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SUMMARY

The surface nish of a machined part has an important effect on friction, wear, and
aesthetics. The surface nish became a critical quality measure since 1980s mainly due to
demands from automotive industry. Visual inspection and quality control have been tradi-
tionally done by human experts. Normally, it takes a substantial amount of operators time
to stop the process and compare the quality of the produced piece with a surface rough-
ness gauge. This manual process does not guarantee a consistent quality of the surface and
is subject to human error and dependent upon the subjective opinion of the expert. Cur-
rent advances in image processing, computer vision, and machine learning have created a
path towards an automated surface nish inspection increasing the automation level of the
whole process even further than it is now. In this thesis work, we propose a deep learning
approach to replicate human judgment without using a surface roughness gauge. We used
a Convolutional Neural Network (CNN) to train a surface nish classi er. Because of data
scarcity, we generated our own image dataset of aluminum pieces produced from turning
and boring operations on a Computer Numerical Control (CNC) lathe, which consists of a
total of 980 training images, 160 validation images, and 140 test images. Considering the
limited dataset and the computational cost of training deep neural networks from scratch,
we applied transfer learning technique to models pre-trained on the publicly available Ima-
geNet benchmark dataset. We used PyTorch Deep Learning framework and both CPU and
GPU to train ResNet18 CNN. The training on CPU tddi2 Imin 55s with a test accuracy
of 97:14% while the training on GPU tookmin 47s with a test accuracy 97.86% We
used Keras API that runs on top of TensorFlow to train a MobileNet model. The training
using Colaboratory's GPU tookh32m14s with an accuracy 09857% The deep CNN
models provided surprisingly high accuracy missclassifying only a few of 140 testing im-
ages. The MobileNet model allowed to run the inference ef ciently on mobile devices. The

affordable and easy-to-use solution provides a viable new method of automated surface in-
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spection systems (ASIS).
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CHAPTER 1
INTRODUCTION

Surface roughness is a technical requirement of manufactured parts and is a widely used
index of product quality. Achieving the desired surface quality is of great importance for
the customer satisfaction, aesthetics and the functional behavior of a part. The surface
roughness formation mechanism depends on multiple machining conditions which makes
inspecting and predicting the surface nish a complex task. The in uence of cutting con-
ditions of machining operation on surface roughness, including the cutting speed, feed
rate, depth of cut, tool geometry, choice of coolant, rigidity of workbench, and xtures,
have been reported in [1] [2]. Multiple efforts have been directed to predicting the surface
roughness and automating its inspection using computer vision, statistical methods and ma-
chine learning. The majority of the work has been focusing on steel as it is the material of
choice for a large number and very diverse industrial applications particularly, cold steel
strip surfaces which is most sensitive to customers' requirements. Traditionally, surface
nish of at steel products is assessed manually by cutting a8 of a random coil

and inspected by an expert. This constitutes typically ab®@&%of the total steel surface
produced [3]. Due to human error and the amount of production, the manual inspection
process is not suf cient to guarantee a defect-free surface of steel products with reasonable
degree of con dence, and thus, the need for automated surface inspection grew. An intelli-
gent surface nish inspection system will give machine operators guidance in selecting the
best combination of cutting conditions (i.e. spindle speed, feed rate, and depth of cut) for a
speci ¢ process. From later half of 1980s, systematic research work on surface inspection
of steel products started. Automated surface inspection techniques can be categorized as
direct and indirect contact methods. The direct contact methods require a direct contact

with the surface to be investigated using stylus instruments (surface roughness pro lome-



ter). Using stylus instruments is a slow procedure and has limited exibility in handling
the different geometrical parts. Thus, the direct contact methods are not suitable for fast
and large scale manufacturing processes. For indirect contact methods, previous research
involved a hardware system set-up composed of multiple cameras, acquisition systems and
used computer vision and image processing techniques to assess the surface nish. These
methods are not easy to deploy as they usually require particular set-up: consistent lighting,
angles of cameras, multiple sources of data and special hardware that is not resistant to the
hazardous machine shop conditions: dust, oil, coolant etc ...

