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SUMMARY

One serious difficulty in the precise forming of
metal members arises from the phenomenon téfmad "spripgback."
Springhack, an elastic phenomenon, is the tendency of a bent
member to return to its original shape upon removal of the
forming forces.

The desigr of forming tools to produce accurate
bends in metal parts is largely a trial-andéerrOr process
because of this springback phenomenbn. Althoﬁgh'sevaral
analyses of springback have been published, they generally
either are not sufficiently accurate oé are very time-
consuming when applied to actual conditions. in this
paper, it was desired to develop a simplified mathematical
analysis of springback and.to 1nvest1gat; the applicabhility
of two different analytical approximations of the stress-
strain curve to this analysis. |

Papers presenting analyses of springback anq experi-
mental springback data and some investigations of bending
of metals in the plastic range were listeq and briefly
discussed.

A general expressiah for springback was derived for
an initially straight, unifo?m member undergoing pure

bending, using the major assumptions of the classic beam




theory. The general expression for springback was applied
- to the case of”a rectangular cross-section.

A straiéht-line—segment and an exponential type
approximatién of the stress-strain curve were chosen, and
each was applied to the springback relation developed.

The two approximations de:ived were applied to three

materials for which both stress-strain curves and springback

data were available-~-2024-T, 6061-T6, and 2024-0 alumiﬁum
alloy sheets. Comparisons were then made between the
approxiﬁations derived, available test data, and three
previously published theories. It was found that both
#pproxiﬁations were very nearly equal except for large bend
radii, where the straight-line segment is not valid. It was
also found that thke approximafions'presented were more |
accurate than two of the other analyaés conéidered. They
were only slightly less accurate than the other analysis
discussed, which was developed for 2024-T Alclad sheet.

| It séems best to use the straight-line approximation
where applicable, since this_felation requires less cal-
culation than the exponential approximation. However, for

large bend radii or where. complete stress-strain durves are

not available, the exponential approximation is recommended,




CHAPTER I
INTRODUCTION

The Problem of Springback in Metal Forming.--The fabrication

of many commodities and structures in this industrial age
requires the bending of metal parts to a closely specified
shape or coatour., This is particularly trﬁe in aircraft
manufacture, since the majority of the structural parts of
a modern aircréit are sheet metal members which must be
form§d with a high degree of accuraéy.

Bending of mefal members, while seemingly a simple
operation, is subject to manf difficulties in actual prac-
tice. One of the greatest of these difficulties lies in a
phenomenon of elastic materials termed springback. Simply
stated, springback is the tendency of a bent member to re-
tufn to its original shape upon removal of the forming
forces. The immediate consequence of springback is that
the contour of a member which has been bent is not the con-
tour produced by the forming equipment, but is somewhere
intermediate to the formed contour and the original contour
of the member. In general, the amount of springback varies
with the shape of the member,_the material of the member,

and the method of forming.




The usunal practice in the fabrication of bent parts
is for the tool designer, relying upon his past experience
with mefals and metal-forming equipment, to estimate as
closely as possible the amount of springback for each par-
ticular new part and method of forming. The toel deéigner
then attempts to compensate for sﬁringhack in some manner,
such as overbending, in designing tools for the new-part.

If his estimate of thé.amount of springback is excessively
in error, such that the final part is not within manufac-
turiﬁg folerances, each part must be finish-formed by hand
or the ferming toolé have te be corrected. The COrrectién
of forming tools remaihs a trial-and-error process in most
Icasea. ‘Since correction of a p;rt coniour by hand is an
expensive and time-consuming process, and since tool making
and reworking is also very expensive, it would be advanta-
geous to be able to prediet accurately the amcunt of spring-
back for any given part and method of forming.

Several attempts have been made to analyze the phe-
nomenon of springback in bending. In general, the relﬁtions
which have been found to express the amount of springback
are quite complex and therefore difficult toc evaluate in any
particulaf"casa. The more complete and thorough of these
analyses involve trial-and-error nuﬁerical solutions, which

are laborious and time-consuming. Other analyses, which

enable springback to be found by direct calculation, include




untenable assumptions in their derivations and yield results
which do not usually compare with actual values with suffi-
cient accuracy for precisibn‘members, as in aireraft
fabiicatibn or.high—speed tﬁrbo—machinery.

Purpose and Scope of Investigation.--The purpose of this work

is to present a simplified mathematical analysis of the
bending of metals in the plastic range and the phenomenon of
springback.'For simplicity, the assumptions of the ciassical
beam thebiy;of mechanics are used, and only the case of pure
bending is considered. Two different analytical“approxi-
mafions to the stress-strain curve of the simple tension-
compression test are used in applying the results of the
analysis to several commonly used materials.

Since considerable experiﬁental data on springback
exist in the literature for stfaight bends on rectangular
cross-sections, no experimental work was performed in
connection with this investigation.

Comparison is madé between several previcusly pﬁbliahed
papers on springback and the analysis presented here, and
between the results of the various theories. Comparison is
also made between the two stress-strain approximations used
in thé'present work and between experimental data drawn
from the literature. -

Review of the Literature.-~Some of the investigations of the

bending of metals in the plastic range which have been




published in recént years are those of Cozzone (1)*, Marin and
Cotterman (2),.ngood (3) (4) (5), Wang (6), Williams (7),
Swift (8), Sachs and Lubahn (9), Sachs, Lubahn, and Taub (10)
(11), and Lubahn and Sachs (12).

The first eight of these papers make use of the basic
assumptions of the classic heam theory, neglecting stresses
cthér than the normal stress in the longitudinal direction
of the bent member and néglecting the effect of any change
of cross-seétional shape during bending on stresses within
the member. Cozzone and Wang ahalyzed bending for the
extreme fiber stresses and for the applied bending moment
for given curvatures; Marin and_Cotterman, Osgood, and
williams"analyzed hending for the extreme fiber strains and
applied Sénding moment for given curvatures. Harin and
Cotterman and Osgood also derived relations for - small
deflections in bending. Swift analyzed pure bending with a
superimposed constant longitudinal tension for the thinning of
metal under simple and reversed bending. Cozzone replaced
the tensidh and compression stress-strain test curve by a
trapezoidal diagram (see Fig. 6 (e)), egqual in tension and
compression, and assumed that the neutral axis in hending
passes through the centroid of the member. Marin and

Cotterman replaced the stress-strain curve by a straight line

*Figures in parentheses refer to the Bibliography at
the end of this paper.




segment approximation (Fig. 6 (f)), and obtained excellent
agreement of their theoretical results with experimental
data. Osgood assumed a stress-strain curve of the form of
Figure 6 (d), and one of the form* e = (s/E) + K(s/E)?, where
K and n are empirical constants. Swift assumed a stress-
strain curve of the form of Figure 6 (e). Wang and Williams
recommended.graphical integration of the actual'streés-
strain curve for a solution, but Wang also presented an
analytical.representation of the curve which appears to
give good results as compared with the actual test curve.
Sachs and Lubahn (9) made a rather thorough analysis
of pure bhending under conditions of plane strain (i;g;,
bending'of an infinitely wide sheet), and Sachs, Lubahn, and
Taub (10) performed a similar analysis of pure bending under
conditions of plane stress (i.e., edgewise bending of an
infinitely thin sheet). Lubahn and Sachs (12) presented the
material of these two papers in céndensed form. .Both these
analyses assumed a perfectly plastic material (Fig, 6 (c)) and
the validity of the distortion-energy theory and considered
only'rectangular members. They used a graphical-numerical
method of successive approximations to determine relations
between the inner radius of curvature of the member and the

height of the member, the position of the neutral axis, and

*For the definition of symbols used, see the List of
Symbols, p. vi. '




the lateral, tangential, and radial strain distribuﬁions.
Sachs, Lubahn, and Taub (11) conducted an experimental
investigation of'bending.to verify certain of the results
of the above analyses and to attempt to isolate certain
secondary variables in bending,

Investigations and analyses of springback in the
bending of metals have been published by Strasser (13),
Hazlett and Schroeder (i4), Lee (15), Sturm and Fletcher
(16), Schroeder (17), Qestreich (18), Brown, Binder, and
Franks (19) (20), Dorn, Jelinek, and Ballaseyus (21),
Schroeder (22), and Gardiner. (23).

Strasser listed some of the determining factors ofl
springback in die forming and outlined several mefhads for
reducing springback. Hazlett and Schroeder gave a qualita-
tive andlysis of tests made to lsolate the variables
affecting'springback of rubber~formed flanges._ Lee proposed
the émpirical relation (0 - @) = K t® Rq™, where K, n, and m
are empirical constanps for any material, and gﬁ?évvalues
for tests made on 2024-0 and 2024-T Alclad sheets.

