. -.OQ140 -.00126 -.00117 1) 111 - .00106 - . 00101 - . 00', NO -.ooioo MISSION SEQUENCE DEFINITION .0009O -.00097 -.00074 -.U0U6J -.00062 -.00059 -.00056 - .00054 -.00053 -.00053 STA :T nAch NUMBER 30CO ALTITUDE - 0. FT + - .00052 -.00052 -,00051 CLIM1 USE CLIHE SCHEDULE (5000. .OOOOC .0ODD0 .ooooo . OOOOO: .00000 . ooooo .00000 .OCOD'J CRUISE USE CRUISE sc: ;EDUL:-: END CRUISE DISTANCE - 200 0 0 N Ml + .00000 .0Q0DO .ooooo ,.F! OA ! PAYLOAT WEIGHT = 124UOO.0 LB 50000. .00079 .0O071 .0O066 .00062 .00059 .00057 .00056 .00056 REFUEL . . AL' :- • -2000.0 LB TIME REQUIRED •- 105 . 0 MIN .00055 .O0DE4 . 00D54 CRUISE USE CRUISE SCHEDULE 1 END CRUJSt UISTANCE 500 0 N MI 5:000. .0O152 .00146 .00135 .00128 .00122 .00116 .00110 .00.14 DESCENT .00113 .00112 00111 BUT! MACH NUMBER = .3000 ALTITUDE - 0 . FT 60000. .00251 .00226 .00209 .D0197 .00188 .00180 .00178 .00176 + - 00175 .00173 .00171 #TITLE, BEOTN OUTPUT OF RESULTS C17 lire rt: Mission FIHAL ANALYSIS # AERODYNAMIC DATA POUCH NUMBER . 75 COMPONENT + CDF Hi NO * 42 .00533 HORIZONTAL TAIL ^ i5 .00156 VERTICAL TAIL <• 48 .00074 FUSULAGFL * r-.i .00477 NACELLE * 67 .00040 NACELLE + 67 .0004C NACELLE l 67 .00040 NACELLE + 5 ? .000-10 MISCEI.IJU'iEOUS + .00084 TOI'Al, + 27 .01484 ALTITUDE 45000. FT REFERENCE AREA 3BO0.00 SQ FT TECHNOLOGY LEVEL 1 .20 SQ FT 5819.15 1.7 17.80 806.95 8036.68 Oil .34 213.34 213.34 2 13 .34 FT 23.25 13.00 19.88 159.10 12 .23 12 .23 12 .23 .0.23 RAT1 TO , 1210 . 0850 . 1100 7 . 2220 1.9631 1.9631 1 .9631 i .5631 FACTOR 1 ,440 1 .305 1 .396 1 .233 2.663 2 . 663 2 . 663 2 . 663 M : 1.3 IONS 26 . 3 14.7 22 . 5 179 . 9 13 . 8 13 . 8 13 . 8 13 . 8 CHMK3S IN DHAG COEFFICIENT FROM CRUISE ALTTTTOF 3D8 KALT-I NUHE-EL". 500 .600 .200 . 300 + .773 .800 . 825 0. - . 00409 -.00372 + - .302SJ -.00291 - . OO.: 5000. -.00378 -.00344 * -.00271 -.00269 -.00266 1oooo. -.0U34 -.00313 + -.DD247 -.00245 -.002 4 .400 -.00347 -.00329 -.00331 -.00304 .00292 -.00277 - . "0 '.I 5 -.00290 . OO.;. !0 . 7 U 0 . 00279 , 00254 .725 .002 99 • .002 76 • .00232 CF .002 .002 .002 .001 .002 . ^ 0 2 .002 . 002 . 003 ,750 . 00296 . 00274 . 00249 MACH . 500 .200 03416 .300 032 8. /I00 03197 . SCO 03127 , 600 03104 .7110 03113 .725 03127 .750 00 .74 .775 03399 . 825 ,050 . 550 .019152 ,03832 .03852 .03702 .01763 .03613 .01693 .03543 .01670 .03520 ,01692 .03531 .01706 .03 544 .01742 . 036 19 .01816 . 038K2 .01930 . 04331 .03497 . 06529 POLARS .100 .600 .0)964 .04314 .0 >4 .0^ .4 .01769 .04095 . 01696 . 04026 .01673 , 01003 .01686 . 04012 . 1. 17 .04022 .01724 .04098 .01782 .04 • 9 .01925 ,04903 ,03355 .07117 A] .350 . 550 ,02027 04642 .01897 04713 .01806 04624 .01739 04554 .01716 04531 .01725 04540 .01736 04S47 .01759 04604 .01811 04920 .01947 05470 .03337 07735 UE - 45008. FT .200 .7'0O .02111 . 05527 . 01981 . 05397 .0IB92 .05308 . 01E22 .( 238 .01799 .05215 .01811 .05223 .01622 .05221 .D1B47 .05261 .01902 . 05545 .02046 .06092 .03 447 . 0R.168 DESIGN MACH NUMBER, • MACH .200 . 300 . 40C . 50C .600 .700 .725 .750 .775 .800 82 5 CL . 050 . 771, CDF 1ESIGN CL .01906 .01776 .01687 .0161B .01559 ,01503 ,01490 . 01184 .01473 .01461 .01449 CD I .00011 .250 .750 .02235 06357 .02305 0622B .02016 06119 .Ol?47 06069 .01923 06046 .01942 06054 ,01955 06058 .01987 U6U63 156 OO. • .02J22 06746 .03 663 09009 . 458 CDC . 00000 . OUODC . ooooo . ooooc .00035 . 00097 .00119 .00155 .00217 .00353 .01755 .3 00 . 02390 .02261 .02172 02102 020BO , 02101 .02116 .02152 .0222 3 .02417 .03990 .3 50 . O2 077 . 02117 .02359 .02290 .02368 02291 02307 .02341 , 02'70 . 02627 . 04368 .4 00 .02781 .02651 . 02563 . 02496 . 02477 .02499 .02517 .02555 .( • -10 .U292G .0485:1 1,051 . 99f . 919 .831 .74 1 . 5-40 . 601 .565 .536 .46 .400 . 450 .03068 .02939 .O2B50 .02731 .02760 .02772 .027BE .02B2H .02963 .CO 0 3 i: .O530B C17-SHORT-FLOPS-OUT 100 00014 3Z0DDO- 2BO00. 30196. 21054. 11662. .6964 .7500 445 1 .0301 150 00099 4 1 1332.3 .3104 1J 20 . .0 .00 2JB DOS IT .01059 01454 01965 54 4000. 25751. 33645. 32452. 21154. . 6519 .7500 3 5 3 1 .0212 .700 .00076 .00037 00022 .00030 .00051 .33099 ODI45 .00187 .00273 4 100.0 .4778 16 76 4 0 00 + 00404 005 9 908 16 .O.OSE oi • S 01 IbJ 560000. 25062 . :• i-8i. 3335S. 21758. . 6535 .7500 451 4 .0207 .725 .000BD .00033 .00021 .00030 .00064 .00104 OOlllO .00195 .00275 4 1 100.0 .1777 16 79 4 0 .00 + 004il7 00592 00816 .3.1364 C144: 01957 57f00O. 2 :197 . 35S40. J42d3. 22472. . •. jJ5 .7500 452 5 .0201 . TW) .00U52 .00041 .00021 .00032 .00073 .00116 00162 .00209 .00295 4 3 LOO.O . 4790 16 80 4 . 30 4 004 10 00644 ( •: 9 .D1D97 01156 01933 592000. 23925. 36499. 35Z10, 23148. .5574 .7500 453 5 .0195 . 77 5 .00116 .00043 . 00022 00r 6 .00091 .00141 00189 ,00249 .00398 . + 9 100.0 .4603 16 81 4 . 00 4 00605 . 00355 0110E .01363 01699 02079 6030DD, 23355. 37453. 36133. 23822. .3593 .7500 454 6 , 0190 . Soo .00151 .00062 .00029 .0OD5O .3""J.2 7 .00201 00267 .00403 .00332 4 B 100.0 . 4813 16 33 4 0 .00 4 00873 01175 01493 ,01783 02107 02441 £24030. 22738. 33404. 37052. 24493. .6610 .7500 455 6 . 0186 . B2 5 .002 62 .00106 .00033 . 00066 .002 02 ,00337 00622 .00947 .01248 . + 0 100 , 0 . 4321 16 34 4 0 .00 4 01392 01987 02 L .02663 02997 03318 4 5 540000. 100. 0 656000. 22221. . 4827 21562. li 39350. 86 40293. 4 37967. 3 38377. Z5150. .00 25825. . 6627 ,6643 .7500 . 7500 456 457 7 7 .0181 ,0177 It CRUISE OPTIMIZATION RESULTS 4 2 100.0 .4331 1.6 ; • 4 a .00 672000. 21ID2, ' 7- .). 39784. 26487. . 6658 . 7503 4^1 7 .0173 4 2 100.0 . 4833 13 89 4 0 .00 S'JHMAKV DATA FOR CRUISE SCHEDULE 1 WEIGHT ALTITUDE THRUST FUEL SFC MACH VF.T.OCTTY SPEC1FI CRUISE SCHEDULE RANGE ANE TIME SUMMARY 4 C RATE OF 1'L L/D ENGTNES NOX AVAILABLE RL'OUlftED FLOW NUMSER RANGE WEIGHT RANGE -1- TIMF 4 3! MS OPERATING RATE (POIJKDS) (N.HI.I (HR) 672000. ( . 05 2080OO. 2 330 3. 30496. 17565. 12956. .7376 .7530 445 9 .0344 654C0U. 139 ! .33 4 1 2657.1 .2313 11 84 4 • 0 00 656Q00. 280. 5 . 6 2 2-1 OOC . 2BDDO. 30496. 17962. 13149. .7500 445 9 . 0339 643000. 423. 0 . 92 , 1 2526 .5 .2173 12 17 4 . 0 00 *40QQO. 567. 3 1 . 24 240DOO. 28550. 30196. 1R1J2, 13368. .7261 .•••330 445 9 . 0333 £32000. 713 4 1 . 56 4 5 2273.4 .2373 13 03 4 . R, 00 624000. 8 61 3 1.S3 256000. 28000. 7 196 . 18914. 13613. .7197 . 7500 445 9 ,0327 316000. 1011 1 2 .21 4 5 2042 .8 .2483 13 53 4 . 0 00 6C80DO. 1 162 7 2.55 272000. 25300. 30496. 19416. 13857. ,7137 .7500 445 9 .0321 €00030, 1315 4 2 - M 4 B 1839 . 3 .2639 _4 31 4 . 0 DO 592050. 1472 1 j . 23 2B8OO0. .:. 7vO. 33496. 19938. 14 11. . 7078 .'.3 70 445 9 . 3316 584050. 1629 9 3 . 5B 4 0 1655 .3 .27" • 14 44 4 . 0 00 576000. 1789. 9 3-93 3,54000 . 2 '•:. ., . 30496. 20483. 113BD. .7021 .7500 445 9 .35-71 538 5 • !!•• 2 . 4.-9 t 1 14 , .T. .2949 14 34 < . Q UU 560000. 2113. 6 4 . 35 CI7-SH0RT-FL0PS-0UT 152000. 2233.3 5 .02 293QDD. 0. 44 .2 3993 7 353 .3 11187 I : CO 1634 .-ii 544000. 2152.4 5 4 18682. 2E91IB . "51 1 2BD00. 113 . 9 535000. 2523.3 j 7S 304000. 0 . 47 .4 4277 6 354 j 11269 1 98 3 1656 .3 525000. 2797.7 3 17 + 39070. 284930 .7590 28500. 445.9 520000. 2974.0 6 56 330DD0. _'. 50 .7 457C 8 350 . 6 11159 3 98 7 1673 .9 312000. 3153 . < 93 4 1S470. 300530 .7500 280O0. 44^ . ^ 501000. 3334.7 1 D 336500. 0 . 5 4 .2 4875 9 346 .8 11-150 . 8 ! • 0 ] 3 5 3 . 2 496005. 3519.2 7 ' + 196B1. 316119 . 750C 28000. 445 .9 45300:-. 3705.6 2D 352000. o. 57 .9 ^194 9 342 .9 11513 . 0 99 2 1700 . 9 480000. 3895.9 3 62 4 20305. 3 31695 7500 28000. 4 4 5 . 9 472000. 409O.1 9 06 61700. 0. 61 .8 5527 6 138 3 11636 . J 99 4 17 1 1 0 461DOO. 42E6.2 5 50 4 20742. 3 472 53 .7500 24000. •445 , 45S00O, 4445.I 9 94 3B40O0. 0. 65 .8 587 6 7 7 4 6 11730 .3 99 6 1721 .2 41B0O0. 16863 9 0 4 * 21194. 362306 .7500 28000. 445 . 9 140000. 1B91.5 ID IOOOOO. 0. TO 1 6243 0 330 2 1IB21 3 99 6 1728 . 6 132000. 5098.9 11 32 4 21660. 378340 7500 28000. 445 .9 424000. 5303.9 11 79 416000. 0 . 74 8 6630 7 325 6 1] 9 09 .6 99 6 1735 .3 416000. 5521 . 7 12 37 4 23142. 393858 .7500 28000. 445.7 4OBOO0. 4737 .0 12 V5 432000. 0 . 79 8 7044 0 320 5 11594 . 6 99 6 1741 . fi IOOOOO. 5954.8 13 21 4 22*46. 409354 . 7500 28000. 445.9 392000. 6175.D : 3 73 448000. 0 . 65 4 74B7 4 315 0 120=13 . C 99 6 1717 •• 1 R4 000. 6397.7 14 2 4 23184. 424B16 .75D0 23000. .! .1 5 . 9 376000. 6422.8 : 4 7 4 4;. 4 000 . 0. Jl .6 7971 0 308 8 12160 . 5 99 E 1753 .6 364000. 6550.3 15 25 + 2375J. 440249 . 7 50'7 2SOO0. 445 . J 360090. 7080.3 1 ; 7C 480000. 0, 9 3 .7 8505 0 301 9 12217 .7 99 5 ! 75 3 .7 352C00. 7311 .7 16 29 + 24348. 455652 mod 28000. 445 .9 344000. 7547.5 16 .81 496030. 0. 105 .8 9054 1 294 9 12/ • / . 6 99 4 1763 .2 334000. 77R4.8 17 3* 4 21971. 471029 .7500 27779. 446 .3 3: 1000. a024.5 17 66 512000. 0, 105 3 9471 4 291 1 12502 .3 98 9 1764 . 9 320000. .. r; IA 42 + 25605. 486395 .7500 27100. 117.3 312000. 8511.0 ia 97 52B0OO. o. 110 5 9714 0 291 7 1233 : 97 8 ; 7 5 7 '.: 304000. i 19 53 4 26241. 501759 . 7500 26423. 448 . 3 29iH0p. 9007.1 20 09 1-id00. o. 110 4 9922 4 293 6 13359 a 96 0 1718 2 233000. 925B.7 20 65 4 26896. 517104 .7500 25751. 450.1 200000. 9512.6 21 22 56OOOO. o. ! 10 3 10330 t 1 J 5 13818 5 94 2 17 3.6 5 272QDD. 37 6° . a ii 79 4 2T552. 532443 .75D0 25032. 451 . 4 261UD0. 1O027.4 ri 37 57SC00. 0. 110 3 103 51 f 297 2 14274 .3 92 5 1723 9 2560DO. I02RR.2 >.?. £6 4 26216 . 517734 .7500 24497. 452 .5 216000. 10551.5 21 5:" 592000. 0. 110 .8 10604 2 293 5 14724 .9 90 8 1710 8 2400O0. 10617.1 24 14 4 26906. 563094 .7500 27726. 453 . 5 2.:: . 11085.0 24 75 604000. . 111 5 10479 7 299 3 15161 .8 89 2 1700 6 .24" 1 11355.1 35 33 4 29608. 578392 .7! 10 23355. 454 . 6 2 Iii 000. 11*27.4 ^5 96 624000. 0. 112 2 113.60 6 3 00 1 15600 8 87 1 1339 . 4 2DBOOO. 11901.7 26 5 + 35321. 593679 , 7500 227BB. 455.6 54DO0Q. H 2 8 11 J IS 1 2 3 01 0 16042 1 B6 2 1677 .9 4 31047. 608953 .7500 22224. 156 . 7 ESEF.VE S JMMARY 4 [56000. 31797. 624203 0. Iii: .7500 5 11783 22662 . a 301 457 . 7 7 16475 2 34 7 1666 3 .ISSED AP S-ROACH FUEL = 11 64. LB. E72 000. 32583. 639417 0. 114 .7 500 4 12163 21::. 32 . 2 302 458 .7 4 16900 0 83 2 1653 3 START RESERVE RESERV: FUEL 21 • ). 1704 9. i ,u . 240000. 17575. :-56 oo. 17933. -. 00 . IAI06. HO; END FUEL CL3HH CLIMB FUEL CRUISE DIET •r - • RVE M.,V HfcXtBtT NUMBER ALTITUDE VELOCITY 0. 29.3 2704.9 376,0 190951. .7^00 28000. 445.9 0. 32.1 2950.7 372.6 206762. .7500 . 3030. 445.9 0. 35-0 3199.0 369.1 222425. .7500 23000. 445.9 0. 33.0 3455,3 103.6 ;=•>-*:>*.'. .7533 2 6 OOC . 44 5.9 0. 41.D 3720.2 36J.S 253o94. 7500 2UO00. 445.9 CRUISE FUEL 10967.2 10890.7 10954.7 11033.1 11111.6 DESCENT DIST POE1. ITERATION ITERATION * ITERATION 3 -- RANGE = RANCF = RANGE = 94 .7 95.3 95.9 96.4 97 .1 1506.5 1531.0 1555.2 157B.5 ITF N ITERATION - RANGE = * ITERATION 6 -- RANGE = 7074.944 2723.241 2462.925 2500.233 2499.998 2500.000 # OUTPUT FROM THE WEIGHTS MQD03.E I DESCRIPTION FOR GR0S3 WLIGHT = FOR SROSS WEIGHT = •OR CROS3 WEIGH'" ••• FOR GROSS WEIGHT = FOR GROSS WEIGHT = VALUE DIMENSIONS 650000.00 457591.AC 447B2B-56 4493:3.}. 58 44322 • *>! 449224.83 Nov 18 96 CALCULATED WING AREA CALCULATED ASPECT RATIO WING BENDING FACTOR ENGINE INERTIA RELIEF FACTOR WING WEIGHT BREAKDOWN TERM 1 TERM 2 TERM 3 WING SPAN WING GLOVE AREA HORIZONTAL TAIL AREA MODIFIED VOLUME COEFFICIENT VERTICAL TAIL AREA MODIFIED VOLUME COEFFICIENT NACELLE LENGTH NACELLE DIAMETER LENGTH OF MAIN GEAR LENGTH OF NOSE GEAR MAXIMUM LANDING WEIGHT WING FUEL CAPACITY FUSELAGE FUEL CAPACITY AUXILIARY TANK CAPACITY TOTAL FUEL CAPACITY 1 MASS AND BALANCE SUMMARY T LREF HORI CG-INCHES WING .0 .0 HORIZONTAL TAIL .0 .0 VERTICAL TAIL .0 ,0 VERTICAL FIN ,0 .0 FUSELAGE .0 .0 LANDING GEAR .0 .0 NACELLE {AIR INDUCTION) ,0 .0 STRUCTURE TOTAL .0) ( .0) ENGINES .0 .0 THRUST REVERSERS .0 73.4 MISCELLANEOUS SYSTEMS ,0 .0 FUEL SYSTEM-TANKS AND PLUMBING .0 .0 PROPULSION TOTAL .0) ( .0) SURFACE CONTROLS .0 .0 AUXILIARY POWER ,0 .0 INSTRUMENTS .0 .0 3846.0 SQ FT 7 . 28618 9 .2021 , 919555 12793.0 LB 18515.1 LB 7829.7 LB 167.40 FT -92.05 SQ FT 345.00 SQ FT 1.539989 395.07 SQ FT .100000 12.23 FT 6.23 FT 41.91 IN 29.33 IN 364995.2 LB 182720.0 LB .0 LB .0 LB 182720.0 LB PERCENT WSEF -8 . 71 .67 .28 .22 14.29 2.74 .77 ( 27.70) 6.32 . 00 ,21 .44 I 6.98) . 99 , 14 .20 C17-S HORT-FLOPS -OUT POUNDS 39138. 3024 . 1279 . 1000 . 64181. 12312. 3478, i 124413.) 28400. 0 . 959 . 1984. ( 31343.) 4431. 616, 913 . HYDRAULICS .0 .0 ELECTRICAL .0 .0 AVIONICS .0 .0 FURNISHINGS AND EQUIPMENT .0 .0 AIR CONDITIONING .0 .0 ANTI-ICING .0 .0 SYSTEMS AND EQUIPMENT TOTAL ,0} ( .01 WEIGHT EMPTY CREW AND BAGGAGE-FLIGHT, .0 , 0 . 0 .0 .0 .0 -CABIN, .0 UNUSABLE FUEL .0 ENGINE OIL .0 PASSENGER SERVICE . 0 CARGO CONTAINERS .0 OPERATING WEIGHT PASSENGERS, .0 .0 PASSENGER BAGGAGE .0 .0 CARGO .0 .0 ZERO FUEL WEIGHT .0 .0 MISSION FUEL . 0 RAMP (GROSS) WEIGHT .0 .0 & NONCRUISE SEGMENT RESULTS CLIMB PROFILE DATA FOR SEGMENT 1 - - - CUMULATIVE - - - WEIGHT ENERGY ALT MACH TIME DIST FUEL CL L/D .57 .70 .54 3 .15 .50 .07 ! 6.85) 41.52 . 15 .00 .22 ,07 , 00 5.10 47 .07 .00 .00 27.60 74 . 67 25.33 100.00 2541. 3155 . 2445 . 14129. 2236, 311. ( 30778.) 186535. 675. 0. 983 , 325 . 0. 22925. 211444, 0. 0. 124000. 335444. 113781. 449225. VEL RCI PC TIME DIST THRUST /TMAX INCREMENTAL- - FUEL 446239. 1743. 0. .300 198.4 3400. 1 .00 .0 .0 133.3 .00 .0 .0 .881 10.10 119703. 1.000 445872. 3403. 0. .419 277.3 5208. 1 .39 1.5 366.7 260.2 .39 1.5 366.7 .451 18.06 107400. 1.000 445577. 5063. 0. .511 338.2 5590. 1 .31 1.6 295.6 387.2 .69 3.1 662.3 .303 17.02 93916. 1.000 445290. 6722. 1219. .535 352.6 5462. 1 .30 1.7 287.0 406.1 Nov 1B% 15:09:06 C L7-SHORT-FLOPS-OLJT . 99 1.30 •144716 1.62 444429 1 . 94 444140 2 .23 1.64 1J154H 3.03 443245. 3 . 42 442936, 3 . 35 412618. 4 .30 44221-:: . 4.20 •141948 . :> . 3 3 441593 5.02 441221 6.59 440B26. 7.35 440402. 8.23 439940. 9 .26 439425. 10 .50 438832. 12 , 04 439751. 12 .26 6 909 638: . 6 3-J3S 10042. i 1522 11701. 5 1809 13361. 7 2099 -. - 2t 0 2391 16630. 5 2691 18340. 3 2711 4180 5276 5B0B I 8161 1 9494 . 2 10609 3 2994,1 19999. 12104. 2 3 3 0 3.3 1 09 ]'=.'(). 4 3 621.."; 23319. 14609. 30-0 3950.1 24978. 1619B, 34.0 -1 J 3 1 2561!1. 17837. 38.3 4 E S 6.0 2021H. 19497, 43.3 5018.5 29957. 21156. 4S.9 541J..6 3I':17. 22816. 55.5 5837.0 33277. 24175. 63.1 6298.9 34936. 26135¬ 71.3 (B14.fi 36596. 27795. 83.7 )4fl7.2 36801. 2B000. 85.4 748S.5 , " ' 253 296 279 286 285 2 83 272 273 2 0 6 274 286 301 318 336 3 56 376 390 423 426 16. 65 546 16.70 55? 16 .71 487 16.21 596 16.33 612 16 .21 E3D 16.07 656 15.65 J67 82 15.31 714 US. S3 ^20 15 .79 724 16 .06 72 9 16.28 734 16.47 739 16-63 744 16 .76 749 16 .76 750 16.76 948513 357.9 93 662 363.9 88753 381.0 85726 384.7 B1161 3*3.6 77109 402.9 73695 417.9 71127 422 .3 67260 427 . 2 63433 443 . 6 61025 445 . 4 57457 445,9 • 663 445.9 50191 445,9 46531 445. !) 43944 445.4 40745 445.9 37 --5 its . ° 35401 415.9 3= 3 1 .ooo 5 . 1.000 5149. 1.000 S061. i .ooo 4734. 1 .000 4466 . 1.000 ..CO 4086. I GOO 3 7 78. 1.000 3465 . 1.009 Si 5 . I . 000 29S0 , 1 .000 2649 . 1 .000 2324 1 .000 2033 . 1.00D 1753. 1-000 1467 . • 0 0 121D. 1.000 949. 1.000 915 . 1 . OOO .31 .32 .33 .34 .36 .33 .40 .42 . 46 . 49 . 53 .59 . 67 , 76 ,o:, 1 .03 1 .24 1.54 . 22 1.8 2BS.9 1.9 286.8 2.0 287.0 2.1 289.4 2.3 293.7 2 . 5 2 .7 2 .9 298 . I 302 .9 300 . 1 3.2 317.9 3.6 32 8.9 3 . 9 341 . 1 4.4 354.8 5.0 372.5 5.7 395.1 6.5 42.3.4 7 . 7 462 . 0 9.2 13-4 1.6 515 .1 593 .2 91.1 DESCENT PROFILE DATA FOR SEGMENT 6 - CUMULATIVE - WE! OUT F?L E RGY - - INCREMENTAL- - TIME DIST FUEL 400. "» 395.9 • i. ;• 406.7 410.3 412 . 4 42 B . 3 417 .3 407 .2 4 2 1. 7 406.4 385.9 365.0 345 .0 325.9 307.6 290 . 0 273 . 3 271 .3 + TIKE DIST FUEL CU L/D THRUST /TMP.X 228783 1743 . 0 300 l'"> 4 1147 . 0 00 0 0 133 3 .00 0 . 0 17.53 0. .000 228929 3403 , 1623 3 00 200 ^. 1165. 0 -i 44 4 8 -146 0 129 7 4 -1 ,44 4 8 -140 . N 464 17 .42 o. ,UU0 229066 SS603 . :4L 28OQ0. 432OC0. 3*801. 25320. 28000. 416000. 36HQJ- 24998. 2S000. 400000. 3 & a i • i. 24270. 2B00O. 384000. 0 00 L . 23581. 2E000. 368415. 30801. 02001 .7500 16.731 445.80 .02609 .7500 16.641 445.83 .02676 .7500 16.481 445. o .0273B . 7500 16.2B5 445.6E .02799 .7500 16-066 4 45.y8 .D2B58 . 0 1 . 54 273 .3 29 .04 .0 .22 271 . 3 29.26 DELTA T Q TINE NOX .00 271 . ] 29.06 . 0 23 . 54 271 . 3 52 . 80 . 0 56.90 271.3 109.70 .0 58 .28 271.3 167.98 . 0 59 . 60 271 . 1 227 . 5B .0 59 .32 271 .3 0 86.90 .0 3 REEF. AJ.l'lTUDE I.J ENERGY DRAG MACH NO. DELTA T L/D 0 VELOCITY OlilL SP RANGE NOX 28DDO. .7500 .00 241415. 13.171' 271.3 16801. 445.68 286.90 16 3. .03319 .0 4 REFUEL ALTITUDE MACH NO. DELTA T LIFT L/D ENERGY VELOCITY TIME DRAG SI- KANOIr: NOX . 000 11.4 1 83 .7 . 000 1. 6 1 65.4 . DELTA D PCODE EIST ENG PAR .0 2 35 . 4 . 000 175.0 2 260.3 .000 422 . 8 2 683 . 2 . 000 433 . 1 2 1116 , 3 .000 442.9 2 1_ 9.0 . OOO- 440 . 8 2 2000.D . OOO DELTA D PCODE DIST ENG PAS .0 2 2000,0 .000 DELTA C IT r-K DIST UNG PAH. 393 . 10393. 81 . 10474. Ftifst 10474. 17225. 35401. 22286. 1.00000 ,62933 948 . 9 1079.4 49225. 1 • JU . 35080. 22073. 915.3 1.00000 .62921 932,1 i'RRTJ.ST FUEL PLOW EX TOW T/TMAX SFC DH/DT* 2 618 6. 17216. .85065 25820. 846611 2499B. . B1971 . 65977 17087. .66176 16661. .66649 24270. 16284, .79585 .67094 .77324 15932. .67562 BD810. FUEL 443 . 6 .C 4 88 .7 .0 596.8 .0 0 00 , 3 , 0 813 .2 .0 22931. 15602. 927.1 .75194 .68037 .0 THRUST FUEL FLOW EX ?CW T/TMAX (BfC DH/DT* 18545. 13433. 2207.7 .60813 .72 443 . 8(3 .03335 .7500 12.702 445.66 .03369 6 DESCENT ALTITUDE MACH NO. LIFT L/D ENERGY VELOCITY DRAG SP RANGE 28000. 23C348. 366D1. 18135. 280 : 3. 230344. 36596. 17740. 280OO. 230307. 34936. 15267. 2EO00. 23D2 67. 3 3277. 13613. 23000. 23022;-. 3 i 60 7 . 14114. 26762. 23Q199. 29957. 147^4. 25175. • 1 . .7500 12.702 445.63 .10258 .7412 12.985 440.65 .10286 . 6658 10.065 395.83 . 10505 ,5801 16.013 315.21 .1097B .1606 16.313 285.63 ,14156 .4495 15.635 269.64 .10982 . 4115 15.947 ill... 271 .3 3 91.90 . 0 TIME NOX . 00 271.3 191.90 . 0 10.79 271.3 402,69 .0 43.56 271. 3 446.25 . 0 DELTA T Q TIME NOX .00 271.3 446.25 . 0 . 06 265 . 0 446.31 .0 446,85 . 0 . 70 161. 6 447.56 .0 . 86 111.5 44B.42 . 0 . 94 103.0 449.36 .0 2000.0 .000 OEI.TA D : . . i E DIET HNv'j FAR .0 2 0.0 0 0.0 . o-oo 80.2 2 2080.2 .000 323 .7 2 3403.9 000 DELTA D PCODE DIST eee . ar . o o 2403.9 .000 0 2404.3 . 000 3 .3 O 2403.1 .000 4 .3 0 2*12 - 4 .000 4.5 0 2 41 7 . 003 4 . 4 0 2421 . 4 . 000 SOW. 1U434. 13404. 2237.3 82810. .5061? .72512 .0 DELTA F THRUST FUEL FLOW EX POW FUEL T/TMAX SFC ISi/UT* 0. 18485. 13404. 2237,3 30.SIO, .CM: 3 .72512 .0 2415. 12. 133 68. 2273.4 85225. .60376 .ii606 .0 "052. 18135. 13233. 2423.1 94877. .55465 .72072 .0 DELTA F THRUST FEET FLOW EX POW FUEL T/TMAX SFC DH/DT* 0. O. 4346. -0O04.8 .00000 .00000 .0 9 0 04 0 . 4 . 94631. 0. 4284. -3436.6 .00000 .00000 .0 37. 0. 3768. -2600,8 94918. .00000 .00000 .0 40. 94958. 37. 94995. 30. 0.4.02 5 . 31 . 0. 3145. -2C66.9 .00000 .00000 .0 0. 2019. -1774.5 .00O0O .OHOOO .0 0. 1793 . - ! 14 .' .1 .00000 .00000 -1310.4 0. 2030. -1696,4 Nov TK% 13:09:06 .TOO^ 23D133. .55110 230092 . .53646 .03261 230045. .52432 229852. . s IN I 279933 . .' !42 229667. .4P512 229793 , 0 -•' 0 7.29713. .47963 229601. .47721 28298. 1*433. 235 -1 230133. 26638. 14167. 22013. 230092. 24973. 1 • !. 20444. 23i •: , 20 J 13837 • 18875. 229993. 21659. 13709. 17256. 229933. 19999. 13510. 15690. 229667. 16340. 13429. 14146. 229793. 16480. 13391 12«98. 229713. 15020. ..• .6. 1 . '.'44 . 229624. 13361. 13333. 265.5^ .15080 . 4313 16.222 262 .16 11528 .4247 16.449 258.80 . 1D251 .41 --.=. 16.625 2 04 . J3 .03 130: .4063 16.777 .0-0 55 . 4 009 17.019 24 S . 01 .07393 .3915 17.117 244.64 ,06673 . 3806 17.160 239.23 .06"073 .3700 17.199 233.94 .05S6I .3598 17.235 228.77 .05: .9 450.33 . 0 1.00 109 . 8 40 1 .33 .0 1.D3 112.9 452.36 . 0 1 115 453 1 117 06 5 41 0 OS 9 454.50 . 0 1 122 11 6 61 0 1.13 Lli . 7 456.74 .0 1 . IS 125.4 457.90 .0 1 . 19 126.0 459.09 .0 1 126 . 22 6 '-. 1 0 242*.7 .000 4.4 0 2430.0 .000 4.5 0 2404.0 . 000 a 2119.0 .000 2443.6 . 000 2448.2 .000 4.7 0 2452.6 .000 4.7 0 2407.5 .000 4.7 0 2462.2 .0 00 4 .7 0 2466.9 .' 10 95056. 36. 95092. 41 , 95133. 47 . 95180, 52, 95232 . 59. 95291. 56 . 9535R. 04 . 95431. 81 . 95512. 88. JOUO . .DODOO .ooooo o. .00000 0. .ooooo 0 . .ooooo o. .ooooo o. . ooooo o. .ooooo o. C17-SHORT-FLGPS-OUT .00000 -1638,1 2276. -:6'-.7.9 ,00000 -1586.9 2525. -1000.4 .00000 -1535.7 2775. -0552.2 .00000 -1487.1 3038. -1513.6 . OOOOO 3666. ,00000 14 8.7 3367. -14<.0 ,3 ,00000 -1461.3 !47 .3 ,8'. .3 3939. -1411.8 ,00000 -1329.9 0. 4206. -1377,5 .00000 .00000 -1000.0 -1344.2 229066. 3205. .45651 229066. 5063 . .02633 1317]. 223929. 1623. .40433 228! 20. 3103 . .02665 13110. 2261 S3 . 0. .45159 228783. 3 743 . .02577 1305 1. . 3131 17.391 204 .84 .01535 .3048 17.422 200.50 03367 .3000 17.526 193.44 .0317 7 1. 3 E 129.2 466.87 .0 1-41 129.7 •166 28 1.44 133 . 3 469.71 . 0 ,: . •/ 0 2490.5 , 000 4 . 7 0 ?: • o . ODD 4.8 0 2500.0 . DOO 137 . 96296. 14 6 . 96442 . 0 . .00000 0 . . OOOOO 0. .ooooo 57 14. . ooooo 0955 . . ooooo 6246. . ooooo -1192 . 8 -1147.6 -1165.4 -1123 , 7 -1016,6 -1130 . 8 * DH/DT IS THE AVERAGE OVER THE STEP. + ND OF THE STEP. HOOJ/VAR/CONSTR SUMMARY EIIE1. y.l:i\\\£ VAF? - ROFF FARLDG H SV1 TP. SWEEP TCA VCMN OH H3761.1 2500.0 126.4 4861 + 300.0 .000 25.00 .0210 .750 45000 DESIGN TIT OPR FPR BPR + AI..T T.HAU.OT SEC CVEFF CDT CDP 28.00.0 30. BOO 1.5000 2.9000 1.000 + 45000. 3332. .6129 .2963 1209.0 80.47 VAPP- 12 6.4 J?ftJlOFE- 4 B ( 1 . FARLDG" 5862. THE OTHER DATA ARE JNEITANTANEOUS AT THE E 5862. 51476 IIS.2 TR AMFOP. SSFOR W/S T/W 29730. .3 62 (SLS) GW AR THRUST 449224.9 7.200 40700.0 3 ST VJFT (CHUIEK) BACH 30.8 1673.8 .75 .00000 .00000 1273.E 09529. .0 .02751 94 86. 229529. 11701. 0 3292. .3496 17.269 223,71 .04734 V 46: .25 .2 . 56 .0 4 . 7 0 2471.6 .000 96 . 95596. 4726. -1311.9 .00000 .00000 -1246.9 229425. .47238 '29314 . •1 7085 229194. .4 £990 ,03701 792 3 . 020 122. 10042. 13262 . 63 55. 229314. 8382 . 13 2 32 . 4783 . 229194. 6722 . 13 >. .3401 17.300 218.77 .04394 .3308 17.330 213.97 . 4( '3 .3217 17,359 203.29 .03825 1.28 12 7.7 462.84 .0 1 .31 126.2 164.15 . 0 I .34 128.6 165.49 .0 4 .7 0 2476.3 .ooo 1.7 0 240!! . .000 4.7 g 24 . . . OOO 104 . 95800. 112 . 95911. 120 . 96031. -1280.6 .00000 .OOOOO -1220.7 0. . OOOOO .00000 -1195.3 5472. -1220.9 .00000 .00000 -1170.3 C17-MIDDLE-FLOPS -IN C1T Short Mission SOFTION MPRINT=1, I0PT=1, IANAL=3, NOPRO=0, NOISE=0, ICOST=0, IFITE= 0, INENG=1, ITAKCF=0, ILAND=0, SEND SWTIN MYWTS=0, ULF=2.25, SPAN=167.4, FCOMP^O.15, NETAW=2, £TAW=0.0, 1.0, CHD=32,82, 13.13, TOC=0.135, 0.107, ETAE=0.301, 0.591. SHT=845.0. SWPHT=27.0, ARHT=5.0, TCHT=0.035, HHT=1., SVT=685.0. SWPVT=41.0, ARVT=1.0, TCVT=0.11, NFIN=2, SFIN=72.55, -ARFIN=l.-09, TRFIN=0.325. SWPFIN=50.0, TCFIN=0.10, XL=159,1, WF=21.06, DF=23.00, NEW=4, NEF=0. WENG=7100. , XNAC=12.23, DNAC=6.23, FULWMX=182720.0, FULFMX=0.0, NFLCR=3, CARGF=1., CARGOF=l12000.0, SEND SCONFIN DESRNG=3 900., HTVC=1.0, VTVC=0.10, GW=650000. , THRUST=40700. , AR=7.2, SW=3800.0, SWEEP=25.0, TCA=.121, VCMN=0.75, CH=45000.0, SEND 5AERXN MYAERO=0, AITEK=1.2, VAPPR=115.0, FLTO=4400., FLLDG=3200., CLTOM=3.585, SEND SENGDIN IGENEN=1, IDLE=1, NONEG-1, IXTRAP=0, DFFAC=0. , EMACH-0.80, SEND 0.75, 0.70, 0.60, 0.50, 0.40, 0.30, 0,20, 0.10, 0.0, $ENGINE IENG=2, IFILE='TFNSEP ' , TFILE='ENGTAB' , OFILE='ENGOUT' , OPRDES"30.S, BPRDES=5.9, TETDES=2800., YEAR=1995., IGVW=-1, SEND SMISSIN FACT=1.0, ISKAL=1, MSUMPT=1, IATA=0, IFLAG=2, IRW=1, ITTFF=1, TAXOTM=15.0, TAKOTM=2.0, TAXITM=2.0, NCLIMB=1, CLMMIN=0.3, FWF=-1., IFAACL=0, IFAADE=0, NCRUSE=1, IOC=2, CRHMIN=0.3 , CRMACH=0.75, CRALT=280O0., IVS=1, IRS=1, TIMMAP=2.0, ALTRAN=500.0, SEND START CLIMB CRUISE RELEASE REFUEL CRUISE DESCENT END 3400. 112000. -2000. 500. 105 . 15:09:05 i 8TITLE, BEGIN INPUT DATA ECHO CIT Short Mission 8 NAMELIST SOPTION PROGRAM CONTROL, EXECUTION, ANALYSIS AND PLOT OPTION DATA DESCRIPTION NAME VALUE DIMENSIONS TYPE OF PROBLEM IOPT ANALYSIS OPTION IANAL MAIN ENGINE DECK SWITCH INENG DETAILED TAKEOFF SWITCH ITAKOF DETAILED LANDING SWITCH I LAND COST CALCULATION SWITCH ICOST TRANSPORT/FIGHTER SWITCH IFITE TAKEOFF PROFILE FOR NOISE NOPRO PROFILE OUTPUT FILE SWITCH NPFILE NOISE CALCULATIONS SWITCH NOISE MASTER PRINT CONTROL MPRINT XFLOPS DATA PLOT SWITCH IXFL AERO POLAR PLOT SWITCH IPOLP THRUST DATA PLOT SWITCH IPLTTH HISTORY DATA PLOT SWITCH IPLTHS EXCESS POWER PLOT SWITCH IPLTPS ft NAMELIST SWTIN GEOMETRIC, WEIGHT, BALANCE AND INERTIA DATA DESCRIPTION NAME VALUE DIMENSIONS MAX OPER MACH NUMBER VMMO . OOOO ULTIMATE LOAD FACTOR ULF 2.2500 REF WEIGHT NUMBER NWREF 3 9 CG REFERENCE LENGTH CGREFL 1909.2 X FOR START OF CGREFL CGREPX .0 SWITCH TO COMPUTE WEIGHTS MYWTS 0 DESIGN GROSS WT. (RATIO) DGW 1.000 HYDRAULIC SYSTEM PRESSURE HYDPR 3000. IN IN WING DATA DIHEDRAL(POSITIVE) GLOVE AND BAT AREA SPAN DIH GLOV SPAN CONTROL SURFACE AREA RATIO FLAPR FRACTION OF COMPOSITES FCOMP AEROELASTIC TAILORING FACT FAERT STRUT BRACING FACTOR VARIABLE SWEEP FACTOR FSTRT VARSWP .000 -92.05 167.40 .3330 .1500 . 0000 ,0000 .0000 DEG SQ FT FT DETAILED WING DEFINITION DATA FOR 2 STATIONS STATION DATA 1 2 0 Y/SEMISPAN ETAW 0000 1.0000 0 CHORD/SEMISPAN CHD 32 8200 13.1300 0 THICKNESS/CHORD TOC 1350 ,1070 c LOAD PATH SWEEP SWL .00 .00 c REFERENCE ASPECT RATIO ARREF 7 . 20 REFERENCE THICKNESS/CHORD TCREF . 12100 FRACTION OF LOAD ON DEFINED WING (OR REF WING AREA] PCTL 1.0000 NO. OF INTEGRATION STEPS NSTD 50 MIDDLE-FLOPS-OUT ENGINE LOCATIONS LOAD DISTRIBUTION CONTROL ETAE PDIST .3010 2 .00 . 5910 HORIZONTAL TAIL DATA AREA 1/4 CHORD SWEEP ANGLE ASPECT RATIO TAPER RATIO T/C LOCATION ON VERTICAL ' SHT 845 .00 SQ FT SWPHT 27.00 DEG ARHT 5.00 TRHT .0000 TCHT .0850 HHT 1.0000 VERTICAL TAIL DATA NUMBER OF VERTICAL TAILS NVERT 1 AREA SVT 685.00 1/4 CHORD SWEEP ANGLE SWPVT 41.00 ASPECT RATIO ARVT l.OOOQ TAPER RATIO TRVT .0000 T/C TCVT .1100 SQ FT DEG WING FIN DATA AREA SFIN 72.55 ASPECT RATIO ARFIN 1.0900 TAPER RATIO TRFIN .3250 T/C TCFIN .1000 1/4 CHORD SWEEP ANGLE SWPFIN 50.00 NUMBER OF FINS NFIN 2 SO FT FUSELAGE DATA NUMBER OF FUSELAGES TOTAL LENGTH MAXIMUM WIDTH MAXIMUM DEPTH CARGO AIRCRAFT FACTOR PASSENGER COMPART LENGTH NFUSE 1 XL 159.10 FT WF 21.06 FT OF 23.00 FT CARGF 1.0000 XLP 120.01 FT (CALC) LANDING GEAR DATA LENGTH OF MAIN GEAR LENGTH OF NOSE GEAR DESIGN LANDING WEIGHT SET WLDG TO END OF DESCENT CARRIER BASED AIRCRAFT XMLG .00 IN XNLG .00 IN WLDG 459875.0 LBF MLDWT 0 CARBAS .00 PROPULSION SYSTEM DATA NUMBER OF ENGINES ON WING NEW 4 NUMBER OF ENGINES ON FUSE NEF 0 BASELINE ENGINE THRUST THRSO .0 LBF BASELINE ENGINE WEIGHT WENG 7100.0 LBF WEIGHT SCALING PARAMETER EEXP 1.15000 BASELINE INLET WEIGHT WINL .0 LBF INLET WT SCALING EXPONENT EINL 1.00000 BASELINE NOZZLE WEIGHT WNOZ .0 LBF NOZZLE WT SCALING EXPONENT ENOZ 1.00000 BASELINE NACELLE LENGTH XNAC 12 .23 FT BASELINE NACELLE DIAMETER DNAC 6 .23 FT FUEL CAPACITY OF WING FULWMX 182720.0 LBM (FUEL CAPACITY FACTOR FWMAX 17.506) FUEL CAPACITY OF FUSELAGE FULFMX .0 LBM ADJUST FUSE FUEL CAPACITY IFUFU 0 AUXIL TANK FUEL CAPACITY FULAUX .0 LBM NUMBER OF FUEL TANKS NTANK 7 ADDED MISC PROP SYSTEM WT WPMISC .000 LBF CREW AND PAYLOAD DATA FIRST CLASS PASSENGERS NPF 0 TOURIST PASSENGERS NPT STEWARDESSES NSTU -1 GALLEY CREW NGALC Nov 18 96 15:09:05 C17-MIDDLE-FLOPS-OUT FLJUHT CREW NFLCfi WEIGHT P£H PXSsKNOES WPPASS BAGGAGE PER ?AS.;NG GEAR FT :. ••: l oooo NACELLES - TOTAL OR FfcNA 1 C 000 AIR INDUCTION SYSTEM IHRUSI' Ri-iVEBssts - TOTAL WTHR oooo MISC RKOP(JL£10N SYSTEMS w i oooo FUEL SYSTEM wysvs 1 oooo 4 -SURFACE CONTROLS FRSC E oooo AUXILIARY POWKR IRNIT WAPU : 00 DO INSTRUMENT GROUP WIN i OOOO HYUKAUI.1''S GROUP W! 1 YD l oooo :TRICAL QRlVV WELEC i oooo AVIONICS GROUP WAVONC l oooo 4 ARl-IRTMENT C1R0UP WARM oooo FURNISHINGS GROUP WFURN l oooo AJH CONDITIONING GROUP WAC I oooo 4 ANTI-ICING GROUP OH WAI i oooo AUXILIARY GEAR UNUSABLE FUEL WUF l oooo ENGINE GIL HQ IL l oooo PASSENSEK SERVICE OE AMMO W3XV l OOOO AND NCNFIXED WEAPONS 4 CARGO ANE BAGGAGE C OH TAIN . WCON i OOOO OR MIS'•--::.].. USEFUL LOAD + AUXILIARY FUEL TANKS WAUXT I oooo FLIGHT CREW AND BAGGAGE . WFLCRB ; oooo + CABIN CKRW AX|/ BAGGAGE W5TUAB ! oooo ORl'ZQNTAI, CENTER OF GRAVITY DATA WING CGW - D 1 ii + HORIZONTAL TAIL C0HT .0 UM VERTICAL Tft^L j •/ i .0 . a 4 WING VERTICAL FINS CUFIN .0 IN CANARD CGCAN .0 III 4 FUSELAGE CGF . 0 IN NOSE LAMBING GEAR CGLGN . 0 IN 4 MAIN LANDING GEAR Cl . 074 . 0 IN TWO FORWARD ;-.!::-TNES CGEP .0 IN 4 ONE OR TWO AFT .ENGINES CGEA . z IN AUXILIARY POWER UNIT CCAP .c IN + AVIONICS GflOUF CGAV ,0 IN ARMAMMJT GROUP CGARH .D IN 4 FLIGHT CREW CGCR . ;.J IN PA-SMKNUERS. CGP .0 IN CARGO/EXT STOKES IN WING CGC'W .0 E[i CARGO/EXT STORES IN FUSE .0 IN HJBELAi't: FUEL CGZW1 .0 IN WTNC FUEL CGFWF . 0 IN AIR INDUCTION SYSTEM CON . 0 IH AIR CONDITIONING cGAO . 0 IN # NAMKI.I.TT SCONFIN GEOMETRIC RATIOS, OBJECTIVE FUNCTION FACTORS, AND DESIGN VARIABLES OEfCSTPTION NAME DESIGN RANGE DESKNG WIN!) LOADING REQUIRED WSR THRUST/WEIGHT ETKQUMTP TtUR OLOVE/WING AREA RECUTHED PGLOV HORIl TAIL VOLUME COEF HTVC VERT TAIL VOLUME COTF Vi'VC COST CALCULATION SWITCH I COST 3N TO BE K'.'^EO ACH'd'/D) + 4 SI0N3) UEcISN V.MUAHLE DATA - OBJ - VARIABLE SCALE FACTOR NAME RAMP WEIGHT, LBF GW .OOOOO WING ASPECT RATIO AR .000DO , ..• jSY • !•' ENGINE, LBF I i .00000 REF WING AREA, SQ FT SW .0D00O WING TAPER RATIO TR .00000 WING 1/4 CHORD SWEEP, DEG SWEEP .00000 WING T/C TCA .00000 CRUISE MACH NUMBER VCMN ,00000 MAX CRULSE ALTITUDE, FT CH .UUOOC TURBINE IM.FT TEMP (R) ETIT . 00000 OVERAI L PRESSURE RATIO EOPR . 0DD00 FAN PRESSURE RATIO EF'PR .OOOUO BYPASS RATIO KB PR .00000 THROTTLE RATIO LTTJl .00000 VALUE iJlKSNSICNS 3900.0 N MI oo ooooo ooooo 1.5399t7 . 1000OO 0 . 000(1* ("AMP WEIGHT) t 1.00WFUEL + .OC .0000-1ANGE 4 .0000'COST + . 0000MNOX VALUE A'. ' . .. Y LLVLR t •:•> ) C7PEJI T OUNC 650000.0 7 .2 000 4Q7DO.• 3800.0 ,00000 25. 00 . 12200 .75000 45000.0 .00 . 000 .0000 .oooo . ooooo .0 .COoo .000 .0 .ooooo .00 .ooooo .00000 .0 .00 .ooo .oooo .00DO .ooooo .0 , OOOO . 000 .0 .00000 00 .ooooo . ooooo . 