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NOMENCLATURE
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t denotes a discrete time step. bt is the value of variable b at time t. When unambiguous,

b and b+ are short notations for bt and bt+1 respectively.

∆(B) is the set of distributions over finite set B. For β ∈ ∆(B), B ∼ β denotes that

the random variable B is drawn according to distribution β. Pβ[E] is the probability

of event E under distribution β. β[b] denotes the quantity Pβ[B = b]. Eβ[B] is the

expected value of B under distribution β.

I is a set of agents and i denotes one agent. −i represents the set of all agents

excluding agent i, i.e., I \ {i}. If Bi is a set associated with agent i, B denotes the

Cartesian product
∏

i∈I Bi. If bi is a variable associated with agent i, b denotes the

tuple
(
b1, b2, . . . , b|I|

)
.

Acronyms

ABEE analogy-based expectation equilibrium 70, 71

EEE empirical-evidence equilibrium 1, 2, 93, 98, 99, 102–104, 112, 115–117, 119–123

EEO empirical-evidence optimum 88, 93, 98

MDP Markov decision process x, 2, 39–46, 49–52, 54, 60–62, 65, 68, 72, 74–77, 82,

83, 85–87, 93, 100, 101, 103, 120
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POMDP partially observable Markov decision process x, 1, 48, 49, 60, 65, 74, 75,

120

xEEE exogenous empirical-evidence equilibrium 106–108, 110–114
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CHAPTER I

INTRODUCTION

The objective of this research is to develop the framework of empirical-evidence

equilibria (EEEs) in stochastic games. This framework was developed while attempting

to design decentralized controllers using learning in stochastic games. The overarching

goal is to enable a set of agents to control a dynamical system in a decentralized

fashion. To do so, the agents play a stochastic game crafted such that its equilibria

are decentralized controllers for the dynamical system. Unfortunately, there exists no

algorithm to compute equilibria in stochastic games. One explanation for this lack

of results is the full-rationality requirement of game theory. In the case of stochastic

games, full rationality imposes that two requirements be met at equilibrium. First,

each agent has a perfect model of the game and of its opponents’ strategies. Second,

each agent plays an optimal strategy for the POMDP induced by its opponents’

strategies. Both requirements are unrealistic. An agent cannot know the strategies of

its opponents; it can only observe the combined effect of its own strategy interacting

with its opponents’. Furthermore, POMDPs are intractable; an agent cannot compute

an optimal strategy in a reasonable time. In addition to these two requirements,

engineered agents cannot carry perfect analytical reasoning and have limited memory;

they naturally exhibit bounded rationality. In this research, bounded rationality is

not seen as a limitation and is instead used to relax the two requirements. In the

EEE framework, agents formulate low-order empirical models of observed quantities

called mockups. Mockups have unmodeled states and dynamic effects, but they

are statistically consistent; the empirical evidence observed by an agent does not

contradict its mockup. Each agent uses its mockup to derive an optimal strategy.
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Since agents are interconnected through the system, these mockups are sensitive to

the specific strategies employed by other agents. In an EEE, the two requirements are

weakened. First, each agent has a consistent mockup of the game and the strategies

of its opponents. Second, each agent plays an optimal strategy for the MDP induced

by its mockup. The main contribution of this dissertation is the use of modeling to

study stochastic games. This approach, while common in engineering, had not been

applied to stochastic games. This dissertation is organized as follows.

Chapter 2 presents background material on game theory. The notions of best re-

sponse, solution concept for a game, and equilibria are at the heart of this chapter. The,

often overlooked, distinction between correlated equilibria and correlated-equilibrium

distributions is also made. Finally, a proof of the existence of Nash equilibria is given.

This proof has been crafted to make the proof of the existence of EEEs, which is

presented later, as intuitive as possible.

Chapter 3 presents repeated games and stochastic games. Their introduction relies

on the notions presented in Chapter 2 and on dynamic programming. Using the

vocabulary of MDPs makes the topics of sequential rationality and folk theorem in

repeated games easier to grasp.

Chapter 4 presents existing results concerning decentralized control and game

theory. Three main classes of results are addressed: learning in games, equilibria in

repeated games, and use of bounded rationality.

Finally, Chapter 5 introduces EEEs and presents results in this framework. The

presentation starts by analyzing a single-agent problem. In this setup, the notions of

consistency and optimality are defined. These notions are then extended to encompass

stochastic games. The second part of this chapter highlights three important results in

the EEE framework. First, the existence of EEEs is proven. Second, a characterization

of EEEs in perfect-monitoring repeated games is given in terms of correlated equilibria.

Third, a result regarding learning EEEs with a finite observation window is presented.

2



CHAPTER II

STATIC GAME THEORY

2.1 Decision Making

Decision making is the rational process of finding the best action given the information

available. An agent is given a set of actions A and preferences over these actions.

Preferences are expressed by a utility function u : A → R, such that for two actions a

and a′ in A, the following two properties hold:

• The agent prefers a over a′ if and only if u(a) > u(a′).

• The agent is indifferent between a and a′ if and only if u(a) = u(a′).

The utility of an action can be interpreted as a payoff that the agent wants to maximize.

The agent can also make nondeterministic decisions. Instead of committing to

a specific action, it can choose a mixed action. In game-theoretic terms, a mixed

action α is a distribution over the action set, i.e. an element of ∆(A). Similarly, the

actions in the original action set are often called pure actions. A mixed action’s payoff

is the expected value of the payoffs of the pure actions in its support. For example,

choosing a with probability 1
3

and a′ with probability 2
3

yields a payoff 1
3
u(a) + 2

3
u(a′).

As a result, the domain of the utility function can be unambiguously extended from

the action set A to distributions over the action set ∆(A), i.e. u : ∆(A)→ R. For an

element α in ∆(A), u(α) = EA∼α[u(A)]. Therefore, given a utility function, solving a

decision-making problem is equivalent to solving a stochastic optimization problem

arg max
α∈∆(A)

u(a).

Note 1 (Von Neumann–Morgenstern Utility Theorem). The representation of prefer-

ences by utility functions was characterized by von Neumann and Morgenstern [44].

3



They proved that rational preferences can always be represented by a utility function to

be maximized in expectation and that the utility function is unique up to a positive affine

transformation. Preferences are rational if they satisfy four axioms: completeness,

transitivity, continuity, and independence of irrelevant alternatives. Human decision

makers might not verify these axioms, but engineered agents can always be designed to

verify them. Insuring the validity of these axioms is therefore not a concern for this

research.

Formally, a preference is a total order on distributions over actions. Such a binary

relation is classically represented by the infix operator �. Given two distributions α

and β, the fact that the agent prefers α to β is denoted by α � β. This preference is

not strict and the agent could in fact be indifferent between α and β if β � α is also

true. The four axioms of rational preferences are defined as follows:

Completeness Given two distributions α and β, then α � β or β � α.

Transitivity Given three distributions α, β, and γ such that α � β and β � γ,

then α � γ.

Continuity Given three distributions α, β, and γ such that α � β � γ, there

exists p ∈ [0, 1] such that β = pα + (1− p)γ.

Independence of irrelevant alternatives Given three distributions α, β, and γ

such that α � β and p ∈ [0, 1], then pα + (1− p)γ � pβ + (1− p)γ.

2.2 Games and Nash Equilibria

In a game setting, a set of agents I faces decision-making problems. Each agent i

in I has an action set Ai and a utility function ui : A → R, where A =
∏

i∈I Ai is

called the joint action set. Note that this utility function for agent i depends on the

actions of all the agents and not only its own. The tuple composed of all these utility

functions u = (ui)i∈I defines a game. As mentioned earlier, decision making is the

4



rational process of finding an optimal action given the information available. There

is no obvious way to extend that definition to the multiagent setting. Preferences of

different agents cannot be aggregated; therefore, the notion of optimality for the set

of agents is ill defined.

Optimality for an individual agent is still well defined. Denote the opponents of

agent i by −i = I \ {i}. For fixed actions of its opponents, agent i faces a decision-

making problem. The actions in Ai optimal for the fixed actions of −i are called best

responses of agent i. Let a−i =
(
a1, a2, . . . , ai−1, ai+1, . . . , a|I|

)
denote a tuple of |I|−1

actions corresponding to one action for each opponent of agent i. The set of all such

actions A1 ×A2 × · · · × Ai−1 ×Ai+1 × · · · × A|I| is called the joint action set of the

opponents of agent i and is denoted by A−i. For a fixed a−i, the best-response set of

agent i is BRi(a−i) = arg maxai∈Ai ui(ai, a−i), a subset of Ai.

Note 2 (Set-valued Functions and Correspondences). The mapping BRi : A−i → 2Ai

is a set-valued function. It takes an element in A−i and returns a subset of Ai. The

set of subsets of Ai is called the power set of Ai. This power set is commonly denoted

by 2Ai. For each joint actions of agent i’s opponents a−i ∈ A−i, BRi(a−i) contains one

or more actions of agent i that are optimal against a−i. In particular, it never returns

an empty set. Set-valued functions with this property are called correspondences.

Correspondences f : A → 2B from A to subsets of B have similarities with func-

tions from A to B. The classical notation for correspondences f : A ⇒ B empha-

sizes these similarities. With this notation, the best-response correspondence is such

that BRi : A−i ⇒ Ai.

Theorems about functions often have correspondence counterparts. For exam-

ple, Kakutani’s fixed-point theorem is an extension of Brouwer’s fixed-point theorem.

Brouwer’s theorem proves the existence of fixed points for continuous functions on

convex compact sets. Kakutani’s theorem replaces continuity by a set of conditions on

the graph of a correspondence to reach a similar conclusion. These theorems will be

5



used to prove the existence of equilibria in Section 2.5

2.2.1 Pure Nash Equilibrium

A joint action that is simultaneously a best response for all the agents is a reasonable

candidate to replace optimality in the multiagent setting. This concept, at the core

of game theory, is called a Nash equilibrium. A joint action a ∈ A is a pure Nash

equilibrium if and only if for all i ∈ I, ai ∈ BRi(a−i).

Defining an optimal action in a single-agent decision-making problem is straight-

forward and unambiguous. Given a utility function, an action is optimal if and only if

it maximizes this utility function. There are many ways to illustrate what optimality

means, and the following story is one of them. Consider a rational agent facing a

decision-making problem. Suppose the agent knows the utility function associated

with its rational preferences. The agent is asked to submit an action. Then, the agent

is asked if, given the circumstances, it is satisfied with its choice. Obviously, the

answer is yes if and only if the action is a utility maximizer, i.e. an optimal action.

This story seems silly and does not add anything to the definition of optimality. In

particular, it is unclear why the notion of circumstances is introduced. However, this

kind of stories is key in defining game-theoretic solution concepts. In the present

context, the story is redundant because the notion of optimal action is intrinsic to the

decision-making problem.

Let’s now look at the story corresponding to the Nash equilibrium. It will help

shed some light on the so-called circumstances mentioned previously. Consider a

group of rational agents facing a game. Suppose each agent knows the utility function

associated with its rational preferences. Each agent is asked to submit a pure action

without discussing with the other agents. Then, each agent is asked, if given the

circumstances, it is satisfied with its action. In this context, the circumstances are the

actions of all the other agents. Agent i ∈ I is satisfied if and only if ai ∈ BRi(a−i).
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Therefore, all the agents are simultaneously satisfied if and only if the joint action is a

joint utility maximizer, i.e. a pure Nash equilibrium.

This story emphasizes that a pure Nash equilibrium is not an intrinsic solution

concept. Modifying some elements of the story would yield a different solution concept.

The three main characteristics leading to a Nash equilibrium are the following:

Independent action selection Communication between players is proscribed. As

a result, they choose their actions independently of each other. Note that

preventing communication is not intrinsic to the game.

Unilateral deviation Each agent is asked if it is happy given the other |I|−1 actions

are fixed. In other words, each agent is asked if it would prefer to unilaterally

deviate. Nothing in the formulation of the game emphasizes these unilateral

changes. The agents could, for example, deviate in pairs.

Static concept The solution concept defined is static. Each agent is asked if it is

satisfied with its action and the story ends. The agents do not choose a new

action and the process does not repeat. Using only a static solution concept is,

once again, not intrinsic to the game formulation. It is a common misconception

to see some notion of time in the story. This intuition to repeat the process

actually prefaces learning in games which is covered later on.

To find a Nash equilibrium, you do not necessarily have to use this story. You can

imagine receiving a joint action as the result of an optimization problem, that turns

out to be a Nash equilibrium. However, a joint action is a pure Nash equilibrium if

and only if it can be cast in this storyline. This last statement will be used shortly to

introduce a new solution concept that is not a Nash equilibrium.
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2.2.2 Mixed Nash Equilibrium

The definition of best response is readily extended to mixed actions. To do so, re-

member that the utility of a mixed action α ∈ ∆(A) is defined as u(α) = EA∼α[u(A)].

In the original definition of best response, there was nothing specific to pure ac-

tions. Let i be an agent. For a distribution over the joint action set of its op-

ponents α−i ∈ ∆
(∏

j∈−iAj
)

, define BRi(α−i) = arg maxαi∈∆(Ai) ui(αi, α−i). This

defines a correspondence BRi : ∆
(∏

j∈−iAj
)
⇒ ∆(Ai). Note that the best-response

mapping for agent i is defined for all distributions over the joint action set of the oppo-

nents ∆
(∏

j∈−iAj
)

and not only product of independent distributions
∏

j∈−i ∆(Aj).

Note 3 (Distributions over Product Spaces). Let B1 and B2 be two finite sets associated

with two agents 1 and 2. Let β1 ∈ ∆(B1) and β2 ∈ ∆(B2) be distributions over these

sets. Agent 1 draws a sample b1 from β1. Agent 2 independently draws a sample b2

from β2. The resulting pair b = (b1, b2) is drawn according to distribution β, such

that β[b1, b2] = β1[b1]β2[b2]. This distribution β is called the product distribution of β1

and β2, denoted by β = (β1, β2). There are, however, more distributions over B1 × B2

than product distributions, i.e. ∆(B1)×∆(B2) ( ∆(B1 × B2). A distribution that is

not a product distribution cannot be written as a pair, nor as a tuple when working in

more than two dimensions.

Given a distribution β ∈ ∆(B1 × B2) the marginal distributions β1 and β2 over B1

and B2 are defined as follows:

∀b1 ∈ B1, β1[b1] =
∑
b2∈B2

β[b1, b2],

∀b2 ∈ B2, β2[b2] =
∑
b1∈B1

β[b1, b2].

In general, the marginal distributions alone are not enough to reconstruct the original

distribution. Product of independent distribution β = (β1, β2) are the exception since

the marginals coincide with β1 and β2 and are sufficient to recover β.
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Since βi represents either an element in a product distribution or a marginal, care

must be taken when this notation is encountered. The context will clarify which one is

meant.

Let’s conclude this note by making the meaning of the four most encountered

distribution sets in this research explicit:

• An element α in ∆
(∏

i∈I Ai
)

= ∆(A) represents a distribution over the joint

action set. In this setting, αi is the marginal for agent i.

• An element α =
(
α1, α2, . . . , α|I|

)
in
∏

i∈I ∆(Ai) represents a product distribu-

tions over the action sets of the agents. It results from each agent independently

choosing a distribution over its own action set.

• An element α−i in ∆
(∏

j∈−iAj
)

= ∆(A−i) represents a distribution over the

joint action set of the opponents of agent i.

• An element α−i =
(
α1, α2, . . . , αi−1, αi+1, . . . , α|I|

)
in
∏

j∈−i ∆(Aj) represents a

product distribution over the action sets of the opponents of agent i. It results

from each opponent of agent i independently choosing a distribution over its own

action set.

With this definition of the mixed best response correspondence, Nash equilibria

can be extended to agents playing mixed actions. To do so, we are going to repeat

the Nash equilibrium story making the required changes. Consider a group of rational

agents facing a game. Suppose each agent knows the utility function associated with its

rational preferences. Each agent is asked to submit a mixed action without discussing

with the other agents. Then, each agent is asked, if given the circumstances, it is

satisfied with its mixed action. In this context, the circumstances for agent i is the

product distributions created by the mixed actions of all the other agents α−i =(
α1, α2, . . . , αi−1, αi+1, . . . , α|I|

)
∈
∏

j∈−i ∆(Aj). The answers are all yeses if and only
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if the joint mixed action is a joint utility maximizer, i.e. a mixed Nash equilibrium. More

succintly, a product of independent distributions α =
(
α1, α2, . . . , α|I|

)
∈
∏

i∈I ∆(Ai)

is a mixed Nash equilibrium if and only if for all i in I, αi ∈ BRi(α−i). A mixed Nash

equilibrium is often simply called a Nash equilibrium. Similarly, an either pure or

mixed Nash equilibrium is called a potentially mixed Nash equilibrium.

Nash proved the following fact which is a cornerstone of game theory. Any game

with a finite number of players choosing from finite actions sets has at least one,

potentially mixed, Nash equilibrium.

2.3 A Game Example

Let’s illustrate the game-theoretic concepts exposed so far on the following game

known as battle of the sexes. A couple, composed of a man ♂ and a woman ♀, is

planning a date. Each one chooses between two actions: going to a football game F

or going to an opera performance O. The joint action of the couple is represented by

an ordered pair
(
a♂, a♀

)
, where a♂ is the action chosen by the man and a♀ by the

woman. For example, (F,O) denotes that he chooses football and she chooses opera.

The man prefers to be with the woman rather than separated from her. If they

are together, he prefers football (F,F) to opera (O,O). If they are not together,

he is indifferent between football (F,O) and opera (O,F). The woman prefers to

be with the man rather than separated from him. If they are together, she prefers

opera (O,O) to football (F,F). If they are not together, she still prefers opera (F,O)

to football (O,F). Their preferences can be implemented by utility functions u♂ for

the man and u♀ for the woman with the following values:

u♂(F,F) = 2, u♂(O,O) = 1, u♂(F,O) = 0, u♂(O,F) = 0,

u♀(O,O) = 3, u♀(F,F) = 2, u♀(F,O) = 1, u♀(O,F) = 0.

(1)

The action sets and the utility functions of battle of the sexes are represented in a
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compact form as follows:

♂

♀

F O

F 2, 2 0, 1

O 0, 0 1, 3 .

(2)

The man’s action determines the row and the woman’s determines the column. Num-

bers in the cell are the utilities received: the first by the man and the second by the

woman. This is called the normal-form representation of the game.

To compute the best response of the man, fix the mixed action of the woman. A

mixed action of the woman randomizes between F and O. Since there are only two

actions, a single number p♀ ∈ [0, 1] is enough to describe the mixed action where she

chooses F with probability p♀ and O with probability
(
1− p♀

)
. When the context

makes the distinction clear, p♀ denotes either this probability or the mixed action.

Note that she chooses a pure action for p♀ = 0 or p♀ = 1. When the woman plays p♀,

the utility received by the man is

u♂
(
F, p♀

)
= p♀u♂(F,F) +

(
1− p♀

)
u♂(F,O) = 2p♀, (3)

if he plays F, and

u♂
(
O, p♀

)
= p♀u♂(O,F) +

(
1− p♀

)
u♂(O,O) = 1− p♀, (4)

if he plays O. His optimal action depends on p♀ with a critical value of 1
3
. If p♀ > 1

3
,

he strictly prefers F to O. If p♀ < 1
3
, he strictly prefers O to F. If p♀ = 1

3
, he is

indifferent between F and O; any combination of F and O is a best response to p♀ = 1
3
.

Grouping all of these preferences yields the following best-response correspondence for

the man:

BR♂
(
p♀
)

=


{F} if p♀ > 1

3
,

{O} if p♀ < 1
3
,

{ p♂F +
(
1− p♂

)
O | p♂ ∈ [0, 1] } if p♀ = 1

3
.

(5)
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The best response of the woman to the man’s action p♂ is computed in a similar

fashion. The critical value of p♂ making her indifferent is 3
4

and the best-response

correspondence is the following:

BR♀
(
p♂
)

=


{F} if p♂ > 3

4
,

{O} if p♂ < 3
4
,

{ p♀F +
(
1− p♀

)
O | p♀ ∈ [0, 1] } if p♂ = 3

4
.

(6)

The best responses are plotted in Figure 1. The intersections of the graphs

correspond to the Nash equilibria of the game. Battle of the sexes has three Nash

equilibria: two pure ones and one mixed. The pure Nash equilibria arise from the

man and the woman choosing the same event. The mixed one corresponds to the man

and the woman independently randomizing their choices with probabilities p♂ = 3
4

and p♀ = 1
3
.

3
4

1

1
3

1

BR♂
(
p♀
)

BR♀
(
p♂
)

0 p♂

p♀

Figure 1: Best responses and Nash equilibria for battle of the sexes. The man plays F with
probability p♂. The woman plays F with probability p♀. The solid line is the man’s best
response. The dashed line is the woman’s best response. The filled circles indicate the Nash
equilibria.
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2.3.1 A Different Story

In battle of the sexes, only one person is truly happy in each pure Nash equilibrium.

The man is not thrilled to be at an opera performance, neither is the woman at the

football game. The mixed Nash equilibrium seems more fair than the two pure ones.

Each person has a chance to go on his or her preferred date. However, they end up in

different locations most of the time. Figure 2 illustrates that more than half of the

mixed Nash equilibrium distribution is focused on joint actions yielding low utility to

both players.

3

4
F

1

4
O

× 1

3
F

2

3
O =

1

4
(F,F)

1

2
(F,O)

1

12
(O,F)

1

6
(O,O)

=⇒ u♂ = 2
3 , u♀ = 3

2

α♂ α♀ α

Figure 2: Distribution of the mixed Nash equilibrium for the battle of the sexes. The mixed
Nash equilibrium α is the product of two independent distributions α♂ and α♀. More than
half of the weight of distribution α is on (F,O) and (O,F) which are low-utility joint actions
for both players.

When facing the kind of incompatible decisions modeled by battle of the sexes,

humans sometimes have recourse to a coin toss. The man and the woman agree that

on heads they go to the football game and on tails they go to the opera performance.

