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SUMMARY

This thesis is devoted to solving the inverse source problems arising in image

reconstruction techniques. In general, the solution is non-unique and the problem is

severely ill-posed. Therefore. It poses tremedous challenges in the numerical compu-

tation.

In Chapter I, we discuss several existing methods to solve this problem, especially

the most widely used Tikhonov-type regularization method. Tikhonov regularization

minimizes a cost function which is a linear combination of a regularization term

and a data fitting term. The coefficients for the linear combination are called the

regularization parameters, which balance between regularization and data fitting.

The parameter tuning can be achieved by L-curve or cross validation [64, 59]. Besides

parameter tuning, solving Tikhonov regularization has been an active area of research.

Some proposed approaches are the Interior Point (IP) method [56, 20], the Algebraic

Reconstruction Technique (ART) [68], and the newly revived Augmented Lagrangian

(AL) method [104, 58].

In Chapter II, we propose a method which overcomes the major difficulties, namely

the non-uniqueness of the solution and noisy data fitting, separately. First we find

a particular solution called the orthogonal solution that satisfies the data fitting

term. Then we add to it a correction function in the kernel space so that the final

solution fulfills the regularization and other physical requirements. The key idea is

that the correction function in the kernel has no impact to the data fitting, and

the regularization is imposed in a smaller space. Moreover, there is no parameter

needed to balance the data fitting and regularization terms. In addition, we use an

efficient basis to represent the source function to form a hybrid strategy using spectral

xi



methods and finite element methods in the algorithm. The resulting algorithm can

dramatically increase the computation speed over the existing methods.

In Chapter III, we apply the proposed method to Fluorescence Tomography (FT).

Fluorescence Tomography (FT) is an emerging, in vivo non-invasive 3-D imaging tech-

nique which reconstructs images that characterize the distribution of molecules that

are tagged by fluorophores. Compared to other medical imaging modalities, FT is less

harmful. It uses near-infrared (NIR) light (650-900 nm wavelength) which is within

the spectrum of the sunlight, compared to the X-ray that is used in CT and powerful

magnetic fields deployed in MRI, where the dosage must be limited for safety concerns.

Another advantage of FT is that it can capture molecular specific information that

cannot be obtained otherwise [67]. For this reason, it is considered to be a promising

method in early cancer detection and drug monitoring [66, 103, 22]. However, this

imaging modality has not yet become popular in clinical practice, partially because

the severe ill-posedness of the problem, low resolution in the reconstructed image by

existing state of the art algorithm, and huge computation cost. We demonstrate by

theory, algorithms, and examples with synthetic as well as real data, that some of

these challenges can be addressed by developing efficient mathematical tools.

xii



CHAPTER I

INTRODUCTION

Many imaging techniques, such as X-Ray Computed Tomography (CT), Magnetic

Resonance Imaging (MRI), and an emerging modality called Fluorescence Tomogra-

phy (FT), can be modeled by a linear model, which is written as

g = Af. (1)

It relates the unknown f to the collected data g through a linear operator A. For

example, in CT, f denotes the distribution of the attenuation coefficient in the exam-

ined tissue. It is modeled by a 3D image, where each voxel (volumetric pixel) contains

the value of the attenuation at that point. A is the discrete form of the line integral

of the attenuation coefficient along each X-ray path in use, which simply sums up the

values in the voxels that the X-ray passes through. g is the measurement of the total

attenuation in the X-ray along each path.

The above model (1) is often called the forward model, where given f , we can

compute g. In practice, the story goes in the reverse way. g is given, or partially

given, and f is to be computed. It is called an inverse problem. If we consider f to

be the source for the incidence signal g, then this is an inverse source problem.

Even if the forward model is linear, the method for solving the unknown source

term f is often nonlinear [85]. There are several reasons for this. First, the forward

model is often under-determined, hence the solution is non-unique. For example, in

CT and MRI, due to the limited amount of dose in use, the data is not fully collected,

and the more data are missing, the more the problem is under-determined. Some other

models are under-determined in theory, such as FT, where A is a diffusion operator,

and the data g is obtained only on the boundary. Non-uniqueness also present in
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some other inverse source problems, such as in acoustics and electromagnetics, where

there exist physically realizable sources for which the measurements are exactly zero

[18]. In order to overcome the non-uniqueness of the solution, some prior information

is needed as a constraint for the solution, and the problem is often proposed as a

constraint optimization program, which is usually solved by iterative algorithms.

Another reason that the solution method being nonlinear is because the forward

model is usually ill-posed. After discretization, the linear operator A in the model

(1) often turns out to be an ill-conditioned matrix. Therefore, small perturbations,

such as noise in the data g, and modeling imperfection in A itself, can cause huge

errors in the computation of f . Regularization techniques are need in order to make

the solution robust against certain perturbations.

Both under-determinacy and ill-posedness pose tremendous challenges in solv-

ing inverse source problems. In history, people have developed various approaches

specific to difference imaging modalities. For instance, the filtered back projection

has been the commercial standard for CT, and the Inverse Fourier Transform is the

staple algorithm built in to the MRI machines. See [47] for a comprehensive intro-

duction. Recently, Tikhonov-type regularization has revived as a promising approach

alternative to previous methods [33, 53, 44]. It can be written in the following form

f̂ = argmin
f≥0

‖Af − g‖2 + µΨreg(f). (2)

Here ‖Af − g‖ is the data fitting term to match the boundary measurements, where

‖ · ‖ denotes the L2 norm by default. Ψreg(f) is the regularization term to impose

the regularity of the solution, which also alleviates the ill-posedness of the numerical

computations.

Both smooth and non-smooth functionals are used for the regularization term

Ψreg(f). The original Tikhonov regularization seeks a smooth solution [97], where

Ψreg(f) is the smooth functional. It is demonstrated that the popular L2 regulariza-

tion is robust against the noise and can overcome ill-posedness of the the problem.
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However, it is recognized that the L2 regularization can make the solution overly

smoothed, and features that are important in clinical and engineering applications,

such as the resolution of small objects and sharp changes like edges, are often miss-

ing. Recently, some non-smooth regularization terms have become popular, such

as L1 norm ‖f‖1, which promotes the sparsity [56], and total variation (TV) semi-

norm ‖f‖TV, which tends to preserve edges in the image [45, 15]. In order to get

the benefits of both, authors in [44, 57] use linear combinations of L1 norm and TV

semi-norm as the regularization term. For each choice of those regularization terms,

Tikhonov regularization (2) defines a unique solution, which can be regarded as a

stable approximation to the original problem (1) [45].

In Tikhonov regularization methods, the regularization parameter µ plays an im-

portant role. It balances the data fidelity and the regularity of the solution. If µ

is relatively small so the data fidelity is good but the regularization is not strongly

enforced. The story is the opposite, when µ is large: data fidelity is poor but the

regularization is well enforced. There are many studies focusing on how to choose

µ. Among different approaches, the L-curve method [64] and the cross validation

method [59] are common strategies for the selection of the parameter µ.

In this thesis, we propose a new approach to tackle the challenges. Our main idea

is to handle the two major challenges separately so that each one can be addressed

more efficiently. Briefly speaking, we first find a particular solution that matches

the boundary measurements. In this step, there is no regularity requirement for this

particular solution, and there are many choices. After finding the particular solution,

we then add to it a function in the kernel space of A so that the final solution meets the

regularization requirements. Since the correction is only in the kernel space, it does

not alter the data matching property obtained by the particular solution. Moreover,

the regularity is achieved only in the kernel space, which is smaller than the entire

space used in Tikhonov regularization methods.
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More precisely, the true solution to the inverse source problem (1) can be decom-

posed as

f = f∗ + f0, (3)

where f∗ is a particular solution used to match the boundary measurements, and f0

is a function in the kernel space N (A) to fulfill regularity constrains. In the first step,

the particular solution f∗ is chosen to be

f∗ = A∗(AA∗)−1g, (4)

where A∗ is the adjoint operator of A. In theory, f∗ is the solution that is orthogonal

to the kernel N (A). For this reason, we call it the orthogonal solution, which is also

known as minimal norm solution or Moore-Penrose pseudo inverse in the literature

[46, 61].

If there is no noise in the measurements and no errors in the modeling, f∗ has

the perfect data fitting property. Otherwise, we cannot solve f∗ exactly. Instead,

we compute an approximation to it by an iterative regularization procedure. Obvi-

ously, the particular solution may not satisfy regularity constrains that are required

in the applications, such as positivity, or visually smooth features, or sparsity. These

constrains are addressed in the second step of the method. We choose a correction

f0 in the kernel space N (A) such that the combined solution f given in (3) satisfies

the desirable regularity requirements. We realize this step by solving a constrained

optimization problem

f̂0 = argmin
f0∈N (A)

Ψreg(f∗ + f0) such that f∗ + f0 ≥ 0, (5)

where the regularization Ψreg is chosen as L2, or L1 norms, or TV semi-norm. Since f0

is in the kernel and does not affect the data fitting achieved by f∗, the final solution f

preserves the correct data fitting of f∗ while having the desired regularity. In addition,

there is no regularization parameter selection needed to balance the data fidelity and

regularity requirements.
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In this paper, we call the proposed two-step approach the Orthogonal Solution

and Kernel Correction Algorithm (OSKCA).

The two steps (4) and (5) in our algorithm can be solved by some existing methods.

For example, several algorithms can be used to solve (4), such as the gradient based

Landweber iterations [13]. However, the ill-conditioning in A can cause very slow

convergence in FT application. To address the problem, people develop a method to

compute (AA∗)−1g by iterative Tikhonov regularization [82]. For the second step (5),

if Ψreg is taken as L2-norm, L1-norm, or TV semi-norm, we can take advantage of

existing fast algorithms such as the Augmented Lagrangian, also known as the split

Bregman iteration in the literature [58] .

In addition, to further speed up the computation, we introduce different bases to

represent the solution f in our algorithms. Most of the existing methods use point-

wise basis to represent the solution. In this setting, the number of unknowns in the

solution is equal to the number of pixels (or voxels for 3D images). We notice that the

solution f , represented by an image either in 2D or 3D, usually have certain regular-

ities, such as being L2 integrable and locally smooth with possibly sharp transitions.

Therefore, some bases other than the point-wise basis, such as harmonic functions

or wavelets, are much more efficient to represent the unknowns. This dramatically

reduces the dimension of the unknowns. It is shown in our numerical experiments

that the new method gains significant speedup over the existing methods.
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CHAPTER II

ORTHOGONAL SOLUTION WITH KERNEL

CORRECTION ALGORITHM (OSKCA)

As we have discussed, regularization techniques are often needed to handle the ill-

posedness of the problem (1). The Tikhonov regularization as in (2) is widely used in

the existing methods. However, there are limitations associated with this approach.

For example, the regularization parameter tuning can be difficult and expensive. Also

the reconstruction has low resolution, because it may be overly smooth or too noisy

if the regularization parameter is not properly chosen. In order to overcome such

difficulties, we propose the OSKCA method to compute the solution. In this section,

we describe the algorithm in detail.

We notice that any solution f to (1) can be decomposed as

f = f∗ + f0, (6)

where f∗ is a particular solution, and f0 is a function in the kernel N (A). Then to

solve the equation (1) we just need to determine f∗ and f0.

First, we choose f∗ such that it satisfies

g = Af∗ and f∗ ∈ N (A)⊥, (7)

where N (A)⊥ refers to the orthogonal complement of N (A). Later we show that such

defined f∗ exists, and it is uniquely determined by g and A. We call f∗ the orthogonal

solution because it is perpendicular to the kernel N (A). Once f∗ is determined, we

choose f0 ∈ N (A) such that f∗ + f0 satisfies the regularity requirements. We call f0

the kernel correction. In summary, OSKCA is given as follows:
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Algorithm 2.0.1 Orthogonal Solution and Kernel Correction Algorithm (OSKCA)

1. Formulate A and g for the inverse problem Af = g.

2. Compute the orthogonal solution f∗.

3. Compute the correction in the kernel f0 ∈ N (A) such that f = f∗ + f0 satisfies
the regularity requirements, i.e.,

f̂0 = argmin
f0∈N (A)

Ψreg(f∗ + f0) such that f∗ + f0 ≥ 0, (8)

where Ψreg is a regularization functional.

In theory, OSKCA is equivalent to solving the optimization problem

f̂ = argmin
f≥0

Ψreg(f) such that Af = g. (9)

Compared with Tikhonov regularization (2), the data fitting in (9) can be enforced

without jeopardizing the regularity requirements. This is a desirable property, because

A is severely under-determined. Also, the equality constraint in (9) can be strongly

enforced if the noise level is low, and loosely enforced if the noise level is high.

In the remaining part of this section we describe the orthogonal solution and

kernel correction in more details. We also demonstrate that common regularization

techniques (like L2, L1, and TV minimization) can be incorporated into the proposed

framework.

2.1 The orthogonal solution

The orthogonal solution to the inverse problem g = Af is

f∗ = A∗(AA∗)−1g, (10)

if g ∈ R(AA∗), where R(·) denotes the range. We note that the closure of R(A),

R(A), is the same as R(AA∗) by standard results in functional analysis [88].

If g contains noise, it may not be in R(A) or R(AA∗). We can project g onto
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R(AA∗) so that (10) is strictly applicable. Though it is not needed in the computa-

tion, since we can make the algorithm for (10) is robust against the noise.

Since A is a compact operator, A∗(AA∗)−1 is unbounded. Therefore, the orthogo-

nal solution may not depend continuously on the right hand side g. So regularization

techniques become necessary to compute it. We propose a numerical method for the

orthogonal solution in Section 3.3.3.

If g ∈ R(A), then the well-known minimal norm solution is given by

f̄ = A†g,

where A† is the Moore-Penrose (generalized) inverse of A (See [46]). The minimal

norm solution and the orthogonal solution are closely related, and their connection is

stated in the following:

Proposition 1 1. For every g ∈ R(AA∗), A†g = A∗(AA∗)−1g.

2. For every g ∈ R(A) \ R(AA∗), A†g 6= A∗(AA∗)−1g.

In short, the minimal norm solution is defined in a larger space than the orthogonal

solution in (10), and the two solutions coincide when g ∈ R(AA∗).

2.2 The kernel correction

The kernel correction f0 is chosen such that f = f∗ + f0 satisfies the regularity

requirements. Suppose W = {wi}∞i=1 is an orthonormal basis forN (A), then f0 = Wµ

where µ is the auxiliary variable which denotes the coefficient for f0 under the basis

W . The problem of finding the kernel correction can be written as a constrained

optimization problem

µ̂ = argmin
µ

Ψreg(f∗ +Wµ) subject to f∗ +Wµ ≥ 0, (11)

where Ψreg is a regularization functional. The final solution is f∗ + Wµ, which is

required to be non-negative since it is a distribution. Here we note that (11) is
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equivalent to (9). However, the auxiliary variable µ has a smaller dimension than f ,

so the size of the problem is reduced.

The regularization functional Ψreg can be chosen differently. For instance, if L2

minimization is used, the problem (11) becomes

µ̂ = argmin
µ
‖f∗ +Wµ‖ subject to f∗ +Wµ ≥ 0. (12)

We can also use some other regularization requirements. For example, the famous

total variation minimization can be applied, which is helpful if sharp transitions

such as edges are expected in the reconstructed image. In that case, we solve the

constrained optimization problem

µ̂ = argmin
µ
‖f∗ +Wµ‖TV subject to f∗ +Wµ ≥ 0, (13)

Likewise, other reqularization techniques can be formulated similarly.