0 .00 .ooo . oooo .oooo . ooooo NAMELIST SAER1N AKRCDYMAMIC OPTIONS AND APPP.OXIKATE TAKEOFF AND LANDING DATA DESCRIPTION VAJ.UE DIMENSIONS AERODYNAMIC INPUT METHOD MYAERO WAVE DRAG INPUT SWITCH IWAVE WAVE DRAG FACTOR FWAV LINEAR/PARABOLIC INTERP ITPAER AERO MATRIX FORMAT SWITCH IBO MAX CAMBER AT 70 PERCENT SEMISPAN CAM AIRCRAFT BASE AREA SBASE WING TECHNOLOGY AITEK MODIFY EDET DATA MODARO FIXED DESIGN CL FCLDES TURBULENT /LAMINAR FLOW XI JAM AERO EFFICIENCY FACTOR E 0 0 1.000C 2 0 .00000 PERCENT CHORE .0 SQ FT i .2 0 -1.OOOO .0 1.0000 OVERRIDE PARAMETERS FOR WETTED AREAS WING WETTED AREA SWETW HOR. TAIL WETTED AREA SWETH VERT. TAIL WETTED AREA SWETV FUSELAGE WETTED AREA SWETF NACELLE WETTED AREA SWETN . oooo oooc oooo oooo oooo TAKEOFF AND LANDING DATA RATIO OF MAX. LANDING WT. TO MAX. TAKEOFF WT. WRATIO MAX. LANDING VELOCITY VAPPR MAX. TAKEOFF FIELD LENGTH FLTO MAX. LANDING FIELD LENGTH FLLDG MAX. CL TAKEOFF CONFIG. CLTOW MAX. CL LANDING CONFIG. CLLDM APPROACH CL CLAPP AIR DENSITY RATIO DRATIO L/D RATIO 2ND SEG. CLIMB ELODSS L/D RATIO MISSED APPROACH ELODMA THRUST PER ENGINE TAKEOFF THROFF THRUST PER ENGINE 2ND SEG. CLIMB THRSS THRUST PER ENGINE MISSED APPROACH THRMA .7075 115.0000 4400.0 3200.0 3 . 5850 3.0000 .0000 1.0000 .0000 .oooo ,0000 KTS FT FT . 0 LBF . 0 LBF H NAMELIST SENGDIN ENGINE DECK CONTROL, SCALING AND USAGE DATA DESCRIPTION VALUE DIMENSIONS ENGINE DECK PRINT CONTROL NGPRT 1 ENGINE DECK SOURCE SWITCH IGENEN SLOPE FACTOR FOR EXTRAPOLATING FUEL FLOWS EXTFAC 1.0000 SUBSONIC FUEL FLOW FACTOR FFFSUB 1.0000 SUPERSONIC FUEL FLOW FACT FFFSUP 1,0000 FLIGHT IDLE SWITCH IDLE 1 IGNORE NEGATIVE THRUSTS NONEG MIN IDLE FUEL FLOW FRACT FIDMIN .0800 MAX IDLE FUEL FLOW FRACT FIDMAX 1.0000 SFC EXTRAPOLATION SWITCH IXTRAP - 0 PART POWER DATA SWITCH IFILL 2 MAX. CRUISE POWER SETTING MAXCR BOOST ENGINE SWITCH BOOST .0000 FUEL FLOW SCALING CONSTANT TERM DFFAC ,0000 FUEL FLOW SCALING LINEAR TERM FFFAC . 0000 NITROGEN OXIDES SWITCH NOX 0 INSTALLATION DRAG SWITCH INSDRG 0 -MIDDLE-FLOPS-OUT MACH NUMBERS AND ALTITUDES FOR ENGINE DECK GENERATION MACH ALTITUDES 80 -1 75 -1 70 -1 60 -1 50 -1 40 -1 30 -1 20 -1 10 -1 00 -1 # NAMELIST $ENGINE ENGINE CYCLE ANALYSIS INPUT DATA DESCRIPTION VALUE DIMENSIONS 2-COMP SEP FLOW TORBOFAN ENGINE CYCLE DEF. FILE IENG IFILE 2 TFNSEP COMPONENT MAP TABLES FILE TFILE ENGTAB PRINT LEVEL INDICATOR IPRINT 1 PRINT VIB/ANOPP DATA NPRINT 0 PRINT LEVEL FOR WEIGHTS IWTPRT 1 PLOT ENGINE SCHEMATIC IWTPLT 0 CYCLE ANALYSIS OUTPUT FILE OFILE ENGOUT FLAG TO GENERATE A DECK GEKDEK F SWITCH FOR WEIGHT CALCS NG1NWT 0 (0=NONS, 1=ENGINE, 2-1 + INLET, 3=2 +NACELLE PART POWER DATA CONTROL ITHROT NUMBER OF A/B POINTS NPAB NUMBER OF DRY POINTS NPDRY PART POWER THRUST CUTOFF XIDLE MAX ALLOWABLE ITERATIONS NITMAX 4=3+NOZZLE) 1 0 15 .05000 50 DESIGN POINT DATA DESIGN POINT NET THRUST DESFN 40700.0 OVERALL PRESSURE RATIO OPRDES 30.8000 FAN PRESSURE RATIO FPRDES 1.5000 BYPASS RATIO BPRDES 5.9000 DESIGN TURBINE INLET TEMP TETDES 2800.0 DESIGN THROTTLE RATIO TTRPES 1.0000 DEG R OTHER ENGINE CONFIGURATION DEFINITION DATA FLAG FOR AFTERBURNER ABURN F FLAG FOR DUCT BURNER DBURN F AFTERBURNER EFFICIENCY EFFAB .85000 MAX AFTERBURNER TEMP TABMAX 3500.0 DEG R FLAG FOR VARIABLE NOZZLE VEN F CUSTOMER COMPRESSOR BLEED COSTBL 1.0000 LB/SEC TURBINE COOLING (FROM HPC) WCOOL -.0001 FRACTION (OR T41 Rl CUSTOMER POWER EXTRACTION HPEXT 200.00 HP FUEL HEATING VALUE FHV 18500.0 BTU/LB TECHNOLOGY AVAILABILITY YEAR 1995. YEAR FLAG TO DO BOATTAIL DRAG BOAT F DELTA TEMPERATURE DTCE .00 DEG C DTCE VARIES TO ZERO AT ATC 10000. FT FLAG TO DO SPILLAGE DRAG SPILL F FLAG TO DO LIP DRAG LIP F NOT IH 96 15.09:05 CI7-M1DDLE USED TO DEFIHt HACH-ALTITUDE ARSiAV POINTS MAXIMUM MACH MUMfiEH XMHAX . 7SQQ ttKilMUM ALTITUDE AHAX 43000.0 INCREMENT IN MACH NUMBER XK,"C .2030 INCFEKENT IN ALTITUDE AINC 5000.0 HLNIKOM DYHAMIC PRESSORS QMIN 150.00 MAXIMUM DYNAMIC PRESSURE UMAX 1200.00 PSF PSF ENGINE CYCL2 OPTIMISATION CRUISE COND1'L';ON MACH NUMBER XMDES .7500 ALTITUDE XADES 4 5000.0 FT ENCNt CYCLE LE::AVI"Ri CONSTRAINTS MAX COMPRINT! DISCHARGE TOP CDTHAX 939i)9.000D R MAX COMSTtESR DISCHARGE PRS CD.-MAX 99999 . 0000 P31 MAX if w JET TOLOCITY VJMAX 93399.0003 -T/SEC MINIMUM SPECIFIC THRUST S':"M [N 1 .0000 LB/LB/SEC MAXJKM 3YPASS--.-.-.K3 AREA AF.MAX 99999. OOOO SEA LEVKL STATIC MAXIMUM THRUST i 3700.0 LB GENERATED PROPULSION SYSTEM WT. 7100.0 LB (NEW 3ASELINE ENGINE THRUST - OVERRIDES THRSO) # ALL POINT ENGlr-jy CHUCK SUMMARY HACH = . fiOO, ALTITUDE = 43000.. THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 50U4.B 4405.2 3779.3 3169.7 3159.2 2B5J.9 2535.6 2244.9 1977.3 1730.0 4 1502.4 1393.9 1J03.2 917.6 142.3 .• 3182.2 2821.3 2 4 69.9 2331.6 2JR3.B 2025.4 1872.7 1731.9 1631.6 1483.9 + 1368.9 1265.0 1138.4 1077.2 991.8 329.3 .628 .640 .659 .672 .688 .71D .739 .771 .810 .856 + .978 1.359 1.174 1.335 000 MAC!! .333. ALTITUDE - 350DO., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 6447. 4 5603.1 133 1. .7 441 /.2 4034.6 3630.6 3228.0 2857.9 3 2 2202.4 * 1332.7 1647.2 1404.4 1160.5 945.6 .3 4554.7 3.7-.1-S.7 3 372,! 2970.8 2778.7 2380.6 2386.0 2206.7 2743.7 1886.8 + 1 744.1 16 1 1. 3 1488.7 1272.5 1.263 ,7 851.3 .629 .63] .659 .673 .639 .731 .739 .772 .811 .857 + .912 .978 1.060 1.175 1.336 .000 MACH = .800, ALTITUDE = 30000., THRUSTS/FUEL ?LOWS/SfCS/NOX RATIOS FOLLOW 81S3.4 7100.2 6091,4 5592.5 5108.1 4596,6 4086.8 361B.3 71ti 7'.0 2/83.3 2421.3 2085.5 1778.1 1479.4 1197.2 .0 5231,2 4653.4 4.H8.7 58S7.4 1591,6 3342.1 3090.1 2857.8 2642.9 2443.6 2258.* 2587.4 1928.1 1777.5 1636.5 1038.4 .643 .636 .675 .686 .704 .727 .756 .790 .329 .876 .933 1.001 1.334 1.2D2 1.367 .000 MACH = .fl00, ALTITUDE = 25005., THRUSTS/37 3 L FLOWS/SFCS/NOX RATIOS FOLLOW 10227.4 8395.4 7631,6 7006.5 6399.6 5758.8 3120.1 4533,2 3992.S 3493.3 1033.9 2612-7 2227.6 1853.4 1499,9 .0 5710.3 5966.7 i265 9 4131.1 1512.2 4233.5 3960.5 3662.8 3387.3 3131.3 1895.0 2675.3 2471,3 2276.2 2097.5 1330.9 .358 ,671 .690 .704 .721 .V4i .774 .608 .848 .897 .954 1.024 1.109 1.229 1.398 .000 HACH '0, ALTIT-JL 2OD50. THRUSTS/FJEL FLOWS/SFCS/NOX RATIOS FOLLOW 12701,3 11047.1 94//.6 8701.3 7947.6 7131.8 6358,6 5629.7 49S.3.6 1333.3 37C7.7 3244,7 2766.5 2301.7 1362.7 .0 8550.0 7579,9 6689,7 5254.4 5855.5 5111.7 5031.3 4653.1 4303.1 3978.6 3677.6 3393.7 3133.2 =894.1 2664.6 1690,B .673 .686 ,706 .720 .737 .761 .791 .827 .868 .317 .976 1.047 1.135 1.257 1.431 .003 MACH • .BOO, ALTfTUPE - 15053., THRUST:?.'FUEL FLOWS-.SFCS/NOX RATIOS FOLLOW 15553.7 1361S.O 116BU.6 10723.9 9793.0 0814.2 7636.7 6938.4 6111.2 5346.8 -FLOPS-OUT + 4613.5 3999.0 1105.6 2836.7 £199.7 .0 10777.2 9554,4 8432.3 7895.2 7385,5 6359.1 4312.0 5365.2 5121,0 5013,0 + 4635.3 4284.0 3957.0 3S43.0 3353.7 2131.2 .6B8 ,7D2 -722 .716 .754 .778 .35'- -B-IL .'::".' .938 + .998 1.07 1.13- 1.236 1.461 .000 HACH • -300, AI3'ITLIDE * 10000., THRUSTS / FUEL PLOWS/SFtS/NOX RATIOS FOLLOW 17AR5,7 15556.3 13346.1 12252.9 11191.6 .3371,0 8954.1 7927.7 6982.6 6109.1 + 3305.7 4569.2 339 5.7 31311.2 2623.0 .0 72377 3 11239.4 99IH.4 9263.7 B633.0 3063.8 741J0.4 6899.6 6380.5 5299,5 + 545 3.4 31115,5 4654.8 4291.4 3951.1 2507.0 .709 .723 .745 .758 .776 .851 .313 .373 ,914 .966 + 1.028 1.103 1.195 1.324 1.506 .000 MACH = .800, ALT TUDE = 5030., T7>:ji]S': 3/FUE1, FLOWS/SFCS/NOX RATIOS r'Hj[.T,OW 13913.5 16150.2 14J13.1 12957.3 11831.8 10619.7 9168.7 8333.2 75fc3.a 6160.2 + 5615,3 4333.8 4159.6 3427.5 2773.8 .0 13954.6 12371.3 10918.4 10224.1 9562.9 BBB1.4 8211.7 7594.4 7023.1 6493.6 + 6002.6 5547.0 51.73.3 4723.6 43 4J.0 2759.5 .738 .752 .774 .789 , j'Jii ,334 .867 .906 .951 1.O05 t 1.070 1.14 b 1.244 1.378 1.56.8 .000 MACH - .800, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 19837.8 17254.1 14302.5 13590.3 12413.1 11170.2 9937.4 8792.9 7744.7 6775.9 •F 5884.7 b567.9 4320.9 3595.0 2939.3 .0 15315.2 17577.3 11962.9 11221.0 10495.4 9747.4 9012.4 8334.9 7707.9 7126.7 + 6687.8 6087.9 5523.2 S.184 . 1 4773.0 3023.S .772 .787 .810 .826 .346 . !:73 .907 .948 .995 1.052 * 1.119 1.201 1.3' '. 1.442 1.641 .000 MACH - .750, ALTITUDE = 45355 ., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 4341.1 5295.4 3686.8 3390.3 3133.5 2798.1 2493.4 2212.3 1951.5 17i3.8 + 14 99.5 7 283.7 J i5' 3 903.2 735,7 .0 3006.4 2665.3 2352.4 2201.0 2062.9 1917.2 1773.8 135L.1 1513.1 1404.0 T 1298.2 1200.0 1108.4 1020.7 939.8 592.0 .60E .620 .633 .650 .635 .685 ,711 .742 .778 .821 1 .872 .933 1.007 1.124 1.276 .000 MACH - .750, ATTITUDE - 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 6290.5 5468.6 4693,7 11L6.9 3951.1 3562.3 3174.4 2316,3 2181,5 217B.1 + 1896.3 1B3B.2 !. ,9 1156.2 937.9 .0 3829.8 3395.3 2996.7 2557.7 262:;.3 2442.3 2259.6 2033.6 1933.9 1788.6 + 1653.3 1523.6 1412.0 1300.3 1197.2 754.2 .609 .621 ,638 .650 .535 .686 .712 .742 ,773 .821 + .872 .35 7 1.008 1.7 23 1.276 .000 MACH - .760, ALTITUDE = 30000., TBEUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 7964.6 6923.9 5942.9 5465.7 5D02.fi 4510.4 4019.2 3566.2 3145.7 2757.7 + 2401.0 20"'4.1 1773.7 1433."' 1187.3 .0 4959.7 1357.0 3883.3 3636.1 3403.3 3IH3.8 2926.3 2707.4 2504.5 2316.3 + 2141.7 1979,5 1823.5 1633.9 1350.4 976.7 .623 .635 .553 .665 .630 .741 .728 .759 .796 ,B40 + .892 .954 1.537 1.150 1.335 ,300 MACH = .750, ALTITUDE = 2SOOO., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 9474.0 8674,2 7115.1 $847.3 6267.2 5650.5 5035.2 445:.6 3540.3 3454.8 - .0 .00 200 .00377 -> 4000 28000 30496. 4 449. 14956. .6908 .7500 445 9 . 0293 250 00276 4 1 1138 .3 .32S9 15 52 4 . 0 . OU 300 .00398 352000. 28000 30496. 22270. 15266 . . 6855 .7500 445 9 .0292 .35 .00542 4 1 10SS.2 .3415 15 81 4 -0 . DO 4 00 .00707 3S9000. 08000 30496. 22914. 15S93. .6005 .7500 445 0 . C0S5 450 .00895 4 9 930.3 . 3_- • _c 06 4 . 0 .00 500 .01105 384U0D. 26000, j 096. 23581. 15932. . 6756 ,7500 445 9 .0079 330 ,01337 + 9 313.2 .372 5 . 6 23 4 . 4 . 00 600 .D1592 4000DO. 26000 30496. 242.70. 16284 . , 6709 .7500 440 0- .0273 65D .01663 4 S 702 . 8 .3880 16 48 4 0 ,00 700 .02166 11 f OC 28000 3 . 16 . 24998. 16661. . 0665 . 7500 445 9 .02 67 750 .1 .14- "/ 4 6 596 8 .4035 16 64 4 0 . 00 4 3 2 " C 0 . 2SO0O 3U496. 25820. 17087, . 6618 .7500 445 9 .0260 PRESSURE DRAG COEFFICIENTS.. OOP + 9 483 .7 .4191 0 6 73 4 .0 .00 MACH CL 448000, 280U0 3 0496 . 26703, 17552. . 657 3 .7500 445 9 . 0254 .05D . ] I fi .150 . 200 .250 .300 .0 00 , 400 .450 4 0 382. 3 .4346 1 6 73 4 0 .00 + . 500 . 600 . 650 . 7U0 .750 464000. 2BD00 30496, 27646. 18053. .6500 . 7500 4 40 .0247 . 200 .00065 . 00034 .00021 .00028 .O0U53 ,00087 0013 0 .00168 00267 4 0 277.3 .•104 1 7d 4 0 , CO) •..'•Oil . 00588 009 16 01069 01454 01965 18U0U0. 290)00 30496. 28674. 13599. . 6487 .7500 445 9 . 00 39 . 300 . coots .00034 .00021 . 0 0. ! •0DQ53 . 00007 0013D 00168 U02C7 . 4 7 171 .4 . 4 656 16 74 4 ('J . 00 * 00404 00534 00316 01069 . n 1 4 o 0 01965 496000. 2 0 -;<} 30805. 29708. 19203. . 6464 .7500 446 3 . 0232 .400 .00055 -Q0D34 .00021 . 00023 . 10053 .00087 00130 00169 00267 4 4 100.0 .4" 4 16 7 0 4 0 .00 +• O04O4 . 00583 ooaifi 01069 . "1454 . 01965 512000. 27100 ,7 . 30627. 19E57. . 6483 .7500 447 6 .0.145 . boo .00065 .00034 .00021 700 2 8 .00053 .00037 00131 .00171 002 68 4 4 loo. o .4772 16 72 4 0 , 00 • 00404 OC53B 00816 01069 01454 01965 928000. 26423 J2704. 31542. 20507. . 6502 . 750C 443 8 .0216 .600 .i 04 ( ,4,3, .00021 .UUU28 .0UU52 .oooes 90X51 00175 00270 * 9 100.0 .4776 !•" 74 4 0 . 00 005BB 00316 01069 01454 0196! 544000. 25751 30045. 32452. 21154, . 6519 .7500 450 1 . 0212 .700 .00076 .00037 . 00022 .00030 .00061 .00099 0014S or xi 00273 8 i oo. o . 4178 6 76 4 0 K + 001D4 00589 00316 01O6B 01403 01961 56QQD0. 25082 34581. 33356. 21798. . 6535 7500 451 4 , 0207 . J2S .00080 . Q0038 .00021 .00030 .00' . .00104 00150 00195 00275 . + 1 100.0 .4777 16 79 4 0 .00 + 00407 00592 00316 01064 . 014*7 UI 957 576000, 24497 35540. 34283. 22472. . 6555 , 7500 452 5 . OO. ('1 .7S0 .00092 .0004 1 00O21 .00032 ,00073 .0D116 00162 00.1 9 00295 . 4 3 100.0 .4790 16 80 4 0 .oo +• 0043Q . 00869 01097 01456 . 01938 592000. 23925 36499. 3 5210. 20i4 0. . 6574 . 7SO0 453 - ,0195 .7"5 .00 • .00043 .0DO22 .00036 .00091 .00141 00189 00249 00398 4 9 100 . 0 .4303 16 81 4 0 .00 f 00605 00355 01108 011.63 01639 . 02079 609000. 233 55 37453. 36133. 23822. .6593 . 7500 454 .0190 .Si."1 .00151 . i. 062 .00029 .00050 . 00127 00201 30267 0O40C 00532 + 8 1D0.O 3 16 33 4 0 . 00 + 00373 . 01175 0L193 017 03 OO.i.07 . 02441 (124000. 22788 3*404. 37052. .. 190. .6410 . 7500 455 6 .0186 -B25 .00232 . 00106 .00033 .n: .00202 . 00387 00622 00947 0X2 4 5 . 4 0 10D.0 .4821 16 . 84 4 rC .00 + 015 92 0 0 <, r. , 02321 02 6 03 02997 03319 6400DO. 22224 39350. 37967. 25160. . 6t-.2 7 .7S00 456 7 .0181 + 5 100.0 . 4B27 16 . fi0 4 0 .00 656000, 216 62 •.-•193. 38877. 25825. . 6643 .7500 457 7 ,0173 » CRUISE OPTIMIZATION RESULTS 4 2 100.0 . 4831 16 87 4 0 .00 672000. 21102 41230. 39784. 26487. . 6658 . 7500 458 7 .0173 4 2 100.0 .480 3 0 ' S9 4 0 . 00 DATA FX R CRUISE SCHEDUI E 1 WEIGHT ALTITUDE THRUST FUEL SFC MACH VELOCI . V SPFjCTF! r 01UISE SCH 4nui F. RANGE AND Tj Ml I SUMMARY C RATE OF Cl L/D EK3I HES NOX AVAlLAO[,E REQUIRED FLOW NUMBER RANGE WEIGH! RANGE -1 - I I ME CLIMB •.!• TING PATE (POliNLJr: j (N.K. ) (RR) 672000. 0 .00 208000. 30496- 17565 . 12956. . 7376 .'.'00! II 445 . 9 .0344 . 139 4 .30 1 2307 .1 .20;|3 11. 34 4 . 0 . 00 656OO0. 280 3 .61 221000. 28000. 10496. 17962. 13149. . 7321 . 7500 4 0 . 9 . 0339 648OO0. 420 0 . 92 4 1 2526.5 .2173 12 47 4 . e .00 640000. 567 3 1.24 240000, 24000, 00405. 18412. 13368. .7250 .7500 445 . 9 .0333 •:>: 713 4 I. it 5 2273 : 4 3.91 3040.00, 0SU0D. 1D49F• .: 100. 143B0. . 7021 . 0' •] [00 445 . 9 .0310 568000. 1952 1 4.20 1 14B7 .2 .29 Ii ;l _ 4 . B4 4 .0 .00 fj 60000. 2116 E 4 . 65 15:09:05 C17-MIDDLE-FLOPS-OUT START HOLDING CLIMB CLIMB CRUISE RESERVE END RESERVE FUEL DIST FUEL DIST FUEL RESERVE MACH WEIGHT WEIGHT NUMBER ALTITUDE VELOCITY 208000. 0. 29.3 2708,9 376.0 17049. 190951. .7500 28000. 445.9 224000. 0. 32.1 2950.7 372.6 17238. 206762. ,7500 28000. 445.9 240000. 0. 35.0 3199.0 369.1 17575, 222425. .7500 28000. 445.9 256000. 0. 38.0 3455.3 365.6 17933. 238067. .7500 28000. 445.9 272000. 0. 41.0 3720.2 361.8 18306. 253694. .7500 28000. 445.9 CRUISE FUEL 10967.2 10890.7 10954.7 11033.1 11111.6 DESCENT DESCENT DIST FUEL 94 .7 95.3 95, S 96 .4 97 . 1 1506.5 1531.0 1555.2 1578.5 1607.8 * ITERATION 1 * ITERATION 2 * ITERATION 3 * ITERATION 4 * ITERATION 5 * ITERATION 6 RANGE = RANGE = RANGE = RANGE = RANGE = RANGE = 7237.757 4211.770 3856.730 3900.612 3900,007 3900.000 (t OUTPUT FROM THE WEIGHTS MODULE DESCRIPTION FOR GROSS WEIGHT = FOR GROSS WEIGHT = FOR GROSS WEIGHT = FOR GROSS WEIGHT = FOR GROSS WEIGHT . FOR GROSS WEIGHT = VALUE DIMENSIONS 650000 505364 490462 492278 4922 53 492252 00 20 27 41 10 79 552000 2283 3 5 02 288000. 0. 44 2 3993 7 358 0 11187 5 97 8 1634 6 544000 2452 4 5 40 + 18682. 269318 .7500 28000. 445 9 536000 2623 8 5 78 304000. 0 . 47 4 4277 6 354 3 11269 9 98 3 1656 3 528000 2797 7 6 17 4 19070. 284930 .7500 28000. 445 9 520000 2974 0 6 56 320000. 0. 50 7 4570 8 350 6 11359 3 98 7 1673 9 512000 3153 0 6 96 + 19470. 300530 .7500 28OO0. 445 9 504000 3334 7 7 36 336000. 0, 54 2 4875 9 346 8 11450 8 99 0 1688 2 496000 3519 2 7 78 + 19881. 316119 .7500 28000. 445 9 488000 3706 6 8 20 352000. 0 . 57 9 5194 9 342 9 11543 0 99 2 1700 9 480000 3896 9 8 62 + 20305. 331695 .7500 23000. 445 9 472000 4090 1 9 06 368000. 0. 61 8 5527 6 338 8 11636 6 99 4 1711 8 464000 4286 2 9 50 + 20742. 347258 .7500 28OO0. 445 9 456000 4435 1 9 94 384000. 0 , 65 8 5876 7 334 6 11730 3 99 6 1721 2 448000 4686 9 10 40 4 21194. 362806 .7500 28000. 445 9 440000 4891 5 10 85 400000, o. 70 1 6243 0 330 2 11821 9 99 6 1728 6 432OO0 5098 9 11 32 + 21660. 378340 .7500 28000. 445 9 424000 5308 9 11 79 416000. 0. 74 8 6630 7 325 6 11909 6 99 6 1735 3 416000 5521 7 12 27 + 22142. 393358 ,7500 28000. 445 9 408000 5737 0 12 75 432000. o. 79 8 7044 0 320 5 11994 6 99 6 1741 6 400000 5954 8 13 24 + 22646. 409354 .7500 28000, 445 9 392000 6175 0 13 73 448000. 0, 85 4 7487 4 315 0 12083 0 99 6 1747 6 38400C 6397 7 14 23 + 23184. 424816 .7500 28000. 445 9 376000 6622 8 14 74 464000, 0. 91 6 7971 0 308 S 12160 5 99 6 1753 6 368000 6850 3 15 25 4 23751. 440249 .7500 28000. 445 9 360000 7080 3 15 76 480000. o. 93 7 8505 0 301 9 12217 7 99 5 17S8 7 352000 7312 7 16 29 + 24348. 455652 .7500 28000. 445 9 344000 7547 5 16 81 496000. 0. 105 8 9054 1 294 9 12287 5 99 4 1763 2 336000 7784 8 17 34 4 24971. 471029 .7500 27779. 446 3 328000 8024 5 17 88 512000. 0, 109 9 9471 4 291 1 12502 3 98 9 1764 9 320000 8266 6 18 42 4 25605. 486395 .7500 27100. 447 6 312000 8511 0 18 97 528000, o. 110 5 9714 0 291 7 12901 8 97 8 1759 5 304000 8757 9 19 S3 4 26241. 501759 .7500 26423. 448 a 296000 9007 1 20 09 544000, 0. 110 4 9922 4 293 6 13359 0 96 0 1748 2 288000 9258 7 20 65 4 26896, 517104 .7500 25751. 450 1 280000 9512 6 21 22 560000. 0. 110 3 10130 6 295 5 13818 5 94 2 1736 S 272000 9768 8 21 79 4 27552 . 532448 .7500 25082, 451 4 264000 10027 4 22 37 576000. o. 110 3 10351 6 297 2 14274 3 92 5 1723 9 256000 10288 2 22 96 4 28216. 547784 .7500 24497. 452 5 248000 10551 5 23 55 592000. 0. 110 8 10604 2 298 5 14724 9 90 a 1710 8 240000 10817 1 24 14 4 28906. 563094 .7500 23925. 453 5 232000 11085 0 24 75 608000. 0 . 111 5 10879 7 299 3 15161 8 89 2 1700 6 224000 11355 1 25 35 4 29608. 578392 .7500 23355. 454 6 216000 11627 4 25 96 624000. 0. 112 2 11164 6 300 1 15600 9 87 7 1689 4 203000 11901 7 26 58 4 30321. 593679 .7500 22788. 455 6 640000. 0. 112 8 11461 2 301 0 16042 1 86 2 1677 9 4 31047. 608953 .7500 22224, 456 7 RESERVE SUMMARY 4 656000, 31797. 624203 o. 113 .7500 5 11789 21662. 0 457 301 7 7 16475 2 84 7 1666 3 4ISSED APPROACH FUEL = 1866. LB. 672000. 0. 114 4 12163 2 302 4 16900 0 83 2 1653 3 4 32583. 639417 .7500 21102. 458 7 Nov 18 96 15:09:05 C17-MIDDLE-FLOPS-OUT CALCULATED WING AREA CALCULATED ASPECT RATIO WING BENDING FACTOR ENGINE INERTIA RELIEF FACTOR WING WEIGHT BREAKDOWN TERM 1 TERM 2 TERM 3 WING SPAN WING GLOVE AREA HORIZONTAL TAIL AREA MODIFIED VOLUME COEFFICIENT VERTICAL TAIL AREA MODIFIED VOLUME COEFFICIENT NACELLE LENGTH NACELLE DIAMETER LENGTH OF MAIN GEAR LENGTH OF NOSE GEAR MAXIMUM LANDING WEIGHT WING FUEL CAPACITY FUSELAGE FUEL CAPACITY AUXILIARY TANK CAPACITY TOTAL FUEL CAPACITY 1 MASS AND BALANCE SUMMARY T LREF HORI CG-INCHES WING .0 .0 HORIZONTAL TAIL .0 .0 VERTICAL TAIL .0 .0 VERTICAL FIN .0 .0 FUSELAGE ,0 .0 LANDING GEAR .0 .0 NACELLE (AIR INDUCTION) .0 .0 STRUCTURE TOTAL 0) ( .0) ENGINES .0 .0 THRUST REVERSERS ,0 73.4 MISCELLANEOUS SYSTEMS .0 .0 FUEL SYSTEM-TANKS AND PLUMBING .0 .0 PROPULSION TOTAL ,0) [ .0) SURFACE CONTROLS .0 .0 AUXILIARY POWER .0 .0 INSTRUMENTS .0 .0 3846.0 SQ FT 7 . 28618 3.2021 .926587 14181.7 LB 19559.7 LB 7829.7 LB 167.40 FT -92.05 SQ FT 845 . 00 SQ FT 1.539989 395.07 SQ FT .100000 12.23 FT 6.23 FT 41.91 IN 29.33 IN 348268.8 LB 182720.0 LB .0 LB ,0 LB 182720.0 LE PERCENT WREF 8 .45 .63 .27 .21 13.04 2 .40 .71 [ 25.69) 5 .77 .00 .19 .40 ! 6.37) .93 .13 . 19 POUNDS 41571. 3080. 1315 . 1028 . 64181. 11790. 3478 . ( 126443.) 28400. 0. 959. 1984 . ( 31343.) 4563 . 616 , 913 . HYDRAULICS .0 .0 ELECTRICAL .0 .0 AVIONICS .0 ,0 FURNISHINGS AND EQUIPMENT .0 .0 AIR CONDITIONING ,0 .0 ANTI-ICING .0 .0 SYSTEMS AND EQUIPMENT TOTAL .0) ( .0) WEIGHT EMPTY .0 .0 .0 .0 . 0 .0 CREW AND BAGGAGE-FLIGHT, 3 ,0 -CABIN, 0 .0 UNUSABLE FUEL .0 ENGINE OIL .0 PASSENGER SERVICE .0 CARGO CONTAINERS .0 OPERATING WEIGHT ,0 PASSENGERS, 0 .0 PASSENGER BAGGAGE CARGO .0 ZERO FUEL WEIGHT .0 .0 MISSION FUEL .0 RAMP (GROSS) WEIGHT ,0 .0 I NONCRUISE SEGMENT RESULTS CLIMB PROFILE DATA FOR SEGMENT 1 +. - - - CUMULATIVE - - - WEIGHT ENERGY ALT MACH + TIME DIST FUEL CL L/D ,52 . 64 . 52 2.87 .46 .06 ( 6.30) 38.36 .14 ,00 . 20 . 07 .00 4.19 42.96 .00 . 00 22.75 65 .71 34 .29 100.00 2541 . 3155 , 2556. 14129. 2244 . 311. ( 31029.) 188816. 675 . 0. 983 , 325 . 0. 20650. 211450. 0. 0. 112000. 323450. VEL RCI PC TIME DIST THRUST /TMAX INCREMENTAL- - FUEL 489267. 1743. 0. .300 198.4 2602. 1 .00 ,0 .0 133.3 .00 .0 .0 .966 8.68 119703. 1.000 488828. 3403. 0. .419 277.3 4581. 1 .46 1.8 439.5 260.2 .46 1.8 439.5 .494 17.68 107400. 1.000 488494. 5063. 0. .511 338.2 4989. 1 .35 1.8 333.6 387.2 .81 3.6 773.1 .332 17.60 98916. 1.000 488172. 6722. 1107. .540 356.2 4893. 1 .34 1.9 321.6 415.7 Nov lit 96 15:09:05 C17-MTDDLE-FLOPS-OUT i n 5 1B7B51. 1.45 7 4B7529. i . 8 i 3 437506. ^ . 2 1 !.,! 486801. 2.5B 14 . -. • >3. 2.95 17 4B6213 . 3-41 33 486670. 3.35 23 4B5S19. 4.32 26 4 85157. 4.83 3 3 484781. 5.38 34 454385. 5.93 3 8 483977. 6.63 43 45354:'. 7.46 49 483069. B.36 56, 483537. 9.13 64. 161334. L0.70 73. 4111314. 72.32 I 480479. 14.48 131 480356. 14.3. 104. 5 1094 8332 . 6 1416 -.•"•042 . 7 ] 73; 11701. 11361 23 = 3 3 4048 2 5085 7 6522 23 66.2 15020. 1 2717 16680. 5 3054 183 40, 7994 5 9107 I 1D2B6 3 1759 0 339 19999. 3 374 .1 21659 13153 0 1110.3 23319. 14513 14 66,4 24978. 1CT17J S 1878.7 26638. 17B11 7 5295.3 28296. 19191 5 5727 5 1 :I957 . 21153 2 6197.6 31617.. 223.1 5 1 6709.9 33277. 24473 6 7261.5 34936. 26134 6 7953.4 36596. 27794 7 87H8.5 36797. 27995 1 8908.7 .309 .313 .3.6 .295 .35? .10] .301 .2 84 .290 . 394 .336 312 .330 . 348 .368 .390 .412 . 437 . 4 63 .466 17 ,15 552 17,17 3 6-', 17 . 17 595 16. 64 6 54 16, 75 620 15.53 E3.il 10.31 669 15 . 91 680 16 .00 695 15. 97 711 15 . 83 715 16.15 720 13.39 724 16 , 60 723 16 . 77 734 16 . 92 739 16.99 744 16.94 749 16 .77 750 16.74 94633 361,7 51510 367 ,9 33692 336.6 • m 390.2 BI119 398 .4 77420 1DB.1 /413 6 42 5 . 5 72101 431 .4 63291. 439 .3 64701 446.0 61361 44o.5 57536 446.0 53B76 416,0 50203. 445 .0 46939. 445 .9 43851. 445 . 9 40751. 445 . 9 37599. 415.9 35402 . 445 .9 7 5 588. 1.000 4741 . 1 .000 160 8 . I . 330 4556. 1. OOO 4249, 1.006 3998. 1.000 3798. 1.000 3700, 1 . 000 3415. 1 .000 3140. 1 ,000 2373. 1 . OOU 5568. l.ODO 2772 . 1 .000 3 968. I.OOO 1696. 1 .000 1434, 1 .000 1160. 1.000 319 . 1 .ODO 65 7 . 1.000 651 . 1 .050 DESCENT PROFILE 3JATA FOR SEGMENT • - - CUHULA7 1VT-: - - - •.(EIGHT ENT13.GY AJ.T TIMS DIST FUEL MACH 2.7 37 89 . 223 735. 3743 . 0. VEL 3.CI THP.tVi /THA* 198.4 -1147. . 34 .36 2.0 2 .1 .36 2,3 .33 2.4 .40 2 . 6 .43 2.9 .44 3.1 ,47 55 3 .3 4 . 1 ,61 4.5 .69 5.7 .78 5.8 .91 7.53 6 .7 7 , 9 1.28 9.5 1,61 12.0 2.16 16.1 .32 2.4 121 .7 322 .0 322 .5 336.9 3 42 ,8 353. 9 362 .2 376.1 392 a 417 .7 437 .2 470 .1 713.7 573 . 6 655 . 7 835.2 120.1 - - INCREMENTAL-PC TIME DIST 33 .00 . 5 .452 17,33 .000 3403 . 1623 , .35-200.5 1 •; 0 -1.44 -1.44 4,a -346.0 .464 17.42 229072. 5063. 3255. ,113 -2.8' - 9.5 - 572.8 .467 17,39 229230. 6725 4785. .322 -4.22 14.3 -411.0 .469 17.36 229330. 5782. 5755. .337 •3.56 .!.:,-. 0 -531 .3 ,471 17.21 0. .05 3 204.8 -1193. 0 -1.41 0. .050 209.3 -1223. 0 -1.38 0. .000 214.0 -1250. 3 -1.34 0. .050 .340 .473 17.30 229431. 10!'42. "1923. -6.87 23.7 -642,1 52533b. 11701. 51 SC. -8,1S 2K.4 -745 3' .475 77.27 29630. 13361. 11044. .360 223.3 -9.|: 33.1 -341.45 .477 17..74 259719, 1^573 12j:'-1. .2 70 233.3 13.62 37.3 -929.S .480 '.20 229799. 16630. 14146. -381 233.2 11.81 43.5 - -'1 0.6 .482 j.Z.16 218.8 -2281 -1.31 . 000 .350 223.7 -1312, 0 -1.28 0 . ,OOO -1344. 3 -1.25 0. .030 -1377. 0 -1.22 5. 030 1412. 3 -1.19 5. .000 4 . 7 4 .7 4 .7 4.7 4 .7 1 .7 4 . 7 4 .7 -146 -136 -128 -119 -311 -103 -95 110,4 5 5 5.5 434 . 9 422 , 7 422 . 5 42 5. 6 450.8 440.3 134 .7 430 .7 386 .1 365 .2 315.2 326.0 307.6 290.1 273 . 3 271 .3 133 .3 129.7 129.2 128 . 6 128 .2 127,7 137.2 li6 . 6 125.0 125.4 229B73. 18340. 14690. .392 244 12,97 47.2 -1031,2 .185 17.15 229939. 19*99. 17256. ;«1 25b 14.11 51,8 -1150.6 .193 17.32 229999. 21659 1NH75. .4'l" 755 15.5654 -1339.3 .513 16.78 230051. 23319. 20444, ,416 254 16.30 61.0 -1152.2 .524 16,63 J3O098. 21973. 22013. .425 253 17.35 65.5 -1303.a .536 36.45 23QI33. 26618. 23591, .433 262 18.38 70,0 -1549.S .551 16.2^ 220175. 282.tli. 25175, ,441 265 19.3B 74.3 -1335.7 .569 IS.95 210205. 39957. 26762. .450 2I* 30.35 78.6 -1116.6 .588 i 5.63 230235, 31317 28000. ,481 285 21.29 83.0 -1446.3 .543 16.31 230273. 33277. 23000. .53! 345. 22.16 87. U -7 483.8 .373 lrj.52 230313. 34936. 28000. .666 395. 22,66 91.9 5524.2 .233 15.07 230350. 36596. 28000. .741 440 2:3.40 95.7 -1560.8 .22^ 5.58 230351. 36801. 2SOO0. ,7 50 445. 23.46 55.1 -1555.0 .223 12,70 6 -1147, 0 -1.1* 0. .000 5 •1431. 0-1.13 D. .000 8 -J 514. 0-1.11 3. .000 :• -1552 . 0 -"i . M 0. .OOO 8 -1593. 0 -1.06 0. .OOO 4 -163:7. 0 -1.03 0. .UUU F: -165 6 . 0 -1 .00 5. .500 3 7/13. 0 -.97 0. .000 8 -1774. 0 -.94 0- .000 2 -2067. 0 .35 3. .000 B 2361. 0 -.70 0. -000 6 -3437. 0 -.51 0 . . 3 U Ll 9 -3555. 0 -.0' 0. .000 5ERATI0N 7 -- RANGE 3 900.000 FOR GROSS WEIGHT = # SIZING AND PERFORMANCE RLSilLTS CONFIGURATION DATA AFTER RESIZING (IF OPSRATINij WEIGHT EMPTY 215449.6 PAYLOAD UJ 000.0 MAXIMUM FUEL 16B803.2 gross weight 19j.252 .8 hefescemce wing area 3800.00 wing loading 129.51 thrust per engine 40700.7 ehoine scale factor 1.0350 T&lF.USk-W77IGHT RAI , O .335 7 L3 LH LB LB SQ FT LB/SQ FT 4.7 4 .7 4 . 6 4.6 4 . 5 4 . 5 4 .4 4.3 4 .4 -73 .6 -66 .4 - 7 q 2 -52 . 4 -46.3 -4. : -35.8 -30. 9 -30.0 -37 .2 -40 .4 -3 6.5 -4 .2 52.79 112 .9 159.6 105.5 103 . 0 111. 5 162 . 6 213 .8 2 65.0 271 .3 • H NUMHRFl SEGMENT * T END 5 a:-TAKE OFF + .309 INITIAL FUEL(LB) ALTITUDE (FT) NOX LMLSSU - I WEI-3HT(LB) SEGMT TOTAL SEGMT START END SEGMT TOTAL MISSION SUMMARY **« TIME(MIN) DISTANCE(N MI) TOTAL SSgjfT TTOTHL 192253. 43;133. 1120 . 1366 . 0. CLIMB 489267. 8939. ' 0 .750 0, 27995. CRUISE 480356. 123938, + 0 .750 27995. .7 5353 RELEASE 356421. 0. i- 5 .730 28000. 23000, REFUEL 244421: 2000. , 3 .755 23300. 23000. CRUISE 242421. 12067. 1120. 2533 . 11894 . ,00 13~532. , 00 135832. .00 137832. ,00 119899 . .01 .50 15.0 2 . 0 ' . 3 .5 . 0 -. 5 54 .3 15.0 17. 0 31 . 8 475.3 475 .3 533. 3 634 .7 104 . 1 3 2 5 5 . 3 . 0 . 0 4 3.1 ,9 104. 1 3400.0 3433.0 3 4GC.O 3803.9 MAC STAR .30 . 75 .75 .75 .75 Nov 18 96 15:09:05 C17-MIDDLE-FLOPS-OUT 0 .750 23000. 28000. .00 .00 DESCENT 230354. 1565. 151464, 23.5 0 .300 28000. 0. .00 .00 RESERVES TAXI IN ZERO FUEL 228789. 211450. 17339. 149 , 168803 . 2.0 658.1 96.1 3900.0 660.1 DESIGN RANGE FLIGHT TIME 3900.0 641 . 1 BLOCK TIME = 11.00 HOURS BLOCK FUEL = 151613.3 POUNDS TOTAL NITROGEN OXIDES EMISSIONS ATA TRAFFIC ALLOWANCE - AIR MANEUVER = 44,6 AIRPORT TRAFFIC ALLOWANCE = 17.4 AIRWAY DISTANCE FACTOR = 78.0 0. POUNDS 140.0 NAUTICAL MILES ATA RANGE 3900.0 NAUTICAL MILES H DETAILED FLIGHT SEGMENT SUMMARY WEIGHT CLIFT 489267. .96574 ,11123 488828. .49431 . 02796 488494, .33203 488172. .30903 . 01802 487851. .31283 437529. .31564 .01838 487206, .29484 .01772 486881, 1 CLIMB ALTITUDE LIFT ENERGY MACH NO. DELTA T L/D Q VELOCITY TIME DRAG SP RANGE 0. 489267. 1743 . 56353. 488828. 3403 . 27643. 0 . 488494. 5063. 27756. 1107 . 488172. 6722 . 28461. 2589 . 487351. 8382 . 28406. 4048. 487529. 10042. 28395. 5085 , 487206, 11701. 29282. 6622 . . 3000 8.682 198 . 44 .00350 .4191 17.680 277.25 .00483 .5112 17.600 338.17 .00583 .5405 17.152 356.16 .00626 .5518 17.174 361.73 .00656 .5641 17.169 367.94 .00686 . 5949 16.638 386 .58 .00727 . 6037 NOX .00 133 . 3 17 . 00 .0 . 46 260.2 17.46 .0 .35 387.2 17.81 . 0 .34 415.7 18.14 . 0 .34 410. 4 18.49 .0 .36 406 . 5 18.84 .0 .36 434 . 9 19.21 DELTA D PCODE DIST ENG PAR .0 1 .0 . 000 1.8 1 1.8 ,000 1.8 1 3 . 6 .000 1.9 1 5.5 .000 2.0 1 7 . 6 . 000 2.1 1 9.7 .000 2.3 1 12 .C .000 2.4 DELTA F FUEL 0. 2986 , 439. 3425. 334. 3759 . 322 . 4080. 322. 4402 . 322 . 4724. 322. 504 6. 326. THRUST FUEL FLOW EX POW T/TMAX SFC DH/DT* 119703, 56725. 2602.1 1.00000 .47388 .0 107400. 57392. 4580.7 1.00000 .53438 .0 98916. 58017. 4988.7 1.00000 .58653 .0 94683. 56855. 4892,6 1.00000 .60047 3294.7 91540. 55167. 4740.6 1.00000 .60265 4302.6 88692. 53653. 4608.3 1.00000 .60494 4109.1 S5976. 53176. 4555.6 1.00000 .61850 2863.1 81419. 50442. 4248.8 . 30314 .01809 486550. .30304 .01819 486213. .30062 . 01821 485870, .28361 .01779 485519. .29020 .01814 486881 . 13361. 29062. 7994 . 486550. 15020. 29201. 9307 . 486213. 16680. 29458. 10286. 485870. 18340. 30482. 11759. 485519. 19999. 30343, 485157. 13153. .29373 485157. 21659. 30387. .01840 484781. 14513, .29622 484781. 23319 . 30521. .01865 4843 88. .31249 .01935 483977. .32986 .02013 16173. 484388. 24978, 29993. 17833. 483977. 26638. 29532. 483540. 19493. .34843 483540. 28298. 29137. . 0210C 483069 .36829 . 02196 432557. .38954 .02303 481984. .41229 . 02427 481314. .43662 21153. 483069. 29957. 28801. 22813. 482557. 31617. 28524. 24473. 481984. 33277, 28374. 26134. 481314. 34936. 16.753 390.15 .00773 . 6196 16.662 398.41 .00825 .6377 16 . 505 408.11 .00875 . 6689 15.939 426.52 .00922 . 6803 16.001 431.44 .00981 . 6948 15.966 438.33 .01047 .7106 15.883 446.00 .01118 .7151 16.150 445.99 .01197 .7197 16.388 445.98 .01283 .7244 16 .595 445.97 .01383 .7292 16.773 445.96 .01485 .7341 16.917 445.94 .01596 .7391 16.987 445.93 .01725 .7442 16.938 445.91 422 .7 19.58 .40 422 .5 19 .99 .43 425 .6 20.41 .0 .44 450.8 20.85 ,0 ,47 440.3 21 .32 .0 .51 434.7 21 .83 .0 .55 430.7 22.3a .0 ,61 407 .9 22.99 .0 .69 336.1 23 .6S .0 .78 365 .2 24 .46 .0 .91 345,2 25 .36 1 .06 326.0 26.43 .0 1 307 28 6 27.70 , 0 1 290 61 1 29 . 32 1 14 . 4 . 000 2.6 1 17.1 .000 2 . 9 1 19.9 .000 3.1 1 23 .0 .000 3.3 1 26 .3 .000 3.7 1 30 .0 ,000 4.1 1 34.1 .000 4.5 1 38 . 6 .000 5.1 1 43 .7 , 000 5. 8 1 49.5 .000 6.7 1 56 .2 . 000 7.9 1 64 .1 .000 9.5 1 73 . 6 ,000 12 . 0 1 85.6 5372 . 1.00000 .61953 4076.5 331. 77420. 48314. 3998.5 5703. 1.00000 .62405 3407.4 337. 74136. 46649. 3797.7 6040, 1.00000 .62924 3034.4 343. 72101. 46275. 3699.9 6383. 1.00000 .64181 2212.2 351. 68291. 43968. 3414.9 6734. 1.00000 .64383 3157.3 362. 64701. 41866. 3139.6 7096. 1.00000 .64707 2752.9 376. 61361. 39897. 2873,2 7472. 1.00000 .65020 2462.8 392. 57536. 37266. 2568.1 7864. 1.00000 .64771 2721.3 412. 53876. 34763. 2271.8 8276. 1.00000 .64525 2420.5 437. 50203. 32235. 1967.5 8713. 1.00000 .64210 2120.2 470. 46939. 30026. 1695.8 9183. 1.00000 .63967 1832.2 512. 43851. 27946. 1434.4 9696. 1.00000 .63729 1565.6 574. 40751. 2S845. 1159.6 10269. 1,00000 .63420 1297.5 670. 37999. 240O9. 898.9 10939. 1.00000 .63183 1029.7 Nov IS 96 15:09:05 480479. ,46262 .02759 27794. 480479. 36596. 28653. .01857 .7494 16.769 445.89 .02001 2.16 273.3 31 .48 .0 .000 16.1 1 101 .7 .000 C17-MIDDLI 480358. .46588 . 02783 27995, 480358. 36797. 