Doing this induces a probability distribution focused on the high-utility joint actions,

as illustrated in Figure 3.

Figure 3: Distribution for the battle of the sexes using a coin toss. This distribution puts
all its weight on high-utility joint actions. The utility for both agents is higher than in the
mixed Nash equilibrium.

1

2
(F,F) 0(F,O)

0(O,F)
1

2
(O,O)

=⇒ u♂ = 3
2 , u♀ = 5

2
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Introducing this coin toss in our equilibrium stories goes as follows. Consider two

rational agents facing a battle of the sexes. Suppose each agent knows the utility

function associated with its rational preferences. The agents agree to flip a coin to

decide of their action. They both know that the coin is unbiased and produces heads

and tails with probability one half. They both agree to play F if the coin comes out

as heads. They both agree to play O if the coin comes out as tails. Each agent is

asked two questions. First, given the circumstances, if the coin toss yields heads,

are you satisfied with your agreed action F. Second, given the circumstances, if the

coin toss yields tails, are you satisfied with your agreed action O. In this context,

the circumstances are the distribution over heads and tails induced by the coin and

the actions agreed upon by the opponent in case of heads and tails. The answers

are all yeses, which is the characteristic of another form of equilibrium introduced by

Aumann under the name correlated equilibrium [2,3]. Correlated equilibria will be

described formally in the next section. Observe that, in this example, the correlated

equilibrium maintains the fairness of the mixed Nash equilibrium and yields a higher

utility for both agents.

However, this course of actions does not induce a Nash equilibrium. Recall that

the Nash equilibrium story requires independence in the choice of actions. This

distribution over actions cannot be obtained as the product of two independent

distributions. Therefore, this is not a Nash equilibrium.

2.4 Equilibria

In the previous sections, Nash and correlated equilibria have been introduced and

illustrated. In the present section, these concepts are being more formally defined and

some of their properties proven.

A game is described by a set of agents, the action set of each agent, and a utility

function for each agent. All this information is encoded in the function u = (ui)i∈I
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defined as follows:

u : A → R|I|

a 7→



u1(a)

u2(a)

...

u|I|(a)


.

Since each agent is trying to maximize its one-time payoff, this type of games is called

one-shot games. As mentioned previously, one-shot games allow for mixed actions. In

this case, the utility function of each agent is canonically extended through the use

of expectation. The following note exposes a few canonical extensions allowing the

application of functions to distributions. From now on, these canonical extensions are

used implicitly when needed. For example, we will say that u : A → R|I| describes a

one-shot game. We will not mention explicitly mixed actions even though they are

allowed and their utility unambiguously defined through the canonical extension.

Note 4 (Canonical Extensions and Category Theory). We defined the utility function

for pure actions and later extended it to handle mixed actions through the use of

expectation. This extension is not restricted to utility functions. Let u : A → K, where

K is an R vector space. The domain of u can be extended to accommodate distributions

over A and yield ũ : ∆(A)→ K. For α ∈ ∆(A), define ũ(α) =
∑

a∈A α[a]u(a). This

extension only relies on the fact that K is a vector space on R and that probabilities

are real numbers. In particular, when u represents a utility, the vector space K is R

itself. Previously, we used the symbol u to represent both the original function and the

extension. This abuse of notation is common since this is the canonical extension.

We now explicit two other commonly used canonical extensions.

Let f be a function from A to B. The function f cannot readily be applied to

distributions over A. However, it can be extended to a function f̃ on distributions.

Function f : A → B is extended to function f̃ : ∆(A)→ ∆(B). Let α be a distribution
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over A. The extension works by associating to each element b ∈ B a probability equal

to the sum of probabilities of its preimages in α, i.e.

∀b ∈ B, f̃(α)[b] =
∑
a∈A,
f(a)=b

α[a].

By abuse of notation, the symbol f represents the function from A to B, as well as

the extension to ∆(A).

Let g be a function from A to ∆(B), and α be a distribution over A. Define

g̃ : ∆(A)→ ∆(B) such that

∀b ∈ B, g̃(α)[b] =
∑
a∈A,

α[a]g(a)[b].

as the extension to g. By abuse of notation, the symbol g represents the function

from A to ∆(B), as well as the extension to ∆(A). In fact, this derivation can be

seen as an application of the extension through expectation, since ∆(B) is an R vector

space.

The extensions of f and g have been called canonical. Looking at probability

distributions through the eye of category theory backs this claim. In a nutshell, category

theory is an extension of set theory. Set-theoretical algebraic structures, such as

monoids, have category-theoretical counterparts. In particular, two structures shed

light on the extensions. The extension of f is explained by the fact that probability

distributions form a functor. The extension of g by the fact that they form a monad.

The details about functors and monads are beyond the scope of this research, but the

interested reader is referred to [30, 41] for more information.

Category theory is mentioned here for two reasons. First, it is a tool making rea-

soning about probabilities easier. Second, this theoretical tool has practical implications

for programming with probability distributions. The programming implications are

explored in the following example.

Example 1 (Category Theory in Haskell). The programming language Haskell [1]
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has strong mathematical roots. As such, it is a very good tool for applied mathematics.

In particular, category theory is baked at the heart of Haskell; functors and monads

are handled natively. Below is a toy example demonstrating this fact.

Let A = {a1, a2} and B = {b1, b2, b3} be two finite sets. Let

f : A → B

a1 7→ b3

a2 7→ b1,

and

g : A → ∆(B)

a1 7→ b1

a2 7→ 0.15 b1 + 0.6 b2 + 0.25 b3

be two functions with domain A, and α = 1
5
a1 + 4

5
a2 a distribution over A.

This setup is translated in Haskell as follows:

data A = A1 | A2

data B = B1 | B2 | B3

f :: A -> B

f A1 = B3

f A2 = B1

g :: A -> ∆(B)

g A1 = [(B1, 1)]

g A2 = [(B1, 0.15), (B2, 0.6), (B3, 0.25)]

α :: ∆(A)

α = [(A1, 0.2), (A2, 0.8)]

Function application in Haskell is denoted by $. The following shows the result of

applying f to a1 and g to a2:

> f $ A1
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B3

> g $ A2

[(B1, 0.15), (B2, 0.6), (B3, 0.25)]

Applying a function in a functor context is represented by <$>. Applying it in a

monad context is represented by =<<. With these two notations, the functions f and g

can be applied to the distribution α as follows:

> f <$> α

[(B1, 0.8), (B3, 0.2)]

> g =<< α

[(B1, 0.32), (B2, 0.48), (B3, 0.2)]

Working with distributions in Haskell is easy. Note in particular that extensions

of f and g were not defined by the user. It might seem surprising since Haskell does

not know anything about probabilities. However, distributions form a functor and a

monad, therefore, Haskell was able to compute the extensions automatically. This

example shows how readable code is and how closely it follows mathematical notation.

A one-shot game is a model of interacting decision makers. When presented with

such a model, two questions come to mind.

The first is a descriptive one. What happens when rational agents play a game?

Game theory seeks to answer this question by defining and analyzing solution concepts.

In economics, stories, similar to the ones mentioned previously, are used to convince the

reader that a given solutions concept is appropriate for rational agents. Furthermore,

emphasis is placed on characterizing the set of payoffs achievable at equilibrium.

The second question is a prescriptive one. How should the game and the agents be

designed to reach a desired goal? This question is prevalent in the control and systems’
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approach to game theory. Solution concept are once again central but are not enough.

Algorithms reaching these solution concepts are also needed.

Most answers to these questions are framed in the context of non-cooperative

game theory. Non-cooperative game theory is a subset of game theory in which

agents are selfish and only interested in maximizing their own utility. The agents

understand the impact of other agents through actions. However, they would not

think of collaborating with other agents in order to jointly increase their utility. This

is why, the other agents are called opponents. In this context, a solution concept

corresponds to action profiles with no profitable unilateral deviation, also known as

equilibria. In this section, we show how different definitions of profitability give rise

to the most common equilibria for one-shot games. To start, we get back to the most

basic notion of profitability, best response.

Definition 1 (Best Response). Let u : A → R|I| describe a one-shot game. Let i ∈ I

be an agent. The mapping

BRi : ∆(A−i) ⇒ ∆(Ai)

α−i 7→ arg max
αi∈∆(Ai)

ui(αi, α−i)

is called agent i’s best-response correspondence for u.

The mapping

BR: ∆(A) ⇒
∏
i∈I

∆(Ai)

α 7→



BR1(α−1)

BR2(α−2)

...

BR|I|
(
α−|I|

)


is called the joint best-response correspondence for u.

This definition is a case where Note 3 is relevant. In the context of Definition 1,

α−1 represents the marginal distribution of α for agent 1. Armed with this definition
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of best response, we can formally define Nash equilibria.

Definition 2 (Nash Equilibrium). Let u : A → R|I| describe a one-shot game. Let αi ∈

∆(Ai) be a distribution over action space Ai for agent i.

The distribution α = (αi)i∈I ∈
∏

i∈I ∆(Ai) is a Nash equilibrium for u if and only

one of the three following equivalent conditions is verified:

• The distribution α is a fixed point of the joint best-response correspondence for u,

i.e. α ∈ BR(α).

• For all i in I, αi ∈ BRi(α−i).

• For all i in I and a′i in Ai, EA∼α[ui(Ai, A−i)] ≥ EA∼α[ui(a
′
i, A−i)].

The second classical solution concept developed for one-shot games is the correlated

equilibrium. In the battle of the sexes example, we mentioned that correlated equilibria

expand the notion of Nash equilibria from product distributions in
∏

i∈I ∆(Ai) to

distributions over the joint action space ∆(A) = ∆
(∏

i∈I Ai
)
. Before introducing the

concept of correlated equilibrium, we need to introduce the closely related concept of

correlated-equilibrium distribution. The intuition behind correlated equilibria is made

clear in the upcoming Proposition 1.

Definition 3 (Correlated-equilibrium Distribution). Let u : A → R|I| describe a

one-shot game. Let α ∈ ∆(A) be a distribution over joint actions.

The distribution α is a correlated-equilibrium distribution for u if

∀i ∈ I, ai ∈ Ai such that αi[ai] > 0, a′i ∈ Ai,

EA∼α[ui(ai, A−i) |Ai = ai] ≥ EA∼α[ui(a
′
i, A−i) |Ai = ai].

Every Nash equilibrium is a correlated-equilibrium distribution. However, the

converse is not true.

20



Definition 4 (Correlated Equilibrium). Let u : A → R|I| describe a one-shot game.

Let Ti be a set of types for agent i, and T =
∏

i∈I Ti be the resulting joint type

space. Let π ∈ ∆(T ) be a distribution over joint types. Let σi : Ti → ∆(Ai) be

a strategy for agent i, and σ be the resulting joint strategy. Consider a random

variable Θ drawn according to π. Construct the random vector A = (Ai)i∈I such

that for all i ∈ I, Ai = σi(Θi). The distribution of A is α, such that, for any joint

action a ∈ A, α[a] =
∑

θ∈T π[θ] · σ(θ)[a].

The pair (π, σ) is a correlated equilibrium for u if α is a correlated-equilibrium

distribution for u.

The types are sometimes called signals. The key feature separating Nash equilibria

from correlated equilibria is the potential correlation of the types. This is the

correlation of the types that make the conditional expectation in Definition 3 different

from the expectation in Definition 2. In the example of the coin toss for battle of the

sexes, the types were actually extremely correlated since they were identical. The

following example describes more interesting correlated signals and highlights how the

conditional distributions are computed.

Example 2 (Correlated Signals). Consider the following protocol to generate correlated

signals for two agents. A third party, independent of both agents, rolls a die. It then

sends a signal to each agent. Agent 1’s signal s1 is binary. It tells agent 1 if the die’s

value is Low (1, 2, or 3) or High (4, 5, or 6). Agent 2’s signals2 is ternary. It tells

agent 2 if the die’s value is Small (1 or 2), Medium (3 or 4), or Large (5 or 6). The

signals received by each agent are illustrated in Figure 4.
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Low High

Small Medium Large

Signal s1 for agent 1

Signal s2 for agent 2

Figure 4: A pair of coupled signals generated from a die roll. Observing the signal received
by agent 1 gives some information concerning the signal received by agent 2. This information
is recovered through the application of Bayes’ rule.

This protocol induces the following joint distribution over the pair (s1, s2):

Low High

Small 1
3

0

Medium 1
6

1
6

Large 0 1
3

. (7)

Suppose both agents know the protocol. Therefore, they know the distribution of the

die and of the pair of signals. When an agent receives a signal it infers something about

the signal received by the other one. This inference is done through the application of
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Bayes’ rule. The following facts are inferred:

P[s1 = Low | s2 = Small] = 1,

P[s1 = High | s2 = Small] = 0,

P[s1 = Low | s2 = Medium] = 1
2
,

P[s1 = High | s2 = Medium] = 1
2
,

P[s1 = Low | s2 = Large] = 0,

P[s1 = High | s2 = Large] = 1,

P[s2 = Small | s1 = Low] = 2
3
,

P[s2 = Medium | s1 = Low] = 1
3
,

P[s2 = Large | s1 = Low] = 0,

P[s2 = Small | s1 = High] = 0,

P[s2 = Medium | s1 = High] = 1
3
,

P[s2 = Large | s1 = High] = 2
3
.

(8)

The distinction between correlated equilibria and correlated-equilibrium distribu-

tions is not emphasized in the literature. This blurring is due to a previously mentioned

fact; the main focus of game theory in economics is to determine the set of payoffs

achievable at equilibrium. Since a correlated equilibrium is defined by the correlated-

equilibrium distribution it induces, the payoff sets of the two concepts are identical.

The following proposition reinforces that point and gives useful characterizations of

correlated equilibria.

Proposition 1 (Characterization of Correlated Equilibria). Let u : A → R|I| describe

a one-shot game. Let Ti be a set of types for agent i, and T =
∏

i∈I Ti be the resulting

joint type space. Let π ∈ ∆(T ) be a distribution over joint types. Let σi : Ti → ∆(Ai)

be a strategy for agent i, and σ be the resulting joint strategy.

The pair (π, σ) is a correlated equilibrium for u if and only if one of the following

three equivalent conditions is true:

(i) ∀i ∈ I, θi ∈ Ti, a′i ∈ Ai,

EΘ∼π[ui(σi(θi), σ−i(Θ−i)) |Θi = θi] ≥ EΘ∼π[ui(a
′
i, σ−i(Θ−i)) |Θi = θi]
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(ii) ∀i ∈ I, σ′i : Ti → ∆(Ai),

EΘ∼π[ui(σi(Θi), σ−i(Θ−i))] ≥ EΘ∼π[ui(σ
′
i(Θi), σ−i(Θ−i))]

(iii) ∀i ∈ I, ϕi : Ai → Ai,

EΘ∼π[ui(σi(Θi), σ−i(Θ−i))] ≥ EΘ∼π[ui(ϕi ◦σi(Θi), σ−i(Θ−i))]

Condition (i), introduced in [2], tests that for every signal, the action prescribed by

the strategy is optimal. This is the definition used in the battle of the sexes example.

Condition (ii), introduced in [40], tests the strategy against all the other possible

strategies. Condition (iii), introduced in [3], tests the strategy against the restricted

set of swap strategies. Swap functions ϕis make recommendations based on the action

prescribed by the strategies and not the full signal received.

Proof. The proof is split in the four following steps:

1. Condition (i) implies condition (ii).

2. Condition (ii) implies condition (iii).

3. Any pair (π, σ) verifying condition (iii) is a correlated equilibrium, i.e. induces a

correlated-equilibrium distribution.

4. Any correlated-equilibrium distribution α can be induced by a pair (π, σ) satis-

fying condition (i).

The actual proofs are the following:

1. Let (π, σ) be a pair satisfying condition (i). Let i ∈ I, σ′i : Ti → ∆(Ai), θi ∈ Ti,

and a′i ∈ Ai. By definition, the following inequality holds:

EΘ∼π[ui(σi(θi), σ−i(Θ−i)) |Θi = θi] ≥ EΘ∼π[ui(a
′
i, σ−i(Θ−i)) |Θi = θi].
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Multiply both sides of the inequality by PΘ∼π[Θi = θi], then sum over θi in Ti.

The left-hand side becomes∑
θi∈Ti

EΘ∼π[ui(σi(θi), σ−i(Θ−i)) |Θi = θi]·PΘ∼π[Θi = θi] = EΘ∼π[ui(σi(Θi), σ−i(Θ−i))].

Similarly, the right hand side yields∑
θi∈Ti

EΘ∼π[ui(a
′
i, σ−i(Θ−i)) |Θi = θi] · PΘ∼π[Θi = θi] = EΘ∼π[ui(a

′
i, σ−i(Θ−i))].

Therefore,

EΘ∼π[ui(σi(Θi), σ−i(Θ−i))] ≥ EΘ∼π[ui(a
′
i, σ−i(Θ−i))].

This inequality holds for any a′i. Therefore, the left-hand side is greater than

any convex combinations of the right-hand side. In particular, it is greater than∑
a′i∈Ai

EΘ∼π[ui(a
′
i, σ−i(Θ−i))] · PΘ∼π[σ′i(Θi) = a′i] = EΘ∼π[ui(σ

′
i(Θi), σ−i(Θ−i))],

which yields condition (ii).

2. Let (π, σ) be a pair satisfying condition (ii). Let i ∈ I and ϕi : Ai → Ai.

Using the functor extension from Note 4, the composition ϕi ◦σi is an element

of Ti → ∆(Ai). Therefore, condition (iii) is a direct consequence of condition (ii).

3. Let (π, σ) be a pair satisfying condition (iii). Let Θ be a random variable drawn

according to π and A the induced random variable over the joint action set.

Denote by α the distribution of A. Let i ∈ I, ai ∈ Ai such that αi[ai] > 0,

and a′i ∈ Ai. Define ϕ by ϕ(ai) = a′i and ϕ(a′′i ) = a′′i for all a′′i ∈ Ai \ {ai}.

Condition (iii) translates to

EA∼α[ui(Ai, A−i)] ≥ EA∼α[ui(ϕi(Ai), A−i)].

Applying the law of total probability for the left-hand side yields

EA∼α[ui(Ai, A−i) |Ai = ai]·PA∼α[Ai = ai]+EA∼α[ui(Ai, A−i) |Ai 6= ai]·PA∼α[Ai 6= ai],
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or, more concisely,

EA∼α[ui(ai, A−i) |Ai = ai] · αi[ai] + EA∼α[ui(Ai, A−i) |Ai 6= ai] · (1− αi[ai]).

Similarly, by using the definition of ϕi and the law of total probability, the

right-hand side is equal to

EA∼α[ui(a
′
i, A−i) |Ai = ai] · αi[ai] + EA∼α[ui(Ai, A−i) |Ai 6= ai] · (1− αi[ai]).

Subtracting EA∼α[ui(Ai, A−i) |Ai 6= ai] · (1− αi[ai]) from each side and then

dividing by α[ai], which is positive, gives the correlated-equilibrium distribution

condition for α.

4. Let α be a correlated-equilibrium distribution. For agent i ∈ I, define the types

to be its actions, Ti = Ai, and σi to be the identity function overAi. Furthermore,

let π = α. By definition, the distribution α satisfies the inequality in Definition 3.

This immediately translates in the pair (π, σ) verifying condition (i).

To conclude this section, we look at equilibria from a different perspective. In a

game setting, the actions taken by a set of agents induce a distribution α ∈ ∆(A)

over the joint action set. Equilibria are distributions in which no rational agent has

an incentive to unilaterally deviate. This means that defining an equilibrium concept

boils down to choosing the two following elements:

• A set of feasible distributions over the joint action set.

• A set of incentive constraints for each agent.

For example, a Nash equilibrium is a product distribution with the simple incentive

constraint from Definition 2. Similarly, a correlated-equilibrium distribution is an

unrestricted distribution with the conditional incentive constraint from Definition 3.
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It is natural to wonder what happens when looking at different combinations

of feasible distributions and incentive constraints. On the one hand, a product

distribution with the conditional incentive constraint is a Nash equilibrium, since the

independence renders the conditional superfluous. On the other hand, an unrestricted

distribution with the simple incentive constraint yields a new equilibrium concept

called a coarse correlated equilibrium.

Definition 5 (Coarse Correlated Equilibrium). Let u : A → R|I| describe a one-shot

game. Let α ∈ ∆(A) be a distribution over joint actions.

The distribution α is a coarse correlated equilibrium for u if

∀i ∈ I, ∀a′i ∈ Ai, EA∼α[ui(A)] ≥ EA∼α[ui(a
′
i, A−i)].

Every correlated equilibrium distribution is a coarse correlated equilibrium. Indeed,

the inequality defining a coarse correlated equilibrium follows from the one defin-

ing a correlated-equilibrium distributions by multiplying each side of the inequality

by PA∼α[Ai = ai] and summing over ai ∈ Ai. This observation, along with the rela-

tionship between Nash equilibria and correlated-equilibrium distributions, is captured

in the following proposition.

Proposition 2 (Hierarchy of Equilibria). Let u : A → R|I| describe a one-shot game.

Let α ∈ ∆(A) be a distribution over joint actions.

If α is a Nash equilibrium for u, then α is also a correlated-equilibrium distribution

for u.

If α is a correlated-equilibrium distribution for u, then α is also a coarse correlated

equilibrium for u.

With the standard abbreviations for Nash equilibria (NE), correlated-equilibrium

distributions (CE), and coarse correlated equilibria (CCE), this proposition is written

concisely as follows:

NE ⊂ CE ⊂ CCE.
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This last proposition explains the importance of knowing that Nash equilibria

always exist. Indeed, the existence of Nash equilibria implies the existence of correlated-

equilibrium distributions and coarse correlated equilibria. Therefore, the following

section is dedicated to the proof of Nash’s seminal result. Elements of this proof will

be used to prove the existence of the solution concept introduced in this research.