In this study the aim is to make the process of automating surface nish inspection
as easy and affordable as possible using only an available tool that every mechanic has;
mobile devices. Due to unavailable dataset of surface nish images, we create our own
dataset. Two OKUMA Genos L250 CNC (Computer Numeric Controlled) Lathes were
used for production of aluminum parts with varying surface nishes using facing and turn-
ing operations. Our dataset is made of pictures of the machined parts taken using multiple
mobile devices cameras. The advances in deep learning and mainly the results shown by
Convolutional Neural Networks (CNN) in image classi cation and object detection allowed
for this automated surface nish quality inspection. The model is trained to perform a bi-
nary classi cation of the images based on the surface nish to provide a result of whether
the picture corresponds to a good or bad surface nish. Experts opinion was provided to
determine which parts corresponded to good or bad surfaces to label the dataset that is then
splitted for training, validation and testing. We use transfer learning techniques on pre-
trained models for training our CNN. ResNet18 as xed feature extractor ach8x86%
accuracy on the test dataset. In order to deploy our model on mobile devices, we use a pre-
trained MobileNet model that overcomes the limitations of running such complex models
on limited computation resources, power and storage environment. We add two dense lay-
ers to the MobileNet model, and one last fully connected layer with softmax activation

to output the two classes probabilities. The rst 20 layers are frozen, and the rest of the



model is trained to correctly classi8857%of the test images. The model is used to de-
velop an android app which allows for the classi cation of surface nish images task to run
locally on mobile devices. Our approach performs well to replicate human judgement of
surface nish, using uniquely images of the surfaces of the parts as input. This thesis work
provides thus a novel approach to automate surface nish inspection providing a cheap,
exible and reliable system suitable for machine shop environment requiring only a mobile
device camera.

The thesis starts with a review of the literature and computer-vision based techniques
used for automated surface inspection, then gives an overview of CNNs, as well as the
transfer learning technique used in this work. Then, we describe the experimental set-up
and data collection, the training and testing of the models, and the development of an an-
droid app to perform the surface nish quality inspection locally on mobile devices. Finally

recommendations for future improvements are provided.



CHAPTER 2
BACKGROUND

Surface Finish is a measure of the overall texture of a surface that is characterized by the
lay, surface roughness, and waviness of the surface. The surface nish is most of the time
guanti ed by the deviations in the direction of the normal vector of a real surface from its
ideal form. If these deviations are large, the surface is rough; if they are small, the surface
is smooth. Most surface nish requirements are noted in arithmetic average deviation of
the roughness pro le from its mean line notBq, expressed aRR, = P L, Jyij where

n

yi is the vertical distance from the mean line to ifiedata point [4] as shown in Figure 2.1

[5].

Figure 2.1: De nition of the arithmetic average heidRy.

Consequently, most of surface nish inspection methods target measurirfg,the
decide if the manufactured part satis es the required quality features. Considering the
importance of surface roughness for many fundamental problems such as friction, heat
and electricity conduction, tightness and contact joints and positional accuracy, étc
has been the subject of multiple studies. Traditional stylus techniques have been used
to measure the surface roughness, however, due to the limitations of this method, many
advanced and sophisticated techniques have been developed. While some research has been

made in inspecting and measuring the surface roughness, a lot of research effort has also
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been done in predicting the surface nish, detecting and classifying defects. The related
work in this thesis focuses on techniques based on computer vision used for inspecting
the surface nish by measuring tie,. The most common methods in the literature are

reported below.

2.1 Indirect Contact Computer Vision Methods for Surface Finish Inspection

2.1.1 LaserSpeckledmages

Earlier optical methods for surface roughness used laser images obtained through a micro-
scope for texture analysis. Speckle images are obtained when a rough surface is illuminated
with a partially coherent light forming some random patterns of bright and dark regions.
The intensity at a point is the interference of wavelets scattered from different points within
the illuminated area, with the phases randomised due to the variations of the surface. An

example of a laser speckle image is shown in Figure 2.2 [6].

Figure 2.2: Example of speckle image.

