
In presenting this dissertation as a partial ful­
fillment of the requirements for an advanced degree from 
the Georgia Institute of Technology, I agree that the 
Library of the Institution shall make it available for 
inspection and circulation in accordance with the regulations 
governing materials of this type. I agree that permission to 
copy from,, or to publish from, this dissertation may be 
granted by the professor under whose direction it was 
written, or, in his absence, by the Dean of the Graduate 
Division when such copying or publication is solely for 
scholarly purposes and does not involve potential financial 
gain, It is understood that copying from? or publication 
ofj this dissertation which involves potential financial 
gain will not be allowed without written permission, 



ANALYSIS OF SPRINGBACK 

IN BENDING OF METALS 

A THESIS 

Presented to 

the Faculty of the Graduate Division 

By 

Edward Marvin Austin 

In Partial Fulfillment 

of the Eequirements for the Degree 

Master of Science in Mechanical Engineering 

Georgia Institute of Technology 

January 1957 



ANALYSIS OF SPRINGBACK 

IN BENDING OF METALS 

Approved: 

y" * i 

( 

Date Approved foy Chairman; j b i a j ? # f9*ST 



ACKNOWLEDGMENTS 

1 wish to express my gratitude to my thesis advisort 

Br. J. P. Yidosie, and to the other members of my reading 

committee, Dr. J. H. Wahato and Professor . F. M. Hill, for 

their suggestions and aid in the preparation of this 

thesis. I also wish to thank Dr. William F, Atchison and 

the other members of the staff of the Rich Electronic 

Computer Center for their assistance in performing the 

calculations imrol¥©d in this work* 

My deepest appreciation goes to my wife, Elizabeth, 

whose enduring patience and confidence made this work 

possible. 



i 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . ii 

LIST OF TABLES » . » • « • * . • • « • « . . . « * • » » iv 

LIST OF ILLUSTRATIONS . . , . • . ' . , . . . • ' . ' , . . . . v 

LIST OF SYMBOLS • • • • • • • • • • • « • • « • « « • vi 

CHAPTER 

I. INTRODUCTION . . . . . . . . . . . . . . . . . 1 

The Problem of Springback in Metal Forming . 1 
Purpose and Scope of Investigation . . . . . 3 
Review of the Literature . * 3 

II. ANALYSIS OF BENDING AND SPRINGBACK . . . . . 9 

Assumptions . . . . . . 9 
Bending Considerations . . . . . 10 
Springback Considerations . . . . . . . . . 14 
Application to Rectangular Section . . . . . 26 
Solution Using Straight-Line Approxi­

mation of Stress-Strain Curve . . . . ' . . 28 
Solution Using Exponential Approxi­

mation of Stress-Strain Curve . . . . . . 35 
Change of Variable 39 

XII• DISCUSSION OF.RESULTS . . . . . . . . . . . 41 

vjre ne r «A « * » « • « . * • * « * . * « « « * *% x 
Comparison of Results with Test Data . . . . 42 
Comparison of Results with Other Theories . 43 

If, CONCLUSIONS AND RECOMMENDATIONS . . . . . . 45 

Ajrtr JEaJNiJ JL& * « » * « « • » » . « • « • • * . . » • « . « « TtO 

j& IJpJu X U w & i i i i r l i X • • * . « « . • # « * » * « « * . « • « O u 



LIST OF TABLES 

Table Page 

1. Material Properties . . . . . . . . . . . . . . . 53 

2. Parameters—Straight-Line -Approximation . . . . 53 

3. Calculated Values—Straight-Line Approxi­
mation—•2024-T' . . . . . . '̂  . ' . . ' . . . . . 54 

4. Calculated Values—Straight-Line Approxi­
mation—6061-T6 . . . . . . . . . . . . . . 55 

5. Calculated Values—Straight-Line Approxi­
mation—2024-0 . . . . . . " . . . . ; ' . . . . 56 

6. Evaluation of Equation (65) for 2024-T . . . . 57 

7. Evaluation of Equation (65) for 6061-T6 . . . . 58 

8. Evaluation of Equation (65) for 2024-0 . . . . 59 

9. Calculated Values—Exponential Approxi­
mation— 2024-t . . . . . . . . . . . . . . . . . 63 

10. Calculated Values—Exponential Approxi­
mation—6061-T6 . . . . . . . . . . . . . . 65 

11. Calculated Values—-Exponential Approxi­
mation—2024-0 . . . . ' . . . . . . . . . . . '67 

12. Calculated Values—Theories of Schroeder (22) 
and Gardiner (23)—2024-T . . . . . . . . . 74 

13. Calculated Values-—•Theories of. Schroeder (22) 
and Gardiner (23)—6061-T6 . . . . . . . . . 75 

14. Calculated Values—Theories of Schroeder (22) 
and Gardiner (23)—2024-0 .'.'.. . .. ".. . . 76 



v 

LIST OF ILLUSTRATIONS 

Figure Page 

1. Element of Member After Bending . . . . . . . . . 12 

2. Stress-Strain Curve for Unloaded Fiber . . . . . . 15 

3. Element of Member Before and After 'Springback . . 18 

4. Cross-Section of Rectangular. Section . . . . . . 27 

5. Straight-Line stress-Strain Curve . . . . . . . . 29 

6. Types of Idealized Stress-Strain Relations . . . 49 

7. Stress-Strain Curves for 2024-T Aluminum Alloy . 50 

8. Stress-Strain Curves for 6061-T6 Aluminum Alloy . 51 

9. Stress-Strain Curves for 2024-0 Aluminum Alloy . 52 

10. Evaluation of Equation (65) for 2024-T 
Exponential Approximation •.. „ . . . . . . . . 60 

11. Evaluation of Equation (65) for 6061-T6 
Exponential Approximation . . . . . . . . . . 61 

12. Evaluation of Equation (65) for 2024-0 
Exponential Approximation ., ( . . . . . . . 62 

13. Springback Ratio for 2024-T—Theoretical 
Results and Test Data . . . . . . . . . . . . 69 

14. Springback Ratio for 6G61-T6--Theoretical 
Results and Test Data . . . . . . . . . . t. . 70 

15. Springback Ratio for 2024-0—Theoretical 
Results and Test Data . . •'.,,. . . . . . . 71 

16. Springback Rati© for 2024-T--Coapar:Lson 
of Theories . ' , . . . . . . . . . • • . . • • • 77 

17. Springback Ratio for 6061-T6—Comparison 
of Theories . . . . , . • • • • • • • . ' . . . . 78 

18. Springback Ratio for 2024-0—Comparison 
of Theories . . . . . . . . . . . . . . . . . 79 



vi 

LIST OF SYMBOLS 

SYMBOL DEFINITION 

A~j| and B-B Reference radial cross-sect ions 

c Incremental fiber length, before bending 

c. Incremental fiber length, after bending 

c~ Incremental fiber length, after springback 

dj Distance from inner fiber to neutral surface 
of springback 

dg Distance from outer fiber to.neutral surface 
of springback 

e Conventional, or engineering, strain 

e, Strain after bending 

62 Strain after springback 

ea and e£ Strain parameters of straight-line stress-
strain curve 

em Minimum fiber strain in bending 

eM Maximum fiber strain in bending 

e™ Strain at the proportional limit 

eu Ultimate elongation in tension, two inch 
gage length 

E Modulus of elasticity 

E|, Eff E2> Slope parameters of straight-line stress-
„ „' strain curve 

and E£ 

f General function expressing stress in 
simple tension-compression test 

I Centroidal moment of inertia of cross-section 
about z-axis 



vii 

SYMBOL ..DEFINITION 

K and K* Constants 

L-L Traces of the neutral surface of springback 

HI Constant 

M Applied moment acting upon member 

n Constant 

H-N Traces of the neutral surface in bending 

r Bent radius of curvature of neutral surface 
in bending 

rf Final radius of curvature of neutral surface 
of springback 

E^ Bent radius of curvature of innermost fiber 

E„ Final radius of curvature of innermost fiber 

s Conventional, or engineering, stress 

Sj Stress after bending 

&2 Stress after springback 

s a and Sa Stress parameters of straight-line stress-
strain curve 

s m Minimum fiber stress in bending 

Sn Maximum fiber stress in bending 

s„ Constant 
tj 

s Tensile strength of material 

s y Yield strength in tension 

si Yield strength in compression 

t Thickness of member 

t^ Distance from inner fiber to neutral surface 
in bending 

±2 Distance from outer fiber to neutral surface 
in bending 



¥iii 

SYMBOL DEFINITION 

w Width of member 

x Axial coordinate 

y Eadial coordinate, origin at.neutral 
surface in bending 

y* Radial coordinate, origin at neutral 
surface of springback 

ya and y^ Distance parameters of straight-line stress-
strain curve 

z Transverse coordinate 

@ Angle between two cross-sections after 
bending 

0 Angle between same two cross-sections after 
springback 

0/§ Springback ratio 

arctan inverse tangent of 

exp Exponential function of, as in exp(a + b) 
for e a + D, where e is the base•of natural 
logarithms 

In Natural logarithm of 



ix 

SUMMARY 

One serious difficulty in the precise forming of 

metal members arises from the phenomenon termed "springback." 

Springback, an elastic phenomenon, is the tendency of a bent 

member to return t© its original shape upon removal of the 

forming forces. 

The design of forming tools to produce accurate 

bends in metal parts is largely a trial-and-errox* process 

because of this springback phenomenon. Although several 

analyses of springback have been published, they generally 

either are not sufficiently accurate or are very time-

consuming when applied to actual conditions. In this 

paper, it was desired to develop a simplified mathematical 

analysis of springback and to investigate the applicability 

of two different analytical approximations of the stress-

strain curve to this analysis. 

Papers presenting analyses of springback and experi­

mental springback data and some investigations of bending 

of metals in the plastic range were listed and briefly 

discussed, 

A general expression for springback was derived for 

an initially straight, uniform member undergoing pure 

bending, using the major assumptions of the classic beaa 
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theory. The general expression for springback was applied 

to the case of a rectangular cross-section. 

h straight-line-segment and an exponential type 

approximation of the stress-strain curve were chosen, and 

each was applied to the springback relation developed. 