All the theoretical analyses presented are based upon
the basic assumptions of the classic beam theory of pure
bending. Sturm and Fletcher and Oestreich used a numerical
method of successive approximations, dividing the cross-
gsection into layers over which stress is assumed constant,

as given by the actual stress-strain test curve, and

assuming values of the displacement of the neutral axisg in




bending. Sturm and Fletcher assumed that the neutral axis
remains at the neutral axis in bending during springback,
while Oestreich assumed that the neutral axis is at the
centroid during springback, but displaced during bending.
Schroeder (17) presented a graphical-numerical method for
finding springback, using the actual stress-strain cﬁrve and
assuming that the neutral axis passes through the centroid
of the cross-section at all times. Schroeder (17) also
presented, without derivation, formulas for calculating
directly the springback of aluminum alloy and Alclad sheets.
Brown et al. used the analysis of Schroeder (17) to present
aligqﬁént charts to determine the final formed angle of a
bent part for various tempers of 18-8 and 17-7 stainless
steels. Dorn et al. presented a graphical-numerical method
for determining springback, using the actual stress~strain
curve and making no assumptions as to the location of the
neutral axis. Gardiner assumed an eiasto-plastic maferial
(Fig. 6 (dj) with equal properties in tension and compression
and assumed the neﬁtral axis remaing at the centroid of the
cross=section in developing a generalized method for finding
springback. Schroeder (22) investigated pure bending with &
| suparimposed congtant longitudinal tension to £ind the
springback in the plane of bending and the distortion
perpendicular to the plane of bending. He assumed a

plastic material with linear straln-hardening (Fig.we (e)),

and assumed that the neutral axis remaing at the centroid of

the cross~-section.




Considerable data on springback have been presented
in the literature, both results of tests on various materials
and data based on industrial forming experienée. Data for
alumipum alloys are piesented by Chapman, Hazlett, and
Schroeder (24), Schroeder and Hazlett (25), Lee (15),
Schroeder (17), Sachs, Doll, Seybolt, Meinel, and Clark (26),
and Sachs and Espey (27). Sachs (28) presents data for
aluminum alloys and various steels. Dorn, Jelinek, and
Ballaseyus (21) preseant detailed test results on six
magnesiun alioys at xoom and elevated temperatures,

Gardiner (23) gives test data for a variety of materials.




CHAPTER 11

ANALYSIS OF BENDING AND SPRINGBACK

Assumptions.--Let there be considered a member subjected to

pure bending in an axial plane which contains one of the
two prineipal axes of the cross-section.

The following assumptions shall be made, in accordance
with the classic beam theory of bending:
- (1) The conditions of stress and strain will be the
same on évery radial cross-section. This assumption implies
that every plane cross-section normal to the axis of the
member remains pl#ne and normal to the axis during (and
after) ﬁehding. Such an assumption is commonly accepted and
has been experimentally justified repeatedly for beams or
plates without shear loading,.és is the case in this
analysis, It is to be recogmnized that St. Venant's
Principle applies here also and that this assumption is not
strictly valid near the ends of the berd due to local
variations of the strain distribution,

'(2) The same stress-strain relation for each element
(or fiber) of the material holds in bending as in simple
tension and conpression,

(3) Each longitudinal fiber of the material behaves
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as if it were independent of every other longitudinal fiber.
This assumption implies that the behavior of every longi-
tudinal fiber is nof affected by iateral forces or by
shearing stresses between the fibers, While not strictly
correct, this assumption is a basic assumption of the classic
beam theory and gives a sufficiently close approximation to
actual conditions.

(4) The moduli of elasticity in tension and
compressioh are equal.

In addition to the foregoing assumptions, the
following simplifying conditions shall be imposed:

(5) The material is homogeneous, isotropic, and is
free from initial residual stress,

(6) The member has a uniform cross-gection.

(7) The member is initially straight.

(8) During unloading, each fiber follows Hooke's Law.

Bending Considerations.--Under the specified loading,
producing pure bending, the bending moment acting upon each
radial cross-section is constant along the length of the
member. 'According to Asaumptions 5 and 8, each portion of
the member bounded by equally-spaced radial planes is
identical. Therefore, all such portions deform equally under
a given moment, According to Assumption 1, during bending
each plane cross-section normal to the axis of the member
remains plane and normal to the axis of the member. Thus it

follows that each such cross-~section lies on the radius of
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curvature of the bent member and that the member is deflected
into a circular are. |

In each radial cross-section of the deflected member
there is a 1line, the neutral axis of bending,lwhich contains
- all fibers in a state of 2ero strain and which is perpendic-
ular to the plane of bending. The summation of all such

lines is the neutral surface in bending, traces ot which are

denoted N-N in Figure 1. Since each fiber in the neutral
surface is in a state of zero strain and since, by Assumptioh
3, each fibér is independent of‘all others, the.sfress acting
on each fibér in the neutral surface is zero. |

Figure 1 shows an element of the member deflected so
that the neutral surface in bending describes §n arc of
radius r. Cross-sections A-A and B-B, normal to the neutral
surface, subtand the angle 6. The length of any fiber in the
neutral aﬁfface is ¢. By Assumption 7, since,such'a fiber
is unstrained, the original length of all fibers sﬁbtendad
by the angle_niis also c. | | |

- From Figure 1

c = rg (1)

Also, the length of any fiber between'A-A and B-B, denoted

by ¢y, is

¢ = (r + y)o | (@

Thus the conventionﬁl strain, e;, of any longitudinal fiber
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after bending is, by definition

_°1 _(r + MO 1
91-6"""1" Fg"‘"

or
ey = y/r | @

From Equation (3) it is seen that the maximum longi-
tudinal strain, ey, and the minimum longitudinal strain,

e., of the hent member are given by

ey = to/r and e, = -t} /r {4)

For static equilibrium of the deformed member, the
summation of the stress forces across any cross-section

must be zero at all times. That is

Sgsldydz =0 (5)

across any cross~section, where 8, is the stress acting at
any point in the bent member,

Alsq for static equilibrium, the summation of the
moments of all stress forces acting on any cross-section
nust be equal to the moment acting on that cross-gection,
Since the loading 1s restricted to pure bending only, the

acting moment, M, is constant along the length of the

member. Thus,
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SSslydydz =M (6)

across any crogse=section.

By Assumption 2, any fiber which is loaded such that
its deformation is always increasing in magnitude will
exhibit the same relatiom befween the strain of the fiber
and the stress within the fiber as is given by the stress
versus strain curve of the simple tension-compression test.
The tensién-compression test indicates tbhat the stress
within a deformed fiber is a single-valued function of the
strain which the fiber undergoes.  This }elationJmay be

represented by
s = £(e) | )

where the indicated function defines the stress-strain curve
of the simple tension-compression test, In Equations (5)

and (6), the stress is given by quation (7) as
8 = f(e1) (8)

since the deformation of the member is achieved by bending
in one direction only.

- Springback Considerations.-~A member loaded in tension (or

compression) will exhibit a stress-strain relation like that
given by the curve OAB in Figure 2. If such a member is
loaded to point A and the load is then removed, the

resulting stress-strain relation will be given by a curve
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Figure 2,
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such as AC. Various experimenters have demonstrated for
many metals that the curve AC is essentially straight for
complete unlcading and even for comsiderable reversed
loading and that the slope of the curve AC 1s approximately
- equal to the modulus of elasticity, E. Hence, it is here
assumed (Assumption 8) that the path followed during
-unloading is given by the dotted line AD of:Figufe 2,
Therefore, by Assuﬁptions 2 and 8, it is seen from
Figure 2 that on udioading a fiber which has been deformed
to a strain e; at the stress 51, the following relation
exists:
| ey>eg if €1>0
Sp = 81 - E(ey - e2) where : (9)
ejseg if e3<0
It is clear that if a fiber which has been deformed
to a strain e by a stress s)] 1s further deformed in the
same direction to a strain ©q, the final stress acting on
the fiber is still given by the stress-strain curve. That is

8;x 0y if e1>0

sg = f(eg) where (10)

ej>>eg if e;=0
Now consider that the member has been deformed into
an arc such that the neutral surface in bending has achieved
a radius'f,'as previously discussed. If the loading on the

member is now removed, the bending moment M acting on the

member decreases to zero throughout the lengih of the member,
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and the member will spring back to some smaller curvature.
The same arguments previously used assure that the final
form of the member is a circular arc.

Exactly as occurred in bendiﬁg, in eack radial cross-
section of the member after springback there is a 1line, the
neutral axis of springback, which is perpendicular to the
plane of bending and which contains all fibers whose state
of strain after springback is the same as before springback.

The summation of all such lines is the neutral surface of

springaék,'traces of which are denoted L-L in Figure 3.

