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The Mars Science Laboratory (MSL) contains an atmospheric data system that takes
measurement of the pressure distribution on the entry body during the hypersonic and
supersonic descent phases of the ight. This pressure data can be combined with other on-
board sensors, such as accelerometers, gyros, and radar altimeter, to estimate the ight’s
trajectory, aerodynamics and the atmospheric pro le. The number of sensors and their
locations for the atmospheric data system can be optimized to increase the accuracy of
the post- ight reconstruction. Methodologies based on using the estimation residual and a
surrogate of the observability matrix are presented here and results of the optimization ex-
ercises for pressure transducer systems on Mars entry, descent, and landing (EDL) vehicles
are shown. These techniques can be subsequently applied in the design of instrumentation
suites of future EDL vehicles.

Nomenclature

Process eq. Jacobian (w.r.t. the state vector)
Process eq. Jacobian (w.r.t. the noise vector)
Surrogate of the innovation covariance matrix
Measurement sensitivity matrix

Function value

Identity matrix

Cost function

Kalman gain

Length of the Mach number vector

Number of pressure ports

State covariance

Pressure, Pa.

Dynamic pressure, Pa.

State noise covariance

Measurement covariance

Time, sec

State vector

Measurement vector

Angle of attack, rad
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Sideslip angle, rad

Subscript

0 Initial condition

i State index

k Time increment

obs Observability matrix

1 Freestream condition

Superscript

T Transpose

+ Best estimate
Nominal estimate

C Estimated quantity

I. Introduction

he United States has successfully landed on Mars seven times since 1976. The entry vehicle for all of

these missions was a 70-deg sphere cone aeroshell and the descent phase has used a supersonic parachute,
although the nal landing sequence has varied, with the Viking missions and Phoenix using a soft landing,
Path nder and the Mars Exploration Rovers using an airbag system, and the Mars Science Laboratory using
the sky-crane system.! Despite the similarity between the spacecraft, especially in the entry and descent
phase of the vehicle trajectory, there still remain large uncertainties in the engineering models used during
Mars EDL design and these uncertainties lead to design conservatism and a higher EDL system mass.

Flight data from EDL spacecraft can be used to reconstruct trajectory, atmosphere, and vehicle aerody-
namic coe cients and thus allow for quanti cation of the uncertainties in the vehicle performance and the
Martian environment. If statistical estimation methods are used for the reconstruction, then measurement
noise and possible uncertainties in the dynamics of the state variables can be included in the estimation
algorithm to improve both the state estimate and the uncertainty of the estimated state. The 2012 Mars
Science Laboratory (MSL) mission contains a ush-mounted atmospheric data system (same as air data
systems used for Earth applications) that takes measurement of the pressure distribution on the entry body
during the hypersonic and supersonic descent phases of the ight.? This pressure data is collected by the
Mars Entry Atmospheric Data System (MEADS) instrumentation, which is part of the larger Mars EDL
Instrumentation (MEDLI) project. Together with the other on-board sensors, the pressure data can provide
a good reconstruction of the ight’s dynamic pressure, angle of attack, and sideslip angle without making any
assumptions about the vehicle’s aerodynamics and provides means of separating aerodynamic uncertainties
from atmospheric uncertainties.*

The MEADS instrumentation suite was designed for the MSL trajectory® 2 based on past Earth-based
air data system designs and expert knowledge. However, there is a lack of work in the area of optimizing the
locations of pressure transducers for an atmospheric data system. Since a MEADS-type system enables the
separation of aerodynamic and atmospheric uncertainties, which are some of the most dominant uncertainties
during EDL,® it is important to optimally place these instruments to enhance the reconstruction quality. An
optimization exercise can also identify the minimum number of transducers needed to meet requirements for
reconstruction. As future Mars missions test ambitious technologies, they are more likely to be instrumented
with versatile atmospheric data system like sensors. These future atmospheric data systems on Mars EDL
vehicles will need to be tailored for the trajectory of these vehicles and needs to be able reconstruct parameters
of interest to within certain levels.