The kernel correction is used for enforcing regularity of the solution. Since it is

solved in the kernel space, it does not affect the data fitting of the solution.

2.3 Representation of the solution under a chosen basis

Inspired by the spectral method, other than representing the solution f by its point

values, we can also choose a basis {ξi}∞i=1 for the solution space and write f as

f =
∞∑
i=1

ciξi, (14)

Let c = (c1, . . . , ci, . . .) be the coefficient for f under the basis. Let B denote the linear

transformation from the spectral domain to the physical domain, which is defined by

B : (c1, . . . , ci, . . .) 7→
∞∑
i=1

ciξi. (15)

Then (14) implies the relation

f = Bc. (16)
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By (16), the inverse problem in (66) is rewritten as

g = ABc, or g = Mc, (17)

where M denotes the composition of A,B.

The idea of OSKCA still applies to the new formulation (17). c is decomposed as

c = c∗ + c0, (18)

where c∗ is the orthogonal solution to (17) and c0 ∈ N (M) is the kernel correction

term. Let K be an orthonormal basis for N (M). λ is the auxiliary variable for c0,

and

c0 = Kλ. (19)

By (16)(18), the solution to (66) is written as

f = B(c∗ + c0). (20)

By (19), (20) is equivalent to

f = B(c∗ +Kλ). (21)

B is determined by the chosen basis functions and K can be computed if M is

given. c∗ is computed by an analogy to (10), which is written as

c∗ = M∗(MM∗)−1g. (22)

We have the following lemma relating c∗ to f∗.

Lemma 2.3.1 If the basis functions {ξi}∞i=1 are orthonormal, then

f∗ = Bc∗. (23)

Proof By the condition in the lemma, B as defined in (15) is an unitary transfor-

mation, and its adjoint operator B∗ satisfies

BB∗ = I(identity). (24)
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In this case, c∗ as defined in (17) can be written as

c∗ = (AB)∗(ABB∗A∗)−1g = B∗A∗(AA∗)−1g, (25)

so

Bc∗ = BB∗A∗(AA∗)−1g = A∗(AA∗)−1g = f∗. (26)

In the theory the orthonormal basis functions have some nice analytical properties

as described above. In practice, the basis functions do not have to be orthonormal.

More generally, we can choose a frame, instead of a basis, to represent the solution.

The approach that analyzing the solution using a frame, for example the wavelet

frame, has become popular in the field of image and signal processing [29, 26]. One

obvious reason is that some analytical properties of vectors in the underlying function

space, such as orthogonality (24), are not preserved in their discrete form. The frame

approach provides some useful tools to study the regularity of the solution, such as

the Total Variation semi-norm and the L1 norm. For non-orthogonal bases or the

frames, (23) does not hold. However, (20) is always satisfied.

The computation of the kernel correction term c0 follows the same way as (11). We

note the solution f in the form (21), where λ is obtained by solving the optimization

problem

λ̂ = argmin
λ

Ψreg(B(c∗ +Kλ)) subject to B(c∗ +Kλ) ≥ 0. (27)

Here Ψreg(·) also denotes the regularization functional as in (11).

11



CHAPTER III

FLUORESCENCE TOMOGRAPHY (FT)

We now apply the OSKCA method described in the previous chapter to the image

reconstruction problems arising in an emerging imaging technique call the Fluores-

cence Tomography (FT). In the experimental setup of FT (See Figure 1 for a cartoon

demonstration), NIR radiation (wavelength 650-900 nm) is pumped into the examined

Figure 1: An illustration of Fluorescence Tomography

biological tissue through fibers placed on the tissue surface. The light is scattered

and absorbed partially in the tissue and the fluorophores are excited by the diffuse

excitation. The excited fluorophores then emit near-infrared (NIR) light at a longer

wavelength, which propagates in the tissue. Then the intensity of the fluorescent

emission is measured by the detectors placed on the tissue surface. The goal of FT is

to reconstruct the distribution of fluorophores from boundary measurements, knowing

the scattering and absorption parameters of the light.

The NIR light is strongly scattered in the biological tissue, and this can be modeled
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by diffusive photons governed by the Radiative Transfer Equation (RTE) [70]. Al-

though the RTE has been intensively studied in many other problems, and a number

of schemes have been proposed to solve it numerically, it is still considered expensive

to solve due to the high dimensionality in FT applications. To ease the challenge, the

Diffusion Approximation (DA) to the RTE is introduced. It is a second order diffusion

equation generally accepted as an accurate model in the regime of highly scattering

and low absorptive media, such as the biological tissues [5, 90, 45, 44]. The boundary

condition associated with the DA model is Robin (mixed) type [50, 65, 91, 80], which

accounts for the partial reflection and transmission of the light on the boundary.

In this thesis, our goal is to design an efficient numerical method to reconstruct

the image of the fluorophore distribution from the boundary measurements.

3.1 Mathematical models

3.1.1 The governing equations

As described in the introduction, there are two radiative fields at different wave-

lengths: the excitation and the emission photons propagating in the examined tissue.

Both of them can be modeled by the same radiative transfer equation (RTE) with

different parameters:

∂L(r,ŝ,t)/c
∂t

= −ŝ · ∇L(r, ŝ, t)− (µa + µs)L(r, ŝ, t)

+ µs
∫
Sd−1 L(r, ŝ′, t)P (ŝ′, ŝ) dŝ′ + q(r, ŝ, t).

(28)

where L denotes the radiance of the photon; µa and µs are absorption and scattering

coefficients respectively; d is the dimension of the space; Sd−1 is the collection of unit

vectors; P is the scattering kernel and q is the light source. In the RTE, there are

three spatial variables in r and two angular variables in ŝ, in addition to the time

variable t if the problem is in 3-D. As this is a high dimensional PDE, it is usually

computationally expensive to solve directly. There are some recent effort to compute

it such as in [55]. To reduce the dimension, the diffusion approximation (DA) model
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is introduced in practice, which is well accepted as an accurate approximation to the

RTE when the light propagates in high scattering and low absorptive medium, such

as the biological tissues [5]. More precisely, let us denote the light intensity, also

called fluence rate, by

Φ(r, t) =

∫
Sd−1

L(r, ŝ, t) dŝ, (29)

which is the sum of radiance in all directions. Then the DA is given by

∂Φ(r, t)

c∂t
+ µaΦ(r, t)−∇ · [κ∇Φ(r, t)] = q(r, t), (30)

where c is the light speed in the tissue, κ = 1
3(µa+µ′s)

with µ′s being the effective

scattering coefficient, and q(r, t) models the light source.

The derivation of DA from RTE follows that in [101]. It is important to assume

that the light we consider should be highly scattering, and lowly absorptive in the

examined medium. More exactly, the scattering events happen much more often than

the absorption events. After numerous scattering events, few absorption events will

occur and the radiance (L(r, ŝ, t)) becomes nearly isotropic. Also, the change in the

fluence rate (Φ(r, t)) over one transport mean free path 1/µs (which is the average

distance travelled by a photon before being absorbed) is negligible. As a result, it is

required that the distance from the interested region to the detector should be much

larger than the mean free path (usually in the 0.1mm scale). These assumptions are

often satisfied in the biological tissues, where Fluorescence Tomography is applied.

To separate the intensity from the angular components, the radiance L(r, ŝ, t) is

expanded into spherical harmonics, and truncate at the first order terms in ŝ to get

an approximation. That is,

L(r, ŝ, t) =
1

4π
Φ(r, t) +

3

4π
~J(r, t) · ŝ, (31)

where 1
4π

Φ(r, t) and 3
4π
~J(r, t) are the coefficients for zeroth and first order spherical

harmonics respectively. Φ(r, t) is given in (29) and

~J(r, t) =

∫
SN−1

ŝL(r, ŝ, t) dŝ. (32)
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~J(r, t) is called the current density. We note the assumption that after several mean

free path, the radiance is nearly isotropic, and we write∫
Sd−1

ŝ′P (ŝ, ŝ′) dŝ′ = gŝ, (33)

which means the scattering kernel P is symmetric. Here

g =

∫
Sd−1

ŝ · ŝ′P (ŝ, ŝ′) dŝ′ (34)

for all ŝ ∈ Sd−1. Also P should satisfy the identity∫
Sd−1

P (ŝ, ŝ′) dŝ′ = 1. (35)

By plugging (31) into (28), and matching up the coefficients for the zeroth and first

order spherical harmonics, we have the following two equations

∂Φ(r, t)

c∂t
= −∇ · ~J(r, t)− µaΦ(r, t) + q(r, t) (36)

and

∂ ~J(r, t)

c∂t
= −1

3
∇Φ(r, t)− (µa + µ′s) ~J(r, t), (37)

where q(r, t) =
∫
SN−1 q(r, ŝ, t) dŝ, and µ′s = (1− g)µs is the reduced scattering coeffi-

cient.

Also we note the assumption that the change in fluence rate Φ(r, t) over one

transport mean free path (1/µs) is negligible, i.e.,

µa � µs. (38)

Hence the change in current density ~J(r, t) over one transport mean free path is

negligible as well. Then in (37), we can assume

∂ ~J(r, t)

c∂t
= 0, (39)

then (37) becomes Fick’s Law

~J(r, t) = − ∇Φ(r, t)

3(µa + µ′s)
. (40)
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By plugging (40) into (36), we obtain the DA for RTE as

∂Φ(r, t)

c∂t
= ∇ · κ∇Φ(r, t)− µaΦ(r, t) + q(r, t), (41)

where κ = 1
3(µa+µ′s)

is the diffusion coefficient.

In the frequency domain, we have the equation for the coefficients corresponding

to the modulation frequency ω [8]:

−∇ · [κ∇Φ(r, ω)] + (µa +
iω

c
)Φ(r, ω) = q(r, ω) in Ω, (42)

where Ω is the region occupied by the examined tissue. Φ(r, ω) is called the fluence

of radiation at frequency ω in optics. In intensity-based fluorescence tomography, the

modulation frequency (ω) is zero, resulting in a CW (continuous wave) DA which is

written as

−∇ · (κ∇Φ(r)) + µaΦ(r) = q(r) in Ω. (43)

The above equation is usually accompanied by the partially reflecting and partially

absorbing boundary condition, which is given by the following Robin (mixed) bound-

ary condition [91, 41]:

~n · [κ∇Φ(r)] +RΦ(r) = 0 on ∂Ω, (44)

where ∂Ω is the boundary of Ω, and the parameters κ,R are given.

For the simplicity of notations, the DA equation (42) with Robin boundary con-

dition (44) is written in short as

F (κ, µa, R)Φ = q, or FΦ = q. (45)

By the classical PDE theory [75], Φ in equation (1) has a unique solution in the

Sobolev space H1(Ω) given q(·) ∈ L2(Ω) and Ω is a Lipschitz domain.

16



3.1.2 The forward and inverse problems

Let Φm be the fluorophore emission fluence. The mathematical problem in FT is to

compute f from the boundary measurements of Φm in the DA equation

FmΦm(r) = Φx(r)f(r), (46)

where Φx is the excitation fluence and Fm = F (κm, µam, R). The subscript m rep-

resents the emission model. The point-wise product Φx(r)f(r) models the source

of fluorophore emission. Φx is excitation light field induced by the boundary light

sources q, which can be modeled by another DA equation

FxΦx(r) = q(r), (47)

where Fx = F (κx, µax, R). The subscript x is for the excitation model.

In FT applications, only the boundary values of Φm, denoted by g, can be obtained

from detectors. Let Tr be the Sobolev trace operator which takes the boundary value

of a function in H1(Ω), then

g = TrΦm. (48)

By (46) and (48), the forward model that maps unknown f to measurements g is

formulated as

g = TrF
−1
m (Φxf), (49)

where F−1
m (Φxf) ∈ H1(Ω) is the solution of (46).

The inverse problem is to find f from given measurement g, the parameters in Tr

and Fm, and precomputed excitation field Φx. Since f is a distribution, it is naturally

a non-negative function.
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3.1.3 A fourth order PDE approach to find a particular solution for the
inverse problem

The inverse source problem (49) can be reformulated as a PDE problem
−∇ · (κm∇Φm(r)) + µamΦm(r) = Φx(r)f(r) in Ω,

~n · [κm∇Φm(r)] +RΦm(r) = 0 on ∂Ω,

Φm(r) = g on ∂Ω,

(50)

where the parameters κm, µam, R and the boundary data g are given, Φx is computed

by solving the excitation model, and f is the unknown. Using previous notations, we

denote the elliptic operator

Fm ≡ −∇ · (κm∇) + µam. (51)

Obviously, this problem does not have a unique solution. However, the following

fourth order PDE is related to (50):
F 2
mΦ̃m(r) = 0 in Ω,

~n · [κm∇Φ̃m(r)] +RΦ̃m(r) = 0 on ∂Ω,

Φ̃m(r) = g on ∂Ω,

(52)

where F 2
m = Fm ◦ Fm. In order to study the solvability of the above fourth order

equation, we note the following result on F 2
m.

Definition 3.1.1 [75] In a bounded domain Ω ⊂ Rd, we consider the system of

equations

Fu ≡
∑
|i|,|j|≤m

(−1)|i|Di(ai,j(x)Dju) = f , (53)

where Di = ∂|i|/∂xi11 . . . ∂x
in
n , i = (i1, . . . , in), |i| = i1 + . . . + in. u and f are N-

dimensional vector-functions, and ai,j(x) is the (i, j)-th entry of the N×N symmetric

matrix A(x). The system (53) is called strongly elliptic if for any real vector ζ =

(ζ1, . . . , ζN) 6= 0 and for arbitrary real numbers ξ1, . . . , ξd not all zeros, the quadratic
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form

A(x; ξ)ζ · ζ ≡
∑
|i|,|j|=m

ai,j(x)ξi1+j1
1 . . . ξid+jd

d ζ · ζ (54)

is positive.

Lemma 3.1.2 (52) is a strongly elliptic equation.

Proof Fm as defined in (51) is a strongly elliptic operator for κm > 0, whose principal

part (second order derivatives) corresponds to the quadratic form

κm(ξ2
1 + ξ2

2)ζ2, (55)

which is positive for any real numbers ξ1, ξ2 and scalar ζ. Then F 2
m has the quadratic

form

(κm(ξ2
1 + ξ2

2))2ζ2, (56)

which is also positive. By Definition 3.1.1, (52) is a strongly elliptic equation.

Theorem 3.1.3 The fourth order PDE (52) is uniquely solvable in H2(Ω) if it is a

strongly elliptic equation, and the parameters κm, µam are C2(Ω) and bounded.

Proof By Lemma 3.1.2, (52) is a strongly elliptic equation. The complete proof can

be found (with slight adaptation to our problem) in [75].

We have the following theorem describing the relation between (50) and (52).

Theorem 3.1.4 We consider the equation

FmΦ̃m(r) = Φx(r)f̃(r), (57)

where Φ̃m(r) is the solution to (52). Then

1. f̃(r) in (57) is a particular solution to the problem (50), and it is a solution to

the inverse problem (49) as well.
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2. For any f0 ∈ N (TrF
−1
m Φx), that is,

TrF
−1
m (Φxf0) = 0, (58)

we have

〈Φxf̃ ,Φxf0〉L2(Ω) = 0. (59)

Proof 1. It can be verified directly by plugging f̃ for f , and Φ̃m for Φm in (50).