2.5 Nash’s Existence Theorem

The existence of Nash equilibria was previously mentioned. Here is the formal

statement of this result.

Theorem 1 (Nash’s Existence [34]). Let u : A → R|I| describe a one-shot game.

There exists a product distribution α ∈
∏

i∈I ∆(Ai) which is a Nash equilibrium

for u.

To prove it, we will use the definition of Nash equilibria in term of fixed points.

The best-response correspondence restricted to product distributions
∏

i∈I ∆(Ai) is as

an element of
∏

i∈I ∆(Ai) ⇒
∏

i∈I ∆(Ai). The set
∏

i∈I ∆(Ai) is a product of finite

simplices and as such is non-empty, compact and a convex subset of an Euclidean

space. Brouwer’s fixed-point theorem is a classical result guaranteeing the existence

of fixed point for functions over this kind of sets.

Theorem 2 (Brouwer’s Fixed-point Theorem). Let X be a non-empty, compact and

convex subset of some Euclidean space. Let f : X → X be a continuous function.

Then f has a fixed point x∗ such that x∗ = f(x∗).

An illustration of this theorem is given in Figure 5. Kakutani’s fixed point theorem

is an extension to Brouwer’s fixed-point theorem dealing with correspondences instead

of functions. Figure 6 provides the corresponding illustration.

Theorem 3 (Kakutani’s Fixed-point Theorem). Let X be a non-empty, compact and

convex subset of some Euclidean space. Let f : X ⇒ X be a correspondence on X with

28



a closed graph and the property that for all x ∈ X , f(x) is non empty and convex.

Then f has a fixed point, x∗ such that x∗ ∈ f(x∗).

The following definition explicits what a closed graph for a correspondence means.

Definition 6 (Correspondence with a Closed Graph). Let X be a non-empty, compact

and convex subset of some Euclidean space. Let f : X ⇒ X be a correspondence on X .

The graph of f is closed if and only if, for all converging sequence ((xt, yt))t∈N,

such that yt ∈ f(xt), with limit point (x∗, y∗), y∗ ∈ f(x∗).

1

1

0
x

f
(x

)

0

Figure 5: Illustration of Brouwer’s fixed-point theorem. The solid line is the graph of a
continuous function f from the interval [0, 1] to itself. The interval [0, 1] is a non-empty,
compact and convex subset of the Euclidean space R. The dashed line is the graph of the
identity function on the same interval. The filled circles correspond to fixed points of f .

Brouwer’s fixed-point theorem uses continuous functions on which we have a strong

grasp. It is a good stepping stone to understand Kakutani’s fixed-point theorem. The

core elements of these two fixed-point theorems are present in Brouwer’s theorem.

Kakutani’s theorem irons out the details for correspondences. Similarly, Theorem 1

is proven in two step. First, we use a function approximating the best-response

correspondence and apply Brouwer’s theorem to prove the existence of approximate

Nash equilibria. Then, we make the necessary adjustments to apply the full-fledged
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1

1

0
x

f
(x

)

0

Figure 6: Illustration of Kakutani’s fixed-point theorem. The solid lines and the shaded
area represent the closed graph of a correspondence f from the interval [0, 1] to itself. For
all x ∈ [0, 1], f(x) is non empty and convex. The interval [0, 1] is a non-empty, compact and
convex subset of the Euclidean space R. The dashed line is the graph of the identity function
on the same interval. The filled circles and the bold segment correspond to fixed points of f .

Kakutani’s theorem and prove the existence of exact Nash equilibria. This approach

helps building insight about the Nash existence theorem.

2.5.1 Existence of Approximate Nash Equilibria

Every equilibrium definition includes an incentive constraint, which takes the form of

a maximization. Sometimes, the exact maximization is not required, and approximate

maximization is acceptable. For example, the definition of an approximate Nash

equilibrium is the following. Let ε > 0 be a small additive factor. A product

distribution α ∈
∏

i∈I ∆(Ai) is an ε Nash equilibrium for u if

∀i ∈ I, a′i ∈ Ai, EA∼α[ui(Ai, A−i)] ≥ EA∼α[ui(a
′
i, A−i)]− ε.

Correlated equilibria and coarse correlated equilibria are similarly extended to ε

correlated equilibrium and ε coarse correlated equilibria by relaxing the incentive

constraints by ε.

To prove the existence of an approximate Nash equilibrium, we use Brouwer’s

fixed-point theorem for a Gibbs-smoothed best-response function.
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Definition 7 (Gibbs-smoothed Best Response). Let u : A → R|I| describe a one-shot

game. Let i ∈ I be an agent. The function

GBRτ
i : ∆(A−i)→ ∆(Ai),

such that, for all α−i ∈ ∆(A−i) and ai ∈ Ai,

GBRτ
i (α−i)[ai] =

e
1
τ
u(ai,α−i)∑

a′i∈Ai
e

1
τ
u(a′i,α−i)

,

is called agent i’s Gibbs-smoothed best response with parameter τ for u.

The following note gives a little background about the Gibbs distribution.

Note 5 (Gibbs Distribution). The Gibbs distribution arises in statistical physics.

Consider a system made of a large number of particles. The system, as a whole, can

take configurations from the set X . In configuration x ∈ X , the energy of the system

is E(x). Nature seeks to minimize the energy of the system. However, the presence of

thermal noise creates a stochastic disturbance in this minimization process. The Gibbs

distribution characterizes this disturbance. Let T be the temperature of the system.

The probability that the system is in configuration x is GT [x] = e−
1

kT
E(x)∑

x′∈X e−
1

kT
E(x′)

, where k

is the Boltzmann constant. For any non-zero temperature, the Gibbs distribution

assigns a positive probability to every configuration. As the temperature goes to infinity,

the distribution converges to the uniform distribution over X . As the temperature

decreases, the distribution puts more weight on the configurations of minimal energy.

In the limit, as the temperature approaches zero, the Gibbs distribution converges to

the uniform distribution over the configurations of minimal energy.

By making a couple of changes, the Gibbs distribution is relevant for decision

making. In a decision-making problem, the agent seeks an action a maximizing its

utility function u. Therefore, the following Gibbs-shaped distribution is of interest

Gτ [a] = e
1
τ u(a)∑

a′∈A e
1
τ u(a′)

. As the parameter τ goes to zero, distribution Gτ concentrates

its weight on utility-maximizing actions. This property explains why, for small τ ,
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the Gibbs distribution is used to define a function approximating the best-response

correspondence.

The following proposition formalizes the fact that the Gibbs distribution approaches

an optimal distribution as the parameter goes to zero.

Proposition 3 (Approximate Optimality of the Gibbs Distribution). Let u : A → R

be a utility function over finite action set A with cardinality n = |A|. Let A∗ =

arg maxa∈A u(a) be the set of maximizers of u with cardinality n∗ = |A∗|. Define the

four following quantities:

umax = max
a∈A

u(a),

umin = min
a∈A

u(a),

u∆ = umax − umin,

uδ = umax − max
a∈A\A∗

u(a).

Let 0 < ε < u∆

(
n
n∗
− 1
)
, 0 ≤ τ ≤ uδ

ln(u∆
ε ( n

n∗−1))
, and α the Gibbs distribution with

parameter τ , i.e. for a ∈ A, α[a] = e
1
τ u(a)∑

a′∈A e
1
τ u(a′)

.

The distribution α is ε optimal for u.

Proof. We only consider the case where u is not a constant function. Therefore, the

set A∗ is strictly included in A which guarantees u∆

(
n
n∗
− 1
)
> 0, and uδ > 0. This,

in turn, guarantees the existence of ε and τ satisfying the aforementioned constraints.

If the utility function is constant, any distribution is optimal and therefore ε optimal

for u.

The proof is straightforward. We compute u(α), compare it to umax, and show

that the difference umax − u(α) is smaller than ε. Let’s first, explicit u(α) and split
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the optimal actions from the rest of them,

u(α) =
∑
a∈A

e
1
τ
u(a)∑

a′∈A e
1
τ
u(a′)

u(a)

=
∑
a∈A

e
1
τ

[u(a)−umax]∑
a′∈A e

1
τ

[u(a′)−umax]
u(a)

=
∑
a∈A

e
1
τ

[u(a)−umax]∑
a′∈A∗ e

1
τ

[umax−umax] +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
u(a)

=
∑
a∈A

e
1
τ

[u(a)−umax]

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
u(a)

=
∑
a∈A∗

1

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
umax +

∑
a∈A\A∗

e
1
τ

[u(a)−umax]

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
u(a)

=
n∗

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
umax︸ ︷︷ ︸

uopt

+
∑

a∈A\A∗

e
1
τ

[u(a)−umax]

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
u(a)

︸ ︷︷ ︸
urest

.

Rewrite umax as a sum with a similar structure,

umax =
n∗

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
umax +

∑
a′∈A\A∗ e

1
τ

[u(a′)−umax]

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
umax

= uopt +

∑
a′∈A\A∗ e

1
τ

[u(a′)−umax]

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
umax.
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Therefore,

umax − u(α) = umax − urest

=
∑

a∈A\A∗

e
1
τ

[u(a)−umax]

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
(umax − u(a))

≤
∑

a∈A\A∗

e
1
τ

[u(a)−umax]

n∗ +
∑

a′∈A\A∗ e
1
τ

[u(a′)−umax]
u∆

≤
∑

a∈A\A∗

e
1
τ

[u(a)−umax]

n∗
u∆

=
u∆

n∗

∑
a∈A\A∗

e
1
τ

[u(a)−umax]

≤ u∆

n∗

∑
a∈A\A∗

e−
1
τ
uδ

≤ u∆

n∗
(n− n∗)e−

1
τ
uδ

= u∆

( n
n∗
− 1
)

e−
1
τ
uδ .

Expand the inequality satisfied by τ as follows:

τ ≤ uδ

ln
(
u∆

ε

(
n
n∗
− 1
))

1

τ
≥ 1

uδ
ln
(u∆

ε

( n
n∗
− 1
))

−uδ
τ
≤ ln

(
ε

u∆

(
n
n∗
− 1
))

e−
1
τ
uδ ≤ ε

u∆

(
n
n∗
− 1
) .

Plugging the result in umax − u(α) ≤ u∆

(
n
n∗
− 1
)
e−

1
τ
uδ proves that α is ε optimal

for u.

Combining Definition 7 and Proposition 3 yields one possible definition for an

approximate best-response function.

Definition 8 (Approximate Best Response). Let u : A → R|I| describe a one-shot
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game. Define the following quantities, for agent i ∈ I:

A∗i (a−i) = arg max
ai∈Ai

ui(ai, a−i),

ni = |Ai|,

n∗i = min
a−i∈A−i

|A∗i (a−i)|,

u∆
i = max

a−i∈A−i

[
max
ai∈Ai

ui(ai, a−i)− min
ai∈Ai

ui(ai, a−i)

]
,

uδi = min
a−i∈A−i

[
max
ai∈Ai

ui(ai, a−i)− max
ai∈Ai\A∗i (a−i)

ui(ai, a−i)

]
.

Let 0 < ε < mini∈I u
∆
i

(
ni
n∗i
− 1
)

. From now on, we will refer to this technical condition

as ε small enough for u. Define agent i’s ε best-response function for u by BRε
i =

GBRτi
i , for τi =

uδi

ln

(
u∆
i
ε

(
ni
n∗
i
−1

)) . As the name indicates, for α−i ∈ ∆(A−i), the

distribution BRε
i (α−i) is ε optimal for ui(·, α−i). Accordingly, the function

BRε : ∆(A)→
∏
i∈I

∆(Ai)

α 7→



BRε
1(α−1)

BRε
2(α−2)

...

BRε
|I|
(
α−|I|

)


is called the joint ε best response for u.

By definition, the joint ε best response is approximately optimal. This is the first

condition required for proving the existence of approximate Nash equilibria. The

second condition needed is its continuity.

Proposition 4 (Continuity of the Approximate Best-response Function). Let u : A →

R|I| describe a one-shot game and ε small enough for u.

The joint ε best response for u is continuous.

Proof. The function BRε is vector valued. It is continuous if and only if it is compo-

nentwise continuous. Let i ∈ I be an agent. We need to prove that α 7→ BRε
i (α−i) is
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continuous. The function α 7→ α−i is continuous. Therefore, it is sufficient to prove

that BRε
i is continuous in order to prove that BRε is continuous.

The function BRε
i takes values in ∆(Ai). It can be interpreted as a vector-valued

function, with as many entries as elements in Ai. Therefore, it is sufficient to prove

that α−i 7→ BRε
i (α−i)[ai] is continuous for a fixed ai ∈ Ai. By definition

BRε
i (α−i)[ai] =

e
1
τi
ui(ai,α−i)∑

a′i∈Ai
e

1
τi
ui(a′i,α−i)

.

The mapping is therefore continuous as it is a composition of continuous functions:

expectation, division, exponential, and sum.

With the definition and proposition in place, we can now prove the existence of

approximate Nash equilibria.

Theorem 4 (Existence of Approximate Nash Equilibria). Let u : A → R|I| describe a

one-shot game and ε > 0.

The exists an ε Nash equilibrium for u.

Proof. A distribution α ∈
∏

i∈I ∆(Ai) forming a fixed point of the joint ε best response

for u, i.e. verifying α = BRε(α), is an ε Nash equilibrium for u. Therefore, proving

the existence of such a fixed point is a sufficient condition to proving the theorem.

As was previously mentioned, the set
∏

i∈I ∆(Ai) is a product of finite simplices

and as such is non-empty, compact and a convex subset of an Euclidean space. The

joint ε best response for u is continuous. Therefore, by applying Brouwer’s fixed-point

theorem, we conclude that such a fixed point exist.

2.5.2 Existence of Exact Nash Equilibria

This section is dedicated to the proof of Nash’s existence theorem. The proof of

Theorem 4 gives some intuition regarding the existence of Nash equilibria. The

following proof contains the details.
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Proof of Theorem 1. A distribution α ∈
∏

i∈I ∆(Ai) forming a fixed point of the joint

best response for u, i.e. verifying α = BR(α), is a Nash equilibrium for u. Therefore,

proving the existence of such a fixed point is a sufficient condition to proving the

theorem.

To apply Kakutani’s fixed point theorem we need to prove the four following facts:

• The set
∏

i∈I ∆(Ai) is non-empty, compact and a convex subset of an Euclidean

space.

• For α ∈
∏

i∈I ∆(Ai), BR(α) is non-empty.

• For α ∈
∏

i∈I ∆(Ai), BR(α) is convex.

• The best-response correspondence has a closed graph.

The first two facts are immediately proven. Once again, the set
∏

i∈I ∆(Ai) is a

product of finite simplices and as such is non-empty, compact and a convex subset of

an Euclidean space. Let α ∈
∏

i∈I ∆(Ai). There exists a best response for each agent

which guarantees that BR(α) is non-empty.

We now prove that the set BR(α) is convex, for α a distribution in
∏

i∈I ∆(Ai).

Let i be an agent, βi and γi be two elements of BRi(α−i), and θ ∈ [0, 1]. Since βi

and γi are both best responses to α−i, it is the case that ui(βi, α−i) = ui(γi, α−i). By

linearity of the expectation, we conclude that

ui(βi, α−i) = ui(θβi + (1− θ)γi, α−i) = ui(γi, α−i).

As a result, the convex combination θβi + (1− θ)γi is also an element of BRi(α−i).

Therefore, the set BRi(α−i) is convex. The set BR(α) is the Cartesian product of

convex sets and as such is convex.

We finally prove that the best-response correspondence has a closed graph. Let α =

(αt)t∈N and β = (βt)t∈N be sequences in
∏

i∈I ∆(Ai) such that for all t in N, βt ∈

37



BR(αt). Suppose that α converges to α∗ and β converges to β∗. Let i be an agent

and ai an action for this agent. For t ∈ N, the fact that βt ∈ BR(αt) implies

that βti ∈ BRi

(
αt−i
)
. This translates to ui

(
βti , α

t
−i
)
≥ ui

(
ai, α

t
−i
)
. The utility function

is continuous in the joint action. Therefore, in the limit ui
(
β∗i , α

∗
−i
)
≥ ui

(
ai, α

∗
−i
)

which proves that β∗i ∈ BRi

(
α∗−i
)
. This fact is true for any agent and therefore BR

has a closed graph.

Everything is now in place to apply Kakutani’s fixed-point theorem and to conclude

that an exact Nash equilibrium always exists.

At first glance, it is easier to prove the existence of an exact equilibrium rather

than an approximate one. However, note that most of the approximate equilibrium

section deals with defining the ε best response. The actual proof is shorter and uses a

simpler fixed-point theorem.
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CHAPTER III

DYNAMIC GAME THEORY

3.1 Markov Decision Processes

3.1.1 Setup

The problems analyzed up to this point were static; there was no notion of time. We

are now switching gears and turning to problems with dynamic. The simplest dynamic

problems are MDPs. In an MDP, a state evolves in discrete time controlled by an

action. The state at time t+ 1 is a random variable depending only on the state of the

system at time t and the action played at time t. The dynamic is described as follows:

∀t ∈ N, xt+1 ∼ f
(
xt, at

)
,

where xt and xt+1 are states in a finite state space X , at is an action in a finite

action set A, and f is a state-transition function in X ×A → ∆(X ). This dynamic is

alternatively represented by the short notation

x+ ∼ f(x, a), (9)

where x and a are the state at the action at a given time step and x+ is the state at

the next time step.

At each time step t, the agent observes the state and chooses an action. Over time,

the agent accumulates some information. This sequence of states and actions is called

the history. The history up to time t is ht = (x0, a0, x1, a1, . . . , xt−1, at−1, xt). Denote

by Ht the set of histories up to time t and by H = ∪t∈NHt the set of all possible

histories. The information observable over an infinite run is called an infinite history.

The set of infinite histories is denoted by H∞.
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In state x, choosing action a yields a payoff v(x, a). The agent is interested in

maximizing its expected sum of discounted payoffs for a given discount factor δ ∈

[0, 1). For a given infinite history h = (x0, a0, x1, a1, . . .), the agent receives a sum of

discounted payoffs

V (h) =
∞∑
t=0

δtv
(
xt, at

)
. (10)

Note that δt denotes δ to the power t whereas xt and at denote the state and the

action at time t.

Note 6 (Different Flavors of MDPs). MDPs are amongst the most studied dynamical

systems since Bellman’s seminal work on dynamic programming [4]. Multiple books

are devoted to their analysis [6, 35]. As a result, MDPs come in a variety of flavors.

These different flavors are described below with an emphasis on the one used in this

research:

Discrete Time In this research, the agent chooses an action at discrete-time steps.

There also exist continuous-time Markov decision processes. This shift to un-

countable spaces requires the use of more advanced measure theoretic tools to

define probabilities.

Finite State Space and Action Set In this research, the state space and the action

set of the agent are finite. This restriction guarantees that small enough problems

can be simulated and solved on a computer. Some MDP results carry over from

finite sets to countable sets. Some other problems use uncountable sets, such

as the continuous real line. As mentioned previously, analyzing these problems

require more advanced measure theoretic tools.

Single Action Set for All States In this research, at each time step and in each

state, the agent is allowed to use any of the actions in its action set. In some

problems, the action set is indexed by the state. In state x, the agent can choose
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an action in the set Ax. The analysis with a single action set is not more

restrictive but requires less notation.

Unconstrained Optimization In this research, the optimization performed by the

agent is unconstrained. The addition of constraints requires the use of additional

tools, such as Lagrange multipliers, to analyze the problems.

Infinite Horizon In this research, the cost is aggregated over an infinite time hori-

zon. Other classes of MDPs predetermine a final time T at which the process

stops. With a finite horizon, optimal strategies are computed by using backwards

induction. In the infinite horizon setup, backwards induction is not applicable.

However, a fixed-point property, described in the next section, replaces back-

wards induction. The game-theoretic literature strongly favors the use of infinite

horizon.

Absence of Termination State In this research, the process goes on forever. A

variation considers processes with a special state. If the process reaches this state,

the payoffs are tallied and everything stops. This is, once again, a notational

issue and the setup used in this research supersedes this variation.

Discounted Payoff In this research, the infinite stream of payoffs is aggregated

through the use of a discounted sum. The objective in some MDPs is the average

payoff. For finite-horizon problems this does not change anything. However, in

the infinite horizon case, a non discounted sum might not converge and more

technicalities have to be dealt with. Discounted payoffs are predominant in the

game-theoretic literature.

From now on, these characteristics are implied. Therefore, they will not be made

explicit for each MDP encountered.
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3.1.2 Strategies

In a static decision-making problem, as described in Section 2.1, the agent seeks to

maximize its one-time payoff. This payoff is the utility associated with its action.

Therefore, the agent faces an optimization problem of the form

arg max
a∈A

u(a).

In an MDP, the equivalent of this static utility function is the function V : H∞ → R

defined by (10). To determine the payoff of the agent, the entire infinite history h ∈ H∞

is required. Therefore, the agent faces an optimization problem of the form

arg max
h∈H

V (h).

However, the agent cannot influence the history at will. The dynamic (9) imposes some

constraints on the possible histories. Instead of choosing directly a history, the agent

chooses a strategy, which is a plan of action for all the possible outcomes of the process.

A strategy σ determines at time t an action at depending on ht, the information

available to the agent at time t. As was the case in the previous chapter, this action

can also be mixed instead of pure. Therefore, a strategy is an element σ : H → ∆(A).

An agent using strategy σ with initial state x receives an expected sum of discounted

payoffs

Uσ(x) = Eσ
[
V (h)

∣∣x0 = x
]

= Eσ

[
∞∑
t=0

δtv
(
xt, at

) ∣∣∣∣∣x0 = x

]
. (11)

Therefore, for a given initial state x, the agent faces an optimization problem of the

form

arg max
σ∈Σ

Uσ(x).

3.1.3 Agent Knowledge

Section 2.3.1 illustrates that equilibria are not intrinsic to a given static game. De-

pending on the story used, different solution concepts arise. For dynamic problems,
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some side information is similarly required. It is crucial to know the information

available to the agent at every time step.