This study demonstrates a method to optimize the design of a future Mars EDL air data instrumentation
suite so that EDL states, especially those that can help quantify atmospheric and aerodynamic uncertainties,
can be accurately estimated. The optimization results are based on two types of objective function: (1) The
residual between the estimated quantities and the truth data is shown in Sections Ill, 1V, and V and (2) a
surrogate of the observability matrix as shown in section VI.
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Il. Background

A. Mars Science Laboratory

MSL carries a set of instruments that take in-situ measurements of the pressure and temperature distribution
on the aeroshell. The instrumentation is known as MEDLI and consists of MEADS to take the pressure
measurements and Mars Integrated Sensor Plug (MISP) to take the aerothermodynamic data. Optimization
of the location of MISP sensors is not covered by this current paper. MEADS’s science objective is to
reconstruct the atmospheric properties within certain bounds. Speci cally when the dynamic pressure is
greater than 850 Pa., the objective is to estimate freestream Mach number (M) to within 0.1, dynamic
pressure (g4 ) to within 2%, and angle of attack ( ) and sideslip angle ( ) to within 0.5 deg.? In order
to achieve these targets, MEADS collects pressure data from seven pressure transducers located around the
forebody of the aeroshell (see Figure 1).
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stagnation region in blue.?

Figure 1. MEDLI sensor locations. P signi es pressure transducers and T marks the locations of the thermocouple
plugs.

The locations of the transducers are based on the predicted pressure distribution on the aeroshell; however,
no quantitative optimization procedure was conducted in the selection of the transducer locations. It is
expected from the nominal trajectory that the stagnation pressure is to be around transducers P1 and P2,
while P6 and P7 serve as the transducers that will help reconstruct the sideslip angle. All of the transducers
besides P6 and P7 are expected to help reconstruct the angle of attack history. Although the transducers that
are used for MEADS can sample at high rates, due to memory constraints, both pressure and temperature
data will be saved at an e ective sampling rate of 8 Hz.?

B. Past Use of Atmospheric Data Systems

Vikings 1 and 2 were the rst Martian spacecraft with ush atmospheric data systems; however, the data from
these spacecraft had signi cant noise and was in general unintelligible.” Other reentry vehicles have utilized
atmospheric data systems. Flight reconstructions of these EDL vehicles have generally utilized pressure data
in conjunction with statistical estimation procedures to estimate trajectory, atmosphere, aerodynamics, and
the associated uncertainties. One of the most famous examples is the Shuttle Entry Air Data System
(SEADS) program of the 1980’s that used a ush-mounted air data system on the shuttle’s nose to estimate
the pressure distribution across the space shuttle forebody during entry.®:® The MEDLI program’s pressure
data system is in large part based on the SEADS concept.? The SEADS project was able reconstruct the
freestream conditions during shuttle entry successfully and veri ed its results with simulation and wind
tunnel data.'®1* However, reconstructions based on SEADS data did not blend the inertial measurements
with the pressure distribution data. Instead, a sequential Iter was used in conjunction with a database of
pressure distributions on the vehicle forebody to inversely estimate the aerodynamic parameters that could
create the pressure measurements at the transducers.®1° Thus, potential coupling between trajectory and
atmospheric uncertainties were not considered by that analysis.

Flush air data systems have also been used for high angle of attack aerodynamic research,? 2 hypersonic
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experiments,'* and for conceptual studies for munition guidance.'> 6 Some of the reconstruction techniques
have also used statistical estimators to reconstruct atmosphere and trajectory simultaneously,'’ thus pre-
serving the coupling in the estimation algorithm between these two types of parameters. However, similar
to SEADS, these applications did not use any physics-based optimizing routine to select the transducer
locations.

C. Optimization of Atmospheric Data Systems

As mentioned earlier, there has been limited work in the past to optimize the design atmospheric data systems
in EDL vehicles. One of the few optimization studies for air data systems was conducted in the early 1990’s
in support of the Pressure Distribution/Air Data System (PD/ADS) experiment that was proposed to be
included in the Aeroassist Flight Experiment (AFE), which was later canceled. In the study, Deshpande
et al.'® used a gradient-based estimator and a genetic algorithm (GA) to optimize the distribution of
the PD/ADS sensors in order to decrease the e ect of normally distributed random noise of the pressure
transducers. The work by Deshpande et al. used modi ed Newtonian theory for the predicted pressure model
and a batch-type reconstruction process to estimate air data parameters, such as dynamic pressure, angle
of attack, and sideslip angle. The residuals between the estimated parameters and their known, true values
were then used in a single-objective function for the optimization routines.