Speckle images can be used for surface roughness measurement [6]. A linear relation-
ship between the surface roughness and the standard deviations of the intensity uctuations

of the speckle image was found in Fujii and Asakura [7].



2.1.2 ImagesMatchingusingDistanceMetrics

T. Jeyapoovan and M. Murugan [8] used the Euclidean and Hamming distances between
test images and reference images, inspired by biometric recognition, to calculate the sur-
face roughness. Six parts were machined using a milling operation with different surface
roughness ranging betwe8r8 2:6 m , which is the common range of surface roughness
values obtained in milling operations. The average surface roughRggsf(these parts

were measured using a stylus instrument and recorded. The corresponding surfaces were
photographed using a low-incident-angle CCD camera and polychromatic light source. The
pictures of the surfaces were normalized to get a pixel intensity in gray scale of the range
betweerD and255 transformed to 4-D vector and stored in a database to serve as a refer-
ence. A database 6freference images and their corresponding surface roughness was thus
established. To characterize the surface roughness of a new test surface, the Euclidean and
Hamming distances between the new test surface and the reference images in the database

are calculated. The Euclidean distance (DE) for an n-dimensional space is given by:

X

o<

()2 (2.1)

i=1

q
Depg = (P11 G)?+(p )2+ :i+(pv )%=

where N is the dimension of the feature vecpiis thei™ value of the feature vector amgd

is thei™ value of the reference vector. The lowest Euclidean distance between the reference
images and the test image indicates a matching and the corresponding rolghimesgse
database is attributed to the test surface. The Hamming distance represents the number
of components that differ in value at corresponding areas of two images. The Hamming

distance Dy ) is calculated as follows:

1 X
Dupa =y (M6 Q) (2.2)
1



Similarly to the Euclidean distance, the lowest Hamming distance is used to characterize

the surface roughness. Six images of parts were used for testing, and it was found that a
0:3in the value of Hamming distance between the test image and the reference images is
a threshold; it is less tha®30 for the correct matching, it was greater th@&B0 for the

other5 measures. For all the six test images, the surface roughness obtained by matching
the test image with the one with the lowest Euclidean distance, is the same as the one
obtained with the Hamming distance. Thus, using the Euclidean and Hamming distances

to match a new image with an established database of different surface roughness provides
good results. It was also observed that the Hamming distance was closer to zero than the
Euclidean distance for perfect matching which indicates that using the Hamming distance

for surface roughness characterization has larger scope than the Euclidean distance.

2.1.3 GrayLevel Co-occurrencélatrix

The the gray level co-occurrence matrix(GLCM) de ned by Haralick et al. [9], is a widely
used method in texture analysis. The GLCM matrix &R matrix of the size the num-

ber of gray levels in an image. It is constructed by calculating how often a pixel with the
intensity (gray-level) valué occurs in a speci ¢ spatial relationship to a pixel with the
valuej . This method is used in Gadelmawla [10] to characterize the surface roughness of
10 machined samples obtained by a facing operation with different feed rates to vary the
arithmetic average roughneBg. Four parameters are calculated from the GLCM matrix

to characterize the surface roughness: (1) maximum occurrence of the matrix (MOM), (2)
maximum occurrence position (MOP),calculated by searching the GLCM for the maxi-
mum value and storing its position in the form of (x,y), (3) standard deviation of the matrix
(SDM) and (4) maximum width of the matrix (MWM), which is calculated using a search
algorithm below and above the diagonal in a direction normal toitto nd the farthest points.
The pictures of the surfaces were taken under the same lightening conditions using a Je-

navert incident light microscope and a color video camera. It was found that the calculated



parameters MOM, MOP, SDM and MWM have a very good correlatror®©6) with the
arithmetic average roughnesg,). The three parameters MOM, SDM and MWM are pos-
itively correlated with the arithmetic average roughnegsHowever, the MOP parameter
decreases by increasiiy. Thus, all of these parameters could be used as indicators of the

surface roughness.