2. We denote Φ0 = F−1
m (Φxf0). Then we have Φxf0 = FmΦ0. Since Φ0 is the

solution to the DA equation, it satisfies the Robin boundary condition

~n · [κm∇Φ0] +RΦ0 = 0 on ∂Ω, (60)

and by (58),

Φ0 = 0 on ∂Ω, (61)

and also

~n · [κm∇Φ0] = 0 on ∂Ω. (62)

We use integration by parts and the above boundary conditions of Φ0 to calcu-

late the left-hand side of (59),

〈Φxf̃ ,Φxf0〉L2(Ω) =
∫
Ω

FmΦ̃m · FmΦ0 dx

=
∫
Ω

FmΦ̃m · (−∇ · (κm∇Φ0) + µamΦ0) dx

=
∫
Ω

(κm∇Φ0 · ∇(FmΦ̃m) + µamΦ0FmΦ̃m) dx

−
∫
∂Ω

~n · (κm∇Φ0)FmΦ̃m dΓ

=
∫
Ω

Φ0

(
−∇ · (κm∇(FmΦ̃m)) + µamFmΦ̃m

)
dx

+
∫
∂Ω

(
~n · (κm∇(FmΦ̃m))Φ0 − ~n · (κm∇Φ0)FmΦ̃m

)
dΓ.

(63)
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By the boundary conditions (61)(62), the boundary integral in (63) is equal to

zero. The remaining integral over Ω is equal to∫
Ω

Φ0 · F 2
mΦ̃m dx. (64)

By (52), F 2
mΦ̃m = 0. Then the left-hand side of (63) is equal to zero. This

completes the proof of part 2.

Although this theorem provides a well-defined particular solution, it is not efficient

to solve in practice. It is well known that fourth order PDEs are difficult to solve

[81, 62]. Moreover, this approach is valid for the case where only on light source is

used. It is unknown whether it can be generalized to the case where multiple light

sources are in use. We will discuss alternative approaches to solve the inverse problem

(49) in the remaining part of this thesis.

3.1.4 FT model

In order to improve the conditioning of the forward model, multiple light sources are

used for excitation [43]. Suppose that s is the number of different light sources used

in the experiments. For the i-th light source q(i), the excitation field is Φ
(i)
x and the

emission field is Φ
(i)
m . The boundary measurement of the emission field is g(i). By

(49), we have

g(i) = TrF
−1
m (Φ(i)

x f), (65)

where i = 1, . . . , s. By vertically concatenating the above s equations, we write the

inverse problem as finding f in

g = Af, (66)

where

g =


g(1)

...

g(s)

 , Af =


TrF

−1
m (Φ

(1)
x f)

...

TrF
−1
m (Φ

(s)
x f)

 . (67)
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For a vector space V , we denote multiple tensor product by

⊗pV = V ⊗ . . .⊗ V
p copies

. (68)

Then A is a bounded linear operator mapping from L2(Ω) to ⊗sL2(∂Ω). Then the

adjoint of A, denoted by A∗, is a linear mapping from ⊗sL2(∂Ω) to L2(Ω). In the rest

of the paper, A denotes the forward model operator for multiple light sources, and

g represents the concatenation of multiple boundary measurements corresponding to

the light sources. It is shown in [100] that the solution of (66) is non-unique. A is

the composition of the Sobolev trace operator and the solution operator for elliptic

equations (which are DA equations in this case), it is a compact operator which

has very large condition number after discretization. Therefore, (66) is severely ill-

conditioned. In the following, we apply OSKCA method described in Chapter 2 to

solve (66).

3.2 An analysis of the orthogonal solution

In order to compute the orthogonal solution defined in (10), we need to clarify the

notion of the adjoint operator A∗ of A, and verify the existence of inverse of AA∗.

In what follows, we denote the inner product in Hilbert space H by 〈·, ·〉H , and

for a linear functional F on H. For topological vector spaces X and Y , B(X ,Y) will

denote the collection of all bounded linear mappings of X into Y .

In the definition of A in (67), F−1
m ∈ B(L2(Ω), H1(Ω))[49], Tr ∈ B(H1(Ω), L2(∂Ω))

[42], and the composed operator TrF
−1
m ∈ B(L2(Ω), L2(∂Ω)). If F−1∗

m and T ∗r are

adjoint operators of F−1
m and Tr respectively, then the adjoint operator of TrF

−1
m ,

denoted by F−1∗
m T ∗r , is in B(L2(∂Ω), L2(Ω)), which satisfies

〈TrF−1
m f, y〉L2(∂Ω) = 〈f, F−1∗

m T ∗r y〉L2(Ω) (69)

for all f ∈ L2(Ω) and y ∈ L2(∂Ω).

We have the following characterization of T ∗r and F−1∗
m .
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Lemma 3.2.1 For the Sobolev trace operator Tr : H1(Ω) → L2(∂Ω), its adjoint

T ∗r ∈ B(L2(∂Ω), H1(Ω)), which satisfies

〈z, T ∗r y〉H1(Ω) = 〈Trz, y〉L2(Ω) (70)

for any pair (z, y) ∈ H1(Ω) × L2(∂Ω). Specifically, for any y ∈ H1/2(∂Ω), v = T ∗y

solves the PDE:  v −∆v = 0 in Ω

∂v
∂n

= y on ∂Ω
(71)

Proof We show that T ∗r y solves (71) for any given y ∈ H1/2(∂Ω). Multiply both

sides of (71) by a test function z ∈ H1(Ω) and integrate over Ω, we have

0 =
∫

Ω
(vz +∇v · ∇z) dx−

∫
∂Ω

∂v
∂n
z dΓ

(using boundary condition)

=
∫

Ω
(vz +∇v · ∇z) dx−

∫
∂Ω
yz dΓ,

(72)

which is nothing but

〈z, v〉H1(Ω) = 〈Trz, y〉L2(∂Ω). (73)

The above equality holds for all z ∈ H1(Ω), and by the uniqueness of T ∗r y we have

v = T ∗r y. So Tr ∈ B(H1/2(∂Ω), H1(Ω)). Since H1/2(∂Ω) is dense in L2(∂Ω), Tr can

be uniquely extended to a bounded linear operator from L2(∂Ω) to H1(Ω), which is

still denoted by Tr.

Lemma 3.2.2 For the solution operator F−1
m : L2(Ω) → H1(Ω) for (46), its adjoint

operator F−1
m
∗ ∈ B(H1(Ω), L2(Ω)), and it satisfies

〈F−1
m f, v〉 = 〈f, F−1

m
∗
v〉 (74)

for any pair (f, v) ∈ L2(Ω)×H1(Ω). In particular, if v ∈ H2(Ω), then

w = F−1
m
∗
v (75)
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is the solution to the PDE: −∇ · (κm∇w) + µamw = v −∆v in Ω,

κm
∂w
∂~n

+Rw = ∂v
∂n

on ∂Ω.
(76)

Proof Multiply both sides of (43) by w and integrate over Ω,

∫
Ω
fw dx =

∫
Ω
κm∇u · ∇w dx−

∫
∂Ω
κ∂u
∂n
w dΓ +

∫
Ω
µamuw dx

(integration by parts)

=
∫

Ω

(
− u∇ · (κm∇w) + µamuw

)
dx+

∫
∂Ω

(
uκm

∂w
∂n
− κm ∂u

∂n
w
)

dΓ

(boundary condition (44))

=
∫

Ω

(
− u∇ · (κm∇w) + µamuw

)
dx+

∫
∂Ω

(
uκm

∂w
∂n

+Ruw
)

dΓ.

(77)

The we use (76) and its boundary condition,

∫
Ω
fw dx =

∫
Ω
u(v −∆v) dx+

∫
∂Ω
u ∂v
∂n

dΓ

=
∫

Ω
(uv +∇u · ∇v) dx

(78)

which is exactly 〈f, w〉L2(Ω) = 〈u, v〉H1(Ω), i.e., 〈F−1
m f, v〉 = 〈f, F−1

m
∗
v〉. By definition

u = F−1
m f , and by the uniqueness of F−1

m
∗
v we conclude w = F−1

m
∗
v. Since H2(Ω) is

dense in H1(Ω), we can continuously extend F−1∗
m to be a bounded linear operator

from H1(Ω) to L2(Ω).

With the understanding of above two lemmas, we have F−1∗
m T ∗r characterized in the

following theorem:

Theorem 3.2.3 F−1∗
m T ∗r is a bounded linear operator from L2(∂Ω) to L2(Ω). For

any y ∈ H1/2(∂Ω), w = F−1∗
m T ∗r y is the solution to the following PDE: −∇ · (κm∇w) + µamw = 0 in Ω

κm
∂w
∂~n

+Rw = y on ∂Ω
(79)

Proof It is proved by combining two PDE’s in Lemmas 3.2.1 and 3.2.2.
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With F−1∗
m T ∗r characterized in Theorem 3.2.3, we have the following theorem for

the computation of A∗.

Theorem 3.2.4 A∗ is a bounded linear operator mapping from ⊗sL2(∂Ω) to L2(Ω).

In particular, for y(i) ∈ L2(∂Ω) (i = 1, . . . , s),

A∗


y(1)

...

y(s)

 =
s∑
i=1

Φ(i)
x F

−1∗
m T ∗r y

(i), (80)

where F−1∗
m T ∗r is characterized in Theorem 3.2.3.

AA∗ has following properties:

Proposition 2 1. AA∗ ∈ B(⊗sL2(∂Ω)) is a compact operator.

2. If AA∗ is invertible, then its inverse is unbounded.

Proof 1. We note that the solution operator to for DA equation (43), which is

strongly elliptic, is a compact operator, and the trace operator is also compact.

Therefore both A and A∗ are compact, and AA∗ is compact.

2. Since dim(⊗sL2(∂Ω)) = ∞ and AA∗ is compact, 0 ∈ σ(AA∗). Therefore, the

inverse of AA∗ is unbounded if it exists.

Remark This proposition tells us that we cannot use (10) to compute the orthogonal

solution, since (AA∗)−1 is unbounded if it exists. Instead, we iterative regularization

methods, which is built on A and A∗. Early termination of the iterations exhibits

regularization effects [46]. It aims to approximate the orthogonal solution such that

the solution depends continuously on the data g. It is discussed in more details in

Section 3.3.3.
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3.3 Implementation of OSKCA for FT

3.3.1 Discretization of the forward and inverse problems

In what follows, the matrix form of linear operators are denoted by bold capital

letters.

The forward problem involves solving DA equations (46) and (47), which are

second order elliptic differential equations. They can be solved numerically by Finite

Element Method (FEM) [23]. Let np be the number of nodes in the mesh for FEM.

Suppose {δ1, . . . , δnp} are the associated FEM basis functions, which are actually the

point-wise basis functions for the solution space in FEM. Under this basis, f is written

as

f =

np∑
j=1

fjδj, (81)

where f1, . . . , fnp are values of f at the mesh nodes.

Under the point-wise basis, the discrete form of the inverse problem is

g = Af , (82)

where f = [f1, . . . , fnp ]
>. g is the discrete form of the boundary measurement g as

defined in (67). A is called the forward model matrix, which is the matrix form of

the operator A in (66). By (67)(81), we have

A =
[
Aδ1 . . . Aδnp

]
=


TrF

−1
m (Φ

(1)
x δ1) . . . TrF

−1
m (Φ

(1)
x δnp)

...
. . .

...

TrF
−1
m (Φ

(s)
x δ1) . . . TrF

−1
m (Φ

(s)
x δnp)

 , (83)

where δj and Φ
(i)
x are both np-vectors representing their point values at the mesh

nodes, and Φ
(i)
x δj is the point-wise product of the two vectors. F−1

m (Φ
(i)
x δj) is repre-

sented by an np-vector defined at the mesh nodes, which is the FEM solution to the

DA equation defined in (47):

Fmuij = Φ(i)
x δj, (84)
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where uij is the unknown. Tr is the discrete form of the Sobolev trace operator, which

is an interpolation of an np-vector defined on the mesh nodes at nd detector locations.

Then TrF
−1
m (Φ

(i)
x δj) is an nd × 1 vector. Therefore, the forward model matrix A as

defined in (83)has the size sd× np.

As discussed in Section 2.3, we can also choose some L2-basis other than the

point-wise functions to represent f . More precisely, we denote the new basis by {ξi}.

We recall (14), and with a slight abuse of notation denote its truncation at the n-th

term as

f =
n∑
i=1

ciξi. (85)

Assuming f to have certain regularity, we can choose {ξi} to be an efficient basis such

as the harmonic functions or wavelets, so that n can be much smaller than np, while

the accuracy of the representation is the same as (81).

By (17), the discrete form of the inverse problem is

g = Mc, (86)

where c = [c1, . . . , cn]>, g is the same as in (82), and M is the forward model matrix

corresponding to the new basis. Similar to (83), we write

M = [Aξ1 . . . Aξn] =


TrF

−1
m (Φ

(1)
x ξ1) . . . TrF

−1
m (Φ

(1)
x ξn)

...
. . .

...

TrF
−1
m (Φ

(s)
x ξ1) . . . TrF

−1
m (Φ

(s)
x ξn)

 , (87)

where ξj is represented by a vector of its point values at the mesh nodes, and each

Φ
(i)
x ξj (i = 1, . . . , s; j = 1, . . . , n) is the point-wise product of the two np-vectors. Each

F−1
m (Φ

(i)
x ξj) in (87) is still obtained by solving the corresponding DA equations using

the same FEM solver as (84). Tr has the same definition as in (83). M as defined

above has the size snd × n.

Here we use the spectral method to represent the solution f to the inverse problem,

while using FEM to solve the PDE’s in the forward model. Although f is represented
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in the spectral domain, it is not involved in FEM, so there are no convolutions in the

computation. This hybrid approach takes the advantages of the efficient representa-

tion of the solution by spectral method, and the flexibility of handling complicated

domains by FEM.

The computation cost is also saved in this approach. We note that there are

totally sn PDE’s to be solved to form M, compared to snp for A. Therefore, by using

efficient basis instead of point-wise basis, we may achieve a speedup of np
n

by solving

proportionally fewer PDE’s when forming the forward model matrix. Moreover, the

dimension of the unknown in f decreases from the number of mesh nodes np to the

number of chosen basis functions n, so the computational complexity for solving the

inverse problem is reduced accordingly.

The linear transformation B as defined in (15) has the discrete form as

B = [ξ1, . . . , ξn], (88)

which is an np × n matrix. Then by (16), we can recover the point-wise representation

of f by

f = Bc, (89)

where c is the solution to (86). In the implementation, we use the formulation (86)

for the discrete form of the inverse problem (66) and the final solution f is expressed

by (89).

3.3.2 The choice of bases

Tensor product construction. As it is described in (14), the solution f is expanded

under a basis {ξi}∞i=1 in the underlying Hilbert space, which is usually taken to be

L2(Ω), where Ω is the domain. In the computation, it is truncated at the n-th term

as in (85).

There are several candidates for {ξi}, such as the sinusoidal functions, orthogonal

polynomials, and wavelets, to name a few. They are used extensively in spectral
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methods for solving PDEs [98]. Recently, they also arise in solving stochastic differ-

ential equations [105, 69], and modeling stochastic phenomena [12, 9]. In the classical

setup of spectral method for solving multi-dimensional PDE’s, the solution is based

on a tensor product construction in the spectral domain. More exactly, assuming

nx, ny, nz grid points are used in each dimension, the tensor product spectral domain

has n = nxnynz variables.