An important di erence between the work in this paper and Deshpande et al.’s work is that the previous
study only considered reconstruction of a single trajectory point (one Mach number, dynamic pressure, etc.).
Such a situation can be imagined for a wind tunnel testing, where pressure transducers on a test object’s
forebody collect data while the object is kept at the same ow conditions for a xed period of time. So the
reconstruction process (which serves as the objective function for the optimization problem) is expected to
converge to a single trajectory state, unlike the case of EDL reconstruction where the trajectory states keep
changing. Optimization of sensor locations where the signal will change with time has not been conducted
previously for atmospheric data systems to the authors’ knowledge.

Additionally, the EDL reconstruction process shown in this paper uses a pressure distribution prediction
model based on the aerodynamic database of the vehicle. This database incorporates data from higher

delity models based on Computational Fluid Dynamics (CFD) and wind tunnel data and is expected to be
more accurate than the modi ed Newtonian assumption used by Deshpande et al.

D. Sensor Placement Problem as Multi-objective Optimization

The air data optimization study by Deshpande et al. turned a multi-objective optimization problem (op-
timizing the reconstruction of dynamic pressure, angle of attack, and sideslip angle) into a single-objective
optimization problem. That study also used weighting parameters in order to turn the multiple objectives
into a single objective and thus introduced some subjectivity into the optimization process.

However, since that study, the eld of multi-objective optimization has matured, and the concept of
Pareto dominance can be coupled with di erent types of optimization techniques to enhance several objective
functions concurrently without the necessity of weighting functions.'® The Pareto dominance concept is
especially useful for evolutionary algorithms, such as GA, which can solve multi-modal problems better
than traditional gradient-based methods, which often get stuck in local minima. In fact, outside the area
of atmospheric data system, studies have been conducted that have found optimal locations for sensor and
actuator placement using multi-objective optimization.?® Many of these studies have utilized evolutionary
algorithms, like GA and Particle Swarm Optimization (PSO), in order to nd these optimal locations and
can be found in Ref.2°

Since the sensor placement problem for atmospheric data system has many, non-unique solutions, it is
expected to be multi-modal and can bene t from such a procedure. In this paper, the concept of Pareto
dominance, evolutionary algorithms which can handle multi-objective optimization, and the EDL recon-
struction process are combined to demonstrate a methodology to optimize atmospheric data systems similar
to the MEADS instrument of MSL. Such a procedure can advance the work by Deshpande et al. and allow
future designers to determine the optimal number and locations of sensors on vehicles and objects that use
atmospheric data systems for measurement.
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I1l1. EDL Reconstruction

The statistical reconstruction procedure is a key element in the optimization procedure, since the residual
of the truth from the estimated parameters helps calculate the objective function for the optimizing method.
The methodology used for reconstructing Mars EDL vehicle ight parameters involves taking EDL sensor
measurements and using an estimation procedure to reconstruct the vehicle trajectory and atmospheric
pro le (see Figure 2). The estimated trajectory and atmospheric parameters can then be used to calculate
the aerodynamic coe cients.

Radar Altimeter Estimation Atmosphere
Method

Port Pressures

Figure 2. EDL reconstruction methodology.

For this paper, an extended Kalman Iter (EKF) was used as the statistical estimator. The estimation
process is summarized in Figure 3. The algorithm is presented in the next section.
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Figure 3. EKF reconstruction ow diagram.

A. Extended Kalman Filter

Extended Kalman Iters have been extensively used in the past for Mars EDL reconstruction.® 2425 The
algorithm for this well-known Iter is summarized below:?% 27

1. Initialize the state vector and the state covariance matrix at time tx 1 = tg and let k = 1, where K is
an index of the epoch when a measurement is rst available.

2. Read in the measurement at time tg.

3. Calculate a nominal state (%, ) at time ti by integrating the non-linear equations of motions with %, ;
as the initial condition.

4. Calculate the nominal state covariance matrix (If"k ) by integrating the Riccati equations (Eq. (1a)).

5. Calculate the measurement residual vector (yx), the measurement sensitivity matrix (Hy), and the
Kalman gain (Kg) using the nominal state and state covariance (Eqg. (1b)).

6. Calculate the best estimate of the state (%, ) and state covariance (Iﬁ\k““) using Egs. (1c) and (1d).

7. Increment counter k and go back to step 2 until measurements at all times have been processed.

R=AP +PTAT + BQBT (1a)
1
Kk =P, HY HP, HI + Ry (1b)
k_k'— =R +Kg vy h % (1c)
Po=( KiHP (I KeH)T + KReKY (1d)
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The measurement covariance matrix (R) is de ned at time k and information from sensor calibration is
used in this matrix. The covariance of the state noise vector (Q) consists of noise variables in the process
equations, such as the sensor uncertainty of the angular rate gyroscopes or tuning parameters for the velocity
vector equations. See Ref. 4 for more information about state and measurement noise vectors and covariances.
A is the Jacobian of the process equations with respect to the state vector, while B is the Jacobian of the
process equations with respect to the state noise vector. The state noise vector for EDL reconstruction
comes from uncertainties in the process equations, such as aerodynamic and atmospheric uncertainties. The
matrix | in the covariance update equation is the identity matrix.