The two approximations derived were applied to three 

materials for which both stress-strain curves and springback 

data were available—2024-T, 6061-T6, and 2024-0 aluminum 

alloy sheets. Comparisons were then made between the 

approximations derived, available test data* and three 

previously published theories. It was found that both 

approximations were very nearly equal except for large bend 

radii, where the straight-line segment is not valid, It was 

also found that the approximations presented were more 

accurate than two of the other analyses considered. They 

were only slightly less accurate than the other analysis 

discussed, which was developed for 2024-T Alelad sheet. 

It seems best to use the straight-line approximation 

where applicable, since this relation requires less cal­

culation than the exponential approximation. Howevers for 

large bend radii or where complete stress-strain curves are 

not available, the exponential approximation is recommended. 



CHAPTER I 

IHTE00WCTI0M 

The Problem of Springback in Metal Forming.—The fabrication 

of many commodities and structures in this industrial age 

requires the bending of metal parts to a closely specified 

shape or contour* This is particularly true in aircraft 

manufacture, since the majority of the structural parts of 

a modern aircraft are sheet metal members which must be 

formed with a high degree of accuracy. 

Bending ©f metal members, while seemingly a simple 

operation, is subject to many difficulties in actual prac­

tice, One of the greatest of these difficulties lies in a 

phenomenon of elastic materials termed springback. Simply 

stated, springback is the tendency of a bent member to re­

turn to its original shape upon removal of the forming 

forces. The immediate consequence of springback is that 

the contour of a member which has been bent is not the con­

tour produced by the forming equipment, but is somewhere 

intermediate to the formed contour and the original contour 

of the member. In general, the amount of springback varies 

with the shape of the member, the material of the member, 

and the method of forming. 
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The usual practice in the fabrication of bent parts 

is for the tool designer, relying upon his past experience 

with metals and metal-forming equipment, to estimate as 

closely as possible the amount of springback for each par­

ticular new part and method of forming. The tooldesigner 

then attempts to compensate for springback in some manner, 

such as overbending, in designing tools for the new part. 

If his estimate of the amount of springback is excessively 

in error, such that the final part is not within manufac­

turing tolerances, each part must be finish-formed by hand 

or the forming tools have to be corrected. The correction 

of forming tools remains a trial-and-error process in most 

cases. Since correction of a part contour by hand is an 

expensive and time-consuming process, and since tool making 

and reworking is also very expensive, it would be advanta­

geous to be able to predict accurately the amount of spring-

back for any given part and method of forming. 

Several attempts have been made to analyze the phe­

nomenon of springback in bending. In general, the relations 

which have been found to express the amount of springback 

are quite complex and therefore difficult to evaluate in any 

particular case. The more complete and thorough of these 

analyses involve trial-and-error numerical solutions, which 

are laborious and time-consuming. Other analyses, which 

enable springback to be found by direct calculation, include 
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untenable assumptions in their derivations and yield results 

which do not usually compare with actual values with suffi­

cient accuracy for precision members, as in aircraft 

fabrication or high-speed turbo-machinery, 

Purpose and Scope of Investigation,—The purpose of this work 

is to present a simplified mathematical analysis of the 

bending of metals in the plastic range and the phenomenon of 

springback, For simplicity, the assumptions of the classical 

beam theory of mechanics are used, and only the case of pure 

bending is considered. Two different analytical approxi­

mations to the stress-strain curve of the simple tension-

compression test are used in applying the results of the 

analysis to several commonly used materials. 

Since considerable experimental data on springback 

exist in the literature for straight bends on rectangular 

cross-sections» no experimental work was performed in 

connection with this investigation, 

Comparison is made between several previously published 

papers on springback and the analysis presented here, and 

between the results of the various theories, Comparison is 

also made between the two stress-strain approximations used 

in the present work and between experimental data drawn 

from the literature. 

Review of the Literature.—Some of the investigations of the 

bending of metals in the plastic range which have been 
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published in recent years are those ©f Cozzone (1)*> Marin and 

Cotterman (2), Osgood (3) (4) (5), Wang (6), Williams (7), 

Swift (8), Sachs and Lubahn (9), Sachs, Lubahn, and Taub (10) 

(11), and Lubahn and Sachs (12). 

The first eight of these papers make use of the basic 

assumptions of the classic beam theory, neglecting stresses 

other than the normal stress in the longitudinal direction 

of the bent member and neglecting the effect of any change 

of cross-sectional shape during bending on stresses within 

the member. Cozzone and Wang analyzed bending for the 

extreme fiber stresses and for the applied bending moment 

for given curvatures * Marin and Cottermanp Osgood, and 

Williams analyzed bending for the extreme fiber strains and 

applied bending moment for given curvatures, Marin and 

Cotterman and Osgood also derived relations for small 

deflections in bending. Swift analyzed pure bending with a 

superimposed constant longitudinal tension for the thinning of 

metal under simple and reversed bending. Cozzone replaced 

the tension and compression stress-strain test curve by a 

trapezoidal diagram (see Fig. 6 (e)), equal in tension and 

compression, and assumed that the neutral axis in bending 

passes through the centrold of the member. Marin and 

Cotterman replaced the stress-strain curve by a straight line 

•Figures in parentheses refer to the Bibliography at 
the end of this paper. 
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segment approximation (Fig. 6 (f)), and obtained excellent 

agreement of their theoretical results with experimental 

data. Osgood assumed a stress-strain curve of the form of 

Figure 6 (d) , and one of the form* e = (s/E) 4 K(s/E)n, where 

K and n are empirical constants. Swift assumed a stress-

strain curve of the form of Figure 6 (e). Wang and Williams 

recommended graphical integration of the actual stress-

strain curve for a solution, but Wang also presented an 

analytical representation of the curve which appears to 

give good results as compared with the actual test curve. 

Sachs and Lubahn (9) made a rather thorough analysis 

of pure bending under conditions of plane strain (i.e., 

bending of an infinitely wide sheet), and Sachs, Lubahn, and 

Taub (10) performed a similar analysis of pure bending under 

conditions of plane stress (i.e., edgewise bending of an 

infinitely thin sheet). Lubahn and Sachs (12) presented the 

material of thesetwo papers in condensed form. Both these 

analyses assumed a perfectly plastic material (Fig, 6 (c)) and 

the validity of the distortion-energy theory and considered 

only rectangular members. They used a graphical-numerical 

method of successive approximations to determine relations 

between the inner radius of curvature of the member and the 

height of the member, the position of the neutral axis, and 

*For the definition ©f symbols used, see the List of 
Symbols, p. vl, 
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the lateral, tangential, and radial strain distributions. 

Sachs, Lubahn, and Taub (11) conducted an experimental 

investigation of bending to verify certain of the results 

of the above analyses and to attempt to isolate certain 

secondary variables in bending. 

Investigations and analyses of springbaek in the 

bending of metals have been published by Strasser (13), 

Hazlett and Schroeder (14), Lee (15), Sturm and Fletcher 

(16), Schroeder (17) , Oestreich (18), Brown, Binder, and 

Franks (19) (20), Dorn, Jelinek, and Ballaseyus^ (21), 

Schroeder (22), and Gardiner (23) . 

Strasser listed some of the determining factors of 

springbaek in die forming and outlined several methods for 

reducing springbaek. Hazlett and Schroeder gave a qualita­

tive analysis of tests made to isolate the variables 

affecting springbaek of rubber-formed flanges. Lee proposed 

the empirical relation (@ - 0) « £ tn Rdm, where K, n, and m 

are empirical constants for any material, and gave values 

for tests made on 2024-0 and 2024-T Pleiad sheets, 

111 the theoretical analyses presented are based upon 

the basic assumptions of the classic beam theory of pure 

bending, Sturm and Fletcher and Oestreich used a numerical 

method of successive approximations, dividing the cross-

section into layers over which stress is assumed constant, 

as given by the actual stress-strain test curve, and 

assuming values of the displacement of the neutral axis in 
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bending. Sturm and Fletcher assumed that the neutral axis 

remains at the neutral axis in bending during springback, 

while Oestreich assumed that the neutral axis is at the 

centroid during springback, but displaced during bending. 

Schroeder (17) presented a graphical-numerical method for 

finding springback, using the actual stress-strain curiae and 

assuming that the neutral axis passes through the centroid 

of the cross-section at all times. Schroeder (17) also 

presented, without derivation, formulas for calculating 

directly the springback of aluminum alloy and Alclad sheets. 

Brown et_ al_. used the analysis of Schroeder (17) to present 

alignment charts to determine the final formed angle of a 

bent part for various tempers of 18-8 and 17-7 stainless 

steels. Dorn et. ajl. presented a graphical-numerical method 

for determining springback, using the actual stress-strain 

curve and making n© assumptions as to the location of the 

neutral axis. Gardiner assumed an elasto-plastic material 

(Fig* 6 (d>) with equal properties in tension and compression 

and assumed the neutral axis remains at the centroid of the 

cross-section in developing a generalized method for finding 

springback. Schroeder (22) investigated pure bending with a 

superimposed constant longitudinal tension to find the 

springback in the plane of bending and the distortion 

perpendicular to the plane of bending. He assumed a 

plastic material with linear strain-hardening (Fig. 6 (©)), 

and assumed that the neutral axis remains at the centroid of 

the cross-section, 
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Considerable data on springback have been presented 

in the literature, both results of tests on various materials 

and data based on industrial forming experience. Data for 

aluminum alloys are presented by Chapman, Hazlett, and 

Schroeder (24), Schroeder and Hazlett (25) , Lee (15) , 

Schroeder (17), Sachs, Doll, Seybolt, Meinel, and Clark (26), 

and Sachs and Espey (27). Sachs (28) presents data for 

aluminum alloys and various steels. Dorn, Jelinek, and 

Ballaseyus (21) present detailed test results on six 

magnesium alloys at room and elevated temperatures. 

Gardiner (23) gives test data for a variety of materials. 
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CHAPTER II 

ANALYSIS OF BENDING AND SPRINGBACK 

Assumptions.—Let there be considered a member subjected to 

pure bending in an axial plane which contains one of the 

two principal axes of the cross-section. 

The following assumptions shall be made, in accordance 

with the classic beam theory of bending: 

(1) The conditions of stress and strain will be the 

same on every radial cross-section. This assumption implies 

that every plane cross-section normal to the axis of the 

member remains plane and normal to the axis during (and 

after) bending. Such an assumption is commonly accepted and 

has been experimentally justified repeatedly for beams or 

plates without shear loading, as is the case in this 

analysis. It is to be recognized that St. Tenant's 

Principle applies here also and that this assumption is not 

strictly valid near the ends of the bend due to local 

variations of the strain distribution. 