In an MDP, the information available to an agent is two fold. First, the agent

knows some information a priori and keeps this knowledge all along. It knows the

dynamic of the world f and the causality relations in place. The main causality

relation is the impact of its action on the state evolution. Second, it accumulates some

information along the way. At each time step, the agent observes the action played

and the resulting state. At time t, it has accumulated the history ht. The information

available to the agent is represented in Figure 7.

t t+ 1

xt xt+1 ∼ f
(
xt, at

)
at ∼ σ

(
ht
)

ht ht+1 =
(
ht, at, xt+1

)

Figure 7: Agent information in an MDP. The dotted arrows materialize causality. A value
at the start of an arrow impacts the value at the end of this arrow. The agent knows all of
these causality relations, the transition function f , and at time step t it has observed ht.
The purpose of the gray highlights is solely to improve readability. They do not emphasize
specific values.

The type of diagram introduced in Figure 7 is central in this research. Indeed, the

solution concept introduced relies on tweaking the information available to the agents,

and these diagrams help visualizing the process.

3.1.4 Bellman’s Principle of Optimality

Recall that, for a given initial state x, the agent faces an optimization problem of the

form

arg max
σ∈Σ

Uσ(x).

It is actually possible to look for a single strategy that is simultaneously optimal for ev-

ery initial state. As such, a solution to the MDP is an element of ∩x∈X arg maxσ∈Σ Uσ(x).
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It is not obvious that the maximum is attainable nor that the intersection is not empty.

Furthermore, recall that a strategy is a function from H to ∆(A). The domain of a

strategy H is infinite; therefore, the set of strategies Σ is infinite. As a result, looking

for a solution with an exhaustive-search method is in vain.

Bellman was the first to observe that the Markovian structure of the problem

gives structure to optimal strategies. He described this structure in his principle of

optimality [4]:

An optimal policy has the property that whatever the initial state and

initial decision are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first decision.

This simple principle has far-reaching consequences. The most important one guar-

antees that for any unconstrained discounted finite MDP, there exists a stationary

deterministic optimal strategy [35, Theorem 6.2.10]. A strategy is stationary if the

next action is computed using only the current state; the history leading to the current

state and the time are not used. A strategy is deterministic if the actions selected are

not mixed.

This result reduces the set of strategies to be considered to a finite number.

However, solving (11) for each of the |A||X | stationary deterministic strategies and

finding the maximum is prohibitively expensive. Once again, the Markovian structure

of the problem helps. There are more efficient ways to explore the solution space. As

the existence of a stationary policy indicates, the only information that really matters

in an MDP is the current state. The fact that there is no need to consider the entire

history is captured in Figure 8, which simplifies the agent’s knowledge diagram.

Bellman also gave a characterization of stationary deterministic optimal strategies.

This characterization relies on two concepts. First, for an MDP, there exists a

function U∗ : X → R called the value function of the problem. When using an optimal

strategy from the initial state x, the agent receives a payoff U∗(x). Second, we define
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t t+ 1

xt xt+1 ∼ f
(
xt, at

)
at ∼ σ

(
xt
)

Figure 8: Minimal agent information in an MDP. Bellman’s principle of optimality
guarantees it is enough to know the current state to act optimally. Tracking the entire history
of state-action pairs cannot yield a higher expected sum of discounted payoffs.

the Bellman operator

B : (X → R)→ (X → R)

U 7→
{
x 7→ max

a∈A

{
u(x, a) + δEf

[
U
(
x+
) ∣∣x, a]}}, (12)

which takes a function that looks like a value function and returns another such

function. Intuitively speaking, given an estimate of the value function U , a better

estimate is BU . Thanks to the discount factor δ being smaller than 1, the Bellman

operator B is a contraction mapping. It therefore has a unique fixed point. This

unique fixed point is the value function U∗. This result is known as the Bellman

equation

U∗ = BU∗. (13)

Given the value function U∗, a stationary deterministic strategy σ∗ satisfies, for all x

in X ,

σ∗(x) ∈ arg max
a∈A

{
u(x, a) + δEf

[
U∗
(
x+
) ∣∣x, a]}. (14)

This characterization is known as the one-shot deviation principle in the repeated

games literature. As this name suggests, it is sufficient to verify that the one-shot

action taken at each state is optimal to guarantee global optimality of the strategy.

3.1.5 Dynamic Programming

The astute reader noticed that the Bellman operator was not used in the characteriza-

tion of optimal strategies. However, it is central in the actual computation of such
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strategies through dynamic programming. Indeed, dynamic-programming algorithms

search the solution space by using the recursive structure of the Bellman equation.

These algorithms are more efficient than exhaustive-search algorithms but are under

the curse of dimensionality. The amount of computations required grows polynomially

with the sizes of the state space and action set. However, the size of MDPs solvable in

practice is limited. The two main dynamic-programming algorithms, value iteration

and policy iteration, are presented below.

3.1.5.1 Value Iteration

The value iteration algorithm uses the fact that the Bellman operator B is a contraction

mapping. On top of guaranteeing the existence of a fixed point, the contraction

mapping property also guarantees that the fixed point is found by repeated application

of the Bellman operator. For any initial value U0 : X → R,

lim
t→∞

BtU0 = U∗.

An actual algorithm yielding an ε optimal strategy is exposed in Algorithm 1. The

stopping condition guarantees that the returned strategy is ε optimal. See [35,

Theorem 6.3.1] for a detailed proof.

Algorithm 1 Value Iteration

procedure Value Iteration(U0, ε)
t← 0
repeat

for all x ∈ X do
U t+1(x)← BU t(x)

end for
t← t+ 1

until ‖U t − U t−1‖∞ ≤
ε(1−δ)

2δ

for all x ∈ X do
σ(x)← arg maxa∈A{u(x, a) + δEf [U t(x+) |x, a]}

end for
return σ

end procedure
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As the name suggests, the algorithm computes successive approximation of the value

function. The actual strategy is only computed at then end, once the approximation

of the value function is satisfactory.

3.1.5.2 Policy Iteration

The policy iteration algorithm takes a different approach by computing successive

strategies, also called policies. For a given strategy σ, the algorithm computes the

expected payoff from each state, encoded in the function Uσ : X → R. The next

strategy is computed by taking Uσ as the approximation of the value function.

To compute Uσ, the following operator is used:

Bσ : (X → R)→ (X → R)

U 7→
{
x 7→ Ef,σ

[
u(x, a) + δU

(
x+
) ∣∣x]}.

This operator is related to the Bellman operator. For the same reasons, it is a

contraction mapping, and Uσ is computed by solving the equation

Uσ = BσUσ. (15)

Solving Bellman’s equation is difficult because of the maximization in the Bellman

operator. The lack of maximization makes solving (15) equivalent to a matrix inversion.

The resulting algorithm is presented in Algorithm 2.

Algorithm 2 Policy Iteration

procedure Policy Iteration(σ0)
t← 0
repeat

Uσt ← the solution of the equation Uσt = BσtUσt
for all x ∈ X do

σt+1(x)← arg maxa∈A{u(x, a) + δEf [Uσt(x+) |x, a]}
end for
t← t+ 1

until σt = σt−1

return σt

end procedure
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3.1.6 Online Learning

When the dynamic (9) of the system is not known but can be easily simulated,

reinforcement-learning algorithms can be used [7, 43]. A reinforcement-learning al-

gorithm learns the value function while using its current optimal strategy. As the

algorithm accumulates information, it computes better strategies. Reinforcement-

learning algorithms work by balancing exploration and exploitation. Exploration

refers to using new strategies in order to get a better estimate of the value function.

Exploitation refers to using a strategy maximizing the current estimate of the value

function. Dynamic programming is an offline approach, whereas reinforcement learning

is an online approach.

Most dynamic-programming algorithms compute the value function U∗ : X →

R. Some reinforcement-learning algorithms compute instead the action value func-

tion Q : X ×A → R defined by

Q(x, a) = u(x, a) + δEf
[
U∗
(
x+
) ∣∣x, a]. (16)

For example, SARSA and Q-learning are reinforcement-learning versions of policy

iteration and value iteration respectively.

3.2 Partially Observable Markov Decision Processes

POMDPs model situations where the agent is uncertain about the state of the

dynamical system. In a POMDP, the state evolves according to (9). However, at each

time step, the agent cannot observe the state and can only observe a signal y drawn

according to

y ∼ g(x), (17)

where y is a signal in finite state space Y and g : X → ∆(Y) is an observation function.

In this setup, the information available to the agent is called private history and is

denoted by p. At time t, the agent has observed pt = (y0, a0, y1, a1, . . . , yt−1, at−1, yt).

48



The information available to the agent is pictured in Figure 9. This small change in

the information available to the agent has big consequences: POMDPs are intractable.

t t+ 1

xt xt+1 ∼ f
(
xt, at

)
yt+1 ∼ g

(
xt+1

)
at ∼ σ

(
pt
)

pt pt+1 =
(
pt, at, yt+1

)

Figure 9: Agent information in a POMDP. The agent knows all of the causality relations,
the transition function f , the observation function g and at time step t it has observed private
history pt. In particular, the state is never observed and therefore is not part of the private
history.

In an MDP, the state is the only necessary information needed to compute the

next action of an optimal strategy. In a POMDP, the agent does not know the state

and needs to use beliefs to implement an optimal strategy. Beliefs are probability

distributions over states computed using the signals observed and Bayes’ inference.

An optimal solution for a POMDP is a function from the belief space
⋃∞
t=0 ∆(X t) to

the action set. The fact that the belief space is continuous is what makes the problem

intractable. This difficulty is partly visible in the minimal agent knowledge diagram

of Figure 10.

t t+ 1

xt xt+1 ∼ f
(
xt, at

)
yt+1 ∼ g

(
xt+1

)
at ∼ σ

(
bt
)

βt βt+1 = b
(
βt, at, yt+1

)

Figure 10: Minimal agent information in a POMDP. Bellman’s principle of optimality
guarantees it is enough to know the distribution β over the states to act optimally. However,
the belief space B = ∆(X ) is uncountable, hence, the problem is intractable. Bayesian
inference is denoted by b.
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3.3 Repeated Games

MDPs are the simplest dynamic decision-making problems. Similarly, repeated games

are the simplest dynamic games. In a repeated game, agents play a one-shot game at

discrete time steps and accumulate their payoffs with a discount factor. This section

introduces repeated games with an emphasis on their similarities with MDPs.

Consider a set of agents I and a one-shot game described by utility functions u =

(ui)i∈I where ui : A → R. At each time step t, agent i chooses an action ai ∈ Ai.

Over time, the agents accumulate some information. In the simplest class of repeated

games, called perfect-monitoring repeated games, each agent observes the joint action

played at each time step. The sequence of joint actions is called the public history, or

simply history when there is no risk of confusion. The history up to time t is ht =

(a0, a1, . . . , at−1). Denote by Ht the set of histories up to time t and by H = ∪t∈NHt

the set of all possible histories. The information observable over an infinite run is

called an infinite history. The set of infinite histories is denoted by H∞.

The joint action a yields a payoff ui(a) for agent i. Agent i is interested in

maximizing its expected sum of discounted payoffs for a given discount factor δi ∈ [0, 1).

For a given infinite history h = (a0, a1, . . .), the agent receives a sum of discounted

payoffs

Ui(h) =
∞∑
t=0

δtiui
(
at
)
.

The same way a one-shot game is described by a tuple of utility functions u, a

perfect-monitoring repeated game is described by a pair (u, δ), where δ = (δi)i∈I .

Agent i’s choice of action ai at time t only depends on the observed sequence of

joint actions ht up to time t. Therefore a strategy for agent i is an element σi such

that σi : H → ∆(Ai). The set of strategies for agent i are denoted by Σi and the joint

strategy set by Σ =
∏

i∈I Σi. Given a joint strategy σ = (σi)i∈I , agent i receives an
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expected discounted payoff

Ui(σ) = Eσ

[
∞∑
t=0

δtiui
(
at
)]
.

For the sake of rigor, when introducing MDPs, two symbols were used for the payoffs

associated with a history, V (h), and with a strategy, U(σ). When unambiguous, Ui

represents either payoff.

Repeated games include a time component which is not present in one-shot games.

However, a repeated game can be viewed as a one shot game with action set Σ and

utilities U = (Ui)i∈I . Therefore the notions of best response and Nash equilibria

in one-shot games directly translate to repeated games. For an agent i and fixed

strategies of its opponents σ−i, agent i faces an MDP with state h. Its best response

strategy is therefore characterized by Bellman’s equation. A Nash equilibrium for a

repeated game is therefore a tuple of strategies each satisfying a Bellman equation

induced by the other ones. Note that the state space H is in this case is countable

and not finite.

The knowledge of a pair of agents in a repeated game with perfect-monitoring is

presented in Figure 11. Notice the strong resemblance with Figure 7 when looking

from agent 1’s perspective or from agent 2’s perspective.

t t+ 1

at1 ∼ σ1

(
ht
)

ht ht+1 =
(
ht, at1, a

t
2

)
at2 ∼ σ2

(
ht
)

Figure 11: Agent knowledge in a two-player perfect-monitoring repeated game. The public
history is the sequence of joint actions. It is shared as it is observed by both agents.

This section emphasized the similarities between repeated games and MDPs.

However, there is one major difference in the treatment of repeated games. This

difference is the subject of the following subsection.
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3.3.1 Sequential Rationality

In a two-player repeated game, a Nash equilibrium is a pair of strategies (σ1, σ2).

Agent 1’s strategy σ1 is an optimal strategy for the MDP induced by σ2. However,

the conditions for a Nash equilibrium do not address the case where agent 2 does not

follow σ2. The following example illustrates this difficulty introduced by the notion of

time.

Example 3 (Non-credible Threat). Consider the following diagram:

1

1, 0

L

2

2, 2

l

0, 1

r

R

. (18)

It describes a game in its so-called extensive form. Play starts with the state being

the root of the tree. When the state is a non-terminal node, the number in the circle

determines which agent is to take an action. The branches of this node correspond to

the actions available to this agent. The action taken determines the next state. When

the state is a leaf, the game is over. The numbers in this leaf correspond to the payoffs

for both agents. Therefore, the game described by (18) has the following interpretation:

• Agent 1 chooses between actions L and R.

– If L is chosen, the game is over; agent 1 receives a payoff of 1 and agent 2

a payoff of 0.

– If R is chosen, it is now agent 2’s turn to choose between actions l and r.

Irrespective of which action is chosen, the game ends after it.

∗ If l is chosen, both agents receive a payoff of 2.

∗ If r is chosen, agent 1 receives a payoff of 0 and agent 2 a payoff of 1.
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Note 7 (Extensive-form Games). Extensive-form games can always be redefined in

a one-shot form. For example, the extensive-form game (18) admits the following

one-shot definition:

l r

L 1, 0 1, 0

R 2, 2 0, 1 .

(19)

Note that agent 2’s action does not impact the payoffs when agent 1 plays L. Therefore,

the agents’ incentives are preserved and rational agents exhibit identical behaviors in

the one-shot game or the extensive-form game. Since the incentives are preserved,

Nash equilibria are also preserved.

Example 4 (Non-credible Threat [continued]). Extensive-form games are not repeated

games. However, they introduce a notion of time that is sufficient to illustrate the

problem at hand.

Note 7 shows us that this game has two pure Nash equilibria: (R, l) and (L, r).

Let’s focus on (L, r). Under the joint action (L, r), agent 1 plays and the game ends

immediately. Therefore, agent 2’s action does not affect the payoffs and agent 2 has

no incentive to unilaterally deviate. If agent 1 switches its action to R its payoff goes

from 1 to 0 so it has no incentive to unilaterally deviate either. However, this switch

to R brings an interesting situation to the table. If the deviation occurs, it becomes

agent 2’s turn to play. Agent 2 has committed to playing r. However, if the game

ever reaches that stage, a rational agent would always play l. The problem is that

agent 2 makes a non-credible threat. Agent 2 is threatening agent 1 with a low payoff.

However, enforcing that threat requires agent 2 to act irrationally by taking a smaller

payoff, 1 instead of 2. This equilibrium is said to lack sequential rationality.

In the normal-form representation the problem is not as apparent since both agents

play at the same time. However, since anything is a best response to L, agent 2

could move to l which would prompt agent 1 to move to R leading to the other Nash
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equilibrium and both agents’ payoff increases. Therefore, even in the normal-form

representation, the weakness of (L, r) is observable.

When time is involved, strategies have the potential to exclude some states. In this

example, agent 2 never gets to play. A Nash equilibrium does not impose anything

on these states. A sequentially-rational equilibrium, however, imposes no profitable

unilateral deviation even on these unreachable states. This condition is equivalent to

forbidding non-credible threats.

Backwards induction is used to verify if a Nash equilibrium of an extensive-form

game is sequentially rational. In this example, start at agent 2’s turn. The only

rational action is l. Propagate this information backwards and analyze agent 1’s

turn. At this point, agent 1 has to play R. This proves the only sequentially-rational

equilibrium of this game is (R, l).

In a repeated game, agents do not alternate playing turns. However, the action of

an agent eliminates some possible histories, creating some unreachable states. The

Nash equilibrium condition in repeated games only verifies Bellman’s equation on the

reachable states. Sequential rationality in repeated games verifies Bellman’s equation

on all the possible states. In an MDP, unreachable states are simply ignored as the

model guarantees that these states will never be seen.

Let’s now give the formal definition of sequential rationality for perfect-monitoring

repeated games. In this context, a sequentially-rational equilibrium is called a subgame-

perfect equilibrium.

Definition 9 (Subgame-perfect Equilibrium). Let u : A → R|I| describe a one-shot

game and δ = (δi)i∈I be discount factors. Let σi ∈ Σi be a strategy for agent i.

The joint strategy σ = (σi)i∈I is a subgame-perfect equilibrium if for every agent i ∈

I and every history h ∈ H, the strategy σi is optimal with respect to the MDP induced

by σ−i with initial state h.

54



The game-theoretic literature often mentions the one-shot deviation principle as a

key result in verifying subgame perfection. It only restates that Bellman’s equation

has to be verified at every state h, including unreachable ones.

3.3.2 Folk Theorem

Sequentially-rational equilibria are the logical extension of Nash equilibria for repeated

games. As mentioned previously, in the static-game setting, economists are interested

in characterizing the set of achievable payoffs at equilibrium. A similar characterization

is studied for repeated games. The results are more difficult to obtain but a folk

theorem has guided this line of research. The name folk theorem comes from the

community believing it to be true before a proof existed. To state the folk theorem,

the concepts of feasibility and individual rationality of payoffs are described below.

Definition 10 (Feasible Payoff). Let u : A → R|I| describe a one-shot game. A joint

payoff p ∈ R|I| is feasible for u if there exist convex coefficients (θa)a∈A indexed by the

joint actions, such that p =
∑

a∈A θau(a). The tuple (θa)a∈A forms convex coefficients

if θa ∈ [0, 1] for all a ∈ A and
∑

a∈A θa = 1. Simply put, a payoff is feasible if it is a

convex combination of pure payoffs.

Definition 11 (Minmax Value). Let u : A → R|I| describe a one-shot game and i ∈ I

be an agent. Suppose the opponents of agent i have fixed their, potentially mixed,

actions. Agent i can guarantee for itself a payoff, called its minmax value, defined as

minmaxi = min
α−i∈

∏
j∈−i ∆(Aj)

max
ai∈Ai

ui(ai, a−i).

Definition 12 (Individually-rational Payoff). Let u : A → R|I| describe a one-shot

game. A joint payoff p ∈ R|I| is individually rational for u if for all agents i ∈ I, pi is

greater or equal than the minmax value of agent i. A joint payoff p ∈ R|I| is strictly

individually rational for u if for all agents i ∈ I, pi is strictly greater than the minmax

value of agent i.
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The folk theorem states that every feasible individually-rational payoff of the

one-shot game is achievable as the expected sum of discounted payoffs of a sequentially-

rational equilibrium for a discount factor close enough to one.

The following example illustrates the concepts of feasible and individually-rational

payoffs.

Example 5 (Feasible Individually-rational Payoffs in the Battle of the Sexes). Recall

the battle of the sexes game described by the following normal form:

♂

♀

F O

F 2, 2 0, 1

O 0, 0 1, 3 .

The minmax value for the man is

minmax♂ = min
α♀∈∆({F,O})

max
a♂∈{F,O}

u♂
(
a♂, a♀

)
= min

p♀∈[0,1]
max

a♂∈{F,O}

{
u♂
(
a♂,F

)
p♀ + u♂

(
a♂,O

)(
1− p♀

)}
= min

p♀∈[0,1]
max

{
2p♀ + 0

(
1− p♀

)
, 0p♀ + 1

(
1− p♀

)}
= min

p♀∈[0,1]
max

{
2p♀, 1− p♀

}
=

2

3
.

The minmax value for the woman is

minmax♀ = min
α♂∈∆({F,O})

max
a♀∈{F,O}

u♀
(
a♀, a♂

)
= min

p♂∈[0,1]
max

a♀∈{F,O}

{
u♀
(
a♀,F

)
p♂ + u♀

(
a♀,O

)(
1− p♂

)}
= min

p♂∈[0,1]
max

{
2p♂ + 0

(
1− p♂

)
, 1p♂ + 3

(
1− p♂

)}
= min

p♂∈[0,1]
max

{
2p♂, 3− 2p♂

}
=

3

2
.
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Figure 12: Feasible enforceable payoffs in the battle of the sexes. The dotted circles
corresponds to the payoffs of the four pairs of pure actions. The union of the light gray and
the dark gray areas represents the feasible payoffs. The dashed lines represent the minmax
values. The dark gray area corresponds to the feasible and individually-rational payoffs.

The feasible payoffs are contained in the convex hull of the pure payoffs. The

individually-rational payoffs are those above both minmax values. The feasible and

individually-rational payoffs for the battle of the sexes are illustrated in Figure 12.