B. Process and Measurement Equations

As shown in Figure 3, the reconstruction process revolves around using process equations and measurement
equations to inversely reconstruct trajectory and atmospheric states from sensor data. The process equations
describe the dynamics of the estimation states, and since this is a trajectory and atmospheric reconstruction
process, the process equations are equations of motion (EOM). The speci ¢ EOMs used here are based on
translational equations derived in Ref. 28 with the addition of rotational dynamics and dynamic equations
for freestream pressure and density. The complete set of EOMs can be found in Ref. 4. Discussion about
the development of the dynamic equations for freestream pressure and density as well as assumptions made
can be found in Refs. 3, 4, and 29.

The sensors used for the reconstruction process consist of IMU data, which includes accelerometers and
gyro rates, radar altimeter, and of course the MEADS pressure data. Gyro rates are used in the process
equations (as discussed in Ref. 4) and thus no measurement equations are needed for it. However, the other
three data types need some form of equation where the estimation state vector could be used to predict
measurement values. The measurement equation and the measurement sensitivity matrix for accelerometer
data can be found in Refs. 23 and 30. Refs 23 also gives similar measurement equations for the radar
altimeter. The measurement equation for the MEADS data consists of using the best estimated angle of
attack, sideslip angle, dynamic pressure, and Mach number, the locations of the ports, and a CFD-derived
pressure look-up table to predict the measured pressure at each port. Refs. 3 and 29 discuss this procedure
and Ref. 29 also shows a example of the pressure look-up table.

C. Simulated Trajectory

The Mars EDL data is simulated in this study to demonstrate the e ectiveness of the statistical reconstruction
methodology that can incorporate disparate data types and estimate trajectory, atmospheric parameters
and aerodynamic coe cients. The Program to Optimize Simulated Trajectories I (POST2)3! was used to
generate a nominal MSL-like trajectory that is presented in Figure 4. The trajectory is for a 4.5 m 70-deg
sphere-cone with the same geometry and speci cations as MSL. This trajectory represents the truth data
and the reconstructed values are compared with it.

The POST?2 outputs are used to generate Inertial Measurement Unit (IMU) data, radar altimeter mea-
surements (when the altitude is less than 10 km), and MEADS-type data (when the dynamic pressure is
greater than 850 Pa.) using the same measurement equations that are used in the estimator but with random
noise added to the measurements. The 850 Pa. limit mimics the time frame in which the actual MEADS
is going to take its data.? Future instrumentation with more sensitive sensors may not be limited to this
range and vehicle trajectories might allow the atmospheric data system to take measurement beyond simply
the supersonic phase of the ight. However, for this study, this restriction was maintained. The plots for
angle of attack, sideslip angle, and dynamic pressure are limited to a time window of 0 to 200 seconds since
the MEDLI system roughly operates in this time period. Refer to Ref. 4 for information regarding the noise
added to the dataset.
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Figure 4. Simulated trajectory used for creating the dataset.

D. Sample Reconstruction Results

Sample results from the EDL reconstruction methodology are shown in Figure 5. The reconstructed param-
eters shown are the best estimated angle of attack, sideslip angle, and dynamic pressure. These three states
are parameters of interest for the MEADS science objectives and the residual between the best estimated
values and the actual values of these parameters can serve as an objective function with which to optimize
the air data sensor locations. The results shown in Figure 5 are for the time frame when dynamic pressure

is greater than 850 Pa., but the reconstruction occurs from atmospheric interface to touchdown.
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Figure 5. Example of results from the EDL reconstruction process. Actual trajectory (solid, black), best estimate
(dashed, red).

IVV. Optimization Method

The previous section described the EDL reconstruction procedure which provides the quantitative infor-
mation for the optimization algorithm. This section describes this optimization algorithm in more detail
and presents the objective function used to optimize the placement of the atmospheric data system sensors.