(2) The same stress-strain relation for each element 

(or fiber) of the material holds in bending as in simple 

tension and compression. 

(3) Each longitudinal fiber of the material behaves 



10 

as if it were independent of every other longitudinal fiber. 

This assumption implies that the behavior of every longi­

tudinal fiber is not affected by lateral forces or by 

shearing stresses between the fibers. While not strictly 

correct, this assumption is a basic assumption of the classic 

beam theory and gives a sufficiently close approximation to 

actual conditions. 

(4) The moduli of elasticity in tension and 

compression are equal. 

In addition to the foregoing assumptions, the 

following simplifying conditions shall be imposed: 

(5) The material is homogeneous, isotropic, and is 

free from initial residual stress, 

(6) The member has a uniform cross-section. 

(7) The member is initially straight. 

(8) During unloading, each fiber follows Hooke's Law. 

Bending Considerations.—Under the specified loading, 

producing pure bending, the bending moment acting upon each 

radial cross-section is constant along the length of the 

member. According to Assumptions 5 and 6, each portion of 

the member bounded by equally-spaced radial planes is 

identical. Therefore, all such portions deform equally under 

a given moment. According to Assumption 1, during bending 

each plane cross-section normal to the axis of the member 

remains plane and normal to the axis of the member. Thus it 

follows that each such cross-section lies on the radius of 
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curvature of the bent member and that the member is deflected 

into a circular arc, 

In each radial cross-section of the defleeted member 

there is a line, the neutral axis of bending, which contains 

all fibers in a state of zero strain and which is perpendic­

ular to the plane of bending. The summation of all such 

lines is the neutral surface in bending, traces of which are 

denoted M-Jf in Figure 1. Since each fiber in the neutral 

surface is in a state of zero strain and since, by Assumption 

3, each fiber is independent of all others, the stress acting 

on each fiber in the neutral surface is zero. 

Figure 1 shows an element of the member deflected so 

that the neutral surface in bending describes an arc of 

radius r. Cross-sections A-A and B-B, normal to the neutral 

surface, subtend the angle #. The length of any fiber in the 

neutral surface is c. By Assumption 7, since such a fiber 

is unstrained, the original length of all fibers subtended 

by the angle & is also c, 

Fro® Figure 1 

c * r© (1) 

Also, the length of any fiber between A-A and B-B, denoted 

by ci, is 

c^ • <r •* y)@ (2) 

Thus the conventional strain, e^, of any longitudinal fiber 
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Figure 1. Element of Member After Bending 
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after bending is, by definition 

gj _ jr 4 y)0 
ej - c, - 1 pQ. 

or 

e^ • y/r (3) 

From Equation (3) it is seen that the maximum longi­

tudinal strain, eM> and the minimum longitudinal strain, 

@m, of the bent member are given by 

eM * %2^T &n<*,©iii - -ti/r (4) 

For static equilibrium of the deformed member, the 

summation of the stress forces across any cross-section 

must be zero at all times. That is 

\\ ŝ dydss = 0 (5) 

across any cross-section, where s, is the stress acting at 

any point in the bent member. 

Also for static equilibrium, the summation of the 

moments of all stress forces acting on any cross-section 

must be equal to the moment acting on that cross-section, 

Since the loading is restricted to pure bending only, the 

acting moment, II, is constant along the length of the 

member. Thus, 
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\\Sj_ydyda s M (6) 

across any cross-section. 

By Assumption 2, any fiber which is loaded such that 

its deformation is always increasing in magnitude will 

exhibit the same relation between the strain of the fiber 

and the stress within the fiber as is given by the stress 

versus strain curve of the simple tension-compression test. 

The tension-compression test indicates that the stress 

within a deformed fiber is a single-valued function of the 

strain which the fiber undergoes. This relation may be 

represented by 

s - f(e) (7) 

where tte indicated function defines the stress-strain curve 

of the simple tension-compression test. In Equations (5) 

and (6),. the stress is given by Equation (7) as 

B X • f(«i) (8) 

since the deformation of the member Is achieved by bending 

in one direction only, 

Sprlngback Considerations.—A member loaded in tension (or 

compression) will exhibit a stress-strain relation like that 

given by the curve OAB in Figure 2. If such a member is 

loaded to point A and the load is then removed, the 

resulting stress-strain relation will be given by a curve 

file:////Sj_ydyda
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Figure 24 Stress-Strain Curve for Unloaded Fiber 
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such as AC. Various experimenters have demonstrated for 

many metals that the curve AC is essentially straight for 

complete unloading and even for considerable reversed 

loading and that the slope of the curve AC is approximately 

equal to the modulus of elasticity, E. Hence, it is here 

assumed (Assumption 8) that the path followed during 

unloading is given by the dotted line AB of Figure 2, 

Therefore, by Assumptions 2 and 8, it is seen from 

Figure 2 that on unloading a fiber which has been deformed 

to a strain e-̂  at the stress s^, the following relation 

exists * 

f @ l ^ e2 if ©l^-O 
Sg • S l « E(ei - 62) where J (9) 

| @i*^ 92 if ei<:0 

It is clear that if a fiber which has been deformed 

to a strain ej by a stress si is further deformed in the 

same direction to a strain &2* tJie fi»al stress acting on 

the fiber is still given by the stress-strain curve. That is 

e l ^ e2 ** ©i^O 
S2 = f(@2^ where^ (10) 

el==? e2 ** el"<: ® 

How consider that the member has been deformed into 

an arc such that the neutral surface in bending has achieved 

a radius r, as previously discussed. If the loading on the 

member is now removed, the bending moment M acting on the 

member decreases to zero throughout the length of the member, 
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and the member will spring back to some smaller curvature. 

The same arguments previously used assure that the final 

form of the member is a circular arc. 

Exactly as occurred in bending, in each radial cross-

section of the member after springback there is a line, the 

neutral axis of springback, which is perpendicular to the 

plane of bending and which contains all fibers whose state 

of strain after springback is the same as before springback. 

The summation of all such lines is the neutral surface of 

springback, traces of which are denoted L-L in Figure 3. 

In Figure 3 the surface N-N is the neutral surface in 

bending, r is the radius which this surface obtains in 

bending, and cross-sections A-A and B-B subtend the angle # 

after bending. During springback, the cross-sections A-A 

and B-B effectively rotate about their neutral axes of spring-

back to the positions denoted by &*-A* and Bf-Bf respectively, 

In their final formed positions, after springback, these 

cross-sections subtend the angle 0, and the neutral surface 

of springback has a radius of r*. 

Before bending, the length of any fiber between 

cross-sections A-A and B-B, denoted by c, is given by 

Equation (1) as 

c « r0 (1) 

After bending and before springback, the length of any 

fiber between cross-sections A-A and B-B, denoted by c-p is 
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>*y 

Figure 3. Element of Member Before and After Springback 



19 

given by Equation (2) as 

c1 - (r + y)Q (2) 

After springback, the length of any fiber between the same 

cross-sections (now in positions A*-A* and B*-B* respective­

ly) * denoted by Cg, is found from Figure 3 to be 

c2 = (r* + y«)0 (11) 

Also from the figure, it is seen that for any particular 

fiber 

d^ * y« * ti + y 

Thus, front Equations (2) and (12) 

c^ a ( r t y ' + dj - t^)0 

From the definition, the strain of any fiber before 

springback, denoted by e«, is 

•x • ? - x = F<y + d i - *i> 

Similarly, the strain of any fiber after springback, 

denoted by e2, is given by 

e 2 a'y(r
f 4 yf)§ - 1 (15) 

Since any fiber on the neutral surface of springback 

has the same strain after springback as before springback, 

(12) 

(13) 

(14) 
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for such a fiber e^ » e^- Thus, substituting Equations (14) 

and (15) for such a fiber (where y* is zero) yields 

dl - *i = r f | • r ( 1 6 ) 

Hence, substituting into Equation (14) yields 

e = F(yf 4 r'f) - 1 (17) 

From Equations (15) and (17) one obtains 

e i - e2 = l < x - | > y <i8> 

The quantity 0/0 presents a measure of the springback 

occurring between the cross-sections A-A and B-B, being the 

ratio between the final, or formed, angle to the bending 

angle between these cross-sections. Since the member being 

considered is uniform along its length and the loading on 

the member is also constant along the length, it follows 

that the ratio 0/@ is a constant without regard to the size 

of the increment of angle taken as 0. 

If no springback should occur in the member after 

unloading, then 0 would be equal to 0 and the curvature of the 

member would not change. However, if springback does occur, 

then 0 will be smaller than 0. Furthermore, it is known 

from experience that after bending an originally straight 

member to some curvature and releasing the member, the 

curvature will decrease, perhaps even to zero, but the 
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member will not acquire a resultant curvature in the 

opposite direction from which it was bent. Therefore, the 

quantity 0/0 is always positive and has an absolute Maximum 

value of one. 

Hences since r is a positive quantity, according to 

Equation (18) 

e l > e 2 W Q e r @ yf>0» (19) 

e^ = ©2 where y* = 0 , and 

e l ^ e2 where yr< 0, 

From Equation (14) it is seen that 

e^>*0 where y*> t, - d̂ » (20) 

e, = 0 where y* r t, - d^, and 

©,-< 0 where yf*<t, - d^. 