Fourier basis. Based on the tensor product construction, we can choose Fourier

basis of the form

{exp{2πi(pωxx+ qωyy + rωzz)}}, (90)

where p, q, r ∈ N, and ωx, ωy, ωz are constants which determine the period in each

dimension. For the purpose of representing real valued functions, the Fourier basis

can be equivalently formed as

{cos(2π(pωxx+ qωyy + rωzz)), sin(2π(pωxx+ qωyy + rωzz))}, (91)

where p, q, r ∈ N. For finite computation, the Fourier basis is truncated, with |p| ≤

nx, |q| ≤ ny, |r| ≤ nz. Also the duplicate functions need to be removed. e.g., only

one of sin(2π(pωxx+ qωyy+ rωzz)) and sin(2π(−pωxx− qωyy− rωzz))) is kept in the

basis. After removing those duplicates, we have the Fourier basis (91) with the index

set

{p, q, r : 0 ≤ p ≤ nx, |q| ≤ ny, |r| ≤ nz}. (92)

In the case of 2D, the truncated Fourier basis is in the form of

{exp{2πi(pωxx+ qωyy)} : 0 ≤ p ≤ nx, |q| ≤ ny}. (93)

Wavelet basis. Tensor product wavelet basis consists of tensor products of 1D

scaling and wavelet functions for reconstruction in each dimension. More exactly, we

construct tensor product wavelet basis on a 3D Cartesian grid. In each dimension, we

treat each point-wise basis function as a low frequency wavelet basis function at level 0
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(the finest level), and construct coarser level wavelet basis functions by the the wavelet

reconstruction [17]. In each dimension, the space spanned by the low frequency

wavelet basis functions at level l are denoted by Vx−l,V
y
−l,Vz−l respectively, and the

spaces spanned by the high frequency wavelet basis functions are Wx
−l,W

y
−l,Wz

−l.

Then the tensor product wavelet space at level l is

V−l = Vx−l ⊗ V
y
−l ⊗ V

z
−l. (94)

Similarly, the tensor product wavelet space at level l − 1 is written as

V−l+1 = Vx−l+1 ⊗ V
y
−l+1 ⊗ V

z
−l+1. (95)

By wavelet decomposition,

Vx−l+1 = Vx−l ⊕Wx
−l, Vy−l+1 = Vy−l ⊕W

y
−l, Vz−l+1 = Vz−l ⊕Wz

−l, (96)

so

V−l ⊂ V−l+1. (97)

In general, we have a multi-resolution analysis as

. . . ⊂ V−l ⊂ V−l+1 ⊂ . . . ⊂ V0, (98)

where V0 is the space spanned by the point-wise basis functions. This observation is

useful when we design a multi-level algorithm, which is discussed in Section 3.5. The

construction of the basis for V−l+1 follows the decomposition

V−l+1 = (Vx−l ⊕Wx
−l)⊗ (Vy−l ⊕W

y
−l)⊗ (Vz−l ⊕Wz

−l). (99)

That is, in x dimension, we choose the set of wavelet basis functions for reconstruction

at level l as the basis. Other two dimensions are similar. Then the tensor products

of the basis functions in all three dimensions form the basis for V−l+1.

A discussion on the number of basis functions. From FEM point of view,

each basis function ξi(i = 1, . . . , n) is represented by its nodal values in the triangu-

lation T h of the domain Ω, or more exactly, its linear interpolation in T h. Here h
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characterizes the fineness of the mesh, which is defined as the smallest number such

that [23]

max{diam(T ) : T ∈ T h} ≤ h diam(Ω). (100)

The interpolation operator is denoted by Ih. A natural questions arises as, how do

we determine the place of truncation n, based on the mesh size and the accuracy

requirements?

We consider DA equation (43) with source term q = f , which is written as

−∇ · (κ∇Φ) + µaΦ = f in Ω. (101)

The accompanying boundary condition is (44). Suppose we solve it using FEM with

piece-wise linear, conformal finite elements defined over triangulation T h. The nodal

variables are denoted by {x1, . . . , xnp}, and the FEM basis functions are piece-wise

linear tent functions denoted by {ψ1, . . . , ψnp}, where np is the number of nodes in

the triangulation. Let V h be the space spanned by the FEM basis functions of T h,

then V h is the solution space for FEM in this setting, and V h ⊂ H1(Ω). By Galerkin

method, the variational formulation of DA equation is written as∫
∂Ω

RΦψi ds+

∫
Ω

(κ∇Φ · ∇ψi + µaΦψi) dx =

∫
Ω

fψi dx, i = 1, . . . , np. (102)

We denote

B[u, v] =

∫
∂Ω

Ruv ds+

∫
Ω

(κ∇u · ∇v + µauv) dx, (103)

which is a bi-linear functional on H1(Ω)×H1(Ω). Then (102) is denoted by the weak

formulation

B[Φh, ψi] = 〈f, ψi〉, (104)

where 〈·, ·〉 is the inner product in L2(Ω), and Φh ∈ V h is the solution to this weak

formulation. Under mild assumptions on the parameters κ, µa, R, we can prove that

B[·, ·] satisfies the continuity and coercivity conditions as follows
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Theorem 3.3.1 Assume κ, µa > γ > 0 for some constant α, and Ω is a polyhedral

domain. Then for u, v ∈ H1(Ω),

|B[u, v]| ≤ C(R, κ, µa,Ω)‖u‖H1(Ω)‖v‖H1(Ω), (105)

where

C(R, κ, µa,Ω) = max(
√

2‖R‖L∞(∂Ω) + ‖µa‖L∞(Ω), ‖κ‖L∞(Ω)), (106)

and

|B[u, u]| ≥ α(κ, µa,Ω)‖u‖2
H1(Ω), (107)

where

α(κ, µa,Ω) = min
Ω

min(κ, µa). (108)

Remark The proof of this theorem is standard [49]. The assumption that Ω is

polyhedral is natural in FEM: we approximate Ω by a polyhedron in the triangula-

tion. Under this assumption, we obtain specific continuity constant C and coercivity

constant α for the bi-linear form B[·, ·].

Going back to the variational formulation (104), we note Φh is the solution to it

in V h, and Φ is the solution to the original equation (101). Then by Céa’s Theorem

[23], we have the error estimate of FEM solution for Φ as

‖Φ− Φh‖H1(Ω) ≤
C(R, κ, µa,Ω)

α(κ, µa,Ω)
min
v∈V h
‖v − Φ‖H1(Ω), (109)

where C, α are defined in (106)(108) respectively. We note that

argmin
v∈V h

‖v − Φ‖H1(Ω) = IhΦ, (110)

where IhΦ is the interpolation of Φ in V h.

Similar to (101), we consider (1) with q = fn, which is written as

−∇ · (κ∇Φ) + µaΦ = fn in Ω. (111)
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Its boundary condition is also (44). Its variational formulation is

B[Φh
n,Ψi] = 〈fn,Ψi〉, i = 1 . . . , np, (112)

where Φh
n is its solution in V h. By comparing (104) and (112), we have

B[Φh − Φh
n,Ψi] = 〈f − fn,Ψi〉. (113)

Then by coercivity of B and Cauchy-Schwarz inequality,

‖Φh − Φh
n‖H1(Ω) ≤

‖f − fn‖L2(Ω)

α(κ, µa,Ω)
, (114)

which gives an estimate of the error for Ψ caused by the truncation error of the source

term f . We require that

‖Φh − Φh
n‖H1(Ω) ≤ ‖Φ− Φh‖H1(Ω) (115)

which means the error for Φ caused by the truncation error of source term does not

exceed that caused by FEM. By (109), a necessary condition for this is

C(R, κ, µa,Ω)‖IhΦ− Φ‖H1(Ω) ≥ ‖f − fn‖L2(Ω). (116)

By the interpolation theory ([23], Theorem 4.4.20),

‖IhΦ− Φ‖H1(Ω) ≤ C1h
m−1‖Φ‖Hm(Ω), (117)

where constant C1 depends on T h and m, if Φ ∈ Hm(Ω). Here m characterizes

the regularity of the solution to DA equation (43). Under the condition that κ ∈

C1(Ω), R, µa ∈ L∞(Ω), we have Φ ∈ Hm(Ω) for m ≥ 2 by the theory of interior

regularity [49]. In particular for m = 2,

‖Φ‖H2(Ω) ≤ C2‖f‖L2(Ω), (118)

where C2 is a constant depending on Ω and the coefficients in the DA equation. Then

by (116)(117)(118) we have

‖f − fn‖L2(Ω)

‖f‖L2(Ω)

≤ CC1C2h, (119)
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which gives a requirement for the truncation error.

Let Vn be the solution space spanned by {ξi}ni=1. Based on the tensor product

construction of {ξi} in the spectral domain, a typical estimate of the approximation

error of f in Vn is [93]

min
fn∈Vn

‖f − fn‖L2(Ω) ≤ C4n
−r/d‖f‖Hr(Ω), (120)

where d is the dimension of the domain, C4 is independent of f and n. Here we

assume f ∈ Hr(Ω), r > 1. A sufficient condition for (119) is that

n ≥
(
‖f‖Hr(Ω)

‖f‖L2(Ω)

C4

CC1C2h

)d/r
. (121)

In general,
‖f‖Hr(Ω)

‖f‖L2(Ω)
is not bounded. However, as f characterizes the physical quantity

(the distribution of fluorophores) which changes smoothly in the domain, we can

often assume that
‖f‖Hr(Ω)

‖f‖L2(Ω)
is actually bounded for r = 2 in applications. Under this

assumption, we have

n = O(h−d/2). (122)

Then for each dimension in the spectral domain, the number of variables is of the

order O(h−1/2).

3.3.3 Computation of the orthogonal solution

After previous necessary steps, we have set up the inverse problem (86). The or-

thogonal solution to (86) is given by (22) after discretization. As mentioned earlier,

regularization is needed to compute the orthogonal solution. Various regularization

methods are proposed to compute the minimal norm solution [46], which is the or-

thogonal solution in our problem. We present first the Landweber iteration that is

used in inverse scattering problems [13]. Then we describe a more robust approach

that we use to solve this problem.
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Landweber iteration is a popular choice for linear as well as nonlinear inverse

problems, which has the form

c(k) = c(k−1) + ωM∗(g −Mc(k−1)), (123)

where 0 < ω < (‖M∗‖2‖M‖2)−1 is a relaxation parameter which ensures that (123)

defines a contraction mapping. By the Banach fixed-point theorem, if g ∈ R(M),

then (123) produces a sequence {c(k)} converging to a fixed-point, which turns out to

be the orthogonal solution to (86).

Landweber iteration is not an effective method, which often exhibits slow conver-

gence. When it is applied to the problem (86) in the FT applications, the convergence

is slow due to the ill-conditioning of M.

Iterated Tikhonov regularization is another well-known approach [82] to com-

pute the orthogonal solution. It iteratively regularizes the current solution by apply-

ing Tikhonov regularization to the residual equation. The iteration scheme is as

follows:

c(0) = 0, r(0) = g, (124)

and for k = 1, 2, . . .

c(k) = c(k−1) + M∗(MM∗ + h2I)−1r(k−1), r(k) = g −Mc(k), (125)

where h is the regularization parameter, and I is the identity matrix. There are

two layers of iterations in (125). The outer iterations update c(k) directly, where

the number of iterations is usually small in practice. The first outer iteration is

equivalent to the standard Tikhonov regularization, and a few more iterations can

improve the accuracy of the solution. In each outer iteration, (MM∗ + h2I)−1 is

actually implemented by iterative methods such as GMRES or CG [60] that form

the inner iterations, which converge linearly. Iterative Tikhonov regularization is

considered as a preconditioned Landweber iteration, and in practice it needs less
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number of iterations than Landweber iteration to reduce the error of approximation

to the same amount [82]. It has the benefit of being robust against noise, which

is inherited from Tikhonov regularization. We adopt it to compute the orthogonal

solution defined in (10).

Remark The orthogonal solution serves as a particular solution to the inverse prob-

lem, which can be computed by a stabilized algorithm such as Lanweber iteration

and Iterative Tihkonov regularization described above. Other particular solutions

can also be used in place of the orthogonal solution. A very important requirement

of the particular solution is that it must depend continuously on the data, so that it

is robust against noise.

3.3.4 Computation of the kernel space

Let K be a matrix with columns an orthonormal basis for N (M). Suppose the size

of K is n ×m, where n is equal to the number of columns of M. n is always larger

than m. We use K to represent the computed kernel space. However, it is unstable

to compute K by solving N (M) directly. We note that each row of M represents

the measurements generated by all basis functions at the location of one detector.

Nearby detectors have almost the same measurements, so their corresponding rows

of M are nearly identical, which makes M not (numerically) full rank in rows. The

numerical rank is defined to be the number of singular values that are larger than

machine epsilon, or more generally a prescribed small threshold. If large number of

detectors are in use, the numerical rank of M is much smaller than the number of

rows in M. It is very unstable to compute N (M) directly if M is numerically rank

deficient.

In order to handle the numerical stability issue, we find a low rank approximation

of M, denoted by M̃, which has the same size (snd × n) as M. Then we take N (M̃)

as the approximation to N (M).
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To compute the low rank approximation of M, we adopt a fast algorithm based on

singular value thresholding [25]. It is formulated as the convex optimization problem

M̃ = argmin
X∈Rsd×n

τ‖X‖∗ +
1

2
‖M−X‖2

F , (126)

where ‖ · ‖∗ denotes the nuclear norm, which is the sum of singular values. ‖ · ‖F is

the Frobenius norm. It is a convex relaxation of the combinatorial problem

M̃ = argmin
X∈Rsd×n

rank(X) +
ρ

2
‖M−X‖2

F , (127)

which is intractable. In contrast, the problem (126) can be solved very efficiently.

Suppose

M = UΣV> (128)

is the singular value decomposition (SVD) of M, where Σ = diag({σi}), and {σi} are

the singular values of M. Define the soft-thresholding of singular values by

Dτ (Σ) = diag({(σi − τ)+}), (129)

where

(σi − τ)+ = max(σi − τ, 0). (130)

Then the problem (126) has the explicit solution

M̃ = UDτ (Σ)V> = ŨΣ̃Ṽ>, (131)

where Ṽ is the sub-matrix of V whose columns correspond to the nonzero singular

values of Dτ (Σ). Let K be the n ×m matrix whose columns are complement to Ṽ

in V, so M̃K = 0. Let col(K) be the column space of K, which has dimension m.

col(K) is considered to be a good approximation to N (M) if ‖MK‖F is sufficiently

small. The following theorem gives an estimate of ‖MK‖F .

Theorem 3.3.2 Suppose M has r nonzero singular values, then K satisfies

‖MK‖F
‖M‖F

≤
√∑r

i=1 min(σi, τ)2√∑r
i=1 σ

2
i

. (132)
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Proof

‖MK‖2
F ≤ ‖(M− M̃)K‖2

F + ‖M̃K‖2
F

= ‖(M− M̃)K‖2
F (M̃K = 0)

≤ ‖(M− M̃)‖2
F (K has orthonormal columns)

≤
r∑
i=1

min(σi, τ)2 (by definition of M̃ in ((131)).

Note that

‖M‖2
F =

r∑
i=1

σ2
i , (133)

the inequality in this theorem follows.

Remark In practice, we select τ to be

τ = ε

√√√√1

r

r∑
i=1

σ2
i = ε

√
1

r
‖M‖2

F , (134)

where ε is a small number. By Theorem 3.3.2, K satisfies

‖MK‖F
‖M‖F

≤ ε. (135)

Then col(K) is a good approximation to N (M).

3.3.5 Kernel correction

We note that the algorithm for kernel correction depends on the specific regulariza-

tion requirement. For some popular regularization techniques like L2, L1 and TV

minimization, people have developed fast algorithms, which can be used in OSKCA.