Since multi-objective optimization procedures are used, the problem involves nding solutions that repre-
sent tradeo s among con icting objective functions. The set of all of these solutions represent non-dominated
solutions in the design space, and the set of non-dominated solutions are referred as a Pareto frontier. The
concept of domination states that a point x; dominates another point X, if the objective function vector f
of X1 is no worse than the objective function vector of x, and the function value X; is strictly better that the
function value of x, along at least one dimension of the objective function.*® All of the points that are not
dominated by any other point in the design space are members of the Pareto front. The optimization routine
used here is a variant of the Genetic Algorithm. As mentioned earlier, these techniques are bene cial in
function spaces that are multi-modal and these algorithms can also nd many points of the Pareto frontier
simultaneously instead of nding one point of the Pareto frontier at a time like traditional optimization
techniques.

A. Cost Function

The main objective in optimizing the layout of the pressure port system is to enhance the accuracy of the
reconstruction process. Since the EKF is being used as the statistical estimator, then the reconstructed
parameters are theoretically supposed to be good estimates of the true states based on the dataset that
is available. So the goal of the layout optimizing exercise is to choose the number of transducers and the
locations of the sensors so that the measurements themselves would be the optimal dataset to reconstruct
the ight parameters of interest.

For the MEADS project, the main parameters of interest are the dynamic pressure, angle of attack, and
sideslip angle. So the cost function (J) is represented by the residual between the estimated ight parameters
and their true values. This is similar to what Deshpande et al.*® used for the PD/ADS optimization; however,
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the past study used some form of a weighting factor to choose which parameter of interest is more valuable,
which adds some subjectivity to the optimization exercise. More importantly, the parameters being estimated
were static and not changing with time, unlike the case for the trajectory reconstruction of a Mars EDL
vehicle. For this exercise, the cost functions for each parameter are combined into a vector that will be
optimized using Pareto dominance.

The residuals of the parameters are calculated at certain Mach numbers along the trajectory and the
maximum residual is reported as the objective function value. The residuals are also normalized by the
MEADS science objective value, i.e. 2% for q4 and 0.5 deg for and . Thus, an objective function
value between 0 and 1 signi es that the port combinations produce data that can be reconstructed by the
EKF to within MEDLI science objectives. The cost function is stated in Eqgs. (2), where i is an index
for the m-length Mach number vector over which the residuals are calculated. For this objective function
M1 i = [14; 16; 18; 20; 24], which all fall within the timeframe the MEADS instrument operates.

mind =min[J ; J; Jg,] (22)

J =nfx _fecomi  truei (20)
i=1 MEDLI objective

J = niBx _recomi  truei (20)

i=1  MEDLI objective

(94;recon:i q:L;true;i):q:L-true'i

53
X

oo = (2d)

i=1 01 ;MEDLI objective

Additionally, some geometric constraints were added to the problem. The port locations were restricted
to within a 2 m radius on the forebody (to restrict sensors on the vehicle shoulder) and the ports had to be
at least 0.125 m (5 inches) apart.

The objective function in this section is not unique for the air data sensor optimization procedure; in fact,
later in this paper, another optimization procedure is discussed that is faster than the procedure from this
section. Thus, it should be emphasized that this procedure is merely the rst attempt at sensor optimization
and more work needs to be done to improve this methodology while characterizing the most appropriate
objective function.

B. NSGA-II

The optimization technique used for this exercise is the Non-dominated Sorting Genetic Algorithm 11 (NSGA-
11).1%:32 This optimization technique has been used extensively to solve many multi-objective optimization
problems and is considered a baseline technique in the eld.3®

The optimization algorithm consists of three basic steps: initialization, sorting, and reproduction (see
Fig. 6). The optimizer initiates a randomly generated population of feasible port locations and then assigns
them into di erent fronts based on the objective function values. Also, the crowding distance in the objective
function space between di erent design parameters is also calculated. In successive iterations (or generations),
the optimizer uses an elitist technique to pair the most Pareto dominant parents to produce children using
tournament selection, crossover, and mutation operations and the process is repeated for a user-de ned
period of time. It is expected that the nal generation will be close to the theoretical Pareto frontier.3?

Reproduction
\nmallz_e Ly Ev_aluate Rank_ i Toumar_ﬂenl L s Crossover —» Mutation

population obj. func. population Selection i
Evaluate

No - bj. i
Sorting obj. func.

Yes || Elitist Selection of e Rank . ‘

P New population population [~

Figure 6. Flow diagram of NSGA-II.