The folk theorem is not a single result. It takes different forms, each targeting a

specific scenario. The simplest result concerns perfect-monitoring repeated games.

Theorem 5 (Perfect-monitoring Folk Theorem). Let u : A → R|I| describe a one-shot

game. Let p ∈ R|I| be a feasible strictly-individually-rational payoff for u.

There exist strategies σ = (σi)i∈I and discount factors δ = (δi)i∈I close enough to 1

such that σ form a subgame-perfect equilibrium for the perfect-monitoring repeated

game (u, δ) yielding an expected sum of discounted payoff of p.

For a proof of this result, see in [31, Proposition 3.8.1]

Apart from perfect-monitoring repeated games, there are two other categories of

repeated games. Public imperfect-monitoring and private monitoring repeated games

are explored next. Their associated folk theorems are brushed upon.
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3.3.3 Public Imperfect Monitoring

Consider a set of agents I and a one-shot game described by utility functions u = (ui)i∈I

where ui : Ai → R. At each time step t, agent i chooses an action ai ∈ Ai. Over time,

the agents accumulate some information. The joint action induces a signal s, from

finite signal space S, distributed according to

s+ ∼ n(a),

where n : A → ∆(S). The sequence of signals is called the public history, or simply his-

tory when there is no risk of confusion. The history up to time t is ht = (s0, s1, . . . , st−1).

Denote by Ht the set of histories up to time t and by H = ∪t∈NHt the set of all

possible histories. The information observable over an infinite run is called an infinite

history. The set of infinite histories is denoted by H∞. Each agent also observes the

actions it has played. This sequence of actions is called the its private history. Agent i’

private history up to time t is pti = (ai
0, ai

1, . . . , ai
t−1).

The knowledge of the agents in a two-player public imperfect-monitoring repeated

game is pictured in Figure 13.

t t+ 1

pt1 pt+1
1 =

(
pt1, a

t
1

)
at1 ∼ σ1

(
ht, pt1

)
st+1 ∼ n

(
at1, a

t
2

)
at2 ∼ σ2

(
ht, pt2

)
pt2 pt+1

2 =
(
pt2, a

t
2

)
ht ht+1 =

(
ht, st+1

)

Figure 13: Agent knowledge in a two-player public-monitoring repeated game. The public
history is shared as it is observed by both agents.

Public-monitoring folk theorem results exist. Under some technical conditions

for the signal, all the feasible strictly-individually-rational payoff are achievable by
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sequentially-rational equilibria in public strategies. A strategy is public if it only

uses the public history to compute actions. The knowledge of the agents in a two-

player public imperfect-monitoring repeated game with public strategies is pictured

in Figure 14.

t t+ 1

at1 ∼ σ1

(
ht
)

st+1 ∼ n
(
at1, a

t
2

)
at2 ∼ σ2

(
ht
)

ht ht+1 =
(
ht, st+1

)

Figure 14: Agent knowledge in a two-player public-monitoring repeated game with public
strategies. The private histories are not kept and only the public history remains.

3.3.4 Private Monitoring

Consider a set of agents I and a one-shot game described by utility functions u = (ui)i∈I

where ui : Ai → R. At each time step t, agent i chooses an action ai ∈ Ai. The joint

action induces for agent i a signal si from finite signal space Si. The signals s = (si)i∈I

are potentially correlated and distributed according to

s+ ∼ n(a),

where n : A → ∆(S). The sequence of signals observed by agent i is called its private

history, or simply history when there is no risk of confusion. Agent i’s history up to

time t is hti = (si
0, si

1, . . . , si
t−1). Denote by Ht

i the set of agent i’s histories up to

time t and by Hi = ∪t∈NHt
i the set of all possible histories. The information observable

over an infinite run is called an infinite history. The set of infinite histories for agent i

is denoted by H∞i .

The knowledge of the agents in a two-player private-monitoring repeated game is

pictured in Figure 15.
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ht1 ht+1
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(
ht1, a
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)
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(
ht1
)

(
st+1

1 , st+1
2

)
∼ n

(
at1, a

t
2

)
at2 ∼ σ2

(
ht2
)

ht2 ht+1
2 =

(
ht2, a

t
2, s

t+1
2

)

Figure 15: Agent knowledge in a two-player private-monitoring repeated game.

Perfect-monitoring repeated games are closely related to MDPs. Therefore, the

sequential-rationality condition in a perfect-monitoring repeated game requires the

Bellman equation to be satisfied after every possible history. Similarly, private-

monitoring repeated games are related to POMDPs. Agent i faces a POMDP with

state (hi)i∈I and observation (ai, si). Accordingly, in the private-monitoring setting,

the sequential-rationality condition requires that each agent’s strategy be optimal for

a POMDP. This requires that the Bellman equation involving beliefs over the state

be satisfied after every possible tuple of histories (hi)i∈I . The fact that the agent do

not share a public signal makes this setting incredibly more complicated.

The folk theorem for private-monitoring repeated games has recently been de-

rived [42]. Before this 200-page long achievement, some partial results relied on the

existence of subsets of strategies with a nice recursive structure. For example, belief-

free equilibria [11,12] and weakly belief-free equilibria [25] are two solution concepts

that were used to derive some partial folk theorems. In a belief-free equilibrium, agents

must only use actions that are optimal no matter what their belief about the last

action played by their opponents is. In a weakly belief-free equilibrium, agents only

need to have correct beliefs about the last action played by their opponents.
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3.4 Stochastic Games

Stochastic games [38] are the most general extension of MDPs to the multiagent setting.

The utility functions of the agents depend on a state whose dynamic is impacted by

the joint actions. In other terms, for each state, the agents play a different game.

Their actions impact the payoffs and the transition probabilities between states. In a

stochastic game, the agents want to maximize the expected sum of their discounted

payoffs.

In a stochastic game, a state evolves in discrete time controlled by the joint action

of a set of agents I. The state at time t+ 1 is a random variable depending only on

the state of the system at time t and the joint action played at time t. This dynamic

is captured by the short notation

x+ ∼ f(x, a), (20)

where x and x+ are states in a finite state space X and a =
(
a1, . . . , a|I|

)
is a joint

action in the finite joint action set A =
∏

i∈I Ai. In state x, the joint action a yields

for agent i a payoff ui(x, a).

A variety of stochastic games are defined by varying the monitoring structure. As

an example, the agent-knowledge diagrams for perfect and private monitoring are

presented in Figures 16 and 17.

t t+ 1

at1 ∼ σ1

(
ht1
)

xt+1 ∼ f
(
xt, at1, a

t
2

)
at2 ∼ σ2

(
ht
)

ht ht+1 =
(
ht, xt+1, at2, a

t
1

)

Figure 16: Agent knowledge in a two-player perfect-monitoring stochastic game
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The main results in repeated games characterize the payoffs achievable at equilib-

rium. There are virtually no result to actually compute equilibrium strategies. This

lack of result is not surprising. In the simplest setting of perfect-monitoring repeated

game, at equilibrium an agent need to solve an MDP. This MDP depends on the

strategies of its opponents. However, the strategies of the opponents is usually not

available to the agent, especially in a learning setting where the strategies evolve.

Stochastic games form a strict superset of repeated games. The added complexity

explains that there are very few results available.
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CHAPTER IV

DECENTRALIZED CONTROL AND GAMES

4.1 Decentralized Control through Learning in Stochastic
Games

A complex system is a set of agents connected through a network. The subsystems

of a car, a robotic plant, and the power grid are examples of complex systems at

different scales. The advances in information technology made these complex systems

ubiquitous, and tools to control them are needed. These systems can be controlled

in a centralized fashion. However, a centralized controller represents a single point

of failure, does not scale to large networks, and incurs high communication costs.

Adaptive decentralized controllers address these problems. A controller is decentralized

if each agent in the system makes some decisions. Decentralization renders the system

more robust by not having a single point of failure. A controller is adaptive in the

sense of [18, 19] if each agent is doing simple computations using local information.

Adaptivity mitigates the scalability and communication issues.

In optimal control, centralized controllers are the optima of a function. Unfortu-

nately, in the multiagent setting, the notion of optimality is ill defined. Game theory,

the study of interacting decision makers, addresses this issue by replacing optima

with equilibria. An equilibrium is a joint decision satisfying all the agents at once; at

equilibrium, no agent has an incentive to unilaterally deviate. In a game-theoretic

approach, decentralized controllers are equilibria of a game.

Equilibria can be computed by a centralized algorithm. However, this centralized

approach brings back the issue of scalability and prevents the addition of new agents

without designing a new controller. Game-theoretic learning enables the decentralized
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computation of equilibria. Each agent modifies its strategy according to a learning rule

using local information. The learning rules used by the agents are chosen to guarantee

convergence to an equilibrium. Game-theoretic learning is an adaptive decentralized

approach to designing adaptive decentralized controllers.

Engineering problems often involve dynamical systems with a state, such as MDPs.

When the decision maker cannot observe the state directly it is facing a POMDP.

Solving an MDP is tractable for reasonable sizes of the state space, whereas solving a

POMDP is intractable. Stochastic games extend these processes to the multiagent

case. In a complex system, agents only observe local information. Therefore, the

games used to control these systems are stochastic games of imperfect information.

These games are, like POMDPs, intractable. To this day, there exists no centralized

algorithm nor learning rule for computing equilibria in stochastic games.

The full-rationality requirement of game theory is in part to blame for this lack

of results. Full rationality requires agents to have perfect understanding of the game

being played. This requirement is not realistic for engineered agents which have, by

nature, bounded rationality. This research uses bounded rationality to make each

agent face an MDP instead of a POMDP.

The rest of this chapter introduces work paving the way towards using game-

theoretic learning to design decentralized controllers. These results are grouped under

three main themes: learning in games, equilibria in repeated games, and bounded

rationality.

4.2 Learning in Games

As previously mentioned, Nash equilibria are self-enforcing agreements. Learning

studies the question of how agents reach such an agreement. Learning in the economics

literature tries to explain behaviors observed in experiments; the authors look for

simple rules human decision makers likely use. The ensuing debate concerning the
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validity of learning algorithms for human decision makers is irrelevant for this research.

In the learning framework, a game is played repeatedly at discrete time steps.

Agents use strategies to choose their actions. At a given time step, an agent plays

an action and receives a signal. This signal is most of the time the joint action. The

agent then updates its strategy depending on the received signal. The update rule is

called a learning algorithm. The goal is to define learning algorithms making the joint

action converge to a Nash equilibrium [17].

A learning algorithm is composed of the three following components:

• Information accumulation

• Optimization of a function constructed from that information

• Randomization to avoid being trapped in local optima

Randomization commonly takes the form of smoothing; instead of playing a best

response, an agent plays a mixed action favoring the best response and putting a

small probability on other actions. A learning algorithm is called adaptive if the

information is accumulated locally and the optimization is an easy computational task.

In economics, the easiness of a computational task is defined with human decision

makers in mind. In this research, the easiness is defined for an engineered decision

maker; for example, computing the eigenvectors of a medium size matrix is considered

an easy computational task. Adaptivity is an important characteristic of learning

algorithms for scaling.

Fictitious play is an example of an adaptive learning algorithm. In fictitious play,

agents keep track of the empirical frequencies of the actions played by their opponents.

At each time step, an agent plays a best response to the mixed action induced by

these empirical frequencies of play. Information is accumulated through the empirical

frequencies. Optimization takes the form of playing a best response. Smooth fictitious

play is a variant incorporating the randomization component.
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Unfortunately, fictitious play does not always converge to a Nash equilibrium [39].

In fact, no adaptive learning rule converges to Nash equilibria for all games [21].

This result is in part due to the fact that computing a Nash equilibrium is PPAD

complete [9]. PPAD, which stands for Polynomial Parity Arguments on Directed

graphs, is a complexity class contained between P and NP. PPAD complete problems

are believed to be hard to solve but the exact relationship to P and NP is not known.

Three approaches to designing simple convergent algorithms are presented below.

One considers correlated equilibria with a weaker notion of convergence, another

focuses on the class of weakly-acyclic games, and the last one uses the less constraining

solution concept of stochastically stable states.

4.2.1 Correlated Equilibria

Hart and Mas-Colell proved that a family of adaptive learning rules converge to the

set of correlated equilibria [18–20]. These algorithms rely on the notion of regret. A

regret measures the payoff difference between two actions. Formally, the regret for

playing a instead of a′ is the average increase in payoff the agent would have received,

had it replaced every play of a by a′. The optimization step seeks to minimize the

regrets. As a result, the family of algorithms is called no regret. The guaranteed

convergence of these algorithms comes not only from the simpler equilibrium concept

but also from the use of a looser notion of convergence on a different quantity. Indeed,

no-regret algorithms guarantee the convergence of the empirical distribution of play to

the set of correlated equilibria. Note that the empirical distribution of play 1
t

∑t
τ=1 a

τ

is different from the joint action at and that convergence to a set is less constraining

than convergence to a point.

4.2.2 Weakly Acyclic Games

A game is weakly acyclic if from any joint action there exists a better-reply path ending

at some pure Nash equilibrium. This structure on the utility functions, introduced by
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Young [47], insures that better-reply learning algorithms converge to a Nash equilibrium

in weakly acyclic games [48]. Weakly acyclic games are an extension of potential

games, a class of games used to model congestion problems and to systematically

design decentralized controllers [29].

4.2.3 Stochastically Stable States

Young introduced the notion of stochastically stable states to characterize the long-run

behavior of a Markov chain subject to a diminishing random noise [46]. A state is

stochastically stable if it is visited infinitely often as the noise fades. Learning in this

context is different from learning an equilibrium. Agents should, as a whole, make the

noise fade in a way guaranteeing that the stochastically stable states of the system

are the desirable ones. This notion of stability was used to control wind farms [32],

to characterize the yield of self-assembly mechanisms [15], and to study language

evolution [14].

4.3 Equilibria in Repeated Games

This section presents results pertaining to repeated games. The first result extends

the parallel existing between MDPs and repeated games by adapting reinforcement

learning to a multiagent setting. The next three results are equilibrium concepts

lowering the requirements on the beliefs imposed by sequential rationality.

4.3.1 Multiagent Reinforcement Learning

Hu and Wellman attempted to apply results from reinforcement learning to the

multiagent setting with the Nash–Q-learning algorithm [22]. In stochastic games, it

is unfortunately not enough to balance exploration and exploitation. The Nash–Q-

learning algorithm requires the agents to keep track of action-value functions for their

opponents and to play Nash-equilibrium strategies. This approach is computationally

expensive and only yields results for agents with identical or opposite utility functions.
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When agents have identical utility functions, the problem is identical to a single-

agent problem. Therefore, classical reinforcement-learning results carry over. When

agents have opposite utility functions, they are facing a zero-sum game. In a zero-sum

game, one can define the solution by using the minimax theorem. The lack of ambiguity

in defining rational solution concepts explains the convergence.

4.3.2 Subjective and Self-confirming Equilibria

Subjective equilibria, introduced by Kalai and Lehrer, lower the requirements on the

beliefs in repeated games [24]. They only require the beliefs to be correct on the path

of play. Self-confirming equilibria, introduced by Fudenberg and Levine, are a closely

related concept [16]. In a self-confirming equilibrium an agent can hold the false

belief that its opponents correlate their actions off the path of play. Agents playing a

subjective or self-confirming equilibrium never see plays contradicting their beliefs.

Subjective and self-confirming equilibria are formally defined in terms of belief

strategies. Belief strategy σ̃ij : Hj → ∆(Aj) is the strategy agent i believes agent j

is playing. Agent i’s belief is composed of one belief strategy for each agent σ̃i =(
σ̃i1, . . . , σ̃

i
|I|

)
. In particular, its belief strategy for itself is its actual strategy σ̃ii = σi.

A set of |I| strategies, one per agent, induces a distribution over the possible

histories. The histories having a positive probability of being visited are called the

path of play. This set of strategies can be the actual strategies or the beliefs of one

agent. Note that a distribution over beliefs also induces a distribution over the possible

histories.

Strategies σ and beliefs σ̃ form a subjective equilibrium when the following two

conditions hold for each agent i:

• Strategy σi is a best response to the belief strategies σ̃i−i.

• Strategies σ and strategies σ̃i induce the same distribution over the path of play.
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Strategies σ and distributions over beliefs ν̃ form a self-confirming equilibrium

when the following two conditions hold for each agent i:

• Strategy σi is a best response to the distribution over belief strategies ν̃i−i.

• Strategies σ and the distribution over belief ν̃i induce the same distribution over

the path of play.

These two equilibrium concepts loosens the requirements of full rationality. Agents

can be mistaken about events that will never happen. However, these concepts require

each agent to be aware of the existence of every other agent. An agent needs to

understand what its opponents actions and signals are to build belief strategies. It

also needs to know the exact impact of its opponents actions to verify the optimality

of its own strategy. Therefore, these two equilibrium concepts are only a first step

towards the goal of this research.

4.3.3 Belief-free and Weakly Belief-free Equilibria

Belief-free equilibria and weakly belief-free equilibria are solution concepts for private-

monitoring repeated games, presented in Section 3.3.4. They lower the rationality

requirements by not requiring the agents to carry full beliefs about the state of their

opponents.

4.3.4 Analogy-based Expectation Equilibria

Jehiel introduced the concept of analogy-based expectation equilibria (ABEEs) for

games of perfect information to keep the belief space size constant [23]. ABEEs can

be expressed in terms of belief strategies. Each agent partitions the history set in a

finite number of analogy classes. An analogy class for agent i is denoted by κi and

the set of analogy classes by Ki. Each agent i believes that its opponents’ actions are

fully determined by the analogy class; for two histories h and h′ in the same analogy
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class κi and for all agent j, σ̃ij(h) = σ̃ij(h
′) = αi,κij . The, potentially mixed, action αi,κij

is called an analogy-based belief.

Strategies σ, analogy classes K, and analogy-based beliefs α form an ABEE when

the following two conditions hold for each agent i:

• Strategy σi is a sequentially rational best response to the analogy-based be-

liefs αi−i.

• For all agent j, the analogy-based belief αij is consistent with σj, i.e., for all κi

in Ki and aj in Aj, αi,κij [aj] = P[σj(h) = aj |h ∈ κi].

The ABEE concept is a substantial step in the direction of this research. The perfect

understanding required by full rationality is replaced by the notion of consistency.

Beliefs are consistent if they are accurate on average even though they might be

inexact upon closer inspection. This relaxation simplifies the problem that each agent

is facing. However, each agent is still required to have a good understanding about

the game being played and the role of its opponents. This research goes beyond this

limitation by using consistency in a setup where agents do not need to know they are

playing a game. The following section exposes other approaches using consistency.

4.4 Bounded Rationality and Consistency

In classical game theory, agents are assumed to be fully rational. Bounded rationality

studies scenarios where agents have limited computation power or make mistakes [36].

In the economics literature, bounded rationality is used to take into account human

nature and to explain discrepancies with experiments. Fully rational agents can

perfectly use any knowledge they have about the problem they face. For example,

in a stochastic game of imperfect information, fully rational agents propagate beliefs

accurately. Propagating beliefs means doing Bayesian inference on a belief space

whose size increases with time. Engineered agents have limited computation power,

71



limited memory, and bounded precision. Furthermore, adaptivity requires the use of

local and therefore incomplete information. As a result, there is no hope to build fully

rational adaptive agents in a dynamic world. In this research, the bounded rationality

of engineered agents is used as an advantage. Instead of relying on propagation of

beliefs regarding the imperfect information, simple consistent models are used. A

model is consistent if the agent does not observe evidence contradicting it.

Four approaches using bounded rationality to lower the complexity of the problem

are presented below. The first one uses Kalman filtering to update a model while the

others use the notion of consistency. All the consistency approaches use exogenous

models, whereas this research lifts that restriction. Other differences with this research

are highlighted.

4.4.1 Linear Modeling

Chang, Ho and Kaelbling used modeling to simplify multiagent learning [8]. Each

agent assumes that the signal received is generated from a linear system and uses

Kalman filtering to get the best estimate of the current state.

4.4.2 Mean-field Games

Lasry and Lions studied a setting where a very large number of agents faces identical

copies of an MDP [28]. The MDPs are coupled through a common signal received

by the agents. This signal is the proportion of agents in each state; it is a stochastic

process impacted by the strategies of all the agents. Agents compute their optimal

strategies by considering a consistent, exogenous and stationary model of the signal.

Agents are in a mean-field equilibrium (MFE) if their optimal strategies induce

precisely this stationary signal. The goal of MFEs is to simplify the analysis of games

with a very large number of agents. The main result in the MFE literature is that

when the number of agents goes to infinity, MFEs coincide with Nash equilibria. The

fact that the signal is not truly stationary nor exogenous washes away when the
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number of agents is large. MFEs aim at simplifying the analysis of Nash equilibria

for a specific game with a large number of players. This research aims for a different

equilibrium concept in general games with any number of players. Furthermore, MFEs

focuses on stationary models, whereas this research considers more elaborate models.

Weintraub, Benkard, and van Roy applied the mean-field methodology to approximate

subgame-perfect equilibria in a problem of dynamic imperfect competition [45]. They

named their equilibrium concept oblivious equilibrium.

4.4.3 Incomplete Theories

Eyster and Piccione analyzed a scenario in which traders have exogenous nonstationary

consistent models of prices on the stock market; these models are called incomplete

theories [13]. The traders use their theories to acquire assets. The key result is that

traders with more complete theories do not necessarily perform better. The main

difference with this research is that, the actions of the traders do not influence prices.

Therefore, prices are truly exogenous; traders do not need to update their models.

4.4.4 Egocentric Modeling

Seah and Shamma analyzed a specific game where two agents share a one-dimensional

signal [37]. The signal is stochastic and influenced by the strategies of the agents.