Using the inequalities of Equations (19) and (20), the stress 

on any fiber after springback may be found from Equations (9) 

and (1§). Thus, 

s2 " sl " E(@l ~ e2^ t (21) 

T y ^ O or y ^ t ^ - dj_, if t1 - d ^ 0 
where< 

1 y f^0 or y *•&>:%! - d1, if tx - d j ^ 0 

and 



£i£a 

s^ •= f (©o) * \ CICI) 

where-
t - d , ^ y , < 0 , i f t , - d , s < 0 1 i ^ * —v' *-! w l ^ u 

O ^ y ' ^ t , - d 1 ( i f t j - d i > 0 

Through t h e u s e of E q u a t i o n s ( 8 ) , ( 1 4 ) , ( 1 5 ) , ( 1 6 ) , and ( 1 8 ) , 

E q u a t i o n s (21) and (22) become, i n t e r m s of y* , 

s y(y f + d1 - V 
E '.'•'• Of 

- r^1 *" w>yf 

wher« 
y f s s O o r y ' ^ ^ - d j , i f t x - d ^ ^ O 

y * ^ 0 o r y ' ^ t ^ - d]_, i f t j - d i > 0 

(23) 

and 

S « *** x r £ < y ' £ t d j - t x ) 

where* 
^ - d j ^ y ^ O , i f t | - d j ^ O 

0 ^ y * ^ t 1 - dj^, i f t j - d x ^ 0 

(24) 

Where y* «. 0 , E q u a t i o n s (23) and (24) b o t h g i v e 

s « *~ * ( d j - t j ^ / r (25) 

Where yf = t^ - djt Equation (23) gives 

s2 «§<!-§> (dj - tx) (26) 

and Equation (24) gives 

s2 . f 1(1 - J) (dl - tx) (27) 



23 

The occurrence of two expressions for the stress after 

springback at y* = t^ - d^ stems from the straight-line 

approximation made in Equation (9). Consideration of the two 

stress expressions of Equations (9) and (10) shows that if 

the strain at the neutral axis of springback does not exceed 

the strain at the proportional limit of the material, then 

both equations are identical where y* is between 0 and 

(t^ - d^). If this is true, then Equations (9) and (23) are 

valid for all yf. 

^ e worfciag assumption will now be made that the 

strain limitation above is satisfied. That is, at y* = 0 

• 2 
el (dx - tx)/r e 

P 

(28) 

where e is the strain at the proportional limit. If 
p 

(d^ - tj) is positive, ep is at the proportional limit in 

tension; if (d^ - t^) is negative, ep is at the proportional 

limit in compression. 

For static equilibrium after springback, the sum­

mation of stress forces across any cross-section must be 

\ \ s2dy
vdz = 0 (29) 

Also for static equilibrium after springback, the summation 

of the moments of all stress forces acting on any cross-

section must be equal to the moment acting on that cross-

section. Since after springback the member is unloaded and 
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the moment acting on any cross-section is zero, 

\\ Sgy'dy'dz = 0 (30) 

integrated over any cross-section. 

Applying Equation (9) to Equation (29) gives 

xlsgdy'dz ~ \ \ Sjdy'dz (31) 

-E \ \ (&l - e2)dy*dz * 0 

From Equation (12) it is seen that 

dy» * dy (32) 

Applying Equations (5) and (32) and substituting Equation 

(18), there results 

|(1 - |) \\ y'dy'dz = 0 (33) 

If the member is bent, then r is finite, and if springback 

occurs, then the ratio 0A is less than one. Therefore, 

except for the trivial cases of no bending and no spring-

back, Equation (33) reduces to 

Since Equation (34) states that the moment of the 

cross-sectional area of the member about the neutral axis of 

springback is zero, then the neutral axis of springback 

passes through the centroid of the cross-section. Further, 
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since the neutral axis of springback is perpendicular to the 

plane containing one principal axis of the cross-section, 

the neutral axis of springback lies along the other principal 

axis of the cross-section. 

Applying Equation (9) to Equation (30) gives 

\\ s y'dy'dz «• \\ s^'dy'dz (35) 

-E\ \ (e., - e2)y,dy,dz « 0 

Substituting Equations (12) and (32) yields 

(t, - d.)\ \ s.dydz + \ \ s^ydydz (36) 

- E x W e j - ©g^y^y*** 2 " Q 

Applying Equations (5) and (6) and substituting Equation (18), 

this reduces to 

f(l -:$) \\ yf2dyfdz - 1 (37) 

The integral in Equation (37) will be recognized as 

the moment of inertia of the cross-sectional area about the 

neutral axis of springback, or about the principal axis. 

Denoting this integral by I and solving Equation (37) for 
z 

the springback ratio, it is found that 

0 _ <i .Mr / O Q \ 
-j. «. X ;iw pa.' \OOj 

z 



Inspection of Equations (3), (6), and (8) reveals 

that the bending moment M is a function of the bent radius 

of curvature r, the shape of the cross-section of the member, 

and the shape of the stress-strain curve of the material of 

the member. E is a function of the material used and I is 
z 

a function of the shape of the cross-section. Therefore, it 

has been shown that for the case under consideration, the 

springback ratio 0/9 is a function of the bent radius of 

curvature, the shape of the cross-section of the member, and 

the molulus of elasticity and shape of the stress-strain 

curve of the material of the member. 

Application to Rectangular Section.—-The application of the 

previously developed theory to members having rectangular 

cross-sections results in some simplification. Since the 

cross-section is rectangular, the principal axes are normal 

t© and bisect the sides of the rectangle and intersect at 

the centroid, or the center of the cross-section. The width 

of the member., or dimension normal to the plane of bending, 

shall be denoted as w, and the thickness, or radial' dimen­

sion in the plane of bending,, shall be denoted as t, as 

indicated in Figure 4. Since no strains or stresses normal 

to the longitudinal fibers of the members have been con­

sidered in this analysis., it is assumed that these dimensions 

do not change during or after bending. Since the cross-

section is rectangular, the dimensions locating the neutral 

axis of springback, d^ and d2» are equal. That is 
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Figure 4. Cross-Section of Eectangular Section 
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dl s d2 " t / 2 <39> 

Writing Equation (5) and inserting the limits of 

integration as indicated by Figure 4 gives 

w/2 f t2 

|-w/2 ]-t;l 

s^iydz = 0 (40) 

Thus, integrating once and simplifying gives 

/ t 
\ 2 s.dy • 0 ' (41) 

J-h * 
Similarly, Equation (6) as applied to a rectangular 

cross-section becomes 

w \ 2
 Slydy =.H- (42) 

J«t1 

For a rectangular section,, Equation (38) may be 

written 

0 , l2Mr ,._. 
ft = 1 -• —•* (43) 
w E w td 

Solution Using Straight-Line Approximation of Stress-Strain 

Curve.—An approximation to the stress-strain curve as de­

termined from the simple tension-compression test, consisting 

of four straight-line segments, is shown in Figure 5. Such 

an approximation was assumed by Joseph Marin and F. D. 
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v arctan E^ 
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Figure 5. Straight-Line Stress-Strain Curve 
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Cotterman (2) in an analysis of pure bending of rectangular 

beams in the plastic range and gave very close agreement 

with their experimental data. 

The curve as indicated in Figure 5 passes through the 

origin of the stress versus strain plot. The values Ep E2, 

ea, sa,"EjV:E£, e^, and s£ are constants for materials in any 

given condition. 

The equations defining the stress-strain curve of 

Figure 5 are 

s = E,e, 0^e^e a (44) 

s = Efe, e ^ e ^ O 

s = s
a +'* 2(e " •»>.»• e > a a 

s = si 4 E^(e - ej), e^e^ 

Defining, by Equation (3), 

ya = refl and y^ = reft (45) 

Equations (44) become 

&1 » Ejy/r, 0 ^ y ^ y a (46) 

sx = EJy/r, y a ^ y < 0 

it? 

»! = S a • 2 (y - y a ) , y ^ y f t 

r 

il = s i 4 _±(y - y j ) , y ^ y 
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It is now desired to substitute Equations (46) into 

Equation (42). Because of the nature of Equations (46), it 

will be necessary to perform the integration indicated in 

Equation (42) over each region of the stress-strain curve 

separately. Hence, four separate cases occur. 

Case 1: t2=^ya and -ti^Y^ 

Case 2: t 0^y and -tT^y* & a JL a 

Case 3: t„^y„ aEi# -t.l^y» & a .L a 

Case 4: *2^ ya anc31 ~*l^ Y* 

If sa is regarded as the stress at which deformation 
a 

becomes plastic in tension and al as the stress at which de~ 
a 

formation becomes plastic in compression, then Case 1 

represents purely elastic bending. Case 2 and Case 3 

represent bending in which one side of the member remains 

completely elastic and the other side undergoes plastic 

deformation in compression and tension respectively. Case 4 

represents bending in which the extreme fibers on both sides 

of the member undergo plastic deformation. Since Case 1 

represents the trivial case of complete springback, it will 

not be considered further. Case 4 represents the most common 

state in forming operations and thus has the most practical 

significance with respect to springback considerations. 

The latter case will therefore be considered here. 

Substituting Equations (46) into Equation (42), 

subject to the restrictions of Case 4, one obtains 



P y' 
M = wi s-,ydy « w 

- t . 

EA 
s< 4 _£<y - y») 

a r . a ydy (47) 

4 \ — y zdy 4\ — y*dy 
r \ r 

y f 
a 

""Tr* 

E 2 
g ^ (y _ y^\ 

a y w ' a 

ydy 

From Figure 5, it is seen that 

E-,e s s„ and Ejei = si l a a «M%* l̂ a a 

or, substituting Equations (45), 

E,y / r = s and E j y V r = s* 
l a a l a a 

(48) 

Integrating Equation (47), substituting Equations (48), and 

simplifying gives 

3(t 2
2 - ya

2) - - 4 ^ ( t i a - yi2) (49) 

* 2 y a
2 - ^ y a 

V a 
J 

P3T 

H 
4 i ^ 2 t i - *;><*i + *i> 

( 2 t 2 * y a ) ( t 2 - y a ) 

~-r> 
2 



Substituting Equations (46) into Equation (41), 

still subject to the restrictions of Case 4, one obtains 

ar 
s dy = 
1 

-t. 

E* 
s * -*• (y 
a _» 

y*) 
a 

-t. 