The algorithm handles constraints during the tournament selection process. The rule, in order, is to
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select the best solution among two feasible solutions, choose the feasible solution, or to choose the solution
with the smallest constraint violation.*® The optimization routine was programmed in MATLAB R .34

V. Results

The main objective of the optimization methodology is to identify (1) minimum number of ports needed
for accurate reconstruction and (2) the optimal location of the ports for each con guration. As two of
the parameters of interest are orientation angles, the minimum number of ports studied are the two port
con gurations, since angular value estimation requires at least two points of reference. For consistency with
the MEADS con guration, seven ports serves as the upper bound.

The study is broken into three steps. First, single-objective optimization is performed to identify the
best con gurations for systems for a given objective function and number of ports. Next, two-objective
optimization is performed on each pair of objective functions to study the tradeo s in the design space and
visualize the Pareto frontier environment. Finally, all three objective functions are simultaneously optimized.

A. Single-objective Optimization

The optimizer is used to nd optimal con gurations that minimize each objective functions for two, three,
four, e, six, and seven port con gurations. Convergence to the global minima cannot be guaranteed due
to the stochastic nature of the optimizer; thus, each optimization is repeated at least 10 times using di erent
random number seeds. Also, each optimization run is continued for at least 100 generations, as it was found
that the minimization routine converged to the lowest possible function values by at least the 100th iteration.
The maximum population size was limited to 32 members to limit number of function calls per generation;
however, smaller population size leads to the Pareto frontiers that maybe sparse. Thus, future work will
rectify this by increasing the population size.

Figure 7 shows the minimum objective function value found using single-objective optimization for a
speci ¢ number of ports. Additionally, Table 1 summarizes the objective function vector for each of the
single-objective optimization points noted in Fig. 7. Recall that the objective function values were normalized
so that values between 0 and 1 signify that a con guration meets the minimum MEDLI objectives. One sees
that the optimal con guration for one objective function value often leads to unacceptable levels in the other
objective functions. As a baseline, reconstruction of the simulated dataset using the MEADS con guration
yielded [J ; J; Jga] = [0:1657; 0:0321; 0:7876].

0.1 - - 0.1

2 4 6 2 4 6
Num. of ports Num. of ports Num. of ports

@ (0) (© a1

Figure 7. Results of single-objective optimization. MEADS (red star) in q4 plot.
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Table 1. Objective function vectors for the results of single-objective optimization.

Num. ports 2 3 4 5 6 7
Min. J

J 0.06246 0.05757  0.05408 0.03862  0.03687  0.03397

J 2.217  0.4953  0.24531 0.0486 0.052595  0.06094

Jg 1.033 1.0413  0.7539% 1.059 1.102 1.0787
Min. J

J 6.366 2.932 0.6574 0.1629  0.18525 0.1389

J 0.03976 0.02527  0.02052  0.01624 0.01673  0.01659

Jga 1.155 1.176 1.0378 1.0558 0.9786 0.6746
Min. Jq]_

J 0.83212  0.1032 0.1072 0.1256  0.09104 0.082205

J 1.701 0.57362 0.096619 0.083149 0.072913  0.04621

Jga 0.7877  0.5123 0.5237 0.5187 0.5023 0.4621

Figure 8 shows the optimum con guration for some of the single-objective results. The minimum dynamic
pressure (Fig. 8(a)) result shows that the optimum con guration is to place the two ports in the stagnation
region, similar to what MEADS has done. Of course, the improvement in the pressure estimation comes at
the cost of worse sideslip angle and angle of attack detection. The minimum sideslip angle solution (Fig. 8(b))
spreads the four ports across the horizontal axis, but the ability to reconstruct dynamic pressure and angle
of attack deteriorates. The seven port minimum angle of attack result (Fig. 8(c)) is interesting as the
con guration puts the pressure transducers on the spherical nose cap making the con guration sensitive to
changes in the angle of attack, but also worsening the dynamic pressure reconstruction ability. Surprisingly,
since the ports are spread around the spherical nose cap, there is some sideslip angle resolution. It is likely
that the optimizer was trying to co-locate some of the sensors at the same spots but was prevented by the
minimum distance between sensors constraint.

X (m) X (m) X (m)

(a) Two port min. Jqa. (b) Four port min. J (c) Seven port min. J , MEADS
(red square)

Figure 8. Some representative con gurations from single-objective optimization results.