However, the agents model it with a consistent stationary exogenous model. Similarly,

in this research, an inaccurate simplified model is used to lower the complexity of

computations.
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CHAPTER V

EMPIRICAL-EVIDENCE EQUILIBRIA

Chapter 3 showed that equilibria in repeated games and stochastic games are compli-

cated entities. At best, at equilibrium in a perfect-monitoring repeated game, each

agent solves an MDP. At worst, in a private-monitoring stochastic game, each solves

a POMDP. This chapter introduces a new equilibrium concept for stochastic games

in which each agent only solves an MDP. As was the case in Chapters 2 and 3, the

concept is first introduced through a single-agent point of view. Then, the full-fledged

multiagent case is exposed.

The following presentation of this research was first developed in [10].

5.1 Single-agent Setup

Consider a discrete-time dynamical system governed by

x+ ∼ f
(
x, a, s+

)
, (21)

where x is a state, a is an action, and s is a signal. Variables x, a, and s take values in

finite sets X , A, and S, respectively. The agent picks the action a. Nature determines

the signal s+ according to

w+ ∼ n(w, x, a), (22a)

s+ ∼ ν
(
w+
)
, (22b)

where w is a state of Nature evolving in the finite state spaceW . The agent observes s

but not w. Denote by N the dynamical system described by (21) and (22). Think

of this system as a perturbed MDP. The block diagram associated with (21) will be

used later in this chapter. It is represented in Figure 18.
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x+ ∼ f(x, a, s+)

a
s

x

(a) Full representation

f

a

x

s

(b) Condensed representation

Figure 18: Block diagram for the MDP with perturbation signal. The contour of the block
in the condensed representation is doubled. This serves as a visual reminder that the output
variable is fed back into the block.

Define the agent’s observation by o = (x, a, s+) and the actual realization of

the system by r = (w, x, a, s+). At time t, the agent’s private history is pt =

(o0, o1, . . . , ot) ∈ P t and the true history is ht = (r0, r1, . . . , rt). Denote by P = ∪t∈NP t

the set of finite private histories. A strategy σ : P → ∆(A) is a mapping from private

histories to a distribution over the actions. The agent knowledge of this perturbed

MDP is represented in Figure 19, using the diagram format introduced in Chapter 3.

At each time step, the agent receives a payoff according to the utility function u :

X × A × S → R. For a given infinite private history the agent receives the sum of

discounted payoffs
∑∞

t=0 δ
tu(xt, at, st+1), where δ ∈ [0, 1) is a discount factor. The

agent wants to find a strategy maximizing its expected sum of discounted payoffs

UN,σ(x) = EN,σ

[
∞∑
t=0

δtu
(
xt, at, st+1

) ∣∣∣∣∣x0 = x

]
.

When the agent knows (21) and (22), it is facing a POMDP. To see why, com-

pare Figure 19 with Figure 9. The POMDP has state (w, x) and observed value (x, s).

A natural solution concept for this type of problems is an optimal policy for the

POMDP. As described in Section 3.2, the agent computes an optimal policy using

beliefs, which are probability distributions over states. Beliefs are obtained from the

private histories pt, the signaling structure (22), and the application of Bayes’ rule.

Belief computation is intractable because the size of the belief space grows with time.

The present research is interested in the case where the agent knows (21) but does

not know (22). As previously mentioned, this is an MDP with a perturbation. The
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agent fully understands the effect of the perturbation s on (21) but does not know

how this perturbation is generated. This block diagram for this setting is shown in

Figure 20. The information known to the agent is highlighted in Figure 21. In such a

setting, a less constraining solution concept is required. Empirical-evidence optimality

is one such solution concept that relies on the notion of statistical consistency.

The following section presents the simplest notion of statistical consistency, depth-k

consistency.

f

Nature

a

x

s

Figure 20: Block diagram for the single-agent empirical-evidence setup N. The agent is
aware of facing an MDP with an unknown perturbation signal. The noisy contour of Nature
emphasizes that the agent does not know anything about it. Furthermore, Nature has access
to all the variables to compute s, but these dependencies are not represented.

5.2 Depth-k Consistency

The notion of consistency used in this research is best introduced through an example.

Example 6 (Binary Signal). Suppose an agent receives a binary signal. Furthermore,

suppose the agent has no information about the underlying generating process. When

the agent observes a realization of this binary signal, it can compute certain parameters.

One of the simplest set of parameters is the probabilities of 0s and 1s. For example,

if the agent observes the following sequence:

Sa = 011011011011011011 . . . ,

it would compute the following parameters:

Pa[0] =
1

3
and Pa[1] =

2

3
.
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Similarly, if the agent observes this other sequence:

Sb = 001111001111001111 . . . ,

it would compute

Pb[0] =
1

3
and Pb[1] =

2

3
.

If the probabilities of 0s and 1s are the only parameters used by the agent, it would

not differentiate Sa and Sb. Sequences Sa and Sb are said to be depth-0 consistent.

The agent can use more parameters to characterize the signal. For example, the

probabilities of 00s, 01s, 10s, and 11s. Using the same sequences, the agent would

compute

Pa[00] = 0,

Pa[01] =
1

3
,

Pa[10] =
1

3
,

Pa[11] =
1

3
,

for Sa, and

Pb[00] =
1

6
,

Pb[01] =
1

6
,

Pb[10] =
1

6
,

Pb[11] =
1

2
,

for Sb. Using these parameters, which correspond to a deeper analysis, the agent is

able to differentiate Sa and Sb. Sequences Sa and Sb are not depth-1 consistent.

Consider C, an S-valued process. For k in N, its depth-k characteristic χk is the

long-run distribution of the strings of length k + 1. For d in Sk+1

χk[d] = lim
t→∞

P
[(
Ct−k, . . . , Ct−1, Ct

)
= d
]
. (23)

Two processes with the same depth-k characteristic are called depth-k consistent.

The signal observed by the agent is one such S-valued process. Consider another S-

valued process described by

z+ = mk
(
z, s+

)
, (24a)

s+ ∼ µ(z), (24b)
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where z is a state in Sk and mk is the length-k–memory function defined by

mk
((
st−k+1, . . . , st−1, st

)
, st+1

)
=
(
st−k+2, . . . , st, st+1

)
,

and whose block diagram is depicted in Figure 22. Under some technical assumptions,

described in Section 5.3, the observed signal and the Markov chain described by (24)

are ergodic processes. Furthermore, the Markov chain is depth-k consistent with the

true signal when the following equality holds:

µ(z)
[
s+
]

= lim
t→∞

PN,σ

[
st+1 = s+

∣∣ (st−k+1, . . . , st−1, st
)

= z
]
.

z+ ∼ mk(z, s+)

s

z

(a) Full representation

mk

s

z

(b) Condensed representation

Figure 22: Block diagram for the depth-k mockup.

Example 7 (Binary Signal [continued]). The agent has observed a realization of the

signal. It has computed the parameters of interest. The agent now creates a mockup

with similar parameters. It fixes, a priori, a deterministic Markov chain, as described

by (24a). Then, it identifies the values of µ making the mockup consistent with the

observed sequence.

For depth-0 consistency, it is sufficient to use a Markov chain with a single state,

as depicted in Figure 23. Remember that sequences Sa and Sb are depth-0 consistent.

Therefore, a single distribution µ(z∅) makes the mockup depth-0 consistent with Sb

and Sb. This distribution is the following:

µ(z∅)[0] = Pa[0] = Pb[0] =
1

3
,

µ(z∅)[1] = Pa[1] = Pb[1] =
2

3
.
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m0

z∅

µ(z∅) = ?

s = 0 s = 1

Figure 23: Mockup enabling depth-0 consistency with binary signals. The mockup is
composed of a fixed deterministic Markov chain m0 with a single state and a distribution µ(z∅).
By adjusting the distribution µ(z∅), this mockup can be made depth-0 consistent with any
given ergodic binary signal.

For depth-1 consistency, a Markov chain with two state, portrayed in Figure 24, is

required. The distributions making the mockup depth-1 consistent with the sequence Sa

are

µ(z0)[0] = Pa[0 | z0] = 0,

µ(z0)[1] = Pa[1 | z0] = 1,

and
µ(z1)[0] = Pa[0 | z1] =

1

2
,

µ(z1)[1] = Pa[1 | z1] =
1

2
.

Similarly,the distributions making the mockup depth-1 consistent with the sequence Sb

are

µ(z0)[0] = Pb[0 | z0] =
1

2
,

µ(z0)[1] = Pb[1 | z0] =
1

2
,

and
µ(z1)[0] = Pb[0 | z1] =

1

4
,

µ(z1)[1] = Pb[1 | z1] =
3

4
.

m1

z0 z1

µ(z0) = ? µ(z1) = ?

s = 1

s = 0

s = 0 s = 1

Figure 24: Mockup enabling depth-1 consistency with binary signals. The mockup is
composed of a fixed deterministic Markov chain m1 with two states and two distributions µ(z0)
and µ(z1). By adjusting the distributions µ(z0) and µ(z1), this mockup can be made depth-1
consistent with any given ergodic binary signal.

Note that the mockup is split in two parts. First, since the agent does not know

anything about the signal, it assumes that it is generated by a parametric model.
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Second, it computes observation distributions matching the empirical evidence provided

by the signal. The mockup built this way is consistent with the signal. Nothing in the

empirical evidence contradicts the assumption made by the agent.

Denote by Mk the dynamical system described by (21) and (24). This system is

obtained from the original system N by substituting Nature with a depth-k consistent

mockup. It is depicted in Figure 25. The system Mk induces an MDP with state (x, z),

action a, strategy σ : X × Z → A, and the objective function

UMk,σ

(
x0, z0

)
= EMk,σ

[
∞∑
t=0

δtu
(
xt, at, st+1

)]
.

A strategy σ for the MDP can be implemented in the real system by building z

with (24a). This trick, allowing to use a strategy designed for the simpler system Mk

in the more complicated system N, is illustrated in Figure 26. The agent knowledge

in system Mk is depicted in Figure 27. The simplification to the agent knowledge

system N, induced by the use of the length-k–memory function, is presented in Fig-

ure 28.

f

µ

mk

a

x

z

s

(a) Open loop

f

µ

mk

a

x

z

s

σ

(b) Closed loop with a strategy

Figure 25: Block diagram for the single-agent empirical-evidence setup with mockup Mk.
For a given distribution µ, the system forms a finite MDP and an optimal strategy can be
computed.

By using depth-k consistency, we went from an arbitrarily complicated system N

to a finite MDP Mk. The next idea is to compute optimal strategies in the simpler
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f

Nature

a

x

smk
z

(a) Open loop

µ(z)[s+] = P[s+ | z]

f

Nature

a

x

smk
z

σ

(b) Closed loop with a strategy

Figure 26: Block diagram for the single-agent empirical-evidence setup N with length-
k–memory function. For a given strategy, the closed-loop system generates a probability
distribution P[s+ | z]. Using this distribution for µ along with mk yields a depth-k–consistent
mockup.

t t+ 1

xt xt+1 ∼ f
(
xt, at, st+1

)
at ∼ σ

(
xt, zt

)
st+1 ∼ µ

(
zt
)

zt zt+1 = mk
(
zt, st+1

)

Figure 27: Agent knowledge in the single-agent empirical-evidence setup with mockup Mk.
The agent knows all of the causality relations and all the parameters of the MDP, namely f
and µ.
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system and measure their impact in the real system.

Consider the following iterative process, illustrated in Figure 29. The agent

implements an initial strategy σ0. It formulates a depth-k consistent model µ0 of

Nature’s dynamic. Then, it computes an optimal strategy σ1 for the MDP induced

by this model µ0. Upon implementation of this new strategy, the model µ0 may lose

the requisite statistical consistency. Therefore, the agent formulates a revised depth-k

consistent model µ1 and the process repeats. A fixed point of this iterative process is

one way to define a solution to this problem. A strategy is a solution if it is optimal

with respect to the model it induces.

Using that model to design a strategy is equivalent to the agent making an

assumption about the system. For example, when the agent uses a depth-k consistent

model, it assumes the signal is generated exogenously, i.e., not impacted by x or a.

This assumption might seem restrictive. However, note that the repeated-modeling

and optimization phases create a feedback loop. Therefore, a model satisfying the

consistency condition is exogenous but captures characteristics of Nature’s dynamic.

The following section extends beyond the notion of depth-k consistency.

5.3 Empirical-evidence Optimality

The agent assumes that a Markov chain, with state z from a finite set Z, generates

the signal s and that it can construct z from its observations as follows:

z+ ∼ m
(
z, x+, a, s+

)
, (25a)

s+ ∼ µ(z). (25b)

The model m represents the assumption the agent makes about the system. The

predictor µ is the set of parameters the agent adjusts to obtain a signal resembling

its observations. The pair (m,µ) is called a mockup. Denote by M the dynamical

system described by (21) and (25). The block diagram for this system is depicted

in Figure 30. The block diagram for the associated system N with the model m is
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µ0(z)[s+] = P[s+ | z]

f

Nature

a

x

smk
z

σ0

(a) Use σ0 in N and measure µ0 that makes
the mockup depth-k consistent.

f

µ0

mk

a

x

z

s

σ1

(b) Use µ0 in Mk to setup an MDP. Com-
pute σ1 optimal for this MDP.

µ1(z)[s+] = P[s+ | z]

f

Nature

a

x

smk
z

σ1

(c) Use σ1 in N and measure µ1 that makes
the mockup depth-k consistent.

f

µ1

mk

a

x

z

s

σ2

(d) Use µ1 in Mk to setup an MDP. Com-
pute σ2 optimal for this MDP.

Figure 29: Iterative process alternating between the real and the mockup system. Using a
strategy in the real system yields a measurement. Using this measurement in the mockup
system yields an optimal strategy.
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depicted in Figure 31. The agent knowledge in systems M and N are presented in

Figure 32 and Figure 33 respectively.

f

µ

m

a

x

z

s

σ

Figure 30: Block diagram for the single-agent empirical-evidence setup with mockup M.

µ(z)[s+] = P[s+ | z]

f

Nature

a

x

sm
z

σ

Figure 31: Block diagram for the single-agent empirical-evidence setup N with model m.

In this setup, depth-k consistency is replaced with the following definition.

Definition 13. Let σ be a strategy and (m,µ) be a mockup. Predictor µ is (σ,m)

consistent with N if

∀z ∈ Z and s+ ∈ S, µ(z)
[
s+
]

= lim
t→∞

PN,σ

[
st+1 = s+

∣∣ zt = z
]
.

The notion of optimality used is the following.

Definition 14. Let σ be a strategy, (m,µ) be a mockup, and ε be a positive number.

Strategy σ is (µ,m) optimal if it is optimal for the MDP induced by M. Strategy σ

is (ε, µ,m) optimal if it is ε optimal for the MDP induced by M.
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t t+ 1

xt xt+1 ∼ f
(
xt, at, st+1

)
at ∼ σ

(
xt, zt

)
st+1 ∼ µ

(
zt
)

zt zt+1 = m
(
zt, xt+1, at, st+1

)

Figure 32: Agent knowledge in the single-agent empirical-evidence setup with mockup M.

Having defined consistency and optimality the definition of an empirical-evidence

optimum (EEO) follows.

Definition 15. Let σ be a strategy, (m,µ) be a mockup, and ε be a positive number.

The pair (σ, µ) is an m EEO if the following two conditions hold:

1. Strategy σ is (µ,m) optimal.

2. Predictor µ is (σ,m) consistent with N.

The pair (σ, µ) is an (ε,m) EEO if the following two conditions hold:

1. Strategy σ is (ε, µ,m) optimal.

2. Predictor µ is (σ,m) consistent with N.

A little care must be taken to make µ in Definition 13 well defined. Insuring the

following assumption is verified guarantees it.

Assumption 1. Let σ be a strategy, and Tσ be the Markov chain with state X =

(w, x, z) induced by N and σ, X+ ∼ TσX. The Markov chain Tσ is irreducible and

aperiodic. In this case, some authors say that the Markov chain Tσ is ergodic.

Assumption 1 insures that Tσ has a unique stationary distribution πσ such that

lim
t→∞

PN,σ

[
st+1 = s+

∣∣ zt = z
]

= Pπσ
[
s+
∣∣ z].
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Furthermore, Assumption 1 guarantees that πσ has full support, meaning that for

all w in W, x in X , and z in Z, πσ[w, x, z] is positive. This guarantees that µ

in Definition 13 is well defined for all z and s as follows:

µ(z)
[
s+
]

= lim
t→∞

PN,σ

[
st+1 = s+

∣∣ zt = z
]

= Pπσ
[
s+
∣∣ z]

=
∑
w+∈W

Pπσ
[
s+
∣∣ z, w+

]
· Pπσ

[
w+
∣∣ z]

=
∑
w+∈W

Pπσ
[
s+
∣∣w+

]Pπσ [w+, z+]

Pπσ [z]

=
∑
w+∈W

ν
(
w+
)[
s+
]∑

w∈W
∑

x∈X
∑

a∈A πσ[w, x, z] · σ(x, z)[a] · n(w, x, a)[w+]∑
w∈W

∑
x∈X πσ[w, x, z]

(26)

One way to insure that Assumption 1 is verified is to have a small noise affect all

the transitions. Formally, this means that for all w ∈ W , x ∈ X , a ∈ A, and s+ ∈ S,

f(x, a, s+), n(w, x, a), ν(w), and σ(x, z) have full support. From now on, Assumption 1

is always verified.

5.4 Weak Consistency and Eventual Consistency

The notion of consistency exposed in Definition 13 is fairly strong. It requires that

the quantity PN,σ[st+1 = s+ | zt = z] converges for all z ∈ Z and s+ ∈ S. As a result,

the associated Assumption 1 is constraining. This section, highlights two slightly

less stringent notions of consistency with their associated assumptions. The first one,

weak consistency, uses a weaker notion of convergence. The second one, eventual

consistency, only requires convergence on a subset of states z ∈ Z.

First, let us define the notion of weak consistency. It relies on the fact that

convergence of the average of a sequence is weaker than convergence of the sequence.

Definition 16. Let σ be a strategy and (m,µ) be a mockup. Predictor µ is weakly
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(σ,m) consistent with N if

∀z ∈ Z and s+ ∈ S, µ(z)
[
s+
]

= lim
T→∞

1

T

T∑
t=1

PN,σ

[
st+1 = s+

∣∣ zt = z
]
.

The associated assumption is the following.

Assumption 2. Let σ be a strategy, and Tσ be the Markov chain with state X =

(w, x, z) induced by N and σ, X+ ∼ TσX. The Markov chain Tσ is irreducible.

Assumption 2 insures that Tσ has a unique stationary distribution πσ such that

lim
T→∞

1

T

T∑
t=1

PN,σ

[
st+1 = s+

∣∣ zt = z
]

= Pπσ
[
s+
∣∣ z].

Furthermore, Assumption 2 guarantees that πσ has full support. Using the same

reasoning as in (26) guarantees that µ in Definition 16 is well defined.

Second, let us define the notion of eventual consistency. It relies on the fact that

the value of µ(z) for a state z with zero probability in the limit is irrelevant.

Definition 17. Let σ be a strategy and (m,µ) be a mockup. Predictor µ is eventually

(σ,m) consistent with N if for all z ∈ Z such that limt→∞ PN,σ[zt = z] > 0

∀s+ ∈ S, µ(z)
[
s+
]

= lim
t→∞

PN,σ

[
st+1 = s+

∣∣ zt = z
]
.

For z ∈ Z such that limt→∞ PN,σ[zt = z] = 0, there is no requirement on µ(z). Its

value is totally arbitrary.

If a state z is such that limt→∞ PN,σ[zt = z] = 0, it will not be seen in the long

run. Therefore, there is no need to impose some constraints on µ for this state. The

following assumption is associated with this definition.

Assumption 3. Let σ be a strategy, and Tσ be the Markov chain with state X =

(w, x, z) induced by N and σ, X+ ∼ TσX. The Markov chain Tσ is unichain and

aperiodic.
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A Markov chain is unichain if it contains a single communication class. Assump-

tion 3 insures that Tσ has a unique stationary distribution πσ with full support on

its communication class, and no support outside of it. Therefore, for z ∈ Z such

that limt→∞ PN,σ[zt = z] > 0, it is the case that Pπσ [z] > 0. Furthermore, for that

same z,

lim
t→∞

PN,σ

[
st+1 = s+

∣∣ zt = z
]

= Pπσ
[
s+
∣∣ z].

Once again, using the same reasoning as in (26) guarantees that µ in Definition 17 is

well defined. The division by Pπσ [z] only occurs when this quantity is strictly positive.

When it is zero, µ is defined arbitrarily.

Combining Definitions 16 and 17 yields a third notion, eventual weak consistency.

The associated assumption requires the Markov chain to be unichain.

The following list summarizes the different notions of consistency and their associ-

ated assumptions on the Markov chain:

Consistent Irreducible and aperiodic.

Weakly consistent Irreducible.

Eventually consistent Unichain and aperiodic.

Eventually weakly consistent Unichain.

For conciseness reasons, the rest of this presentation only mentions the first notion

of consistency defined in Definition 13. However, the results are applicable to all

the notions of consistency defined in the present section. Extra care needed to

accommodate a specific notion of consistency will be addressed on a case by case basis.

5.5 Predictors and Strategies

Given a strategy σ, there is a unique predictor µ which is (σ,m) consistent with N.

This predictor can be measured in the system N, as depicted in Figure 31. Note
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that (26) guarantees that µ is a continuous function of σ and πσ. The mapping

associating a predictor to each strategy is a function. This function is denoted

by FM,m, where M stands for modeling.

Given a predictor µ, there might be multiple strategies σ that are (µ,m) optimal.

Such strategies are the optimal strategies for the MDP induced by system M, depicted

in Figure 30. Therefore, the mapping associating a predictor to the corresponding

optimal strategies is a correspondence. This correspondence is denoted FO,m, where O

stands for optimization. As in Chapter 2, we define a function approximating this

correspondence. This will allow us later to once again use Brouwer’s fixed-point

theorem to gain intuition before using Kakutani’s. Consider the MDP induced by M.