E-f 
dy #\ _± ydy 

r 
*a 

(50) 

El —ydy -f 
r 

E, 
s a U, V Jf j «* / dy - 0 

Integrating Equation (50), substituting Equations (48), and 

simplifying gives 

UP 

w i t 2 - y a)- • sa(t2 - ya> t 
I 
2 aJa a^a' 

(51) 

E, 
•f* s, <yj + tx) - ̂ (y^ + tx> 

2r 
• 0 

If E~ is not zero, the solution of Equation (51) for 

tg/r is 

(52) 

E 2 

ŷ  s«y* 2si 
_a _ aJa + _ £ ( t l + 
r sar rsa A 

* ; > 
!? (ti + y -[* 
E2 r2 

^ 

If E 2 is zero, then the solution of Equation (51) for t„/r 

is 
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tr. 1 

2 „ L a 
saYa 
s r a 

s 
t 

a 
s~ a 

*a E* 2 
•«s_ 

(ya * V 
\0»3/ 

From Figure 3 it is seen that 

t/r = tx/r 4 t2/r (54) 

The preceding equations contain four variables, 

namely, M, t , tg, and r. Three independent equations have 

been derived involving these variables: Equations (49), (52) 

or (53), and (54). Thus, if one variable is specified, the 

three applicable equations may.be solved uniquely for the 

remaining three unknowns. However, such a solution is ex­

ceedingly complex and tedious. For practical computation 

purposes, it appears simpler to introduce three parameters, 

t / r , t / r , and l/wr . Then, for any specified value of 
1 2 

t./r, Equation (52) or (53), as the case may be, may be solved 
2 ' 

for tg/r. Equation (49) may then be solved for M/wr , and 

Equation (5.4) may be solved for t/r* 

Equation (43) may be written as 

£•= i . n(m YEY3 

g I twr^/vw 
(55) 

It is to be noted that E in Equation (55) is the actual 

modulus of elasticity of the material, and is not necessarily 

equal to any of the straight-line approximation parameters 

E.j , E-J f En j or En 

may.be
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Therefore, the springback ratio 0/9 may be determined 

for any particular rati© of r/t by the numerical method 

outlined above. The most practical method of computation is 

to plot 0/9 versus r/t over a considerable range, by assuming 

various values of . t*/r to start the computation. 

Solution Using Exponential Approximation of Stress-Strain 

Curve.—Tsun Kuei Wang (6) proposed an analytical expression 

as an approximation to the stress-strain curve as determined 

by the simple tension-compression test. His relation applies 

to those materials whose yield strengths are determined by 

the 0.20 per cent offset method and has the advantage that 

the parameters involved are easily determined. Wang's 

expression for the tension curve, with typographical error 

corrected, is 

e = s/E •# eM exp K(s/s.. - 1) , (56) 

where K = l a «-002/eu) 
>w/5|| *"• A 

Taking the ultimate compressive properties as equal to the 

ultimate tensile properties, as is customary for wrought 

ductile materialsi the analogous expression for the com­

pression curve is 

o s/E - eti exp K*(s/-eu - 1) , (57) 
tt * - K ** w . -» u 

where l* = l n <0-002/»u> 
sV-s - 1 
y u 
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By Equation (3), Equations (56) and (57) become 

y/r = &1 /E 4 els exp K(s1/s|1 - 1) (58) 

where K • 
In (0.002/e^) 

sy/sB -.1 
, y^O 

and 

y/r = 
JL - % e x * K*(s . / -s - 1) , 1 u J 

where 
In (0.002/e ) 

K« = u 

s•/-s - 1 y u 
, y-^0 

(59) 

While Equations (58) and (59) do not pass through the origin 

of the stress versus strain plot, and therefore form a dis­

continuous curve, their deviation from the origin is 

negligible for all practical purposes. Therefore, it will be 

assumed that for s, * 0, y = 0 for both equations in the 

following derivation. 

Equation (42) may be written as 

/ t 
H = w\ * s-^ydy 

'-t. 

(.60) 

w 
s,y 

s t 
II, 2 

S j~i, 

y d s i 



where 

sM = f ( - t x / r ) and s^ = f ( t 2 / r ) (61) 

S u b s t i t u t i n g Equa t ions (58) and (59 ) , i n t e g r a t i n g , and 

s i m p l i f y i n g y i e l d s 

m i f
 3 3 V 

—2 = r rz i s i ~ sia > 
wr 3E 

(62) 

e ^ 2 2 2 r s ••• '• " 

4 .„]° ( s g & - sMKs 4 s ) exp K( M - 1) 

4 ^ 7 2 < s
m

2 * ' •» s m K ' s u + s u > e x P rK . (^- - D" 
L ~ su 

S i 

4 2 » - < 2 ^ - .su) exp [2K(3 _ l) 

- f2L.(2sMKf 4 s u ) exp [ » • ( ! ! & - - 1) 
Air* L ~s,, 

Equa t ion (41) may be w r i t t e n a s 

s ,dy = s-^y 
' - t . 

Vt2 

s , ••* X • 

0 y d S l - ^ ^ i (63) 

= 0 

Substituting Equations (58) and (59), integrating, and 

simplifying yields 
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1 2 2 eu 
2i" (sM " sm > * £-<si|K..- su) exp 

4 _J*(s K* 4 s^) exp 
K* 

K»(f|- - 1) 
u 

r SM 

= 0 

- 1) (64) 

Since r cannot be zero, Equation (B4) may be written 

s V2B * e^ (sM - su/K) exp f(sH/Bn •- 1} 
(65) 

s m /2E - eu(sm 4 su/K') exp K,(sM/-slI - 1) 

and 

From Equations (58) , (59), and (61), it is seen that 

tg/r = sM/E • ea. exp K(sM/su - 1) (SB) 

tx/r =• -sm/E f eu exp k'(sffl/-sa - 1) (67) 

The preceding equations furnish all the information 

necessary to compute the sprlngback rati© for any particular 

case. However, the form of the equations does not permit the 

springback ratio to be computed explicitly. The simplest 

method of attack, for practical computation purposes, 

appears to be as follows: 

(1) Assume various values of the maximum and minimum 

fiber stresses in bending, sK and sm. 

(2) Plot curves of the left-hand side of Equation 

(65) versus s*. and the right-hand side of Equation (65) 

versus s~ on the same axes. 
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(3) Using the curves Just constructed, plot a curve 

of Sj| versus sm for which Equation (65) is satisfied. 
2 

(4) Compute M/wr from Equation (62), using various 

values of sM and the corresponding values of sm found from 

the curve of step (3). 

(5) By.Equations (54), (66), and (67), compute t/r 

for the paired values of Sj. and sM used above. 

(6) Substitute into Equation (55) to compute the 

springback ratio, and plot the curve of the springback ratio 

0/® versus r/t. 

Change of Variable.—Both analyses developed above give the 

springback ratio as a function of the thickness and the bent 

radius of curvature of the neutral surface in bending. Such 

results are of theoretical value, but, since the location of 

the neutral surface in bending is not generally known, it 

would be preferable to determine springback in terms of a 

part design parameter which can be easily determined. 

Letting K^ be the bent radius ©f curvature of the inner­

most fiber of the bent number, it is seen from Figure 1 that 

Hji . * t1 - r (68) 

Hence, 

lî  r 11 

-S - _<i - -A) (69) 



Therefore, instead of plotting the springback ratio 

against v/ts it would be of more practical value to compute 

E^/t in one additional computation and to plot the spring-

back ratio against HH/t. 
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CHAPTER III 

DISCISSION OF RESULTS 

General.—A general expression-, .< Equation (38) , which should 

apply to most engineering materials, has been derived, re­

lating springback to the bent radius of curvature,""the*-cross-

section, and the stress-strain diagram of the material of 

the member. 

The springback ratio could be evaluated without 

further approximation by using the actual stress-strain 

curve of a material to solve the equations of static'^equilib­

rium. However, in order to eliminate graphical integrations, 

this was not done in the present analysis. Instead, two types 

of analytical approximation of the stress-strain curve were 

chosen, and the general equation of springback was evaluated 

for these approximations. 

In order to evaluate the springback of a material it 

is necessary to know the typical stress-strain curve, in 

both tension and compression, of the material for the con­

ditions under which it is to be formed. Requests for such 

information on materials for which springback data are 

available were made by the author t© the following; 

Aluminum Company of America 

Kaiser Aluminum and Chemical .Sales, Inc. 
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Reynolds Metals Company 

Lockheed Aircraft Company, Georgia-Division 

Wright Air Development Center 

lone of the above organizations were able to furnish any 

applicable data. The curves used in the calculations involved 

in this investigation were those given by Sturm and Fletcher 

(16). Although not giving complete data* these curves were 

chosen as being the most extensive and typical data found in 

the literature. 

Comparison of Results with Test Data,—For the three 

materials investigated, the calculated springbaek ratio differs 

from reported test data by less than 10 per cent. In general, 

the calculated results agree with the test data within 5 per 

cent in the region of most severe bending, or smaller values 

of the Rg/t ratio. 

It was found that both approximations to the stress-

strain curve gave substantially the same results over their 

applicable range and that the exponential approximation 

yielded reasonable results over the range of very slight 

bending. 

Although no effort was made to analyze the bending of 

eladded materials, the calculated results for bare materials 

agree reasonably well with available test data for 2024-T 

Aleiad and 2024-0 Alelad sheets. 

A greater difference exists between the calculated 

results and the test data in the ease of 2024-T. It would 
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appear that this variation is attributable to the use of a 

non-typical stress-strain curve in the calculations. Although 

it is apparent from data in the Alcoa Aluminum Handbook (29) 

that the curve used is not typical, this curve was the post 

accurate and complete one available to the author. 

Comparison of Results with Other Theories,—The results of 

the two approximations presented here were compared with the 

theories developed by Schroeder (17), Schroeder (22), and 

Gardiner (23). Schroeder (17) published an equation to 

determine the springback of 2024-T Alclad* His equation 

requires double graphical integration of the stress-strain 

curve, a tedious process? for a solution and applies to only 

on® material. Although this equation was presented for 

2024-T Alclad sheet only, it is seen from Figure 16 that 

there is only slight difference between the results presented 

here and Schroederfs (17) values over the range which his 

calculation covers. 

The relation derived by Schroeder (22) gives results 

which agree quite well with those presented here in the 

region of severe bending. However, his results differ more 

greatly from those of the author and from the test data as 

bending becomes less severe. In the region of slight bending, 

Schroederfs (22) calculation of the springback ratio greatly 

underestimates the values found in tests 'of springback. 

The springback function derived by Gardiner (23) 

slightly overestimates the springback rati© in the region of 
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severe bending and is farther in error than those derived by 

the writer. His results agree fairly well with those of the 

author and with existing test data in the mid-range of 

beading, but differ from them more with increasing bend 

radios. In the region of slight bending Gardiner's results 

also underestimate the springback ratio, falling between the 

results of Sohroeder (22) and those of the author. 