B. Two-objective Optimization

The results of the single-objective optimization showed that con gurations that maximized the reconstruction
capability of one parameter penalized the estimation of the other parameters. These tradeo s are visualized
using Pareto fronts developed from the results of two-objective optimization as seen in Fig. 9. Zoomed insets
of each pair of two-objective optimization are also provided.
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Figure 9. Results of two-objective optimization.

It should be emphasized that although the Pareto frontiers of cases with di erent number of ports are
plotted together in Fig. 9, in reality each Pareto frontier is a solution to a separate optimization problem
with a separate design space. For example, there is no relation between the J  J Pareto frontier for the
two port case and the three port case. One expects that as the number of ports increase the overall objective
function values will decrease, but it is not as if the three port case builds on the result of the two port
Pareto frontier case. Each optimization scenario is randomly initialized and the optimization procedures for
di erent number of port cases do not share information with each other.

The Pareto frontiers in Fig. 9 do coalesce onto each other as the number of ports increase. This behavior
signals a diminishing return type of behavior when the number of ports are increased. Upon inspection of
the inset gures, it appears that when looking at and reconstruction performance, the six and the seven
port results are close to each other. There is little gained in adding an additional port to go from six to
seven ports for this trade. Looking at the other two trades, the ve port solution appears to match the
six and seven port results in the and g4 trade but remains far o from the six and seven port results in
the and qq trade. The diminishing return thus appears to be close to the six port Pareto front. Recall
that the MEADS con guration yields [J ; J ; Jg;a] = [0:1657; 0:0321; 0:7876], which puts that
con guration in the dominated solution space of the seven port Pareto frontiers, albeit not too far o the
front. Of course, it should be stressed that this observation is for the current objective function only, and
other formulations of the cost function might improve the ranking of the MEADS con guration.

C. Three-objective Optimization

For the nal optimization case, all three objective functions were minimized simultaneously by the NSGA-I11
optimizer. Figure 10 shows the optimization’s results for the various number of port cases. Additionally, the
MEADS baseline is also shown on the seven port plot for comparison, even though it is not a Pareto-optimal
solution according to the optimization.
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Figure 10. Results of three-objective optimization.

Some representative seven port cases from the Pareto-optimal solutions are shown in Fig. 11 and their
objective function value is compared to the MEADS con guration in Table 2. The rst case shows a
con guration that improves the angle of attack and sideslip angle capabilities from MEADS, but isworse 0 in
estimating the dynamic pressure. The second gure is the opposite case, as dynamic pressure reconstruction
ability improves due to extra ports near the stagnation point, but decreases angle of attack and sideslip
angle estimation ability. Through an optimization exercise such as the one conducted in this paper, an
atmospheric data system designer can decide which way he wants to move in the design space.

X (m) X (m)
(a) Case 1: Lower J and J (b) Case 2: Lower Jqa

Figure 11. Some representative con gurations from three-objective optimization results. MEADS (red square), opti-
mized (black diamond)
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Table 2. Comparison of seven port representative cases with the MEADS con guration.

Case 1 Case 2
Value % Di . MEADS Value % Di . MEADS
J 0.06608 -60% 0.22787 +38%
J 0.015924 -50% 0.16001 +398%
Jga  0.934463 +19% 0.541879 -31%

VI. Observability-based Objective Function

The objective functions used so far in this paper and in the work of Deshpande et al.'® have used the
residual between the reconstructed parameters and the truth to drive the optimization process. However,
since the objective function consists of an inverse estimation procedure, the function could be de ned in a
way to maximize the observability of the dataset. Observability, in estimation theory is the concept of how
well the state vector (parameters of interest) can be deduced from the outputs.?® Observability matrices
are hard to calculate for non-linear, time varying system, but the measurement sensitivity matrix, H, seen
previously in the algorithm for the EKF, serves as a good surrogate. The measurement sensitivity matrix
is the Jacobian matrix of the measurement with respect to change in the state vector. The state vector of
interest for the MEADS case is of course x = [ ; ;q+]" and the measurement is the n-number of ports
pressure data. The objective function J could then be de ned as shown in Eqgs. 3 where the Jgps is to be
minimized. The 3 3 matrix C is a surrogate of the innovation covariance matrix that is seen in Least-
Squares estimators and in the Kalman gain (see Eqg. 1b) and gives a metric for estimating the observability
matrix. The same geometric constraints as before (2 m radius limit and 0.125 m minimum distance between
ports) are also applied.