In-Figure 3 the surface N-N is the neutral surface in
bending, r is the radius which this surface obtains in
bending, and cross-sections A-A and B-B subtend the angle @
after bending. During springback, the cross-sections A-A
and B-Bcefféctively rotate about their neutral axes of spring
back to the positions denoted by A'-A' and B'—B' respecfively.
In their firnal formed pogitions, after springback, these
crossfsectiéns subtend the angle @, and the_neutral surface
of springback has a radius of r'. |

Before bending, the length of any fiber between
cross-gections A-A and B-B, denoted by ¢, is given by

Equation (1) as
¢ =10 | (1)

After bending and before springback, the length of any

fiber between cross-sections A-A and B-B, denoted by ¢y, is
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Figure 3. Element of Member Before and After Springback
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given by Equatien (2) as

cq = (r + y)o _ (2)

After springback, the length of any fiber between the same
cross-sections (now in positions A'-A' and B'-B' respective-

1y), denoted by c,, is found from Figure 3 to be
cy = (r' 4+ 3y)0 (11)

Also from the figure, it is seen that for any particular
fiber '

d; +y' =1t +y (12)

Thus, from Equations (2) and (12)

cp = {r ¢+ y'+d; - ty)e | (13)

From the definition, the strain of any fiber before

springback, dencted by €, is

= g oliaa -y (14)
&y 5 ¢ ~*FFY¥ 1”0

Similarly, the strain of any fiber after springback,
denoted by €5, 13 given by

oy = 2(x' + yNg - 1 (15)

Since any fiber on the neutral surface of springback

has the same strain after springhack as before springback,

S
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for such a fiber €y = @9. Thus, substituting Equations (14)

and (15) for such a fiber (where y' is zero) yields

= ¥ -
4, -t =r'g-*¥ (16)

- Hence, substituting into Equﬁtion (14) yields

1 9
e, =FG 4+’ -1 an

From Equations (15) and (17) one obtains
e - ey = ?(1 D.)y'_ (18)

The quantity g/0 presents a measure of the springback
occurring between the cross-sectioné A-A and B-B, being the
ratio between the final,.or formed, angle to.the'bending
angle between these cross-sections. Since the member being
considered is uniform along its length and the loading on
the member is also constant aloﬁg the length, it follows
that the ratio 8o is a constant without regard to the size
of the increment of angle taken as ©.

If no springback should occur in the member after
unloading, %hen ¢ would be equal to & and the curvature of the
member would not change. However, if spriangback does occur, |
then # will be smaller than ©. Furthermore, it is known
from experience that after bending an originally straight
member to some curvature and releasing the member, the

curvature will decrease, perhaps even to zere, but the
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member will not acquire a resultant curvature in the

opposite directi_on from which it was bent. Therefore, the
quantity §/8 is always positive and has an absolute maximum
value of ﬁne.

Hence, since r is_, a positive quantity, according to

Equation (18)

ey >ey where yv'>0, : {19)
@y = @g where y' = 0, and

€< e, where y'<0,
From Equation (14) it is seen that

;>0 where y'> tl - dl’ (20)
e, = 0 where y' = t; - dy, and
e1<0 where y'< T

Using the inequalities of Equations (19) and (20), the stress
on any fiber after springback may be found from Equations (9)
and (1G). Thus,

Sp = 57 - E(e; - es), | {(21)

hepe) ¥'Z0 O ylty - dy, if t; - dj< 0

¥'SO or y'=ty -~ dy, if t; ~ dy>0
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s, = £(ey), (22)
- ' -
whered 1:1 dl;-gy =0, if tl dl:ﬁo
Osy'sty -dj, if t; - d1»0

Through the use of Equations (8),(14),(15), (16), and (18),

Equations (21) and (22) become, in terms of y°',

1 : E‘ g . .
s, = £ [—;(y' +d - tﬂ -7 - ~ (23)
y'=z0or y'sty -~ dy, 1f t; - d1=<0
where
Y'sSOor y'>>t) - dj, if t; - 4;=0
and
= r (1.9 '
ty ~d,<y'<0, 1f t3 ~ dy=<0
where 1 1 ’ 1 1
Oﬁy'si..tl - dy, if t) - d1=0

Where y' = 0, Equations {(23) and (24) both give
sq = f |:(d1 - tl)_/r:l _ (25)

Where y' = ty - d;, Equation (23) gives

and Equation (24) gives

sy = f [-}.-(1 - - 1:1):| (27)
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The occurrence of two expressions for the stress after
springback at y' = t1 - d, stems from the straight-line
approximation made im Equation (8). Consideration of the two
stress expressions of Equations (9) and (10) shows that if
the strain at the neutral axis of springback does not exceed
the strain at the proportional limit of the material, then
both equations are identical where y' is between 0 and

(t1 - dl)’ If this is true, then Equations (9) and (23) are
valid for all y°'.

The working assumption will now be made that the

strain limitation above is satisfied. That is, at y' = 0
|og| = |oa] = @ - tprs|ey| (28)

where ep is the strain at the proportional limit. 1f

(d1 - ty) 15 positive, e, is at the proportiornal limit in

P
tension; if (dl -~ t7) is negative, ey ig at the proportional
limit in compression.

For static egquilibrium after springback, the sum-
mation of stress forces across any cross-section must be

Zero, or
SS szdy'dz =0 (29)

Also for static equilibriuvm after springback, the summation
of the wmoments 0f all stress forces acting on any cross-
section must be equal to the moment acting on that c¢ross-

section. Since after springback the member is unloaded and
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the moment acting on any cross-section is zero,

SS szy'dy'dz =0 (30)

integrated over any cross-section.

Applying Bquation (9) to Equation (29) gives
Sgszdy'dz = SS s;dy'dz | (31)
-E SS (el - ep)dy'dz = 0
From Equation (12)_it is seen that
dy* = dy ' (32)

Applying Equations (5) arnd (32) and substituting Equation

(18), there results

.f_(l - g) SS y'dy'dz = 0 (33)

If the member is bent, then r is finite, and if springback
occurs, then the ratioﬁﬂ} is less than one. Therefdre,
except for the trivial cases of no bending and no spring-

back, Equation (33) reduces to
SSy'dy'dz = 0 {34)

Since Equation (34) states that the moment ¢f the
cross-sectional area of the member about the neutral axis of
springback is zero, then the neutral axis of springback

passes through the centroid of the crose-section. Further,
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since the neutral axis of gpringback is perpendicular to the
plane ceontaining one principal.axis of the cross-section,

the neutral axis of springback lies along the other principal
axis of the cross-section.

Applying Equation (9) to Equation (30) gives
_SS szy'dy'dz - SS sly!dy'dz ) (35)
-ESS.(el - ey)y'dy'dz = 0
Substituting'Equations (12)'and'(32) yie}dg
(tl- - dl)SSsldydz + SS sly&ydz _ (36)
-E SS(el - ez)y'dy'dz =0

Applying Equations (5) and (G)Iand substifuting Equation (18),

this radunes_to

L]

%(1 --g9 SS y'zdy'dz =N (37)

The_integral in Equation (37) will be recognized as
the moment of inertia of the cross-sectioral area about the
neutral axis of_springback, or about the pfincipal axis.

- Denoting this integral by Iz-and solving Equation (37) for
the springback ratio, it is found that

g _ , -Mr
g - 1 ET; (38)




26

Inspection of Equations (3), (6), and (8) reveals
that the bendihg moment M is a function of the bent radius
of curvature r, the shape of the cross-section of the member,
and the shape of the stress-strain curve of the material of
the menmber. _E is a function of the material used ﬁnd Iz is
a function of the shape of the cross-section., Therefore, it
has been shown thaf for the case under consideration, the
springback ratio 0/8 is a function of the bent radius of
curvature, the shape of the cross-section of the member, and
the molulus of elasticity and shape of the siress~-strain
curve of the material of the member,

Application to Rectangular Section,--The application of the

praviouély developed theory:to members having rectangular
cross—sqctions results in some simplification. 81ncé the
crosg-section is rectangular, the principal axes afe normal
to and bisect the sides of the rectangle and intersect at
the centroid, or the center of the cross~section, The width
of the member, or dimension normal to the pianb of bending,
shall be denoted as w, and the thickness, or radial dimen-
gior in the plane of bending, shall be denoted as t, as
indicated in Fiéure 4. Since no strains or stresses normal
to the longitudinal fibers of the members have been con-
sidered in this analysis, it is assumed that these dimensions
do not change during or after bending. Since the cross-
section is rectangular, the dimensions locating the neutral

axis of springback, d; and dg, are equal. That is




27

=
)
+
—t—p
...YL
b A
o
S
* - | .
——f ——— & +——1T >
P Q
+
By
I
— ™ I P
+ Ht
oy ET— e
dﬂ; o
[
— - -

Cross~Section of Rectangular Section

Figure 4.




28 .

dymdy = t/2 (39)

Writing Equation (5) and inseérting the limits of
integration as indicated by.Figufe 4 gives

w/2 .tz | _
sydydz = 0 : . (40)

Thus, integrating once and.simplifying gives

tz . ' _ '
' ' s, dy = 0 (41)
1 . .