Here we present two examples to illustrate this idea.

The positivity constraint for the kernel correction. One important reg-

ularity requirement of the solution is the positivity constraint. By (21), after dis-

cretization, the point-wise representation of f is

f = B(c∗ + Kλ). (136)
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Then the positivity constraint, which is a very important physical requirement for

the solution [24], can be written as discrete form

B(c∗ + Kλ) ≥ 0, (137)

where B ∈ Rnp×n is computed in (88), c∗ ∈ Rn is computed by (125), K ∈ Rn×m is

given by the algorithm described in Section 3.3.4. λ ∈ Rm is the unknown.

The feasible points of (137) may not be easy to find. The Algebraic Reconstruction

Technique (ART) [68, 21] is a common algorithm to find one feasible point from any

given initial point, by successively projecting the point onto the half-spaces defined

by each line of inequality in (137). In the following, we apply ART to (137).

Denote H = −BK and b = Bc∗. For Hλ ≤ b, in j-th iteration λ is updated via

λj+1 =

 λj if bi ≥ (hi,λj)

λj + αj
bi−(hi,λj)

‖hi‖2 hi if bi < (hi,λj)
(138)

where (·, ·) denotes the inner product. hi is the i’th row of H, bi is the i’th entry of

b, and αj ∈ (0, 1) is preselected. In practice, the initial value for λ is the zero vector.

The iterations are terminated when the change of λ is smaller than a prescribed value.

Due to the noise in the measurements, (137) may be infeasible. In that case, the

cyclic convergence of ART will happen [27].

The TV minimization for the kernel correction. TV minimization has been

demonstrated to have edge-preserving property in image recovery [87]. This approach

can be incorporated in our framework, which is addressed in (13). After discretization

and change of basis (27), it can be proposed as the optimization problem

argmin
λ
‖B(c∗ + Kλ)‖TV subject to B(c∗ + Kλ) ≥ 0, (139)

where the computation of c∗ and K are described before. Inspired by the operator

splitting technique [102], we introduce two auxiliary variables f and w. f is defined

in (136) and w is given by w = Df (D is the finite difference operator used to ap-

proximate the gradient). By introducing these two auxiliary variables, an equivalent
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formulation of (139) is

argmin
λ,f≥0,w

‖w‖1 subject to

 f = B(c∗ + Kλ)

w = Df
(140)

Let wi be the value of w at i-th node, then ‖w‖1 =
∑

i ‖wi‖.

The Augmented Lagrangian method uses the unconstrained objective for (140),

which is written as [104]

argmin
λ,f≥0,w,µ1,µ2

α‖w‖1 + (µ1,Df −w) +
ρ1

2
‖Df −w‖2+

(µ2, f −B(c∗ + Kλ)) +
ρ2

2
‖f −B(c∗ + Kλ)‖2. (141)

Here α, ρ1, ρ2 are the regularization parameters that are selected by the user, and

µ1,µ2 are the Lagrange multipliers that are unknown. The unknowns are solved

iteratively [48], which is described in Algorithm 3.3.1. If the iteration is terminated

in l steps by some criteria such as ‖f
(l)−f (l−1)‖
‖f (l−1)‖ ≤ ε0, where ε0 can be a small number,

then f = f (l) is the final solution.

Algorithm 3.3.1 OSKCA with TV minimization for kernel correction (OSCKA-TV)

Input: B,K, c∗, α, ρ1, ρ2, ε0
Output: f
Initialization: f (0) = 0,λ(0) = 0,µ

(0)
1 = 0,µ

(0)
2 = 0

while ‖f
(k)−f (k−1)‖
‖f (k−1)‖ ≤ ε0 do

1. w(k+1) = argmin
w

α‖w‖1 + ρ1

2
‖Df (k) −w +

µ
(k)
1

ρ1
‖2.

2. f (k+1) = argmin
f≥0

ρ1

2
‖Df −w(k+1) +

µ
(k)
1

ρ1
‖2 + ρ2

2
‖f −B(c∗ + Kλ) +

µ
(k)
2

ρ2
‖2.

3. λ(k+1) = argmin
λ
‖f (k+1) −B(c∗ + Kλ) +

µ
(k)
2

ρ2
‖2.

4. µ
(k+1)
1 = µ

(k)
1 + ρ1(Df (k+1) −w(k+1)).

5. µ
(k+1)
2 = µ

(k)
2 + ρ2(f (k+1) −B(c∗ + Kλ(k+1))).

end while

We note that in each iteration of Algorithm 3.3.1, Step 1 is solved by soft-

thresholding [58]. Step 2 is a constraint quadratic program, which can be solved
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by Projected Barzilai-Borwein (PBB) method [38, 32]. It is an iterative method

based on gradient projection. The computation cost for the gradient is dominated by

the matrix-vector multiplication with the np × np matrix

ρ1

ρ2

D>D + I. (142)

It can be computed in O(np) time, since D>D is a discrete Laplacian matrix with only

O(np) nonzero entries. PBB is shown to have R-linear convergence [37]. Therefore

the overall cost for Step 2 is O(np). Step 3 is a Least-Squares (LS) problems, where

the variable λ is an m-vector. m < n � np, so the computation cost is small.

Moreover, if an orthonormal basis is chosen to represent the solution, then by (88), B

is orthogonal. We also note that K has orthonormal columns, so BK is an orthogonal

matrix as well. Then this step has the explicit solution

λ(k+1) = (BK)>(f (k+1) −Bc∗ +
µ

(k)
2

ρ2

), (143)

which is very cheap to solve. Step 4 and 5 are simple matrix-vector computations,

and the computation cost is small.

Comparison with direct application of Augmented Lagrangian method.

As a comparison, we also apply Augmented Lagrangian method directly to the prob-

lem

f̂ = argmin
f≥0

‖f‖TV such that Af = g, (144)

which is a special case of (9). After discretization and change of basis, it is proposed

as the optimization problem

argmin
c
‖Bc‖TV subject to Bc ≥ 0 and Mc = g, (145)

where the final solution is given by f = Bc. By introducing another auxiliary variable

w = Df , (145) has the un-constraint formulation as

argmin
w,f≥0,c,µ1,µ2,µ3

γ‖w‖1 + (µ1,Df −w) +
β1

2
‖Df −w‖2 + (µ2,Bc− f) +

β2

2
‖Bc− f‖2

+ (µ3,Mc− g) +
β3

2
‖Mc− g‖2, (146)
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which can be solved in the same way as Algorithm 3.3.1. w, f are updated by the

same formulas as in 3.3.1. The major difference is that in (146), c ∈ Rn instead of

λ ∈ Rm is updated in each iteration, which has the formulation

c(k+1) = argmin
c

β2

2
‖Bc− f (k+1) +

µ
(k)
2

β2

‖2 +
β3

2
‖Mc− g +

µ
(k)
3

β3

‖2. (147)

It is another LS problem similar to Step 3 in Algorithm 3.3.1, but the unknown is

larger in size. The system matrix in the normal equation for (147) is

β2

β3

B>B + M>M. (148)

It is an n× n dense matrix, and cannot be inverted by fast transforms to our knowl-

edge. Compared to formula (143) in Algorithm 3.3.1, solving this LS problem is

more computationally involved. In fact, formula (143) has only one matrix vector

multiplication with time complexity O(mnp). For (147), a matrix vector multiplica-

tion is needed to form the normal equation. In addition, another cost of O(n2) is

needed for solving the normal equation if iterative method is used, so the total cost is

O(nnp + n2). Here we note the comparison m < n� np. Besides having more com-

putation cost for each iteration, the direct Augmented Lagrangian method converges

slower, which is demonstrated in one of the numerical studies in Section 3.6.

3.4 Some practical issues

3.4.1 The handling of large amount of boundary measurements

In the discrete form of the inverse problem for FT (86), the system matrix M has

the size snd × n, where n is the number of basis function to represent the solution f ,

s is the number of light sources in use, and nd is the number of collected boundary

measurements. Because the original inverse problem is severely under-determined, M

would represent an under-determined linear system. However, in practice, it may turn

out to be that snd > n, when multiple light sources and large number of data points

are used, so that the total number of measurements exceeds that of the unknowns.
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In this case, the system matrix M and measurement data g must be pre-processed

before putting into the inverse solver.

One simple strategy is to discard some small measurement data below the chosen

threshold, and also eliminate the corresponding entries in the columns of the system

matrix. This method is valid, as we can prove below, the intensity of the fluorophore

radiation follows exponential decay pattern, and the largest and smallest boundary

values can differ several orders of magnitude. Because the maximum range of the mea-

surements can be no more than 4 orders of magnitude, so some small measurements

are more likely to be contaminated by the measurement noise. However, blind thresh-

olding can cause lost of information. As we will see later, small measurements near

the light source implies important information on the distribution of the fluorophore.

In order to analyze the thresholding procedure in a more quantitative way, we

consider a semi-infinite domain, which can model the slab shaped phantom that

is often used in transillumination FT applications [15]. More exactly, we assume

Ω = {(x1, x2, x3) ∈ R3 : 0 ≤ x3 ≤ l}, where l is the thickness of the slab. Let Φ(i) be

the incidence field induced by the i-th light source, which is the solution to the DA

equation (47). The source term q = qi is modeled as a point source

qi(x) = δ(x− ξi), (149)

where ξi is located at a depth of one transport scattering distance (1/µs
′) [6] below

the surface πl = {(x1, x2, x3) ∈ R3 : x3 = l}. Let G(x, y) be the Green’s function [63]

for the region Ω, then

Φ(i)
x (x) = G(x, ξi). (150)

Theorem 3.4.1 For semi-infinite domain Ω with slab geometry,

G(x, ξi) ≤ Φ(x− ξi) + Φ(x− ξ̃i) (151)

where ξ̃i is the reflection of ξi in the plane π0 = {(x1, x2, x3) ∈ R3 : x3 = 0}, and

Φ(r) =
1

4πκ

e−µe‖r‖

‖r‖
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is the Green’s function in infinite medium, µe =
√

µa
κ

=
√

3µa(µa + µ′s) is called the

effective attenuation coefficient.

Proof To prove this, let φi(x) = Φ(x− ξi). By standard computation, on ∂Ω,

κ
∂Φ(x− ξi)

∂~n
+RΦ(x− ξi) =

e−µe‖x−ξi‖

4π‖x− ξi‖

(R
κ
−
(
µe+

1

‖x− ξi‖

)( x− ξi
‖x− xi‖

·~n
))
. (152)

By the facts that R > 1 [7],‖x− ξi‖ ≥ µ′s for x ∈ ∂Ω, and x−ξi
‖x−xi‖ · ~n ≤ 1, we have

κ
∂Φ(x− ξi)

∂~n
+RΦ(x− ξi) ≥ 0 on ∂Ω, (153)

That is,

κ
∂φi
∂~n

+Rφi ≥ 0 on ∂Ω. (154)

Therefore we have  −∇ · κ∇φi + µaφi = qi in Ω

κ∂φi
∂~n

+Rφi ≥ 0 on ∂Ω.
(155)

Denote φ̃i(x) = φi(x)− Φ(i)(x). φ̃i solves −∇ · κ∇φ̃i + µaφ̃i = 0 in Ω

κ∂φ̃i
∂~n

+Rφ̃i ≥ 0 on ∂Ω
(156)

So φ̃i ≥ 0 in Ω. Therefore we have

0 < Φ(i)
x (x) ≤ φi(x) = Φ(x− ξi). (157)

Furthermore, let

ΩD = {y ∈ Ω : dist(y, ∂Ω) ≥ µ′s} (158)

be the region where DA equation is valid, then by (150),

G(x, y) ≤ Φ(x− y), (159)

for x ∈ Ω, y ∈ ΩD.
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We assume that f has its support on a bounded region BD, and

supp(f) ⊂ BD ⊂ ΩD. (160)

In the FT applications, BD is the space that the examined tissue occupies.

The fluorophore emission in the i-th excitation is Φ
(i)
m , which is the solution to DA

equation (46) with source term Φ
(i)
x f . By (157), for x ∈ ΩD,

Φ
(i)
m (x) =

∫
Ω

G(x, y)Φ
(i)
x (y)f(y) dy

<
∫
Ω

Φ(x− y)Φ(y − ξi)f(y) dy

= 1
(4πκ)2

∣∣∣∣∣ ∫BD 1
‖x−y‖ exp (−µe‖x− y‖) 1

‖y−ξi‖ exp (−µe‖y − ξi‖) f(y) dy

∣∣∣∣∣
≤ 1

(4πκ)2 exp (−µe‖x− ξi‖)

∣∣∣∣∣ ∫BD 1
‖x−y‖‖y−ξi‖f(y) dy

∣∣∣∣∣
≤ 1

(4πκ)2 exp (−µe‖x− ξi‖)

( ∫
BD

1
‖x−y‖2 |f(y)| dy ·

∫
BD

1
‖ξi−y‖2 |f(y)| dy

)1/2

≤ C7
1

(4πκ)2 exp (−µe‖x− ξi‖) ‖f‖∞,
(161)

where

C7 = sup
z∈Rd

∫
BD

1

‖z − y‖2
dy (162)

is a constant depending only on BD. (161) tells us that the fluorophore emission

roughly decays exponentially as the distance to the light source ‖x − ξi‖ increases.

We denote the intensity profile function for the point light source located at ξi by

pi(x) = exp
(
− µe‖x− ξi‖

)
, (163)

which holds for x ∈ ΩD. For x on the measurement plane, pi(x) attains its maximum

value

pi(ξ
′
i) = exp

(
− µe‖ξ′i − ξi‖

)
(164)

at ξ′, which is the projection of ξi onto the measurement plane. For any x on the
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measurement plane,

pi(x)

pi(ξ′i)
= exp

(
− µe(‖x− ξi‖ − ‖ξ′i − ξi‖)

)
, (165)

which characterizes the exponential decay property of the boundary measurement.

Our criteria of discarding small measurements is based on the intensity profile function

pi(x). We only keep the measurement at x if it belongs to

{x :
pi(x)

pi(ξ′i)
≥ τ} (166)

for the selected threshold τ , which in practice can be between 0.001 and 0.01. (166)

is equivalent to

Bi =

{
x : ‖x− ξi‖ ≤ ‖ξ′i − ξi‖+

1

µe
log

1

τ

}
. (167)

The measurements outside of the ball Bi are discarded.

We note that our thresholding strategy is not based on the value of the specific

measurements, but depending on the locations of them. Thresholding based purely

on the value can loss useful spacial information of the distribution f , which is demon-

strated below.

A slightly different estimate of Φ
(i)
m (x) is as follows:

Φ
(i)
m (x) = 1

(4πκ)2

∫
BD

1
‖x−y‖ exp (−µe‖x− y‖) 1

‖y−ξi‖ exp (−µe‖y − ξi‖) f(y) dy

≤ exp(−µe2 ‖x−ξi‖)
(4πκ)2

∫
BD

1
‖x−y‖‖y−ξi‖ exp

(
−µe

2
‖x− y‖ − µe

2
‖y − ξi‖

)
f(y) dy

≤ exp(−µe2 ‖x−ξi‖)
(4πκ)2

( ∫
BD

exp(−µe‖x−y‖)
‖x−y‖2 |f(y)| dy ·

∫
BD

exp(−µe‖ξi−y‖)
‖ξi−y‖2 |f(y)| dy

)1/2

.