2.1.4 StatisticalAnalysis

Kiran et al.[11] used a vision system comprised of a Charge-coupled device (CCD) cam-
era and a lighting arrangement to capture images of at surfaces obtained from different
processes: grinding, milling, sandblasting, and shaping. The images were preprocessed to
eliminate the gaussian random noise. The gray intensity distribution histograms are used
to characterize the surface nish. The variance of the intensity histogram of the images
was found to be correlated with the surface roughgsKumar et al. [12] used a Cubic
Convolution interpolation technique to enhance the images of machined surfaces (ground,
milled and shaped) captured by a CCD camera while preserving edge details. The arith-

metic average of the grey levél, feature is then calculated as follows:

j9  Omi (2.3)

whereg; is the gray level values of a surface image along théne andg,, is the mean of

the gray values expressed as :

g: (2.4)

Regression analysis were used to establish three expressi®asfoif Grinding, Milling
and Shaping as a linear combination of the speed, depth of cuGand he regression
equations developed gave a maximum erroR%fin the case of grindings:34%in the
case of milling an®:2% for shaping between the estimated and theR, measured us-

ing a stylus instrument. Kamguem et al.[13] used three features extracted of the captured



microscope images df5turned parts: the gradient factor of the surface which corresponds
to the variation of the material to the surface measured by the change of light, the average
cycle of texture corresponding to the number of cycles per unit area and the average gray
level G,. A linear relationship was found between tRg and each of the three texture
features. The models had high correlation withyemeasured using a stylus instrument.
The approach yielded an errority estimation in the range & 18%for pro le surface
roughnes$R, in the range o2 25m . Gupta and Raman [14] used a CCD camera to
capture the scatter spectrum of the re ection of a H&EN®8N laser light source illumi-
nating a rotating pre-machined workpiedglpm and285pm) with R, in the range of

30 120m . Twelve different features, namely, the mean intensity, standard deviation of
the grey level distribution, the root mean square height of the gray level distribution and
others were extracted from the resulting gray image. A multiple regression model showed
that the features were correlated with the actual surface nish with an accuradyap-
proaching95% After conducting statistical analysis, it was noticed that the effect of the
surface roughness was more signi cant on two features: the ratio of the standard deviation
to the root mean square value and the square of the second moment of the light scatter
intensity distribution. Despite the high correlation between the roughness measured us-
ing a stylus-pro ling instrument and the output of the regression model, the work done by
Gupta and Raman [14] presents some limitations mainly due to the surface roughness range
used B0 120m ) which is outside the typical range of surface roughness in conventional
turning 1 10m ) and the hardware laser-based setup which requires ne adjustments and
stringent speci cations particularly, of the laser parameters, and location on a vibration-free

table.

215 SVM

Liu et al.[15] evaluated the surface roughness via color information, and proposed a sur-

face roughness measurement method based on a same pixel red and green color difference



index. These researchers also performed a comparison experiment on a group of samples
before and after surface pollution based on the support vector regression model. These
results showed that the color difference index was strongly correlated with the roughness
R, and had such advantages as anti-pollution and a high level of robustness [16]. Wei et
al. [15] proposed a Gray Level Co-occurrence Matrix Support Vector Machine (GLCM-
SVM) method to measure the surface roughness of a deep hole. The experimental results
showed that the GLCM-SVM can have a high level of accuracy and generalization ability

to characterize the surface roughnBgs

2.1.6 PolynomialNetworks

In Dhanasekar etal. [17] and B.Y.Lee and Y.S. Tarng [18], polynomial neural networks(PNN)
models are used to estimate tRg of a workpiece. Polynomial networks were proposed

by Ivakhnenko [19] which is a Group Method of Data Handling (GMDH) that models non-
linear relations between input and output variables. In the PNN model the nodes are a
polynomial function of the inputs. The structure of PNN is selected on the basis of the
number of input variables, the order of polynomials in each layer and a criterion that bal-
ances the model accuracy and the complexity of the tted polynomials. The loss criterion
used is the sum of the mean squared error between the predicted output and the real output
and a penalty proportional to the number of coef cients of the polynomial. The input data
for [17] are calculated from the improved quality images of surfaces processed using a re-
construction algorithm namely the standard deviation of gray lé8gland two spectrum
parameters (major peak frequency (F1) and principal component magnitude squared value
(F2)) obtained by performing a fast Fourier transform FFT. These three inputs are then fed
to a three layer polynomial network. In [18], the feed rate, speed and depth of cut along
with the arithmetic average of gray levels, of images captured by a digital camera are
used as inputs to a four layer model. The arithmetic average of the surface rouBhness

measured using a pro lometer and used as the independent variable. For [18], the training