Similariy,:Equitioh (6) as apbliéd_to a rectangular

cross-section. becomes

t, |
w S Bqydy = ¥ (42)
-ty _
For a rectangular section, Equation (38) may be

written

$§a1.222% | (43)

. Selution Ubigg Sfraightéhinb Approximation ofﬁstrésS—Strain
Curve .--An approxiuatian'to the.stress-strain curve as de-

termined from the simple tehsion-couprqaéion'tegt, consisting
' oi\four étraight-line segﬁénts, is shown in Figure 5.  Such

an approximation was assumed by Joseph Marin and F..D.
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Cotterman (2) in am analysis of ‘pure bending of rectangular
- beanms in the plastic rsnge and gave very close agreement
with their experimental data.

The curve as 1ndicated in Pigure § passes through the _
origin of ths-stress_versus strain plet. :the-values,El,.Ez,
e, sa,-Ei,fEé, e;, and_s; aré constants for materiafs in any
given condition. -

The equations defining the stress-strain curve of

"Figure 5 are

s = Eje, Os._sssea (44)
s = Eje, egsex0 -
s =8, * Ez(e - ea),-e;vea
- t 4 B! R - -t
s = sa + E2‘s ..ea), e<e]
Defining, by Equation (3), -
| Jq = Tre, andys = rs; - (45)
Equations (44) beconme
. X
s, = Byy/r, 0<y<y, | (46)
sy = Bjy/r, yi<¥y<0 |
S, =8, * B2y - Va)s Y2
T o
3 o '
sy = 84 + S2(y - yd), y=vd




31 |

It iq now desired to substitute Equations (46) 1n£o
Equation (42). Because of the nature of Equations (46), it
will be necessary to perform the integration indiéated in
Equation (42) over each region pf the stress-strain curve

separately. Hence, four separate cases occur,

- Case 1: t.z*"{"‘ Yo and -t3> y&
. -t == gt
Case 2: t2_""“<‘ ¥, and tl-': Ya

Case 3: tzaya aqd‘f'.-'='—t1>ya'_

Case 4: ty>y, and “t1<7y;

| 11 s, 1s regarded as.the_strqss at which deformafion
becomes plastic in tension aﬁd-g& as the stréss'at which de-
formation becomes plastic in compression, theﬁ:Caée 1
repquents pﬁrely elastic bpnding. Case 2 and Case 3
represent bending in whicﬁ one side of the member remains
completeiy elastic and the other side undergoes plastic
deformation in compression and tension_respactifély; Case 4
represents bending in which the extréme fiberSron:both sides
of the member undergo plastic deformation. Since Case 1

represents the trivial case of complete springback, it will

not be éonsidgred further. Case 4 represénté the most common

‘state in forming operations and thus-has the moét-practical

significance with respect to?sp:1nghack considerations.

The lattér éase will therefofe be considered here.
_Substitﬁting'Equations-(46)_inté Equation (42),

subject to the restrictions of Case 4, one obtains
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1:2 yv!
M=  g.ydy =W St 3 Eé( -¥") d | (47
=w 1 ¥dy = S YU -y, ydy )
-t1 --t1 -
0 ¥a
E] B
+ ;— 2dy + — yzdy
Ya 0
ty
Ey
[ —— - d
+ [sa + ya)} ydy
Ya

From Figure 5, it is seen that

Elea = 8, and Eie; = s;

or, substituting Equations (45),
- Tyt e 1
Elya/r =8 and Elya/r sa (48)

Integrating Equation (47), substituting Equations (48), and

simplifying gives

M s 2 o - _Ba 2 2
= a - - B S
8! 2] E 2
+ 2y,2 - 2§§y5. + ;g (2t, + y,) (ty ~ ¥,)
E$ 2

4 g;(3t1 -yt +y;
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Substituting Equations (46) into Equation (41),

still subject to the restrictions of Case 4, one obtains

t y?!
2 B! y
. 3 E{ _
s dy = 5' +:_Z(y - y')| dy « — ydy  (50)
1 a  p a ) r
"t "t AL
Ya t2
E] Eg -
+ ;—ydy + [fa * ;—(y - ya)} dy = 0
0 b :

Integrating Equation (50), substituting Equations (48), and
gimplifying gives |

224 )2 (t )y ¢+ | ie.y.- sty") (51)
Bty " Yal ot Saitg T V) v 58T SgYg

tfgt Ez ’ 2 -

It E2 iz not zero, the solution of Eguation (51) for
tz/r is
2
EE = 3& - f& + Sa | (52)
r r 2 EE' o
tet . . -
- "a |Ya _Ba¥a 4'285(t1 + vy | ¢ B vy (2
.EE r Sal TSa 3 EE r2
If E, is zero, them the solution of Equation (51) for t2/r

is




34

=

¥ s T o

2 %, .2 O

b i r

t 1 et ' ' . 1 2
2 == [Ya + Sayail— Sa [Ya * _t,l:I-.. E2 (ya' + tl)

From Figure 3 it is seen that
t/r = t,/T 4 ty/r (54)

The preceding equations contain four variables,

namely, M, t t,, and r. Three independent equations have

1°
been derived involving these variables: Equations (49), (52)
or (53), and (54). Thus, if one variable is specified, the
three applicable equations may be solved uniquely for the
remaining three unknowns. However, such a solution is ex-~
ceedingly complex and tedious. For praétical computation
purposes, it #ppeara simplér fo introduce three pa;hmeters,
tl/r, tzkr, and H/wfz.. Then, for any specified value 6!

tl/r, Equation (52) or (53), as the case may be, may be solved
for tz/r. Equation (49) may then be solved for H/wrz; and
Equation (54) may be solved for t/r.

Equation (43) may be written as

-
N

It is to be noted that E in Equation (55) is the actual
modulus of elasticity of the matérial, and is not necessarily

equal to any of the straight-line approximation parameters

El', E{, Ey, or EJ.
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Therefore, the springback ratio §/8 may be determined
for any particular ratio of.r/t by the numerical method
outlined above. The most practical method of computation is
to plot 46 versus r/t over a considerable range, by assuming
various values of tl/r to start the computation.

Solution Using Exponentlal Approximation of Stress-Straln

Curve.--Tsun Kuei Wang (6) proposed an analytical expression
as an approximation to the stress-strain curve as determined
by the simple tenaion—coﬁpression test. His relation applies
to those materials whose yield strengths are determined by
the 0.20 per cent offset method and has the advantage that
the parameters involved are easily determined. Wang's
expression for the tension curve, with typographical error

corrected, is
e = 5/E 4 e, ©Xp [F(s/su - 1)] s (56)

l1n (0.002/e;,)
sy/stl -1

vhere K =

Taking the ultimate compressive properties as equal to the
ultimate tensile properties, as is customary for wrought
ductile materials, the analogous expression for the com-

pression curve is

e » g/E « e, exp [F'(s/-su_- 1)] y - (B7)

1n (0.002/e,)

where K' =

8t/ -1
y u
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By Equation (3), Equations (56) and (57) become

y/r = 81/3 + e, exp [K(sl/su - 1?} , (58)
ln (0.002/e,)
where K = : , ¥=0
sy/su -1
and
y/r = SI/E - e, exp [K'(sl/-su - li] , {59)
in (0.00Z/eu)
where K' = : , ¥<=0
s}/-su -1

While Equations (58) and (59) do ﬁot'pasé through the origin
of the stress versus strain plot, and therefore form a dis~
continuous curve, their deviation from the origin is
negligible for all practical purposes. Therefore, it will be

assumed that for s, = 0, y = 0 for both equations in the

1
following derivation.

Equation (42) may be writien as

t .
. wS 2 s, ydy | (60)
-tl
t 0 s
w 2 Su’ 2 2 L
=g |87 - y'ds; - y dsy
s ,-t s 0
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where

sp = I(-t,/r) and s, = £(t,/r) | (61)

Substituting Equations (58) and (59), integrating, and

simplifying vields
M 1
¥ = (s - 8, ) : (62)
w? T ag? N 7 om
e

+ _Ez(suzxz - syKs ¢ auz) exp.[x(gg - 1{]

u 2.,2
4 EETz(sm K*

' 2 ' om_
+ s,K's, + 5, ) exp |K (___Su - 1)

-4-333(25HK - 8 ) exp [éxciﬁ - 1{]
4K u Su

2

. |
- %8 (35 K' 4+ 8,) exp [21(*(..2‘..-_ - 1):!
. 4K*" -8,

Eguation (41) may be written as

]
o

Substituting Equations (58) and (59), integrating, and

simplifying yields
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2
— (SH ) + ~u{smK - su) exp K(—— - 15] (64)

4+ EE(smK? 4+ 5,) exp [K'(——— - li]
K'

Since r cannot be zero, Equation (64) may be written

SHZ/ZE + e, (sH - su/K) exp [?(sm/su - 1{] .(65)

= sm2/2E - e,(sy + 8,/K') exp [K'(sm/-su - lﬂ
From Equations (58), (59), and (6l), it is seen that

tzfr

sy/E + e, exp [#(sk/su - li] - (66)

and

i

ty/r -s,/E ¢ e, exp [#'(sm/-su —_1{] (67)

Thé breceding equations furnish all the information
necessary to compute the springback ratio for any particular
case. However, the form of the equations does not permit the
springback ratic to be.computed explicitly. The simplest
method of attack, for p;aéticgl computation purposes,
appears to be as follows;

(1) Assume various values of the maximum and minimum
fiber stresses in bending, sy and sp. | |

(2) Plot curves of the left-hand side of Equation
 (65) versus s, and the right-hand side 6f-Eqﬁation (65)

versus s, on the same axes,.
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(3) VUsing the curves just constructed, plot a curve
of sy versus sy for which Equation (65) is satisfied.