It is to be noted that the first portions-of the 

stress-strain curve approximations used in the various 

theories discussed are quite different. This fact accounts 

for the large variation of predicted springback values for 

large bend radii among the various theories, 
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CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

Under the assumptions of the classic beam theory, a 

relatively simple expression (Eq. 38) has been'derived for 

the springback rati© of an initially straight member 

subjected to pure bending. It has been demonstrated'that 

springback does occur about an axis through the centroid of 

the cross-section, as has been assumed in several previous 

analyses. It is t® be remembered that these results were 

obtained by considering only axial stresses and by neglecting 

any deformation of the cross-section in bending. .Thus, it is 

not expected that the results obtained would apply as well 

to ©pen sections, such as channels, or to tubes as they do 

to a rectangular section. However, no calculations were made 

for such cross-sections, since no test data exist in the 

literature for such cases. 

The general expression for springback was applied to 

the case of a rectangular cross-section (Eq. 43). Two 

separate analytical approximations of the stress-strain 

curve were then chosen, and each was applied to the spring-

back relation for a rectangular cross-section. Calculations 

for three materials for which springback data are available 

in the literature showed good agreement between the theoretical 
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results and test data, even for cladded materials. Test 

data are available for 2024-T sheet ©¥er a wider range of 

severity of bending than for other materials. However, 

because of the use of a non-typical stress-strain curve for 

2024-T, agreement between the theoretical results obtained 

and test data is not as good as for the other materials 

considered. 

The theoretical results derived here agree with 

available test data more closely than do those derived by 

Schroeder (22) and Gardiner (23) throughout the range of 

bending covered by the data. The equation for springback 

published by Schroeder (17) for 2024-T Alclad sheet is only 

slightly more accurate than the theories presented here for 

the values which he calculated. 

It is recommended that the straight-line approxi­

mation be used for cases of severe bending! since this 

method allows an explicit solution. For the region of 

slight bendingj the exponential approximation is recommended, 

since the straight-line method is not as accurate in this 

region, and, as developed here, is not valid for cases of 

very slight bending. Where the accuracy of Gardinerfs 

method is sufficient, his equation is to be preferred 

because of the smaller amount of computation involved. 

The present analysis should not be regarded as a 

complete solution to the problem of springback. Much 

further study is needed before such a solution is possible* 
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Of greatest need is basic knowledge of the plastic behavior 

of a material subjected to biaxial and triaxial stresses. 

The manner in which a material behaves upon unloading from a 

stressed state also needs study. 

With particular regard to the problems of metal 

forming and springbaek, further work needs to be done to 

discover the effects of method of loading, width of the 

formed member, and speed and temperature of forming. This 

analysis was made under the assumption of loading to prodnee 

pure bending. The effect of the width of the member was 

not considered, since cross-sectional deformations during 

bending were neglected. The speed and temperature of 

forming determine the shape of the stress-strain curve of 

the material and thus relate directly to the position of 

the neutral axis in bending and to the moment required for 

bending. The manner in which a material deforms and the 

quantitive and qualitative effects of the variables involved 

is a very basic problem which has not yet been-satisfactorily 

explained. Since this behavior determines the stress-strain 

diagram, no metal-forming problem can be analyzed completely 

until a deformation theory is complete. 
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Table 1. Material Properties 

Material 
s * 

J s«* s * u 

(ksi) (ksi) (ksi) 

I** 

(ksi x 1000) 

e ** u 

(in./in.) 

2024-T 
2024-0 
6061-T6 

54.7 
9.0 
39.5 

— Tt« e tu 

-10.9 
-37.7 

74.5 
25,8 
44.0 

10,6 
10,6 
10.0 

0.18 
0.20 
0.12 

*From stress-strain curves of Sturm and Fletcher (16). 
**From table of typical mechanical properties, Alcoa 

Aluminum Handbook (29). 

Table 2. Parameters—Str a ight--Line Approximation 

Material 
s 
a 

(ksi) 

a 1 

(ksi) (ksi 
x 1000) 

E E1 

2 1 
(ksi) (ksi 

x 1000) 

E2 

(ksi) 

2024-T 
2024-0 
6061-T6 

58.5 
20.0 
40.5 

-52,5 9,0 
-20.0 2.0 
-40.5 9.0 

110.0 7.0. 
50.0 2.0 
37.5 9.0. 

165.0 
50.0 
37.5 
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Tafole 3. Calculated Tallies—St raight-Line 
Approximation—20 24-Y 

t /r t/r M/wr2 0/© Ed/t 

(in./in.) (in./in.) (psi) (in./in.) 

0.0010000 0,0018112 -0.84277 161.58 551.57 
0.0012589 0.0023002 -0.81538 76.842 434.19 
0.0015849 0.0029161 -0.77160 36.227 342.38 
0.0019953 0.0036915 -0.70170 16.791 270.35 
0.0025119 0.0046681 -0.59020 7,5683 213,68 
0.0031623 0.0058980 -0.41244 3.2757 169i01 
0.0039811 0,0074472 -0,12914 1.3540 133174 
0.0050119 0.0093988 0.32241 0.56039 1Q5.86 
0.0063096 0.011858 1.0424 0.29224 83f801 
0.0079433 0.014956 2.1910 0,25863 661329 
0.010000 0.018862 4.0255 0.32096 52.485 
0.012589 0.023788 6.9593 0.41469 41.509 
0.015849 0.030000 11.660 0.51114 32,805 
0.019953 0.037840 19.208 0.59868 25.900 
0.025119 0.047740 Ol Oft ft 0.67365 20.421 
0.031623 0.060247 51.016 0.73590 16.073 
0.039811 0.076063 82.924 0.78668 12.624 
0.050119 0.096079 135 * 01 0,82767 9.8864 
0.063096 0.12144 9S»fl *it| 0,86055 rr 9"i e o 

f , i X<0 £i 
0.079433 0.15360 362.27 0,88682 5.9934 
0.10000 0.19443 .598.91 0.90775 4.6290 
0.12589 0,24632 998.15 0,92439 3,5486 
0.15849 0.31234 1679.4 0,93761 2.6942 
0.19953 0.39640 2856.0 0,94809 2.0194 
0.25119 0.50346 4915.4 0,95639 1,4873 
0.31623 0,63980 8568.7 0.96296 1.0687 
0.39811 0.81336 15139. 0.96815 0.74001 
0.50119 1,0341 & /ii'z» 0,97224 0.48238 
0.63096 1,3144 49220. 0.97546 0.28077 
0.79433 1.6700 90507, 0.97800 0.12316 
1.00000 Z t i &t\) &> 168440. 0.97999 0.00000 
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Table 4. Calculated Yalues—-Straight-Line 
Approximation-*->6061-T6 

t,/r t/r M/wr2 0/© B-/t 
I a 

(in./in.) (in./in.) (psi) (in./in.) 

0,0010000 0.0020000 -0.23188 35.782 499,50 
0.0012589 0.0025178 -0.20827 16.658 396.67 
0.0015849 0.0031698 -0.17083 7.4365 314.98 
0.0019953 0.0039906 -0.11147 3.1050 250.09 
0.0025119 0.0050238 -0.017365 1,1644 198.55 
0.0031623 0.0063246 0.13187 0.37449 157.61 
0.0039811 0.0079622 0.36855 0.12383 125.09 
0.0050119 0.010024 0,74399 0,11355 99.263 
0.0063096 0.012619 1.3397 0.20001 78,744 
0.0079433 0.015886 2.2850 0.31812 62.446 
0 .010000 0.020000 3.7859 0.43212 49.500 
0:012589 0.025178 6.1697 0.53617 39,216 
0.015849 0,031698 9'. 9580 0.62480 31.048 
0.019953 0.039906 15.982 0.69819 24,559 
0.025119 0.050238 25.571 0.75798 19.405 
0.031623 0,063246 40.850 0,80623 15,311 
0.039811 0.079622 65.226 0,84494 12,059 
0.050119 0,10024 104.18 0,87587 9.4763 
0.063096 0.12619 166.57 0.90053 7,4245 
0.079433 0,15886 266.73 0.92017 5.7946 
0.10000 0.20000 428.04 0.93579 4,5000 
0.12589 0.25178 688.82 0,94822 3.4716 
0.15849 0.31698 1 1 1 & , <S 0.95809 2.6548 
0.19953 0,39906 1803.9 0.96593 2,0059 
0.25119 0.50238 2940.7 0.97217 1.4905 
0.31623 0.63246 4823.4 0.97712 1.0811 
0.39811 0.79622 7969.2 0.98105 0.75594 
0.50119 1.0024 13278. 0.98418 0,49763 
0.63096 1.2619 22336. 0.98668 0.29245 
0.79433 1.5886 37977, 0,98863 0,12946 
1.00000 2.0000 65331. 0.99020 0.00000 
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Table 5 . Calculated Values?—'Straight-Line 
Approximation--2024-0 

t1/r t/r M/wr2 0/0 . R /t 

(in./in.) (in./in.) (psi) (in./in.) 

0,0010000 0.0020000 ~0.63047 90.217 499.50 
0.0012589 0.0025178 -0.61903 44,903 396.66 
0.0015849 0.0031698 -0.60088 22.359 314.98 
0.0019953 0,0039906 -0.57210 11.192 250.09 
0.0025119 0.0050238 -0.52644 5,7004 198.55 
0.0031623 0.0063246 -0.45395 3.0314 157.61 
0.0039811 0,0079622 -0.33884 1.7599 125.09 
0,0050119 0.010024 -0.15599 i o l i D u 99.263 
0.0063096 0.012619 0.13468 0.92412 78,745 
0.0079433 0.015886 0,59707 0,83142 62.446 
0,010000 0.020000 1.3333 0.81132 49.500 
0.012589 0.025178 2.5070 0.82219 39.216 
0.015849 0.031698 4.3809 0.84428 31,048 
0.019953 0.039906 7,3779 0.86856 24.559 
0.025119 0.050238 1«* ioZ 0*89123 19.405 
0.031623 0.063246 19.904 0,91093 X O „ *3 JL JL 

0.039811 0,079622 «3J& , 3 5 9 0.92743 12.059 
0.050119 0.10024 52'. 528 0.94096 9.4763 
0.063096 0.12619 85,354 0.95192 7,4245 
0.079433 0.15886 139,09 0,96073 5.7946 
0.10000 0,20000 227.68 0.96778 4.5000 
0.12589 0.25178 374,91 0,97341 3,4716 
0.15849 0.31698 • 621.87 0.97790 2.6548 
0.19953 0.39906 1040,4 0.98146 2.0059 
0.25119 0.50238 1758.0 0,98430 1,4905 
0.31623 0,63246 3003,4 0.98656 1.0811 
0.39811 0,79622 5193.1 0.98835 0,75594 
0,50119 1.0024 9093,9 0,98978 0.49763 
0.63096 1.2619 16135. 0.99091 0,29245 
0.79433 1.5886 29009. 0.99181 0.12946 
1.00000 2.0000 5 <&©•*> «J » 0.99252 0.00000 
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Table 6. Evaluation of Equation (65) for 2024-T 