28696. .7500 16.739 445.88 . 02020 .32 271 .3 31.81 .0 2.4 1 104.1 .000 120. 35088. 22078. 600.8 11394. 1.00000 .62922 618.C SEGMENT 2 CRUISE WEIGHT CLIFT ALTITUDE LIFT ENERGY MACH NO. DELTA T L/D Q VELOCITY TIME DRAG SP RANGE 480358. 27995, .46588 480353. 36797. 28696. .02783 480000. .46563 .02782 464000. .45011 ,02682 2 8000. 480000. 36801. 28674. 28000. 464000. 36801. 27646. .7500 16,738 445.88 .02396 .7500 16 .740 445.88 .02397 .7500 16.783 445.88 .02470 NOX .00 271 .3 31.81 1.15 271. 3 32.95 .0 52.33 271 .3 85.34 .0 DELTA D PCODE DIST ENG PAR .0 2 104 . 1 .000 8.5 2 112 . 6 . 000 389 . 3 2 501 . 9 .000 DELTA F THRUST FUEL FLOW EX POW FUEL T/TMAX SFC DH/DT* 0 . 11894. 358. 12253 , 28696. 18612. .94077 .64860 28674, 18599, .94024 .64865 169.8 .0 171 .4 4,3 16000. 27646, 18053. 277.3 28253. .90655 .65300 .0 443000. .43459 .02590 432000. .41907 .02505 416000. .40355 .02425 400000. .38803 .02354 384000. ,37250 .02287 28000. 448000. 36801. 26703. 28000. 432000. 36801. 25820. 28000. 416000. 36801. 24998. 28000. 400000. 36B01. 24270. 28000. 384000. 36801. 23581. . 7500 16.777 445 .88 .02540 .7500 16.731 445.88 ,02609 ,7500 16.641 445.88 .02676 .750C 16.481 445.88 .02738 .7500 16.285 445.88 .02799 53.93 271.3 139.27 , 0 55 .43 271.3 194.70 .0 56.90 271. 3 251.60 .0 58.28 271 .3 309.88 .0 59.60 271 .3 369.48 . 0 400.8 2 902 .7 .000 411 .9 2 1314.6 .000 422.8 2 1737.4 .000 433 . 1 2 2170.5 . OOC 442 . 9 2 2613.4 .000 16000. 26703. 17552. 44253. .87563 .65728 16000. 25820. 17087. 60253. .84668 .66176 16000. 76253. 16000. 92253. 24998, .81971 24270. .79585 16661. .66649 162 84 . , 67094 382.3 .0 488.7 . 0 596.8 .0 702 . 8 .0 16000. 23581. 15932. 813.2 108253. .77324 .67562 .0 368000. .35693 28000. 368000. 36801. 22914, .7500 16.060 445.38 .02859 60.91 271.3 430.39 ,0 452 . 6 2 3066.1 .000 16000. 22914. 15593. 930.3 124253. .75139 .68050 .0 356421. .34575 28000. 356421, 36801. .7500 15.879 445.88 44.94 271.3 475.33 333.9 2 3400.0 11579. 22446. 15355. 1019.8 135832. .73603 .68410 .0 FLOPS-OUT .02177 22446. .02904 .0 SEGMENT 3 RELEASE .000 WEIGHT ALTITUDE MACH NO. DELTA T CLIFT LIFT L/D Q ENERGY VELOCITY TIME CDRAG DRAG SP RANGE NOX 244421. 28000. .7500 .00 ,23710 244421. 13.179 271.3 36801. 445.88 475.33 .01799 13546. .03319 .0 DELTA D DELTA F THRUST FUEL FLOW EX POW PCODE DIST FUEL T/TMAX SFC DH/DT" ENG PAR 3400.0 135832. . 000 18546. .60813 13433 . .72433 2207 .7 .0 SEGMENT 4 REFUEL WEIGHT ALTITUDE MACH NO. DELTA T CLIFT LIFT L/D Q ENERGY VELOCITY TIME CDRAG DRAG SP RANGE NOX 242421. 28000. .7500 105.00 .23516 242421. 13.115 271.3 36801. 445.88 580.33 .01793 18485. .03327 .0 DELTA D DELTA F THRUST FUEL FLOW EX POW PCODE DIST FUEL T/TMAX SFC DH/DT* ENG PAR 2 000, 3400,0 137832. .000 18485. .60614 13404, .72512 2237 .2 .0 SEGMENT WEIGHT CLIFT CDRAG 5 CRUISE ALTITUDE MACH NO. DELTA T LIFT L/D Q ENERGY VELOCITY TIME DRAG SP RANGE NOX 242421. 23000. .23516 242421. 36801. 18485. . 01793 240000. ,23282 .01786 28000. 240000, 3 6801. 18412. 230354. 28000. .22346 230354. 36801 . 18135, .7500 .00 13.115 271.3 445.83 580.33 .03327 .0 .7500 10.82 13.035 271.3 445.88 591.14 .03335 .0 .01759 .7500 12.702 445.88 ,03369 43.53 271.3 634.68 .0 DELTA D DELTA F THRUST FUEL FLOW EX POW PCODE FUEL T/TMAX DIST ENG PAR 3400,0 137832. .000 80.4 2421. 2 3480.4 140253. ,000 9646 . 323.5 2 3803.9 149899. .000 18485. .60614 18412. .60376 18135. .59466 SFC 13404. .72512 13368. .72606 13233. .72972 DH/DT* 2237.2 .0 2273.4 .0 2423.0 .0 WEIGHT CLIFT CDRAG 230354. .22346 .01759 230350. .22879 . 01762 230313. .28349 6 DESCENT ALTITUDE MACH NO. DELTA T LIFT L/D Q ENERGY VELOCITY TIME DRAG SP RANGE NOX 28000, 230354. 36801. 18135. 28000. 230350. 36596. 17740. 28000. 230313. .7500 .00 12.702 271.3 445.88 634.68 .10258 .0 .7412 ,06 12.985 265.0 440.65 634.74 .10286 .0 . 6658 15.065 .54 213 .8 DELTA D DELTA F THRUST FUEL FLOW EX POW PCODE T/TMAX DIST ENG PAR FUEL 3803.9 149899. . 000 3804.3 149903. .000 3.8 37 . 0 . .00000 0. . ooooo SFC 4346 . . ooooo 4284 . .00000 DH/DT* -3554.7 .0 -3436.6 .0 3768. -2660.7 .02578 28417. 835. 35402. 22287. 634.3 11774. 1.00000 .62954 767.0 .01882 230273. .37259 .02203 230235. .54346 .03332 230205. .58839 .03763 230175. .56897 .03568 230139. .55140 .03399 230098. .53645 .03261 230051. .52432 .03154 229999. .51343 .03060 229939. .49342 ,02899 229873 ,48512 .02834 229799, .48226 .02810 229719. .47963 229630. .47721 , 02769 34936. 15288. 28000. 230273. 33277. 13613. 28000. 230235. 31617. 14114 . 26762. 230205 . 29957 . 14724. 25175 . 230175. 28298, 14433. 23591. 230139. 26638. 14187. 22013. 230098. 24978. 13989. 20444, 230051. 23319. 13837. 18875. 229999. 21659. 13709. 17256. 229939. 19999. 13511. 15690. 229873. 18340. 13429. 14146. 229799. 16680. 13392. 12598. 229719. 15020. 13356. 11044. 229630. 13361. 13323. 395.83 .10505 .5807 16.915 345,24 .10978 .4808 16.312 285.83 .14156 . 4495 15.635 268.64 .14981 .4415 15.948 265.58 . 130B0 .4333 16 .222 262.37 .11527 .4247 16.449 258.81 .10251 .4155 16.626 254.83 .09181 .4063 16.777 250 .76 .08255 .4009 17,019 248.95 .07393 .3915 17.117 244.64 .06673 . 3806 17.160 239.24 .06073 . 3700 17 .199 233.95 .05561 .3598 17,235 228.77 .05119 635.28 .0 .70 162.6 635.98 .0 . 86 111.5 636.85 .0 .94 103 . 0 637.79 .0 .97 106.5 638.76 .0 1.00 109.8 639.76 .0 1.03 112.9 640.79 . 0 1.06 115,5 641.84 .0 1 .08 117.9 642.92 .0 1 .11 122.6 644.03 .0 1.13 124.7 645.17 .0 1.16 125.4 646.33 .0 1.19 126 .0 647.52 .0 1.22 126 .6 648.74 .0 3808 .1 .000 4.3 0 3812.4 .000 4.5 0 3817.0 .000 4.4 0 3821.4 .000 4.3 0 3825.7 .000 4.4 0 3830.0 .000 4.5 0 3834.5 .000 4.5 0 3839.0 .000 4.6 0 3843.6 .000 4.6 0 3848.2 ,000 4.7 0 3852.8 .000 4 .7 0 3857.5 .000 4.7 0 3862.2 .000 4.7 0 3866.9 .000 149940. 40. 149980 . 37 . 150017. 30. 150047. 31. 150078, 36. 150114. 41. 150155. 47 . 150202. 52 . 150254, 59 . 150313. 66. 150380. 74. 150453. 81. 150534. 88. 150622, .00000 .00000 0. .00000 0. .00000 0 . 0. 3145. -2066.9 .00000 2019 . .00000 -1774.5 .0 0, 1793. -1740.1 .00000 .00000 -1310.5 2030. -1686.5 ,00000 .OOOOO -1638.4 0. 2276. -1637.9 .00000 .00000 -1587.0 0. 2525. -1593.4 .00000 .00000 -1535.7 0. 2775. -1552.2 .OOOOO .00000 -1487.1 0. 3038. -1513.6 .00000 .00000 -1448.7 0. 3368. -1481.3 .00000 .OOOOO -1461.3 0. 3666. -1447.3 .00000 .00000 -1381.3 3939. -1411. .00000 .00000 -1329.9 0. 4207. -1377,5 ,00000 .00000 -1301.5 229535. .47498 . 02751 229431. .47288 .02733 229320. .47085 .02717 229200. ,46892 229072, .46654 .02683 228935. .46433 .02665 228789. .45160 . 02577 9486. 229535. 11701. 13292. 7923 . 229431. 10042. 13262. 6355. 229320, 8382. 13232. 4783 . 229200. 6722. 13203. 3205 . 229072. 5063. 13172. 1623 , 228935. 3403. 13141. 228789. 1743 . 13054. .3498 17.269 223.71 .04734 .3401 17.300 218,77 .04394 .3308 17,330 213,97 ,04093 .3217 17 .359 209.29 .03825 .3131 17.391 204.85 .03585 .3048 17.422 200.50 .03367 .3000 17.526 198.44 .03177 1. 127 649 1 127 651 1 12B 652 1 128 653 1 129 655 1, 129 656. 1 133 658 25 2 .99 ,0 .28 .7 .27 0 31 2 .58 .0 34 6 92 0 38 2 .30 0 41 7 70 0 .44 3 14 0 4 .7 0 3871.6 .000 4.7 0 3876.3 .000 4.7 0 3881.0 .000 4.7 0 3B85.7 .000 4.7 0 3890.5 ,000 4.7 0 3895.2 .000 0 3 900 .0 .000 96 . 150718. 104 . 150822. 112 . 150933. 151053, 151181. 137 . 151318. 146 . 151464. 0. 4726. -1311.9 .00000 .00000 -1246.9 0. 4979. -1280.6 .00000 .00000 -1220.7 0. 5228. -1250.3 .00000 .00000 -1195.3 0. 5472. -1220.9 .00000 .OOOOO -1170.4 0. 5714. -1192. .00000 .OOOOO -1147.6 0. 5955. -1165.5 .00000 .00000 -1123.7 0 . 6246. -1146.6 .00000 .00000 -1130.8 * DH/DT ND OP THE IS THE AVERAGE OVER THE STEP . STEP. THE OTHER DATA ARE INSTANTANEOUS AT THE E #OBJ/VAR/CONSTR SUMMARY FUEL RANGE VAPP FAROFF FARLDG SW TR SWEEP TCA VCMN CH 168803.2 3900.0 123.5 6013. 5708. 54R79 800.0 .000 25.00 .1210 .750 45000. 129.5 DESIGN - TIT OPR FPR BPR TTR ALT THRUST SFC OVEFF CDT CDP 2800.0 30.800 1.5000 5.9000 1.0000 45000. 3882. .6129 .2963 1259.6 85.47 VAPP= 123.5 FAROFF- 6013. FARLDG= 5708, AMFOR SSFOR W/S T/W 20190. .331 (SLS) THRUST 492252.8 7.200 40700,0 3 VJET (CRUISE) MACH 30.8 1673.8 0. 4469. -1344.2 .00000 .00000 -1273.9 15:09:02 C17-LONG-FLOPS-IN C17 Long Minion SDFTIQN NPRiNT-1. I0PT=1. IANAL=3, NOPRD=D. NOISE-0, ICu.ii =0, IFITE= 0, ir-..-::;I: = l, ITAKCF=0, ILHID^O, 6 aft SWTTN MYWTS = 9, UL-F-2.25, : PAN L67.4, FCOMP^O . 15, NETAW-2, ETAW=0.0, 1,0, CHD=33.32, 13.13, TOC»0.135, 0.1O7, .- ::.v ),301, 0.591, S3.- 845 . 0, J!" =2 7 .0. ARHT•3.0, TCHT=0.085, HHT=1-, SV'J-63 5 .0, SNPVT=41 ,0, ARV7«1 0, TCVT-O. 11, NFIN-2. SFlN=7">_SSi ARFIN=1.09, TRFIN3.375, SWPFIW=50 . 0 , TCFIN=0.10, XL=159.1, WF=3 L,06, DF--23 .00, NEW=4 , NEF=0. WRNG=7100., XNAC=12.23, DNAC-b .23 , f-JLWKX=182720,0, F3L.FMX. = 0 .0, NFLCE=3, CARUF-1 . , CARGOF=50000.0, SEND $CONFIN DKS.K7IG^460O. , HTVC=1.0, VRVC»O. LO, GW-U5OQG0., THRUST=4 5700. , AR '.2, SW-36O0.O, SWEEP=25. 0, TCA=.121, VCMN=0,75, CH'45000.0, S3NP SAEP.IN MVAERO=0r AITEK.*1.2, VAPPfi=115.C FUTO=? OVEBR1DE PARAMETERS FOR WEIGHTS (t NAMELIST SC05IFL3 WING TOTAL FRWI 1 . 0000 GEOMEI-R ,T RATIOS, OBJECTIVE FUNCTION FACTORS, AND DESIGN VARIABLES WLNG WEIGHT FIRST i.-:RM FRWI1 1 .oooo WING WEIGHT SECOND TERM FSW12 1 . O00D DESCRIPTION NAME VAI.ise DIMENSIONS WING WEIGHT THlttO TERM FRWI! 1 .coou HOSI10NTAL TAIL FRHT 1 . oooo DESIGN RANGE. 173SRNG 4650.0 N MI VERTICAL TAIL rRVT 1 .oooo KING LOADING REQUIRED WER . 00 WING VERTICAL FIN FRfTN 1 . oooo THRUST/WEIGHT REQUIRED TWR . ooooo CAAVi RD FRCAN 1 .oooo GLOVE/WING ABBA REQUIRED PGLOV . ooooo FRFU 1 .0500 HORIZ TAIL VOLUME COEF SsTVC l.519969 NOSE LANDING GEAR PPLGN 1 . oooo VERT TAIL VOLUME COEF VTVC .100000 MAIN LANDING • *KAR FRLGM 1 .oooo COST CALCULATION OTITCH 1COST 0 NACELLES TOTAL OB FRNA 1 oooo AIR INlltJCTtON SYSTEM FUNCTION TO BE OPTIMIZF.5 - OBJ = 0000* (RAMP WEIGHT) + 1.0000*FI! THRUST REVEP.SKRS - TOTAL WTHR .0005 •f ACHML/Q) * MISC PROPULSION SYSTEMS WPMSC I .0000 0DTI. 'RANGE + .0000*COST * FUEL SYSTEM WPSYS 1 .0000 SIONS) . ilRFACE CONTROLS FTRSC 1 . i >00 AUXILIARY POWER UNIT WAPU - . oooo INSTRUMENT GROUP WIN 1 .oooo DESIGN VARIABLE DATA HYBHALiLICS GROUP WHYD 1 .0000 ELECTRICAL GROUP WrILEC 1 . 0DOD VARIABLE NAME VALUE AC riVITY LOWER BOUND AVIONICS GROUP WAVOHC 1 .oooo • SCALE FACTOR ARMAMENT GROUP WARM .QD00 FURNISHINUS GROUP WFURN • '00 RAMP WL-GHT, LBF GW 650000,0 0 . 0 AIR CONDITIONING GROUT WAC 1 . oooo -5- .0000 0 ANTI-ICING GROUP OR WAI 1 . oooo WING ASPECT RATIO AR 7 .7.000 0. .3333 AUXILIARY GKAR + -00000 UNUSABLE FUEL WUF I .oooo THRUST PER ENGtNK, LBF THRUST 40700.0 0. .000 ENG INE 0 : 1. WOT , 1 * .ooooo PASSENGEK SERVICK GR AMMO WSRV 1 .oooo REF WING AREA, SQ FT SW iBOO.0 0. .0 AND NONFIXED WEAPONS +• ,00000 CARGO ANU EA-:JCAGE CONTAIN. WCON 1 .0000 WING TAPER RATIO TR .0 70:77! 0. .03000 OR MISCEIL. USEFUL LOAD 4- .ooooo AUXILIARY FUEL TANKS WAUXT 1 oooo WING 1/4 CHORD SW^P, DEG SWEEP 25 . 0C 3 . .00 FLIGHT CREW AW:) BAGGAGE WFLCHB 1 .oooo * , ooooo OAHr.n CREW AND BAGGAGE WSTUAB 1 ,ooo WING T/C TCA .12100 0. ,00003 + .00300 HORIZONTAL CENTER OF GRAVITY DATA CRUISE M-'.CH NUMBER VCMN ,75000 0. .00300 WING CGW .0 IN + .00000 HORIZONTAL TAIL CCMT .0 IN MAX CBL'ISE ALTITULS, FT CH 45000.0 0. .0 • . 'ICAL TAIL CGVT .0 IN .00000 WING VERTICAL FINS GCrIN . 0 IN TURBINE INLST TEMP (R) ETIT .00 0 . .00 CANATD CGCAN .0 IN + .QQQO0 FUSELAGE CGF .0 IN OVERALL PR INSURE BAT50 EOPR .000 0, .357 NOStt lAPfllTNG GEAR ,GN .0 IN + .ooooo MAIN LANDING OEAft CGLGM . 0 IN FAN PRESSURE RATIO EFPR , oooo 0. .0000 TWO FORWARD ENGINES CGEF . 0 IN t .3 0000 ONE OR TWO APT ENGINES CUE A .0 IN BYPASS RATIO EBPR . oooo 0. .3000 •JXILIA3Y POWER ON [T CGAP . 0 IN -5- . ooooo AVI:.-.M 11 :s GROUP CGAV .0 IN THROTTLE RATIO ETTR .3 07 53 0. ,00000 ARMAMENT GROUP CGARM ,0 IN + ,ooooo FLIGHT CREW CGCR .0 IN PASSEWSEKS CUP . 0 IN CARGO.'EXT STORES IN WING cijCW ,0 IN CARGO/EXT STORES IN FUSE CGCF .0 IN # NAMELIST SAEaiN FUSfitJh(J£ FUEL CUZWF . 0 IN AFKUDYNAMIC OPTIONS AND APPROXIMATE TAKEOFF , LANDING PATA WING FUEL CGFWt , c IN AIR INDUCTION SYSTEM i V;N .0 IN DESCRIPTION N.WE DIMENSIONS AIR CONDITIONING CGAC .0 IN .oooo- . o . oooo .OOC . 0 .ooooo .00 .33000 . ooooo . 0 .00 .000 . oooo .oooo . 00550 Nov 18 96 15:09:03 AERODYNAMIC INPUT METHOD WAVE DRAG INPUT SWITCH WAVE DRAG FACTOR LINEAR/PARABOLIC INTERP AERO MATRIX FORMAT SWITCH MAX CAMBER AT 70 PERCENT SEMISPAN AIRCRAFT BASE AREA WING TECHNOLOGY MODIFY EDET DATA FIXED DESIGN CL TURBULENT/LAMINAR FLOW AERO EFFICIENCY FACTOR KYAERC IWAVE FWAVE ITPAER IBO CAM SBASE A ITER MODARO FCLDES XLIAM E 0 0 1,0000 2 0 .00000 PERCENT CHORD .0 SQ FT 1.2 0 -1.0000 .0 i. oooo OVERRIDE PARAMETERS FOR WETTED AREAS WING WETTED AREA SWETW 1.0000 HOR. TAIL WETTED AREA SWETH 1.0000 VERT. TAIL WETTED AREA SWETV 1.0000 FUSELAGE WETTED AREA SWETF 1.0000 NACELLE WETTED AREA SWETN 1.0000 TAKEOFF AND LANDING DATA RATIO OF MAX, LANDING WT. TO MAX. TAKEOFF WT. WRATIC MAX. LANDING VELOCITY VAPPR MAX. TAKEOFF FIELD LENGTH FLTO MAX. LANDING FIELD LENGTH FLLDG MAX. CL TAKEOFF CONFIG. CLTOH MAX. CL LANDING CONFIG. CLLDM APPROACH CL CLAPP AIR DENSITY RATIO DRATIO L/D RATIO 2ND SEG. CLIMB ELODSS L/D RATIO MISSED APPROACH ELODMA THRUST PER ENGINE TAKEOFF THROFF THRUST PER ENGINE 2ND SEG. CLIMB THRSS THRUST PER ENGINE MISSED APPROACH THRMA .6550 115.OOOC 4400.0 3200.0 3 .5850 3 . 0000 ,0000 1 .0000 .0000 .0000 .0000 KTS FT FT .0 LBF .0 LBF It NAMELIST SENGDIN ENGINE DECK CONTROL, SCALI1 DESCRIPTION ENGINE DECK PRINT CONTROL ENGINE DECK SOURCE SWITCH SLOPE FACTOR FOR EXTRAPOLATING FUEL FLOWS SUBSONIC FUEL FLOW FACTOR SUPERSONIC FUEL FLOW FACT FLIGHT IDLE SWITCH IGNORE NEGATIVE THRUSTS MIN IDLE FUEL FLOW FRACT MAX IDLE FUEL FLOW FRACT SFC EXTRAPOLATION SWITCH PART POWER DATA SWITCH MAX. CRUISE POWER SETTING BOOST ENGINE SWITCH FUEL FLOW SCALING CONSTANT TERM FUEL FLOW SCALING LINEAR TERM NITROGEN OXIDES SWITCH INSTALLATION DRAG SWITCH AND USAGE DATA NAME VALUE DIMENSIONS NGPRT 1 IGENEN EXTFAC 1.0000 FFFSUB 1.0000 FFFSUP 1.0000 IDLE 1 NONEG FIDMIN .0800 FIDMAX 1.0000 IXTRAP 0 IFILL 2 MAXCR BOOST .0000 DFFAC .0000 FFFAC .0000 NOX 0 INSDRG 0 FLOPS-OUT MACH NUMBERS AND ALTITUDES FOR ENGINE DECK GENERATION ALTITUDES ,80 .75 .70 .60 .50 .40 .30 .20 .10 .00 -1 . -1 . -1. -1 . -1 . -1 . -1 . -1 . -1 . -1 . It NAMELIST SENGINE ENGINE CYCLE ANALYSIS INPUT DATA DESCRIPTION VALUE DIMENSIONS 2-COMP SEP FLOW TURBOFAN ENGINE CYCLE DEF. FILE I ENG IFILE 2 TFNSEE COMPONENT MAP TABLES FILE TFILE ENGTAB PRINT LEVEL INDICATOR IPRINT PRINT VIB/ANOPP DATA NPRINT PRINT LEVEL FOR WEIGHTS IWTPRT PLOT ENGINE SCHEMATIC IWTPLT CYCLE ANALYSIS OUTPUT FILE OFILE 1 0 1 0 ENGOUT FLAG TO GENERATE A DECK GENDEK F SWITCH FOR WEIGHT CALCS NGINWT 0 (0=NONE, 1=ENGINE, 2=1 + INLET, 3=2 +NACELLE PART POWER DATA CONTROL ITHROT NUMBER OF A/B POINTS NPAB NUMBER OF DRY POINTS NPDRY PART POWER THRUST CUTOFF XIDLE MAX ALLOWABLE ITERATIONS NITMAX 4=3+NOZZLE| 1 0 15 .05000 50 DESIGN POINT DATA DESIGN POINT NET THRUST DESFN 40700.0 OVERALL PRESSURE RATIO OPRDES 30.8000 FAN PRESSURE RATIO FPRDES 1.5OO0 BYPASS RATIO BPRDES 5.9000 DESIGN TURBINE INLET TEMP TETDES 2800.0 DESIGN THROTTLE RATIO TTRDES 1.OOOC DEG R OTHER ENGINE CONFIGURATION DEFINITION DATA FLAG FOR AFTERBURNER ABURN F FLAG FOR DUCT BURNER DBORN F AFTERBURNER EFFICIENCY EFFAB .85000 MAX AFTERBURNER TEMP TABMAX 3500.0 DEG R FLAG FOR VARIABLE NOZZLE VEN F CUSTOMER COMPRESSOR BLEED COSTBL 1.0000 LB/SEC TURBINE COOLING {FROM HPC) WCOOL -.0001 FRACTION (OR T41 R] CUSTOMER POWER EXTRACTION HPEXT 200.0C HP FUEL HEATING VALUE FHV 18500.0 BTU/LB TECHNOLOGY AVAILABILITY YEAR 1995 . YEAR FLAG TO DO BOATTAIL DRAG BOAT F DELTA TEMPERATURE DTCE .00 DEG C DTCE VARIES TO ZERO AT ATC 10000. PT FLAG TO DO SPILLAGE DRAG SPILL F FLAG TO DO LIP DRAG LIP F C17-L0NG- USPJl TO DEFINE MACH-ALTITUDE ARRAY POINTS MAX I MIM KACH NUMBER :• .7S0Q MAX I SUM ALTtTUPE . . IAS 450OC-.il FT INCREMENT IN MACH NUNEER XMINC .2000 IWlOkKPlBNT IN ALT1TWB AIHC 5000.0 FT MINIMUM DYNAMIC PRESSURE (.: N 150.00 PSF MAXIMUM DYNAMIC PRESSURE O.MAX 1200.00 PSF ENGINE CYCLE OPTIMIZATION CRUISE CONDITION MACH NUMBER XMDE3 .7500 ALTITUDE XADKS 45000.0 KT ENGIS'L CYOI.H: BEHAVIORAL CONSTRAINTS MAX COMPRESS DISCHARGE TMP CtTlVOt 39999 . DDDO R KAX C0MPRE3R DISCHAKQE PRS CBPMAX 99995.0000 PSI MAXIMUM JET VELOCITY V..TMAX ¥9J39.OOOO FT.-'SEC MINIMUM SPECIFIC THRUST STMIN 1.0C-C0 LB/L3/SEC MAXIMuH BYPASS/COHE AREA AHMAX 99999.COOD Sl-ii LEVEL STATIC MAXIMUM THRUST 40700.0 I.S GENERATED PROPULSION SYSTEM V.'T. 71O0.0 LB (NEW BASELINE ENGINE THRUST - OVERRIDES THRSO) # ALL POINT KJfGINE DECK SUMMARY MACH = .,6 .'706 .619 .635 .653 .674 .709 .757 .B23 1.014 .000 MACH -' .400, ALTITUDE = 10000., THaL'STS/FUSL FLOWS/SFCS/NOX RATIOS FOLLOW 19388.G 17374, S 15462.0 14297.1 13170,0 11919.3 I0TO4.3 9577,1 8534.5 71iJ6,4 611B.2 5489.0 4620.9 3793,9 2974.1 .0 975S.2 B703.1 7711.3 7157.0 6612.0 6040-5 5493.7 5331.» 4 545.3 4117.7 3717.1 3341.0 3034.8 2703.8 2397.4 I2B5.7 .303 .501 .503 .30 .502 .507 .514 .522 .533 .550 .577 510 .652 ,713 .806 .000 HACH = ,400, ALTITUDE •-• 5.000 . , THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS 23503.6 25566,6 38747,6 1733S.2 15968.6 14452.1 129VB.9 11612.2 10348.0 + 7806.3 6555.4 56D2.3 4600.0 3606.1 3 12093.9 10785.1 9534.6 E869.2 B193.8 71B5.5 6814.2 C793.4 5532.7 + 4606.3 1152.6 3736.0 3350.6 2970.9 1555.3 .511 .512 .511 .512 .513 .525 .534 .514 + .590 .624 .667 .728 .824 .000 MACH = .403, AURITUCFL » 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS 27290.1 2 • 16 2 3 21769.7 20129.6 13542.7 16781.7 15071.1 11484.1 12016.1 + 936': 6 7723.2 -.•'.!•< . U 5341.5 41:17.4 .0 14316.7 12767.4 11346.2 10499.3 9699.7 6tt1.3 8066.6 7737.6 6358.0 * S«3 .0 4915.9 44552.7 3966.5 3517.0 1SSS.1 .524 .522 ,521 .522 .52 3 .523 .535 .544 .555 *• .602 .63- .630 .743 ,610 .000 MACH = .300, ALTITUDE = 5000., THROSTS/FUWL FLOWS/SfCS/NOX RATIOS 25221.8 22780.4 20475.9 18952.7 17 477,G 15S44.1 14241.2 12740.9 U389-B ' 8*97.4 7263.9 6113.1 5047,7 7355.5 .0 11717.0 1045,'.3 9303.6 6565.0 7869.3 7546.8 6460.9 5333.8 5253.4 + 4222.2 1772,6 3160.8 29/8.2 2533,2 1290.2 ,465 .459 ..154 ,552 .455 .451 .454 .458 .465 + .497 .339 .'J'JU . 5SO .605 .033 MACH i .300, ALTITUDE = O., THRUSTS /FIIFf. FLOWS/RFr.S/KQJf RATIOS 29925.9 23029.5 24254.9 22487.5 20736.6 1B799.2 1 6897.3 5 5:5.6.7 1 3195.4 ,.- 15082,2 8317.5 725-1.3 598B.4 4586.9 .0 14181.3 32656.7 11260,3 10366.3 9521.9 5349.9 7819.7 7060.8 6353.3 + 511D.2 4566,C 4067.7 3604.6 3126.4 1531.6 .474 .463 .461 .459 ,450 .463 .467 .475 +• .507 .535 .561 .602 .682 .000 MACH - .2'0, ALTITUDE = 5000., THRUSTS /FUEL FLOWS/SFOS/N'CX RATIOS 27500.8 25077.4 25631.3 25972.5 19316.3 17157.4 15693.9 14033.7 12325.6 •i- 9250.9 7BB7.4 6650.3 5293.1 3957.4 .0 11509,8 10281.6 3152.3 8369.5 7636.9 6879.8 6166.8 :5 , 3 4917.3 i JB74.7 5433.4 3014.4 5597.6 2210.9 1058.6 .418 .411 ,404 .399 .395 ,393 .133 .393 .399 + .419 .434 .453 .431 .556 .000 MACH = .200, ALTITUDE = O., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS 32551.1 29999.5 271/6.4 25129.3 23145.3 23953.1 1E910.2 16821.0 14762.4 ' 11031.3 9450.6 796B.9 6342.1 4737.7 .0 11080.4 12579.0 :, 97.4 1024O.1 935 3.4 8*17.1 7:>44.8 + 4710.5 4188.4 3687.5 3178.0 2717.1 12J5.2 .427 .419 .412 .408 .434 .402 .401 + .428 .443 .463 .501 .567 .000 67 53 51 6016.1 .401 .438 HACH = .100, ALTITUDE = 5500., 'ItfROSTS/FUEi 30350.1 27786.1 23342.0 23463.4 21653.2 59521.5 1 + 10391.6 EES6.4 7409,2 5781.9 4429,6 .0 11408.3 10192.8 9D75.9 5253.4 7455.5 6707.9 * 3429.1 3178 B 2750.0 2330.0 1968.8 912.7 .376 .357 .358 .335 .346 .342 * .349 ,355 .371 ,403 .444 .000 FLOWS/SFCS/NOX RATIOS ?540.2 15716.2 1 • .2 J971 . 3 .535 5293 . 3 -.-i? . 3 .337 .340 MACH - .503, ALTITUDE 0,, THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS 361B9.0 33406.0 30467.6 28216.2 26029.1 23393.7 212011.0 IBB94.9 16574.5 + 12-153.1 10695.7 5907.8 6954.9 5325-6 .0 14016,5 12523.1 11150.9 10146.4 920B.5 8241.5 7336.4 5511,4 5'54.0 * 1159.1 39D5.5 3378.8 2862.7 24x3.3 1121.3 .384 .375 .366 .350 .354 349 .346 .345 .347 + .357 .365 .379 .412 .454 .000 FOLLOW 5073.2 5132.8 .562 FOLLOW 10540.5 6040 . 6 .573 FOLLOW 9328 .3 4713.4 .480 FOLLOW 1 •••1.4 FOLLOW 10733.5 4371 .7 .407 FOLLOW 12867.2 5348.4 .416 FOLLOW 12025-3 4130.5 . 313 FOLLOW 11457.5 5074 ,3 .351 MACH .000, \LT . -7J1SE 5305 . , RTFRUSTS/FUHL FLOWS/SFCS/NOX TlATIOS FOLLOW Nov 18 96 15:09:03 C17-LONG-FLOPS-OUT 33824.6 31141.5 28571,9 26468.4 24422.6 22105.5 19879.3 17675.0 15512.9 11702.1 10019.1 8071.8 6-342.6 4892.9 .0 11377.9 10166.9 9052.8 8186.1 7380.5 6545.0 5779.4 5083.5 4452.1 3382.8 292B.O 2465.9 2065.1 1722.9 910.2 .336 .326 .317 .309 .302 .296 .291 .288 .287 .289 .292 .305 ,326 .352 .000 MACH = .000, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS 40700.0 37471.4 34379.6 31848.5 29386.8 26598.8 23920.0 21267.7 18666.1 14080.8 12055.6 9712.5 7631.9 5887.5 .0 13995.6 12505.9 11135.6 10069.4 9078.6 8050.8 7109.0 6253.1 5476.4 4161.0 3601.6 3033.2 2540.3 2118.0 1119.7 .344 .334 .324 .316 .309 .303 .297 .294 .293 ,296 .299 .312 .333 .360 .000 13534 .5 3888 .9 .287 FOLLOW 16285 .5 4783 .6 .294 tt REVISED PROPULSION SYSTEM DATA BASELINE ENGINE THRUST THRSO BASELINE ENGINE WEIGHT WENG BASELINE INLET WEIGHT WINL BASELINE NOZZLE WEIGHT WN02 BASELINE NACELLE LENGTH XNAC BASELINE NACELLE DIAMETER DNAC 40700.0 LBF 7100.0 LBF . 0 LBF ,0 12 .23 LBF FT 6.23 FT » NAMELIST SMISSIN PERFORMANCE CONTROLS AND FACTORS AND MISSION SEGMENT DEFINITION VALUE DIMENSIONS DESCRIPTION NAME ENDURANCE MISSION SWITCH INDR OVERALL FUEL FLOW FACTOR FACT CDO FACTOR FCDO CDI FACTOR FCDI SUBSONIC CD FACTOR FCDSOB SUPERSONIC CD FACTOR FCDSUP ENGINE SCALING SWITCH ISKAL OWE FACTOR OWFACT PRINT FLAG I FLAG DETAILED MISSION PRINT MSUMPT TEMPERATURE DEVIATION DTC CALC RAMP WT OR RANGE IRW RANGE TOLERANCE RTOL ATA TRAFFIC ALLOWANCE IATA WEIGHT INCREMENT DWT GROUND OPERATIONS AND TAKEOFF INPUT TAKEOFF TIME TAKOTM TAXI-OUT TIME TAXOT APPROACH TIME APPRTM APPROACH FUEL FLOW FACTOR APPFFF TAXI-IN TIME TAXITM 0 oooo oooo oooo oooo oooo I oooo 2 1 ,0 1 0010 o l. 2.0 15.0 . 0 2.00 2.0 MIN MIN MIN TAKEOFF POWER SETTING ITTFF 1 TAXI FUEL FLOWS WILL BE FROM THE ENGINE DECK INPUT FOR 1 CLIMB SCHEDULES (1) MINIMUM CLIMB MACH NUMBER CLMMIN .3000 MAXIMUM CLIMB MACH NUMBER CLMMAX .0000 MINIMUM CLIMB ALTITUDE CLAMIN 0. FT MAXIMUM CLIMB ALTITUDE CLAMAX 0 . FT NUMBER OF CLIMB STEPS NINCL 31 CLIMB OPTIMIZATION FACTOR FWF -1.0000 FOLLOWING CRUISE SEGMENT NCRCL 1 (2) .3000 .0000 0. 31 , 0010 1 (3) .3000 .0000 0. 31 .0010 1 (4J .3000 .oooo 0. 0. 31 . 0010 1 DRAG COEFFICIENT INCREMENT NO. OF POWER SETTINGS STORE DRAG DURING CLIMB MAX CLIMB POWER SETTING FAA CLIMB ENFORCED FAA DESCENT ENFORCED MINIMUM CLIMB RATE SWITCH MINIMUM CLIMB RATE Q LIMIT IN CLIMB MAXIMUM RATE OF DESCENT INPUT FOR 1 CRUISE SCHEDULES (5) (6) CRUISE OPTION SWITCH 1 1 CRUISE OPT FUEL FACTOR 1.000 1.000 CRUISE OPT NOX FACTOR .000 .000 MAXIMUM MACH NUMBER .0000 .0000 MAXIMUM ALTITUDE -1. -1, FT DRAG COEFFICIENT INCREMENT ,00000 .00000 STORE DRAG DURING CRUISE 0 0 LONG RANGE CRUISE FACTOR 1.000 1.000 MINIMUM MACH NUMBER .0000 .0000 MAXIMUM LIFT COEFFICIENT .0000 .0000 ENGINE FEATHERING ALLOWED 0 0 ENGINE FRACTION REMAINING .5000 .5000 CD INCREASE FOR FEATHERING .00000 .00000 MINIMUM CRUISE ALTITUDE 1000. 1000. FT INCREMENT IN CRUISE WT. RATE OF CLIMB CEILING INPUT FOR DESCENT SCHEDULE DESCENT OPTION SWITCH DESCENT LIFT COEFF. MINIMUM DESCENT MACH NO. MAXIMUM DESCENT MACH NO. MINIMUM DESCENT ALTITUDE MAXIMUM DESCENT ALTITUDE NUMBER OF DESCENT STEPS DRAG COEFFICIENT INCREMENT STORE DRAG DURING DESCENT RESERVE SEGMENT INPUT RESERVE CALC. OR CONST RESERVE FUEL FRACTION OF TRIP FUEL MISSED APPROACH TIME RANGE TO ALTERNATE AIRPORT RESERVE CLIMB SCHEDULE RESERVE CRUISE SCHEDULE START RESERVE MACH NUMBER END RESERVE MACH NUMBER START RESERVE ALTITUDE END RESERVE ALTITUDE CLDCE IPPCL ISTCL MAXCL IFAACL IFAADE NODIVE DIVLIM QLIM RDLIM IOC FPU EL FNOX CRMACH CRALT CRDCD ISTCR FLRCR CRMMIN CRCLMX IFEATH FEATHF CDFETH HPMIN DCWT RCIN IVS DECL DEMMIN DEMMAX DEAMIN DEAMAX NINDE DEDCD ISTDE IRS RESRFU RESTRP TIMMAP ALT RAN NCLRES NCRRES SREMCH EREMCH SREALT EREALT .ooooo 1 0 1 D 0 0 0. .0 -99999.0 (1) 2 1 .000 .000 .7500 28000. .00000 0 1.000 .3000 .0000 0 .5000 .ooooo 1000 . 1.0 100.0 1 .8000 .3000 ,0000 0. 0 . 31 . ooooo 0 .00000 1 0 FT/MIN PSF FT/MIN (2) 1 1 .000 .ooo ,0000 -1. .ooooo 0 1.000 .0000 .0000 c .5000 .ooooo 1000. LBF FT/MIN FT FT . 000 LBM . ooo 2.0 MIN 500.0 N MI 1 1 .3000 .3000 0. FT 0. FT 15:1)9:03 C17-LONG-FLOPS-OUT RE5EHVE HOLDING TINS HCLDTH .0 •• ! •.0031O -.00281 - .002 62 •.D0243 -.00237 0D223 -.00225 -.00223 HOLD CRUISE SCHEDULE NCRHQL . -.00221 -.00219 --00217 HOLD POSITION SWITCH IHQPOS j. 20D0D. --Q0272 -,00246 -.00230 -.00218 -.00208 -.00199 -.00197 -.OC -6 CRUISE ONLY SWITCH ICRON 0 * - .00194 -.00192 -.00190 2ND RES HOLD TIME OR FRAC THOLD 000 MIN 24000. -.00231 -.00209 -.00195 - . 00185 -.00176 -.00169 -.00167 -.00166 THOLD CRUISE SCHEDULE NORTH 1 + -.00164 -.00163 ;1 3 0000. -.00187 -.00169 -.00108 -.00149 -.00142 -.00137 -.00135 -.00134 4 -.00133 -.00133 -.00130 3 500D. -.00140 -.00126 -.00117 -.00111 -.00106 -. ooioi -.00000 -.00100 IS.?ION SEQ'Jkr C£ DSFjtNJTION 4 -.00< • -.00098 •.00097 4DP00. -.00074 - .00067 -.00062 -.00059 -.00056 -.00054 -.00053 .000:3 START MACH HVMBER = .3000 ALTITUDE = 0 . rl 4--.00052 -.00052 -.00051 C1.1N USE CI.IMH SCHEDULE 1 45000. .OOOOO . OOOOO .00000 .000DO .00000 .ooooo .0D0O0 .OOOOO CRUISE USE CRUISE SCHEDULE 1 END CRUISE DISTANCE = 4100 0 N MI + .00000 .OOOOO .00 • RELSAME PAYLOAD WEIGHT = 30000.0 LI* 50000. .00079 .00071 .00066 ,00062 ,00059 ,00057 .00056 .00056 REFUEL FUEL ADEEa • -2 000.0 LB TrHK REOVt RED i-lflS, 0 MIN + .DOOSS .00054 .00054 CRUISE USE CRUISE SCHEDULE 1 END CRUISE DISTANCE 500 0 N MI 55000. .00162 00146 .00134 .00128 .00122 .00116 .00115 .00114 DESCENT 4 .00113 .00112 .00111 BUG MACH N'.JMBSR = .3000 ALTITUI04 0 . FT 6 .00251 .00226 .00209 .00197 ,001S8 .00180 .D0179 ,00176 + . 00175 .00173 .00171 •TITLE. BEGIN OUTPUT OF RESULTS C17 Long Mission FINAL ANALYSIS # AERODYNAMIC DATA DRAG POLARS MACH NUMBER .75 COMPONENT CDF WING 42 .00533 HORIZONTAL TAIL 65 .00156 VERTICAL TAJL 48 .OC i FUSELAGE 83 .00477 NACELLE 67 .00040 NACELLE 67 .Q0D4O NACELLE 67 .00040 NACELLE 67 00040 MISI tL UJEOUS ALTITUDE 45000. FT REFERENCE AREA 00'o.oo TECHNOLOGY LEVEL 1 . 20 SQ FT 5819.15 I0j't7. 80 806 . 95 8036.68 213.34 213.34 213.34 213.34 FT 23 . 25 13 . 00 19 . 88 159.10 12 .23 12 .23 12.23 12 . 23 RATIO . 1210 . 0 b 4 0 .1100 7.2220 1 . 9631 1 . 9631 1.9631 1.9631 FACTOR 1 . 440 1 . 3 05 1.398 1 .233 2 ,663 2 . 663 2 . 663 2.663 MILLIONS 26.3 14.7 22 .5 179 .9 13.8 13 . 8 13 . 8 13 . 8 .002 .002 .001 , 002 . 002 . 0O2 , 002 MACH .500 .200 03416 .300 03286 .400 03197 .500 03127 .600 03104 .700 03113 .725 03327 .750 03174 .775 03399 .800 03797 .825 05902 .050 .550 .01982 .03832 .01852 .03702 .01763 .03613 .01693 .03543 .01670 .03520 .01692 .03531 .01706 .03544 .01742 .03619 .01816 03882 .01980 .04331 .03497 .06529 .100 .600 .01934 04314 .01854 04194 .01765 04095 .01696 04026 .01673 04003 . u 6b6 04D12 .01697 04022 .01724 U409B .01732 04359 .01925 04903 .03355 07117 .150 .650 ,02027 .04642 .01397 04713 .01B08 04624 .01739 04554 . 01016 04531 .0,1723 04540 .01136 04547 .0:75 • 04 . .1 .01911 04 320 .01947 05470 .03337 07735 .200 .7 00 . 02H1 05527 .01981 S5397 .01892 95303 .01H22 042J8 .01799 05215 .01811 05223 .01822 05228 .01847 05261 • 01.902 0554 0 .00 04 6 06092 .03447 0836E + .00034 .200 .300 .01906 . Ii"" 6 .ooooo .ooooo 1 .051 . 996 TOTAL 1723.0 94 .003 .400 .01667 .' )0 D .919 4 .01484 .500 .600 .01618 ,01559 .ooooo .00035 . ;:.-: ;. .745 CHANGE IN DRAG COEFFICIENT FROM CRUISE ALTITUDE .700 .01508 .00097 .640 ALTITUUE MAO! NUMBER .740 . 0 . .00119 .603 .200 .300 .400 .: )0 . 600 .700 .72 5 .750 . 7 5 0 ,01494 .00155 .562 • . 775 .825 .775 .01472 .1 )217 . 510 0. . 00409 .00372 -,00347 -.00329 -.00315 -.00302 - .00299 -.00296 .800 .D1461 . i -13- . . t i i 4 -.00294 -. 0020 1 - 002B8 .825 .01449 .01755 ,40-3 5DOO. .00378 - .003J4 -.00321 -.00304 -.00290 -.00279 - .0O276 -.0O274 4 - 0007] 00269 - 002 66 CL COI J00DO. 00345 - .00313 -.00292 -.00277 -.00265 -.00254 -.00252 -,00240 4 -.002 47 002 45 - 00243 .05.0 .00031 DESIGN MACH NUMER MACH ,771, DESIGN CL CDF 0 000. FT .250 . 750 .02235 . 06357 .02105 .06228 .02016 . 06139 .01947 . 06069 ,00923 . 06046 .015 -2 .06054 .01951 .06053 .019B7 . 06063 .02056 .06255 . 02222 . 06746 .03683 .09009 .458 CDC . 300 . 02390 . 02261 . 02172 .02102 ,02030 .02101 . 02116 . 02152 . 02228 .02417 .03990 .350 .02577 .02447 .02359 . 02290 . 02268 .02291 .02307 . 02341 . 024JO . 02627 .04368 . 400 .02781 .02651 .02563 .02496 .02477 .02499 .02517 .02555 .02645 .02926 .04859 BUFFET CL .450 .03068 .02939 .02-350 .027B1 .02760 .02772 .02785 .02828 .02902 .03346 .05348 Nov 18 96 1V7H ]5:W:m C17-LONG-FLOPS-OUT W*M .100 .00044 324000. 28000. 30496. 21200. 14734. . 6950 .7500 445 9 .0302 . 150 .00099 + 6 1295.5 .3143 15 28 4 0 .00 .200 ,00177 342000. 28000. 30496. 21879. 15070. , 6888 ,7500 445 9 .0295 .250 .00276 + 9 1137.6 .3318 15 63 4 .0 ,00 .300 .00398 360000. 28000, 30496. 22590. 15428. .6830 .7 500 445 9 .0289 .350 .00542 4 0 991,6 .3492 15 94 4 0 .00 .400 .00707 378000. 28000. 30496. 23328, 15803. . 6774 .7500 445 9 ,0282 .450 .00895 + 1 856.2 .3667 16 20 4 0 ,00 .500 .01105 396000. 28000. 30496. 24096. 16193. .6720 .7500 445 9 .0275 .550 .01337 4 3 729.8 .3841 16 43 4 0 .00 .600 .01592 414000, 28OO0. 30496, 24899. 16610. . 6671 . 7500 445 9 ,0268 , 650 .01868 + 4 610. 4 .4016 16 63 4 0 .00 .700 .02166 432000. 28000. 30496. 25820. 17087. . 6618 .7500 445 9 .0260 .750 .02487 4 9 488.7 450000. .4191 28000. 16 73 30496. 4 0 26818. .00 17612. .6567 ,7500 445 9 .0253 PRESSURE DRAG COEFFICIENTS.. CDP 4 2 369,1 .4365 16 78 a 0 .00 MACH CL 468000. 28000. 30496. 27896. 18186. .6519 .7500 445 9 .0245 . 050 . 10C .150 .200 ,2 50 .300 .350 .400 .450 4 2 250.8 .4540 16 78 4 0 ,00 + . 500 .550 . 600 ,650 .700 .750 486000. 28000. 30496. 29077. 18814, . 6470 .7500 445 9 .0237 . 20C ,00065 .00034 .00021 .00028 . 00053 .00087 00130 ,00168 .00267 4 0 131.8 . 4715 16 71 4 0 ,00 + 00404 .00588 00816 01069 01454 01965 504000. 27439, 31282. 30163. 19530. . 6474 . 