(4) Compute M/wr2 ffom Equation (62), using various
values of Sy and the corresponding values of s found from
the curve of step (3).

(5) By Equations (54), (66), ahd {67), compute.t/r
for the paired values of Sy and s, used above,

(6)  Substitute into Equation (55) to compute the
springback ratio, and plot the curve of_the springback ratio
@0 versus r/t.

Change of Variable.~--Both analyses developed above give the

springback ratio as a function of the thickness and the bent
redius of curvature\of the neutral surface in bending. Such
results are of theoretical value, but, since the location of
the neutral surface in_bending.is not génerally known, it
would be preferable to determine springback in terms of a
part design parameter which can be easily determined.

Letting Ry be the bentlradius éf curvature of the inner-

most fiber of the bent number, it 1s seen from Figure 1 that

Rd + t]. - r _ (68)
Hence,
R r t ' -
d4..a-212 (69)
t t r -




Therefore, instead of plotting the springback ratio

against r/t, it would be of more practical value to compute

Rd/t in one additional computation and to plot the spring-

back ratio against Rd/t.
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CHAPTER 111
DISCUSSION OF RESULTS

General .--A general expression, Equation (38), which should
-applyrfo most engineering materials, has been derived, fe-
lating springback to the bent radius of curvature, the cross-
section, and the stress~strain diagram of the material of

the member. |

The springback ratio could be evaluated withédut
further approximation by using the actual stress-étrain
curve of a material to solve the equations of static equilib-
fium. However, in order to eliminate graphical infegrations,
this was not done in the present analysis. Inste#d, twb types
of analytical approximation of the stress-strain éurve were
chosen, and the general equation of springback was evaluated
for these approximations.

In order teo evaluate the springback of a material it
is necessary to know the typical stress-straih'curfa, in
bothitenéion and compression, of the material for the con-
ditioné under which it is to be formed. -Raquests for such
information on materials for which springback data are
available were made by the author to the following:

Aluminum Cempany of America

Kaiser Aluminum and Chemical Sales, Inc.

1
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Reyﬁolds Metals Company

Lockheed Aircraft Company, Georgia Division

Wright Air Development Center
None of the above organizations were able to furnish any
applicable data. The curves used in the calculations involved
in this investigation were those given by Sturm and Fletcher
(16). Although not giving complete data, these curves were
chosen as being the wost extensive and typicalldata found in
the literature.

Comparison of Results with Test Data.--For the three

materials investigated, the calculated springback ratio differs
from repdrted test data by less than 10 per cent. In general,
the calculated results agree with the test data within 5 per
cent in the regien of most severe bending, or smaller values

of the R4/t ratio.

It was found thgt both approximatiosns to the_stress-
strain curve gave substanti#lly the same results over their
applicable range and that the expomential approximation
yielded reasonahle.results over the range of vefy slight
bending.

| Although no effort was made to analyze the bending of
cladded materials, the calculated results for bare materials
agree reasonably well with available test data for 2024-T
Alclad and 2024-0 Alclad sheets.
A greater difference exists between the calculated

results and the test data in the case of 2024-T. It would
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appear that this variation is attributable to the use of a
non-typical stress-strain curve in the calculations., Altkhough

it is apparent from data in the Alcoa Aluminum Handbook (29)

that the curve used is not typical, this curve was the most

accurate and complete one avallable to the author.

Comparison of Results with Other Theories.-~The results of
the fwo approximations presentedlhere were compared“ﬁith fhe
theories developed by Schroeder (17), Schroeder (22), and
Gardiner (23). Schroeder (17) published an equation to
determihe the springback of 2024-T Alclad. His equation
requires double graphical integfation of the stress-strain
curve, & tediocus process, for a sclution and applies toe only
one nmaterial. Although this equation was presented for
2024-T Alclad sheet only, it is seen from Figure 16 that
there is only slight difference between the results presented
here and Schroederis (17) values over the range which his
calcniation éovers,

The relation derived by Schroeder (22) gives results
which agree'quite wall with those presenfed here in the
region of severe bending. However, his results differ more
greatly from those of the author and from the tést data as
Ibending becomes less severe, In the region of slight bending,
Schroeder's (22) calculation of the sprimngback ratio greatly
underestimates the vaiuea found in tests:ef sp:ingback.

| “The springback function derived by Gardiner (23)
slightly overestimatps thé springback ratio inithe region of
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severe bending and is farther in error than those derived by
the writer. Ris results agree fairly well with those of the
author and with existing test data in the midnrange_of
bgnding, but differ from them more with increasing bend
radius. In the region of siight bending GardinerfS“results
also underesiimate the épringback ratio, falling between the
results of Schroeder (22) and those of the author.

It 1s to be noted that the first portions of the
stress-strain curve approximations used in the various
theories discussed are quite different. This fact accounts
for the large variation of.predicted springback values for

large bend radii among the various theories.
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

Under the assumptions of the classic beam theory, a
relatively simple expression (Eq. 38) has been derived for
the springback ratio of an 1nit1a11y straight member
subjected’to pure bending. It has been demonstrated that
springback'does occur about an axis through the centroid of
the cross-section, as has been assumed in severéi previous
analyses. It is to bhe remembered that thase-rqsuiis were
obtained by considering only axlal stresses and.b& neglecting
any deformation of the cross-section in bending. Thus, it is
not expected that the results obtained would apply as well
to open sectiomns, such as channels, or to tubes as they do.
to a rectangular section. However, no calculations were made
for such cross~sections, since no test data exist in the
literature for such cases.

The generél expression for springback was applied to
the case of a rectangular cross~section (Eq. 43). Two
separate analytical approximatipns of the stress-gstrain
curve were then chésen, and each was applied to the spring-
back feiati@n for a rectangular cross-sectioﬁ.' Calculations

for three materials fer which springback data are available

in the literature showed good agreement between the theoretical
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results and test data, even for cladded materials. Test
data are available for 2024-T sheet over a wider range of
severity of bending than for other materials, However,
because of the uge of a non-typical stress-strain curve for
2024~-T, agreement between the theoretical results obtained
and test data is not as good as for the other materials
considered, -

The theoretical results derived here agree with
available test data more closely.than do those derived by
Schroeder'(zz) and Gardiner (23) throughout the range of
bending covered by the data. The equation for springback
published by Schroeder (17) for 2024-T Alclad sheet 1s only
slightly more accurate than the thearies presented here for
the values which he calculated,

1t is recommended that the straight~line approxi-
mation be used for cases of severe bending, since this
method allows an explicit solution., For the region of
slight bending,'the exponential approximation is reéommended,
since the straight-line method is not as accurate in this
region, and, as developed here,.is not valid for cases of
very slight bending. Where the accuracy of Gardiner's
method is sufficlent, his equation is to be preferrgd
because of the smaller amount of computation_involvéd.

The present analysis should not be régarded as a
complete solution to the prghlem of springback. Much

further study 1is needed before such a solution is possible.
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Of greatest need is basic knowledge of the plastic behavior
of a material subjected to blaxial and triaxial stresses.
The manner in which a matérial behaves upon unloading from a
stressed stﬁte also needs study.

With particular regard to the pfebiems of-met#l
forming and springback, further work needs to be done to
discover the effacts of method of loading, width of the
formedfmember, and speed and temperature of formirg. This
analysié%&as madéuunder the assuﬁption-oflloading te produce
pure bénding. The effect of the width of the hember was
not considered, since cross-sectional deformations during
'bending were neglected. The speed and temperature of
forming determine the shape of the stress-strain curve of
the material and thus relate directly to the position of
the neutral axis in bending and to the moment required for
bending. The manner in which a material deforms and the
quantitive and qualitative effects of the variables involved
is a véry bésic problem which has not yet been satisfactorily
explained. 8Since this behavior determines thé_stress-strain
diagram, no metal-forming problém can be analyzed completely

until a deformation theory 1s:complete.
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Figure 6. Types of ldealized Stress-Strain Relations
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Table 1. Material Properties

_ s_¥ sti» s % E** | %%
Material y y u . u
(ksi)  (ksi) (ksi) (ksi x 1000) (in./in.)