(168)

By (65), the boundary measurement in the i-th light source is

g(i) = TΦ(i)
m . (169)
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Therefore, for x ∈ ∂Ω

g(i)(x)

≤ 1
(4πD)2 exp

(
−µe‖x−ξi‖

2

)( ∫
ΩD

exp(−µe‖x−y‖)
‖x−y‖2 |f(y)| dy ·

∫
ΩD

exp(−µe‖ξi−y‖)
‖ξi−y‖2 |f(y)| dy

)1/2

.

(170)

In the above inequality, ξi is fixed, so

∫
ΩD

exp(−µe‖ξi−y‖)
‖ξi−y‖2 |f(y)| dy

≤ ‖f‖L∞(Ω) exp
(
− µedist

(
ξi, supp(f)

)) ∫
BD

1
‖ξi−y‖2 dy

≤ C7‖f‖L∞(Ω) exp
(
− µedist

(
ξi, supp(f)

))
.

(171)

Similarly, ∫
ΩD

exp(−µe‖x−y‖)
‖x−y‖2 |f(y)| dy

≤ C7‖f‖L∞(Ω) exp
(
− µedist

(
x, supp(f)

))
.

(172)

Summarizing above inequalities, we have an estimate for g(i) in the following

theorem.

Theorem 3.4.2 Suppose the fluorophore distribution is bounded and supported on

supp(f), then the boundary measurement of the i-th fluorophore radiation satisfies

g(i)(x) ≤ C7‖f‖L∞(Ω) exp

(
− µe

2

(
‖x− ξi‖+ dist

(
x, supp(f)

)
+ dist

(
ξi, supp(f)

)))
(173)

for some constant C7 depending only on BD.

Remark In the FT applications, the fluorophore inclusions usually concentrate in

small regions compared to the whole domain. It is justified to assume that the

distribution of fluorophore f is compactly supported on a set of small volume.

From (173) we can see that, when dist
(
x, supp(f)

)
+ dist

(
ξi, supp(f)

)
is large

enough, even if ‖x − ξi‖ is small, the measurement g(i)(x) can still be smaller than
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any given threshold. In this case, important spacial information on f is lost if the

data g(i)(x) is discarded.

Based on the criteria (167), we do the ”truncation” on g, that is, data points that

are outside of Bi is cut off from g(i), and denote the remaining data by g
(i)
t . The

truncated data gt is the concatenation of g
(i)
t for i = 1, . . . , s. Correspondingly, M is

truncated to Mt. The resulting formulation for the inverse problem is

Mtc = gt. (174)

We may further compress the boundary data and the system matrix in the wavelet

domain. This is because the measurements are boundary values of the the solutions

to diffusion equations, which are very smooth, without sharp transitions. Therefore,

compression in the wavelet domain is very efficient, while preserving most spacial

and intensity information of the signal. However, our compression method is slightly

different from conventional one. We keep all approximation coefficients, which corre-

sponds to the low frequency components of the boundary measurements. The reason

of keeping small approximation coefficients is the same as keeping small measure-

ments, which is explained previously. We do the compression only on details coef-

ficients that are high frequency components of the measurements. Compression on

the approximation coefficient by thresholding is equivalent to throwing away small

measurements in gt, which is shown to lose useful information.

We assume that the boundary measurements are taken from part of a plane,

which is called the measurement plane. We take a 2D wavelet decomposition of

the measurements gt in 2D up to a certain level, then do a hard thresholding on

the detail coefficients, while preserving all the approximation coefficients. After the

thresholding, the index set of the remaining wavelet coefficients is denoted by I, and

the associated sampling operator in the wavelet domain is denoted by SI . Then the
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boundary measurement in the wavelet domain after compression is denoted by

g′ =


SIWg

(1)
t

...

SIWg
(s)
t

 , (175)

where W is the wavelet filter for decomposition. Correspondingly, we perform the

wavelet decomposition on each column of M0, and apply the sampling operator SI

to get a new system matrix M′, and a new inverse problem

g′ = M′c. (176)

Then (176) is solved by OSKCA as described previously.

Remark We note (167) and consider the set

B =
s
∪
i=1

Bi. (177)

We claim that our reconstruction of f must be restricted to this set, which is called

the region of interest. Outside of this region, the intensities of both the excitation

radiation and fluorophore emissions are very weak under all light sources in use.

Therefore, fluorophore emission that takes place outside of the region of interest can

hardly be detected on the boundary. This is the physical limitation of FT, which

cannot be overcome in our mathematical framework.

3.4.2 The correction on the optical parameters

In our modeling, we assume that in the DA equation (43) with boundary condition

(44), all parameters are known. R depends on the reflective index on the interface of

tissue and air, which can be measured quite accurately. But diffusion and scattering

coefficients are not easily obtained, because they are non-uniform in the medium.

In practice, we assume these parameters are homogeneous inside specific regions of

the tissue, such as lungs, heart, and bones. They are measured separately, and used
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for similar scenarios without making changes. However, in the regions where the

fluorophores are concentrated, the absorption coefficient is larger than normal. If

the difference becomes significant, the modeling errors caused by it could lead to

unreliable results. In the following we describe a strategy that can be used to correct

perturbations in the absorption coefficient.

Recall that in the excitation model, the light source q is given, so that with

the prescribed parameters we can compute the excitation light field. Also, the true

excitation light field can be measured on the surface, which is compared against the

synthetic data. Let the prescribed absorption coefficient be µa, and the DA equation

is written as  −∇ · (κ∇ũ) + µaũ = q in Ω,

κ∂ũ
∂n

+Rũ = 0 on ∂Ω.
(178)

Let the true value be µa + δµa, where δµa models the small perturbation. Then we

have the DA equation with true parameters −∇ · (κ∇u) + (µa + δµa)u = q in Ω,

κ∂u
∂n

+Ru = 0 on ∂Ω.
(179)

The solution ũ to (178) is denoted by

ũ = S(µa, q), (180)

and for fixed q, S(µa, q) is denoted in short as Sq(µa). Let δu = u − ũ, then δu =

O(δµa). By taking the difference of (179) and (178) we have −∇ · (κ∇δu) + µaδu = −δµau in Ω,

κ∂δu
∂n

+Rδu = 0 on ∂Ω.
(181)

Recall that T denotes the trace operator, we define the map Ψ by

Ψ(µa, q) = T ũ. (182)
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Ψ is linear in q, and nonlinear in µa. For fixed q, we denote Ψ(µa, q) = Ψq(µa), and

write (182) as

Ψq(µa) = T ũ = TSq(µa). (183)

Similarly by (179) we have

Ψq(µa + δµa) = Tu = TSq(µa + δµa). (184)

In (184), Tu is the boundary measurement, µa is prescribed, and δµa, which is

the correction to µa, is the unknown. In order to linearize (184), we need Fréchet

derivative of Ψq, denoted by DΨq, and its adjoint DΨ∗q. Following [4, 11] and noting

(181), we have the following lemma.

Lemma 3.4.3 Let δµa ∈ L2(Ω), then

‖Sq(µa + δµa)− Sq(µa)− S(µa, ũδµa)‖H1(Ω) ≤ C5‖δµa‖2
L2(Ω)‖q‖L2(Ω), (185)

where ũ = Sq(µa), C5 is a constant depending on Ω, κ, R, µa.

By Lemma 3.4.3 and the definition of Fréchet derivative, DΨq(µa) : L2(Ω) →

L2(∂Ω) is defined by

DΨq(µa)δµa = TS(µa, ũδµa). (186)

Here we use the fact that T is bounded and linear, which is guaranteed by the trace

theorem [1]:

Lemma 3.4.4 Assume Ω is a C0,1 (Lipschitz) domain, then the trace operator

T : H1(Ω)→ H1/2(∂Ω) (187)

satisfies

‖Tu‖L2(∂Ω) ≤ C0‖u‖L2(Ω) (188)

for each u ∈ H1(Ω), where C0 depends only on Ω.
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Note that S(·, ·) is linear in the second variable, so S(µa, ũδµa) = S(µa, ũ)δµa. For-

mally we write

DΨq(µa) = TS(µa, ũ). (189)

We need another lemma for the definition of DΨ∗:

Lemma 3.4.5 For any y ∈ H1/2(Ω), let v ∈ H1(Ω) be the solution to −∇ · (κ∇v) + µav = 0 in Ω,

κ ∂v
∂n

+Rv = y on ∂Ω.
(190)

Then for any δµa ∈ L2(Ω),

〈DΨq(µa)δµa, y〉L2(∂Ω) = 〈δµa, ũv〉L2(Ω). (191)

Moreover,

‖ũv‖H1(Ω) ≤ C6‖q‖L2(Ω)‖y‖L2(∂Ω), (192)

where C6 is a constant depending on Ω, κ, µa, R.

By the above lemma, DΨ∗q(µa) : L2(∂Ω)→ L2(Ω) is a bounded linear operator defined

as

DΨ∗q(µa)y = ũv, (193)

for any y ∈ H1/2(∂Ω), and

‖DΨ∗q(µa)‖ ≤ C6‖q‖L2(Ω). (194)

Since H1/2(Ω) is dense in L2(∂Ω), the definition of DΨ∗q can be continuously extended

to the domain L2(∂Ω), while preserving the boundedness as in (194) [88].

With the knowledge of DΨq and its adjoint DΨ∗q, we use Landweber iteration or

Iterative Tikhonov regularization to solve (184) iteratively. For example, the k-th

step Landweber iteration can be described as δµ
(k)
a = βkDΨ∗q(µ

(k)
a )(Tu−Ψq(µ

(k)
a )),

µ
(k+1)
a = µ

(k)
a + δµ

(k)
a .

(195)
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Here βk is the step size for k-th iteration, which can be a constant for each iteration.

In the computation, Ψq involves solving (179) once, and DΨ∗q needs solving (190) once.

So in each iteration, the computation cost is equivalent to solving DA equations twice.

We note that this approach of tuning the parameter works only if the full boundary

measurement can be obtained. However, it is not practical in FT applications, where

only partial boundary is visible to the detectors. It is a challenging problem to our

knowledge so far [72].

3.5 A multi-level framework based on adaptive wavelet ba-
sis

The above algorithm (OSKCA) is applicable to any choice of basis (or frames) for the

solution. Using tensor product wavelets for the basis allows a multi-level strategy,

which is a useful way to reduce the computation cost. The framework is inherited

from the multi-resolution analysis [94] in the wavelet theory. Based on the multi-

resolution analysis as defined in (98), we propose a multi-level framework for the

computation of the orthogonal solution and the kernel correction.

Unlike the usual “bottom-up” approach that is used in wavelet compression [30],

our approach is mainly “top-down”. In wavelet compression, the original signal is

transformed to the wavelet domain, decomposed from fine level to coarse level, and

then compressed by thresholding. In our approach, we reconstruct the solution from

coarse level to fine level. First, a smaller size problem is solved in coarse level wavelet

domain, then the solution is refined in fine level wavelet domain.

The idea can be illustrated by a two-level example. For simplicity of the notations,

we describe the 2D version of it, while 3D version follows the same way. The coarse

level and the fine level problems correspond to the wavelet decomposition at level 2

and level 1 respectively. The coarse level equation for the inverse problem (86) is

denoted by

M2c2 = g, (196)

53



and the fine level equation is denoted by

M1c1 = g. (197)

We describe the construction of both equations in the following.

We first describe the construction of the coarse level equation. The key step is to

select the wavelet basis functions. Not all wavelet basis functions are selected. Be-

cause the solution is restricted to the region of interest B as defined in (177), we select

level-2 wavelet basis functions that have support overlapping with B. In practice, we

choose the smallest rectangular cuboid Q that covers B, which is depicted in Figure

2(a)), and perform two levels of wavelet decomposition of an all-one function sup-

ported on Q. The resulting nonzero low frequency coefficients at level 2 are denoted

by cA2 , and the coefficients having the same relative locations in the high frequency

sub-bands are cV2 , c
H
2 , c

D
2 (see Figure 2(b)). The concatenation of the selected low and

high frequency coefficients form c2 = [cA2 cV2 cH2 cD2 ], which is the variable to solve in

coarse level equation (196).

All level-2 wavelet basis functions corresponding to the wavelet coefficients c2

form the basis {ξ1, . . . , ξn}, which are used to form the system matrix M2, which is

computed column-wise by the formula

M2 = [Aξ1 . . . Aξn], (198)

where A is the linear operator defined in (67).

The fine level equation is constructed adaptively based on the orthogonal solution

to the coarse level equation (196), which is described in the two-level algorithm for

the orthogonal solution next.

Two-level approach for the orthogonal solution. Let c∗2 be the orthogonal

solution to (196), which is computed by the method in Section 3.3.3.

The construction of the system matrix M1 for the fine level equation (197) is by

adaptively selecting basis functions based on c∗2. First, we apply one level of wavelet
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(a) (b)

(c) (d)

Figure 2: (a) Q is the smallest rectangular cuboid that covers the region of interest
B. (b) The shaded area denotes the level-2 wavelet coefficients selected for coarse
level equation. (c) ĉ1 is the result of one level of wavelet reconstruction of c2. After
thresholding, the nonzeros are c̃1. Q1 is the smallest rectangular cuboid covering
c̃1. (d) The shaded area depicts the level-1 wavelet coefficients chosen for fine level
equation. wA

2 is the low frequency sub-band at level 2, and wV
2 , wH

2 , wD
2 are the

high frequency sub-bands at level 2. wA
1 , wV

1 , wH
1 , wD

1 have similar meanings.
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reconstruction WS to c∗2 and obtain level-1 wavelet coefficients

ĉ∗1 = WSc∗2. (199)

We note that only low frequency coefficients in ĉ∗1 are nonzero. Then we do a hard

thresholding on ĉ∗1, by keeping only the coefficients that are larger than ε‖ĉ∗1‖∞, where

ε can be between 0.001 and 0.01 in practice. The remaining coefficients are denoted

by:

c̃∗1 = Tεĉ
∗
1, (200)

where Tε is the thresholding operator. The purpose of the thresholding is to reduce the

number of unknowns in the wavelet domain, and shrink the support of the solution.

We choose the smallest rectangular cuboid Q1 that covers c̃∗1 in the level-1 wavelet

domain, which is depicted in Figure 2(c). We select coefficients cA1 having the same

support as Q1 in the low frequency sub-band, and coefficients cV1 , cH1 , cD1 having

the same relative locations as cA1 in the high frequency sub-bands. Then the variable

c1, given by c1 = [cA1 cV1 cH1 cD1 ] is the variable to solve in the fine level equation.

The wavelet basis functions corresponding to the wavelet coefficients c1 are used to

compute M1, in the same way as (198).

c̃∗1 as defined in (199)(200) is used as an approximation to the orthogonal solution

for (197), which is refined by solving the residual equation

M1∆c1 = ∆g1, (201)

where

∆g1 = g −M2c
∗
2. (202)

The orthogonal solution to the residual equation (201) is denoted by ∆c∗1. Then the

orthogonal solution to fine level equation (197) is

c∗1 = c̃∗1 + ∆c∗1. (203)
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Two-level approach for the kernel correction. The two-level approach for

the kernel correction is slightly different. Given the orthogonal solution c∗1 to (197),

we first transform the solution to level 2 wavelet domain, and do the kernel correction

at that level, then transform the result back to level 1, and do the kernel correction

again.