75O0 44 6 9 .0228 .300 .00065 .00034 .00021 .00023 .00053 .00087 00130 .00168 .00267 4 8 100. 0 . 4769 16 71 4 0 .00 + 00404 .00588 00816 01069 01454 01965 522000. 26677, 32349. 31200. 20264. .6495 ,7500 443 4 .0221 .400 .00065 .00034 .00021 ,00028 .00053 .00087 00130 .00169 .00267 . 4 3 100.0 .4775 16 73 4 0 .00 + 00404 .00583 00816 01069 01454 01965 540000. 25919. 33410. 32225. 20993. .6515 .7500 449 8 .0214 .500 .00065 .00034 .00021 .00028 .00053 .00087 00131 .00171 .00268 . 4 3 100.0 .4778 16 76 4 0 .00 + 00404 .00588 00816 01069 01454 01965 558000. 25166. 34465. 33243. 21717. .6533 .7500 451 2 .0207 .600 .00064 .00034 .00021 .00028 .00052 .00088 00131 .00175 .00270 . + 8 100.0 .4777 16 79 4 0 .00 t 00404 ,00588 00816 01069 01454 01965 576000. 24497. 35540. 34283. 22472, . 6555 .7500 452 5 .0201 .700 .00076 .00037 .00022 .00030 .00061 .00099 00145 .00187 ,00273 . + 3 100. 0 .4790 16 80 4 0 ,00 4- 00404 .00589 00816 01O68 01453 01963 534000. 23854, 36618. 35325. 23233. . 6577 ,7500 453 7 ,0195 .725 .00080 .00038 .00021 ,00030 .00064 .00104 00150 .00195 .00275 4 3 100.0 .4804 16 82 4 0 .00 * 7 .00592 00816 01O64 01447 01957 612000. 23213. 37691, 36363, 23990. .6597 .7500 454 8 ,0189 .75C .00092 .00041 .00021 .00032 .00073 .00116 00162 ,00209 ,00295 + 6 100. 0 ,4815 16 83 4 0 .00 * 00430 .00644 00869 01097 01456 01938 630000. 22576. 38759. 37395. 24743. .6617 .7500 456 0 .0184 .775 .00116 .00048 .00022 . 00036 .00091 ,00141 00139 .00249 ,00398 4 3 100.0 .4824 16 85 4 0 . 00 + 00605 .00855 01108 01363 01689 02079 648000. 21942. 39822. 38423. 25493. . 6635 .7500 457 2 .0179 . 800 .00151 .00062 .00029 .00050 .00127 ,00201 00267 .00400 .00632 . 4 3 100 ,0 .4329 16 87 4 0 .00 * 00873 .01175 01493 01783 02107 02441 666000. 21312. 40879, 39444. 26239. . 6652 .7500 458 4 .0174 . 825 .00282 .00106 .00033 .00066 .00202 .00387 00622 .00947 .01248 . 4 7 100 .0 .4833 16 88 4 0 .00 + 01592 .01987 .02321 .02663 .02997 .03318 U CRUISE OPTIMIZATION RESULTS SUMMARY DATA FOR CRUISE SCHEDULE 1 WEIGHT ALTITUDE THRUST FUEL SFC MACH 4 C RATE OF CL L/D ENGINES NOX AVAILABLE REQUIRED FLOW NUMBER 4 CLIMB OPERATING RATE 198000. 2S0OO. 30496. 17343 12848. .7408 ,7500 4 0 2999.4 .1921 11 42 4 .0 .00 216000. 28000. 30496, 17757 13050. .7349 .7500 4 7 2662 . 9 ,2095 12 16 4.0 . 00 234000. 28000. 30496. 18237 13283. .7284 .7500 4 7 2365 . 5 .2270 12 83 4.0 .00 252000. 28000, 30496. 18784 13549. .7213 .7500 4 1 2098.6 .2445 13 42 4 .0 .00 270000. 2 8000, 30496. 19353 13826. .7144 .7500 4 5 1863 .5 .2619 13 95 4 .0 .00 2B8000. 28000. 30496. 19938 14111. ,7078 ,7500 4 0 1655 .3 .2794 14 44 4 .0 .00 306000. 28000. 30496. 20553 14415, ,7013 .7500 4 3 1467.2 .2968 14 89 4.0 .00 CRUISE SCHEDULE RANGE AND TIME SUMMARY WEIGHT RANGE -1- TIME (POUNDS) IN.MI.) **** GENERAL DYNAMICS F-16C FIGHTER - COMBAT AIR PATROL ***** CONTROL PARAMETERS, CALCULATION CONTROL, NCALC = 1 NUMBER OF GLOBAL DESIGN VARIABLES, NOV = 0 NUMBER OF SENSITIVITY VARIABLES, NSV = 0 NUMBER OF FUNCTIONS IN TWO-SPACE, N2VAR = 0 NUMBER OF APPROXIMATING VAR. NXAPRX = 0 INPUT INFORMATION PRINT CODE, IPNPUT = 0 DEBUG PRINT CODE, IPDBG = 0 F16-ACS YNT-OUT ESTIMATED DATA STORAGE REQUIREMENTS INPUT 9 REAL EXECUTION 9 AVAILABLE 5000 INPUT 1 INTEGER EXECUTION 1 AVAILABLE 1000 AAAAAAA CCCCCCC SSSSSSS Y Y N N A A C S Y Y NN N A A C S Y Y N N N AAAAAAA c SSSSSSS Y N N N A A c s Y N N N A A c s Y N N A A ccccccc SSSSSSS Y N N T T T T T T NASA-AMES PROGRAM FOR AIRCRAFT SYNTHESIS TITLE ***** GENERAL DYNAMICS F-16C FIGHTER - COMBAT AIR PATROL **** AIRCRAFT TYPE - FIGHTER 1 TITLE: ***** GENERAL DYNAMICS F-16C FIGHTER - COMBAT AIR PATROL *«** AIRCRAFT TYPE - FIGHTER CONTROL PARAMETERS: READ CONTROL, MREAD = 5 EXECUTION CONTROL, MEXEC = 5 WRITE CONTROL, MWRITE = 5 NUMBER IDENTIFYING CONVERGENCE VARIABLE FOR CONVERGED VEHICLE, IOBJ = 570 CALCULATION CONTROL, NCALC VALUE MEANING 1 SINGLE ANALYSIS 2 OPTIMIZATION 3 SENSITIVITY 4 TWO-VARIABLE FUNCTION SPACE 5 OPTIMUM SENSITIVITY 6 APPROXIMATE OPTIMIZATION i 15:07,52 F J 6-ACS YNT-OUT NUMBER IDENTIFYING COMPARISON VARIABLE FOR CQHVEMJEP VEHICLE, JQBJ = SUMMARY OUTWIT PRINT COPE, XFSUM = :: • h/.L ERROR PRINT CODE, KGLOBP = GLOBAL COMMON INITIALIZATION CODE, 1NTT . DEBUG PRINT CODE, IPDBQ = GLOBAL PLOT CONTROL, IOPLT - DATA TRANSFER INFORMATION FILE, 1RDDTR •ATA TRANSFER INFORMATION PRINT, IPDTR VEH [CLE rONVERGENCE INFORMATION: CONVERGENCE TOLERANCE, "."OL .1O000E-03 ESTlH WCALC VS MEET SLOPE - 800QOE+O0 BOUNDING WEIGH'!1, W3MAX - .360OOE*05 570 1 2 0 MODULE IJBNTIFXCATIOH NUMBERS : NUMBER MODULE 1 GEOMETRY 2 TRAJECTORY 3 AERODYNAMICS 4 PROPULSION 5 STABILITY AND CONTROL 0 WEIGHTS H StiKJC MOM 9 EIONOMICS :I SUMHAKY OUTPUT : 0 TAKEOFF AND 1.AHV1NG KWJLES ARE CALLED FOR INPUT IN THE FOLLOWING ORDER: I 2 3 4 G MODULES ARE CAI.LEP FOR EXEC'J'i 1ON IN I'HE FOLLOWING ORDER: 1 2 3 4 6 MODULES ARE CJM-LE!J FOR OUTPUT IN THE FOLLOWING OfiPtlR: 1 2 3 4 6 TNI,j! FOR '• . .. GEOMETRY LANPI^T DALD ;••»«* GtUh>.-.-: LYNAMICS F-16C BLOCK 30 GEOMETRY 2 $W • 3 3 AK 4 RIJ-.M-JG 5 TAi'ER 6 WFFRAC 7 KSWEEP 8 SEND 3.000. ASF.A 49.000, SWEEP 0-328, TCHOOT 0.326, XWING 1, 300 000, Blh'KlJ 32.1 83 , SWFACT 0.040, TCilP 0.468, ZROOT 0.000, 0.690, 0.O4O, 0. 000, 9 SHTJIIL 10 AT: 11 SVIFACT 12 TCTIP 13 KSWEEP 14 SEND 15 SVTAIL 16 AR 17 SWFACT 18 TCTIP 19 YROOT 20 KIZIT 21 SEND 22 SFUS 2.3 I! DMAX 24 E . 25 LRADAR 2 6 ?END 27 &CREH 28 NCREW 29 SEND 30 SFUEL 31 DEN 32 SEND 33 $ENGINE 34 N 35 SEND END OF GEOMETRY DATA CARDS 3 5 LINES READ NOTE; FRATIO = BODL'BEWAX GSSO-.KTRY FNITLSL OUTPUT Fuselage Defiriltion 2.114, hl'.l-.k 1.570, TAPER 0.035, XHTAIL 1, SIZIT 1.294. AREA 1.067, TAPJ0R 0.03 0, VTNO 0.000, ZROOT FALSE. , 3.799, BODL 3.001, FRATIO 5.900, SFFACT 1, 49.000, FRAC 63.700, SWEEP 0.39O, TCROOT 0.974, ZROOT . FALSE., 54.750, SWEEP 0.437, TCROOT 1.000, XVTAll, 1.000, KSWEEP 47.5BO, DRAPAR 12.524, FRN 1.466. WFUEL 1.000, 32.271, 0.060, 0,000, 43,225, 0,051, 0.950, 1, 2 4,801, 13730.600, 12 .000. X .00 . u Area ,00 F16-ACS YNT-OUT 91 33 .35 1 82 55 .94 2 74 73 1. 66 3 65 88 2.45 i 56 1 02 3.28 5 47 1 15 4 .13 6 38 1 26 4 .97 1 30 1 36 5.80 C O 21 1 45 6 . 60 9 12 1 53 7.36 10 03 1 60 8 .07 10 94 1 67 8.73 11 86 1 72 9 .32 12 77 1 77 9 . 84 13 68 1 81 10.29 14 59 1 84 10.66 15 50 I 87 10.95 16 42 1 89 11.17 17 33 1 90 11 .29 18 24 1 90 11.34 20 03 1 9C 11.34 21 83 1 90 11 .34 23 62 1 90 11.34 25 42 1 90 11.34 27 21 1 90 11 .34 29 00 1 90 11.34 30 80 1 90 11 .34 32 59 1 90 11.34 34 39 1 90 11.34 36 18 1 90 11 .34 36 75 1 91 11 .47 37 32 1 92 11.52 37 89 1 91 11 .49 38 46 1 90 11 .37 39 03 1 ST 11 . 16 39 60 1 86 10.87 40 17 1 83 10 .49 40 74 1 79 10. 03 41 31 1 74 9 . 49 41 88 1 68 8 . 88 42 45 1 61 8.19 43 02 1 54 7 .44 43 59 1 45 6 .64 44 16 1 36 5.78 44 73 1 25 4 . 88 45 30 1 12 3 .96 45 87 98 3 .02 16 44 82 2 ,1C 47 01 62 1.19 47 58 30 .28 Fuselage Max. Diameter.. Fineness Ratio. Surface Area.., Volume 3 . 799 12.524 704.477 413.928 Geometry Initial Output Dimensions of Planar Surfaces (each) Wing H.Tail V.Tail Canard Uni ts NUMBER OF SURFACES. 1. 0 1.0 1 .C 1,0 PLAN AREA 30O.O 63.7 54 . a .0 I SQ.FT. SURFACE AREA 333 .1 115 .3 116 . 9 .0 (SQ.FT. VOLUME 79 .6 13 .3 11.6 .0 (CU.FT. SPAN 30.000 11.604 8 .417 .000 (FT. ) L.E. SWEEP 39.992 39.999 C/4 SWEEP 32 . 183 32.271 T.E. SWEEP .038 .498 ASPECT RATIO 3.000 2.114 ROOT CHORD 16.2 87 7.898 ROOT THICKNESS 7.818 5.687 ROOT T/C .040 .060 TIP CHORD 3 .713 3 .080 TIP THICKNESS 1.782 1.294 TIP T/C . 040 , 035 TAPER RATIO .228 .390 MEAN AERO CHORD.... 11.317 5.842 LE ROOT AT 18.196 38.445 C/4 ROOT AT 22.267 40.419 TE ROOT AT 34.482 46.343 LE M.A.C. AT 23.169 40.523 C/4 M.A.C. AT 25.998 41.983 TE M.A.C. AT 34.486 46.364 Y M.A.C. AT 5.928 2.477 LE TIP AT 30.779 43 .313 C/4 TIP AT 31.707 44,083 TE TIP AT 34.492 46.393 ELEVATION .000 .000 GEOMETRIC TOTAL VOLUME COEFF .300 EFFECTIVE TOTAL VOLUME COEFF .300 47.499 43.225 25.907 1 . 294 053 758 053 956 424 030 437 837 36.148 38.411 45.201 40.141 41.850 46.978 3.659 45.333 46.322 49.289 1.900 , 096 .096 .000 (DEG.) .000 (DEG.) .000 (DEG.) ,000 .000 (FT,: . 000 (IN. ) ,000 .000 (FT.) .000 (IN.) ,000 . 000 .000 (FT.I .000 (FT.) .000 (FT.) ,000 (FT.) .000 (FT.) .000 (FT.) .000 (FT.) .000 .000 (FT.) .000 (FT.) .000 (FT.) ,000 (FT.) . 000 . 000 EXTENSIONS Strake Centroid location at ,00 Area .0 Sweep Angle .0 Wetted Area 0 Volume .0 Total Wing Araa 300.00 Total Wetted Area 1269.81 FUEL TANKS Tank Volume Weight Density Wing 24. 1153. 49.00 Fus#l 257. 12579. 49.00 Fus#2 0. 0. 50.00 Total 13732, Rear Extension .00 .00 .00 .00 Mission Fuel Recnjired = Available Fuel Volume in Wing = 13732. 72 . Aircraft Weight = Aircraft Volume = Aircraft Density = .000 lbs. 518.418 cu.ft. .000 lbs./cu. ft. ICASE = 8 (Fineness Ratio Method) Input for Module ft 2 TRAJECTORY INPUT TIMTOl =6.0 TIMT02 =1.0 FRFURE = .00 DESLF =9.00 MENDUR = 0 . QMAX = 1900. XDESC - 80.0 WKFUEL = 1.000 NCRUSE = 2 IPSI2E =-2 IPSTOl - 6 IPST02 = 2 IPLOT = 2 HMINP = 0. HMAXP - 50000. DELHP = 4000. 15:07:52 F16-ACSYNT-OUT ULTLF =13.50 CRMACH .850 IBREG = 1 SMMINP = .300 FLECOR 1 .000 ISMNDR 0 LDTO = -1.000 RANGE 644 . WKLAND = .574 IENDUR - 1 SMMAXP - 2.000 FLNOSE i.ooc ISUPCR = 0 MACHN .750 WFUEL 6972. FLFAC = .600 IPRINT = 0 DELMP = . 100 1 FLSCOR = 1.000 ITRAP * 0 QHOQ1 .000 WFEXT 6760. DEC EL = .250 KERROR = 0 WCOMBP 1 00 FMDR 1.000 IVCAM 0 RCLMAX 1.000 WFTRAP = 74 . NLEGCL = 0 NLEGCR = 0 NLEGLO = 0 FSEP = 1.000 IXCD = 1 ROC .015 FWGMAX = 1.200 TOL = .001 MILCOM = 0 NMISS = i FTRIM = 1.000 KERROR 0 SFWF 1.000 NCODE = 2 MMPROP = 1 ARRAYS ALIN - .000 1.000 2 .000 3 .000 4 . 000 5.000 10.000 20.000 30.ooc MISSION 1 + 40.000 ALTV = 30000. 30OO0. 30000. 3 0000. 30000. 30O0O. 30000. 30000. 30000, MACH NO. ALTITUDE HORIZONTAL NO. VINE 4 30000. PHASE START END START END DIST TIME TURN "G"S WKFUEL M IE IX 1} 6 A P CDBMB .oooo .0000 .0000 .0000 .oooo .0000 .0000 .0000 . oooo + . 0000 CLIME ,50 .00 0 100OO -1.0 .0 .0 .0 1.0000 1 3 -1 0 0 0 0 CDEXTR .0000 .0000 . oooo .0000 .0000 .0000 .0000 . oooo .0000 CLIMB .60 .00 -1 20000 -1.0 .0 .0 .0 1.0000 1 3 -1 0 ooo 4 .0000 CLIMB .87 .00 -1 32500 -1.0 .0 .0 ,0 1.0000 1 3 -1 0 ooc CDONPT . oooo .0000 .0000 .oooo .oooo ,0000 .oooo .oooo . oooo CRUISE . 87 .87 -1 33750 -1.0 . C .0 . 0 1.0000 1 4 0 0 0 0 0 4 ,0000 LOITER . 80 ,80 28500 2 8500 .0 120.0 .0 .0 1.0000 1 --3 0 C 0 0 0 CDSTR = .3900 . oooo .oooo . oooo .oooo .0000 .0000 .oooo . oooo COMBAT . 90 . 90 IOOOO IOOOO .o i.o .0 5.C 1.0000 1 1 0 1 0 10 4 .0000 COMBAT .90 , 90 10000 10000 .0 1.0 .0 5.0 1.oooo 1 1 o o 0 0 0 CDTNK = 1.8000 .0000 ,0000 .oooo . oooo .0000 .0000 . oooo .0000 CLIMB .00 .00 10000 44500 -1.0 .0 .0 . 0 1.0000 1 3 0 0 0 0 0 4 .0000 CRUISE . 87 .87 -1 0 -1.0 .0 .0 . 0 l.oooo 1 4 0 0 ooo CLINPT .000 .000 .ooo .000 .000 .000 .000 .000 .ooo LOITER .40 .40 1 0 ,0 20.C . 0 .0 1.0000 1 4 0 0 0 0 0 4 , 000 CLO = .000 .ooo .000 .000 .000 . ooo .000 .ooo .000 4 .000 CLMIN .000 .ooo .000 .ooo .000 . 000 .ooo .ooo .ooc 4 .000 CMO = .000 . 000 .000 .000 .000 .000 .000 .ooo .000 4 .000 FCDRA = 1.000 1 .000 1 .000 1.000 1 .000 1 .000 1.000 1 .ooo 1.000 4 1 .000 Input for Module » 3 FCLRA 1 .000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 i .ooo *********** ****** **************************** * * * * ******* ************* * * * * ** * * * + 1. 000 AERODYNAMIC INPUT DATA FLDM = .000 .000 .000 . ooo .000 .ooc .OOC .ooc .ooo 4 .000 FVCAM = .000 .000 .000 .000 , 000 . 000 .000 .000 .000 4 .000 ISTRS 0 0 0 0 0 0 0 0 0 FACTORS INTEGERS AND LOGICALS REALS 4 0 ITB = 0 0 0 0 0 0 0 0 0 FALEL 1 OOO ALELJ = 3 NALF = 10 ABOSB = .150 SHK 4 0 = 25 000 ITS = 0 0 0 0 0 0 0 0 0 FBLNT = 010 IALF = 0 NMDTL = 10 ALMAX 10 .000 SM + 0 = ooo ITRIM 0 0 0 0 0 0 0 0 0 FCD 1 000 IALP 2 ECHOIN = I AMC 40 .ooo SMNDR 4 0 = 900 SMEXTR = .ooo .200 , 400 . 600 . 800 i .ooo 1.200 1 .400 1.600 FCDF 1 000 I AXE = O ECHOUT - 0 BTEF 1 ooo SWPMA + 1.800 = 60 ooo SMN = .400 . 600 .800 . 850 .900 .950 1.O50 1.20C 1.400 FCDL l ooc ICDO = 0 ELLIPC = F CGM = 3 60 SWPMI 4 1.600 = ooo SMNBMB .000 .200 .400 . 600 . 80C 1.000 1.200 1 . 400 1. 600 FCOLH I ooo ICOE 1 ELLIPH = F CLLAND -1 .000 YO 4 1 . 800 = ooo SMNCDO .ooo .000 . ooc .000 .000 .000 ,000 .000 .000 FCDO i ooo INORM = 1 ELLIPW = F CLTO -1 000 ZCG 4 .000 = ooo SMNSWP .000 . 200 .400 . 600 .800 1.000 1 .200 1 .400 1.600 FCDW 1 000 INTM 0 CSF 1 ooc 4 1 . 800 FCDWB 1 000 IPBLNT 0 DELFLD 45 ooo SMSTRS = , ooo .200 , 400 .600 . 800 1 . 000 1 .200 1.400 1 .600 FCL 1 000 I PENG 0 DELFTO 45 000 4 1.800 FCLH 1 ooo IPFRIC = 0 CELLED = 30 000 SMTANK = .ooo .200 .400 .600 .800 l.OOC 1.200 1.400 1. 600 PDNOSE 1 ooc IPTEXT 0 DELLTO = 30 ooo + 1 . 800 FENG 1 000 IPINTF 0 ESSE = 720 YSWP = .000 .ooo .000 .000 . 000 .000 .000 .ooo .000 FEXP 780 IPLIFT 0 EXA 667 4 .000 FINTF 1 000 I PLOT 1 EXC = 2 000 FLBCOR 1 ooo IPMIN 0 IT = ooo FLD 1 000 IPWAVE 0 LDLAND -1 000 Nov IK 15:07:52 Input for Module # 4 F16-ACSYNT-OUT ******** PROPULSION INPUT VERSION 04-76 •**•** F100 CYCLE ANALYSIS ************ AENDIA 000 AENLE = 000 AENWT 000 ALT I 000 AM = 000 ATURB 328 AENTW = 000 AUAENG = 005 AWAENG = 260 BA = 730 DELPR 000 DELT57 = 100 000 DEPWCC = 2 000 DIA1 = 3 800 EAB1 750 EB1 = 940 EDI 750 ETAC1 = 800 ETAF1 = 820 ETAT1 = 900 HTR 600 HVF 18600 000 MACH1 = 1 000 MACH 2 = 1 100 PCDFAC = 1 ooc POSA = 8 903 PRFD 1 000 PWCC 100 OOO P11P1 3 120 F2P1 = 25 ooc R10A -1 000 R32 = 940 R54 = 920 R54N = 880 R7U - 930 R711N 980 SCPR 1 280 SFADP 1 000 SFAJDSP 1 000 SFAUXP 1 ooo SFBEP = 1 000 SFBPP 1 000 SFBTP 1 000 SFDIVP 1 000 SFINSP = 1 000 SPIP - 1 000 SFSFC1 = 1 000 SFSFC2 = 1 ooo SFSFC3 - 1 000 SMI = 500 SODG = 1 000 TOSA - 412 000 Til 520 000 TWAB = 24! 150 . TWOAB 14880. TWTO = 1 000 T3 = 2743 . T5M - 3400. TS1 = 0. T7M = 3' 00. T71 0 . VC1 980 WCWA1 = 018 XMDES - 2 200 XMT = 1 000 YREN 80 . FRBT - 000 FRPN - 000 RDIAM - 1 150 RLENG = to 000 I PR _ -3 IPRINT _ c I PLOT _ 0 KERROR 0 KODE = 2 KT5 2 KT7 2 MINPR 0 NAB 5 NOZZ 1 NPROP 6 NSUMM 15 I ENG 2 THESE VARIABLES ARE USED BY TABLE LOOK UP ESF = 1.000 NDTAIL = 0 IPDBUG = 0 ALTD = XMACH = XMPRI = XPRI = XMPRI1 = ,000 XPRI1 = .000 XMPRI2 = .000 XPRI2 = .000 0 . . 000 .000 I.OOO . 000 .000 .000 .ooo .000 .ooc .000 ,000 10000. .450 .300 1.000 .000 . 000 .ooc .000 , 000 . 000 .ooo .000 20000. .750 .600 1.000 .000 .000 . 000 .000 30000, .900 .900 i .ooo .ooc .000 .000 .000 40000. 1.200 1 .200 1.000 .ooo .ooo .000 .000 (TF30) 50000. Input for Module it 6 ************************* AIRCRAFT TYPE: FIGHTER TITLE: .500 .000 .000 .000 .000 .ooo .000 .ooo .000 .000 INITIAL WEIGHTS INPUT DATA ACSYNT MODULE NUMBER 6 ********** OCONTROL OPTIONS I PRINT = IDELT = Kl K5 KB = FR STRESS = •PCABIN : IMNTEN = TECHI = SLOPE 11) = SLOPE 19) = SLOPE(18) 1 I GRAPH 1 IOBLIQ 1.00 K2 1.00 K6 .00 KP1 1.50 TECHG 30000. 5.00 IGEAR 0 IMTGR 1 .00 1.00 1 .00 I.00 = 1 1. 00 1 .00 1.00 1 .00 1 ITAIL = 0 KWING = 1.00 K3 1.00 AFMACH - .00 KP2 00 WGTO DENS 1 JFLTYF 1 1 .00 1 1,00 1 1. 00 1 i. oo 0 KERROR 0 KBODY 1.0 K' .00 MAXIT .00 35388, ,100 1 = C = 1 = 1.0 = 1 FLIFTF = .000 . 00 .00 .00 .00 ,00 00 00 00 00 .00 . 00 ,00 l. oo 1.00 0INITIAL ESTIMATES IF CODE = 1, WEIGHT IS FIXED QUANTITY VALUE CODE QUANTITY VALUE CO WAF 10616 0 WAIRC 267. 1 WAPU 0 0 WAMMUN = 103 . 1 WARM 808 1 WBAG - 0 . 0 WBB1 0 0 WBODY 3624 , 1 WCAND = 0 0 WCARGO = 0. 0 WCREW = 215 1 WE 3911. 1 WELT = 2414 1 WEP = 686. 1 WETANK = 1529 1 WFEQ - 4884 . 0 WFS 573 1 WCA 312 . I WGEAR - 172 1 WHDP 311, l WHT 498 1 WINST = 107. i WLG = 992 1 WMISS = 1066, l WNA 689 1 WPA = 0. 0 WPASS 0 0 WPL = 4211 . 0 WPS — 4884 0 WSC = 730. 1 WTSUM 35388 0 WVT 376. 1 WWING = 2096 1 WBOMB - 172 . 1 WENVP 0 0 WPIV 0. 0 WLIFTF 0 0 WBB2 = 0. 0 WTHRV - 0 0 ******** ***************** ************** * * ********** ********* ** Begin Vehicle Convergence ** Estimated Gross Weight = .35388E+05 Calling Module * 1 Calling Module # 2 Calling Module # 3 Calling Module t 4 Calling Module # 6 Calculated Gross Weight = .35388E+05 ** End Vehicle Convergence ** 1 Convergence Iterations Required ************************************************************** Calling Module # 1 Calling Module 8 2 Summary of Non Fatal Errors encountered in cycle analysis P5 < P6S 3 times 0 RANGE CALC RESULTS : 1 .644O00OE+03 -.8438086E+03 Summary of Non Fatal Errors encountered in cycle analysis P5 < P6S 3 times 0 RANGE CALC RESULTS : 2 .5940000E+03 -.5330762E+02 Summary of Non Fatal Errors encountered in cycle analysis .6940000E+03 .5906282E+03 Nov 18 96 15:07:52 F16-ACS YNT-OUT P5 < P6£ 3 times 0 RANGE CALC RESULTS : 3 .5906282E+03 -.4029688E+02 .5B01852E+03 Summary of Non Fatal Errors encountered in cycle analysis P5 < P6S 3 times 0 RANGE CALC RESULTS : 4 .58O1852E+03 .3466797E+01 .5810125E+03 Summary of Non Fatal Errors encountered in cycle analysis P5 < P6S 3 times Calling Module # 3 Calling Module ft 4 Calling Module # 6 Output for Module # 1 Fuselage Definition X R Area 3 65 88 2 45 4 56 1 02 3 28 5 47 1 15 4 13 6 38 1 26 4 97 7 30 1 36 5 80 21 1 45 6 60 9 12 1 53 7 36 10 03 1 60 8 07 10 94 1 67 8 73 11 86 1 72 9 32 12 77 1 77 9 84 13 68 1 81 10 29 14 5S 1 B4 10 66 15 50 1 87 10 95 16 42 1 89 11 17 17 33 1 90 11 29 18 24 1 90 11 34 20 03 1 90 11 34 21 83 1 90 11 34 23 62 1 9C 11 34 25 42 1 90 11 34 27 21 1 90 11 34 29 00 1 90 11 34 30 80 1 90 11 34 32 59 1 90 11 34 34 39 1 90 11 34 36 18 1 90 11 34 36 75 1 96 12 09 37 32 2 02 12 78 37 89 2 07 13 40 38 46 2 11 13 94 39 03 2 14 14 39 39 60 2 17 14 74 40 17 2 18 14 99 40 74 2 19 15 14 41 31 2 20 15 17 41 88 2 19 15 08 42 45 2 18 14 88 43 02 2 15 14 54 43 59 2 12 14 08 44 16 2 07 13 47 44 73 2 01 12 72 45 30 1 94 11 82 15 87 1 85 10 74 16 44 1 74 9 46 17 01 1 59 7 90 47 S8 1 32 5 48 Fuselage Max. Diameter 3.799 Fineness Ratio 12.524 Surface Area 758.223 Volume 473.188 F16-ACS YNT-OUT DiBsnsiana at Planar Surfaces leach] Wing H.T-ail V.Tail C*nnrd Units NUMBER OF SURFACES. 3.0 1 .0 1.0 1 .0 PEAK AREA IOC .0 .7 5/ . 0 (vO.FT SURFACE AREA... 311.1 1 L5 . 3 116 . 9 .0 (SQ.FT VOLUME H ' 3.3 11.6 .0 (CU.FT SEAN 3 0.000 11 . 604 8 .417 . ooo jFT. ) L.E, SfcEEP 39.992 3 9 . 999 47 .499 . ooo (11KG. ) a'•! iv.'!;E? ... 32.183 32 .271 " .22b .ooo (DEG.1 T . E . S'viEEP . .... .03:1 .4*8 25 . 907 .000 (DEC. i ASPECT HATIO . . 3,000 2 11 1 1 . 2 : ,0D0 ROOT CHORD ... 16.287 7 . 898 9 .053 . 000 (PT. ) ROOT THICKNESS. 7 . 818 5 ,637 5 .758 .000 1 IN . ) ROOT T/C -040 .060 . 053 .000 •. IP CHORD. .... 3.713 3 .080 i . 956 .ooo 1 FT. | TIP THICKNESS.. 1.782 .294 I .424 .000 UN. ) TIP T/C .040 .035 .030 .000 TAPER FLATtQ , , . .228 .390 . 437 .ooo HEAN AERO CHORD . . . 11.317 LB42 6 .837 .ooo (FT, 1 LE ROOT AT 18.190 445 76 . 148 .000 (PT. ) C •' i ROOT AT .... 22.267 40 .419 3P 411 .000 (FT. ) TE r::-:it AT ... 34.4Ri 4i. .343 65 .201 .000 (PT. ) LE M.A.C. A'-' . . . ... 23.1B9 4" .522 40.141 .ooo (FT . ) C/4 M.A.C. AT.. ... 25.99E 41 .983 41 .850 .ooo (FT. ) TP M.A.C. AT.,. J4.4m; 46 364 ii .976 .ooo (FT. ) V M.A.C. AT.... S.93S 7 .477 :• •yr .ooo LE TIP AT ... 30.779 '3 313 45 .333 .000 (FT. ) C/4 TIP AT 3 L 707 ii 0*3 46 .122 .•oo (FT . ) TE TIP AT ... 34,492 14 393 .219 • 00 (FT, ) LLEVAT; :-N .D0Q 000 1 .9130 . ooo (FT. ) .0: ::,::iRlc itai VOLUKE COEPF 300 0»6 .000 EFFECTIVE TOTAL VOLUME COj..! •-, 300 .096 .000 EXTENSIONS Cuntroid location at Ares ' .. .) igl j Vie L ted Area Volu."'^ Total wing Area T-jtal Watted Area Wing Fus»I Total FUEL VrJui TANKS Wei ght 24. 1151. 19. SB19. o. o. 6972 . Scrake .00 , 00 .00 , 00 .00 300.00 1323.55 49 00 49 . 00 50.00 Rear Extension . 00 .00 .00 , 00 Mission Fuel Required = AVSi lab] i? Fuel VoJUil\£ in Wing 697 2 . 72 . Aircvatt neiyht Alzcraft Volume - Aircra.lt Dftrtnity = 35386.0UU lbs. 577 . 6" 8 a. ft.. 61.259 lbs./Cl Output for Module # 2 ICAS (Fineness Ratio Moirhcdl * * * . 4 + * '* * v J * * * 1 4 * « 1 *******T TRAJECTORY OUTPUT MISSION 1 (PAYLOAD = 3678. LB) PHASE K H CL ALPHA WFUEL TIME VEI. SFC 11 THRUST (11 CP W Q SFC [Vr TFiRUSTlUl CDINJI L/l: T.. I'HA PR X WARM-UP 0. 405 . 9 6 .00 2 .51 1611 . TAKEOFF .27 0 . 1 .5541 12 ,00 247 .3 1 00 301 . .92 16433. . 68B1 9 -56 405 2 L-109 . .92 16438. .OOUO 2 . 26 1 .00 1 .00 4707 . 2ND SEG .27 400 . ' . 5541 12 .00 301. .92 0. 6881 39 .85 34734.8 405 29 IDS. . 32 1S41R. .001 > 2 .26 L.0B 00 CLIMB .91 10001). . 1340 1 .:, 164 . 6 . 60 977 . 1.07 3 491 1 , . 02: •; . 34570.2 4 04 S38 . Cycle . 01 0 . .oooo .95 1.00 1 .00 6 . CLIMB .91 20000. ,1987 3 ;•>:: ? . 78 S39. 1 .01 11431. 0251 . 12 3)407 . 4 280 .63 558. Cycl e . 00 ' . . uooo 7 .98 1 .00 / . CLIMB l. to 32500. .2343 2 . 0 8 299.2 2 .00 1086 . 1 01 8842 . • 0S07 2 . 62 3410:-. 7 207 . 93 479 . Cyc li> ,0o 0 . . oooo • -64 .97 1 .00 19 . CRUISE . 87 33528. .3822 4 . 57 1329..-: 3" . I 852 . .90 40Bli . .0476 .00 33179.1 143 .77 38H>. Cycle .00 0 . .0.01 n 8 .02 .53 1 .00 359. LOITER . SO 28500. .3554 ' u 7156.6 120 -0D soi. .93 3915 . . 0432 25022.4 169 . 93 302. Cycl e .00 (• . uooo 8 .23 .45 1 .Ii 1 949 . COMBAT . 90 10000. .4975 6 . .; •; 411.5 I .017 97D. 1 . 3"-? 17717. . 0 711 4 . 90 22912.9 401 .31 K2 5 Cycle .00 0 . .0000 6 . 99 1.19 1 . oo 10. COMBAT .90 ii'ooo. .4379 5 . )3 21.1 .2 1 970 . 1.02 12407, .0499 8 . 1$ 21701.7 : 83 . :.j P2 5 , Cycle .00 0 . .0000 R 77 83 1 .Cl 10. CLIMB 1 . j0 44500. . 1941 1 . 62 319, i 2 .64 1 255. :...)- JJLl . 0142 5 .59 2 13(32 . J 145 - 9 3 7 i . Cycle . 00 0. . OOOO 5 , 68 .97 . . ' 24 , CRUISE .a- 45J15. . 42 4 3 5 . . i 3214.9 •'• • .93 342 . . 59 2293 . .0475 . 0 201&7,4 'dv. . 2 ii 162 . Cycle .00 0. . 0000 8 .84 .51 1 0L 291 . GOITER . it 1 • .2836 3 . lb 1350.4 20 . 00 447 . 2 . 32 1611. . 0226 .00 18017.1 34J .-- 237 . Cycle .00 0. .0000 12 . 52 . 10 1 oo 86 . LANDING .26 0 . 1 .5557 12 .00 290 . . 92 164 . 6B07 .22 2754B.3 403 100. 92 0. . oooo 2 9 I. DO : . ,30 JC7D . F16-ACSYNT-0UT Pue1 Summary Total Fuel Mission Fuel Reserve Fuel Trapped Fuel 13112. 13873 • . 7* . TaReott Fuel: Waihiup = Takeoff = Fuel L''.TLI : External Internal S760. 5972 . SMNSWP set lnrcrr*ctly in AerodynamicE facetting to bound the Mach numj»r. ADDITIONAL COMBAT PARAMETERS CONDITIONS PS Nl ttttT RADIUS ALPHA • eo 3 G FLIGHT 1013.9 1,00 .00 0. 1.02 . 101 .0216 H- 1UU0D. SUSTAINED .0 * . 92 13 , 02 42&S 5.24 . 498 0711 MAX. INST. -190.9 7.IS It.at 3957. 10.00 .731 .1451 COMBAT ENERGY = .SP8J38EtOS K> .913 1 G FLIGHT 125. 1 1.D0 .DO 0 . . 90 ,069 .0131 H-iooao. SUSTAINED .0 8.17 15.41 3605. 5.33 .438 .0439 MAX. INST, -12T.7 8.SI 16.07 345R. 10.00 .731 .1370 COMBAT ENERGY •750699E-05 Output lor Madula * , BI cj-Lk Tima - 3 .677 hrs Block Range ii 1661.7 Block FU»1 - U372.y lb. TakeoEE Field Length (total runl r 4707. ft Landing Field Length (total r-jril - 8070. li Landing Field Length (ground runl = 40B0, Ft Weight tor Landing calculation = 27545. lbs Landing Thrust to Weight ratio 11 .537 Takeoff Weight 35338. lbs Landing Weight iaai7. lbs 15:07:52 Mach Altitude 1 .40 30000. Parasite Drag Takeoff Induced Configuration: Drag Flaps and Slats F16-ACSYNT-OUT Friction .0095 Alpha Cl Cd L/D Cm e Cdtrim Deltrim Zone Body .0051 0 251 1449 1 7 -.110 .06 .0000 . 0 6 Wing . 0022 1 0 337 1607 2 1 -.121 . 10 .0000 .0 Strakes .0000 2 0 423 1768 2 4 -.131 . 14 . 0000 .0 6 H. Tail .0011 3 0 SOS 1943 to 6 -.142 . IB .0000 .0 V. Tail .0011 4 0 595 2136 2 8 - . 152 .22 . oooo .0 6 Canard c ,0000 5 0 681 2351 2 9 -.163 .25 .0000 . 0 0 Interference . 0004 10 0 1 099 3779 2 9 - .212 .38 ,0000 .0 6 Wave ,0182 20 0 1 851 8472 2 2 -.280 .45 .0000 .0 External .0000 30 0 2 325 1 4732 1 6 - .281 .40 .oooc ,0 Tanks .0000 40 0 2 62 5 2 3248 1 1 - .253 .32 .0000 .c 6 Bombs Stores Extra Camber .0000 .0000 .0000 .0000 Cdmin Et Mach Altitude 1 . 60 30000. Parasite Drag Slope Factors Cl/Alpha (per radian) Cdl/Cl"2 Alpha Transition 2one 2-3 Flap Setting Slat Setting Flap Type Single Landing Configuration: Flaps and Slats Induced Drag 3 .4016 .3313 1. 064 45 . 30 . 42. sq. Friction Zone Body . 0090 .0048 Alpha .0 Cl 167 Cd . 1090 L/D 1.5 Cm -.073 e .04 Cdtrim , oooo Deltrim .0 6 Wing .0021 1 0 246 . 1224 2 0 - . 083 ,08 .OOOC .0 6 Strakes . 0000 2 0 326 . 1358 2 4 -.093 . 12 .0000 .0 H. Tail £ .0011 3 c 406 . 1503 to 7 - .102 .16 . 0000 .0 0 v. Tail .0010 4 0 487 .1666 2 9 -.111 .20 .OOOC .0 6 Canard . 0000 5 0 567 .1851 3 1 - .121 ,23 .0000 .0 6 Interference .0004 10 0 964 .3134 3 1 - .166 .36 .0000 .0 • Wave .0176 20 0 I 699 .7604 2 2 -.226 .42 .oooo .0 6 External .oooo 30 0 2 199 1 .3948 1 6 -.225 ,38 .oooo .0 6 Tanks . oooo 40 0 2 527 2.2604 1 1 - .198 .31 .0000 .c 6 Bombs Stores Extra . 0000 . 0000 . 0000 Slope Factors Cl/Alpha (per radian) 3.3805 Cdl/Cl"2 .3476 Alpha Transition Zone 2-3 .500 Camber .0000 Cdmin ft . 0399 Flap Setting Slat Setting Flap Type Single 45. 30. 42 . Detailed Aerodynamics Output Nov 18 96 15:07:52 F16-ACSYNT-OUT Mach Alti tude . 4C 30000. Parasite Drag Induced Drag Friction .0114 Alpha Cl Cd L/D Cm e Cdtrim Deltrim Zone Body 2 . 00S1 .0 .000 . 0128 0 .000 ,00 . oooo . 0 Wing 2 .0026 1 0 .077 .0136 5 7 .004 , 87 .0000 .0 Strakes .oooc 2 0 . 153 . 0157 9 a .008 . 87 .0000 .0 2 H. Tail ,0013 3 .0 .228 .0192 11 9 .011 .87 .0000 .0 V. Tail .0013 4 0 301 .0239 12 5 .014 .87 . oooo .0 2 Canard .0000 5 0 374 0298 12 5 . 016 .87 .oooo . 0 Interference . 0014 IC 0 675 .1149 5 9 ,019 . 47 .0000 .0 3 Wave ,000C 20 0 1 133 .4018 2 a -.013 .35 .0000 .0 3 External . oooo 30 0 1 364 7966 1 7 -.071 .25 .0000 ,0 J Tanks . oooo 40 0 1 299 1 1445 1 l -.115 .16 .0000 .0 3 Bombs ,0000 Slope Factors Stores .0000 Cl/Alpha (per radian) 1.8610 Extra . oooo Cdl/Cl "2 .6704 Alpha Transition Zone 2- 3 6.267 Camber . oooo Programmed Flap Setting 0. Cdmin .0128 Flap Type Single 42 . sq Et Mach = . 60 Altitude = 30000. Parasite Drag Induced Drag Friction .0112 Alpha Cl Cd L/D Cm e Cdtrim Deltrim Zone Body . 0060 0 000 0199 0 .000 .00 .0000 .0 2 Wing .0026 1 0 082 0207 4 . 0 .003 .88 .0000 .0 C Strakes .0000 2 0 163 0231 7 . 0 .005 .38 ,0000 .0 H, Tail 2 .0013 3 0 242 0270 9. 0 .007 , 88 . oooo .0 \!. Tail .0013 4 0 321 0344 9 . 3 .003 .75 .0000 .0 £ Canard .0000 S c 3 84 0479 8 . 0 ,010 .56 .0000 . 0 Interference . 0014 10 0 685 1279 5. 4 . 0O6 .46 . oooo .0 3 Wave .0000 20 0 1 162 4315 2 . 7 - .033 .35 .oooc . 0 3 External . oooo 30 0 1 405 8445 1, 7 -.096 .25 . oooo ,0 j Tanks .0000 40 0 1 350 1 2042 1. 1 -.119 .16 .0000 .0 3 Bombs Stores Extra .0000 .0000 . oooo Slope Factors Cl/Alpha (per radian) 1.9343 Cdl/Cl~2 .6495 Alpha Transition Zone 2-3 4,151 Camber Cdmin * ft .0000 Programmed Flap Setting Flap Type Single Detailed Aezodynamics output 15:07:52 F16-ACS YNT- OUT Detailed Aerodynamics Output Mach Altitude .80 30000. parasite Drag Induced Drag Friction .0108 Alpha Cl Cd L/D Cm e Cdtrim Deltrim Zone Body 2 .0058 0 000 .0196 0 .000 ,00 , oooo .0 Wing 2 . 0025 1 0 091 . 0206 1. 4 .001 . 88 .0000 .0 Strakes . oooc 2 0 180 .0235 7. 1 .003 .88 .0000 . 0 2 H. Tail 2 . 0013 3 0 26a .0300 8. 3 .003 .73 ,0000 .0 V. Tail .0012 4 0 335 .0401 8 . 3 .003 . 58 .0000 . 0 3 Canard .0000 5 0 401 .0507 7 . 9 .002 .55 .oooo .0 3 Interference .0014 10 0 711 . 1375 5 , 2 - .008 .45 .0000 .0 3 Wave ,oooc 20 0 1 204 ,4612 2 . 6 -.056 .35 , oooo ,0 3 External , oooo 30 0 1 478 ,9067 1 . 6 - .109 .26 .oooo .0 3 Tanks .oooo 40 0 1 393 1.2514 1. 1 -.147 . 17 . oooo .0 J Bombs .oooo Slope Factors Stores . oooo Cl/Alpha (per radian) 1.9953 Extra . oooo Cdl/Cl -2 . 6349 Alpha Transition Zone 2 - 3 3 .021 Camber .oooo Programmed Flap Setting a. Cdmin . 0196 Flap Type Single 42 . sq ft Mach Altitude .85 30000. Parasite Drag Induced Drag Friction Sons Body 2 . 0107 .0058 Alpha . 0 Cl 000 Cd .0196 L/D . 0 Cm ,000 e .00 Cdtrim ,0000 Deltrim .0 Wing . 0025 1 0 094 .0207 4 6 .001 .88 . 0000 ,C Strakes .0000 2 0 187 .0238 7 9 . 002 .88 .0000 .0 H. Tail . 0013 3 0 277 ,0315 8 8 .002 .69 ,0000 .0 V. Tail .0012 4 0 341 .0410 8 3 .001 .58 . oooo . 0 3 Canard . oooc in 0 407 .0518 7 9 . OOC .55 .0000 .0 3 Interference ,0014 10 0 72C .1408 5 1 -.011 .45 .oooo .0 Wave . oooo 20 0 1 217 .4703 2 6 - . 063 .35 .oooo .0 3 External i . oooo 30 0 1 494 .9219 1 6 -.117 .26 .0000 .0 Tanks .0000 40 0 1 405 1.3757 1 0 - .139 .15 .oooo .0 4 Bombs Stores Extra . oooo . oooo ,0000 Slope Factors Cl/Alpha (per radian) 2.0126 Cdl/Cl"2 .6870 Alpha Transition Zone 2-3 2.809 Camber .0000 Cdmin ft .0196 Programmed Flap Setting Flap Type Single Nov 18 H 15:07:52 F16-ACSYNT-OUT Mach Altitude . 90 30000. Parasite Drag Induced Drag Friction Zone Body 2 , 0106 .0057 Alpha .0 Cl 000 Cd .0203 L/D .0 Cm .000 e .oo Cdtrim .0000 Deltrim . 0 Wing .0025 1 0 099 .0215 4 6 .001 . 89 .0000 .0 Strakes 2 , 0000 2 0 196 ,0249 7 8 .001 . 89 .0000 .0 H. Tail 2 .0013 3 0 290 . 0336 8 6 .001 .67 .0000 .0 V. Tail 2 . 0012 4 0 349 .0427 S 2 .000 . 58 .0000 ,0 Canard ,0000 5 0 416 , 0539 1 7 - . 002 .55 . oooo .0 Interference 2 .0015 10 0 731 .1452 5 0 - .015 .45 . oooo .0 Wave .0000 20 0 1 232 .4813 2 6 -.068 .35 ,0000 . 0 J External , oooo 30 0 1 434 ,9 581 1 5 - . 124 . 23 .oooc .0 Tanks .oooo 40 0 1 384 1.3440 1 0 - .160 . 15 . oooo . c 4 Bombs Stores Extra Camber .0000 . 0000 . oooo .0000 Slope Factors Cl/Alpha (per radian) Cdl/Cl"2 Alpha Transition Zone 2-3 Programmed Flap Setting Cdmin ft . 0203 Flap Type Single 1. 9830 , 6907 2 . 615 0. 42. sq. Mach = .95 Altitude = 30000, Parasite Drag Induced Drag Friction Zone Body . 0105 . 0057 Alpha .0 Cl .ooo Cd .02 66 L/D .0 Cm 000 e .oo Cdtrim .0000 Deltrim .0 wing .0024 1 0 104 .0279 3 7 000 .89 ,0000 .0 Strakes .0000 2 0 .207 .0318 6 5 000 . 87 . oooo .0 H. Tail .0012 3 0 289 .0409 7 1 - . 001 . 62 .0000 .0 3 V. Tail .0012 4 0 358 .0501 7 1 - . 002 .58 .0000 .0 3 Canard -> . 0000 5 0 426 .0618 6 9 -. 004 . 55 .oooo .0 Interference .0008 10 0 744 . 1557 4 8 - . 018 .45 .oooo .0 3 Wave . 0052 20 0 1 237 .5382 2 3 -. 081 .32 .oooo .0 4 External ,000C 30 0 1 378 .9167 1 5 -, 145 .23 ,oooo .0 Tanks . 0000 40 0 1 348 1.3001 1 0 - . 171 . 15 .oooo .0 Bombs .0000 Slope Factors Stores Extra .0000 . 0000 Cl/Alpha (per radian) 1.9311 Cdl/Cl~2 .7008 Alpha Transition zone 2-3 2.436 . 0000 Cdmin + ft .0266 Programmed Flap Setting Flap Type Single Detailed Aerodynamics Output Camber F16 - ACS YNT- O UT QBtoilad Aerodynamics Output Kach - 1.05 AIM trurte = JOOOO. CimLer .0000 Ci ag Parasi Frietien Zone body 2 Wiilg 2 3trakes 2 H. Tail 3 V. Tail 3 Canard 3 Inter-iV-rence 3 Wav-¬ External 4 Tanj ; . 