Let U∗ : X ×Z → R be the value function for that MDP. Define Q : X ×Z ×A → R

by

Q(x, z, a) = Es+∼ν(z)

[
u
(
x, a, s+

)
+ δEM

[
U∗
(
x+, z+

) ∣∣x, z, a, s+
]]
,

and σ by

σ(x, z)[a] =
e

1
τ
Q(x,z,a)∑

a′∈A e
1
τ
Q(x,z,a′)

.

The astute reader recognizes the Gibbs distribution, described in details in Note 5.

Recall that, as τ goes to 0, σ converges to a (µ,m)-optimal strategy. When τ is small

enough, σ is (ε, µ,m) optimal. To guarantee uniqueness, define τ to be the largest

value such that σ is (ε, µ,m) optimal. Note that σ defined that way is a continuous

function of the value function U∗. This function approximating the optimization

correspondence is denoted FO,m,ε.

The composition of an optimization mapping and a modeling mapping gives a

mapping from the space of strategies to itself. Two such mappings can be defined, the

correspondence Fm = FO,m ◦FM,m and the function Fm,ε = FO,m,ε ◦FM,m.

The following subsection extends the notion of EEOs to the multiagent case and

defines EEEs.
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5.6 Multiagent Setup

Consider a collection of agents I. Each agent i has a state xi, an action ai, and a

signal si. Let x be the tuple
(
x1, x2, . . . , x|I|

)
. Define a and s similarly. Agent i is

controlling the system described by

x+
i ∼ fi

(
xi, ai, s

+
i

)
. (27)

Agents −i are controlling systems described as a whole by

x+
−i ∼ f−i

(
x−i, a−i, s

+
−i
)
. (28)

All these systems are coupled through Nature which determines the signals s according

to

w+ ∼ n(w, x, a), (29a)

s+ ∼ ν
(
w+
)
. (29b)

The rest of this section extends the notions of consistency and optimality to

this setting. The block diagrams and agent-knowledge figures for a two-agent setup,

available in Figures 34 to 37, help in following the discussion. In particular, they

highlight the fact that there are very few differences in the treatment of the single-agent

problem and the multiagent one. By design, the notions of consistency and optimality

used remove the differences between the two settings.

Denote by Ni the system from agent i’s perspective. In the single-agent setup, N

was composed of a known part (21) and an unknown part (22). Similarly, Ni has a

known part (27) and an unknown part (28) and (29).

The other definitions from previous sections can readily be extended to the

multiagent case. Agent i has a utility function ui, a discount factor δi, a strat-

egy σi : Pi → ∆(Ai), and a mockup of Nature and its opponents described by a

state zi, a model mi, and a predictor µi. This forms the system Mi.
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(a) Agent 1’s knowledge in M1
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(b) Agent 2’s knowledge in M2

Figure 34: Agent knowledge in the two-agent empirical-evidence setup with mockup M1

and M2. Once again, the diagrams for the two agents are identical and not different from
the single agent setting.
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µ1(z1)
[
s+

1

]
= P

[
s+

1

∣∣ z1

]
µ2(z2)

[
s+
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]
= P
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∣∣ z2

]

f1

a1

x1

s1m1
z1

σ1

Nature

f2

a2

x2

s2 m2
z2

σ2

Figure 36: Block diagram for the two-agent empirical-evidence setup N with models m1

and m2.

f1

µ1
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x1

z1

s1

σ1

(a) Agent 1’s block diagram

f2

µ2

m2

a2

x2

z2

s2

σ2

(b) Agent 2’s block diagram

Figure 37: Block diagrams in the two-agent empirical-evidence setup with mockup M1

and M2. Notice that the two block diagrams are identical. Furthermore, from the agents’
perspective, there is no difference between the single-agent and the multiagent setting.
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From agent i’s perspective, everything is identical to the single-agent setup. The no-

tions of (µ,m) optimality, (ε, µ,m) optimality, and (σ,m) consistency can be replaced

by (µi,mi) optimality, (εi, µi,mi) optimality, and (σ,mi) consistency respectively.

Therefore, the definition of EEO readily extends to the multiagent setting.

Definition 18. Let σ, (m,µ), and ε such that for all i in I, σi is a strategy, (mi, µi)

is a mockup, and εi is a positive number. The pair (σ, µ) is an m EEE if the following

two conditions hold for all i in I:

1. Strategy σi is (µi,mi) optimal.

2. Predictor µi is (σ,mi) consistent with N.

The pair (σ, µ) is an (ε,m) EEE if the following two conditions hold for all i in I:

1. Strategy σi is (εi, µi,mi) optimal.

2. Predictor µ is (σ,mi) consistent with N.

For a given m and ε such that for all i in I, εi is a positive number, denote

by FO,m the optimization correspondence from predictors to strategies, by FO,m,ε

its approximating function, and by FM,m the modeling mapping from strategies to

predictors.

These mappings are defined by direct extension of their single agent counter-

parts. Define Fm, a correspondence from the space of strategies to itself, by Fm =

FO,m ◦FM,m. Similarly define Fm,ε, a function from the space of strategies to itself,

by Fm,ε = FO,m,ε ◦FM,m.

It is sometimes easier to work with a function from the space of predictors to itself.

In these cases, we use Gm,ε = FM,m ◦FO,m,ε.

Now that the setup has been established, it is time to prove some results. The

first result tackles the existence of EEEs.
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5.7 Existence of Empirical-evidence Equilibria

The proof of existence of empirical-evidence equilibria follows along the line of the

proof of existence of Nash equilibria presented in Section 2.5. It starts by proving

the existence of approximate equilibria through Brouwer’s fixed-point theorem, before

proving the existence of exact equilibria using Kakutani’s fixed-point theorem. The

proof of the existence of Nash equilibria used the best-response correspondence. The

best response correspondence mapped the set of independent mixed actions to itself.

In the empirical-evidence setting, these actions are replaced by strategies, and Fm

plays a similar role to the best-response correspondence.

5.7.1 Existence of Approximate Equilibria

Theorem 6. Let m = (mi)i∈I be models and ε = (εi)i∈I be positive numbers.

There exists an (ε,m) EEE.

Proof. First, show that Fm,ε has a fixed point. The set of strategies is representable by

a product of simplices. Therefore, Fm,ε is a mapping from a convex and compact set to

itself. By Propositions 6 and 7, FO,m,ε and FM,m are continuous. As the composition of

two continuous functions, Fm,ε is continuous. By application of Brouwer’s fixed-point

theorem, Fm,ε has a fixed point.

The upcoming Proposition 5 therefore implies that an (ε,m) EEE exists.

Proposition 5. Let m = (mi)i∈I be models and ε = (εi)i∈I be positive numbers.

Let σ∗ be a fixed point of Fm,ε. Define µ∗ by µ∗ = FM,m(σ∗).

The pair (µ∗, σ∗) is an (ε,m) EEE.

Proof. Fix i ∈ I. By definition predictor µ∗ is (σ∗,mi) consistent with Ni. Note that

FO,m,ε(µ∗) = FO,m,ε ◦FM,m(σ∗) = Fm,ε(σ∗) = σ∗.

This implies that strategy σ∗ is (εi, µ
∗
i ,mi) optimal. Therefore, (µ∗, σ∗) is an (ε,m) EEE.
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Proposition 6. Let m = (mi)i∈I be models and ε = (εi)i∈I be positive numbers.

The optimization mapping FO,m,ε is continuous.

Proof. Agent i’s predictor only affects agent i’s strategy. Therefore, proving that FO,m,ε

is continuous, only requires showing that FO,m,ε
i : µi 7→ σi is continuous for all i ∈ I.

Decomposing this function as follows:

FO,m,ε
i : µi

(a)7−→ U∗i
(b)7−→ σi,

it is sufficient to prove that (a) and (b) are continuous.

The upcoming Lemma 1 shows that the value function of a finite MDP is a

continuous function of the parameters of the problem. Since µi is one of the parameters

of the MDP whose value function is U∗i , (a) is continuous. It was noted in Section 5.5

that (b) is continuous.

Proposition 7. Let m = (mi)i∈I be models.

The modeling mapping FM,m is continuous.

Proof. Agent i’s strategy impacts all the agents’ predictors. Proving the continu-

ity of FM,m, requires showing that FM,m
i,j : σi 7→ µj is continuous for all i, j ∈ I.

Decomposing this function as follows:

FM,m
i,j : σi

(c)7−→ Tσ
(d)7−→ πσ

(e)7−→ µj,

it is sufficient to prove that (c), (d), and (e) are continuous.

The elements (σi(xi, zi))xi∈Xi,zi,∈Ziare entries in the matrix Tσ. Therefore (c) is

linear, hence continuous. [33, Theorem 4.1] shows that the stationary distribution

of a finite irreducible Markov chain is a continuous function of the elements of its

transition matrix, which proves that (d) is continuous. It was noted in Section 5.5

that (e) is continuous.

The result in [33, Theorem 4.1] targets finite irreducible Markov chains. Therefore,

the proof of Proposition 7 immediately holds when using weak consistency. The
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following observation allows to accommodate eventual consistency as well. Consider a

finite unichain Markov chain with communication class C. Label the states such that

the states in C come before the other ones. Let T be the transition matrix for this

Markov chain. It has the following block structure:T ′ 0

A B


where T ′ is the transition matrix for an irreducible Markov chain on C. Denote by π

and π′ the stationary distributions of T and T ′. These stationary distributions coincide

on C, which in block notation is denoted by π = (π′0). First, the function T 7→ T ′

is a projection and therefore continuous. Then, the function T ′ 7→ π′ is continuous

according to [33, Theorem 4.1]. Finally, the function π′ 7→ π = (π′0) is trivially

continuous. This guarantees that Proposition 7 holds when using eventual consistency

or eventual weak consistency.

Lemma 1 (Continuity of the Value Function in the Parameters of an MDP). Consider

a finite MDP described by a dynamic x+ ∼ f(x, a), a utility function u(x, a), and

a discount factor δ. Denote by θ the finite vector of parameters of the problem. It

corresponds to all the entries in f and u. Let Bθ be the Bellman operator associated

with the problem. By definition, the value function of the problem U∗θ is the fixed point

of Bθ, U
∗
θ = BθU

∗
θ .

The function θ 7→ U∗θ is continuous.

Proof. Let θ and θ′ be two vectors of parameters corresponding to two MDPs. Let U∗θ

and U∗θ′ be the value functions associated with these MDPs. We will show that U∗θ

converges to U∗θ′ as θ converges to θ′ by showing that ‖U∗θ − U∗θ′‖ converges to 0.

The value function U∗θ is a fixed point of Bθ. The Bellman operator Bθ is a
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contraction mapping with Lipschitz constant δ. As a result,

‖U∗θ − U∗θ′‖ = ‖BθU
∗
θ − U∗θ′‖

≤ ‖BθU
∗
θ −BθU

∗
θ′‖ + ‖BθU

∗
θ′ − U∗θ′‖

≤ δ‖U∗θ − U∗θ′‖ + ‖BθU
∗
θ′ − U∗θ′‖

≤ 1

(1− δ)
‖BθU

∗
θ′ − U∗θ′‖.

(30)

We will now prove that the function θ 7→ BθU
∗
θ′ is continuous because each of its

finitely many components is continuous. By definition, (BθU
∗
θ′)(x) = maxa∈A v(x, a, θ),

where v(x, a, θ) = u(x, a)+ δf(x, a)>U∗θ′ . For fixed x and a, θ 7→ v(x, a, θ) is linear and

therefore continuous. For a fixed x, θ 7→ BθU
∗
θ′(x) is the maximum of a finite number

of continuous functions and as such is continuous. Therefore, the function θ 7→ BθU
∗
θ′

is continuous.

As a result, as θ converges to θ′, BθU
∗
θ′ converges to Bθ′U

∗
θ′ . Since U∗θ′ is a fixed

point of Bθ′ , BθU
∗
θ′ converges to U∗θ′ . We have proven that limθ→θ′‖BθU

∗
θ′ − U∗θ′‖ = 0.

Finally, (30) implies that ‖U∗θ − U∗θ′‖ goes to zero as θ goes to θ′ which concludes the

proof.

5.7.2 Existence of Exact Equilibria

Theorem 7. Let m = (mi)i∈I be models.

There exists an exact m EEE.

Proof. This proof follows closely the proof of the existence of an exact Nash equilibrium.

An exact optimization counterpart to Proposition 5 is easily established. It

guarantees that strategies σ ∈ Σ forming a fixed point of Fm, corresponds to an

m EEE. Therefore, proving the existence of such a fixed point is a sufficient condition

to proving the theorem.

To apply Kakutani’s fixed point theorem we need to prove the four following facts:

• The set Σ is non-empty, compact and a convex subset of an Euclidean space.
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• For σ ∈ Σ, Fm(σ) is non-empty.

• For σ ∈ Σ, Fm(σ) is convex.

• The Fm correspondence has a closed graph.

The first fact was already proven. The following two are immediate application of

dynamic-programming results for finite MDPs with discounted cost. The definition

of the set Fm(σ) through the Bellman equation guarantees its non-emptiness and

convexity.

Let us prove that the Fm correspondence has a closed graph. The function FM,m

is continuous. The composition of a continuous function with a correspondence

with a closed graph is also a correspondence with a closed graph. Therefore, it is

sufficient to show that the FO,m correspondence has a closed graph. Let σ = (σt)t∈N

and µ = (µt)t∈N be sequences of strategies and predictors such that for all t in N,

σt ∈ FO,m(µt). Suppose that σ converges to σ∗ and µ converges to µ∗. Let i be

an agent, xi ∈ Xi, and zi ∈ Zi. For t ∈ N, the fact that σt ∈ FO,m(µt) implies

that σti ∈ F
O,m
i (µti). This translates to

σti(xi, zi) ∈ arg max
ai∈Ai

Es+i ∼µti(zi)
[
ui
(
xi, ai, s

+
i

)
+ E

[
Uµti
(
x+
i , z

+
i

) ∣∣xi, zi, ai, s+
i

]]
,

where Uµti is the value function of the MDP induced by µti. The arguments used in

the proof of the existence of an approximate equilibrium show that the right-hand

side is a continuous function of µti. Therefore, in the limit,

σ∗i (xi, zi) ∈ arg max
ai∈Ai

Es+i ∼µ∗i (zi)

[
ui
(
xi, ai, s

+
i

)
+ E

[
Uµ∗i
(
x+
i , z

+
i

) ∣∣xi, zi, ai, s+
i

]]
,

Which proves that σ∗i ∈ F
O,m
i (µ∗i ). This fact is true for any agent and therefore FO,m

has a closed graph.

Everything is now in place to apply Kakutani’s fixed-point theorem and to conclude

that an exact m EEE always exists.
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This is the second time Brouwer’s theorem is used before using Kakutani’s to prove

the existence of an exact equilibrium. This two-step process is centered around the

continuity required by Brouwer’s theorem. This continuity guarantees that, when a

sequence of strategies is optimal with respect to a sequence of parameters, if both

sequences converge, then the optimality is still true in the limit. There is not much

to gain by using directly Kakutani’s theorem as the core of the proof is shared with

Brouwer’s.

The following section characterizes empirical-evidence equilibria in the setting of

perfect-monitoring repeated games.

5.8 Exogenous Empirical-evidence Equilibria in Perfect-monitoring
Repeated Games

Having defined a new equilibrium concept, we wanted to compare it with existing

ones. We focused on repeated games as these are the most studied stochastic games.

Along the way, we found a partial characterization of EEEs in perfect-monitoring

repeated games.

Consider a two-player perfect-monitoring repeated game with utilities u1 : A → R,

u2 : A → R and discount factors δ1 and δ2. In this game, the agents are using exogenous

models m1 and m2. Since there is no state in a repeated game, it means that mi

only depends on zi and s+
i but not ai. The associated agent knowledge diagrams are

depicted in Figure 38.

The following proposition shows that, in the present setting, optimality is achievable

with a strategy using only the last value of the model state instead of the whole history.

Proposition 8. Let i be an agent, µi : Zi → ∆(A−i) be a predictor, and σi : Zi →

∆(Ai) be a strategy such that the following condition holds:

∀zi ∈ Zi, ∀a′i ∈ Ai, E[ui(σi(zi), µi(zi))] ≥ E[ui(a
′
i, µi(zi))].

The strategy σi is optimal for (ui, δi) with respect to mi and µi.
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(c) System M1 in the exogenous empirical-evidence setting

Figure 38: Agent knowledge in a two-player perfect-monitoring repeated game. The
highlighted signal highlights how the consistency condition ties N and M1 together.
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Proof. The expected payoff at time t depends on the model state zti and the action ati.

Since the action has no impact on the model state, myopic optimization is sufficient

to guarantee global optimality.

Theorem 8. Let the pair (µ, σ) be an exogenous empirical-evidence equilibrium (xEEE)

for the game (u, δ) with mockups m. Let π be the stationary distribution of the Markov

chain over the model states z induced by σ and m.

The pair (π, σ) is a correlated equilibrium for the one-shot game described by u.

In particular, when all the agents use a memoryless model, the pair (π, σ) is a

Nash equilibrium for u.

The careful choice of definitions in the previous sections makes the proof of this

theorem straightforward. The key insight of the proof is to interpret the model state zi

as the type of agent i.

Proof. Fix an agent i. Pick a state zi ∈ Zi and a signal s+
i = a−i ∈ Si. By definition

of an xEEE, the predictor µi is consistent with m and σ. The consistency condition

for state zi and signal a−i can be rewritten as follows:

µi(zi)[a−i] = Pπ[a−i | zi]

=
∑

z−i∈Z−i

Pπ[a−i | zi, z−i]Pπ[z−i | zi]

=
∑

z−i∈Z−i

Pπ[a−i | z−i]Pπ[z−i | zi]

=
∑

z−i∈Z−i

σ−i(z−i)[a−i]Pπ[z−i | zi]

= Eπ[σ−i(z−i)[a−i] | zi]

= EZ∼π[σ−i(Z−i)[a−i] |Zi = zi],

where σ−i(z−i)[a−i] denotes
∏

j∈−i σj(zj)[aj]. This equality holds for any a−i, therefore,

µi(zi) = EZ∼π[σ−i(Z−i) |Zi = zi].
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Pick an action a′i ∈ Ai. By definition of an xEEE, the strategy σi is optimal

with respect to µi. Substituting the expression for µi(zi) in the optimality condition

of Proposition 8 gives the following inequality:

EZ∼π[ui(σi(zi), σ−i(z−i)) |Zi = zi] ≥ EZ∼π[ui(a
′
i, σ−i(z−i)) |Zi = zi].

Interpreting zi as the type of agent i in Proposition 1 guarantees that the pair (π, σ)

is a correlated equilibrium for u.

The following section illustrates this result.

5.8.1 An Example

In the hawk-dove game, two agents compete for a prize of value 6. The actions of each

agent are to be aggressive or passive. In a biological analogy, the aggressive action is

called hawk and the passive action is called dove. If only one agent is aggressive, this

agent gets the prize to itself. If both agents are aggressive, a fight ensues and both

agents are hurt. Finally, if both agents are passive, they split the prize equally. This

story is encoded in the following normal-form game:

h d

H −1,−1 6, 0

D 0, 6 3, 3 .

(31)

The actions of agent 1 are represented by the uppercase letters H and D. Those

of agent 2 by their lowercase counterparts h and d. Recall that the actions of one

agent are the signals of the other. Using uppercase and lowercase helps in avoiding

confusion.

The analysis of the best-response correspondences yields Figure 39. The hawk-dove

game has two pure Nash equilibria (H, d) and (D, h), and one mixed Nash equilibrium

where the agents play 3
4
H + 1

4
D and 3

4
h + 1

4
d respectively.
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Figure 39: Best responses and Nash equilibria for hawk-dove. Agent 1 plays H with
probability p1. Agent 2 plays h with probability p2. The solid line is agent 1’s best response.
The dashed line is agent 2’s best response. The filled circles indicate the Nash equilibria.

Let us construct an xEEE implementing a correlated-equilibrium distribution.

The correlated-equilibrium distribution chosen is the average of the two pure Nash

equilibria α = 1
2
(H, d) + 1

2
(D, h). The set of correlated-equilibrium distributions

is a non-empty convex set containing all the Nash equilibria. Therefore, α is a

correlated-equilibrium distribution, even though it is not a Nash equilibrium. Given

the symmetric nature of the game, we chose to implement a symmetric equilibrium,

meaning that the strategies of the two agents are identical. As a consequence, their

predictors are also identical. Both agents use the previously-mentioned depth-2 model.

Let us describe what the solution looks like from agent 1’s perspective. Agent 1’s

state is z1 =
(
a−2 , a2

)
, where a2 is the latest observed action of agent 2 and a−2 the one

before that. If agent 1 sees that agent 2 alternates its actions, it supposes that agent 2

acts according to the plan and that this alternation will continue. If agent 2 uses the

same action twice in a row, agent 1 is unsure about agent 2’s behavior. According to

these predictions, agent 1 builds optimal or approximately optimal strategies.

Let us now fill in the details. We provide three variations associated with eventual

consistency, consistency, and a new concept called approximate consistency.
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5.8.1.1 Eventual Consistency

The first variation is closest to the story previously described. The agents use the

following predictors associated with their depth-2 models:

µ1(d, h) = d,

µ1(h, d) = h,

µ1(h, h) =
3

4
h +

1

4
d,

µ1(d, d) =
3

4
h +

1

4
d,

and

µ2(D,H) = D,

µ2(H,D) = H,

µ2(H,H) =
3

4
H +

1

4
D,

µ2(D,D) =
3

4
H +

1

4
D.

A pair of associated optimal strategies is

σ1(d, h) = H,

σ1(h, d) = D,

σ1(h, h) =
1

2
H +

1

2
D,

σ1(d, d) =
1

2
H +

1

2
D,

and

σ2(D,H) = h,

σ2(H,D) = d,

σ2(H,H) =
1

2
h +

1

2
d,

σ2(D,D) =
1

2
h +

1

2
d.