SM L.H. Side E.H. Side SM • L-.H. Side E.H. Side 
& ~sm of Eq.(65) of Eq.(65) & ~sm of .Eq.(65) of Eq.(65) 

(ksi) (psi) (psi) (ksi) (psi) (psi) 

1 0,05714 0.00743 43 92,622 167.31 
2 0.18865 0.15040 44 98.281 185.95 
3 0.42451 0.38902 45 104,48 207.25 
4 0.75471 0.72367 46 111,33 231.64 
5 1.1793 1.1548 47 119,00 259.64 
6 1.6982 1.6829 48 127.70 291,84 
7' U l u i i ^ 2.3087 49 137»68 328.98 
3 3.0190 3.0329 50 149,26 371,80 
9 3.8210 3.8565 51 162.89 4cd£»JL , 0<3 

10 4.7174 4.7806 52 179.09 478.66 
11 5.7082 5.8065 53 198.55 545.11 
12 6.7934 6.9360 54 222.16 622.18 
13 7.9730 8.1710 55 »£$ JL , U o 711.67 
14 9.2471 9.5137 56 286,60 815.63 
15 10,616 10.967 57 330.68 936,49 
16 12,079 12.534 58 385,61 1077.1 
17 13.637 14,219 59 454,35 1240,6 
18 15,290 16.026 60 540.67 1431.0 
19 17,037 17,962 61 649.38 1652,7 
20 18.880 20,032 62 786.60 1910,9 
21 20.818 22.244 63 960,13 2211.6 
£l£l 22.851 24.608 64 1179.9 2561,9 
£i*J 24,980 27.134 65 1458.5 2970.0 
24 27.206 29.835 66 1812,1 3445.4 
25 29.529 32.727 67 2261,0 01? *? *7 « <zJ 

26 31.950 35.827 68 2831.4 4644.6 
27 34.470 (35? . JLu / 69 3556,2 5396,5 
2o 37.090 42,741 70 4477.6 O J O / &• . O 

29 39.813 46.609 71 5649,0 7292,5 
30 42.640 50.794 72 7138.5 8480.9 
31 45.574 DO.ud" 73 9032,4 9865.0 
32 48.619 60,290 74 11441. 11477. 
tia 51.781 65,703 75 14502, 13354. 
34 55.064 71,644 76 18396. XDDo&? & 

35 58,479 78,191 pyry 23345, 18084. 
36 62.034 85,434 78 29636. 21046. 
37 65.743 93,479 79 «J / Ok$q3 a 24493. 
38 69.624 102.45 80 47796. 2o5(io, 
39 73.697 112.50 81 60710, J Q X ' 4 > 

40 77.993 123,79 82 77120, 38606, 
41 82.546 IdOiOfi 83 97967. 44926. 
42 87,402 150,94 84 124450. 52277. 

" 85 158080, 60826. 
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Table 7, EYaluation of Equation (65) for 6061-T6. 

SM L.H. Side H.H. Side sl L.H, Side E.H. Side 
& ~ SM of Eq.(65) Of Eq.(65) & -sii ©f Bq.(65) of Iq.(65) 

(ksi) (psi) (psi) (ksi). (psi) (psi) 

1.0 0.05000 0.05000 26.5 35.113 35.147 
2.0 0.20000 0.20000 27.0 36,450 36.499 
3.0 0.45000 0.45000 27,5 37.813 37,881 
4.0 0.80000 0.80000 28,0 39.202 39.297 
5 .0 1.2500 1.2500 28,5 40.615 40,749 
6,0 1.8000 1.8000 29.0 42.054 42.242 
7.0 2.4500 2.4500 29,5 43.519 43.784 
8.0 3.2000 3.2000 30.0 45,010 45.382 
9.0 4.0500 4.0500 30.5 46,529 47.050 

10.0 5.0000 5,0000 31.0 48,076 48.807 
11.0 6.0500 6.0500 31.5 49.654 50,678 
12.0 7.2000 7.2000 32.0 51,267 52.700 
12.5 7.8125 7.8125 32.5 52.920 54.922 
13.0 8.4500 8,4500 33.0 54.622 57.416 
13.5 9.1125 9.1125 33.5 56.388 60,283 
14.0 9.8000 9,8000 34.0 58.242 63,662 
14.5 10.512 10.512 34.5 60,219 67.751 
15.0 11.250 11.250 35.0 62.380 72,825 
15,5 12.012 12,012 35.5 64,820 79,271 
16.0 12.800 12.800 36.0 67.690 87,632 
16.5 13,612 13.612 36,5 71,232 98.670 
17.0 14.450 14.450 37.0 75.834 113.45 
17.5 15.312 15.312 37.5 82,112 133.47 
18.0 16.200 16.200 38,0 91,052 160,82 
18.5 17.112 17.113 «30 i) O 104.23 198.44 
19.0 18.050 18.050 39.0 124,15 250,44 
19.5 19.012 19,013 39,5 154.82 •3 2i£i „ § y 

20.0 20.000 20.000 40.0 202.62 422,94 
20 5 21.012 A JL.Ula3 40.5 277.76 562.80 
21 .0 22.050 £*£k « u O X TCX » U 396,47 757.98 
21.5 23.112 £dOJ . X JL^K 41,5 584.67 1031,6 
22.0 24.200 24.202 42,0 883,68 1411,7 
dteL . «2 Au t J i a & o . tjio 42.5 1359.4 1944,6 
23.0 26.450 26.453 43.0 2116.7 2690.1 
23.5 27.612 27.617 43.5 3323,0 3733,0 
24.0 28.800 28.806 44,0 5244.9 5192.2 
£t*b. . 3 30.012 30.021 44,5 8307.3 7233.8 
25.0 31.250 31.262 45.0 13187. 10090, 
25.5 32.513 32,530 45.5 20962. 14087. 
26.0 33.800 33.824 46.0 33350. 19679. 
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Table 8. Evaluation of Equation (65) for 2024-0 

s H L.H. Side R.H. Side SM L.H. Side R.H. Side 
& -sm of Eq.(65) Of Iq. (65) & -sm of Eq.<(65) of Eq.(65) 

(ksi) (psi) (psi) (ksi) (psi) (psi) 

2.4 -0.15703 0.13377 16.4 167.21 126,41 
2 »o 0.02988 0.27756 .16.8 190.46 145.23 
3.2 0.25690 0.45007 17.2 216.83 166.84 
3.6 0.52851 0.65399 17.6 246.76 191.65 
4.0 0.84984 0.89249 18.0 280.70 a&Xt . X.3 

4.4 1.2268 1.1693 18.4 319.18 252„82 
4.8 1.6663 1,4886 18.8 362.80 290.32 
5.2 2.1761 1.8556 19.2 412.22 333,34 
5.6 2.7651 2«2761 19,6 468.22 382.69 
6.0 3.4438 2.7569 20.0 531.63 439.27 
6.4 4.2238 3.3060 20.4 603.43 504,14 
6.8 5.1187 $ » " t j i & O 20.8 684.70 578.49 
7.2 6.1440 4.6473 aX o di 776.66 663.69 
7.6 7.3172 5 * 4625 21 . 6 880.70 761.30 
8.0 8.6585 o.3927 22.0 998.36 873 * 10 
S.4 10.191 7.4543 22.4 X Jua fc* •»* ft *£ 1001.1 
o »o 11.940 8.6667 22 s 8 1281.8 1147.7 
9.2 13.937 10.052 1451.8 1315.4 
9.6 16.214 11.636 <£>& 6 © 1643.8 1507.4 
10.0 18,812 13.447 24.0 1860.7 1727.0 
10.4 21.772 15.521 24.4 2105.7 1978.2 
10.8 25.147 17.896 24.8 fileuPOrfa . £i 2265.4 
JL X • & 28.991 20.618 £J*J . £t 2694.4 2593.8 
11.6 33.370 23.739 e O a © 3046.8 2969.2 
\& * U 38.357 27.318 26.0 3444.3 3398.1 
12.4 44,034 31.425 26.4 3892.7 3888.2 
12.8 50.497 36,139 26.8 4398.5 4448.1 
13.2 57.850 41.550 27.2 4968.7 5087.5 
13.6 66.216 47.764 27.6 5611,6 5817.6 
14.0 75.731 54.901 28.0 6336.3 6651.1 
14.4 86.550 63.098 28.4 7152.9 7602.6 
14.8 98.848 72.514 28.8 8073.0 8688.3 
15.2 112.82 83.330 29.2 9109.5 9927.2 
15.6 128.70 95.754 29.6 10277. 11340. 
16.0 146.74 110.02 30.0 11592. 12952. 
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Table 9a. Calculated Yalues—Exponential 
Approximation—2024-T 

SM ~sm M/wr2 tx/r 

_(ksi) (ksi) (psi) (in./in.) 

4 •4.073 0.0004266 0.00039411 
5 5.046 0.0007956 0.00048734 
7 7.004 0.0021078 0.00067560 
10 9.932 0.0060414 0.00095930 
12 11.874 0.010394 0.0011494 
15 14.758 0.020237 0.0014360 
20 19.443 0.047915 0.0019182 
25 23.887 0.093784 0.0024095 
30 27,972 0.16296 0.0029144 
35 31.634 0.26214 0.0034433 
40 34.970 0.40537 0.0040295 
45 38 o202 0.63162 0.0047498 
47 39.576 0.77013 0.0051212 
50 41.884 1.0911 0.0058652 
52 43.632 1.4452 0.0065578 
55 46.692 2.4531 0.0081444 
57 49.040 3.8123 0.0098129 
60 52.933 8.5231 0.013914 
61 54.304 11.568 0.015921 
62 Dd« /&J. 16.013 0,018412 
63 57.168 22.558 0.021486 
64 58.629 32.249 0.025257 
65 60.124 46.873 0.029965 
66 61.617 68.864 0.035723 
67 63.141 102.61 0.042941 
68 64.660 154.14 0.051801 
69 66.200 234.03 0.062882 
70 67.741. 357.74 0.076590 
71 69,288 550.43 0.093619 
72 70.849 852.72 0.11492 
73 72.410 1326.4 0.14136 
74 73.977 2072.0 0.17433 
75 75.526 3237.1 0.21478 
76 77.105 5091.1 0.26602 
77 78.667 8001.9 0.32907 
78 80.242 12620. 0.40814 
79 81.821 19937. 0.50685 
80 83.390 31482. 0.62894 
81 84.986 49942. 0,78374 
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Table 9b, Calculated Values—Exponential 
Approximation-~2024-T 

SM t/r 0/9 R _/t 
d 

(ksi) (in./in.) (in./in.) 