0103 . o o 5 6 . 0024 . OOOC .0012 . 0012 . • 10 . 0005 . om . oooo . oooo Induced Alpha .0 1 . 0 2.0 3 . 0 4 .0 5 , 0 10 . 0 20 . C 30 . 0 40.0 D:aci Cl . ooc , 114 .225 .280 .352 .422 .756 1 .227 1.389 1.379 Cd . 0430 .0445 .0193 . 0570 .0666 . 0787 . 1781 .54QB .9235 1.3153 L/D . 0 2 . 6 4.5 Cm 000 . 007 .015 CdL: im Dultrim 4.9 -.('21 5.3 -.028 5.4 -.031; 4.2 -.084 2.3 -.119 1.5 -.173 1.0 -.166 00 . 89 .79 . 59 . 56 53 . 45 .32 .23 .16 . 00:50 .0000 .0000 . oooo .0000 ,0000 .oooo . oooo .oooc • :dn: 1 n .0421 Prograiraned Flap Setting Flap Type Sinyj '•• Output tor Module i . r K * ............ X * * r * * ENGINE SCWAkY ENGINE DIAMETER = 4 .-I . :-KH ENGINE LJ7NGTH = 14.05 FEET ENGINE VtVlTGH7 = -1570.70 POUNDS SYPAS5 RATIO = .73 ND OF ENGINES = 1 . DF.AC, REF AREA - 300.00 SQ FEL".' = PE«[:eNT CF ENGINE CORRECTED AIRFLOW THRUST • ENGINE THRUST (POtJrJtlS PER ENGINE) S; C - ENGINE SPECIFIC FUEL CONSUMPTION THRUSTU= THBDST ENGINE IN LBS, W/O IHSTAL DRAG CORR SFCU = SVC, 1/HR, W/O INSTALLATION DRAG CORE. CDINS - TOT INSTALLAT1' 4 DRAG f.JBF : :•.!'. A/C (SWING REF) ,00 DO Slope Factors MACH ALT PWCC THRUST THRUSTU SFC SFCU CDINS Stores . 0000 Cl/Alpha (per I vidian) 1 -97EF £xtl n . oooo Cdl/CI "2 .6668 Alphd TrariB it Ion Zone 2- 3 2 .111 .000 0 . 100 . 17389. 0 . 857 .000 . 0000 Ce. : .oooo Pre Flap Setting 0 . i1 8 . 16158, • . 841 .000 .0000 96 . • r>. 0. . 0OD .aoor cdmin . 04": n Flap Type Single 42 . sq. 74 , IIB14. 0. 778 . ooo .oooo 4 £t 92 . 9600. 0. 764 .000 .0000 90 . 7235. o. tin . 00.7 . oooo Mach 1.2G 88, 43 63 . 0 . 974 . 000 .oooo A j i.i i jde = J0000. Parasi te Drag Induced Drag .450 ioooo. ioo. 12635. 0. 977 . 000 .oooc Frlct idn . oioc Aip If! Cl Cd L/D Cm e Cdtrim Deltrim o,-;. 11018. o. . 000 + Zone !7t . 9355. D . 927 .000 .oooo Body . 0054 0 . 000 0421 C 000 . 00 '•OOO 0 74 . 7 1 6 . 0. 916 .ooo .0000 4 2 92 . 6054. 0 . 931 .0000 W j ng . 0023 1 0 . 117 0437 2 . 7 -.009 o , oooo .0 90. 4 2 2 2, 0. i 011 . 1' 0 0 .0000 4 2 88 . 2381 . 0, i 167 .ooo 0005 5trakes .000 0 2 c . 232 0505 4 . 6 -.019 . 68 oooo .0 3 H. Tail . 0012 3 0 . 305 0594 5. 1 - . 02 8 .57 oooo . 0 .7 50 20000. 100 . 10456. 0. i 0 00 . 000 . DO00 4 3 98 . 5019 . 0. 972 .ooo . oooo V. Tail .0011 4 0 . 383 0709 5. 4 -.038 . 54 oooo .0 96. 76/i . 0 951 .ooo ,0»00 4 3 94. 1258 . 0. .• 1 . ooc . BOD0 CanaiA .oooo S 0 . 459 0B55 5 . 4 - . 048 . 52 oooo .0 92 . 4167. 0 . 951 .000 .0000 4 3 90. 3613 . o. i 013 ooo . oooo Interference .0004 10 0 . 824 2033 4 . 1 - . 10B .45 ooo 0 .0 . 219/2. 0. i 243 . ooo . oooo 4 3 it. 537 . 0. 3 547 . oo .c-ooo H'ave . 0180 20 0 1,3 64 6012 2 . 3 -.210 .35 oooo .0 fixtemi) . oooo iO 0 1 . 547 1 0236 1 , 5 -.27C .26 oooo . 0 .900 30000. 100. 7772 . 0 . 980 .000 . oouo 4 4 9B . 6713 . o. 953 .ooo . 01 i0 Tanks .oooo 40 0 1 . 833 1 5667 1 . 2 - .355 . 23 :••}•• 0 .0 9G. 5088. 0. 931 . i .oooo 4 6 94. 4690. o. 920 j . .oooo Li . . . oooo Slppo Fact,. r^ 91. 5V06. o. 927 .000 .oooo Stores , oooo Cl/Alpha (per radian) 7 . 6251 90. ' • 0. 977 .aoo .oooo F-xt ra . oooo CA1 KX y .4519 A3 1713 . 0. L 154 ooo .0000 Al-!ia Trsnsi tjran Zone 2-3 1 . 673 ii. 59 3 . 0. ; 306 .000 .0000 15:07:52 F16-ACSYNT-OUT Avionics 2414. 1095. 6 82 i oo Yes Instrumentation 107 . 49 . 30 i 00 Yes 10000. 100. 6934. 0. 1 008 .000 .0000 De-ice & Air Cond 267. 121. 75 I 00 Yes 98. 6042 , 0. 981 .000 ,0000 Auxiliary Gear 172. 78. 49 Yes 96. 5137 . 0. 956 . 000 .0000 Furnish li Eqpt 312. 142. 88 i 00 Yes 94 . 4264 . 0. 939 , 000 .0000 Flight Controls 730. 331 . 2 06 i 00 Yes 92 , 3417 . 0 . 934 .000 ,0000 90. 2585, 0. 957 .000 .0000 Empty Weight 17763. 8057. 50 19 88 . 1760 . 0, 1 048 . 000 . oooo B6 . 911. 0. 1 415 .000 . oooo Operating Items 0, 0. 00 No Flight Crew ( 1) 215. 98. 61 Yes Crew Baggage and Provisions 0. 0. 00 No AFTERBURNEF OR DUCTBURNER (OR BOTH) LIT Unusable Fuel and Oil 74 . 34 . 21 No Operating Weight Empty 18052. 8188. 51 01 50000. 100. 12225. 0 . 2 376 .ooo .0000 100 . 11885. 0 . 2 321 ,000 .0000 Fuel 13658. 6195. 38 59 100. 11544. 0. 2 266 .000 , oooo 100. 11201. 0. 2 210 . ooo .oooo Payload 3678 . 1669 , 10 39 No 100. 10856. 0. 2 154 .000 .oooo Armament 808 . 367 . 2 28 Yes 100. 10508. 0 . 2 097 .OOC .0000 Ammuni ti on 103. 47 . 29 Yes 100 . 10159, 0. 2 039 .ooo .0000 Missiles 1066. 484 . 3 01 Yes 100 . 9806 . 0. 1 980 .000 .0000 Bombs 172 . 78 . 49 Yes 100, 9450 . 0. 1 920 .000 ,0000 External Tanks 1529 . 694 . 4 32 Yes 100. 9092 . 0. 1 859 .ooo .0000 Adv Weapons 1 0. 0. 00 No loo. 8729 . 0 . 1 797 .000 .oooo Adv Weapons 2 0 . 0. OO Nc 100 . 8363. 0 . 1 733 .000 .0000 100 . 7992 . 0. 1 667 ,000 .0000 Calculated Weight 35388. 16052. 100 00 No 100. 7616. 0. 1 598 . 000 , oooo 100. 7236 . 0. 1 528 .000 .oooo Estimated weight 35388. 16052. SEA-LEVEL STATIC THRUST ' SEA-LEVEL SFC Output for Module # 6 24850. 3 . 140 (MAX) Weight Statement - Fighter QMAX: Design Load Factor: Ultimate Load Factor: Structure and Material: wing Equation: Body Equation: Component 1900 . 9 . 00 13 .50 Aluminum Skin, Stringer Delta Wing Equation Sanders Equation Pounds Kilograms Percent Slope Tech Fixed Airframe Structure 8275. 3754 . 23 38 Nc Wing 2096. 951. 5 92 1 00 1 00 Yes Fuselage 3624 . 1644. 10 24 1 00 1 00 Yes Horizontal Tail ( Low] 498 . 226 . 1 41 I 00 1 00 Yes Vertical Tail 376. 171 . 1 06 1 00 1 00 Yes Nacelles 689 , 312 . 1 95 1 00 1 oc Yes Landing Gear 992 , 450. 2 80 1 00 1 00 Yes Propulsion 4489. 2036. 12 69 No Engines ( 1) 3911. 1774 . 11 05 1 00 1 00 Yes Fuel System 578. 262. 1 63 1 00 1 00 Yes Fixed Equipment 4998 , 2267 . 14 12 1 00 No Hyd & Pneumatic 311 . 141 . 88 1 oc Yes Electrical 686 . 311 . 1 94 1 00 Yes percent Error .00 Nov 18 96 15:07:32 Fl 6-ACS YNT-OUT Output for Module t 11 1 SUMMARY ACSYNT OUTPUT NASA, AMES RESEARCH CENTER ENGLISH UNITS - ***** GENERAL DYNAMICS F-16C FIGHTER - COMBAT AIR PATROL **************** DISTANCES IN FEET WEIGHTS IN LBS. GENERAL FUSELAGE WING HTAIL VTAIL FORCES IN LBS. PRESSURES IN LBS/FT**2 WG 35388. LENGTH 47 .6 AREA 300.0 63.7 54.8 W/S 118.0 DIAMETER 3 .8 WETTED AREA 333 . 1 115.3 116.9 T/W .70 VOLUME 473 ,2 SPAN 30 .0 11.6 8 . 4 N(Z) ULT 13.5 WETTED AREA 758 . 2 L.E. SWEEP 40,0 40.0 47 .5 CREW 1 , FINENESS RATIO 12 . 5 C/4 SWEEP 32 .2 32 ,3 43 .2 PASENGERS 0. ASPECT RATIO 3 .00 2.11 1 .29 TAPER RATIO ,23 . 39 ,44 ENGINE WEIGHTS T/C ROOT .04 ,06 .05 T/C TIP .04 ,04 .03 NUMBER 1. W WG ROOT CHORD 16.3 7.9 9.1 LENGTH 14.1 STRUCT. 8275 23 .4 TIP CHORD 3 .7 3.1 4 . 0 DIAM. 4.4 PROFUL. 4489 12 .7 M.A. CHORD 11.3 5.8 6.8 WEIGHT 4570.7 FIX . EQ . 4998 14 .1 LOC. OF L.E. 18.2 38.4 36.1 TSLS 24850, FUEL 13732 38 . 8 SFCSLS 3.14 PAYLOAD 3678 10 .4 MISSION SUMMARY PHASE MACH ALT FUEL TIME DIST L/D THRUST SFC Q TAKEOFF . 00 0 . 653 . 1 0 4706 6 CLIMB .91 10000. 165. 6 5 5 5 95 14918 9 1 ,027 837 8 CLIMB .91 20000, 163 . S 7 0 7 92 11431 2 1 .014 558 2 CLIMB 1 . 10 32500. 299 . 2 0 19 2 4 64 8842 1 1 .008 478 7 CRUISE . 87 33528. 1929 . 30 7 258 8 8 02 4085 CO .899 286 1 LOITER . 80 28500. 7157 . 120 0 949 2 8 23 3915 5 .914 301 8 COMBAT .90 10000. 412 . 1 0 9 6 6 99 17716 6 1 ,394 825 3 COMBAT .90 10000, 211. 1 0 9 6 8 77 12406 8 1 .021 825 3 CLIMB 1.30 44500, 319 . 2 6 24 1 5 68 5910 9 1 .013 372 9 CRUISE .87 45315. 1215 , 34 9 2 90 5 8 94 2298 6 .886 161 5 LOITER .40 1. 1350. 20 0 88 2 12 52 1610 6 2 .515 237 0 LANDING 8069 7 Block Time Block Range = 1661.7 nro 3.677 hr (without air and ground manusver allowances) COMBAT PHASES MACH ALT PS1G NZS CLS CDS ALS NZI PSI CLI CDI ALI CBE .90 10000. 1014. 6.9 .498 .0711 6.2 7.5 -191. .731 .1452 10.0 60834. .90 10000. 1251. 8.2 .438 .0499 5.3 8.5 -126. .731 .1370 10.0 75070. Appendix G Page 60 Appendix G. F16C FLOPS Input & Output File Nov IS 96 15:07:53 F16-FLOPS-IN PARA £16c Air Superiority Mission, 2AIM-9, 2AIM-120, External Fuel SOPTION I0PT=1, IFITE=1, ICOST=0, IANAL=3 , IENG=1, SEND SWTIN ULF=13.5, VHMO=2.4, MYWTS=0, HYTJPR=3000 . , DIH=0.0, FLAPR=0.227, GLOV=0., VARSWP=0,, FCOMP=0.2, FAERT-0., FSTRT-0 . , XL=44.1, WF=4.9, DF-3.46, XLP=0.0, N£W=0, NEF=1, THRSO=248S0., HENG=3911,, FULWMX=1144 . , NTANK=5, FULFMX=5831., FULAUX = 6760., FRWI=2096., FRKT=498., FRVT=376., FRFU=3 624. , FRLGM=992. , FRNA=689., WFSYS=578., WHYD=311 . , WIN=107., WELEC=686 . , WARM=808.5, WFURN=312., WAC=267., WCON=172,, WFLCRB=215., WAUXT=1701. , WSRV=I02.5, FRSC=730., XNAC=31., DNAC=2.81, EEXP=0.6, NPF=0, NPT=0, CARGOW=0. , CARGOW=1066. , CARGOF=0. , WAVONC=243 8., SVT=54.75, SWPVT=42 . 93 , ARVT=1.2 94, TRVT-.437, TCVT=.04S, SHT=63.7, ARHT=2.114, SWPHT=32.18, TRHT=.390, TCHT=.051, HHT=0.0, XMLG=49.9, XNLG=39.0, SEND SCONFIN DESRNG=580.6, GW=32974. ,0.0, AR-3.0.0.,2.0,4 .0, SW=300.0,0.,400.,600., TR=0.2275,0.0, SWEEP=30.0,0.0, TCA=.04,0.0, THRUST=24850.0,0.0,20000.0,35000.0, VCMN=0.8, CH=50000., SEND SAER1N MYAERO=l, MAVE=1 , SEND SENGDIN IGENEN=-1, EIFILE='GE12 9.instal.engine.txt', NGPRT-1, IDLE=0, IXTRAP=1, IFILL=3, MAXCR=2 , IGEO=0, SEND SMISSIN INDR=0, IFLAG=2 , IRW=1, IATA=0, STMA(1,11=0.3,STMA (2,1)=0.9.STMA(3,1)=1.0,STMA< 4,1) = 1. 4 , STMA(1,2)=0.3,STMA(2,2)=0.9,STMA(3,21=1.2,STMA (4,2)=1.6, STMA(1,3)=0.3,STMA(2,31=0.9,STMA(3,3)=0.95,STMA(4,3)=1.4, CDST (1,1) = .0058, CDST (2,1) =.0062, CDST, 3,1) =".0138, CDST (4,1) = .02 62, CDST(1,2 I *.0016,COST(2,2) = .0016,CDST(3,2) = .0047,CDST(4,2) = .0053, CDSTfl,3)=-.0007,CDST(2,3)—.0008,CDST(3,3)=-.0008,CDST(4,3)--.0012, ISTCL[1)=2, ISTCL(2)=3, ISTCR(1>=1, ISTCR(2)=3, 1STCR(3)=3, ISTCR(4)=3, ISTCR(5)=3, PAYLOD=3654. , TAXOTM=6.5, TAKOTM=0.5, TAXITM=0., ITTFF=1, NCLIMB=2, CLMMIN(l)=0.3,CLMMAX(1)-0.9,CLAMIN(11=0.0,CLAMAX (1)=32500,, CLMMIN(2)-0.3,CLMMAX(2)=0.9,CLAMIN(2)=10000.,CLAMAX(21=50000. , NINCL(1)=20, NTNCL(2)=20, FWE(11=-0.001, FWF(2)=-0.001, NCRCL(1)=1, NCRCL(2)*=4, CLDCDI11=0.0, CLDCDI2)=0,0, IPPCL(1)=4, IPPCL(2)=4, NO(11=0, NO(21=0, IFAACL=0, NODIVE=l, NCROSE=5, IOC(1)=0, IOC<2)=0, IOC(3)=4, IOC(4)=0, IOC(5)=0, CRMACH=0,9,0.9,0.9,0.9,0.8, CRALT=50000.,50000.,50000.,50000.,0.0, CRDCD=0.00,0.00,0.00,0.00,0.00, CRMMIN=0.70,0.70,0.3,0.7,0.3, CRCLMX=1.0,1.0,1,0,1.0,1.0, HPMIN=30000.,30000.,0.0.35000.,0.0, FH IRS=2, RESRFU=0.00, HPMIN= 200. ivs=o, NPCON= 5, FCDO=l • 0, FCDI=1 0, SEND START CLIMB 1 CRUISE 1 HOLD 3 120. RELEASE 1529 , ACCEL 2 0 .9 TURN 2 1 360. TURN 2 1 360. TURN 2 1 360 . TURN 2 1 3 60. TURN 2 1 3 60. TURN 2 1 110. RELEASE U6S.5 CLIMB 2 CRUISE 4 HOLD 5 20 . DESCENT END 250. 0.7 0.9 0.9 0. 10000 , 10000. 10000. 10000. 10000. 10000. ioooo. 10000. 270 . SPCONIN CONALT=3 0000.0, CONFMiO.4, SEND SPCONIN CONALT=30000 CONFM=0.4, SEND SPCONIN CONALT=30000.0 CONKCH= ICONTP=16, 0, CONMCH= ICONTP=8, 0.8, CONPC=l.0, CONAUX^l.4, NEO=l, IC5TDG=3, 0.9, CONPC=1.0, NEO=l, ICSTDG=3, C0NMCH=0.9, CONFM=0.4, SEND SPCONIN CONALT=30000 CONFM=0. 4, SEND $ PCONIN CONALT=3O000 . ICONSG=4, SEND 24 18 ICONTP=12, 0, CONMCH= ICONTP=9, 0.9, 0, CONMCH= ICONTP=8 1-2, CONPC=1.0, NEO=l, ICSTDG=3, CONPC=1.0, NEO=l, ICSTDG=3, CONPC=1.0, NEO=l, ICSTDG=2, 0 ooooo 0 20000 0 30000 0 40000 0 .50000 c 60000 0 70000 0 80000 0 85000 0 90000 0 9500C 1 ooooc 1 05000 1 10000 1 20000 1 30000 1 40000 1 50000 1 60000 1 70000 1 80000 1 90000 2 ooooo 2 10000 0 ooooo 0 05000 0 10000 0 15O00 0 20000 0 30000 0 40000 0 50000 0 60000 0 70000 0 80000 0 90000 1 ooooo 1 10000 1 20OO0 1 30000 1 40000 1 50000 0 ooooo 0 ooooo 0 00040 0 00140 0 00310 0 00810 0 01650 0 02850 0 04470 0 06690 0 09410 0 12030 0 13370 0 1671C 0 21050 0 26300 0 33900 0 41600 0 ooooo 0 ooooo 0 OO050 0 00150 0 00330 0 00860 0 01700 0 02830 0 04280 0 06070 0 08360 0 11100 0 14140 0 17890 0 22460 0 28390 c 36400 D 45790 0 ooooo 0 ooooo 0 00050 0 00150 0 0O330 0 00880 0 01710 0 02820 0 04210 0 05790 0 08010 0 10780 0 14520 C 18510 0 23200 0 29580 0 37650 0 47950 0 ooooo 0 OOOOO 0 0OO60 0 00170 0 00340 0 00900 0 01730 0 02820 0 04160 0 05630 0 07800 0 10620 0 14910 0 19150 0 24140 0 30740 0 38990 0 5O190 0 ooooo 0 ooooo 0 0O05C 0 00160 0 00340 0 0090C 0 01740 0 02810 0 04120 0 O4600 0 07620 0 10590 0 15330 0 19820 0 25160 0 32010 0 40410 0 52560 0 ooooo 0 OOOOC 0 00050 0 00150 0 00340 0 00900 0 01730 0 02800 0 04110 0 05650 0 0758C 0 1O810 0 15860 0 20530 0 26260 0 33300 0 41920 0 55040 0 00000- 0 00010 0 00040 0 00150 0 00340 0 00900 0 01720 0 02890 0 04150 0 05810 0 07960 0 11250 0 16090 0 21170 0 27380 0 34480 0 43130 0 57030 0 ooooo 0 00010 0 00060 0 00170 0 00350 0 00890 0 0171C 0 02 800 0 04230 0 06030 0 03440 0 11830 0 16320 0 21660 3 28580 0 36210 0 44640 0 59120 0 ooooo 0 00020 0 00070 0 00190 0 00360 0 00900 0 .01710 3 ,02810 0 .04270 0 .06130 0 ,08710 0 12240 C .16770 0 .22140 0 .29630 0 .37720 0 .45920 3 .61220 0 ,00000 3 .00020 0 .00080 0 00230 0 .00440 0 01060 0 01860 0 .0298C 0 .04540 0 ,06560 0 .0920C 0 .13040 0 . 17950 0 24440 0 .32020 0 41000 0 51460 0 .72820 0 .00000 0 .00060 0 .00160 0 ,00320 0 .00530 0 O1180 0 .02240 0 03690 0 O5430 0 ,07390 c .10150 0 .13870 0 .19940 a .27140 0 .33850 9 .99000 9 .99000 9 .990OC 0 . OOOOO 0 00010 0 .0012C 0 .0031C 0 .00590 0 .0145C 0 0262C 0 .04340 0 .06560 0 .08800 0 .12360 0 17620 0 .23580 0 .28620 0 .35370 9 ,99000 9 .99000 9 99000 0 .00000 0 00040 0 00160 0 .00330 0 .00620 0 ,013 80 0 .02730 c .04560 0 ,07030 C 09580 0 13950 0 19100 C 24950 0 .31000 0 .37300 9 .99000 9 ,99000 9 .99000 0 .00000 0 00040 0 . 00160 0 OO330 0 00650 0 .01540 0 .02830 0 .04860 0 .07760 0 ,11250 0 15050 0 19940 0 ,25460 0 31490 0 38390 9 99000 9 .99000 9 ,99000 0 ,00000 0 ooooo 0 00120 0 00340 0 .00720 0 O1740 0 03110 0 05570 0 .08890 0 .13250 0 , 16670 0 21240 0 26000 0 3O980 0 .39630 9 99000 9 99O00 9 99000 0 .00000 0 .00060 0 .00200 3 .00460 0 .00900 0 01910 0 03630 3 06280 0 09760 0 .13760 0 .1B16C 0 25220 0 .33350 9 .99000 9 99O0C 9 99000 9 99OO0 9 9900C 0 ooooo 0 .00060 0 .00220 0 00590 0 01060 0 02200 0 04330 0 06980 0 .1065Q 0 15O70 0 20340 0 29930 0 ,38530 9 .99000 9 .99000 9 99000 9 99000 9 99000 0 .00000 0 00060 0 00280 0 00650 0 .01210 0 .02 640 0 04970 0 07730 0 11790 0 16710 0 .22820 0 32260 0 4078C 9 99000 5 .99000 9 99000 9 99000 9 99000 0 ooooo 0 O0060 c 00280 0 00670 0 O1280 0 03010 0 05530 C 08400 0 13270 0 18820 0 25780 0 33420 0 41830 9 99000 3 99000 3 99000 s 99000 9 99000 0 OOOOO 0 00070 0 00290 0 00690 0 01320 0 O3290 0 06140 0 09330 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 0 .00000 0 00070 0 00300 0 OO720 0 01370 0 03530 0 06760 0 10440 9 990OC 9 9900C 9 99000 9 99000 9 99000 9 99000 9 99000 9 99OO0 9 990O0 9 9900C 0 OOOOC 0 0OO60 0 00290 0 00720 0 01420 0 03790 0 07340 0 11800 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 0 OOOOO 0 00050 0 00280 0 00720 0 01480 0 04030 0 07930 0 13330 9 99OO0 9 99000 9 99000 9 99000 9 990OO 9 99000 9 99000 9 99000 9 99000 9 99000 0 OOOOO 0 00070 0 00300 0 00770 0 Ol 400 0 04320 0 08600 0 14950 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9 99000 9.99000 13 23 9 99000 0. 5000. 10000, 15000. 20000. 25000. 3 0000. 35000, 4000O. 45000. 50000. 55000. 60000. 0 OOOOO 0 20000 0 3OOO0 0 40000 0 50000 0 60000 0 70000 0 80000 0 85000 0 90000 0 95000 1 OOOOO 1 05000 1 IOOOO 1 20000 1 30000 1 40000 1 50000 1 60000 1 70000 1 80000 1 90000 2 00000 0 01853 0 01743 0 01719 0 01689 0 01677 0 01641 0 01645 D 01703 0 01731 0 01747 0 01763 0 02198 0 02222 0 02116 0 02221 0 02040 0 02023 0 02085 0 02269 0 02430 0 02540 0 02436 0 02445 0 O1880 0 01770 0 01744 0 01713 0 017OC 0 016SS 0 01645 0 01703 0 01731 0 01747 0 01763 0 02198 0 02222 0 02116 0 02221 0 02040 0 02023 0 02085 0 02269 0 02430 0 02540 0 02436 0 02445 0 01910 0 01800 0 01771 C 01739 0 01724 0 01678 0 01662 0 01705 0 01731 0 01747 0 01763 0 02198 0 02222 0 02116 0 02221 0 O2040 0 02023 0 02085 0 02269 0 02430 0 02540 0 02436 0 02445 a 01941 0 01831 0 01800 0 01766 0 01750 0 01703 0 01686 0 01728 0 01749 0 01760 0 01771 0 02202 0 02223 0 02116 0 02221 0 02040 0 02023 0 02085 0 02269 0 02430 0 02540 0 02436 0 02445 0 01975 0 01865 0 01831 0 01795 0 01778 0 01730 0 01712 0 01754 0 01774 0 01785 0 01796 0 02226 0 02247 0 02137 0 02238 0 02053 0 02034 0 02095 0 02279 0 02440 0 02551 0 02449 0 02462 0 02011 0 01901 0 01864 0 01826 0 01808 0 01759 0 01740 0 01781 D 01801 0 01811 0 01822 0 02252 0 02272 0 02163 0 02263 0 02077 0 02059 0 02119 0 02303 0 02464 0 02574 0 02472 0 02485 0 02050 0 01940 0 01900 0 01860 0 01840 0 0179C 0 01770 0 01810 0 01830 0 01840 0 01850 0 02280 0 02300 0 02190 0 02290 0 02104 0 02085 0 02145 0 02328 0 02489 0 02599 0 02497 0 02509 0 02092 0 01982 0 01939 0 01896 0 01875 0 01823 0 01802 0 01841 0 01861 0 01871 0 01880 0 02310 0 02330 0 02220 0 02319 0 02133 0 02113 0 02173 0 02355 0 02516 0 02626 0 02524 0 02535 0 02149 0 02039 0 01991 0 01946 0 01922 0 01869 0 01846 0 01884 0 01903 0 01912 0 01922 0 02351 0 0237C 0 02260 0 023 58 0 02171 0 021S1 0 02210 0 02393 0 02553 0 02662 0 02560 0 02571 0 02213 0 02103 0 02O50 0 02001 0 01974 0 01919 0 01895 0 01932 0 01950 0 01959 0 01968 0 02396 0 02415 0 02304 0. 02402 0 02214 0 02194 0 02252 0 02434 0 02594 0 02703 0 02599 0 02610 0 02281 0 02171 0 02111 0 02059 0 02029 0 01972 0 01946 0 01982 0 02000 0 02008 0 02016 0 02444 0 02462 0. 02351 0 02448 0 02260 0 02238 0 02296 0 02477 0 02636 0 02745 0 02641 0 02652 0. 023 53 0 02243 0 02176 0 02120 0 02088 0 02028 0 02O01 0. 02034 0. 02051 0. 02059 0. 02066 0 02494 0 02512 0 02400 0 02496 0 02307 0 02285 0. 02342 0 . 02523 0. 02681 0 02789 0 02685 0 02695 0 02428 0 02318 0 02245 0 02184 0, 02149 0 . 02087 0. 02058 0 02090 0 02106 0 02113 0 02120 0 02547 0 02564 0 02452 0 02547 0. 02357 0 02334 0. 02391 0 02571 0 02729 0 02836 0 02731 0 02741 0. OOOOO 0. OOOOO 0. OOOOC 0 . ooooo 0 ooooo 0. 00050 0 00100 0 00130 0 00150 0 00200 0. 01000 0 . 02000 0, 02200 0 . 02300 0. 02160 0 02296 0 02345 0 02345 0 02292 0 02181 Nov 18 96 15:07:53 F16-FLOPS-IN 0.02081 0.02153 0.02081 ((TITLE, BEGIN INPUT DATA ECHO f!6c Air Superiority Mission, 2AIM-9, 2AIM-120, External Fuel * NAMELIST $WTIN GEOMETRIC, WEIGHT, BALANCE AND INERTIA DATA DESCRIPTION NAME VALUE DIMENSIONS MAX OPER MACH NUMBER VMMO 2 .4000 ULTIMATE LOAD FACTOR ULF 13.5000 REF WEIGHT NUMBER NWREP 39 CG REFERENCE LENGTH CGREFL 529.2 IN X FOR START OF CGREFL CGREFX .0 IN SWITCH TO COMPUTE WEIGHTS MYWTS 0 DESIGN GROSS WT. (RATIO) DGW 1 .000 HYDRAULIC SYSTEM PRESSURE HYDPR 3000. WING DATA DIHEDRAL(POSITIVE) GLOVE AND BAT AREA SPAN DIH GLOV SPAN CONTROL SURFACE AREA RATIO FLAPR FRACTION OF COMPOSITES FCOMP AEROELASTIC TAILORING fALT FAERT STRUT BRACING FACTOR FSTRT VARIABLE SWEEP FACTOR VARSWP , 000 .00 30 .00 .2270 .2000 . oooo ,0000 .0000 DEG SQ FT FT HORIZONTAL TAIL DATA AREA SHT 1/4 CHORD SWEEP ANGLE SWPHT ASPECT RATIO ARH TAPER RATIO TRHT T/C TCH LOCATION ON VERTICAL TAIL HHT S3 .70 32.IS 2.11 ,3900 .0510 .0000 SQ FT DEG VERTICAL TAIL DATA NUMBER OF VERTICAL TAILS NVERT 1 AREA SVT 54.75 1/4 CHORD SWEEP ANGLE SWPVT 42.93 ASPECT RATIO ARVT 1.2940 TAPER RATIO TRVT .4370 T/C TCVT .04 50 SQ FT DEG FUSELAGE DATA NUMBER OF FUSELAGES NFUSE TOTAL LENGTH XL MAXIMUM WIDTH WF MAXIMUM DEPTH D CARGO AIRCRAFT FACTOR CARGF PASSENGER COMPART LENGTH XLP 1 44.10 4 .90 3,46 .0000 -8.52 FT FT FT FT {CALC) LANDING GEAR DATA LENGTH OF MAIN GEAR XMLG 4 9.90 LENGTH OF NOSE GEAR XNLG 39.00 DESIGN LANDING WEIGHT WLDG 31538.1 SET WLDG TO END OF DESCENT MLDWT 0 CARRIER BASED AIRCRAFT CARBAS .00 IN IN LBF PROPULSION SYSTEM DATA NUMBER OF ENGINES ON WING NEW 0 NUMBER OF ENGINES ON FUSE NEF 1 BASELINE ENGINE THRUST THRSO 24850.0 BASELINE ENGINE WEIGHT WENG 3911.0 LBF LBF -OUT WEIGHT SCALING PARAMETER EEXP ,60000 BASELINE INLET WEIGHT WINL .0 LBF INLET WT SCALING EXPONENT El ML 1.00000 BASELINE NOZZLE WEIGHT WNOZ .0 LBF NOZZLE WT SCALING EXPONENT ENOZ 1.00000 BASELINE NACELLE LENGTH XNAC 31.00 FT BASELINE NACELLE DIAMETER DNAC 2 . 81 FT FUEL CAPACITY OF WING FULWMX 1144.0 LBM (FUEL CAPACITY FACTOR FWMAX 11.229) FUEL CAPACITY OF FUSELAGE FULFMX 5831.0 LBM ADJUST FUSE FUEL CAPACITY IFUFU 0 AUXIL TANK FUEL CAPACITY FULAUX 6760.0 LBM NUMBER OF FUEL TANKS NTANK 5 ADDED MISC PROP SYSTEM WT WPMISC .000 LBF CREW AND PAYLOAD DATA FIRST CLASS PASSENGERS NPF 0 TOURIST PASSENGERS NPT STEWARDESSES NSTU -1 GALLEY CREW NGALC FLIGHT CREW NFLCR -1 WEIGHT PER PASSENGER WPPASS 165.0 BAGGAGE PER PASSENGER BPP 35, CARGO IN WING CARGOW 1066.0 CARGO IN FUSELAGE CARGOF . LBF LBF LBF LBF OVERRIDE PARAMETERS FOR WEIGHTS WING - TOTAL FRWI 2096 0000 WING WEIGHT FIRST TERM FRWI1 1 0000 WING WEIGHT SECOND TERM FRWI 2 1 OOOC WING WEIGHT THIRD TERM FRWI 3 1 0000 HORIZONTAL TAIL FRHT 498 oooo VERTICAL TAIL FRVT 376 oooo WING VERTICAL FIN FRFIN 1 oooo CANARD FRCAN 1 oooo FUSELAGE FRFU 3624 oooo NOSE LANDING GEAR FRLGN 1 oooo MAIN LANDING GEAR FRLGM 992 oooo NACELLES - TOTAL OR FRNA 689 oooo AIR INDUCTION SYSTEM THRUST REVERSERS - TOTAL WTHR oooo MISC PROPULSION SYSTEMS WPMSC 1 oooo FUEL SYSTEM WFSYS 578 oooo SURFACE CONTROLS FRSC 730 oooo AUXILIARY POWER UNIT WAPU 1 oooo INSTRUMENT GROUP WIN 107 oooo HYDRAULICS GROUP WHYD 311 0000 ELECTRICAL GROUP W2LEC 686 oooo AVIONICS GROUP WAVONC 2438 oooo ARMAMENT GROUP WARM 808 500C FURNISHINGS GROUP WFURN 312 oooo AIR CONDITIONING GROUP WAC 2 67 oooo ANTI-ICING GROUP OR WAI 1 oooo AUXILIARY GEAR UNUSABLE FUEL WUF 1 oooo ENGINE OIL WOIL 1 oooo PASSENGER SERVICE OR AMMO WSRV 102 5000 AND NONFIXED WEAPONS CARGO AND BAGGAGE CONTAIN, WCON 172 oooo OR MISCELL. USEFUL LOAD AUXILIARY FUEL TANKS WAUXT 1701 oooo FLIGHT CREW AND BAGGAGE WFLCRB 215 oooo CABIN CREW AND BAGGAGE WSTUAB 1 oooo HORIZONTAL CENTER OF GRAVITY DATA WING CGW 0 IN Nov 18 96 I5:07:M HORIZONTAL TAIL CGHT .0 IN VERTICAL TAIL CGVT .0 IN WING VERTICAL FINS CGFIN . 0 IN CANARD CGCAN . 0 IN FUSELAGE CGF ,0 IN NOSE LANDING GEAR CGLGN .0 IN MAIN LANDING GEAR CGLGM . 0 IN TWO FORWARD ENGINES CGEF . 0 IN ONE OR TWO AFT ENGINES CGEA .0 IN AUXILIARY POWER UNIT CGAP .0 IN AVIONICS GROUP CGAV . 0 IN ARMAMENT GROUP CGARM .0 IN FLIGHT CREW CGCR .0 IN PASSENGERS CGP .0 IN CARGO/EXT STORES IN WING CGCW .0 IN CARGO/EXT STORES IN FUSE CGCF .0 IN FUSELAGE FUEL CGZWF .0 IN WING FUEL CGFWF . 0 IN AIR INDUCTION SYSTEM CGN .0 IN AIR CONDITIONING CGAC .0 IN AUXILIARY GEAR CGAI ,0 IN AUXILIARY TANKS CGAUT .0 IN AMMO AND NONFIXED GUNS CGAMMO .0 IN MISCELLANEOUS USEFUL LOAD CGMIS 0 IN F16-FLOPS-OUT » NAMELIST SCONFIN GEOMETRIC RATIOS. OBJECTIVE FUNCTION FACTORS, AND DESIGN VARIABLES DESCRIPTION NAME DESIGN RANGE DESRNG WING LOADING REQUIRED WSR THRUST/WEIGHT REQUIRED TWR GLOVE/WING AREA REQUIRED PGLOV HORIZ TAIL VOLUME COEF HTVC VERT TAIL VOLUME COEF VTVC COST CALCULATION SWITCH I COST VALUE DIMENSIONS 580 .6 N MI .00 .ooooo .ooooo .000000 .000000 0 FUNCTION TO BE OPTIMIZED - OBJ + ACH«(L/D) + t SIONS) DESIGN VARIABLE DATA VARIABLE SCALE FACTOR NAME , 0000*(RAMP WEIGHT) + 1.0000*FUEL + ,0000*M . 0000*RANGE + ,0000*COST + .0000*(NOX EMIS VALUE ACTIVITY LOWER BOUND UPPER BOUND RAMP WEIGHT, LBF GW .00000 WING ASPECT RATIO AR ,00000 THRUST PER ENGINE, LSF THRUST .00000 REF WING AREA, SQ FT SW .00000 WING TAPER RATIO TR .00000 WING 1/4 CHORD SWEEP, DEG SWEEP ,00000 WING T/C TCA . 00000 CRUISE MACH NUMBER VCMN .00000 32974.0 3.0000 24350,0 300.0 .22750 30 .00 . 04O00 .80000 .0 2.0000 20000.000 400.0 .ooooo .00 ,00000 .ooooo .0 4.0000 35000.000 600.0 .00000 .00 .00000 .ooooo MAX CRUISE ALTITUDE, FT CH 50000.0 0. . ooooo TURBINE INLET TEMP (R) ETIT .00 0. .ooooo OVERALL PRESSURE RATIO EOPR . 000 0. .00000 FAN PRESSURE RATIO EFPR .0000 0. .00000 BYPASS RATIO EBPR .0000 0. ,00000 THROTTLE RATIO ETTR .00000 0. .00000 ,0 .00 .000 . oooo .0000 .00000 .0 .00 .000 , oooo .0000 .ooooo It NAMELIST $AERIN AERODYNAMIC OPTIONS AND APPROXIMATE TAKEOFF AND LANDING DATA DESCRIPTION NAME AERODYNAMIC INPUT METHOD MY AERO WAVE DRAG INPUT SWITCH IWAVE WAVE DRAG FACTOR FWAV LINEAR/PARABOLIC INTERP ITPAER AERO MATRIX FORMAT SWITCH ISO MAX CAMBER AT 70 PERCENT SEMISPAN CAM AIRCRAFT BASE AREA SBASE WING TECHNOLOGY AITEK MODIFY EDET DATA MODARO FIXED DESIGN CL FCLDES TURBULENT/LAMINAR FLOW XLLAM AERO EFFICIENCY FACTOR E OVERRIDE PARAMETERS FOR WETTED AREAS VALUE DIMENSIONS 1 1 1.0000 2 C ,00000 PERCENT CHORD .0 SQ FT 1.0 0 -1.0000 .0 1.0000 SWETW SWETH SWETV SWETF SWETN 1 . OOOC WING WETTED AREA HOR. TAIL WETTED AREA VERT, TAIL WETTED AREA FUSELAGE WETTED AREA NACELLE WETTED AREA TAKEOFF AND LANDING DATA RATIO OF MAX. LANDING WT, TO MAX. TAKEOFF WT. MAX. LANDING VELOCITY MAX. TAKEOFF FIELD LENGTH MAX. LANDING FIELD LENGTH MAX. CL TAKEOFF CONFIG. MAX. CL LANDING CONFIG. APPROACH CL AIR DENSITY RATIO L/D RATIO 2ND SEG. CLIMB L/D RATIO MISSED APPROACH THRUST PER ENGINE TAKEOFF THRUST PER ENGINE 2ND SEG. CLIMB THRUST PER ENGINE MISSED APPROACH It NAMELIST SENGDIN ENGINE DECK CONTROL, SCALING AND USAGE DATA 0000 0000 oooo oooo WRATIO .9565 VAPPR 150.0000 KTS FLTO 12000.0 FT FLLDG 12000.0 FT CLTOM 2.0000 CLLDM 3.0000 CLAPP .0000 DRAT 10 1.0000 ELODSS .oooo ELODMA .0000 THROFF .oooo DESCRIPTION NAME ENGINE DECK PRINT CONTROL NGPRT VALUE DIMENSIONS 1 I5:07:S3 ENGINE DECK SCUflCE SWITCH I GEN EN -1 SLCFE FACTOR FOR EXTRAPOLATING FUEL FLOWS EXTFAC 1 SU5S0NIC FVKt, FLOW FACTOR PPPsUa 1 OOOO SUPERSOWIC FUEL y./Jrl FACT I . LL ' 1 00C0 FLKJHT IDLE SWITCH I DLL u IGNORE NEGATl\r= THRUSTS NOM77G 0 SFC EXTRAPOLATION SWITCH IXTRAP I PART POWER DATA SWITCH IFILL 3 MAX. CRUISE POWER SETTING MAXCR 2 BOOST ENGINE SWITCH BOO: r 0000 FUEL FLOW SCALING CONSTANT TERM DFFA.C oooo FUEL FLOW SCALING LINEAR TERM FFFAC oooo NITROGEN OXIDES SWITCH NOX 0 INSTALLATION DRAG SWITCH 7NSDRU 0 SW; [NE DECK FILE NAHFJ EIFILE GE12 3. F16- # ALL POINT ENGINE DECK SUMMARY HACH = 1.600, ALTITUDE * 50000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW j '539.'; 3 544. :014.0 2012.0 809.0 (11.0 2245B.C 4926.2 4166.7 3490.8 2599.2 234B.4 2.131 1.390 1482 1.735 3,213 3.300 757 ' 1 .600, ALTITUDE t}431.n 1472.0 3802.0 2 8597.4 f. 166.9 ^5 92.7 2.121 1.379 1.471 = 45000 , Tiir.USTS/1 LJJ-.I '-LOWS/SFCS/NOX RATIOS FOLLOW 2536.0 1013.0 771.D 4364.5 3241.6 2J31,9 ].721 3.200 3.788 HACH = 1.600, ALTITUDE = 40000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 17212.0 5658.0 4804.Q 3192.0 1266.0 9*7.0 36386.2 7/57.1 7018.1 5455.1 4C49.9 36*2.0 2.114 1.371 1.461 1.7*9 3.199 3.787 MACH = 1.600, ALCi'l fJIK 35000., TKHUSTS/FUEL FLOWS / SFtS/NOX RATIOS FOLLOW 213,45.0 6977.0 5BB7.0 3892.0 1537.0 1215.0 45998.6 9573.9 86957.1 6791.5 5116.8 4615.3 2.135 1.373 1.477 1.7' i 3.204 3.799 MACH - 1.600, ALTITUDE ~ 30000.. THRUSTS'FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 24BJ4.0 710/.0 £157.0 4075.0 LuS7.0 1600.0 5552*. J 10326,5 9709.6 L'121.0 6647.8 6031.6 2.275 1 433 1.577 1.988 3.193 3.751 MACH - 1.60G, ALTITUDE = 25000., THRUSTS/PL"!L FLOWS/SFCS/NOX RATIOS FOLLOW 27649.0 6773.0 559.1.0 3823.0 2657.0 2052,0 6503O.4 11040 O 10259.5 9224.9 8411.7 7639.2 2.1.S2 1 . 63 0 1 75 2,4 13 3.154 1.729 MACH K l.EOO, ALTITUDE 2B7O0.0 9169.0 35 33,0 726*8.4 112/3.6 101BS.4 2. Hi 2.181 2.666 = 20000., THRUSTS/FLTT7T. FLOWS/SFCS/NOX RATIOS FOLI ;Vi 2883.0 2882,0 2793.17 9862.7 9859.3 9750.4 3.421 3.421 3.491 MACH = J . EiiO, ALTITUDE 9S.il.G 3555,0 29H7.0 20473.4 4745.9 4229.8 2.072 1.335 1,111 MACH = 1.5Q0, ALTITUDE 12*36.0 4490.0 3143.0 26046,9 5944.8 5296.2 2.301 1.3-21 1.400 = 50000., T31RUSTS/FUKL 2027.0 735.0 611.0 3206.7 27,22,3 2073.9 1.582 2.031 3.296 = ISDOO., TKBUSTS/FUEL 2555,0 933.0 TS6.0 4007.9 2768.1 2510.2 1.5*6 2.B1E 3.27/ FLOWS/SFCS/NOX KATTCS FOLLOW FLOWS/Si-CS/NOX RATIOS FOLLOW OUT MACW = 1-500, ALTITUDE = 4G000-, THRUSTS/FUEL FLOW5/SFCS/NOX RATIOS FOLLOW 16127.0 SB74.D 1750.0 1222.0 1230.0 959.0 J3I03.7 7467, D 65S3.Q 5017.4 3455.1 iuO.: 2.0 = 3 1.316 I..-:-': 1.556 2,803 3.26: MACH - 1.SO0, ALTITUDE = 35000., TFiRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 20162.0 5S67.0 5852.0 394B.0 1515.0 1200.0 41739.3 9224.3 8192,S 6233.9 1350.7 1937.2 2.O70 1.J24 I.4CO 1,579 2.816 3.231 MACH = 1.5O0, ALTITUDE = 30000., THRUSTS/FUEL FLOWS / SFCS / NOX K.AT I LH> FOLLOW 21452.0 7423.0 6475.0 4235.0 199D.0 1513.0 50867.4 10243.2 95*1.1 7451.8 S615.7 50BZ.6 2.169 1,37 5 1.4 74 1.73 5 2.832 3.2 94 MACH = 1.500, ALTITUDE = 25000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOI,LOW 26320.0 7613.0 660S.O 4003 . 0 2550.0 ,.992.0 60881.4 11122.6 10402.9 884C 1 7239.4 6533.8 2,270 1.461 1.575 1.918 2.S39 3.2.-I0 MACH = 1.500, ALlIT/'ilJE - 20000-, THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 29605.0 7275.0 6122.0 4459,0 3264.0 2551.0 70637.5 11931,0 11074.7 9988.2 9077.2 829*.7 2.386 7.640 1.809 2.240 2.7.71 3.249 MACH = 1.500, ALTITUDE = 15000.. THRUSTS/r'Ui-;L FLOWS/SFCS/NOX RATIOS FOLLOW 30874,0 5854.0 4667.0 3523.0 333J.0 .0 78B21.3 12240,7 11396.6 10635.9 10434,5 .0 2.55J 2.091 2.442 3.019 3.112 .0-00 MACH = 1.4DD, ALTITUDE =. 500OO., THRUSTS/F'JEL FLOWS/SFCS/NOX RATIOS FOLLOW 9256.0 3456.0 2978.0 2018.0 833.0 6*9.0 I6B73.0 4472.5 3945.8 2905.9 7917.6 17-10.1 2.039 1.233 1.325 1,110 2.302 2.601 MACH = 1.400, ALTITUDE = 4r-,n00., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 11828.0 4336.0 3715.0 2550.D 1046.0 342,0 23999,0 5579.0 491 3.4 36(3.8 2337.0 2168.2 2.029 1.272 1.312 1.425 2,282 2.575 HACH =1 , ALTITUDE = 4000U., THRUSTS/FUEL FLOWS/SFVS/NOX RATIOS FOLLOW 15082.0 5SOS.0 4701.0 321B.0 1313.0 1057,0 30495.8 5345.6 6116.0 -1550.3 2979,2 2703.8 2.022 1.261 1.301 1.414 2.269 2.55B MACH = 1.400, ALTITUDE = J50O0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 18952.0 6889.0 5S40.0 4016.0 1648.0 1326.0 38283.0 B693.9 7677.0 5698.7 3742.6 3394.6 2.020 1.2,62 1.306 1 413 2.271 2.560 MACH = 1.400, ALTITUDE = 3QCP"., THRUSTS FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 22097.0 7739,0 *S58.0 4517.0 2083,0 1667.0 46201.6 10111,3 9004.1 SS52.3 4805.5 4340.9 2.091 1.302 1.373 1.517 2.j07 2.604 MACH = 1.40O, ALTITUDE 25000., THRUSTS/I 3 FLOWS/SFCS/NOX RATIOS PLT.I.OW 25522,0 8170.0 7291.0 4J71.0 2646.0 2121.0 5:514.6 11012.2 103tC 5 B127.6 fii«2.5 5.39.1 2.137 1.34B 1.421 1.635 2.329 2,f21 MACH - 1.400, ALTITUDE = 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 23941.0 3406.0 741B.0 5474.0 3337.0 2688.0 66188.1 120D3.8 11208.6 9579.5 7341.9 7077.5 2.777 1.428 1.511 1.750 2.150 2.633 «AC» 1 * .. "x i'E = 1 j., TIT s, Ui-77 RWJWFL,.- */NOX .CP 77r7,1,0W 31372.• 8248, (J 7125.0 5519.0 ,1^34.0 3422.0 7S460.9 12941 . J 32019.9 10844-8 9755.1 8904.D 2 199 1.589 1.687 1.965 J.304 2.6D2 I4ACJI = 1.4,1Q, ALTITUDE = : i ... rnflSTS/FOEL FLOWS/SFCS/NOX RATIOS FOLLOW 315)12,0 709B.0 5908.0 4716.0 4350.0 .0 854*1.1 iJi44.2 12449.: I±5i0.t . 