These strategies induce a Markov chain over the state space Z1 ×Z2 = A2
2 ×A2

1. By

computing the transition matrix, one verifies that this Markov chain is unichain and

periodic with period two. Its communication class is {(h, d,D,H), (d, h,H,D)}. In the

limit, the chain alternates between these two states and the following relations hold:

lim
t→∞

PN,σ

[
zt1 = (d, d)

]
= 0,

lim
t→∞

PN,σ

[
zt1 = (h, h)

]
= 0,

and
lim
t→∞

PN,σ

[
zt2 = (D,D)

]
= 0,

lim
t→∞

PN,σ

[
zt2 = (H,H)

]
= 0.

(32)

In the limit, 14 out of the 16 states do not appear. In particular, any state in which

an agent used the same action twice in a row is transient. Therefore,

lim
t→∞

PN,σ

[
st+1

1 = d
∣∣ zt1 = (d, h)

]
= 1,

lim
t→∞

PN,σ

[
st+1

1 = h
∣∣ zt1 = (h, d)

]
= 1,

lim
t→∞

PN,σ

[
st+1

2 = D
∣∣ zt2 = (D,H)

]
= 1,

lim
t→∞

PN,σ

[
st+1

2 = H
∣∣ zt2 = (H,D)

]
= 1.

(33)
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Equation (32) guarantees that states (h, h) and (d, d) vanish. Therefore, the values

of µ1(h, h) and µ1(d, d) are arbitrary. The values of µ1(d, h) and µ1(h, d) match the

values observed in (33). Therefore, the predictors are eventually consistent.

Let us now look at the optimality condition. Eventual consistency allows for the

predictors to take arbitrary values on transient states (h, h) and (d, d). Therefore, we

chose values helping with the optimality condition. The values chosen correspond

to the mixed Nash equilibrium in which the agents are indifferent between their two

actions. Agent 1 responds optimally in each of the four states z1.

Therefore, we have constructed an exact xEEE with the notion of eventual consis-

tency which implements the desired correlated-equilibrium distribution.

5.8.1.2 Consistency

Let us now go from eventual consistency to consistency. The agents use strategies

σ1(d, h) = 0.999 H + 0.001 D,

σ1(h, d) = 0.999 D + 0.001 H,

σ1(h, h) =
1

2
H +

1

2
D,

σ1(d, d) =
1

2
H +

1

2
D,

and

σ2(D,H) = 0.999 h + 0.001 d,

σ2(H,D) = 0.999 d + 0.001 h,

σ2(H,H) =
1

2
h +

1

2
d,

σ2(D,D) =
1

2
h +

1

2
d.

The induced Markov chain over Z1 × Z2 is irreducible and aperiodic. No state is

transient. Therefore, predictors have to be defined for all states. The consistent

predictors are

µ1(d, h) = 0.996 d + 0.004 h,

µ1(h, d) = 0.996 h + 0.004 d,

µ1(h, h) = 0.5 h + 0.5 d,

µ1(d, d) = 0.5 h + 0.5 d,

and

µ2(D,H) = 0.996 D + 0.004 H,

µ2(H,D) = 0.996 H + 0.004 D,

µ2(H,H) = 0.5 H + 0.5 D,

µ2(D,D) = 0.5 H + 0.5 D.

The probabilities reported as 0.5 are not exactly 1
2
. These probabilities are biased

towards the symbol just observed twice with a bias of the order of 10−12.
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In this setting, consistency is immediate, by definition of the predictors. Optimality

is slightly trickier. Recall that in an xEEE for a perfect-monitoring repeated game,

the optimality condition translates to myopic optimality. Therefore, σ1’s optimality

with respect to µ1 and m1 is equivalent to the following condition. For all z1 ∈ Z1,

agent 1’s mixed action σ1(z1) is a best response to agent 2’s mixed action µ1(z1).

This is not the case for the states (d, d) and (h, h). As seen in Figure 39, agent 1’s

sole best-response to 0.5 h + 0.5 d is H. However, σ1 is approximately optimal with

respect to µ1 for discount factors δ1 close enough to one. Most of the time is spent in

states (d, h) and (h, d) for which σ1 is optimal. By taking δ1 close enough to one, the

effect of acting non-optimally in the other two states becomes negligible.

Proposition 8 proves that myopic optimality is sufficient to get optimality. This

example illustrates that approximate optimality does not require approximate myopic

optimality. Strategies can perform poorly on vanishing states.

The resulting equilibrium is an approximate xEEE. The associated distribution

over actions

0.004 (H, h) 0.496 (H, d)

0.496 (D, h) 0.004 (D, d)
,

is an approximation of the desired correlated-equilibrium distribution.

5.8.1.3 Approximate Consistency

To conclude this example, let us analyze what happens when approximately consistent

predictors are used. The agents use the same smoothed strategies

σ1(d, h) = 0.999 H + 0.001 D,

σ1(h, d) = 0.999 D + 0.001 H,

σ1(h, h) =
1

2
H +

1

2
D,

σ1(d, d) =
1

2
H +

1

2
D,

and

σ2(D,H) = 0.999 h + 0.001 d,

σ2(H,D) = 0.999 d + 0.001 h,

σ2(H,H) =
1

2
h +

1

2
d,

σ2(D,D) =
1

2
h +

1

2
d,
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and these predictors

µ1(d, h) = 0.999 d + 0.001 h,

µ1(h, d) = 0.999 h + 0.001 d,

µ1(h, h) =
1

2
h +

1

2
d,

µ1(d, d) =
1

2
h +

1

2
d,

and

µ2(D,H) = 0.999 D + 0.001 H,

µ2(H,D) = 0.999 H + 0.001 D,

µ2(H,H) =
1

2
H +

1

2
D,

µ2(D,D) =
1

2
H +

1

2
D.

These predictors are necessarily inconsistent. However, they are approximately con-

sistent, meaning close to the consistent ones. Since the strategies are approximately

optimal for the consistent predictors, Lemma 1 guarantees they are also approximately

optimal for the approximately consistent predictors. Therefore, the pair (σ, µ) forms

an approximate EEE in the sense of Definition 18.

This example explains why we did not formally define the notion of approximate

consistency. Lemma 1 guarantees that we can trade approximate consistency for

approximate optimality. For the sake of clarity, it is easier to only have approximation

in one place and we chose to have approximate optimality.

5.8.2 Average of Nash Equilibria

The example of the previous section easily extends to general finite games and yields

a large set of correlated-equilibrium distributions. Most of the work for the proof has

already been done in the example.

Theorem 9. Let u : A → R|I| describe a one-shot game. Let
(
al
)k
l=1

be k, non-

necessarily distinct, pure Nash equilibria of u. Denote by α ∈ ∆(A) the average of

these Nash equilibria

α =
1

k

k∑
l=1

al,

which is a correlated-equilibrium distribution.

For large enough discount factors (δi)i∈I, α is implementable by an approxi-

mate xEEE, in which each agent uses a depth-k eventually consistent model.
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Proof. Let i ∈ I be an agent. Define its depth-k predictor as follows:

µi
(
a1
−i, a

2
−i, · · · , ak−1

−i , a
k
−i
)

= a1
−i,

µi
(
a2
−i, a

3
−i, · · · , ak−i, a1

−i
)

= a2
−i,

...

µi
(
ak−i, a

1
−i, · · · , ak−2

−i , a
k−1
−i
)

= ak−i,

and for all the other states zi,

µi(zi) =
1

k

k∑
l=1

ak−i.

As opposed to the example, a mixed Nash equilibrium does not always exist. This

reduced flexibility in defining the predictor on vanishing states, explains why only

approximate xEEEs are guaranteed.

Define agent i’s strategy as follows:

σi
(
a1
−i, a

2
−i, · · · , ak−1

−i , a
k
−i
)

= a1
i ,

σi
(
a2
−i, a

3
−i, · · · , ak−i, a1

−i
)

= a2
i ,

...

σi
(
ak−i, a

1
−i, · · · , ak−2

−i , a
k−1
−i
)

= aki ,

and for all the other states zi,

σi(zi) =
1

k

k∑
l=1

aki .

For a vanishing state zi, the definition of µi(zi) could have been anything. The

definition of σi(zi) requires that each action appearing in one of the k pure Nash

equilibria appear with positive probability.

The induced Markov chain is unichain and periodic with period k. Its communica-

tion class has k states corresponding to each of the k Nash equilibria. In the limit,

the chain cycles through these k states in the order imposed by the labeling of the

equilibria. The eventual consistency of the predictors is proven as in the example.
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As previously mentioned, it is not always possible to guarantee optimality of σi

with respect to µi. However, σi is optimal for all the states visited in the limit. The

lack of optimality is only for vanishing states. Therefore, a large enough discount

factor guarantees approximate optimality.

Corollary 1. Let u : A → R|I| describe a one-shot game. Let
(
al
)k
l=1

be k, non-

necessarily distinct, pure Nash equilibria of u. Denote by α ∈ ∆(A) the average of

these Nash equilibria

α =
1

k

k∑
l=1

al,

which is a correlated-equilibrium distribution.

For large enough discount factors (δi)i∈I, α can be approximated by a correlated-

equilibrium distribution induced by an approximate xEEE, in which each agent uses a

depth-k consistent model.

Proof. Let i ∈ I be an agent and ε > 0. Denote by ωi the uniform distribution

over Ai. Define agent i’s strategy as follows:

σi
(
a1
−i, a

2
−i, · · · , ak−1

−i , a
k
−i
)

= (1− ε)a1
i + εωi,

σi
(
a2
−i, a

3
−i, · · · , ak−i, a1

−i
)

= (1− ε)a2
i + εωi,

...

σi
(
ak−i, a

1
−i, · · · , ak−2

−i , a
k−1
−i
)

= (1− ε)aki + εωi,

and for all the other states zi,

σi(zi) = (1− ε)1

k

k∑
l=1

aki + εωi.

The joint strategy σ = (σi)i∈I induces an irreducible aperiodic Markov chain.

Define µ = (µi)i∈I as the associated consistent predictors.

Using the same proofs as in the example, one shows that, for ε small enough, the

pair (σ, µ) forms an approximate xEEE. Furthermore, this construction induces an

approximation of the correlated-equilibrium distribution α.
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5.9 Learning Empirical-evidence Equilibria

5.9.1 A Learning Rule

The fixed points of Gm,ε are (ε,m) EEEs. A natural approach to try and learn

an (ε,m) EEE is to use an adaptive rule that converges to fixed points. Consider the

following adaptive rule:

µt+1 = µt + αt
(
Gm,ε

(
µt
)
− µt

)
, (34)

where αt is a step size. The long-run behavior of (34) is related to properties of the

following differential equation:

µ̇ = Gm,ε(µ)− µ. (35)

In particular, Benäım showed that the limit set of (34) is a connected set internally

chain recurrent for the flow induced by Gm,ε− Id, where Id is the identity function [5].

The following, easily verified, proposition tells us that, if (34) converges, it might yield

an (ε,m) EEE.

Proposition 9. The fixed points of Gm,ε are connected sets internally chain recurrent

for the flow induced by Gm,ε − Id.

Note, however, that these fixed points might not be the only connected sets

internally chain recurrent for this flow.

The existence of a Lyapunov function for (35) guarantees that there is a unique

connected sets internally chain recurrent for the flow induced by Gm,ε − Id which is

the equilibrium point. Therefore, if there exists such a Lyapunov function for the

continuous system, we can conclude that (34) converges to an EEE.

5.9.2 Simulation Results

This learning rule was successfully used on a simplified market example. Two agents can

hold a quantity of a single asset between 0 and 4, X = {0, 1, 2, 3, 4}. At each time step,
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each agent can sell one asset, buy one asset, or hold its position, A = {Sell,Hold,Buy}.

The assets can be traded at a low price or at a high price, S = {Low,High}. Nature

exogenously determines the market trend as a bull market or a bear market, W =

S × {Bear,Bull}. The price is impacted by the past price, the market trend, and the

orders placed by the two agents. A high price in the past, buying orders, or a bull

market increase the chances of seeing a high price in the future. The agents receive

the price at each time step but are not aware of the price dynamic. In this model,

they are not even aware of the existence of the market trend. The two agents use a

discount factor δ = 0.95.

Agent 1 starts with the idea that the price will be high with probability 1. Agent 2

starts with the idea that the price will be low with probability 1. Each agent is trying

to learn a depth-0 model of the price. Two versions of (34) were simulated. The first

one used (34) directly with a fixed step size of αt = 0.1. The stationary distribution πσ

was computed at each time step to obtain the true value of Gm,ε(µt). The algorithm is

presented in Algorithm 3. The results of the simulations using the theoretical predictor

are presented in Figure 40. Since the price is a public signal, after a transient phase

due to the step size, the predictions of both agents agree. The prediction converges to

probability of seeing a high price of 0.431. The two agents use the same strategy that

is the optimal response for that prediction of the price. When the price is high sell.

When the price is low, sell when having four units, hold when having three units, and

buy otherwise. The learning rule has indeed converged to an EEE.

In the second simulated version of (34), the stationary distribution is only estimated

by playing 100 rounds of the game at each time step. Because of the variance induced

by this sampling process, the step size was taken to be diminishing, αt =
(

1
t

) 3
4 .

The estimated predictors obtained in that case are denoted by µ̂ti. The algorithm is

presented in Algorithm 4. The results of the simulation using the empirical predictors

are presented in Figure 41. Estimating, instead of using the true probability, induces
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some variations. The learning rule does not converge, but oscillates around the EEE

reached by the theoretical predictor.
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Figure 40: Simulation results of two agents learning a depth-0 model of the price for the
market example with the theoretical predictor.
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Figure 41: Simulation results of two agents learning a depth-0 model of the price for the
market example with an empirical predictor.

5.9.3 Effect of the Finite Observation Window

In the empirical simulation, approximate predictors are used. The function FM,m

computes predictors consistent with given strategies through the stationary distribution

of a Markov chain. The function FM,m
l is obtained when approximate predictors are

instead computed from l rounds of play. The following proposition shows that

important properties of FM,m are recovered by FM,m
l , as l goes to infinity. A proof
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Algorithm 3 Learning with Theoretical Predictor

procedure Theoretical Predictor Learning(ε)
µ1 ← 1
µ2 ← 0
for t ∈ [1, 100] do

σ1 ← an optimal strategy for µ1

σ2 ← an optimal strategy for µ2

Tσ ← the transition matrix for the Markov chain induced by σ1 and σ2

πσ ← the eigenvector associated with the eigenvalue 1 for Tσ
µ̂← Pπσ [High]
µ1 ← µ1 + 0.1(µ̂− µ1)
µ2 ← µ2 + 0.1(µ̂− µ2)

end for
end procedure

Algorithm 4 Learning with Empirical Predictor

procedure Empirical Predictor Learning(ε)
µ1 ← 1
µ2 ← 0
for t ∈ [1, 100] do

σ1 ← an optimal strategy for µ1

σ2 ← an optimal strategy for µ2

h← 0
for τ ∈ [1, 100] do

agent 1 places an order according to σ1

agent 2 places an order according to σ2

if the observed price is High then
h← h+ 1

end if
end for
µ̂← h

100

µ1 ← µ1 +
(

1
t

) 3
4 (µ̂− µ1)

µ2 ← µ2 +
(

1
t

) 3
4 (µ̂− µ2)

end for
end procedure

118



sketch for this proposition is given to highlight useful tools in this context. Given a

real problem, the proposition can be adapted, using the appropriate textbook material

on stochastic approximation and Lyapunov stability of perturbed systems.

Assumption 4. When computing FM,m
l , at the beginning of the l rounds of play, the

state of Nature w, the states of the agents x, the state of the models z, and the seed to

the pseudorandom number generators are reset.

Proposition 10. Under Assumption 4, if there exists a Lyapunov function for the

following continuous-time system:

µ̇ = Gm,ε(µ)− µ, (36)

then for l large enough, the following discrete-time system, using approximate predictors,

converges to an EEE:

µ̂t+1 = µ̂t + αt
(
Gm,ε
l

(
µ̂t
)
− µ̂t

)
, (37)

where Gm,ε
l = FM,m

l ◦FO,m,ε and (αt)t∈N is a non summable but square summable

sequence of positive numbers.

The proof starts with the use of dynamical system

˙̂µ = Gm,ε
l (µ̂)− µ̂, (38)

and results on Lyapunov stability of perturbed systems such as [26, Lemma 9.1 or

Lemma 9.2]. For a large enough l, dependent on the chosen lemma, (38) constitutes a

perturbed version of (36). Therefore, for l large enough, a Lyapunov function for (36)

is also a Lyapunov function for (38). The existence of a Lyapunov function for (38)

implies that the only connected set internally chain recurrent for the flow induced by

Gm,ε
l − Id is the singleton containing the equilibrium point. Assumption 4 allows the

application of deterministic stochastic-approximation results. In particular, [5, Th. 1.2]

guarantees that the limit set of the sequence (µ̂t)t∈N, solution to (37), is a connected set

internally chain recurrent for the flow induced by Gm,ε
l . Therefore, (µ̂t)t∈N converges

to an EEE.
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CHAPTER VI

CONCLUSION

We developed the framework of EEEs in stochastic games. This research started by

trying to apply game-theoretic results to decentralized control. Using game theory to

design a controller entails computing equilibrium strategies for a specific game. For

decentralized controllers, computing the strategies in a decentralized fashion through

learning is an undeniable advantage. Stochastic games are of particular interest for

controls since they extend MDPs. However, the computation of equilibrium strategies

in stochastic games is an open problem. The main reason for this lack of result is

that computing equilibrium strategies in a general stochastic game requires each agent

to solve a POMDP. As previously exposed, this issue stems from the full rationality

requirement imposed by classical game theory. With this consideration in mind, this

research was steered towards bounded rationality. In stochastic games, bounded

rationality commonly appears in the form of consistency. Agents using consistency are

not required to have perfect understanding of their environment but only a statistically

consistent understanding.

In this dissertation, we laid down the foundations of a general consistency frame-

work. In this framework, EEEs have emerged as a solution concept. We proved the

existence of EEEs for a general setting. We provided a characterization of EEEs in

perfect-monitoring repeated games. Finally, we explored the learning of EEEs with a

particular interest for the finite observation window case. Some other interesting open

questions are listed below.
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6.1 Implications of Using Consistency

The fact that agents use consistent models in EEEs diminishes the amount of compu-

tation they require to obtain optimal strategies. However, it also imposes constraints

on the attainable equilibria and associated strategies. The first step to understand

those constraints is to analyze the simplest notion of consistency, which is depth-k

consistency.

What impact does varying k have? Eyster and Piccione gave an answer in a specific

setting where the strategies of the agents did not impact the environment [13]. Since

a depth-k consistent model is depth-k− 1 consistent as well, a larger k is synonymous

with better understanding of the environment. They proved that agents with a larger k

did not always receive a larger payoff. This question has to be addressed for a more

general setting.

As k increases, the agent gets a more accurate prediction of the strings of signals.

This raises the question to know what happens in the limit.

6.2 Large Number of Agents

In a mean-field game, agents face identical problems and impact their opponents

through the empirical distribution of states of all the agents. An MFE is an equilibrium

in which these agents use depth-0 consistency. These MFEs are studied when the

number of agents is large. Restricting the attention to this specific setting with a

large number of agents allows for the derivation of strong results. The main result

states that as the number of agents grows to infinity, an MFE converges to a Nash

equilibrium. In other words, the approximation made by the agents regarding the

empirical distribution of states does not change the behavior of the system. This

result is a consequence of the central limit theorem and it would be interesting to

generalize it to a broader setting.

In the MFE setting, the agents are homogeneous and impact their opponents only
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through their state. The EEE framework lifts these two restrictions. In particular

the impact agents have on their opponents is embedded in the signal definition. Can

results from the MFE literature be extended to the broader framework of EEEs? In

particular, the EEEs framework offers the opportunity to explore the consequences of

the central limit theorem for a broader class of consistency than the sole depth-0.

6.3 Learning

EEEs were informally defined as fixed points of a simple iterative process. The existence

of fixed points has been established. However, the convergence of the iterative process

to such a fixed point is not guaranteed. Building a learning rule converging to EEEs

can be done in two steps. First, a theoretical learning rule converging to EEEs is

designed. Then, a practical online version of the rule is derived. This approach was

used in the simulations of Section 5.9. The theoretical learning rule uses the stationary

distribution of the whole system. This information is not available to the agents

as they play but it matches closely the requirements of EEEs. However, the agents

can estimate the stationary distribution of the system by observing the play long

enough. Hart and Mas-Colell used this two-step approach to prove the convergence of

an adaptive no-regret learning rule to correlated equilibria [20]. The adaptive learning

rule replaced a matrix inversion step by a simpler maximization one.

6.4 Price of Anarchy

Given a global objective, a multiagent system can be controlled by a centralized or

a decentralized controller. In a centralized approach, an optimal controller for the

objective is computed offline. Each agent is then given to execute a part of this

controller. In a decentralized approach using game theory, each agent is given a utility

function along with a learning rule. In this case, the controller corresponds to the

equilibrium reached by the learning process. The decentralized approach is more

robust and scalable than the centralized approach. However, these advantages come
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with a cost; the decentralized controller is suboptimal. For systems whose global

objective coincide with maximizing the sum of the utility functions, this cost can be

evaluated by a metric called the price of anarchy [27]. The sum of the utility functions

of the agents is called the social welfare, and the ratio of social welfare between the

decentralized and centralized controllers is considered. The price of anarchy is the

worst case ratio. In a learning context, the ratio is a random variable and properties

other than its minimum value can be computed. This notion, classically defined for

Nash equilibria, readily extends to EEEs. What is the price of anarchy for EEEs?

6.5 Payoff Folk Theorem

Payoff folk theorems for repeated games prove that all the feasible individually strictly

rational payoff profiles are sustainable by subgame-perfect equilibria. This implies

that subgame-perfect equilibria sustain almost all payoff profiles. Some of these payoff

profiles are undesirable, for example the non-Pareto-optimal ones. Do EEEs sustain

such a large set of payoff profiles? If so, can equilibrium selection reduce the size of

that set?
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