2024-7 54.7 -42.2 74.5 10.6 - 0.18
2024-0 9.0 ~10.9 25.8 10.6 0.20
6061-T6 39.5 -37.7 44.0 10.0 0.12

*From stress-strain curves of Sturm and Fletcher (16).
**From table of typical mechanical properties, Alcoa
Aluminum Handbook (29).

Table 2. Parameters--Straight-Line Approximation

s ' s'! E E E} E!
Material a a 1 2 1 2
{ksi) (ksi) {ksi (ksi) {ksi (ksi)
x 1000) x 1000)
20247 58.5 ~52.5 2.0 110.0 7.0 165.0
20624-0 20.0 ~20.0 2.0 50.0 2.0 50.0
9.0 37.5 9.0 37.5

6061-T6 40.5 ~40.5
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Table 3, Calculated Values--Straight-Line
- Approximation--2024~T

t /r t/r M/wr2 9/9 Ryq/t
(in./in.} (in./in.) (psi) (in,/in.)
0.0010000 0.0018112 ~0.8B4277 161.58 551 .57
0.0012589 0.0023002 - -0.81538 76.842 434.19
0.0015849 0.0029161 -0.77160 36.227 . 342.38
0.0019953 3.0036915 -0.70170 16.791 270.35
0.0025119 0.0046681 ~0.59020 7.5683 213.68
0.0031623 0.0058980 -0.41244 3.2757 169’01
0.0039811 0.0074472 -0.12914 1.3540 133.74
0.0050119 0.0093988 0.32241 0.56039 105.86
0.00630%6 0.011858 1.0424 0.29224 83,801
0.0079433 0.014856 2.1910 0,25863 66,329
0.010000 0.018862 4.0255 0.320986 52.485
0.012589 0.023788 6.9593 0.41468 41.508
0.015849 0.030000 11.660 0.51114 32,805
0.019953 0.037840 19.208 0.59868 25 .900
0.025119 0.047740 31.365 0.87365 20.421
0.031623 0.080247 51.016 0.73590 18.073
0.039811 0.076063 82.924 0.78668 12.624
0.050119 0.096079 135,01 0.82767 9.8864
0.063096 0.12144 220.59 - 0.86055 7.7152
©.079433 0.15360 362,27 0.886B2 5.9934
0.10000 0.19443 598,91 0.90775 4.,6290
0.12589 0.24632 998,15 0.92439 3.5486
0.15849 0.31234 1679.4 0.93761 2.6942
(.19953 0.39640 2856.0 0.,94809 2.0194
0.25119 0.50346 4915 .4 0.95639 1.4873
0.318623 0.63980 8568.7 0.96296 1.0687
0.39811 0.81336 15139. 0.96815 0.74001
0.50119 1.0341 27114. 0.97224 0.48238
0.63096 1.3144 49220. 0.97548 0,28077
0.79433 1.8700 90507 . 0.97800 0.12316
1.00000 2,1202 168440. 0.97989 0.00000
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Table 4. Calculated Values--Straight-Line
Approximation-~6061-T6

£, /7 t/r M/wr> g/0 R/t
(in./in.) {in./in.) (psi) (in./in.)
-0.0010009 0.0020000 -0.23188 35.782 499 .50
0.0012589 0.0025178 ~0 . 20827 16.6568  396.67
0.0015849 0.0031698 -0.17083 7.4365 314.98
0.0019953 0.0039906 -0.11147 3.1050 250.09
0.0025119 0.0050238 -0.0173865 1.1644 198 .55
0.0031623 0.0063246 0.13187 0.37449 157.61
0.0039811 0.0079622 0.36855 0.12383 125,09
0.0050119 0.010024 0.74399 0.11355 99.283
0.0063096 0.012619 1.3397 0.20001 78.744
0.0079433 0.015886 2.2850 0.31812 62.446
0.010000 0.020000 3.7859 0.43212 49.500
0.012589 0.025178 6.1697. 0.53617 39.216
0.015849 0.031698 9.9580 0.82480 31.048
0.019953 0.039906 15.982 0.69819 24,559
0.025119 0.050238 25,571 0,75798 19,405
0.031623 0.063246 40.850 0,80623 15.311
0.039811 0.079622 65.226 0.84494 12,058
0.050119 0.10024 104.18 0.87587 9.4763
0.063096 0.12619 166.57 0.90053 7.4245
0.079433 0.15886 266.73 0.92017 5.7946
0.10000 0.20000 428 .04 0.93579 4.5000
0.12589 0-.25178 688.82 0.94822 3.4716
0.15849 0.31698 1112.3 0.95809 . 2.6548
0.19953 0,39906 1803.9 0.,96593 2,0059
0.25119 0.50238 2040.7 0.97217 1,4905
0.31623 0.63246 4823 .4 0.97712 1.0811
0.39811 0.79622 7968 .2 0.98105 0.75594
0.50119 1.0024 13278. 0.98418 0.49763
0.63096 1.2619 22336. 0.986686 0.29245
0.79433 1.5886 37977. 0.98863 0.12946
1.00000 2.0000 65331. 0.99020 0.00000
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Table 5. Calculated Values--Straight-~Line
Approximation--2024-0

tl/r t/r .H/wr2 g/ Rd/t
{in./in.) (in./in.) - (psi) (in./in.)
0.0010000 0.0020000 -0 . 63047 90.217 499 .50
0.0012589 0.0025178 ~0.61903 44,903 396.66
0.0015849 0.0031698 -0 . 60088 22.359  314.98
0.0019953 0.0039906 -0.57210 11.192 250.09
0.0025119 0.0050238 ~0.52644 5.7004 198 .55
0.0031623 0.0063246 ~0,453985 3.0314 157 .61
0.0039811 0.0079622 ~0.33884 1.7589 125.09
0.0050119 0.010024 -0 .15509 1.1753 99.263
0.0068309086 0.012619 0.13468 0.92412 78.745
0.0079433 0.015886 0.59707 0.83142 62.446
0.010000 0.020000 1.3333 0.81132 49,500
0.012589 0.025178 2.5070 0.82219 39.216
0.015849 0.031698 4,3809 0.84428 31,048
0.019953 0,0398906 7.3779 0.86856 24,559
0.025119 0.050238 12.182 0.89123 19.405
0.031823 0.063246 19.904 0.91093 15,311
0.039811 0.079622 32.359 0.92743 12,058
0.050119 0.10024 52.528 0.94098 9.4763
0.083096 0.12819 85,354 0.951982 7.4245
0.079433 0.15886 139.09 0.96073 5.7946
0.10000 0.20000 227.68 0.96778 4,5000
0.12589 0.25178 374.91 0.97341 3.4716
0.15849 0.31698 - 821.87 0.97790 2,6548
0.19953 0.39806 1040.4 0.98146 2.0059
0.25119 0.50238 1758.0 0.98430 1.4905
0.31623 0.63246 3003.4 0.98656 1.0811
0.39811 0.79622 5193.1 0.98835 0.75594
0.50119 1.0024 9003.9 0.98978 0.49763
0.63096 1.2619 16135, 0.99091 0.290245
0.79433 1.5886 29009. 0.99181 0,12946
1.00000 2.0000 52833, 0.99252 0.00000




Table 6.  Evaluation of Equation (65) for 2024-T

|

L.H. Side

L.H. Side R.H. Side Sy R.H. Side
& -Sm of Eq.(65) of Eq.(65) & -°m of Eq.(65) of Eq.(85)
(ksi) (psi) {psi) (ksi) (psi) (psi)
1 0.05714 0.00743 43 92,622 167.31
2 0.18865 0.15040 44 98, 281 185.95
3. 0.42451 0.38902 45 104.48 207.25
4 0.75471 0.72367 46 111.33 231.64
5 1.1793 1.1548 47 119,00 259,64
8 1.6982 1.6829 48 127.70 291 .84
7 2.3114 2.3087 49 137 .68 328.96
8 3.0190 3.0329 50 149 .26 371.80
9 3.8210 3.8565 - 51 182.89 421 .33
10 4.7174 4.7806 52 179.08 478.66
11 5,7082 5.8065 53 198,55 545,11
12 6.7934 6.9360 54 222.16 622.18
13 7.9730 8.1710 55 251,03 711.67
14 9.2471 9.5137 56 286,60 815.63
15 10.616 10.967 57 330.68 936,49
16 12,079 12.534 58 385,61 1077.1
17 13.637 14,219 59 454 .35 1240.86
18 15,290 16.026 60 540.67 1431.0
19 17.037 17.962 61 649,38 1652.7
20 18.880 20.032 62 786,60 1910.9
21 20.818 22,244 63 960.13 2211,.6
22 22.851 24.608 64 1179.9 2561.9
23 24,980 27.134 65 1458.5 2070.0
24 27.206 29.835 66 1812.1 3445 .4
25 29,529 32.727 67 2261.0 3999.3
26 - 31.950 35.827 68 2831.4 4644 .6
27 34.470 39,157 69 3556.,2 53986.5
28 37.090 42,741 70 4477.6 6272.3
29 39.813 46.609 71 5649 .0 7202.5
30 42,640 50,794 72 7138.5 8480.9
31 45.574 55.339 73 9032.4 9865 .0
32 48,619 60.290 74 1144] . 11477,
33 51,781 65.703 75 14502, 13354,
34 55.064 71.644 76 18396. 15539,
35 58,479 78.191 77 23345, 18084,
36 62.034 85,434 78 29636 . 21046,
37 65.743 93,479 79 37633, 24493,
38 69.624 102,45 80 47706, 28505,
39 73.697 112.50 81 60710, 33174.
40 77.993 123.79 82 77120, 38606.
41 82.546 136.52 83 97967. 44926,
42 87.402 150,94 84 124450. 52277,
85 158080, 60826.