2.550 l.ee-0 20B6 2.445 2.556 .000 MACH = 1 300, ALTITULIfc - 50000.. TS FUEL FLOWS/SPCS/NOX RATIOS FOLLOW B450.0 3249.0 2814.0 1663-0 603 0 .0 1714 6.6 4045 0 3S8S.0 2594 f 155'j.j .0 2.034 1.245 1.274 1.378 2,561 .000 KACri = 1.300, ALTITUDE - 45000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 10510.0 4 90.0 3545 0 23S0.0 7511.0 .0 21570.1 5038.9 1170.2 3241.6 1933.7 .0 2.024 1.232 1.261 1.362 2 . sul .000 MACH = 1.300. ALTITUDE = 40003., THRUSTS /FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 13842.0 5140.0 4415.0 3007.0 9SD.0 .0 27947.C 6275.9 5564.3 4056.4 2403.2 .0 2.019 1.221 1.249 1.349 2.535 .0 00 MACH - 1.300. ALTITUDE = 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLtiOW ncOO.lj 6J21.0 5537. 0 3748.0 1157,0 .it 35402.5 7833.6 692E..O 5071.0 J003.9 .0 2.023 1.220 1.251 1.353 2.574 .000 SACS = 1.10D, ALTTTULE - 30000., THRUSTS/FUEL FLOWS/SFCS/NOX f/.' . FOLLOW 20769.0 7670.0 5473.0 4455.0 1317.0 L0 42306.5 9545.2 H3B9.0 5286.0 3720.5 .0 2.0J7 1.251 1.296 1.411 2.825 .000 MACH - 1.300, ALTITUDE = 2 50-70., THRUSTS/FUE: i/LOWS/SFCS/NOX RATIOS FOLLOW 23986-0 6572.0 7295.0 49B6.0 1363.0 .0 50600.6 10989.3 9B34.8 7494. G .1504.7 .0 2.118 1.2E2 1-350 1,503 3.305 .000 HACK = 1.300, AL'll.UDE = 20000., TliMJ: ."S/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 27450,0 8904.0 7971.0 5473,0 1139.t .0 60856.7 11366.8 11160.8 8833.4 5485.5 .0 2.217 1.335 1.40f L.614 3.912 .000 MACH - 1.300, ALT J i'L/I-E 15000., THRUSTS/FUEL FLOWS.SFCS/NOX RATIOS FOLLOW J0669.0 9181.0 8139.0 6070.0 IB.5B.0 .0 V!t,.]t.9 13000.3 (1141.4 10311.4 0G34,6 .0 2.321 1.416 1.492 L.7C6 3.735 .000 HACK » 1.30O, ALTITUDE 10030., THRU5T3/ FUEL FLOWS/SFCS/NOX RATIOS PUJjLOW 33856.0 8139.0 7344.0 6146.0 2420.0 16)9.0 82*73.. 2 14110.6 13107.6 11714.3 8651.5 7458.6 2. A 1.5411 1.650 1.506 3.575 4.854 MACH - 1.3 0D, ALTITUDE - 5000., THRUSTS/FUEL FLOWS/SFCS/NOX i.Ai'iOS FOLLOW 34385,0 8061.0 6B72.0 S237.0 3055.0 2275.9 89323.8 14522,7 llSfil.5 12443.1 10!;30.3 9814.4 3,597 l.aii 1.388 2.376 3.496 4.314 MACH = 1 300, ALTITUDE - 500'iO., THSUSTS7 KJE-L FLOWS/SFCS/NOX RATI0:7 7482.0 2947.3 2l'.a2.0 1713.0 696.0 329.0 15H3, (j 1545.2 3168.1 2219.5 1313,3 1170.J 2.024 1.203 1.227 1.321 2.321 3.557 MACH = 1.200, ALTITUOE 96DR.0 3727,0 3250,0 19312.1 4442.6 3942.2 5,010 1.192 1.211 s 45000., THKUSTS/FUEL FLOWS/SfCS/NOX RATIOS FOLLOW 2172.-5 75D.D .0 2B.34.5 1716.8 .0 1.305 2.2B9 ,000 OUT MACH - 1.20P, ALTITUDE = 40000 . , TKBUSTS/FUEL FLOWS/5FCSJUQY. RATIOS FOLLOW 12311.0 4(509.0 4Q8B.0 2747.0 942.0 .0 24634.3 5513.0 4913.8 3546,4 2135.3 .0 2.001 1.130 1.202 1.291 2.267 .000 MACH = 1.20C, ALTITUDE = 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 15597.0 5S98.0 5150.0 3474.0 1175.0 .0 31441.1 6941.9 6169.7 4471.0 2o71.9 .0 2.003 1.177 I.IBS 1.287 2.274 .000 MJJTfl - 1.200, ALTITUDE ~ JOOOD., THRUSTS/E'UE^ FLOWS/SFCS/NOX FTiTTOS FOLLOW 1S358.Q 724^.0 6239.0 4245,0 1375.0 .0 39450.3 8694-0 7*47.7 5528.9 33289 .0 2.07.3 .0 2.244 1.309 1.366 1.55B 3.532 .000 MACH = 1.200, AJ.T1TJDE - 10OO0., THRUSTS/FUEL FLOWS/Gl-Ci:/NOX RATIOS FOLLOW 32373.0 10220.0 9II2.0 6788.0 1595.0 .0 77317.3 14144.5 11221.5 11159.5 6970.1 .0 2.132 :.334 1.4-51 1 .044 4,370 .000 MACH = 1.200, ALTITUDE = 5000., THRUSTS/FUE I FLOWS/SFCS/NOX RAT-OS FOLLOW 34656.0 13332.0 iOFi.O 0353.0 .0 ,0 85808.3 15436.0 1434B 3 12619.7 .0 .0 3.476 1.494 1,563 1.B15 .000 .000 MACH - 1 . 10, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 33311.0 9386.0 6138.0 6167.0 .0 .0 89173.5 100E7.6 15044.9 13524.2 .0 .0 2.677 1.714 1.871 2.193 .000 .000 MACH - 1.100, ALTITUDE - 5,0000., THRUSTS/FUEL FLOWS/.'FOS/NOX RATIOS FOLLOW 658D.O 2676.0 2348.0 1564.0 594,0 570.0 13296.2 30B5.4 2754.2 1971.2 12Z4.8 1197.6 2.021 1.J53 1-173 1.161 2.062 2.101 MACH i 1.100, ALTITUDE B475.0 3397.0 2*55.0 169*7.0 3876.0 3421.9 2.0O2 1.141 1.158 - 45000., THRUSTS/FUEL FLUUS/SYi/S/NOX RATIOS FOLLOW 19*0 0 747.0 .0 2461.1 1514.9 .0 1.243 2.028 .000 MACH -- 1.3 00. ALT.: TIDE = 40000., THRUST >: /11 ;EL FLOWS/SFCS/NOX RATIOS FOLLOW 10B77.0 4279.0 3723.0 2507.0 943.0 .0 21645.2 4631.0 4256.6 3076.1 1885.1 .0 1.930 1,129 1.146 1.227 1.999 .000 MACil = 1.100, ALT! TV33 E = ' '-00., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 139C0.O 53S1.0 4694.0 3169.0 1179.0 .0 27633 2 6055.9 5360.5 3872.5 2355.6 .D 1-9*8 1.125 1.14Z 1.222 1.99B .OOO MACH = 1.100, ALTITUDE •= 30000., THRUSTS/FUEL PLOWS / SFCS/NOX RATIOS FOLLOW • 1 J18 4716.0 771D.J i. 146 591B.O GJ.76 ' i 4005.0 4S73 .5 I .241 1430.0 1940.1 2 . 070 .• 00 F16-FL MACK = 1.100, ALTITUDE = 25000., THRUSTS/FUEL- 21121.0 8161.0 7036.0 4819.0 1661.0 .0 4 5140.3 9 = 32.0 8393.9 61(12.8 3647.6 .0 2.052 1.168 1.193 1.283 2.196 .000 FLOWS/SFCS/NOX RATIOS FCL1.!VJ MACH - 1.10D, ALTITUDE = 20OQ0 . , TRUSTS/PL! EL Fl.rlWS/SFCS/NOX RAT J 24406.0 9642.0 8098.0 5616.0 1871,D .0 50=20.4 : I 196.3 9944.3 74*7.4 4139.5 .0 2.070 1.1S2 1.228 1.335 2.369 .ODO OS FOLLOW MAC SI - 1.100, ALTITUDE - 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 27760.0 10483.0 9145.& 6216.0 1997.0 .0 60155.9 12757.g 11541.0 8803.4 5308.0 .0 l::7 L 217 1 .202 1 . 409 2 .658 , 000 HACH - 1.10O, ALT3T:.I(;F; 10000., THRUSTS/F'JEl 11256.0 109B* 0 9916.0 fi..957 .92 7 .92 7 .955 11135 1.655 MACH - .=.-00. ALT-ITUEE = 3 7000., THRUSTS/FUEL FLOWS/SFCS/NOX W 11145-0 5072.0 4473.0 3176 0 1681. Fj 273.0 21760.6 468.6.5 4110.7 3007.7 1872 6 9aO,t 1.&49 .921 .919 .44/ 1.114 3.592 OS FOLLOW MACH = .900, ALTITUDE = 3 0000 . TifRUSTS / FLLHR. 14053.0 63B3.0 5629.0 3935.0 2074.0 .0 27624.0 5981.2 526B.7 3A29.6 2347.3 .0 1,965 .940 .936 .961 1.132 .000 FLOWS •-! CS/NOX KATTOS FOLLOW HACH - .900, ALTITUDE J 250O0., THRUSTS/FUEL FLOtlS/SFCS/NOX RATIOS 7.77LLOW •• V.O 7:,7 1.0 7041.0 4S74.0 2539.0 .0 J46B9.Q 7583.3 RJV17.1 4854.6 2919.8 .0 1.9A7 .957 .954 .976 1,150 .000 NftCH a .400. AiTTTUDE = 20000., THRUSTS/FUEL FLCWS/SFCS ,'HOX RATIOS FOLLOW 21458,0 9761.0 BE4S.5 414J.D 3070.0 43259.3 9497.5 H31V9.5 611S.3 3593.0 .0 •OUT 2 .016 .973 . 97,: .995 1. 172 .000 KftCH = 25187. .900, ALTITUDE = 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS 11612.0 IO093.0 7266.0 3638,0 .0 51406,7 11391,4 2.041 .981 9 37 5.B ,98S 7411...! 1.02D 4365.6 1.200 .0 , ODD HACH 1 ,DDD. ALTITUDE = IOOOO. , THRUSTS/Fl.'KL FLOWS/SFCS/NOX RAm. • FOLLOW 23583.0 13469.0 1161B.0 8347.0 1229.0 .0 •3.5 13374.7 11613.0 B7S9.6 5231.3 0 2.LJ0 .993 1.000 1.046 1.237 .000 HACH = .900, AL 'UDE = 5DOO., THRUSTS/FUEL FLOWS/SFCS/NOK RATIOS FOLLOW 31789.Li 14776.0 13093.0 9416.0 4796.0 .0 69957.6 14968.1 13361.0 10209.S 6162.9 .0 2.201 1.013 1,022 1.032 1.2*5 .000 KACH = .-jj, ALTITUDE s 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 11964,0 16003.0 14319.0 10443.0 540S.O .0 7B970.9 16579.1 15004.1 11738.1 7235.9 .0 2.325 1.036 1.04* 1,105 3.338 .000 MACH = .BOD, ALTITUDE • 50000., THRUSTS/FUEI, 3970.0 228B.0 2058.3 1457.0 13±0.0 1291.0 6756.9 3091.2 1874.8 13^7.1 1273.3 126*.5 1.702 .914 .J11 .952 .972 .931 LOWS/SFCS/NOX RATIOS FOLLOW MACH = .300, ALTITUDE • 4 5 00 5979.0 2916.0 2619.G 1818,0 11916.1 2624.4 2315.2 1722,3 1.993 .700 .c97 .932 )., THK-'.-TS/FUEL FL07.7-/5FCS/NOX RATIOS FOLLOW 1144.0 1099.0 117,..6 1164.9 1.025 1.060 MACH = .300, ALTITUDE • 40000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 7737,0 3710 0 3303.0 2346.0 1310.0 823.0 15203.2 3294.5 2919 9 2146.6 1354.5 1065.B 1.965 ,BB3 .881 .915 1.034 1.295 MACH = .ROD, ALTITUDE » 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW •1929.0 4711.0 4167.0 2973.0 1654.0 519.0 19391.2 4164 5 3658 6 2573.5 165S.7 996.5 1,953 .884 .878 .906 1.021 1.920 MACH = .8011, ALTITUDE = 30050., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 1250B.0 5911.0 5228.0 3723.0 2041.0 . u 24590.7 5314.0 4668.6 34 7.7 2118.6 .0 1-966 .499 .893 .918 1.078 .000 KACH = .B00, ALTITUDE = U5000., THRUSTS! J/Uj:i. 15603.0 7357.0 6531.0 46.35 0 2499.0 .0 30929.1 6731,7 5943.2 4315.2 2631.4 .0 1.982 .915 ,910 .931 1.053 .000 •"LOWS/SFCS/NOX i^.TICS FOT7 7W MACH = .HOO, ALTITUDE = 20000., THRUSTS/FUH 192B1.Q 9077.0 0D93.O 5745,0 3038.0 .0 33653.4 8.450.7 7434.1 5434.8 1217.6 .0 2.005 .931 ,926 .946 I.069 .000 FLOWS/SFCS/NOX Y.iW\ I OS FOLLOW MACH = ,800, ALTITUDE = 15D0D., THR'/S 7S/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 23342.0 11029.0 9716,0 6970.D 3635. 0 .0 47107.!; 10433.4 910D.7 67S6.1 335.8.5 .0 2.031 .946 .942 .965 1,089 .000 MACH = .ot-Q, ALTITUDE - 3( 000., THRUSTS.'FJEL FLOWS/SFCS/NOX RATIOS FOLLOW 27045.0 33135.0 11369,0 8204.0 128!).0 .9 55*58.6 12517.7 10868.8 11105.6 4777.9 .9 2.059 .953 .956 .988 1.114 .000 Nov 18 96 MACH = .700, ALTITUDE = 50O00., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 3378.0 2141.0 1932.0 1434.0 1415.0 .0 5344.0 1873.4 1680.8 1289.2 1284.8 .0 1.582 .875 .870 .899 .908 .000 MACH = .700, ALTITUDE = 45000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 5234.0 2728.0 2463.0 1779.0 1292.0 1244.0 10106.9 2348.8 2105.9 1563.7 1192,5 1184.3 1.931 .861 .855 .879 .923 ,952 MACH = .700, ALTITUDE • 40000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 6962.0 3472.0 3136.0 2257.0 1280.0 996.0 13743.0 2947.7 2643.6 1947.8 1233.9 1082.7 1.974 .349 .843 .863 .964 1.087 MACH = .700, ALTITUDE = 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 8960.0 4414.0 3958.0 2859.0 1617.0 708.0 17525.8 3725.4 3312,8 2441.6 1537.8 1006.8 1.956 .844 .837 ,854 .951 1.422 MACH = .700, ALTITUDE = 30000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 11286.0 5573.0 4950.0 3578.0 1996.0 366.0 22199.6 4781.6 4207.5 3095.0 1924.1 960.0 1.967 .858 .850 .865 .964 2.623 MACH = .700, ALTITUDE = 25000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 14114.0 6944.0 6163.0 4444.0 2447.0 .0 27917.5 6069.1 5324.8 3888.5 2390.7 .0 1.978 .874 .864 .875 .977 .000 MACH = .700, ALTITUDE = 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 17521.0 8572.0 7650.0 5490.0 2975.0 .0 34954.4 7620,5 6747.3 4875.1 2945.2 .0 1.995 .889 .882 .888 .990 .000 MACH = .700, ALTITUDE = 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 21445.0 10488.0 9397.0 6760.0 3592.0 .0 43276.0 9481.2 8419.7 6111.0 3606.4 .0 2.018 .904 .896 .904 1.004 .000 MACH = .700, ALTITUDE = 10000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 25559.0 12589.0 11085.0 8071.0 4259.0 .0 52217.0 11518.9 10087.4 7433.4 4361.2 .0 2.043 .915 .910 .921 1.024 .000 MACH = .600, ALTITUDE = 500OO., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 2918.0 2005.0 1815.0 1526.0 1494.0 .0 4362.4 1698.2 1528.2 1298.6 1299.8 .0 1.495 .847 .842 .851 .870 .000 MACH - .600, ALTITUDE = 45000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 4437.0 2555.0 2312.0 1722.0 1412.0 1354.0 7911.2 2125.8 1907.4 1436.1 1208.7 1201.0 1.783 .832 .825 .834 .856 .887 MACH = .600, ALTITUDE = 400OO., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 6277.0 3253,0 2946.0 2136.0 1265.0 1152.0 OUT 12510.1 1.993 2664.2 .819 2392.2 . 812 1786.0 .817 1138.5 . 900 1100.2 .955 MACH = .600, ALTITUDE = 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW B099.0 4139.0 3748.0 2768.0 1599.0 896.0 15963.1 3365.0 3017.1 2236.5 1416.7 1017.0 1.971 .813 .805 .808 .886 1.135 MACH = .600, ALTITUDE = 30000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 10217.0 5216.0 4689.0 3462.0 1976.0 635.0 20209.2 4308.4 3830.9 2828.5 176S.5 968.4 1.978 .826 .817 .817 .895 1.525 MACH = .600, ALTITUDE = 25000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 12781.0 6543.0 5823.0 4295.0 2423.0 302.0 25395.8 5496.1 4833.1 3547.7 2195.2 933.5 1.987 .840 ,830 .826 .906 3.091 MACH = .600, ALTITUDE = 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 15940.0 8094.0 7210.0 5297.0 2950.0 .0 31832.2 6928.5 6099.7 4433.6 2705.2 .0 1.997 .856 .846 .837 .917 .000 MACH = .600, ALTITUDE = 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 19616.0 9910.0 8867.0 6507.0 3567.0 .0 39526.2 8631.6 7634.5 5537.5 3310.2 .0 2.015 .871 .861 .851 .928 .000 MACH = .600, ALTITUDE = 10000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 23780.0 12037.0 10779.0 7940.0 4279.0 .0 48439.9 10652.7 9431.6 6376.0 4026.5 .0 2 .037 .885 .875 .866 .941 . 000 MACH = .500, ALTITUDE = 45000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 2428.0 2081.0 1461.0 1460.0 1410.0 .0 1954.5 1666.9 1202.4 1201.6 1198.5 .0 .805 .801 .823 .823 .850 .000 MACH = .500, ALTITUDE = 40000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 5797.0 3088.0 2652.0 1852.0 1269.0 1202.0 11541.8 2442.6 2039.8 1489.0 1101.5 1093.8 1.991 .791 .788 .804 .868 .910 MACH = ,500, ALTITUDE = 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 7468.0 3923.0 3369.0 2350.0 1157.0 945.0 14712.0 3079.6 2627.8 1861.2 1086.4 1007.4 1.970 .785 .780 .792 .939 1.066 MACH = .500, ALTITUDE = 30000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 9451.0 4955.0 4239.0 2945.0 1434.0 691.0 18656.3 3944.2 3348.8 2356.0 1358.0 958.4 1.974 .796 .790 .800 .947 1.387 MACH = 11791.0 23405.1 1 . 985 .500, ALTITUDE 6207.0 5263.0 5021.5 4215.7 .809 .801 = 25000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 3666.0 1766.0 365.0 2962.1 1684.8 920.2 .808 .954 2.521 MACH = .500, ALTITUDE = 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 14656.0 7720.0 6511.0 4537.0 2160.0 .0 29253.4 6361.3 5300.0 3697.7 2082.2 .0 1.996 .824 .814 .815 ,964 .000 MACH = .500, ALTITUDE = 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 18010.0 9470.0 8033.0 5585.0 2625.0 .0 36272.1 7935.9 6667.4 4607.6 2556.8 .0 2.014 ,838 .830 .825 .974 .000 15:07:53 F16 MACH = .800, ALTITUDE = 5000., THRUSTS/FUSL FLOWS/SFCS/NOX RATIOS FOLLOW 30409.0 14960.0 12952.0 9386.0 4938.0 .0 64679.9 14481.3 12550.5 9508.0 5673.8 .0 2.127 .968 .969 1.013 1,149 .000 MACH = .800, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 33581.0 16293.0 14503.0 10594.0 5579.0 .0 75322.2 16064.9 14372.5 10986.0 6644.6 .0 2.243 .986 .991 1.037 1.191 .000 MACH = .400, ALTITUDE = 40000., THRUSTS/FUEL FLOWS/SPCS/NOX RATIOS FOLLOW 5271.0 2929.0 2510.0 1762.0 1370.0 1307.0 10083.4 2226.0 1882.5 1363.8 1112.4 1107,0 1.913 .760 .750 .774 .812 .847 MACH = .400, ALTITUDE - 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 6930.0 3721.0 3185.0 2235.0 1154.0 1061.0 13499.6 2798.2 2363.3 1705.3 1028.2 1016.4 1.948 .752 .742 .763 .891 .958 MACH = .400, ALTITUDE = 30000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 8782.0 4694.0 4011.0 2795.0 1395.0 807,0 17133.7 3572.1 3016.3 2152.2 1259.7 966.8 1.951 .761 .752 .770 .903 1.198 MACH = .400, ALTITUDE = 25000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 10972.0 5869.0 4997.0 3471.0 1715.0 499.0 21516.1 4530.9 3807.7 2697.0 1560.7 927.1 1.961 ,772 .762 .777 .910 1.858 MACH = .400, ALTITUDE = 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 13590.0 7288.0 6161.0 4282.0 2096.0 ,0 2678S.9 5728.4 4762.5 3357.1 1924.1 .0 1.971 .786 .773 .784 .918 .000 MACH = .400, ALTITUDE = 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 16703.0 8978.0 7572.0 5256.0 2545.0 .0 33172.2 7191.4 5959.2 4162,8 2361.8 .0 1.986 .801 .787 .792 .928 .000 MACH = .400, ALTITUDE = 10000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 20327.0 10898,0 9259.0 6429.0 .0 .0 40776.0 8871.0 7425.7 5156.1 .0 .0 2.006 .814 .802 .802 .000 .000 MACH = .400, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 24504.0 13140.0 11224.0 7825.0 3680.0 .0 49669.6 10866.8 9147.6 6377.4 3485.0 .0 2.027 .827 .815 .815 .947 .000 MACH = .400, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 28775.0 15647.0 13289.0 9303.0 4361.0 .0 58960.0 13065.2 10990.0 7721.5 4190.9 .0 2.049 .835 .837 .830 .961 .000 MACH = .300, ALTITUDE = 35000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 6452.0 3574.0 3039.0 2147,0 1251.0 1173.0 12452.4 2562.6 2148.6 1571.6 1029.6 1022.9 1.930 .717 .707 .732 .823 .872 MACH = .300, ALTITUDE = 30000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 8185.0 4497.0 3824.0 2680.0 1373.0 909.0 15805.2 3264.8 2734.2 1977,3 1178.0 966.3 1,931 .726 .715 .738 .858 1,063 MACH = .010, ALTITUDE = 50000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 5857.0 2608.0 2310.0 1586.0 925.0 905.0 11760.9 2699.3 2402.4 1733.5 1228.4 1219.0 2.008 1.035 1,040 1.093 1.328 1,347 MACH = ,010, ALTITUDE = 45000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 7566.0 3314.0 2912.0 2010.0 934.0 620.0 15010.9 3386.9 2984.8 2160.8 1349.6 1114.1 1.984 1.022 1.025 1.075 1.445 1.797 MACH = .010, ALTITUDE - 40000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 9732 .0 19152 .6 1.968 4191.0 3674.0 2548.0 1183.0 244.0 4237.1 3721.8 2698.3 1676.3 1030.4 1.011 1.013 1,059 1.417 4.223 MACH = .010, ALTITUDE 12447.0 5282.0 4634.0 24433.5 5319.0 4671.1 1.963 1.007 1.008 = 35000., THRUSTS/FUEL 3226.0 1487.0 .0 3393.8 2092.2 .0 1.052 1.407 .000 FLOWS/SFCS/NOX RATIOS FOLLOW MACH = ,010, ALTITUDE 15626,0 6626.0 5846.0 31017.6 6785.0 6003.8 1.985 1.024 1.027 = 30000., THRUSTS/FUEL 4059.0 1825.0 .0 4339.1 2626.2 .0 1.069 1.439 .000 FLOWS/SFCS/NOX RATIOS FOLLOW MACH = .010, ALTITUDE 19394.0 8227.0 7311.0 39059.5 8572.5 7640.0 2.014 1.042 1.045 = 25000., THRUSTS / FUEL 5090.0 2222.0 .0 5537.9 3270.8 .0 1.088 1.472 .000 FLOWS/SFCS/NOX RATIOS FOLLOW MACH = .010, ALTITUDE = 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 23161.0 9857.0 8573.0 6051.0 2613.0 .0 47294.8 10418.8 9156.0 6771.1 3990.1 .0 2.042 1.057 1.068 1.119 1.527 .000 MACH = .010, ALTITUDE = 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 26518.0 11579.0 9881.0 7029.0 3024.0 .0 54998.3 12331.6 10750,5 8125.5 4820.3 .0 2.074 1.065 1.088 1.156 1.594 .000 MACH = .010, ALTITUDE = 10000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 29811,0 12646.0 11161.0 7887.0 3382.0 .0 64928.4 13809.4 12433.4 9480.2 5722.3 .0 2.178 1.092 1.114 1.202 1.692 .000 MACH = .010, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 33267.0 13448.0 12216.0 8876.0 3762.0 .0 76181.4 15115.6 14036.2 11006.2 6749,0 .0 2.290 1.124 1.149 1.240 1.794 .000 MACH = .010, ALTITUDE = O,, THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 33659.0 14304.0 13013.0 9850.0 4162.0 .0 81757.7 16692.8 15537.5 12706.5 7932,8 .0 2.429 1.167 1.194 1.290 1.906 .000 MACH = .000, ALTITUDE = 20000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 11697.0 6972.0 5945.0 4137,0 2226.0 571.0 21768.1 4545.7 3804.8 2702.9 1562.7 849.1 1.861 .652 .640 .644 .711 1.487 MACH = .000, ALTITUDE = 15000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 14365.0 8576.0 7310.0 5137.0 2704.0 618.0 26862.5 5703.0 4751.5 3339.1 1936.1 843.6 1.870 .665 .650 .650 .716 1.365 MACH = .000, ALTITUDE = 10000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 17511.0 10472.0 8910.0 6253.0 3262.0 638.0 32973.2 7110.5 5898.4 4102.0 2355.2 854.3 1.883 .679 .662 .656 .722 1.339 MACH = .000, ALTITUDE = 5000., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 21164.0 12640.0 10811.0 7587,0 3913.0 655.0 40190.4 8721.6 7286.6 5045.4 2848.7 875.7 1.899 .690 .674 .665 .728 1.337 MACH = .000, ALTITUDE = 0., THRUSTS/FUEL FLOWS/SFCS/NOX RATIOS FOLLOW 25381.0 15150.0 13031.0 9166.0 4672.0 743.0 48630,0 10605.0 8926.2 6177.9 3433.9 974.8 Nov 18 96 15:07:53 1.916 .700 . 685 .735 1.312 tt NAMELIST SMISSIN PERFORMANCE CONTROLS AND FACTORS AND MISSION SEGMENT DEFINITION DESCRIPTION NAME VALUE DIMENSIONS ENDURANCE MISSION SWITCH INDR 0 OVERALL FUEL FLOW FACTOR FACT 1 . 0000 CDO FACTOR FCDO 1 .oooo CDI FACTOR FCDI 1 .0000 SUBSONIC CD FACTOR FCDSUB 1 .0000 SUPERSONIC CD FACTOR FCDSUP 1 .0000 ENGINE SCALING SWITCH ISKAL 1 OWE FACTOR OWFACT r-i .0000 PRINT FLAG I FLAG 2 DETAILED MISSION PRINT MSUMPT 0 TEMPERATURE DEVIATION DTC .0 DEG C CALC RAMP WT OR RANGE IRW 1 RANGE TOLERANCE RTOL .0010 N MI ATA TRAFFIC ALLOWANCE I ATA 0 WEIGHT INCREMENT DWT 1. LBF ROUND OPERATIONS AND TAKEOFF INPUT TAKEOFF TIME TAKOTM ,5 MIN TAXI-OUT TIME TAXOTM 6.5 MIN APPROACH TIME APPRTM .0 MIN APPROACH FUEL FLOW FACTOR APPFFF 2 .00 TAXI-IN TIME TAXITM .0 MIN TAKEOFF POWER SETTING ITTFF 1 TAXI FUEL FLOWS WILL BE FROM THE ENGINE DECK INPUT FOR 2 CLIMB SCHEDULES MINIMUM CLIMB MACH NUMBER MAXIMUM CLIMB MACH NUMBER MINIMUM CLIMB ALTITUDE PT MAXIMUM CLIMB ALTITUDE FT NUMBER OF CLIMB STEPS CLIMB OPTIMIZATION FACTOR FOLLOWING CRUISE SEGMENT DRAG COEFFICIENT INCREMENT NO. OF POWER SETTINGS STORE DRAG DURING CLIMB MAX CLIMB POWER SETTING FAA CLIMB ENFORCED FAA DESCENT ENFORCED MINIMUM CLIMB RATE SWITCH MINIMUM CLIMB RATE 3 LIMIT IN CLIMB MAXIMUM RATE OF DESCENT INPUT FOR 5 CRUISE SCHEDULES (5) (6) CRUISE OPTION SWITCH 0 1 CRUISE OPT FUEL FACTOR 1.000 1.000 CRUISE OPT NOX FACTOR .000 .000 MAXIMUM MACH NUMBER .8000 .0000 CLMMIN CLMMAX CLAMIN CLAMAX NINCL FWF NCRCL CLDCD IPPCL ISTCL MAXCL IFAACL IFAADE NODIVE DIVLIM QLIM RDLIM IOC FFUEL FNOX CRMACH (1) .3000 .9000 0 . 3250O, (2) .3000 .9000 10000. 50000. (1) 0 1.00C .000 .9000 20 -. ooio 4 .00000 4 3 20 -.0010 1 . ooooo 4 2 I 0 0 1 0. FT/MIN .0 PSF -99999.0 FT/MIN (2) 0 1.000 .000 .9000 (3) .3000 , 0000 0 . 0. 31 -.ooio 1 . ooooo 1 0 (3) 4 1 .000 .000 . 9000 -OUT MAXIMUM ALTITUDE CRALT 50000, 50000, 50000. 50000. 0. -1. FT DRAG COEFFICIENT INCREMENT CRDCD .00000 .ooooo .00000 .00000 .00000 .00000 STORE DRAG DURING CRUISE ISTCR 1 3 3 3 3 0 LONG RANGE CRUISE FACTOR FLRCR 1. 000 1.000 1 . 000 i. ooc 1.000 1.000 MINIMUM MACH NUMBER CRMM1N .7000 .7000 .3000 .7000 .3000 .0000 MAXIMUM LIFT COEFFICIENT CRCLMX 1.0000 1.0000 1.000C 1.0000 1.0000 .0000 ENGINE FEATHERING ALLOWED IFEATH 0 0 0 0 J u ENGINE FRACTION REMAINING FEATHF .5000 .5000 .5000 .5000 .5000 ,5000 CD INCREASE FOR FEATHERING CDFETH .ooooo .00000 .00000 .ooooo .00000 .00000 MINIMUM CRUISE ALTITUDE HPMIN 200. 30000. 0. 35000. 0. 1000. FT INCREMENT IN CRUISE WT. DCWT 1.0 LEF RATE OF CLIMB CEILING RCIN 100 .0 FT/MIN INPUT FOR DESCENT SCHEDULE DESCENT OPTION SWITCH IVS 0 DESCENT LIFT COEFF. DECL .8000 MINIMUM DESCENT MACH NO. DEMMIN .3000 MAXIMUM DESCENT MACH NO. DEMMAX , oooo MINIMUM DESCENT ALTITUDE DEAMIN 0. FT MAXIMUM DESCENT ALTITUDE DEAMAX 0. FT NUMBER OF DESCENT STEPS NINDE 31 DRAG COEFFICIENT INCREMENT DSDCD .ooooo STORE DRAG DURING DESCENT ISTDE 0 RESERVE SEGMENT INPUT RESERVE CALC. OR CONST IRS 2 RESERVE FUEL RESRFU .000 LBM FRACTION OF TRIP FUEL RESTRP .000 MISSED APPROACH TIME TIMMAP .0 MIN RANGE TO ALTERNATE AIRPORT ALTRAN ,0 N MI RESERVE CLIMB SCHEDULE NCLRES 1 RESERVE CRUISE SCHEDULE NCRRES 1 START RESERVE MACH NUMBER SREMCH .3000 END RESERVE MACH NUMBER EREMCH .3000 START RESERVE ALTITUDE SREALT 0. FT END RESERVE ALTITUDE EREALT 0. FT RESERVE HOLDING TIME HOLDTM .0 MIN HOLD CRUISE SCHEDULE NCRHOL 1 HOLD POSITION SWITCH IHOPOS 1 CRUISE ONLY SWITCH ICRON 0 2ND RES HOLD TIME OR FRAC THOLD .000 MIN THOLD CRUISE SCHEDULE NCRTH 1 STORE DRAG COEFFICIENTS - 1 MACH NUMBER .30000 .90000 1.00000 1.40000 DRAG COEFFICIENT .00580 .00620 .013E 0 .02620 STORE DRAG COEFFICIENTS MACH NUMBER DRAG COEFFICIENT .30000 .00160 . 90000 ,00160 1.20000 1.60000 .00470 .00530 STORE DRAG COEFFICIENTS - 3 MACH NUMBER .30000 .90000 .95000 1.40000 DRAG COEFFICIENT -.00070 -.00080 -.00080 -.00120 Nov 18 96 [ 15:07:53 F16-FLOPS-OUT ft MISSION SEQUENCE DEFINITION START CLIMB CRUISE HOLD RELEASE ACCELERATE TURN MACH NUMBER ,3000 ALTITUDE 0. FT .7000 1 3 1529.0 LB TURN TURN TURN TURN TURN RELEASE CLIMB CRUISE HOLD DESCENT END USE CLIMB SCHEDULE START MACH NUMBER = USE CRUISE SCHEDULE USE CRUISE SCHEDULE PAYLOAD WEIGHT TO MACH NUMBER = .9000 START MACH NUMBER * .0000 STORE DRAG WILL BE INCLUDED ARC = 360.0 DEGREES MACK NUMBER = .9000 STORE DRAG WILL BE INCLUDED ARC = 360.0 DEGREES MACH NUMBER = .9000 STORE DRAG WILL BE INCLUDED ARC = 360.0 DEGREES MACH NUMBER = .9000 STORE DRAG WILL BE INCLUDED ARC = 360.0 DEGREES MACH NUMBER = .9000 STORE DRAG WILL BE INCLUDED ARC = 360.0 DEGREES MACH NUMBER = .9000 STORE DRAG WILL BE INCLUDED ARC = 110.0 DEGREES MACH NUMBER = .9000 STORE DRAG WILL BE INCLUDED PAYLOAD WEIGHT = 1168.5 LB USE CLIMB SCHEDULE 2 USE CRUISE SCHEDULE 4 USE CRUISE SCHEDULE 5 ALTITUDE = 0 . FT SEGMENT DISTANCE = 2 50.0 N MI HOLD TIME = 120.0 MIN AT POWER SETTING 1 ALTITUDE = 10000. FT AT POWER SETTING 1 ALTITUDE = 10000. FT AT POWER SETTING 1 ALTITUDE = 10000. FT AT POWER SETTING 1 ALTITUDE = 10000, FT AT POWER SETTING 1 ALTITUDE = 10000. FT AT POWER SETTING 1 ALTITUDE = 10000, FT AT POWER SETTING 1 ALTITUDE = 10000. FT SEGMENT DISTANCE = 270.0 N MI HOLD TIME = 20.0 MIN MACH NUMBER .3000 ALTITUDE S NAMELIST SPCONIN INPUT FOR 5 PERFORMANCE CONSTRAINTS NO. ICONTP ICSTDG CONNZ CONPC CONWT CONFM CONWTA NEO CONAUX CONLIM ICONSG 1 16 1 .000 1.000 i, ooo 1.000 i .ooo 3 1 .000 3 i .ooo 3 1. 000 3 i .ooo 2 1 . 000 .4000 1.400 1 . 400 1 .400 1.400 1 . 400 , 4000 .4000 . 000 .000 .000 .000 .000 0. CONALT 30000. 30000. 30000. 30000. 30000. . 800 .900 .900 . 900 1.200 It USER-DEFINED AERODYNAMIC DATA DRAG DUE TO LIFT MACH/CL .000 .050 .100 .150 .700 .800 ,900 1.000 1,100 1 1.300 1.400 1.500 .200 200 .300 .4 00 .500 .600 .000 .06690 .200 . 06070 .300 . 05790 .400 . 05630 .500 . 04 6OC . 600 . 05650 .700 .05810 . 800 .06030 .850 .06130 . 900 .06560 .950 .07390 1.000 .08800 1.050 .09580 1.100 . 11250 1 .200 .13250 1 .300 .13760 1.400 .15070 1 .500 .16710 1 . 600 . 18820 1.700 9.99000 9 1 .800 9.99000 9 1 . 900 9.99000 9 2 . 000 .00000 .09410 .26300 .00000 .08360 .28390 .00000 .08010 .29580 .00000 .07800 .30740 .00000 ,07620 .32010 .00000 ,07580 .33300 ,00000 .07960 .34480 .00000 .08440 .36210 .00000 .08710 , .37720 .00000 .09200 ,41000 .00000 .10150 . 9 . 99000 .00000 .12360 9.99000 ,00000 .13950 , 9 . 99000 ,00000 .15050 9 .99000 ,00000 .16670 , 9 .99000 ,00000 .18160 9.99000 .ooooo .20340 9.99000 .00000 .22B20 , 9 .99000 , OOOOC .25780 9 .99000 .00000 99000 9. 9.99000 . ooooo 99000 9. 9 .99000 . ooooo 99000 9, 9.99000 .00000 , 00000 .12030 .33900 .00000 .11100 .36400 .00000 . 10780 .37650 .00000 ,10620 .38990 .00000 , 10590 .40410 .00000 . 10810 .41920 - .00010 . 11250 .43130 .00010 ,11830 .44640 .00020 ,12240 .45920 .00020 . 1304C .51460 .00060 13870 9 . 99000 .00010 17620 9.99000 .00040 19100 9.99000 .00040 19940 9.99000 .00000 21240 9 .99000 .00060 25220 9 . 99000 .00060 29930 9.99OO0 .00060 32260 9.99000 .00060 33420 9.99000 .0OO70 99000 9. 9.99000 .00070 99000 9. 9.99000 ,00060 99000 9. 9.99000 .00050 .00040 . 13370 .4160C .00050 14140 .45790 ,00050 .14520 .47950 .00060 14910 .50190 .00050 15330 . 52560 ,00050 15860 .55040 .00040 16090 .57030 .00060 16320 .59120 .00070 16770 .61220 ,00080 17950 .72320 .00160 19940 9 . 99000 .00120 23580 9.99000 .00160 24950 9.9900C .00160 25460 9.99000 .00120 26000 9.99000 .00200 33350 9 9.99000 .00220 38530 9 9.99000 .00280 40780 9 9.99000 .00280 41830 9 9.99000 .00290 99000 9 9.99000 ,00300 99000 9 9.99000 ,00290 99000 9 9.99000 .002 80 .00140 16710 .00150 . 17890 .00150 .18510 .00170 .19150 .00160 19820 . 00170 . 21660 .00330 31000 .00330 31490 .00340 30980 .00460 99000 9 .0059C 99000 9 .00650 99000 9 .00670 99000 9 .00690 99000 9 .00720 99000 9 .00720 99000 9. .00310 21050 .00330 22460 .00330 23200 .00340 24140 .00340 .25160 .00150 20530 .00150 ,21170 .00340 26260 .00340 27380 .00350 .28580 .00190 .22140 .00360 !9630 .00230 .24440 .00320 27140 ,00310 28620 .00440 32020 .00530 33850 .00590 35370 .00620 37300 .00650 38390 .00720 39630 .00900 99O0C .01060 99000 .01210 99000 .01280 99000 .01320 99000 .01370 99000 .01420 99000 .00810 .01650 .02850 .04470 .00860 .01700 .02830 .04280 .00880 .01710 .02820 .04210 .00900 .01730 .02820 .04160 ,00900 .01740 .02810 .04120 .00900 .01730 .02800 .04110 .00900 .01720 .02890 .04150 .00890 .01710 ,02800 .04230 .00900 .01710 .02810 ,04270 .01060 .01360 .02980 .04540 .01180 ,02240 .03690 .05430 .01450 .02620 .04340 .06560 .01380 .02730 .04560 .07030 .01540 .02830 .04860 .07760 .01740 .03110 .05570 ,08890 .01910 .03630 .06280 .09760 .02200 .04330 ,06980 ,10650 .02640 .04970 .07730 .11790 .03010 .05530 .08400 .13270 .03290 .06140 .09330 9.99000 .03530 .06760 .10440 9.990O0 .03790 .07340 .11800 9.990O0 .00720 .01480 .04030 .07930 .13330 9.99000 Nov 18 96 15:07:53 F16 9.99000 9.99000 9.99000 9.99000 9.99000 9.99000 9.99000 9.99000 9.99000 2.100 .00000 .00070 .00300 .00770 .01400 9.99000 9.99000 9.99000 9.99000 9.99000 9.99O00 9.99000 9.99000 9.99000 .04320 .08600 .14950 9.99000 LIFT INDEPENDENT DRAG INCLUDING WAVE DRAG, IF ANY ALT / MACH . 900 0 . . 01947 5000. .01947 10000. .01947 15000, .01960 20000. . 01985 25000. .02011 30000. .02040 35000. .02071 40000. . 02112 45000. .02159 50000. .02208 55000. .02259 60000. .02313 .000 .950 1.300 .01853 02763 ,04336 .01880 .02763 .04336 .01910 02763 .04336 .01941 02771 . 04336 .01975 02796 . 04349 ,02011 02822 .04373 .02050 02850 .04400 .02092 02880 .04429 .02149 02922 .04467 .02213 02968 .04510 .02281 03016 .04556 .02353 03066 .04603 ,02428 03120 . 04653 .200 1.000 1,400 .01743 .04198 .04368 .01770 .04198 .04368 ,01800 .04198 .04368 .01831 .04202 .04368 ,01865 .04226 .04379 .01901 .04252 .04404 .01940 .04280 .04430 .01982 . 0431C .04458 .02039 .04351 .04496 .02103 .04396 , 04539 .02171 .04444 . 04583 .02243 .04494 .04630 . 02318 . 04547 ,04679 . 300 1.050 1. 500 .01719 .04422 .04430 .01744 .04422 .04430 .01771 .04422 .04430 .01800 .04423 .04430 .01831 .04447 .04440 .01864 ,04472 .04464 .01900 ,04500 .04490 .01939 ,04530 .04518 ,02991 ,04570 . 04555 .02050 .04615 .04597 .02111 .04662 ,04641 .02176 .04712 .04687 .02245 .04764 .04736 .400 1.10C 1.600 .01689 .04416 .04561 .01713 04416 .04561 .01739 04416 .04561 .01766 04416 .04561 .01795 .04437 .04571 .01826 .04463 .04595 .01860 . 04490 .04620 .01896 ,04520 .04647 .01946 .04560 . 04685 .02001 .04604 ,04726 .02059 .04651 .04769 .02120 .04700 .04815 .02184 . 04752 .04863 . 500 1. 200 1.700 ,01677 .04381 .04611 .01700 .04381 .04611 ,01724 .04381 .04611 .01750 .04381 .04611 .01778 .04398 .04621 ,01808 ,04423 .04645 ,01840 ,04450 .04670 .01875 .04479 .04697 . 01922 ,04518 ,04734 .01974 .04562 .04775 . 02029 .04608 .04817 .02088 .04656 ,04862 .02149 .04707 ,04910 .600 1.800 ,01691 .04621 .01705 .04621 ,01728 .04621 .01753 .04621 .01780 . 04632 .01809 . 04655 .01840 .04 680 ,01873 . 04707 .01919 .04743 .01969 ,04784 , 02022 .04826 ,02078 . 0487C .02137 .700 1 . 900 .01745 .04539 .01745 .04589 , 01762 .04589 . 01786 .04589 .01812 . 04602 .01840 . 04625 ,01870 .04650 .01902 .04677 , 01946 .04713 . 