The above procedure is described more precisely as follows. In the first step, we

apply one level of wavelet decomposition to c∗1, and keep only the wavelet coefficients

at level 2, which is written as

c̄∗2 = P2WAc∗1, (204)

where WA denotes wavelet decomposition, P2 is the restriction of wavelet coefficients

to level 2. We perform the kernel correction for c̄∗2 in the null space of M2, as described

in Section 3.3.5. The result is denoted by c0
2. By applying one level of wavelet

reconstruction to c0
2, we obtain wavelet coefficients at level 1, which is denoted by

c̄0
1 = WSc0

2, (205)

which is called the coarse level correction for c∗1. The solution to (197) is updated to

be

ĉ1 = c∗1 + c̄0
1. (206)

In the next step, which we call the fine level correction, we use ĉ1 as a particular

solution to (197), and compute kernel correction for it in the null space of M1. The

result is denoted by ĉ0
1. Combining the coarse and fine level corrections, the kernel

correction for c∗1 is written as

c0
1 = c̄0

1 + ĉ0
1. (207)

The two level algorithm can be easily generalized to a multi-level version, which

is summarized in Algorithms 3.5.1 and 3.5.2.

Remark For the computation of the system matrix Ml−i for i = 1, . . . , l − 1, we

can make use of the already computed matrix Ml−i+1 to form some columns of Ml−i.
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Algorithm 3.5.1 Multi-level algorithm for the orthogonal solution (MLOS)

function c∗=mlos(l,g) . l denotes the coarsest level.
compute Ml

c∗l = os(Ml,g) . solved by the method in Section 3.3.3
gl = g
for i = 1 to l − 1 do

∆gl−i = gl−i+1 −Ml−i+1c
∗
l−i+1

ĉ∗l−i = WSc∗l−i+1 . wavelet synthesis
c̃∗l−i = threshold(ĉ∗l−i) . hard thresholding on the solution
compute Ml−i
∆c∗l−i = os(Ml−i,∆gl−i)
c∗l−i = c̄∗l−i + ∆c∗l−i

end for
c∗ = c∗1
return c∗

end function

Algorithm 3.5.2 Multi-level algorithm for the kernel correction (MLKC)

function c0=mlkc(l, c∗1) . l denotes the coarsest level.
if l = 1 then

c0 = kc(Ml, c̄
∗
l ) . the coarsest level problem.

return c0

else
c̄∗2 = P2W

L
Ac∗1 . wavelet analysis as defined in (204)

c0
2 = mlkc(l − 1, c̄∗2) . recursively call itself until the coarsest level

end if
ĉ0

1 = WSc0
2

ĉ1 = c∗1 + ĉ0
1

c̄0
1 = kc(M1, ĉ1) . c̄0

1 is the finest level correction.
c0 = c̄0

1 + ĉ0
1 . total correction

return c0

end function
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Columns of Ml−i are generated by selected wavelet basis functions at level l − i.

Recall that each low frequency wavelet basis function at level l − i is a linear combi-

nation of wavelet basis functions at level l − i+ 1, and the coefficients are exactly the

entries of the wavelet filter for reconstruction. Therefore, columns of Ml−i that are

generated by low frequency wavelet functions at level l − i can be obtained by apply-

ing one level of wavelet reconstruction to the rows of Ml−i+1. Besides, the columns

generated by selected high frequency wavelet functions at level l − i have to be com-

puted separately by solving DA equations and assembling the solutions in the form

of (87).

3.6 Numerical examples with synthetic data

3.6.1 Comparison between OSKCA and Tikhonov regularization

In our first simulation, we consider a square domain with two fluorescent inclusions

in it, which is shown in Figure 3a. The domain has the size w × h, where the

width w is 91.6mm and the height h is 71.5mm. The parameters are µs = 1mm−1,

µa = 0.01mm−1, and R = 1.4. 40 light sources and 60 detectors are put on the

boundary. Each time we turn on one source with others off and get the measurements

from all detectors, which is illustrated in Figure 3b. Totally we have 40× 60 = 2400

measurements. Different levels of noise are added to the simulated measurements for

comparison.

In this example, a FEM mesh with 7938 triangles and 4096 nodes is generated for

the formulation of the forward problem, and a mesh with 4352 triangles and np = 2253

nodes is generated for solving the inverse problem. The two meshes are different to

avoid the “inverse crime” known in the literature [73]. The linear equation for FEM

is solved by an implementation of the Algebraic Multi-grid Method [83].

We apply Tikhonov regularization and OSKCA to solve this problem respectively.

For Tikhonov regularization, point sources are used as the basis functions. We
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Figure 3: (a) An illustration of the fluorophore distribution. (b) The boundary
measurement of the emission field for one light source. All detectors are arranged
counter-clockwise, and their measurements form a 1D signal. We can see that the 1D
signal is very smooth, with many places nearly zero, and decays exponentially away
from the peak value points.

use ART for L2 regularization, and Bregman Operator Splitting (BOS) for TV regu-

larization.

For OSKCA, the basis functions are chosen as

{cos(2π(p
x

w
+ q

y

h
)), sin(2π(p

x

w
+ q

y

h
))}, (208)

where |p|, |q| ≤ 10. After removing those duplicates, we actually have n = 441 basis

functions. We generate matrix M in the inverse problem (86). And then apply

iterative Tikhonov regularization (125) with parameter h = 10−2 for the computation

of the orthogonal solution. Algorithm described in Section 3.3.4 provides a basis

for the kernel of M, where parameter τ = 10−4 × ‖M‖F . The ART is used if the

positivity constraint is applied for the kernel correction. Algorithm 3.3.1 is used if

TV minimization requirement is used.

We compare the results obtained by OSKCA and by Tikhonov regularization

methods. Figure 4 shows the reconstructed images. As one can see that OSKCA

has an advantage of achieving cleaner images and being more robust against noise.

As the noise level increase, Tikhonov regularization method needs to penalize the

regularization term more, which results in a blurry reconstruction. In OSKCA, the
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Figure 4: Reconstructed fluorescent distributions for 2D simulated data.

Figure 5: The final reconstruction by OSKCA is decomposed into the orthogonal
solution and the kernel correction. Noise of 30dB is added in the synthetic boundary
measurement.
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orthogonal solution is computed so that it fits the data and is robust against the

noise, though it is quite blurry, as shown in Figure 5. The kernel correction, which is

done in the kernel space, regularizes the solution without affecting the data fidelity,

so that the regularization requirement for the solution can be better satisfied. Figure

5 illustrates the effect of kernel correction.

We also compare the computation time in Table 1. All the computations are per-

formed on a laptop with 2.53GHz Intel Core2 Duo CPU. The programming interface

is MATLAB with C++ subroutines. It shows OSKCA gains a dramatic speedup.

This is partly due to the much smaller number of basis functions in use for OSKCA,

and reduced size of the system matrix by the compression of measurement data.

Table 1: CPU time of different methods (in seconds)

Tikhonov + L2 Tikhonov + TV OSKCA + positivity OSKCA + TV
2812 5919 320 230

3.6.2 The effect of using more detectors and light sources

In the next example, a 50mm×50mm medium is implanted with two circular inclusion.

Their radius are 3mm and 4mm respectively, and their center-to-center distance is

10mm (see Figure 6a). The optical properties are the same as the previous example.

The basis for the solution space is the same as (208). The mesh for the forward

model has 7839 nodes and the mesh for the inverse problem has 4096 nodes. In each

simulation, we use 64, 128 or 256 detectors, and 8 or 40 light sources. Totally we have

6 configurations of detectors and light sources. For each configuration, we compute

the synthetic boundary measurements, and use OSKCA with positivity constraint

regularization method to reconstruct the solution. The reconstructions are displayed

in Figure 6b. We can see that increasing the number of detectors from 64 to 128, and

adding the number of light sources from 8 to 40 will improve the resolution of the

reconstruction results. However, further increasing the number of detectors and light
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(a) The ground truth.

(b) The reconstruction results for each configuration of detectors and light sources.

Figure 6: A comparison of the reconstruction results by using different number of
detectors and light sources.
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source doesn’t help much. This can be overcome by taking advantage of some other

regularization techniques that will preserve the visual features in the reconstructions,

which is demonstrated in the following simulation.

3.6.3 Comparison between different regularization techniques for the ker-
nel correction

In this example, we still use the same phantom as shown in Figure 6a. The number

of the light sources in use is 40, and the total number of detectors is 256. Besides

using only the positivity constraint for the kernel correction as in Figure 6b, we also

use OSKCA-TV (Algorithm 3.3.1), which uses both TV regularization and positivity

constraint. The comparison of the results is shown in Figure 7. We can see that the

celebrated TV regularization techniques can resolve the edges in the reconstructed

images.

(a) The ground truth. (b) positivity (c) positivity + TV

Figure 7: Comparison between positivity constraint regularization and positivity plus
TV regularization.

3.6.4 Comparison between OSKCA and direct Augmented Lagrangian
method

We continue to use the same phantom as shown in Figure 6a. We apply Augmented

Lagrangian method directly to the problem (144) by solving the formulation (146).

We also use OSKCA-TV (Algorithm 3.3.1) to solve the same problem. For OSKCA-

TV, we use the set of parameters as α = 10−5, ρ1 = ρ2 = 1. And for direct Augmented

Lagrangian method, the parameters are γ = 10−5, β1 = β2 = 1, β3 = 104. The

maximum numbers of iterations are both 1000. The reconstructed distribution f
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from these two approaches are shown in Figures 8(b)(c). We can see that OSKCA

has better resolution than the direct Augmented Lagrangian method.

(a) (b) (c)

Figure 8: (a) Ground Truth. (b) Augmented Lagrangian with TV minimization
regularization. (c) OSKCA with TV minimization regularization.
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Figure 9: The plot of ‖Mc− g‖/‖g‖ against the number of iterations.

We also compare the relative error of the data fitting term ‖Mc−g‖
‖g‖ in these two

methods, as shown in Figure 9. We can see that OSKCA has significantly better

data fidelity in 200 iterations. The main reason is that the initial value for f in

OSKCA is the orthogonal solution, which is intended to satisfy the data fitting re-

quirement. Later changes in the data fitting are caused by the numerical error in

the computed kernel space, which is controlled by τ in (132). τ can be chosen small

enough, so that the changes are negligible. In this example, the kernel correction
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actually improves the data fidelity, and the relative error decreases monotonically.

In comparison with OSKCA, the direct Augmented Lagrangian method starts with

relative error ‖Mc−g‖
‖g‖ = 0 for c = 0. The relative error is oscillatory in the iterations,

and the overall convergence rate is low. We also have a time comparison of these

two methods in Table 2. The cost for the formulation of the forward model is not

included, which is the same for both these methods. We can see that OSKCA is much

faster than Augmented Lagrangian.

Table 2: CPU time (in seconds) of OSKCA and Augmented Lagrangian

Augmented Lagrangian OSKCA
kernel space 0.58

orthogonal solution N/A 0.39
kernel correction 2.66

total 27.24 3.63

3.6.5 The resolution of the reconstruction with respect to the depth of
the source

We consider a 50mm×50mm homogeneous medium implanted with two circular fluo-

rescent inclusions with radius 3mm, and their center-to-center distance is 7mm. The

optical parameters are µs = 1mm−1 throughout the domain and µa = 0.01mm−1. By

varying the depth of the inclusions, we compare the reconstruction results, which are

shown in Figure 10. In each case, the forward model is computed on a fine mesh

with 1789305 nodes so that it can be considered as the physical truth, and the inverse

problem is solved on a coarse mesh with only 4096 nodes, which models the situation

when the modeling error is not negligible.

We can see that as the depth of the source increases, the resolution of the re-

construction gets worse. As shown in Figure 10, when the centers of the fluorescent

inclusions are 20mm deep, the two inclusions become indistinguishable. This is partly

due to the diffusive nature of light propagation. Also the mesh for the inverse problem

is not fine enough, so that the PDE solver is not accurate and the modeling error
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Figure 10: The first row are the images of the ground truth, and the second row are
the reconstructions on a mesh with 4096 nodes.

is large. It can be improved if a finer mesh and a better PDE solver are used for

the reconstruction of the solution. To demonstrate this, we use a mesh with 262144

nodes for the same inverse problem as illustrated in the third column of Figure 10.

The resolution of the reconstructed image is significantly better, which is shown in

Figure 11b.

(a) Ground truth (b) Reconstruction

Figure 11: The fluorescent inclusions are 20mm deep. Reconstruction is done on a
mesh with 262144 nodes.
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3.7 An experimetal 3D phantom study with real data

3.7.1 Experiment setup

We use a non contact continuous-wave (CW) transillumination phantom-based FT

system for the validation of our proposed approach. Figure 12 depicts the setup of the
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Figure 12: The phantom used in the experiment is depicted as a slab shaped domain.
Two tube inclusions are shown in blue and the locations of light tips are displayed as
a 2D array of green dots.

experiment. The phantom has the dimension of 95mm × 14mm × 120mm, filled with

an intra-lipid liquid, which mimics the optical property of biological tissues. Indian

ink is added to it, in order to match the tissue absorption. Two thin glass tubes,

encapsulating a solution of fluorescent dye, is implanted to the phantom. The two

tubes, both 2mm in diameter and 15mm in length, are parallel to each other with

center-to-center distance of 6mm. Their depth with respect to the front surface (the

plane y = 0mm) is 6mm. They are small inclusions, and their induced changes to

optical parameters is negligible. (Though the study of optical inhomogeneity at the

anatomical level, called optical tomography, has been an active area of research [80,

79, 5, 13, 77, 31], and Section 3.4.2 of this thesis also sheds light on this topic.) Thus

the phantom is considered to be homogeneous, with a scattering coefficient 3.6mm−1,

and absorption coefficient 0.03mm−1, at both excitation and emission wavelength.
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These optical parameters are measured in a separate experiment.

A He-Ne laser fiber produces CW light at 632nm wavelength, whose tip lies on

the rear surface (y = 14mm) to direct the light into the phantom. The tip of the

fiber is translated on a 2D 5 × 5 uniform grid of 25 points (see Figure 12), each

one serves as a different light source location. The grid spacing is 5mm. A cooled

CCD camera captures the light signals transmitting through the front surface (called

the measurement plane), and form images representing the intensity of the signals.

We note that the signals are the mixture transillumination excitation (Φ
(i)
x ) and the

fluorescent emission (Φ
(i)
m ). They are separated by specific filters before being received

by the camera. So for each light source, two images are obtained. The images of

transillumination excitation are used to calibrate the intensities of the light source,

and to normalize the images of fluorescent emission to the same scale. Then the

normalized fluorescent emission images are ready for the reconstruction algorithm.

In this experiment, the resolution of the images is 240× 240 pixels. Figure 13 shows

some data images obtained in this experiment.

3.7.2 Solution process

FEM discretization. A tetrahedral mesh with 228800 uniformly spaced nodes

are generated for the discretization of the forward and inverse problems. The light

sources are modeled by point-wise functions, which is a shape function in the finite

element framework. The excitation radiation in the whole domain given a light source

can be computed by solving the DA equation in the forward model. The computed

excitation radiation is calibrated by the corresponding transillumination image, as

described previously.