P .
H=-— i1i=1:5n 3a
ax b (3a)
C= HHT * (3b)
Ci. Cs. Cs:
Jobs = — 11 + 2;2 + 33 (30)
MEDLI objective MEDLI objective ql;MEDLI objective

The objective function above was tested at various MSL, ight-relevant conditions as summarized in Ta-
ble 3. A baseline case of the 7-port MEADS sensors is given as an initial condition and then a MATLAB R 34
provided Sequential Quadratic Programming tool is used to solve the minimization problem. Since a gradient-
based optimization procedure is being used, it is possible that the optimization procedure can be stuck at
local minima. Further study will involve using this procedure with the NSGA-II algorithm. Although this
procedure does not give Pareto frontiers of possible port locations, the optimization is quick. Each function
call in this case takes 10 ° seconds, while the optimization procedure involving a entire trajectory recon-
struction and then computing the residual between estimated and true values needed 25 seconds per run as
written in MATLAB. Hence, a non-residual objective function like Jops 0 ers an advantage in computation
speed.

Table 3. Flight-relevant test conditions for Jops.

CaseNo.| 1 2 3 4 5 6 7 8 9
M1 28 28 28 19 19 19 8 8 8
g1 (Pa) | 850 850 850 16000 16000 16000 6000 6000 6000
(deg) | 24 20 -16 24 20 -16 -24 20 -16
(deg.) o o0 2 0 0 0 1 0 0

Figure 12 shows the results of the optimization procedure. Since a gradient-based optimization procedure
is used, the optimized values stay around the same basin of attraction as the initial guess. However, it is
interesting to note that when values are non-zero, the optimized con guration deviates signi cantly from
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the MEADS con guration as seen in the gure for case 3. These deviations underscore the need to conduct
physics-based optimization exercises to optimally place atmospheric data system sensors. The MEADS
con guration seems to work well for situations with = 0 deg. and high M4 , but any deviation from those
conditions, which is expected in a time-varying trajectory, leads to o -optimal behavior from the MEADS
con guration.

Y (m)

X (m) X (m) X (m)
(a) Case 1 (b) Case 3 (c) Case 4
0.1 -
—— MEADS
oosl -\ = Optimized |,
5 :
B 0.06) o\ SERERRRERRRRRER
= z
5 :
B 0.04) N\
U -
0.02f o N\ SRTERERTIRRRENE
: : - : : : : - : : 0 :
-2 -1 0 1 2 -2 -1 0 1 2 0 5 10
X (m) X (m) Case Number
(d) Case 6 (e) Case 7 (f) Objective function values

Figure 12. Results of observability matrix based optimization for seven port con guration. MEADS (blue circle),
Optimized (red square).

VII. Conclusion

Mars EDL design contains large uncertainties in the knowledge of atmospheric properties and aerody-
namic coe cients of the vehicles. A major element of the di culty has been that past EDL ight datasets
have not allowed atmospheric and aerodynamic parameters to be independently observable. The MSL dataset
includes pressure data from an on-board atmospheric data system that can allow separation of aerodynamic
and atmospheric uncertainties; however, the design of the atmospheric data system was not optimized using
a physics-based optimization routine. In fact, there is little work in the literature regarding optimization of
sensor placements for atmospheric data systems.

This paper introduces two possible optimization methodologies that could help designers plan the quantity
and the locations of pressure transducers to reconstruct EDL ight parameters of interest such as angle of
attack, sideslip angle, and dynamic pressure. The rst method presented uses the residual between the
best estimated trajectory from a given dataset and the true parameter values to optimize the location
of the ports. Since the design space is multi-modal and multi-objective, an evolutionary algorithm that
can handle multiple objective functions has been used to show results for single-objective, two-objective,
and three-objective optimization results. These procedures give representative port con gurations that can
improve reconstruction performance from the MEADS baseline. Additionally, an observability matrix based
optimization method is also presented to allow design space exploration in a computationally faster way.

This paper advances the state-of-the-art in sensor placement problem, speci cally for atmospheric data
system optimization, and introduces residual and non-residual based optimization methodologies that can be
bene cial to the designer of future Mars EDL atmospheric data systems. The methodology of this paper can
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be used to nd the design parameters that provide the optimized con guration of atmospheric data sensors
without assuming a priori any weighting function or subjective criterion. Any subjective weighting criteria
can be applied during post-processing of the data without having to re-run the optimization procedure. The
optimization technique shown here together with the Pareto dominance concept allows a designer to locate
most of the best con gurations in a short period of time and thus allows for the optimal placement of sensors
hitherto rarely discussed in the eld of atmospheric data systems.
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