01995 .04752 .02046 .04794 .02101 .04833 .02158 .800 2 . 000 .01833 .04526 .01833 .04526 .01835 .04526 .01858 .04526 .01384 . 04543 .01911 .04566 .01940 . 04590 .01971 .04616 .02014 .04652 ,02062 .04691 .02112 .04733 .02164 .04776 .02220 ,850 .01881 . 01881 .01881 .01899 .01924 .01951 . 01980 .02011 .02053 ,02100 ,02150 .02201 .02256 .04917 .04884 .04822 (TITLE, BEGIN OUTPUT OF RESULTS flfic Air Superiority Mission, 2AIM-9, 2AIM-120, External Fuel » CRUISE OPTIMIZATION RESULTS SUMMARY DATA FOR CRUISE SCHEDULE 1 WEIGHT ALTITUDE THRUST FUEL SFC MACH VELOCITY SPECIFI C RATE OF CL L/D ENGINES NOX AVAILABLE REQUIRED FLOW NUMBER RANGE CLIMB OPERATING RATE -OUT 17400. 49203. 2518 . 1940 . 1840. .9484 .8610 493 9 . 2684 + 0 1661.6 .4416 S 97 1 0 .00 18000. 49316, 2514 . 2013. 1906 . .9466 .8660 496 7 .2606 0 1397.6 .4541 8 .94 1 0 .00 18600. 48676. 2600. 2079 , 1964. . 9447 ,8668 497 2 .2531 + 0 1410.0 .4542 8 95 1 0 .00 19200, 47960. 2694 . 2143. 2020 . .9427 .8666 497 0 .2460 +• 4 1445.4 .4533 B 96 1 0 .00 19800. 47263. 2786 , 2206, 2076. , 9408 ,8663 496 9 ,2393 + 8 1472.4 ,4525 6 97 1 0 .00 20400, 46587. 2874 . 2270. 2131. .9389 .8660 496 7 .2330 + 8 1491 .0 .4517 8 99 1 0 .00 21000, 45932. 2960. 2333 , 2186, . 9371 , 8657 496 S . 2271 2 1502.2 .4509 9 00 1 0 .00 21600. 45295. 3044 . 2396. 2241 . .9354 .8654 496 4 .2214 + 7 1507.1 ,4501 9 01 1 0 .00 22200, 44630, 3143 . 2458. 2295 . .9336 . 8648 496 0 .2161 + 1 1548.3 .4487 9 03 1 0 .00 22800. 44012. 3244. 2521. 2350. .9320 .8645 495 6 .2110 + 1 1592.6 .4478 9 04 1 0 . 00 23400. 43473. 3334 . 2585 . 2406 . . 9305 , 8646 495 9 .2061 + 6 1608.0 .4477 9 05 1 0 .00 24000. 42927. 3425 . 2648 . 2460. .9290 .8645 495 8 .2015 + 3 1623.9 ,4475 9 06 1 0 . 00 24600, 42402. 3512 . 2712 . 2516. . 9276 .8645 495 8 . 1971 + 3 1632.5 .4473 9 07 1 0 .00 25200. 41882. 3598 , 2775 . 2570 . .9262 ,8643 495 8 .1928 + 8 1638.8 .4471 9 08 1 0 .00 25800. 41377, 3681. 2838. 2625. . 9249 .8643 495 7 .1888 +• 4 1640.4 .4469 9 09 1 0 .00 26400, 40879. 3764 . 2901 . 2680 . . 9236 .8642 495 7 . 1849 + 7 1639.4 .4466 9 10 1 0 .00 27000. 40393. 3844 , 2964 . 2734 . , 9224 , 8641 495 6 . 1812 5 1635.0 .4464 9 11 1 0 ,0C 27600. 40039. 3908 . 3032 . 2795, .9216 .8657 496 6 . 1776 9 1595.7 .4469 9 10 1 0 .00 28200. 40000, 3917 , 3100. 2853 . . 9202 .8666 497 0 .1742 + 3 1457.9 .4549 9 10 1 0 .00 28800 , 39945. 3938. 3174 . 2920 . .9197 .8697 498 8 .1708 + 4 1339,5 .4600 9 07 1 0 .00 29400. 39535. 4026. 3240. 2980. , 9196 .8706 499 3 .1675 4 7 1350.7 .4596 9 07 1 0 .00 30000. 39026. 4128 . 3300 . 3033 , .9190 .8695 498 7 .1644 + 2 1393.0 .4587 9 09 1 0 .00 30600. 38592. 4218. 3364 . 3090. .9186 .8696 498 8 .1613 t 9 1409 , 3 .4582 9 10 1 0 .00 31200. 38127. 4312 , 3425 . 3145 . ,9181 . 869C 493 4 . 1584 + 8 1434 . 8 . 4576 9 11 1 0 .00 31800. 37705. 4400. 3489 . 3202 . . 9177 .8683 498 4 ,15S6 7 1445.9 .4571 9 12 1 0 .00 32400. 37265. 4489 . 3550 . 3256 . .9172 . 8684 498 1 .1529 + 7 1461.4 . 4565 9 13 1 0 . 00 33000. 36860. 4573 , 3613 . 3313 . , 9168 . 86B4 498 1 .1503 + 6 1466.4 .4561 9 13 1 0 ,00 33600. 35000. 4937 . 3654 , 3353 , . 9177 . 8627 497 4 . 14B3 + 5 1924.8 . 4305 9 20 1 0 .00 SUMMARY DATA FOR CRUISE SCHEDULE 2 WEIGHT ALTITUDE THRUST FUEL SFC MACH VELOCITY SPECIFI + C RATE OF CL L/D ENGINES NOX AVAILABLE REQUIRED FLOW NUMBER RANGE + CLIMB OPERATING RATE 17400. 47885. 2698. 1654. 1609. .9727 .8640 495.6 .3079 + 9 3011.5 .4118 10,52 1.0 .00 Nov 18 96 15:07:53 F16-FLOPS-OUT 18000. 47527. 2752 . 1715. 1661. . 96B8 .8666 497 1 . 2992 18600. 50000. 2373. 1828. 1726 . . 9442 ,8413 482 6 ,2796 + 4 2899.8 4162 10 50 1 0 . 00 + 2 1432 .0 .5136 10 18 1 0 .00 18600, 46869. 2842 . 1771 , 1712 . .9666 .8680 497 9 .2908 19200. 50000, 2390. 1899 . 1793. ,9440 .8498 487. 4 .2718 + 3 2903.0 4154 10 50 1 0 .00 + 9 1262.5 , 5198 10 11 1 0 .00 19200. 46211. 2 926. 1824. 1758 . .9638 .8669 497 3 .2829 19800. 50000. 2390 , 1981, 1862. .9396 .8500 487 5 .2618 4 2 2892.4 4166 10 53 1 0 . 00 4 6 1020.2 .5357 9 99 1 0 .00 19800. 45558. 3016 . 1879 . 1808 , . 9619 .8681 497 9 . 2754 20400, 50000. 2391. 2068 . 1934. .9353 .8500 437. 5 .2521 4 : 2894 .4 4152 10 54 1 0 .00 4 0 781.4 .5519 9 87 1 0 .00 20400. 44925. 3104. 1934 . 1857. .9600 .8688 498 3 .2683 21000. 50000. 2397 . 2154. 2010 , .9332 .8530 489 3 .2434 4 B 2893.8 4144 10 55 1 0 .00 4 0 572 .4 . 5641 9 75 1 0 .00 21000. 44398. 3190. 1988. 1904 . .9577 .8682 498 0 .2615 21600. 50000. 2413 . 2239. 2097 . .9369 .8608 493 7 .2353 4 1 2887.3 4165 10 56 1 0 ,00 + 9 402 .6 .5698 9 65 1 0 .00 21600. 43872. 3279 . 2044 , 1953. . 9559 . 8689 498 4 .2551 22200. 50000. 2420. 2330 . 2188 , .9391 .8643 495 7 .2265 + 2 2887.6 4171 10 57 1 0 .00 4 7 203 . 1 ,5809 9 53 1 0 .00 22200. 43348. 3368 . 2099 . 2003 . .9542 .8694 498 7 .2489 22800. 49881. 2456. 2411, 2274 . .9429 , 8744 501 5 .2205 4 9 2887 .3 4176 10 58 1 0 .00 4 7 100 .0 .5796 9 45 1 0 .00 22800. 42825, 3456. 2154 , 2052 . .9526 .8698 498 9 ,2431 23400, 49670. 2538. 2493 . 2372 . ,9516 .8999 516 2 .2175 4 6 2886.3 4179 10 59 1 0 .00 4 9 100.0 ,5559 9 39 1 0 .00 .2124 23400. 42304, 3544. 2209 . 2100. .9510 .8701 499 1 .2376 24000. 49186. 2603 . 2557 . 2430. .9501 . 9000 516 2 4 2 28S4.8 4180 10 60 1 0 .00 4 5 100. 0 .5571 9 38 1 0 .00 .2075 24000. 41784. 3631. 2263. 2148 , .9495 .8703 499 2 .2323 24600. 48705, 2669 , 2622. 2487 . .9487 .9000 516 2 + 5 2882 . 5 4180 10 61 1 0 .00 4 7 100.0 .5580 9 38 1 0 .00 24600. 412 67 . 3718 . 2317 . 2196 . .9480 . 8704 499 3 .2273 25200. 48228. 2733 . 2685 . 2544 . .9473 .9000 516 2 .2029 + 2 2879.6 4179 10 62 1 0 , 00 4 5 100.0 .5587 9 39 1 0 ,00 25200. 40761. 3802 . 2371 , 2244 . . 9465 .8705 499 3 .2225 25800. 47755. 2797 . 2748 . 2600 . ,9460 .9000 516 7 .1985 + 2 2872 . 8 4177 10 63 1 0 .00 + 6 100.0 .5592 9 39 1 0 .00 . 1944 25800. 40247. 3888. 2424 . 2291. . 9451 .8706 499 3 .2179 26400. 47286. 2861. 2811. 2655, . 9448 . 9000 516 2 4 4 2869.5 4172 10 64 1 0 .00 + 0 100.0 .5595 9 39 1 0 ,00 26400. 39782. 3975 , 2478 . 2339 . , 9441 , 8706 499 3 . 2134 27000. 46320. 2924. 2873. 2711. .9437 .9000 516 2 .1904 4 4 2866.6 4175 10 65 1 0 .00 4 4 100. 0 . 5596 9 40 1 0 , 00 27000. 39362. 4062 . 2532 . 2339. .9433 .8706 499 3 ,2090 27600. 46359. 2987. 2934 , 2765 . .9426 . 9000 516 2 . 1866 + 4 2864.3 4185 10 66 1 0 .00 4 7 100.0 , 5596 9 41 1 0 .00 .1830 27600. 38945. 4148 . 2587 . 2438 . .9425 .8707 499 4 .2048 28200. 45901. 3049 , 2995 . 2820. . 9415 .9000 516 2 4 3 2861.3 4193 10 67 1 0 .00 4 1 100.0 .5593 9 42 1 0 .00 ,1796 28200. 38525. 4234 , 2640 . 2485 . .9416 . 8701 499 0 .2008 28800. 45447. 3110. 3055 , 2874 . . 9405 , 9000 516 2 + 0 2856.7 4204 10 68 1 0 .00 4 4 100.0 .5590 9 43 1 0 .00 28800. 38135. 4314 . 2694. 2534. .9406 .8699 499 0 .1969 29400. 44997. 3172 . 3115 . 2327 . , 9396 .9000 516 2 ,1763 4 2 2842.6 4216 10 69 1 0 ,00 + 6 100.0 .5585 9 44 1 0 .00 29400. 37767. 4391. 2749 , 2584 . , 9398 .8703 499 2 .1932 30000, 44612. 3237. 3180 . 2984 . ,9385 .9000 516 2 , 1729 + 0 2823.4 4225 10 69 1 0 .00 4 9 100. 0 .5594 9 44 1 0 ,00 .1697 30000. 37357. 4477 . 2804. 2633. .9392 . 8706 499 4 .1896 30600. 44229. 3302 . 3244 , 3041, .9375 .9000 516 2 + 3 2821.4 4224 10 70 1 0 .00 4 6 100.C .5603 9 43 1 0 .00 .1666 30600. 36944. 4564 . 2858. 2683 . .9387 .8709 499 5 , 1862 31200. 43848. 3367 . 3307 . 3097 . .9365 . 9000 516 2 4 0 2820.4 4222 10 71 1 0 .00 4 8 100.0 .5609 9 43 1 0 .00 .1637 31200. 35038. 4931. 2871 . 2716. .9461 . 8632 497 6 ,1831 31800. 43470, 3431 , 3370. 3153. .9355 .9000 516 2 4 9 3327.7 4000 10 87 1 0 .00 + 2 100.0 . 5615 9 44 1 0 .00 .1608 31800. 35000. 4940. 2929 . 2762 . .9428 . 8635 497 9 .1802 32400. 43094, 3495. 3433 . 3209. .9346 . 9000 516 2 + 7 3188.3 4067 10 86 1 0 ,00 4 8 100 .0 .5619 9 44 1 0 .00 32400. 35000. 4940. 2988. 2807 , ,9332 .8635 497 9 . 1773 33000, 42720. 3559 . 3495 , 3264 . ,9338 .9000 516 2 .1581 4 8 3037 , 1 4144 10 84 1 0 .00 + 5 100.0 .5621 9 44 1 0 .00 .1555 33000. 3 5000. 4940 . 3049 . 2853 . . 9356 . 8635 497 9 .1745 33600. 42349, 3622 . 3557 . 3319. .9330 . 9000 516 2 4 2 2889,3 33600. 4221 34909. 10 82 4976. 1 0 3116, .00 2913 . ,9349 .8672 500 2 .1717 4 4 100 .0 ,5623 9 45 1 0 .00 + 0 2804.5 4243 10 78 1 0 .00 SUMMARY DATA FOR CRUISE SCHEDULE 4 SUMMARY DATA FOR CRUISE SCHEDULE 3 WEIGHT ALTITUDE THRUST 2 RATE OF CL L/D ENGINES NOX AVAILABLE REQUIRED CLIMB OPERATING RATE WEIGHT ALTITUDE RATE OF CL FUEL - 6 t 3 1740O. 1740.0 18000. 1585.8 50000. .5059 50000. .5097 2329 . 10.28 2351 . 10 .23 1693 . FUEL FLOW 1596 . 1.0 .00 1760. .9426 . 9435 MACH VELOCITY NUMBER .8200 470.3 .8309 476.6 SPECIFI RANGE .2946 . 2870 1,0 + 9 * 3 CLIMB 17400. 3011.5 18000. 2899.8 13600. 2903.0 47885 .4118 47527 .4162 46869 . 4154 THRUST L/D ENGINES NOX AVAILABLE REQUIRED FLOW OPERATING RATE 2698. 1654. 1609. 10.52 1.0 .00 2752. 1715. 1661. 10.50 1.0 .00 2842. 1771. 1712. 10.50 1.0 .00 .9727 . 9638 .9666 MACH VELOCITY SPECIFI NUMBER RANGE .8640 495.6 .3079 .8666 497,1 .2992 .8680 497.9 .2908 Nov 1896 15:07:53 • 19200. 46211. 2926 . 1824 . 1758 2 2892 . 4 4166 10 53 1 0 .00 19800. 45558. 3016. 1879 . 1808 5 2894.4 4152 10 54 1 0 .00 20400. 44925. 3104 . 1934 . 1857 00 2893.8 4144 10 55 1 0 .00 21000. 44398. 3190. 1988 . 1904 7 2887.3 4165 10 56 1 0 .00 21600. 43872 . 3279 . 2044 . 1953 2 28B7.6 4171 10 57 1 0 ,00 22200. 43348. 3368 , 2099 . 2003 9 2887.3 4176 10 58 1 0 .00 22800. 42825. 3456. 2154 . 2052 6 2886.3 4179 10 59 1 0 .00 23400. 42304, 3544. 2209. 2100 2 2884 . 8 4180 10 60 1 0 .00 24000. 41784. 3631 . 2263. 2148 5 2882.5 4180 10 61 1 0 .00 24600. 41267. 3718 . 2317 . 2196 2 2879.6 4179 10 62 1 0 .00 25200. 40761. 3 802 . 2371. 2244 2 2872.8 4177 10 63 1 0 .00 25800, 40247. 3888 , 2424 . 2291 4 2869.5 4172 10 64 1 0 .00 26400. 39782. 3975. 2478. 2339 4 2866.6 4175 10 65 1 0 .00 27000. 39362. 4062 . 2532 . 2339 4 2864.3 4185 10 66 1 0 .00 27600. 38945. 4148 , 2587. 2438 3 2861.3 4193 10 67 1 0 . 00 28200. 38S25. 4234 . 2640. 2485 0 2856.7 4204 10 68 1 0 ,00 28800. 38135. 4314. 2694 , 2534 2 2842 . 6 4216 10 69 1 0 . 00 29400. 37767. 4391 , 2749 . 2584 0 2823.4 4225 10 69 1 0 .00 30000, 37357. 4477 . 2804. 2633 3 2821.4 4224 10 70 1 0 .00 30600. 36944, 4564 . 2858 . 2683 0 2820.4 4222 10 71 1 0 , 00 31200. 35039. 4931 . 2871. 2717 9 3327.5 4000 10 37 1 0 .00 31800. 35000. 4940. 2929 . 2762 9 3188 .1 4068 10 86 1 0 .00 32400. 35000. 4940 . 2988 . 2807 S 3036.9 4144 10 84 1 0 ,00 33000. 35000. 4940. 3049 . 2853 2 2889.1 4221 10 82 1 0 .00 33600. 35000. 4952 . 3117 . 2911 8 2763 . 6 42 65 10 78 1 0 . 00 SUMMARY DATA FOR CRUISE SCHEDULE 5 WEIGHT ALTITUDE RATE OF CL CLIMB THRUST L/D ENGINES NOX AVAILABLE REQUIRED OPERATING RATE 17400. 31273 .4 18000, 30070.4 18600. 28950.7 19200. 27916.5 .1095 .1141 .1232 16257. 2669. 6.52 1.0 .00 16225. 2663. 6.76 1.0 .00 16194. 2658. 7.00 1.0 .00 16168. 2656. 7.23 1.0 .00 FUEL FLOW 3019, D 3014. 3010. 3 3008. .9638 . 9619 . 9600 .9577 .9559 , 9542 .9526 . 951C . 9495 .9480 .9465 .9451 .9441 .9433 , 9425 .9416 . 9406 .9398 .9392 . 9387 . 9461 .9428 .9392 .9356 .9338 SFC 1 .1311 1.1319 1.1325 1.1327 . 8669 .3681 .8688 , 8682 .8689 . 8694 ,8698 .8701 . 8703 .8704 .8705 . 8706 ,8706 . 8706 . 8707 .8701 ,8699 .8703 .3706 .8709 .8633 .3634 . 8634 .8634 .3668 Fl6 FLOPS-OUT 497 .3 497 . 9 498.3 498.0 498 . 4 498.7 498 .9 499 .1 499.2 499.3 499 .3 499 .3 499 .3 499 .3 499 .4 499.0 499 . 0 499 .2 499 ,4 499 . 5 497 . 6 497 . 8 497 , 8 497 .8 499 . 8 .2829 ,2754 .2683 .2615 .2551 ,2489 . 2431 .2376 , 2323 . 2273 .2225 .2179 .2134 .2090 .2048 .2008 .1969 . 1932 .1896 .1862 .1831 .1802 .1773 .1745 .1716 MACH VELOCITY NUMBER .5978 .5958 .5938 .5922 395.5 394 . 1 392.8 391.7 SPECIFI RANGE , 1309 .1307 .1305 .1302 + 1 * 0 19800. + 7 26957,7 20400. + 9 26060.5 21000. + 8 25219.7 21600. + 4 24431.0 22200. + 8 23690.3 22800, + 0 22994,0 23400. 22339.4 24000. 21732.0 24600. * 6 21159.9 25200. + 0 20619.7 25800. + 3 20110.1 26400. + 3 19627.4 27000. + 3 19171.4 27600. + 1 18740.2 28200. *• 7 18332 .3 28800 , + 4 17946.2 29400. * 9 17580.5 30000. + 4 17233.9 30600. + 8 16905.2 31200. + 5 16594.3 31800, t 2 16294.7 32400. + 9 15993.6 33000. * 6 15716.3 33600. + 4 15447.0 . 1321 . 1366 0. ,1410 .1454 .1583 .1623 .1703 . 1742 0 . .1779 .1816 .1887 .1921 0 . . 1954 .1986 .2017 0. . 2045 .2110 0. .2140 16145 7.45 16124 7 .67 16105 7 ,89 16087 8.10 16072 8.30 16058 8.50 16048 8.68 16042 8,35 16039 9 .01 1 6037 9.16 16038 9.31 16040 9 . 44 16045 9.57 16051 9 .70 16060 9.81 16071 9 .92 16083 10.02 16098 10,11 16115 10.20 16134 10.28 16152 10.37 16168 10.45 16185 10 .53 16204 10.60 2657 . 1.0 2659 . 1.0 2663. 1.0 2668, 1.0 2675 . 1.0 2684 . 1.0 2697 . 1.0 2713. 1.0 2731. 1.0 2751. 1.0 2795 . 1.0 2820. 1.0 2846 . 1 .0 2903 , 2934. 1.0 2966 . 1.0 3000. 1.0 3034, 1.0 3067 . 1.0 3100. 1.0 3135 . 1 . 0 3169 . 1.0 3009, 3011. .00 3014 , , 00 3019 , .00 3024. .00 3031. .00 3042. .00 3055 . 3085. .00 3102 . .00 3120. . 00 3139 . ,00 3160 . .00 3182 . ,00 3205 . .00 3229. .00 3255 . .00 3282 . .00 3309 . 3336. .00 3362 . ,00 3390. .00 3418 . . 00 1.1326 1 .1324 1.1320 1.1314 1.1305 1.1295 1.1279 1.1259 1.1237 1.1213 1.1187 1.1160 1.1131 1.1102 1.1071 1.1039 1 .1007 1 .0974 1.0940 1.0907 1.0876 1 .0845 1.0815 1,0784 CRUISE SCHEDULE RANGE AND TIME SUMMARY RANGE -2- TIME [N.MI.I (HR) .5907 , 5894 .5882 . 587C .5860 ,5852 .5845 . 5842 ,5839 .5838 .5839 .5840 .5843 .5847 . 5853 .5860 .5868 .5877 . 5888 .5900 .5912 .5922 .5933 .5944 390.8 389.9 389.1 3S8 ,3 387 .7 387.1 386.6 386.4 386.3 386.2 386,2 386.3 386.5 386 8 387.2 337.6 388.1 338 .8 389. 5 390.3 391.0 391.7 392 .4 393.2 WEIGHT -4- TIME (POUNDS) (HR) 33600. .00 33300. . 10 33000. ,21 32700. .31 32400. .42 32100. RANGE -1- TIME RANGE -5- TIME (N.MI.) (HR] (N.MI.) . 0 .0 44 .7 34 . 6 89.6 69.2 134.9 104.0 180. 6 138 . 9 226.7 (HR) . 00 .00 ,09 .09 , IS ,18 .27 . 26 .36 .35 .46 .0 51.7 103 .9 156.4 209.4 262 .9 . 00 .10 .21 .31 . 42 .53 RANGE -3- [N.MI.) .0 46 .9 94 , 1 141 .8 189 . 8 238 .3 TIME (HR) .00 .09 .18 .27 .37 ,46 1298 . 1294 . 1290 .1286 ,1281 .1277 .1271 .1265 .1258 . 1252 .1245 .1238 , 1231 . 1224 . 1216 . 1209 , 1201 .1194 .1186 . 1179 . 1172 .1164 .1157 ,1150 RANGE (N.MI.) . 0 51 .7 103.9 156.4 209 .4 262 . 8 F16-FL0PS-0UT + S3 3130D. 173 .9 273 2 44 .=5 316 ™ 64 287 2 56 116 1 21900. 4.S4 2092 1428.2 7 4.21 3.63 2415 4 4.34 JRCO 6 4 . 28 2415.4 4 . < IB'IU . 209.0 320 I 53 . 64 371 0 74 336 5 65 371 0 h 111,0V . 4.99 2154, 1466.A i 4,34 3.73 2491 5 4 .99 2270 . 5 4 . 42 243 1 .5 4 .74 31200. 244 .3 367 4 62 . 71 425 8 85 386 3 75 425 7 4 :• .3 :•! . 5.IS 2225 1505 .4 7 4 . 48 3 . 88 1 • - " 5 .15 2341 .7 4 . 57 .:- . 3.5 4- . B£ 3Q9QQ . 279.6 415 2 .83 440 9 97 436 5 85 480 9 * 21000. 5 .30 2253 . 1544.1 4 4 . 62 3.99 2646 5 5 .30 2414 . 1 4 , 72 2 -746. 5 + . 37 .7 7 SO 20700. 2162 0 4 .75 2725 4 5 . 46 7 77 . 3 4 . 87 277,5 . 4 30600. 463 4 . 73 536 6 1 08 487 2 94 536 6 5 .46 1582.8 4,08 4 1. OB 35 . f 90 20 ; ). 2431 . 5 4.89 2805 4 5 . 62 2562 .7 5 ,02 2B0S.4 30300. • . 2 0 1, 01 592 7 1 19 538 4 1 04 S92 7 + 5.62 1621.7 4 . IB + 1.IS JS6.2 99 20100. 2501. 7 5.04 2886 5 5. 79 2 63 9 \ 5 . 18 2886,5 30000. 561 1 1.13 649 3 1 30 590 0 1 14 649 3 + 5.79 1640 .5 4.28 1 1.30 4 2.7 . R 1 OS 15300. 2573 5 . 18 2968 6 5.95 2 7 7 7 .9 5. 34 2968,6 23100. •310 7 1 .23 706 5 1 42 642 2 1 24 706 5 + 5 .95 1699.5 4 .38 + 1.42 457 . 9 1 17 19500. 2645. 5 5.32 3051 7 6 .12 2796 .2 30 3051.7 291D0. 660 7 1.33 764 2 1 53 8 1 35 7 64 1 6 .12 1738.5 « IB 1 . 53 493 .9 1 26 1 9.7 00. 271" 7 5 .47 3116 0 6.29 2 H77 .0 5 - 7 V; 3136.0 2910U . 7] 1 2 1 .43 822 4 1 65 748 0 1 45 822 4 + 6.29 1777,5 4 . 38 + 1.45 530 . 0 1 3 7 18900. 7.793 . 2 5 . 62 3SJ 7 5 6 ,46 2959 .1 5 . 83 3221 ,5 24800. 762 2 1 . 53 BB1 2 1 77 801 6 1 •3 881 2 4 6 Al 1316.6 4 . 68 4 1 .77 2F?50fv 566 . 2 B13 7 75 I .63 940 5 '••I ••) 855 8 1 66 940 5 # 136QO. 6 . S3 2463 14S5.7 5 5 .77 4 .73 3303 2 6. 63 3042 . 4 8 . 3308.1 4 1.6* 602 . 6 1 54 183(10. 2945 . 0 5.93 3396 0 7.^7 3126 .8 * • I 7 3396 . 0 B65 8 1 .74 1000 S 2 01 910 1 7 b 10 00 5 + 6 .41 1394.9 4.BB 4 2 .01 639 . Q 64 18000. 3022 . 6 6.03 3485 1 r 70 lilt . 3 7 34P5.1 2 7 900 918 1.84 7i J 2 . j 9B5 1,3 1061 0 6.99 1934.1 4 ,97 4 a . 13 675 . 6 1 7 3 .: 7" -10. 3101 . 4 6 .24 3575 6 7 . 17 3299 .0 6 . 54 3175.6 27600. 971 3 1 .95 : ! 72 2 2 25 1021 4 1 9B 1122 2 + 7 .17 ii n. 3 5,07 -> 2 .25 712.2 1 63 17400. 3141 . 3 6.40 3667 3 7 .36 3386 . 8 6 7 3 3667 .3 27300. 102 4 9 2.06 11 83 9 2 37 1077 6 2 09 ..7 73 9 4 7.36 2012 .6 5 .17 4 2.37 749. D . 92 . 00 27000. 1079 0 2.17 1246 3 2 50 1134 5 2 20 1246 * ITERATION 1 — f ANGE - 328 .025 FOR GROSS WEIGHT = 32974 t 2.50 26700. 7B5.9 11 jj 6 2 02 2 .28 1309 4 7 2 1191 9 2 31 7 JLLA 4 + 2 .63 322 .9 2 11 S CRUISE OPTIMIZAT[[ RESULTS 26400. 11BB 9 2 .39 1373 1 2 75 1243 f 2 42 I 777 1 4 2 . 75 B6.0-0 2 2 7 26100. 124 4 6 2.50 1437 4 2 HO 3 306 5 2 53 1437 4 SUMMARY DATA FOR CRUISE SCHEH1LE 1 + 2.HS B97 . 2 2 71 25BO0. 1301 N 2 ,61 1502 5 3 01 13 67 J 2 65 1502 5 WEIGHT ALTITUDE THKUST FUEL SFC MACH VELOCITY SPECIPI 3.01 934 .5 40 4 c RATE OF CL L/D EMC 1NES NOX 2 5500. 7 357 9 2 . 72 I3T>a 2 3 14 1427 7 2 77 156R 2 AVAILABLE REQUIRED FLOW RANGE + 3,14 971 . 9 2 50 + CLIMB OPERATING KATE 25Z0D. 1415 5 2 ..35 1634 6 3 28 1488 2 2 6 a 1634 6 . 265£ 4 3 2B 101(9 . 1 2 60 17BOO. 43'7(i3 . 2552 . 1961. 1859 . .9477 .3610 493 8 24PDO. 14~3 7 2 . '16 :. 7 N'. 7 3 41 1549 5 3 00 1701 7 + 9 1677.3 .4411 8.97 1.0 .00 3.41 1047.0 2 7 9 1J400. 2578 . 2056. : '41. . 9452 , 8659 496 7 • : • OO. 1532 5 3 . 08 1769 5 3 55 1611 4 3 12 1769 5 + 5 1427.5 . 4535 8 . 95 1,0 .00 .24':') 4 3 . 5 10S4.7 2 79 19: 0j, 47*43 2696 . 2143 . 2020. . 9427 . S664 497 0 24300. 1591 9 3 . 20 1838 3 68 1674 0 3 24 ] 9.3 T 1 4 4 1451.0 .757 8.96 7 . ,7 .00 4 3 .68 • . 32.5 2 HO 20OOO. 47024. 2817 . 2227 , 2094 . .9403 .8660 196 7 . 2372 24000. 7 672 1 3 . 32 1907 4 3 32 ',' • 7' 4 3 37 1907 4 4 4 1483 .2 .4521 8 . 98 1 . f1 . (J I- 4 1.B2 11 SO.4 2 95 20400. 46119 2 7-7. 2322 . 2148 . . 937 •• ,3657 496 7 .2290 217i ). 1712 9 3 45 1977 5 3 96 1401 5 3 49 1977 5 4 7 1502.2 .4510 9 .00 1.0 .01 4 3.96 119».4 3 09 . * 3, 45246. 2 3 9 6. 2241 . , 9351 .8653 496 3 . z 2 I 4 234G0. j 774 4 3 . 57 2C43 4 11 1366 4 3 62 7:7/1° 4 4 7 1509.9 . 4500 9-01 1 . 0 . 00 + 4 .11 1236.5 3 13 224DO. tt 3 3175 . 2480 . 2 3 14 . .930. . 8648 196 0 .277; 23;oo. 1B16 6 3 . £9 2120 1 4 7 ': 1931 9 3 74 2120 1 4 e 17- l .4436 9 . 03 1 . 7 . 00 4 4,25 127 4.7 3 213 23200. 43702. 3297. 2565. 2388. .9310 .4648 496 I . 7 077 22600. 1399 3 . ii2 2192 6 4 3S 1997 3 3 87 ,7 .. 7 E 4 5 15:75 .5 .4486 9.05 1 . .00 4 4.3i 1113 . ( 3 33 2.400O. •' 7G ' , 3116 , 2649. 2 • I . ,9290 .8647 496 0 . 2015 22400. 19£3 3.95 2 2 6 6 0 4 54 2(164 1 4 U ! 1266 0 4 3 1605.5 .44 64 9 . 00 1. c 4 4 ,54 13 51 7 •' 43 24900. 42230 3532 . :-. 'V!. 2411. . 9271 . 8646 495 .1954 222DD. 2027,6 4 OS 2340 4 69 2131 9 t 1 1 2340 2 +• 1(17,7 . 4432 9.07 . J 4 . US? .7 5 5B 256D0. 41593. 3645 . 2 sua. i. .9253 . 8645 495 S .1907 Nov 18 96 15:07:53 F16-FLOPS-OUT 7 1623.1 .4479 9 .08 1 ,0 .00 4 3 2876.0 .4165 10 63 1 .0 .00 26400. 40934. 3755, 2902 2680. .9236 . 8644 495 .8 .1849 26400. 39782. 3978 . 2480 2342. . 9444 . 8715 499 9 .2134 1 1622.5 . 4475 9 .10 1 .0 .00 4 3 2871.9 .4166 10 .64 1 .0 .00 27200 . 40287. 3862 . 2986 2753 . . 9219 .8642 495 .7 . 1800 27200. 39288. 4073 . 2549 2401. ,9421 .8692 498 5 . 2076 5 1616.5 .4472 9 ,11 1 . 0 .00 4 2 2828.5 . 4215 10 67 1 .0 .00 28000. 40000. 3914 . 3076 2831. .9204 .8656 496 . 5 .1753 28000. 38667, 4205. 2622 2470. . 9419 . 8704 499 2 .2021 7 1505.1 .4527 9 . 10 1 .0 . 00 + 2 2858.1 .4200 10 68 1 . 0 .00 28800. 39932, 3939 . 3173 2918 . .9196 . 8692 498 . 5 .1708 28800. 38109. 4320 . 2694 2534 . .9409 .8701 499 1 , 1969 i 1342.6 .4603 9 08 1 .0 .00 4 2 2854.0 .4209 10 69 1 .0 ,00 29600. 39337. 4064 . 3259 2996 . .9193 .8697 498 .8 . 1665 29 600. 37633. 4421. 2768 2601. ,9397 .8707 499 4 . 1919 1 1374.2 .4592 9 .08 1 .0 .00 4 9 2823.5 .4222 10 69 1 0 . 00 30400. 38727, 4190 . 3342 3071. .9187 .8694 498 .7 . 1623 30400. 37081. 4537 . 2841 2668 . .9391 . 8713 499 8 .1873 3 1407.2 .4584 9 .10 1 .0 .00 4 2 2823.6 .4218 1C 70 1 .0 .00 31200. 38125. 4313 . 3425 3145 . . 9181 .8689 498 4 . 1584 31200. 35087. 4922. 2872 2717. , 9459 .8635 497 7 . 1831 B 1435.3 .4576 9 11 1 ,0 .00 4 B 3311.2 . 4007 10 86 1 0 .00 32000. 37547. 4431. 3509 3219. ,9175 .8686 498 2 .1547 32000. 35000. 4940. 2949 2777 . .9416 . 8635 497 9 .1793 6 1454.6 .4568 9 12 1 .0 .00 4 1 3137.6 .4093 10 85 1 .0 .00 32800. 36983. 4547 . 3592 3293. . 9168 ,8682 498 0 . 1512 32800. 35000. 4940 . 3029 2837 . .9368 .8635 497 9 .1754 2 1468.1 .4562 9 13 1 .0 .00 4 7 2938.2 ,4195 10 83 1 0 ,00 33600. 3 5000. 4937 . 3653 3353 . ,9177 .8627 497 4 , 1483 33600. 34909. 4976. 3116 2913 , .9349 .8672 50C 2 . 1717 5 1924.5 .4306 9 20 1 0 .00 4 0 2804 .5 .4243 10 78 1 0 .00 34400. 35000. 4937. 3738 3424 . .9158 .8627 4 97 4 . 1452 34400. 34451. 5098 . 3192 2991. .9370 .8688 502 2 .1678 8 1755.4 .4408 9 20 1 .0 . 00 4 9 2817.3 .4234 10 78 1 0 .00 35200. 35000. 4937 . 3826 3497 , . 9140 .8627 497 4 . 1422 35200. 33994. 5217 . 3267 3067. .9388 ,8698 503 8 .1642 4 1590.5 .4511 9 20 1 0 ,00 4 6 2826.9 .4231 10 77 1 0 .00 3 6000. 35000. 4937 . 3915 3572, .9122 ,8627 497 4 .13 92 36000. 33537. 5335 . 3341 3142 . ,9404 .8705 505 2 .1608 6 1429.5 . 4613 9 19 1 0 . 00 4 C 2834.4 .4229 10 78 1 0 ,00 3680O. 35000. 4963 . 4025 3677 . . 9134 .8699 501 5 . 1364 36800. 33082. 5449 . 3412 3212 . .9415 .8701 506 0 . 1575 1 1294,2 .4638 9 14 1 0 .00 4 1 2836.1 . 4236 10 79 1 0 .00 37600. 34966. 4982 , 4126 3767 . ,9131 .8727 503 2 .1336 37600. 32628. 5565 . 3485 3286. .9430 . 8706 507 3 .1543 a 1160.7 .4701 9 11 1 0 .00 + 7 2842.5 .4233 10 79 1 0 .00 38400, 34379, 5133 . 4210 3858 , .9163 . 8732 504 9 .1308 38400. 32176. 5681. 3558 3359 . .9443 .8709 508 5 .1513 8 1228.2 .4664 9 12 1 0 .00 4 1 2848.0 .4230 10 79 1 0 .00 39200. 33691. 5299 , 4285 3938. .9189 .8711 505 2 .1283 39200. 31724. 5796. 3630 3432. ,9455 , 8711 509 6 .1485 0 1323.1 .4632 9 15 1 0 .00 4 0 2852.7 ,4227 10 80 1 0 ,00 40000. 32944. 5479 , 4359 4017. .9217 .8688 505 6 ,1258 40000. 31274, 5911. 3701 3504 , .9467 .8712 510 7 . 1457 4 1433.7 .4588 9 18 1 0 . 00 4 6 2856.8 .4224 10 81 1 0 .00 SUMMARY DATA FOR CRUISE SCHEDULE 2 SUMMARY DATA FOR CRUISE SCHEDULE 3 WEIGHT ALTITUDE THRUST FUEL SFC MACH VELOCITY SPECIFI WEIGHT ALTITUDE THRUST FUEL SFC MACH VELOCITY SPECIFI C RATE OF CL L/D ENGINES NOX 4 C RATE OF OL L/D ENGINES NOX AVAILABLE REQUIRED FLOW NUMBER RANGE AVAILABLE REQUIRED FLOW NUMBER RANGE CLIMB OPERATING RATE 4 CLIMB OPERATING RATE 17600. 47592. 2736. 1671 1625 . .9720 , 8636 495 3 .3049 17600. 50000. 2336 . 1715 1617 . . 9429 .8236 472 4 .2921 1 3034.8 .4111 10 53 1 0 .00 + 0 1688.6 . 5071 10 26 1 0 ,00 18400. 47085. 2807 . 1749 1690. .9665 . 8652 496 3 ,2935 18400. 50000. 2366. 1805 1704 . .9440 . 8379 480 6 .2820 7 2889.2 . 4179 10 52 1 0 .00 4 7 1483.2 .5123 10 19 1 0 . 00 19200. 46212, 2929 . 1825. 1760 . .9641 .8679 497 5 .2829 19200. 50000, 2390 , 1899 1793 . . 9440 .8497 487 4 . 2718 1 2897.9 .4156 10 52 1 0 ,00 4 8 1262 .3 .5198 10 11 1 0 .00 20000. 45341. 3048. 1899 . 1827 . .9617 .8695 498 7 .2730 ' 20000. 50000. 2390. 2010 1885. .9382 . 85O0 487 5 .2585 4 2900,8 .4138 10 53 1 0 .00 4 7 940.0 ,5411 9 95 1 0 ,00 20800. 44573. 3160 , 1969 . 1887. ,9582 .8679 497 8 .2638 20800. 50000, 2390 . 2127 1934 , . 9325 ,8500 437 5 .2457 1 2886 .3 .4163 10. 56 1 0 .00 4 9 625.3 .5627 9 78 1 0 .00 21600, 43872 . 3280. 2044 . 1954, . 9560 .8692 498. 5 .2551 21600. 50000. 2413 . 2239 2097 . ,9369 . 8608 493 7 .2353 1 2 889.3 .4169 10. 57 1 0 .00 + 9 402 . 6 . 5698 9 55 1 0 . 00 22400. 43173. 3399. 2118. 2020. .9538 .8701 499. 1 .2470 22400. 50000. 2422 . 2361 2219 . .9397 .8654 496 4 .2237 1 2890.3 .4172 10. 57 1 0 .00 4 1 136.9 .5846 9. 49 1 0 .00 23200. 42477. 3517. 2192 . 2086 . .9518 .8708 499 . 5 .2394 232O0, 49776, 2510. 2466 2341. . 9496 .8936 512 5 .2189 3 2889.7 .4173 10 . 59 1 0 .00 4 1 100 .0 .5618 9. 41 1 0 .00 24000. 41784. 3634. 2264. 2151 . .9498 . 8711 499 . 7 .2323 24000. 49186. 2603 . 2557 2430 . .9501 . 9000 516 2 .2124 4 2887.2 .4172 10. 60 1 0 . 00 i + 5 100.0 . 5571 9 . 38 1 0 .00 24800. 41094. 3749 . 2336 . 2215. .9478 . 8714 499 . B .2256 24800. 48546. 2690. 2643 2506. . 9482 .9000 516 2 .2060 CO 2883.7 . 4169 10, 61 1 , 0 .00 4 0 100. C .5583 9 . 38 1 0 .00 25600. 40418. 3863 . 2408. 2278 . , 9459 .8715 499 . 9 .2194 25600. 47912. 2776 . 2727 2581 , .9464 . 9000 516 2 . 200C NOT 1$ 96 15:07:53 F16-FLOPS-OUT + 0 100 . 0 , 5591 9 .39 1 . 0 .00 -f 3 2876.0 .4165 10 .63 1 .0 .00 26400. 47286. 2861 . 2811 2655. . 9448 .9000 516 .2 ,1944 26400. 39782. 3978 . 248C 2342 . . 9444 .8715 499 .9 .2134 4 0 100. C .5595 9 .39 1 .0 .00 4 3 2871.9 ,4166 10 .64 1 0 ,00 27200. 46666. 2945. 2893 2729. .9433 , 9000 516 .2 .1891 27200. 39288. 4073 . 2549 2401 . .9421 . 8692 498 5 . 2076 4 6 100.0 .5596 9 .40 1 .0 . 00 + 2 2828.5 .4215 10 . 67 1 .0 . 00 28000. 46053 . 3028 . 2975 2802 . . 9419 .9000 516 .2 , 1842 28000. 38667, 4205, 2622 2470. .9419 .8704 499 2 .2021 + 5 100. 0 .5594 S .41 1 0 .00 + 2 2858.1 .4200 10 ,68 1 0 .00 28800. 45447. 3110. 3055 2874 . .9405 . 9000 516 .2 .1796 28800. 38109. 4320. 2694 2534 . .9409 . 8701 499 1 , 1969 + 1 100 .0 .5590 9 .43 1 .0 .00 2 2854.0 .4209 10 .69 1 .0 .00 29600. 44868. 3193 . 3137 2946 . .9392 .9000 516 .2 . 1752 29600. 37633. 4421 . 2768 2601. . 9397 .8707 499 4 . 1919 4 2 100.0 .5588 9 .44 1 0 .00 + 9 2823.5 .4222 10 .69 1 0 .00 30400. 44356. 3280. 3222 3022 . .9378 .9000 516 .2 ,1708 30400. 37081, 4537 . 2841 2668 . .9391 . 8713 499 8 .1873 + 2 100.0 .5600 9 43 1 .0 .00 2 2823.6 .4218 10 7C 1 0 .00 31200. 43848. 3367. 3307 3097 . .9365 . 9000 516 2 .1666 31200. 35088. 4922. 2872 2717 . 9459 .8635 497 7 . 1831 4 8 100.0 . 5609 9 .43 1 0 ,00 4 B 3310.9 .4007 10 86 1 0 .00 32000. 43344. 3453 . 3391 3172 . , 9352 , 9000 516 2 ,1627 32000. 35000. 4940 , 2949 2777 . .9416 .8635 497 3 ,1793 4 6 100.C . 5616 9 44 1 0 .00 4 1 3137.6 .4093 1C 85 1 0 .00 32800. 42844. 3537 , 3475 3246. .9341 . 9000 516 2 .1590 32800. 35000. 4940. 3029 2837 . 9368 .8635 497 9 . 1754 4 5 100.0 .5620 9 44 1 0 .00 4 7 2938 .3 .4195 10 83 1 0 .00 33600. 42349. 3622 . 3557 3319, . 9330 . 900C 516 2 .1555 3360O. 35000. 4952 . 3117 2911. .9338 . 8669 499 8 .1716 4 4 100. 0 . 5623 9 45 1 0 .00 4 8 2764,1 . 4264 10 78 1 0 .00 34400. 41858, 3705 . 3639 3392 . .9319 .9000 516 2 .1522 34400. 35000. 4970. 3211 2997 . .9332 . 8717 502 6 . 1677 + 1 100 .0 .5623 9 45 1 0 .00 + 1 2601.5 . 4318 10 71 1 0 .00 35200. 41371. 3788, 3721 3464. .9309 . 9000 516 2 .1490 35200. 35000, 4978 . 3302 3076. 9317 . 874C 503 9 .1638 4 4 100.0 .5621 9 46 1 0 .00 4 2 2430.1 .4395 10 66 1 0 .00 36000. 40889. 3870. 3801 3535 . . 9300 . 9000 516 2 .1460 36000, 35000. 4988. 3395 3159 . .9304 .8767 505 5 .1600 4 4 100.0 .5617 9 47 1 0 .00 + 4 2265.2 . 4466 10 60 1 0 ,00 36800. 40410. 3951 . 3881 3 606 , .9291 . 9000 516 2 .1431 36800. 35000. 4998. 3490 3243 . 9292 . 8794 507 0 .1563 + 7 100 .0 . 5612 9 48 1 0 .00 4 6 2103.8 .4538 10 54 1 0 .00 37600. 39944. 4033 . 3961 3677 . . 9283 , 9000 516 2 .1404 37600. 3 5000. 5008 , 3587 3329 . 9281 . 8322 508 6 .1527 4 1 100.0 ,5608 9 49 1 0 .00 4 9 1946.2 .4607 10 48 1 0 .00 38400. 39534, 4119 . 4045 3753. .9277 .9000 516 2 . 1375 38400. 35000. 5013. 3686 3417 . 9270 .8850 510 2 .1493 4 4 100.0 .5616 9 49 1 0 ,00 + 2 1791.8 .4676 10 42 1 0 .00 39200. 39126. 4205. 4130 3829 . .9273 .9000 516 2 .1348 39200. 35000. 5027. 3787 3507. 9260 . 8877 511 3 .1459 + 1 100. 0 . 5622 9 49 1 0 .00 4 5 1640.3 .4744 10 35 1 0 ,00 40000. 38722. 4290 . 4213 3905 . , 9268 .9000 516 2 .1322 40000, 35000. 5037 . 3889 3598 , 9251 .8903 513 3 .1426 + 0 100 .0 .5626 9 49 1 0 .00 + 1 1491.4 .4812 10 28 1 0 .00 SUMMARY DATA FOR CRUISE SCHEDULE 4 SUMMARY DATA FOR CRUISE SCHEDULE 5 WEIGHT ALTITUDE THRUST FUEL SFC MACH VELOCITY SPECIFI WEIGHT ALTITUDE THRUST FUEL SFC MACH VELOCITY SPECIFI + C RATE OF CL L/D ENGINES NOX 4 C RATE OF CL L/D ENGINES NOX AVAILABLE REQUIRED FLOW NUMBER RANGE AVAILABLE REQUIRED FLOW NUMBER RANGE + CLIMB OPERATING RATE 4 CLIMB OPERATING RATE 17600. 47592. 2736 . 1671 1625 , . 9720 .8636 495 3 .3049 17 600 . 0. 16257. 2673 3022 . 1 1307 .5979 395 5 . 1308 + 1 3034 .8 .4111 10 53 1 0 .OC + 5 30911.3 . 1108 6 58 1 0 .00 18400. 47085. 2807 . 1749 1690. ,9665 ,8652 496 3 .2935 18400. 0 . 16226. 2670 3020. 1 1309 .5953 394 1 , 1305 + 7 2889 . 2 .4179 10 52 1 0 . 00 4 1 29404,1 .1166 6 89 1 0 .00 19200, 46212. 2929 . 1825 1760. . 9641 . 8679 497 a .2829 19200. 0 . 16196. 2670 3020. 1 13 08 .5939 392 S . 1301 + 1 2897.9 .4156 10 52 1 0 .00 4 1 28028 .4 , 1225 7 19 1 0 . 00 20000. 15341. 3048 . 1899 1827 . .9617 .8695 498 - , 2730 20000, 0, 16173, 2675 3023. 1 1302 .5925 391 9 .1296 + 4 2900.8 .4138 10 53 1 0 .00 4 4 26785.5 .1282 7 48 1 0 .00 20800. 44573. 3160. 1969 , 1887 , .9582 .8679 497 s .2638 20300. 0 . 16151. 2681 3028 , 1 1295 , 5911 391 0 . 1291 4 1 2886.3 .4163 10 56 1 0 .00 4 2 25643.8 .1339 7 76 1 0 . 00 21600, 43872. 3280 . 2044 . 1954 , .9560 .8692 498 5 . 2551 21600. 0 . 16132. 2690 3036 . 1 1285 .5899 390 2 ,1285 + 1 2889.3 .4169 10 57 1 0 .00 4 5 24592.4 , 1397 8 03 1 0 .00 22400. 43173. 3399 . 2118 . 2020. .9538 .8701 499 1 .2470 22400. 0, 16116, 2701 3044 . 1 1272 .5888 389 5 . 127S + 1 2890.3 ,4172 10 57 1 0 . 00 4 4 23622.1 .1454 3 29 1 0 , 00 23200. 42477, 3517 . 2192 . 2086 . .9518 .8708 499. 5 .2394 23200. 0 . 16101. 2715 3056 . 1 1255 .5879 388 9 . 1272 + 3 2889.7 .4173 10 59 1. 0 .00 4 8 22723.9 . 1510 8 55 1 0 .00 24000. 41784. 3634 . 2264 . 2151 . ,9498 ,8711 499 7 .2323 . 2 4000. 0. 16093. 2736 3072 , 1 1230 .5874 388 6 , 1264 t 4 2887 . 2 .4172 10 60 1. 0 .00 4 8 21901.1 . 1565 8 77 1 0 .00 24800. 41094. 3749. 2336. 2215. .9478 . B714 499 a .2256 2480O. 0 . 16088, 2759 3091. 1 1202 .5871 388 4 .1256 + 8 2883.7 .4169 10 . 61 1 . 0 . 00 4 5 21137 .9 .1619 8 99 1 0 .00 25600, 40418. 3863 . 2408. 2278 . .9459 . 8715 499. s .2194 25600, 0, 16086. 2786, 3112 . 1 1171 . 5870 388 3 . 1247 15:07:53 F16-FLOPS-OUT + 7 * 7 * 3 +- 7 + 9 t 9 + 8 + 7 + 0 r 2 * 4 + 6 * 0 4- 4 + 3 4 0 *• 7 + 3 + 9 2Q4J8.7 264O0. 19768.6 27200. 