The system matrix for the inverse problem. Totally 25 data images of the

size 170 × 180 are captured by the camera. So the amount of data is huge, with

ns = 25 and nd = 30600 in (87). Using all of them to form the system matrix
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Figure 13: (a) Three light sources, which are 5mm apart, viewed from the measure-
ment plane. (b) The images of the corresponding transillumination excitation. (c)
The images of the corresponding fluorophore emission.
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M ∈ Rnsnd×n in (87) will cause excessive storage and computation cost. Even worse,

the resulting system matrix M will have more rows than columns, which contradicts

the under-determined nature of the inverse problem. Therefore, the strategy described

in Section 3.4.1 is useful here. We first discard some small measurements based on

the intensity profile defined in (163) and the criteria (167). More exactly, In this

experiment, µe = 0.57mm−1, ‖ξ′i − ξi‖ = 14mm. We choose τ = 0.01, so

Bi = {x : ‖x− ξi‖ ≤ 22.1mm} . (209)

The fluorophore emission image for the i-th light source is truncated by cutting off

data points outside of Bi. Then the truncated data images are further compressed

in the wavelet domain as described in (175), where the wavelet filters are taken to

be bi-orthogonal wavelet 3/3. The threshold for the wavelet compression on the

details coefficients is taken to be the 95% of total energy. Based on the criteria in

(177), we choose the region of interest for reconstruction of f , which has the size

50mm× 14mm× 50mm. The mesh nodes inside the region of interest form a tensor

grid of 58 × 16 × 60. For the representation of the solution f , the basis consists of

3D bi-orthogonal 2/2 wavelets for reconstruction. We choose wavelet basis functions

at level 1, which is the collection of tensor product of 33 wavelets in x dimension, 13

wavelets in y dimension, and 35 wavelets in z dimension. We have a new system for

the inverse problem (17) with g′ a 6233× 1 vector, M′ a 6233× 15015 matrix. The

unknown c, which is the coefficient vector for f under the tensor product wavelet

basis, has the size 15015× 1.

Choice of algorithms for orthogonal solution and kernel correction. The

computation of the orthogonal solution can still use Iterative Tihkonov regularization

as described in Section 3.3.3. However, in the setup of transillumination FT in this

case, the boundary data are take from only one surface of the phantom, and large

amount of data, especially the boundary measurement on the opposite side of the

measurement plane, are missing. If we still apply the old formulation (125), we will
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get a solution that matches the boundary data on the measurement surface, while the

boundary data on the un-measured surfaces are essentially treated as arbitrary, mak-

ing this inverse problem even more ill-posed. To alleviate the ill-posedness caused by

missing data, we incorporate more physical constraints into the modeling. For exam-

ple, we require that the synthetic boundary data of the computed orthogonal solution

should be non-negative on both measured and unmeasured surfaces of the phantom.

If we consider the boundary data in the wavelet domain of bi-orthogonal 3/3, this

requirement is translated to the approximation coefficients being non-negative, as

the reconstruction scaling function is positive on its support. Let M̄′ be the system

matrix that is generated by the same set of basis as M′, but taking boundary mea-

surements on the opposite side of the measurement surface. We therefore consider

the following formulation for the orthogonal solution

c∗ = argmin
c
‖M′c− g′‖2

2 + α‖c‖2
2 (210)

such that  M′c ≥ 0

M̄′c ≥ 0
(211)

This can be solved by Augmented Lagrangian algorithm that has been addressed

previously. For the choice of the kernel correction, we impose the l1 minimization on

the wavelet coefficients c. This is because the sparsity in the wavelet domain is an

important feature for images [78], and l1 minimization, which is a convexification of

l0 minimization, has been known to enforce sparsity. In light of this, we solve the

following optimization problem for the kernel correction, which minimizes the l1-norm

in addition to TV semi-norm of the solution

min
λ
‖c∗ + Kλ‖1 + β‖c∗ + Kλ‖TV (212)

such that

W 0
S(c∗ + Kλ) ≥ 0, (213)
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where K is a set of orthonormal basis for N (M′), W 0
S is the wavelet reconstruction

operator that transforms wavelet coefficients to level 0. Since level 0 wavelets are the

point-wise basis function in our construction of wavelets, W 0
S(c∗ + Kλ) represents a

function in the physical domain, which is the final reconstruction of the solution f .

Multi-level reconstruction. Based on the multi-level algorithms described in

Algorithm 3.5.1 and 3.5.2 in Section 3.5, we use a two-level strategy for the imple-

mentation of OSKCA. More exactly, we use wavelet basis functions at level 1 for the

fine level computation of the orthogonal solution and kernel correction, and wavelet

basis functions at level 2 for the coarse level computation. The system matrix for the

coarse level basis is M̂′, which has the size 6233× 4851.

An alternative approach for computing the orthogonal solution. Besides

the formulation (210)(211) for computing the orthogonal solution, we can also con-

sider other approaches. For instance, Tihkonov regularization with l1 minimization

in the wavelet domain is proposed as

c = argmin
c
‖M′c− g′‖2

2 + α‖c‖1, (214)

which can be solved by ISTA [28, 35, 40, 52] and FISTA , algorithms [14]. We note

that our multi-level framework also applies to Tihkonov regularization as (214), in

a way similar to Algorithm 3.5.2. To elaborate this idea, we implement a two-level

version. Let c2, c1 be the solutions to (214) at the coarse and fine levels respectively.

c2 solves

c2 = argmin
ĉ
‖M̂′ĉ− g′‖2

2 + α‖ĉ‖1. (215)

The fine level correction ∆c1 solves

∆c1 = argmin
c
‖M′c−∆g′‖2

2 + α‖c‖1, (216)

where

∆g′ = g′ − M̂′c2. (217)
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Then the fine level solution is written as

c1 = WSc2 + ∆c1, (218)

where we recall that WS denoted one level of wavelet reconstruction. Here we perform

a simple comparison between the solution obtained by two-level algorithm, and the

true solution to (214). Obviously,

‖M′c− g′‖2
2 + α‖c‖1 ≤ ‖M′c1 − g′‖2

2 + α‖c1‖1. (219)

Suppose c solves (214), and it is decomposed as

c = WSc2 + ∆c̄1, (220)

where WSc2 is the same as in (218). A simple calculation shows

‖M′c1 − g′‖2
2 + α‖c1‖1 ≤ ‖M′c− g′‖2

2 + α‖c‖1 + α(‖∆c̄1‖1 + ‖∆c1‖1). (221)

So the difference between the optimal objective and the computed objective by two

level method for (214) is no larger than α(‖∆c̄1‖1 + ‖∆c1‖1). Under the assumption

that

‖∆c1‖1, ‖∆c̄1‖1‖ � ‖WSc2‖1, (222)

meaning that the l1 norm of fine level correction is much smaller than that of the

coarse level solution, the two-level algorithm produces a near optimal solution. The

kernel correction corresponding to this choice of the orthogonal solution can be pro-

posed the same as (212).

3.7.3 Results

Comparison between OSKCA and Tikhonov regularizations with L2 penalty

term. Using the same data, we perform the following reconstruction algorithms:

(a) L2 OSKCA: OSKCA with tensor product wavelet basis. The orthogonal so-

lution is computed by L2 regularization (210)(211). The kernel correction is

solved by (212) (L1+TV+ positivity constraint).
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(b) L2 Tikhonov: Tikhonov regularization with point-wise basis. The classical L2

penalty is imposed on the solution. The regularization parameter is tuned so

that the solution is positive.

(c) L1 OSKCA: OSCKA with tensor product wavelet basis. The orthogonal solu-

tion is computed by L1 regularization (214). The kernel correction is solved by

(212) (L1+TV+ positivity constraint).

(d) L1 Tikhonov: Tikhonov regularization with tensor product wavelet basis. L1

penalty in imposed on the wavelet coefficient of the solution. The regularization

parameter is tuned so that the solution is positive.

The reconstructions of fluorophore distribution f by the above three approaches are

shown in Figure 14.

The viewpoint of Figure 14 is not informative to tell the resolution of the recon-

struction results. Especially, we want to examine the resolution in the y-dimension,

which is perpendicular to the measurement plane. For this purpose, we plot the pro-

jections of the 3D images onto three coordinate planes: xy, yz and xz, which are

displayed in Figures 15 and 16. The tubes are marked with solid curves.

3.7.4 An analysis on the resolution of the reconstruction results

Figure 15 shows that the solution obtained by L2 OSKCA has much better resolutions

viewed from xy and xz planes. Figure 16 shows that the resolution of the solutions

by L1 OSKCA and L1 Tikhonov are comparable, though L1 OSKCA shows slightly

better resolution from the view of xz plane. For every solution, the yz view is very

blurry. More exactly, the blurring of the solution is much more severe in y dimension

than other two dimensions. This can be partially explained through the following

analysis. We note that the size of the slab shaped phantom is much larger in x and z
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(a) L2 OSKCA (b) L2 Tikhonov

(c) L1 OSKCA (d) L1 Tikhonov

Figure 14: The comparison of the reconstruction results between (a)(c) OSKCA and
(b)(d) Tihkonov regularization.
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(a) L2 OSKCA. relative error of data fitting = 0.14

(b) L2 Tikhonov. relative error of data fitting = 0.17

Figure 15: A comparison between L2 OSKCA and L2 Tikhonov methods. From left
to right are the projections of 3D images onto xy, yz and xz planes. On the first
column, the two circles depict the cross sections of the tubes. On the second and the
third columns, the rectangles denote the placement of the tubes.
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(a) L1 OSKCA. relative error of data fitting = 0.11

(b) L1 Tikhonov. relative error of data fitting = 0.14

Figure 16: A comparison between L1 OSKCA and L1 Tikhonov methods. From left
to right are the projections of 3D images onto xy, yz and xz planes. On the first
column, the two circles depict the cross sections of the tubes. On the second and the
third columns, the rectangles denote the placement of the tubes.
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dimensions than in y dimension, so it can be approximated by a semi-infinite domain

Ωd = {(x, y, z) : −∞ < x, z <∞, 0 < y < d}, (223)

where d is the thickness of the slab. The light source is placed on the plane y = d,

and the measurement plane is y = 0.

For the light source i, the fluorophore emission is written as

Φ(i)
m (x, y, z) =

∫
Ωd

Gd(x, y, z, x
′, y′, z′)Φ(i)

x (x′, y′, z′)f(x′, y′, z′) dx′ dy′ dz′, (224)

where Gd is the Green’s function for the DA equation in domain Ωd, Φ
(i)
x is the

transillumination excitation for light source i, f is the fluorophore distribution. For

Ωd as defined in (223), its Green’s function is translation invariant in x and z. More

exactly, we can rewrite Gd as

Gd(x, y, z, x
′, y′, z′) = Gd(x− x′, z − z′; y, y′). (225)

The boundary measurements for light source i is formally written as

Φ(i)
m (x, 0, z) =

∫
Ωd

Gd(x, 0, z, x
′, y′, z′)Φ(i)

x (x′, y′, z′)f(x′, y′, z′) dx′ dy′ dz′, (226)

and by (225),

Φ(i)
m (x, 0, z) =

∫ d

0

∫ ∞
−∞

∫ ∞
−∞

Gd(x− x′, z − z′; 0, y′)Φ(i)
x (x′, y′, z′)f(x′, y′, z′) dx′ dz′ dy′.

(227)

For simplicity of notations, we denote

Ψ(i)(x′, y′, z′) = Φ(i)
x (x′, y′, z′)f(x′, y′, z′). (228)

Then for the light source i, the boundary measurement is

Φ(i)
m (x, 0, z) =

∫ d

0

∫ ∞
−∞

∫ ∞
−∞

Gd(x− x′, z − z′; 0, y′)Ψ(i)(x′, y′, z′) dx′ dz′ dy′. (229)
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The righthand side of the above equation can be viewed as the convolution in variables

x and z. Ideally, we assume that all boundary measurements on the measurement

plane

{(x, y, z) : −∞ < x, z <∞, y = 0} (230)

can be obtained. By taking the Fourier transform of (229) with respect to the vari-

ables x and z we have

Φ̂
(i)
m (ωx, 0, ωz) =

∫ d

0

Ĝd(ωx, ωz; 0, y′)Ψ̂(i)(ωx, y
′, ωz) dy′, (231)

where

Ψ̂(i)(ωx, y
′, ωz) =

∫ ∞
−∞

∫ ∞
−∞

f(x′, y′, z′)Φ(i)
x (x′, y′, z′)e−j(ωxx

′+ωyz′) dx′ dz′. (232)

In our assumption, given the Fourier transform of the boundary measurements

Φ̂
(i)
m (ωx, 0, ωz), and the Fourier transform of the Green’s function Ĝd(ωx, ωz; 0, y′) can

be computed for any given ωx, ωz, y
′. The inverse problem is to first solve the integral

equation (231) for Ψ̂(i)(ωx, y
′, ωz) with any given ωx, ωz, y

′, then solve for f in (232)

by Inverse Fourier Transform for any given x′, y′, z′. The first step is a severely

ill-posed problem. The reason is that in (231), given the weighted integral of a

function Ψ̂(i)(ωx, y
′, ωz) with respect to y′, that function is not uniquely determined.

This partially explains the reason that our numerical results is severely blurred in

y dimension, as the solution is strongly regularized in that dimension in order to

alleviate the indeterminacy. In order to further alleviate the ill-posedness of solving

(231), more information on Ψ̂(i)(ωx, y
′, ωz) in variable y′ is needed, though it is difficult

to obtain in this experimental setting.

The second step is also ill-posed, because in (150), Φ
(i)
x decays exponentially,

which numerically behaves like a function with compact support. In light of this,

the righthand side of (232) can be considered as a Windowed Fourier Transform of

f . Therefore solving (232) alone will encounter stability issues. This is alleviated
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by using multiple light sources, that is, we have (232) for various Φ
(i)
x ’s, where i =

1, . . . , s. Therefore, solving f in s simultaneous equations (232) is approximately

solving the Inverse Windowed Fourier Transform of f .

We perform the above analysis to illustrate challenges that come from the ill-

posedness of the formulation of the problem. In practice, the problem is handled

by numerical inversion techniques, rather than the analytical approach as shown in

(231)(232). With prior information of the solution, such as positivity, sparsity, and

smoothness, combined with proper choices of regularization techniques, the regu-

larized solution can be computed, as it is demonstrated in the previous examples.

However, the artifacts that caused by regularization is evident. In our opinion, this

can be overcome by incorporating other imaing modalities in the experimental setting,

so that additional information on the y dimension of the unknown can be obtained.
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CHAPTER IV

CONCLUSION

As demonstrated in the numerical examples, the proposed OSKCA has advantages

over the Tikhonov type regularization methods in two ways. First, in OSKCA, the

regularization can be enforced better than that in the Tikhonov regularization meth-

ods. OSKCA solves regularization without the constraint of data fitting, while in

Tikhonov regularization, the regularization term is minimized together with the data

fitting term. Two terms compete with each other in the minimization process and

a compromise has to be taken between them. Therefore, the reconstruction results

of OSKCA have more regularity and less artifacts than that of Tikhonov regulariza-

tion. Second, in Tikhonov regularization, the point source basis is used, and it is not

necessarily an efficient basis to represent the reconstructed source distribution. In

OSKCA, the reconstructed source term is expressed under a more efficient basis. In

this way, the dimension of the unknowns is greatly reduced. As a result, a consider-

able speedup is gained in both the formulation of the forward model matrix and the

reconstruction process. Also, we can increase the resolution of the reconstruction by

adding more basis functions or changing the basis locally.

There are several interesting features of OSKCA. It is known that error and arti-

facts are considered as the bottleneck for the existing methods for FT applications.

But for OSKCA, besides its computational efficiency, we demonstrate through our

numerical studies that it is robust against noise and perturbations, while having the

potential to improve the resolution in image reconstructions dramatically. Since the

kernel correction step regularizes the solution in the kernel space, the proposed ap-

proach is particularly useful for severely under-determined system.
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Besides the above strategies to improve the efficiency of the algorithm, we incor-

porate a multi-level framework, which has two interesting features: one is to remove

artifacts in the solution and improve the resolution, another is to speed up the com-

putation.

Since OSKCA does not depend on the imaging modality, it may be applied to

solve other inverse source problems in imaging.
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