10



dataset consisted &f7 training samples and the model was testedL6rsamples with a
reasonable accuracy: the error was no higher 2% between the real and the predicted

Ra . In [17] the optical roughness parameter estimated for the ground and milled surfaces
had an high correlation d@91 with the measure®, after applying the super resolution

reconstruction algorithm.

2.1.7 Articial NeuralNetworks

Multiple prior work used Neural Networks to assess the surface roughness using different
input features (vibrations, feed rate, speed, depth of cut:etc This review focuses on

the work that used computer vision combined with ANN. Tsai et al.[20] extracted ve fea-
tures from the two-dimensional Fourier transform of images of parts obtained from shap-
ing and milling operations. The obtained features are used as inputs to two NN models
that will perform classi cation in ve categories that represent known roughness values
of: 6:3;125; 25,50, 100m for the shaped pieces addb; 3:2;6:3; 125; 25, 50m for the

milled parts. The root mean squared error for the shaped specimerk34d§§m and
0:8311m for the milled ones which shows the good results of applying such model to as-
sess the surface roughness. Palani and Natarajan [21] also used a two dimensional Fourier
to get the major peak frequency and the squared principal component magnitude. These two
features as well as the cutting speed, feed, depth of cuGamde used as input to an ANN

to predict the roughness of the end milled parts. The error between the predicted values and
stylus based surface roughness ®&5%for the 10test images withR, ranging between
0:3971 0:8153m . P. Priya and B. Ramamoorthy [22] wanted to treat the problem of pre-
vious models sensitivity to the inclination angle of the images. They used surface images
of samples with different inclination angles. The effect of the inclination angle was elimi-
nated by using a shadow removal algorithm. Five designed frequency domain indexes and
sample inclination angles were fed to an ANN. The obtained experimental results showed

that machine vision combined with an arti cial neural network could achieve high predic-

11



tive accuracy [22]. In [23], Natarajan et al. used differential evolution algorithm (DEA)

as optimisation algorithm for training an ANN to predict surface roughness in turning op-
erations. The DEA is a heuristic method for optimizing nonlinear and non differentiable
continuous space functions. For training the ANN, it is applied to global searches within
the weight space to minimize the learning error. The cutting speed, feed rate, depth of cut,
and average gray levél, of the surface image of the workpiece were taken as the input
parameters and the surface roughness as the output parameter. The results obtained from
the DEA-based ANN model were compared with the backpropagation (BP)-based ANN. It
is found that the average absolute percentage error is very@Ba¥for the DEA-based

ANN and0:41%for the BP-based ANN. However, the DEA-based is shown to be faster at
convergence speed, simpler and more robust at numerical optimization than the BP-based

model.

2.2 Challenges and Limitations

The state of the art faces many challenges to perform contact-free automated visual surface

nish quality inspection. Among the main dif culties encountered are:

Hazardeous site: the place for installation of the required equipment for example
cameras, illumination, signal processing equipmentis very hazardous. The il-

lumination systems and cameras require protection from the dust, the high ambient
temperature, oil, water, shock and vibration. Thus, there is a necessity for appropriate

physical and environmental protection.

Operational Speed: the speed for the inspection process is very high during pro-
duction. For at steel products, speed at the end of rolling, where the inspection
equipment has to operate, is typica®m=s. Real-time operation at such high speed

requires special image processing equipment and software with small execution time.

Variety of surface nish and defects: for surface roughness measurements, there is
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a lack of standards that de ne which surface roughness values are acceptable. This
depends on the material, the parts, the applications and human judgement of wha