Ty b
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‘Table 7. Evaluation of Equation (65) for 6061-T6

8 L.H. Side R.H. Side | SM L.H. Side R.H. Side
& -m of Eq.(65) of BEq.(65) & -°m of Bq.(65) of Eq.(85)
(ksi) (psi) (psi) (ksi) {psi) (psi)

1.0 0.05000 0.05000 26.5 35.113 35.147

2.0 0.20000 0.20000 27.0 36.450 - 36,499

3.0 0.45000 0.45000 27.5 37.813 37.881

4.0 0.80000 0.80000 28.0 39,202 39,297

5.0 1.2500 1.2500 28.5 40,615 40,749

6.0 1.8000 1.8000 29.0°  42.054 42,242

7.0 2.4500 . 2.4500 29.5 43.519 . 43,784

8.0 3.2000 3.2000 30.0 45.010 45,382
- 9.0 4.0500 4.0500 30.5 46,529 47.050
10.0 5,0000 - 5.0000 31.0 48.076 48 .807
11.0 6.0500 6.0500 31.5 49,654 50,678
12.0 7 .2000 7 . 2000 32.0 51,267 52,700
12.5 7.8125 7.8125 32.5 - 52,920 . 54,922
13.0 8.4500 8.4500 - 33.0 54.622 '~ 57.416
13.5 9.1125 9.1125 33.5 56,388 60.283
14.0 9.8000 9.8000 ' 34.0 58,242 63,662
14.5 10,512 10.512 34.5 60,219 67,751
15,0 11.250 11.250 35.0 62,380 72.825
15,5 12,012 12.012 35.5 64.820 79.271
16.0 12.800 12.800 36.90 87.690 87.632
16.5 13.612 13.612 - 386.5 71.232  98.670
17.0 14.450 14.450 37.0 75.834 113.45
17.5 15.312 15.312 37.5 82.112 133.47
8.0 16.200 16,200 38.0 91.052 160.82
18.5 17.112 17.113 38.5 104,23 198 .44
19.0 18.050 18.050 39.0 124,15 250,44
19.5 19.012 19.013 39.5 154.82 322.59
20.0 20.000 20.000 40.0 202.62 422,94
20.5 21.012 21.013 40.5 277.76 562.80
21.0 22,050 22.051 41.0 396.47 757 .98
21.5 © 23.112 - 23.114 41.5 584 .67 1031.6
22.0 24,200 24,202 42,0 883.68 1411.7
22.5 25,312 - 25,315 42,5 1358.4 1944.6
23.0 26,450 26.453 43.0 2116.7 . 2690.1
23.5 27.612 27.617 43.5 3323.0 3733.0
24.0 28.800 28,806 44.0 5244.9 5192.2
24.5 30.012 30.021 44.5 . B307.3 7233.8
25.0 31.250 31.262 45.0 13187. 10090.
25.5 32.513 32.530 45.5 20962, 14087.
26.0 33.800 33.824 46.0 33350. 19679,
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Table 8. Evaluation of Equaticn (65) for 2024-0

Sy L.H, Side R.BE. Side SM L.H. Side R.H. Side
& -Sm of Eq.(65) of Eq.(65) | & -*m of Eq.(65) of Eq.(65)
(ksi) (psi) (psi) (ksi) (psi) {psi)

2.4 -0.15703 0.13377 16.4 167.21 = 126.41

2.8 0.02988 0.27756 16.8 190 .46 145.23

3.2 0.25690 0.45007 17.2 216.83  166.84

3.6 0.52851 0.65399 17.6 246.76 191.65

4.0 0.84984 0.89249 18.0  280.70 220.13

4.4 1.2268 1.1623 18.4 319,18 252.82

4.8 1.6663 1.4886 18.8 362.80 290,32

5.2 2.1761 1.8556 19.2 412,22 333.34

5.6 2.7651 2.2761 19.6 468,22 382,69

6.0 3.4438 2.7569 20.0 531.63 - 439.27

8.4 4.2238 3.3060 20.4 603.43 504.14

6.8 5.1187 3.9328 20.8 684.70 578,49

7.2 . 6.1440 4,6473 21.2 776.86 683.69

7.6 7.3172 5.4625 21.86 880.70 761 .30
8.0 8.6585 8.3927 22.0 998,36 873.10
8.4 10,191 7.4543 22.4 1131.4 1001.1
8.8 11.940 8.6667 22.8 1281.8 1147.7

9.2 13,937 10.052 23.2 1451.8 1315.4
9.6 18.214 11.636 23.6 1643.8 1507 .4
10.0 18.812 13,447 24,0 1860.7 1727.0
10.4 . 21.772 15.521 24 .4 2105.7 1978.2
10.8 25,147 17.896 24.8 2382.2 2265.4
11.2. 28,991 20,618 25.2 2694 .4 2593 .8
11.6 © 33,370 23.739 25.6 3046.8 2969 .2
12.0 38,357 27.318 26.0 3444.3 3398.1
12.4  44.034 31.425 26.4 3892.7 3888.2
12.8 50.497 36,139 26.8 4398.5 4448 .1
13.2 57.850 41.550 27.2 4968 .7 5087.5
13.6 66.216 47.764 27.6 5611.6 5817.6
14.0 75.731 54,901 28.0 6336.3 6651.1
14.4 86.550 63.098 28.4 - 7152.9 7602.6
14.8 98.848 72.514 28 .8 8073.0 8688.3
15.2 112.82 B83.330 29.2 9109.5 9927.2
15.6 128.70 85,754 29.6 10277, 11340,
16.0 146.74 110.02 - 30.0 11592, 12952.
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Table Sa. Calculated Values-~-~Exponential
Approximation--2024-T
Sy —Sm M/wr> ty/r
{ksi) (ksi) (psi) (in./1in.)

4 4.073 0.0004266 0.00039411

5 5.046 0.0007956 0.00048734

7 7.004 0.0021078 0,00067560
10 9.932 0.0060414 0.00095930
12 11.874 .0.010394 0.0011494
- 15 14.758 0.020237 0.0014360
20 19.443 0.047915 0.00198182
25 23.887 0.093784 0.,0024095
30 27,972 0.16296 0.0029144
35 31.634 0.26214 0.0034433
40 34.970 0.40537 0.0040295
45 38.202 0.63162 0.0047498
47 39.576 0.77013 0.0051212
50 4] .884 1.0811 0.0058652
52 43.632 1.4452 0.0065578
55 46,692 2,4531 0.0081444
57 49.040 3.8123 0.0088129
60 52.933 B.5231 0.013914
61 54.304 11.568 0.015921
62 55.721 16.013 0.018412
63 57.168 22,558 0.021486
64 58.629 32.249 0.025257
65 60.124 46.873 0.029965
66 61.617 68.864 0.035723
67 63.14) 102.61 0.04294]1
68 64 .660 154.14 0.051801
69 66.200 234.03 0.062882
70 67.741 357.74 0.076590
71 69.288 550.43 0.0938619
72 70.849 852,72 '0.11492
73 72.410 1328.4 0.14136
74 73.977 2072.0 0.17433
75 75.526 3237.1 0.21478
76 77.105 5091.1 0.26602
77 78 .667 8001.9 0.32907
78 80.242 12620.. 0.40814
79 81.821 18937. 0.50685
80 83.390 31482. 0.62894
81 84,986 49942, 0.78374
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Table 9b., Calculated Values--Exponential
Approximation--2024-T

t/r g/6 Ry/t

(in./in.) (in./in.)
0.00077149 -0.,.051648 1295.7

: 0.00095906 . =0.,031012 1042.2

7 -0,0013360 =0.000839 747,99
10 6.0019028 0.007223 525.04
12 0.0022816 0.009372 437 .78
15 0.0028513 0.011726 350.21
20 0,0038058 0.015941 282 .25
25 0.0047703 0.021928 200.12
30 0.0057519 0.030580 173.35
35 0.0067679 0.042718 147 .25
40 0.0078739 0.059947 126,49
45 0.0092158 0.086440 107,99
47 0.0099028 0.10221 100,46
50 0.011269 0.13698 88,215
52 0.012548 0.17158 79.182
55 0.015474 -0.250562 64,097
87 0.018563 0.32534 53.341
60 0.026245 Q.46628 37 .572
61 0.,030048 0.51731 32,750
62 0.034769 0.56871 28,232
63 0.040619 0.61896 24 .090
64 0.,047850 0.66676 20.371
65 0.066877 0.71160 17 .0556
66 0.068031 0.,75240 14,174
67 0.081998 0.78930 11,672
68 0.,0099305 0.82181 9.,5483
69 0.12096 0.85032 7.7470
70 0,14793 0.8B7489 6.2423
71 0.18157 0.89590 4.,9920
72 0.22370 0.91376 3.9568
73 0.27825 0.92878 3.1082
74 0.34198 0.94135 2.4144
75 0.42352 0.95176 1.8540
76 0.52631 0.86047 1.3946
77 0.65404 0.96762 1.0258
78 0.,81427 0.97354 0.72686
79 1.0148 0.97840 0.,48595
80 1l.2647 0.98238 £.29339
81 1.5799 0.985686