191.52.4 2BQ00, v. 288 DO . I8D41.6 25600. : 40. 30400. 17072.2 31200. 36634.4 32090. 16220.9 32800. i 321.2 33600. 35445,0 34400. 14090.6 352OC. 14753.1 J600O. 14454.3 16800. 14108.4 17SO0. 13763.9 38400. 13432.8 3920O. 13114.1 40000. 128*7.3 . 1721 ,1825 .1921 C .1966 C .2010 c .2053 0 .2097 0 .2140 J .21-1 0 .2220 0 2 2 57 0 .2304 0 . 2354 0 .2404 0 . 2454 .2 504 9.19 16087. 9.38 16090. 9.56 16096. 9 .72 16105. 9 .88 36117. 10.02 1*132. 10 . 15 15149. 10,26 -6158. 10 3 6 If184. 10 ,50 16203 . 10.60 16224 . 10 , 70 162SO. 10 .79 15278. 10.87 I 62S3 . 10,97 162B3, 11 .07 16263. 11.If 16283. 11 .18 I •'.,. 8 3 . 11.34 1.0 . DD 2835 . 3135 . 1.0 00 ->, fi ,:i 6 . 3160. 28B0. 1.0 .00 2916 . 1 . 0 .00 2 0 55. 3247 . 30B2 . 1 . 0 3125 , 31 69 . .00 .co .CO 3215 . 3455 . 1.0 .oo 3163. 33-3 . 319 3. .00 3534 . 3483 . 367 I 1.0 .oo 3527 . 3706 . 1.1138 1,1102 1.1065 1.1026 1 ij9B5 1 .0944 1.0902 1.0862 l.C. . 1.0784 1.0746 1.0707 1 . 0663 1 .0535 3 , Oc 0 3 7 .03 7 2 1 . 054G 1 .0508 .5870 . 5872 .5376 .5881 .5889 . 5898 .5910 . 5922 . 5932 .5944 ,5957 . 5970 • 5992 . f.995 .5995 .5995 • 5995 .i99!5 388 .3 IRfl. 4 188.7 389 . 0 3B9.5 390. 2 390 .9 391.7 302 . 4 391 2 394 . 1 395,1 39S.3 396.6 396.6 396 . 6 395.6 396.6 .123B . 1229 .1219 .1209 . 7.17 7 . nqci . 1179 . 1170 .1160 . 1150 1140 . 1131 . na i .mi 1101 .1090 .1-..- .1069 1 . 0 RUISE SCHEDULE RANGE AND TIME SUMMARY RANGE -2- TIME •HEIGHT -4- '1 Z'V-r. ! POUNUfi (HE! 40000. .00 3S600. 11 392DD. .21 3 8800• .34 3. , 4 6 3 8000. 5/ 376.00 . .69 37200. .81 36800. .94 36400. 1 .06 3*000. 1-19 RANGE • RANGE -5- (N.MI.) (N.MI.] .0 .0 5.J .6 4 2.1 101,7 153.2 129.3 201 .3 I 11 .8 257 . 9 216 . 6 '11 1 260.5 j64 .8 304 .7 419.1 144, 0 47 3 393,6 529.3 418 .3 . - II TIME I Kit) 1HR) .00 .00 .10 2. .30 .33 .72 .77 . 83 .38 .34 .99 1 .05 L.ll [N.MI.) , 0 58 . 6 117 . 7 177 . 4 237 . 6 298.5 359.3 422,0 484 .7 548 . 0 612 .0 [HR| . 00 . 11 .23 . 35 .47 . 59 71 . 83 . 95 1 .08 1.21 RANGE -3- TIME (N.MI.) (KR) 53 . 1 106 . 8 161.0 215 .7 271 . 0 326 . 9 383 . 3 440.3 497 . 9 556 .D .OC . 10 .23 .31 . 42 .53 . 63 74 . 85 .96 RANGE (N.MI.J .0 57 ,4 115 .4 174 . 1 233 .5 293 . 6 354 .4 415.8 478.0 540 .9 1.31 35200 . 1 . 44 34600. 1.57 34400. 1 .71 34000 . 1 . i 31600. 1 . 58 33200. 2 .13 32800 . 2 .76 32400. 2 . 40 32000. 2.54 316O0. 2 .69 31200. 2 , H3 30800 . 2 .98 30400. 3 . 13 30000. 3 . 28 29600 . 3.41 29200. 3.59 2B800. 3 .74 26400. 3 .90 2 8000. 4 . or. 2' 7 00. 4 .23 27200. 4 .39 2C80O. 4 . 56 26400. 4 . 13 26000 4 .90 25600. 5 . 0G 25200. :.. 25 24S00. 5,43 24400. 5.61 24000. 5. "0 236-00. 5.99 23200. 5 . Hi 22600. 6,37 22400, 565-3 433 .3 641. 9 528.4 699 , L 573 .7 756.9 639.3 315. 4 665.0 H74 .4 713.9 934 . 0 757.0 994 .2 801.3 1055.0 849. B 111* .6 896.5 1178:' 943.4 1241.9 990.5 1305.6 103 7.6 1370 .2 1085,3 1415 . 6 1113.0 1501.S lit! . J 1168.8 1229 . t 1636,7 1277-1 1705.5 1374.5 1545.8 3423.1 1917,3 1472.4 1959.8 1521.7 206 3.3 1571.1 2137 6 1620. 6 2213.3 1670.S 2289.S 1720.6 2367.6 1770.B 2446.5 1B21.i 252 6.5 1871.6 2607 7 1322.3 2690.2 1973.: 2773.9 2 02 4.1 2359 .0 1 . 15 1 .22 1.26 1.31 1 31? 1.45 l.Sl 1.56 1,63 1 , 68 1 .75 1 . t- 0 1.87 1.91 1 . ?9 1-1 . !3 2 . 11 2.15 2.23 2 . 27 2 . 36 2 .39 2 . 48 2.51 2.61 2 . fij 2 . 14 2 .75 2 . 87 2 .37 3 .00 3 . 00 3 . 14 1 . 12 3.28 3.24 3.41 2 , 37 3 . 55 3.49 3 .70 3 . 62 3.84 3.75 3 . 99 3.87 4 .13 4 .00 4.28 4..'.3 •1,14 4.2b 1. 19 •1.71 4 . 52 4.91 4 ,77 S.23 4.91 5.40 5,04 5.57 5. • 5.74 576-6 742 .0 806,0 874 .8 942.4 1QJ0 .7 1079 .7 1149.5 1220.1 12? 1. .4 1363 . 5 1436 , 4 1510 . 1 15B4.6 1660 .0 1 7 •( 6 . 3 1813 . 6 1891 . 8 1971 . 1 2051 . 4 2132 .8 2215.3 2298.9 2383 .7 2469 . 7 255S.8 2645.2 2714 ,9 2825 .8 29IB.0 JOIV.7 3 3 11 6 . 7 3203.2 3301 . 3 1 .33 1.46 1.59 1 , 73 1 . 86 2 . 00 2 .14 2 .28 2 . 42 2 - 56 2.71 2 .85 3.00 3 .15 3 .30 3.45 3.61 3.76 3 .92 4 .08 4.25 4.41 1 . 5 i. 4.75 4. 92 5.27 3.45 5 . 63 5 . 82 t . 0 7 6. 20 4.39 6 . 59 614 . 7 674 .C 733 . 9 794 .5 855. 7 917 . 6 980.2 1043 . 4 1107 . 4 1172 . 1 1237 . 6 1303 .9 1371 .0 14111. 9 1507 , 6 1647.8 1719.2 1791.5 1864 . 8 193S.9 2014.1 2090.3 2 i -: 7 . 5 2245.8 2 i 15 . 2 2405.8 2487.6 2571) .7 2655•j 2740.6 2827.5 2915.5 1004.4 1 .19 1 .31 1.42 1.54 1 . 66 1.78 1 . 90 2 .02 2 . 15 2 .27 2 . 40 2 .53 2 . 66 3 .79 2 , 92 3 .06 ; . 1? 3 .33 3 .47 3,61 3 .76 3 . 90 4.05 4.2!) 4 .35 4.50 4 . 66 4 . 82 4.98 5 . 14 5 .31 5 .48 5 . 65 5 . 83 66B .9 734 . 1 800.0 •! . . 7 934 .2 1002 . 4 1071,J 1141.3 1211 . 8 1283.2 I -.55.3 1428.2 11C1 . 8 1576.3 1651 . 7 1728.1 1805-3 1.3d3 . 6 1962.5 2043 .2 2124.6 2207.1 22 3 0.7 2375.5 ,: 4 >_• 1 . 4 2548.6 26.37 . 0 2726.6 2817.5 jui . 6 3003.4 3 0=7.5 3145.0 3293.0 Nov IS 96 15:07:53 F16-FLOPS-OU1T + 6.57 2075.2 5 .30 AUXILIARY TANK CAPACITY 6760.0 LB 22000. 2945 5 5.91 3400 9 6 79 3095 1 6 01 3392 6 TOTAL FUEL CAPACITY 13735.0 LB + 6 .77 2126.4 5 43 21600. 3033 3 6.09 3502 1 6 99 3188 1 6 20 3493 8 1 MASS AND BALANCE SUMMARY PERCENT WREF + 6.97 2177.8 5 56 + T LREF HORI CG-INCHES 21200. 3122 6 6.27 3605 0 7 20 3283 2 6 39 3596 7 WING 6.11 7.18 2229.3 5 69 + .0 .0 20800. 3213 5 6. 45 3709 6 7 41 3380 4 6 59 3701 4 HORIZONTAL TAIL 1.45 *- 7.39 2280.9 5 83 .0 .0 20400. 3305 9 6.64 3 816 0 7 62 3430 0 6 80 3807 a VERTICAL TAIL 1 . 10 + 7 .60 2332.6 5 96 + .0 .0 20000. 3400 0 6.83 3924 3 7 84 3582 1 7 01 3916 i FUSELAGE 10 ,56 + 7 . 82 2384.4 6 09 + ,0 ,0 19600, 3495 7 7 . 02 4034 5 8 06 3686 8 7 22 4026 2 LANDING GEAR 3 .61 + 8 .04 2436.3 5 22 .0 .0 19200, 3593 3 7.22 4146 6 8 28 3794 2 7 44 4138 4 NACELLE (AIR INDUCTION) 2 .01 + B.26 2488.3 6 35 + .0 .0 18800. 3692 6 7 . 42 4260 8 8 51 3903 9 7 67 4252 6 STRUCTURE TOTAL ( 24.84! 8.4S 2540.3 6 49 + ,0) ( .0) 18400. 3793 a 7,62 4377 2 8 75 4015 7 7 90 4368 9 ENGINES 11.40 + 8.73 2592.5 6 62 + .0 .0 18000. 3897 1 7.83 4495 7 a 99 4129 5 8 14 4487 5 THRUST REVERSERS .00 + 8.97 2644.7 6 75 + .0 186.0 17600. 4002 3 8 . 04 4616 5 9 23 4245 3 8 38 4608 3 MISCELLANEOUS SYSTEMS ,34 + 9 .23 2697.1 6 88 + ,0 .0 ITERATION 2 - ITERATION 3 ITERATION 4 ITERATION 5 ITERATION 6 - RANGE - RANGE - RANGE - RANGE - RANGE 1400 596 579 580 580. # OUTPUT FROM THE WEIGHTS MODULE DESCRIPTION WING BENDING FACTOR ENGINE INERTIA RELIEF FACTOR WINQ WEIGHT BREAKDOWN TERM 1 TERM 2 TERM 3 WING SPAN WING GLOVE AREA HORIZONTAL TAIL AREA MODIFIED VOLUME COEFFICIENT VERTICAL TAIL AREA MODIFIED VOLUME COEFFICIENT NACELLE LENGTH NACELLE DIAMETER LENGTH OF MAIN GEAR LENGTH OF NOSE GEAR MAXIMUM LANDING WEIGHT WING FUEL CAPACITY FUSELAGE FUEL CAPACITY 505 FOR GROSS WEIGHT = 156 FOR GROSS WEIGHT = 771 FOR GROSS WEIGHT = 608 FOR GROSS WEIGHT = 600 FOR GROSS WEIGHT = VALUE DIMENSIONS 8 . 74 67 1.000000 1310.4 LB 1452.0 LB 171.0 LB 30.00 FT .00 SQ FT 63.70 SQ FT .936390 54.75 SQ FT .268275 31.00 FT 2 . 81 FT 49,90 IN 39.00 IN 32812.5 LB 1144.0 LB 5831.0 LB 38990.23 34390.85 34301.90 34306.40 34306.36 FUEL SYSTEM-TANKS AND PLUMBING .0 .0 PROPULSION TOTAL .0) ( .0) SURFACE CONTROLS . 0 .0 AUXILIARY POWER ,0 .0 INSTRUMENTS .0 .0 HYDRAULICS .0 .0 ELECTRICAL .0 .0 AVIONICS .0 .0 THERMAL PROTECTION . 0 .0 FURNISHINGS AND EQUIPMENT ,0 .0 AIR CONDITIONING .0 .0 ANTI-ICING .0 .0 SYSTEMS AND EQUIPMENT TOTAL .0) < .0) WEIGHT EMPTY .0 .0 CREW AND BAGGAGE-FLIGHT, 2 . 0 -CABIN, 0 ,0 UNUSABLE FUEL , 0 ENGINE OIL .0 PASSENGER SERVICE .0 CARGO CONTAINERS . 0 1.68 ( 13.43) 2.13 .79 .31 .91 2 .00 7 . 11 2 .36 .91 .78 . 15 I 17.44) 55.70 .63 .00 . 65 . 17 .30 . 50 POUNDS 2096 . 498, 376. 3624 . 1238 , 689 . 8521.) 3911, 0. 117 . 578 . 4606.1 730. 271. 107 . 311 . 686, 2438 . 808 . 312 . 2 67 , 53 . 5983.) 19110. 215 . 0. 223 . 59 . 102 . 172 . Nov IS 96 15:07:33 OPERATING WEIGHT * .0 .0 PASSENGERS, * .0 .0 PASSENGER BAGGAGE * .0 .0 CARGO * .0 .0 ZERO FUEL WEIGHT * .0 .0 MISSION FUEL + .0 .0 RAMP (GROSS) WEIGHT * . 0 .0 57 .95 ,00 .00 3 .11 61.06 38.94 100,00 19882. 0 . 0 . 1066. 20943. 13358. 34306. F16-FLOPS-OUT ACCELERATION TIME =. .0000, DISTANCE = .0000, FUEL = TURN * B.3197 G, OMEGA = 15.70 DEG/SEC AT CL = .80720, CE * 28583. LB TURN = 8.4536 G, OMEGA = 15.96 DEG/SEC AT CL = .80720, CD * 28583, LB TURN = 8.5896 G, OMEGA = 16.22 DEG/SEC AT CL = .80720, CD + 28583, LB TURN = 8.7277 G, OMEGA = 16.48 DEG/SEC AT CL = .80720, CD + 2 8583. LB TURN = 8.8681 G, OMEGA =, 16.75 DEG/SEC AT CL = .80720, CD * 28583. LB TURN = 9.0107 G, OMEGA = 17.02 DEG/SEC AT CL = .80720, CD <• 28583 . LB .0000 .11544, THRUST .11544, THRUST .11544, THRUST .11544, THRUST .11544, THRUST ,11544, THRUST » NONCRUISE SEGMENT RESULTS CLIMB PROFILE DATA FOR SEGMENT 1 - - - CUMULATIVE - - -WEIGHT ENERGY ALT MACH TIME DIST FUEL CL L/D 33796 .00 33771 .02 33710 .07 33649 .13 33588 .18 33529 .24 33471. .30 33413. .37 33356. .44 33298 .51 33240 .59 33183. .68 33125. .77 33066. .88 33007, . .00 32947. ..12 32886. . .27 32824. . .43 24 85 1 .8 7. IC 9492 0 10333 2 12480 5 14627. 8 146 16775. 1 2 07 18922 . 4 266 21069, 324 23216. 2 3 82 25364. 6 439 27511 1 497 29658 7 555 31806 3 612 33953. 1 670 36100 9 729 38248 7 788 40395 8 848 42542 9 909 44690. 2 971 0 .0 o . I 1528 . 5 3675 .9 5822 .3 7968 . 3 10113 5 12258 .3 14404 . 9 16545 4 18694 0 20840 .8 22985 . 8 25131 2 27276 3 29421 1 31567 .0 33712 .5 ,700 .155 7.49 .730 .142 6.91 .756 140 6.74 .762 149 7.07 .767 .159 7.4C .773 170 7.73 ,780 181 8.05 .786 193 8.37 .792 207 8.67 .799 221 8.96 .806 . 237 9.25 .813 255 9.52 .820 274 9.76 .827 294 9.98 .8"35 317 10.14 .843 342 10.25 .851 369 10.31 .859 400 10.26 VEL THRUST 4 63 .0 33787 433,1 33724 497 . 4 32576 4 97 .4 31063 497 . 4 29576 497.4 28099 497 .S 26657 497 .5 25138 497 .6 23644 497 . 6 22066 497 ,7 20464 497 .7 18935 497 .7 17481 497 .8 16026 497.8 14792 497 . 9 13541 497 .9 12433 498 .0 11366 RCI PC /TMAX 40622. 1 1.000 41777. 1 1 .000 41206. 1 1 . OOO 39378. 1 1.000 37548. 1 1 .000 35698. 1 1.000 33869. 1 1.000 31884. 1 1.000 29903. 1 1.000 27771. 1 1.000 25576. 1 1 . 000 23465. 1 1.000 21439. 1 . 1.000 19379. 1 1.000 17621. 1 1.000 15803. 1 1.000 14171. 1 , 1.000 12549. 1 1.000 - - INCREMENTAL- -TIME DIST FUEL CLIME PROFILE DATA FOR SEGMENT 13 - - - CUMULATIVE - - -WEIGHT ENERGY ALT MACH TIME DIST FUEL CL L/D ,00 .02 . 05 ,05 .06 .06 ,06 .07 .07 ,07 .08 .09 .IC .11 . 12 .13 .14 .16 1.0 1 .1 1.3 .0 24 .1 61.4 61 .4 60 .4 58.9 58 .2 57 .8 57.6 57 . 6 57.6 57.7 58 . 0 58 .4 59.0 59.3 60 . 9 62 .4 725. S 790.2 800 .7 751.1 703 . 9 S59 .2 616.7 576.3 537 .9 501,6 467 .1 434 . 5 403.7 374 .6 347 .1 321.2 296 .8 273.9 20905. .00 20873, ,04 20833 . . 09 20792. . 15 20752. .22 20712. . 23 20672. .37 20632. .46 20591, .57 20550. . 68 20508. .81 20465. .96 20420. .14 20389, .28 24612 .0 26676 .0 29184 ,2 31693 .5 1000C .0 15702 31.9 18213 72.2 20722 112.4 1.8 34202. 23229 8 152.5 36710. 25735 3 192.6 39219. 23242 232,8 41728. 30749 2.5 273.2 44236. 33255 3.2 313.8 46745. 35762 4.0 354.9 49254. 38268 5.1 396.7 51762. 40775 6.2 439.8 54271. 43281 7.7 484.4 55959. 44967 B.8 515.7 084 135 146 159 173 186 205 225 246 270 303 341 384 415 900 4.39 .797 7 . 06 ,805 7.46 .813 7 .36 821 8.27 830 8 . 68 838 9 .09 848 9 .47 857 9.79 867 10,02 368 10.31 869 10.52 B69 10.59 869 10 . 55 VEL RCI THRUST /TMAX 574.5 66291. 28583. 1.000 497.9 47719. 22713. 1.000 497.8 43641. 20828. 1.000 497.8 39698. 19019, 1.000 497.9 35973. 17319, 1.000 497.9 32369. 15683. 1.000 497,9 29171. 14233. 1.000 498.0 26057, 12838. 1.000 498.0 23256. 11597. 1.000 498.1 20482. 10396. 1.000 498.1 17809. 9229, 1.000 498.2 15214. 8118. 1.000 498.2 12948. 7169. 1.000 493.3 11376. 6530. 1.000 - - INCREMENTAL- -PC TIME DIST FUEL .00 .0 .0 .04 .05 .07 .07 .08 .09 .10 . 11 .13 .15 ITERATION 7 -- RANGE 5EO.60O FOR GROSS WEIGHT .9 1 . 0 1.2 40.3 40. 2 40.1 40. 2 40 . 6 41 .9 43 . 0 31 .3 34306.36 Q 825 .3 516.2 475.0 436.5 400.5 366.8 335.4 306.1 278 .7 253 .3 225.5 200,1 177 . 5 163 .7 » PERFORMANCE CONSTRAINT SUMMARY NO. TYPE VALUE + UDE CONSTRAINT 1 16 ACCL TO 1.400 = * 00. .087495 2 8 MAX LOAD FACT = LIMIT WEIGHT MACH ALTIT .875 MIN 3.162 GEES .000 28963. .000 28963, .800 300 .900 300 Nov 18 96 15:07:53 F16-FLOPS-OUT 00. -.316199 3 12 EXCESS ENERGY =• 00. -20.495320 4 9 MAX INSTAN NZ = 00. -.517726 5 8 MAX LOAD FACT = 00, -.364412 20495.3 FT/MIN 5 . 177 GEES 3.644 GEES .0 23963. .900 300 .000 28963. .900 300 .000 25552. 1.200 300 # SIZING AND PERFORMANCE RESULTS CONFIGURATION DATA AFTER RESIZING (IF ANY) OPERATING WEIGHT EMPTY PAYLOAD MAXIMUM FUEL GROSS WEIGHT REFERENCE WING AREA WING LOADING THRUST PER ENGINE ENGINE SCALE FACTOR THRUST-WEIGHT RATIO 19882.0 LB 1066.0 LB 13358.4 LB 34306.4 LB 300.00 SQ FT 114.35 LB/SQ FT 24850.0 LB 1 . 0000 ,7244 H NUMBER SEGMENT T END TAXI OUT TAKE OFF .300 CLIMB 0 .859 CRUISE 8 .869 HOLD 0 .900 RELEASE 0 .900 ACCEL 0 . 900 TURN 0 .900 TURN 0 . 900 TURN 0 .900 TURN 0 .900 TURN 0 . 900 TURN 0 .90C RELEASE 0 . 900 CLIMB 0 . 869 CRUISE 9 .868 HOLD 4 .300 INITIAL ALTITUDE(FT) WEIGHT(LB) START END FUEL(LB) NOX EMISS(LB) SEGMT TOTAL SEGMT SEGMT TOTAL MISSION SUM TIME(MIN) TOTAL MARY * * * DISTANCE(N MI) 34306, 34201. 0 . 33796. 0. 33712. 32824. 36924. 38119. 31208. 43843. 47951. 255S2. 47951. 47951, 24023, 10000. 10000. 24023. lOOOO. 10000. 23642, 10000. 10000. 23268. 10O0O. 10000. 22900. 10000. 10000. 22537, 10000. 10000. 22181. 10000. 10000. 22073. 10000. 10000. 20905. 10000. 44967. 20389. 44967. 46150. 19257. 0 . 0. 106 , 405. 971. 1616 , 5656 . 0. 0. 380 . 374 . 368. 362 . 357 , 107 . 0. 516 . 1132 , 1007 , 106. 511 . 1482 . .00 3098 . .00 8755. .00 8755. . 00 8755 . . 00 9135 . .00 9509 . .00 9878 , ,00 10240. .00 10597. .00 10704. ,00 10704. .00 11220. .00 12352. .00 13358, . 00 .00 , 00 .00 .00 . 00 .00 .00 .00 ,00 .00 .00 ,00 .00 .00 .00 6.5 .5 1.4 30.1 120 .0 .0 ,0 .4 .4 . 4 .4 .4 .1 ,0 1 .3 37.5 20.0 6.5 7.0 8.4 38.5 158 . 5 158.5 158.5 158.9 159.3 159.7 160. 0 160.4 160.5 160. 5 161.8 199 .3 219 . 3 SEGMT 10.2 250 .0 . 0 .0 .0 . 0 ,0 .0 .0 .0 ,0 .0 8.8 311 . 6 .0 TOTAL STAR 10.2 260.2 260.2 260 .2 260 .2 260. 2 260 .2 260.2 260.2 2 60.2 260.2 260.2 269.0 580. 6 580. 6 ,70 .86 . 90 . 90 .90 .90 . 90 .90 .90 ,90 .90 .90 .90 ,86 .59 DESCENT + 0 .300 RESERVES TAXI IN ZERO FUEL 18250. 0. 18250, 18250. 13358 . .00 .00 13358. .0 219.3 .0 219.3 DESIGN RANGE FLIGHT TIME 580.6 212 .3 BLOCK TIME = 3.65 HOURS BLOCK FUEL = 13358.4 POUNDS TOTAL NITROGEN OXIDES EMISSIONS 0. POUNDS 78.8 NAUTICAL MILES ATA TRAFFIC ALLOWANCE = AIR MANEUVER = 49.8 AIRPORT TRAFFIC ALLOWANCE = 17.4 AIRWAY DISTANCE FACTOR = 11.6 ATA RANGE = 580.6 NAUTICAL MILES #OBJ/VAR/CONSTR SUMMARY FUEL RANGE VAPP FAROFF FARLDG AMFOR + SW TR SWEEP TCA VCMN CH W/S 13358.4 580.6 134.9 4506. 6328. 14091. + 300.0 .228 30.00 .0400 .800 50000. 114.4 SSFOR GW T/W 16923. 34306.4 .724 AR THRUST 3.000 24850.0 Appendix H Page 61 Appendix H. Side-by-Side Assessment Details 1. Portability What computer platform does the program need? What other supporting software, if any, does the program need? What other equipment are required to run the program (i.e. specific graphics library)? Is the code proprietary? 2. Ease of Module Change-Out How easy is it to change out or add an analysis module in the source code? 3. Optimization How many design variables can the optimization routine handle? Can one insert or select the optimization variables? Is the optimization scheme parametncally based? 4. RCS/IR (Radar Cross Section/InfraRed) Does the code have the ability to analyze/predict the RCS/IR characteristics of the aircraft? 5. Geometric Modeling What sort of geometric modeling does the program need, if any? What sort of geometric modeling capability does the code have? Does the code have the ability to import geometric models? 6. Customer What kind of customer does the program have? Appendix H Page 62 How many of these customer are "satisfied customers?" What future capabilities does the customer desire? 7. DOCUMENTATION How well is the program documented (i.e. theory, users, application manuals)? 8. LEVEL OF DESIGN What level of design (i.e. conceptual, preliminary, or detailed) can the program handle? 9. CONSISTENCY OF FIDELITY OF ANALYSIS Are the analysis modules consistent in fidelity? Is there a way to check for consistency? 10.TRENDS IDENTIFICATION Does the program/modules/equations give the correct trends when the appropriate design variable are perturbed? 11. INPUT Are the input variables logical or are they cryptic? In other words, how easy or understandable are the input values? Is further analysis (off-line) required to generate some input? 12.PROGRAM LIMITATIONS What are some of the limitations of the program (i.e. can it handle supersonic cruise and/or low speed flight conditions)? In other words, can the modules predict reasonably the data the program needs? For what range of conditions are analysis module results valid? Appendix H Page 63 13.No Fudge Rule How easy is it to correlate the modules? What are the "fudge" factors involved in correlating models? 14. Ease of Use of the Graphical User Interface (GUI) Is the GUI user friendly? 15. Readability, Traceability, and Tailorability of Source Code How well is the source code commented? How difficult is it to trace the prograimriing logic? How easily can the source code be tailored? 16. Flexibility How many and what type of vehicle classes can the program handle? 17.Computational Time How long does the program take to execute a typical model (CPU time)? 18.Constraint and Design Variable Sensitivity How well does the program predict the design sensitivities to perturbation of design variables subjected to constraints? Appendix I Page 64 Appendix I. IPPD Methodology The ASDL IPPD methodology is based on an overall perspective of achieving customer satisfaction through robust design simulation. Robust design uses a systematic approach to find the optimal design factor settings which result in economical designs with low variability. The essential elements and goals of robust design simulation are illustrated in Figure 20. Traditionally, design is comprised of a simulation code (sizing/synthesis or economic analysis) and an optimization routine which varies the design or economic variables (i.e. aspect ratio, wing loading, return on investment, etc.) to yield an "optimum" solution subject to all imposed environmental and design constraints. Robust Design Simulation Subject to Technology Infusion Product Characteristics (disciplines) Process Characteristics (manufacturing, Producibility) Design & Environmental Constraints Synthesis & Sizing Economic Life-Cycle Analysis T Economic & Discipline Uncertainties ies P Business Practices Technological & Schedule Risk Robust Solutions Objectives: Optimum Performance Lower Acquisition Cost Higher Profit Higher Quality Increase Reliability Reduced O&S Cost Reduced Variability o Customer Satisfaction Figure 20. EPPD through Robust Design Simulation The identification of key product and process characteristics, as well as their relative contributions to the chosen evaluation criterion in the presence of risk and uncertainty, is an essential element of the proposed robust design simulation depicted in the figure. Robust Design accounts for manufacturing issues (i.e. process characteristics) and risks associated with new technologies. These can be measured in terms of confidence and readiness levels Appendix I Page 65 (i.e., concept feasibility, producibility, and potential of fielding according to the program schedule). In addition, Robust Design allows for variability due to uncontrollable factors (economic uncertainty, noise factors, etc.). In this way, a product is designed and optimized concurrently, yielding a probability distribution for the evaluation criterion, rather than a single point design solution as is the case with traditional methods. In short, the objective of RDM is to find the combination of variable settings and levels which: • Quantify the relationship between a response characteristic and the selected independent variables. • Reduce response variability attributable to the defined noise factors. • Establish a product design which displays superior performance and also possesses low technology risk components and materials. The Response Surface Methodology (RSM) is one of the elements comprising ASDL's Robust Design Methodology. It is based on a statistical approach to building and rapidly assessing empirical models. By careful design and analysis of experiments or simulations, the methodology seeks to relate and identify the relative contributions of the various input variables to the system response. In most cases, the behavior of a measured or computed response is governed by certain laws which can be approximated by a deterministic relationship between the response and a set of design variables. Usually the exact relationship between this response and the design variables is either too complex or unknown, and an empirical approach is necessary to determine it. The strategy employed in such an approach is the basis of the RSM. For this study, a second degree model in k- variables is assumed to exist. This second order polynomial for a response, R, can be written as: k k k [ = 1 = ] where, • bi are regression coefficients for linear terms Appendix I Page 66 • bfi are coefficients for pure quadratic terms • bij are coefficients for cross-product terms (second order interactions) • xj are the design variables and xjxj denotes interactions between two design variables Once this equation is constructed, it can be used in lieu of more sophisticated, time consuming codes to predict and optimize the response of a sub-system or the entire system. The "optimal" settings for the design variables are identified by finding the maximum or minimum of this equation, and a confirmation case is run using the actual simulation code to verify the results. Since the Response Surface Equation (RSE) is in essence a regression curve, a series of experimental or computer simulation runs need to be performed to obtain a set of data for varying inputs. £- /£- Alii TITLE: SYSTEM DEFINITION AND MODULE DEVELOPMENT FOR A COMPREHENSIVE AIRCRAFT SIZING AND SYNTHESIS TOOL REPORT: PERFORMANCE REPORT PERIOD: JANUARY 19,1997 - JANUARY 18,1998 Submitted to: NASA Langley Research Center Mail Stop 126 Hampton, VA 23681-0001 Technical Contact: Dr. Gary L. Giles Sponsor Contact: Ms. Marcia Poteat NAG-1-1786 I Submitted By: } Dr. Dimitri N. Mavris AEROSPACE SYSTEMS DESIGN LABORATORY SCHOOL OF AEROSPACE ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY A Unit of the University System of Georgia Atlanta, GA 30332-0150 I November 11,1997 SUMMARY OF CONTRACT PERIOD EFFORTS Prior tasks examined the monolithic FLOPS and ACSYNT synthesis and sizing programs at the program level through a comparison of program results for three configurations. The program predictions could be matched fairly accurately for the chosen c»mmercial transport, military transport and fighter. However, the programs did not compare very well for baseline (non- matched) data for a mturistic fighter and transport configurations. This is indicative of the manner in which metrics for individual disciplines are calculated within the codes. This year's efforts are focused on examining each of the codes at the subroutine level to assess the prediction capability at the discipline level as well as to learn more about the manner in which the sizing program actually sizes configurations, a potential problem area for futuristic concepts that do not necessarily obey historical trends. Teams were tasked with documenting the theory, perceived accuracy, and calculation /program flow and logic for each of the modules/disciplines within ACSYNT (v 4.0) and FLOPS (v 5.85). With the exception of the engine modules, the subroutines cannot be executed and compared without a substantial amount of receding. Coding efforts are to be recommended in this phase of the contract and carried out as the third year's tasks. The subroutines that are compared are listed in Table 1 below. Additional subroutines are available for both ACSYNT and FLOPS; current efforts are focused only on traditional and necessary sizing and synthesis modules. Recommendations for specific subroutines will be available in the yearly report to be ready in January. This recommendation will direct the larger sizing and synthesis tool developments. Table 1. Modules Studied for ACSYNT and FLOPS ACSYNT FLOPS Aerodynamics Propulsion Main/ControVC^timization Performance/Trajectory Stability & Control Weights/Structures Aerodynamics Propulsion Noise Main/Control/C^tirrdzation Performance Takeoff/Landing Weights/Structures It is noted that the overall system data is for ACSYNT Version 3.0 and the subroutines are documented for Version 4.0. This change is due to the availability of source code. This study should not be affected by the change. Page 1 &3 Title: System Definition and Module Development for Comprehensive Aircraft Sizing and Synthesis Report: Summary of Research Period: 19-JAN-1996 through 18-JAN-1999 Submitted to: NASA Langley Research Center Mail Stop 126 Hampton, VA 23681-0001 Technical Contact: Mr. Paul Gelhausen Sponsor Contact: Ms. Marcia Poteat NAG-1-1786 Submitted by: Dr. Dimitri N. Mavris AEROSPACE SYSTEMS DESIGN LABORATORY SCHOOL OF AEROSPACE ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY Atlanta, GA 30332-0150 April 5,1999 D. Mavris, PI, NAG-1-1793 ' 1 D. Mavris, PI, NAG-i-1793 2 ( SUMMARY OF RESEARCH CONDUCTED UNDER THIS GRAM Overview The goal of synthesis and sizing in aircraft design is to create an aircraft capable of completing a given mission. Over the term of this grant, research has led to a further underslanding of the current synthesis and sizing tools FLOPS and ACSYNT as well as the development of future tools. All results were transferred to the Techr ical Monitor at a meeting that took place October 16&17 at Georgia Tech. Research Path and Findings Each year of research focused on different aspects of the study. In the first year, the FLOPS and ACSYNT synthesis and sizing codes were decomposed into their component modules. These modules were then examined for content and tested with both conventional and unconventional aircraft. The synthesis and sizing codes were validated on the conventional cases but deviated highly with revolutionary concepts. i ; second year of the study focused on further decomposition of individual component modules of the synthesis and sizing codes and identification of physics based higher fidelity models to improve the accuracy and capability of die programs. Finally, an in-depth module study and link to the design process was completed in the third year of the •. idy. In the final year, researchers examined higher fidelity tools and developed and integrated an aerodynamics process. This process was meant to be a portion of a future synthesis and sizing code. Additionally, researchers examined the ease of using the tools in an advanced design environment. Techniques such as FasL Probability Integration (FPI) and Response Surface Methodology (RSM) were each tested and applied to test HSCT design scenarios. The IMAGE infrastructure, developed by Dr. Mark Hale of the Aerospace Systems Design Laboratory at the Georgia Institute of Technology, was used as a framework for integration of many of the test tools and methodologies. The integrated IMAGE platform was then applied to the sample design of a High Speed Civil Transport (HSCT) and the incorporation of higher-fidelity aerodynamic tools into the synthesis and sizing process were examined. Specifically, this process includes the use of VORLAX, W1NGDES, and BDAP. These tools are often used to augment or replace low fidelity analyses during the synthesis and sizing procedure. Components of IMAGE as well as tools developed by researchers for an advanced synthesis and sizing tool were delivered as follows: Category Tool Description Analyses ALCCA (v3) Life Cycle Cost FLOPS (v5.94) w/ASDL additions Aircraft Synthesis and Sizing Design FPI Fast Probabilistic Integration STARS (v4.0) Response Surface Calculation Command DOE (v4.0) Parallelized Response Surface Calculation "IMAGE (V1.14) w/test cases Design environment Utilities doe2rse Etetenriination of RSE coefficients for quadratic equations parse (v98) Parse formatted output file plotcdf (vl.14) Plot cumulative distribution functions tsw Substitute into FORTRAN namelist file The research led us to conclude that integral ties between synthesis and sizing and high-fidelity analyses capability is needed for the analysis and design of revolutionary configurations. The discipline core modules need to include disciplines such as stability and control, safety, and economics. Also, an expansion of basic mission driver must be done to include such things as changing sizing criteria, constraint checking, and rules. The synthesis and sizing code must also facilitate emerging design methods such as the use of approximations, optimization, and probabilistic techniques. All the above activities were reported to the technical monitor directly in a visit on October 16 and 17, 1998 at Georgia Tech. A description of the tools has been made accessible through a web interface (password protected and given to the sponsor) located at: http://www.asdl.gatech.edu/langley D. Mavris, PI. NAG-1-1793 3 Publications I DURING THE THIRD YEAR, THE ADVANCED SYNTHESIS AND SIZING TOOLS HAVE BEEN REFINED, FORMALIZED, AND EXPANDED TO INCLUDE HIGHER FIDELITY TOOLS AND TECHNIQUES. THE MAJORITY OF THIS WORK HAS BEEN SURNMARIZED AND (HSSEMINATED IN TWO CONFERENCE PAPERS, AND THEY ARE LISTED BELOW. THESE PAPERS ARE ALSO DOWNLOADABLE FROM THE ASDL WEB SITE AT: HTTP://WWW.ASDL.GATECH.EDU. I 1. TEJTEL, D., M. A. HALE, AND D. N. MAVRIS, "CONCEPTUAL AIRCRAFT DESIGN ENVIRONMENT: CASE STUDY EVALUATION OF COMPUTING ARCHITECTURE TECHNOLOGIES," 7TH AIAA/USAF/NASA/ISSMO SYMPOSIUM ON MULTIDISCIPLINARY ANALYSIS AND OPTIMIZATION, ST. LOUIS, MO, SEPTEMBER 2-4, 1998. AIAA-98-4844. 2. EL AICHAOUI, S., M. A. HALE, AND J. I. CRAIG "BUILDING DESIGN APPLICATIONS USING PROCESS ELEMENTS," 7TH AIAA/USAF/NASMSSMO SYMPOSIUM ON MULTIDISCIPLINARY ANALYSIS AND OPTIMIZATION, ST. LOUIS, MO, SEPTEMBER 2-4, 1998. AIAA-98-4876. D. Mavris, PI, NAG-1-1793 I 4