4 0.00077149 -0.051648 1295.7 
5 0.00095906 -0.021012 1042.2 
7 0.0013360 -0.000639 747.99 
10 0,0019028 0.007223 525.04 
12 0.0022816 0.009372 437,78 
15 0.0028513 0.011726 350.21 
20 0,0038058 0.015941 262.25 
25 0.0047703 0.021928 209.12 
30 0.0057519 0.030580 173.35 
35 0.0067679 0.042718 147.25 
40 0.0078739 0.059947 126.49 
45 0.0092158 0.086440 107.99 
47 0.0099028 0.10221 100.46 
50 0.011269 0.13698 88.215 
O a 0,012546 0.17158 79.182 
55 0.015474 0.25052 64.097 
57 0.018563 0.32534 53.341 
60 0,026245 0.46626 37.572 
61 0.030048 0.51731 32.750 
62 0.034769 0.56871 <uO . £tnj& 

63 0.040619 0.61896 24.090 
64 0.047850 0.66676 20.371 
65 0,056877 0.71160 17.055 
SB 0.068031 0.75240 14.174 
67 0.081998 0.78930 11.672 
63 0.099305 0.82181 9.5483 
69 0.12096 0.85032 7,7470 
70 0.14793 0.87489 6.2423 
71 0.18157 0,89590 4.9920 
72 0.22370 0.91376 3.9566 
73 0.27625 0.92878 3.1082 
74 0.34198 0.94135 2,4144 
75 0.42352 0.95176 1.8540 
76 0.52631 0,96047 1.3946 
77 0.65404 0.96762 1.0258 
78 0.81427 0.97354 0,72686 
79 1.0148 0.97840 0.48595 
80 1.2647 0.98238 0,29339 
81 1,5799 0.98566 0.13688 



Table 10a „ Calculated Values—Exponential 
Approximation—6061-T6 

SM s - m M/wr V r 

(ksi) (ksi) (psi) (in./in.) 

5.0 5.000 0.0008333 0.00050000 
7,5 7,500 0.0028125 0.00075000 
10.0 10.000 0.0066667 0.0010000 
12,5 12.500 0.013021 0.0012500 
15.0 15.000 0.022500 0.0015000 
17.5 , 17.500 0.035729 0.0017500 
20.0 20.000 0.053334 0.0020000 
22.5 22.500 0.075942 0.0022501 
25.0 25.000 0,10420 0.0025005 
27.0 26.998 0.13134 0.0027017 
28.5 28.454 0.15434 0.0028503 
30.0 29.834 0.17957 0.0029954 
31.0 30.792 0.19874 0.0031016 
32.0 31.646 0.21884 0.0032037 
33.0 32.432 0.24068 0.0033084 
34.0 33.144 0.26493 0.0034179 
35.0 33.810 0.29360 0.0035406 
3ft.0 34.499 0.33244 0.0036997 
37.0 OO 9 4&00 0.39342 0.0039258 
38,0 36.150 0.51796 0.0043454 
39.0 37.267 0.83186 0.0052362 
40.0 38.540 1.8092 0.0073064 
40.5 39,189 3.0186 0.0091826 
41.0 39.868 5.5244 0.012170 
41.5 40.556 10.935 0.016853 
42.0 T C J L » A O V 22.870 0.023955 
42.5 41.931 51.044 0,035469 
43.0 42.615 117.11 0.053045 
43.5 43.303 276.68 0.080618 
44.0 44,001 670.21 0.12448 
44.5 44.645 1588.9 0.18695 
45.0 45.039 3310.6 0.24024 
45.418 46.000 8826.2 0.44482 
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Table 10b. Calculated Values—Exponential 
Approximation«»=-6061~T6 

s l t / r 0/9 E d / t : 

(ksi) ( i n . / i n . ) ( i n . / i n . ) 

5.0 0.0010000 0.00000000 999.50 
7.5 0.0015000 0.00000000 666.17 

10.0 0.0020000 0,00000000 499.50 
JLiS . O 0.0025000 0.00000010 399.50 
15.0 0.0030000 0.00000010 332.83 
17.5 0.0035000 0.00000030 285.21 
20.0 0.0040000 0.00000110 249.50 
£u£i **} 0.0045001 0.00000440 221.72 
25.0 0.0050005 0.00001810 199.48 
27.0 0.0054017 0.00005750 184.62 
28.. 5 0.0057004 0.00013580 174.93 
30.0 0.0059958 0.00030860 166.28 
31.0 0.0062025 0,00056290 160.72 
oA. 0 0.0064059 0.00097520 155.61 
33.0 0.0066138 0.0016617 150.70 
34.0 0.0068314 0,0027867 145.88 
o<5 .0 0.0070740 0.0047116 140.86 
36.0 0.0073825 0.0085254 134.95 
37.0 0.0078314 0.017105 127.19 
38. 0 • 0.0086563 0.041733 115.02 
39.0 0.010405 0,11389 95,603 
40 .0 0,014458 0.28170 68.658 
40.5 0.018201 0.39921 54.438 
41.0 0.024100 0,52640 40.988 
TBJL * 0 0.033343 0.64602 29.486 
42.0 0.047604 0.74559 20.504 
42.5 0.070372 0.82424 13.706 
43.0 0.10565 0.88084 8.9627 
43.5 0.16111 0.92060 5'. 7066 
44.0 0.24888 0.94783 3.5179 
44.5 0.38053 0.96540 2.1366 
45.0 0.54282 0.97516 1.3996 
45.418 0.88537 0.98474 0.62705 
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Table 11a. Calculated Values--Exponential 
Approximation—2024-0 

SM " s« M/wr2 tx/r 

(ksi) (ksi) '(psi) (in./in.) 

2.4 1.114 0.00046710 0.00020078 
2 « 8 2.046 0,00062349 0.00031902 
4.0 3»928 0.0016074 0.00059023 
4.8 4.994 0.0029324 0,00077207 
6.0 6.488 0.0067230 0,0010799 
6.8 7.431 0.011227 0,0013191 
8.0 8.797 0.023308 0.0017552 
8.8 9.667 0.037156 0.0021083 
10.0 10.934 0.073544 0.0027708 
10.8 11.757 0.11515 0.0033270 
12.0 12.960 0.22418 0.0043865 
12.8 13.753 0.34958 0.0052963 
14.0 14.919 0.67984 0,0070502 
14.8 15.687 1.0602 0.0085593 
16.0 16,824 &t t U o / a 0,011492 
16.8 17.581 3.2359 0.014044 
18.0 18*697 6.3294 0.018985 
18.4 19.068 7 *9212 0.021014 
1 Q Q 

io , o 
19.438 9.9149 0,023268 

19.2 19.809 12,419 0,025785 
19.6 20,178 XD «oOo 0,028574 
20.0 20,548 19.489 0,031688 
20.4 20,917 24.423 0,035148 
20,8 21,286 30.614 0,039003 
J&A, « 43 21.655 38.385 0,043297 
22,0 22,391 60.346 0,053383 
22 * 8 23.120 94.736 0,065768 
24,0 la 4 » £\o 186.48 0,090098 
24,8 24.942 293,02 0 * 11126 
26.0 26.038 577.71 0,15299 
26*8 26,764 907.03 0,18906 
A / . &l &l « X«v3 XXt$0 » x 0,21014 
27.6 27*487 1422,6 U* Awddw 
&o * U 27.849 1781,7 0.25962 
28.4 «o . «X X 2231,4 0.28865 
<0O * O 28.573 2794.4 0.32096 
ms3 » <& 28.936 3500.3 0.35701 
29.6 29.299 4384.2 0.39714 
30.0 29.662 5490.8 0.44180 
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Table lib. Calculated Values--Exponential 
Approximation—2024-0 

SU t/r 0/0 Rd/t 

(ksl) (in./in.) (in./in.) 

2.4 0,00073415 -0.33637 1361.8 
2 .8 0.00092424 0.10596 1081.6 

•'4.0 0.0014354 0.38475 696.24 
4.8 0.0018025 0.43313 554.36 
6,0 0.0024382 0.47495 409.69 
6.8 0.0029388 0.49923 339.83 
8.0 0.0038516 0.53819 259.18 
8.8 0.0045949 0,56642 217.17 

10.0 0.0059863 0.61190 166.58 
10.8 0.0071509 0.64350 139.38 
12.0 0.0093664 0,69114 106.30 
12.8 0.011254 0.72236 88.386 
14.0 0.014887 0.76673 66.699 
14.8 0.018000 0.79419 55.080 
16,0 0.024036 0.83147 41.126 
16.8 0.029252 0.85365 33.705 
18.0 0.039370 0.88258 24.918 
18.4 0.043513 0.89116 22.498 
18,8 0.048112 0.89921 20.301 
19.2 0,053230 0.90678 18.302 
19.6 0.058904 0.91385 16.492 
20.0 0.065220 0.92047 14.847 
20.4 0.072234 0.92664 ltj{ 3 5 / 

20.8 0.080033 0.93239 12.007 
21.2 0.088706 0.93774 10.785 
22.0 0.10905 0.94732 8,6806 
22 «8 0.13408 0.95551 6.9677 
24.0 0.18312 0.96562 4.9690 
24.8 0.22564 0.97113 3.9387 
26.0 0.30913 0.97786 2.7399 
26.8 0.38132 0.98148 2.1266 
27.2 0.42352 0.98307 1.8650 
27.6 0.47037 0.98452 1.6295 
28.0 0,52253 0.98586 1.4169 
28.4 0.58052 0.98709 1.2254 
28.8 0.64499 0.98821 1.0528 
29.2 0.71678 0.98924 0.89706 
29.6 0.79661 0.99018 0.75679 
30.0 0.88538 0.99104 0.63046 
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