0.13688




Table 10a. Calculated Values--Exponeéential
Approximation-~-6061-~T6

T

Sy -Sm " M/wr tI/r
(ksi) {(ksi) {psi) (in./in.)
5.0 5.000 0.0008333 0.00050080
7.8 7.900 " 0.0028125 0.00075000
- 10.0 10.000 0.0066667 0.0010000
12.5 12.500 0.013021 0.0012500
15.0 15.000 0.022500 0.0015000
17.5 ; 17 .500 0.035729 0.0017500
20.0 20,000 0.,053334 0.0020000
22.5 22.500 0.,075942 0.0022501
25.0 25,000 0.10420 0.0025005
27.0 26,998 0.13134 0.0027017
28 .5 28 .454 0.15434 0.0028503
30.0 29.834 0.17957 0.0029954
31.0 30.792 0.19874 0.0031016
32.0 31.646 0.21884 0.0032037
33.0 32.432 0.24068 0.0033084
34.0 33.144 0.26493 0.0034179
35.0 33.810 0.29360 0.0035406
36.0 34.499 0.33244 0.0036997
37.0 35.233 0.39342 0.0039258
38.0 36.150 0.51796 0.0043454
39.0 37.267 0.83186 0.0052362
40.0 38.540 1.8092 0.0073064
40.5 39,189 3.0186 0.0091826
41 .0 39.868 5.5244 0.012170
41.5 40,556 10.935 0.016853
42.0 41.230 '22.870 0023955
42.5 41 .931 51.044 0.,035469
43.0 42.615 117.1} 0.,053045
43.5 43.303 276.68 0.080618
44 .0 44,001 670.21 0.12448
44 .5 44 .645 1588.9 ' 0.18695
45.0 45.039 3310.6 0.24024
45,418 46.000 " 8826.2 0.44482




Table 10b. Calculated Values--Exponential

Approximation--6061-T6

66

¥/0

t/r 'Rd/t
(ksi) (in./in.) {in./in.)
5.0 0.0010000 . 0.00000000 999 .50
7.5 0.00150060 0., 00000000 666.17
10.0 0.0620000 0.00000000 499 .50
12.5 9.0025000 0.000066010 399.50
15.0 0.0630000 0.,00000010 332.83
17.5 0.6035000 0, 00000030 285.21
20.0 0.06040000 0.00000110 249 .50
22.5 0.,0045001 0.00000440 221,72
25.0 0.00650005 0.000601810 199,48
27.0 0.0054017 Q.00005750 184 .62
28.5 - 0.0057004 0.00013580 174.93
30.0 G.00599568 0)00030860 168.28
31.0 0.0062025 0.00056290 160.72
32.0 0 .0064059 0.00097520 155.861
33.0 (.0066138 0.0016617 150.70
34 .0 0.0068314.. 0.0027867 145 .88
35.0 0.0070740 0.,0047116 140 .86
36.0 0.00738286 0.0085254 134,95 -
37.0 0.0078314 £.017105 127.19
38.0 0.0086563 0.041733 - 115,02
39.0 . 0.010405 0.11389 95.603
40.0 0.014458 0.28170 68,6568
40. 0.018201 {0.39921 54.438
41.0 0.024100 0.528640 40,988
41.5 0,033343 0.64602 29,486
42.0 0.047604 0.,74559 20,504
42 .5 0.070372 0.82424 13.706
43 .0 0.10565 0.,88084 8.9627
43.5 0.16111 0.92060 5,7066
44.0 . 0,24888 0.94783 3.5179
44 .5 0.38053 0.96540 22,1366
- 45,0 0.54282 0.97516 1.3996
45,418 0.88537 0.98474 0.62705




Table lla. Calculated Values--Exponential
- Approximation--2024-0

COAY DO B B3 A0 B 2O DI B B3 B B B B A AD AD b= jeot Jud Jud ok Joudt el Joud ot Joud o ket

-Su M/wrZ t,/r

(ksi) (psi) (in./in.)
2.4 1.114 0.00046710 0.00020078
2.8 2,046 0.00062349 0.00031902
4.0 3.928 0.0016074 0.00059023
4.8 4,994 0.0029324 0.00077207
6.0 6.488 0.0087230 0.0010799
6.8 7.431 0.011227 0.0013191
8.0 8.797 0.023308 0.0017552
8.8 9.667 . 0,037156 0.0021083
0.0 10.934 0,073544 - 0,0027708
0.8 11.757 0.11515 0.0033270
2.0 12,960 0.22418 0.0043865
2.8 13.753 0.34958 0.0052963
4.0 14.919 0.67984 0.0070502
4.8 15.687 1.0602 0.0085593
6.0 18,824 2.0672 0.0114982
6.8 17.581 3.2359 0.014044
8.0 18,897 6.3294 0,018885
8.4 19.068 7.9212 0.021014
8.8 16,438 -9.,9149 0.023268
9.2 19.809 12.419 0.025785
9.6 20.178 15,553 0.028574
6.0 - 20,548 19.489 0.031688
0.4 20.917 24.423 0.035148
0.8 21.286 30.614 0.038003
1.2 21.655 38,385 0.043297
2.0 22,391 60,346 0.053383
2.8 23.120 94.736 0.065768
4.0 24,213 186,48 0.080098
4.8 24 .942 293.02 0.11126
6.0 26.038 877.71 0,15299
6,8 26.764 807.03 0.18906
7.2 27.126 1136.1 0.21014
7.8 27 .487 1422.6 0.23353
8.0 27 .849 1781.7 0,25962
8.4 28.211 2231 .4 0.,28865
8.8 28.873 2794.4 0.32098
9.2 28.936 3500.3 0.35701
2.6 29.299 4384 .2 0.39714
0.0 29,662 5490.8

0.44180




68

Table 11b, Calculated Values—-Exponential
Approximation-~2024-0
t/r g/8 . Rd/t
(in./in.) (in./in.)
2.4 0,00073415 - -0,33637 1361.8
2.8 0.00092424 - 0.10596 1081.8
4,0 0.0014354 0.38475 696 .24
4.8 0.0018025 0.43313 554.36
6.0 0.0024382 0.47495 409 .69
6.8 0.,0029388 0.49923 - 339.83
8.0 0.0038516 0.53819 .259 .18
8.8 0.0045949 0.56642 217.17
10,0 0.0059863 0.61190 166.58
10.8 0.0071509 0.64350 139,38
12.0 0.0093664 0,69114 106.30
12.8 0.011254 0.72236 88,386
14,0 0.014887 0,76673 66.699
14.8 0.018000 0.79419 55,080
16.0 0.0240386 0.83147 41.126
16.8 0.029252 0,.B5365 - 33.705
18.0 0.039370 0.88258 24.918
18.4 0.043513 0.89118 22.4908
18.8 0.048112 0,88921 20.301
19.2 0.053230 0.90678 18.302
19.8 - 0,058904 0.91385 16,492
20.0 0.065220 0.82047 14.847
20.4 0.072234 0.92664 +13.357
20.8 0.080033 0.93239 12.007
21.2 0.088706 0.93774 10,785
22.0 0.10905 0,94732 8.6806
22.8 0.13408 0.95551 6.9677
24.0 0.18312 0.96562 4.9690
24.8 0.22564 0,.97113 3.9387
26.0 0.30913 0.97786 2,7399
26.8 0.38132 0.98148 2.12@é6
27.2 0.42352 0.98307 1.8650
27.6 0.47037 0.98452 1.8295
28.0 0.52253 0.98586 1.,4168
28.4 0.58052 0.98709 1.2254
28.8 0.64499 0.98821 1,0628
29.2 0.71678 0.98924 0.89706
29,6 0.79661 0.99018 -0.75679
30.0 0.88538 0.598104

0.63046
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