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SUMMARY

Revenue management is about the application of various analytical techniques to

optimize the price and availability of a company’s products so the revenue perfor-

mance is optimized. To successfully achieve the goal of revenue maximization, the

revenue managers must have an accurate understanding of the customer behavior.

One clear trend in revenue management is to model customer behavior using dis-

crete choice models. This thesis deals with some of the challenges that arise with the

incorporation of the discrete choice models in revenue management.

The first part of the thesis studies the parameter estimation problem in revenue

management with discrete choice models. Revenue management models that include

customer choice behavior have among others two types of parameters: (1) customer

arrival rates and (2) choice parameters. In most applications, revenue managers

have access to censored arrival data only, because the data do not include potential

customers who decided not to purchase, that is, no-purchase data are missing. An

important question is under what conditions all the arrival rate and choice parameters

are identifiable with such censored data. When the arrival process is homogeneous, it

has been known that if the censored data contain choices among only one assortment,

then arrival rate and choice parameters are not identifiable. We consider a setting

with multiple assortments, in which case arrival rate and choice parameters may or

may not be identifiable. We derive the necessary and sufficient conditions for the

arrival rate and the choice parameters to be identifiable with censored data. When

the arrival process is a non-homogeneous Poisson process, the identification of arrival

rate and the choice parameters is possible only when we have multiple realizations
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of history. We derive the necessary and sufficient conditions for the identification of

the arrival rate function and the choice parameters. Surprisingly, the identification

conditions are only slightly more complicated than those when the arrival process is

a homogeneous Poisson process. Also, the identification conditions do not depend on

any knowledge of the arrival rate function. Based on this observation, we propose a

semiparametric estimation procedure to jointly estimate the arrival rate function and

the choice parameters. Both the estimate of the cumulative arrival rate function and

the choice parameters are proved to converge to the true quantities almost surely when

the data increase. Numerical examples also show that the algorithm can accurately

estimate the arrival process and the choice parameters.

The second part of the thesis focuses on the revenue management problem with

buy-down effects. The buy-down effects refer to the phenomenon that a product

becomes more attractive if it is the cheapest available within certain subset of the

assortment set, than if it is not the cheapest available within that subset. The multi-

nomial logit (MNL) model can be modified to reflect the buy-down effects. We

consider the dynamic assortment optimization problem under discrete choice model

with buy-down effects. We propose a sales based linear programming (SBLP) formu-

lation as a deterministic approximation to the original stochastic problem. Both the

number of the decision variables and the number of constraints in the SBLP formu-

lation are polynomial of the number of products. Thus, it is a much more efficient

model than the popular choice based deterministic linear programming (CDLP) for-

mulation. We give an efficient algorithm that converts an SBLP solution to a CDLP

solution. We then consider the extreme case of the buy-down effects, where in each

subset of the assortment, the customers only consider the cheapest available product.

An SBLP formulation is developed and an algorithm that converts an SBLP solution

to a CDLP solution is given. Lastly, we consider the extension where the no-purchase

alternative in the choice set is random. We propose a polynomial algorithm to solve
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the assortment optimization with 100% buy-down effects and random no-purchase

alternative. When there is general buy-down effects, we prove that the optimal solu-

tion to the static assortment optimization under discrete choice model with buy-down

effects and random no-purchase alternative is nested by revenue within subsets. The

nesting property allows us to reduce the assortment optimization problem with gen-

eral buy-down effects to the one with 100% buy-down effects, for which our efficient

polynomial algorithm can be used.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Traditional Revenue Management

Revenue management is about the application of various analytical techniques to op-

timize the price and availability of a company’s products so the revenue performance

is optimized. The concept of revenue management was mainly originated from the

airline industry, where it is also often called yield management. After the dereg-

ulation act from the Civil Aviation Board in 1978, airline companies obtained the

freedom of pricing its own products. This resulted in fierce competition and a careful

management of the price of the seats on an airplane became vital to the survival

and prosperity of an airline company. By developing a revenue management system,

American Airlines was able to stand out during the war with low cost airlines like

People Express Airlines in 1980s. It was estimated in [48] that the revenue manage-

ment techniques generated $1.4 billion for American Airlines over a three year period

in 1990s. Seeing the great value of the revenue management, other industries where

the variable cost of a product is almost zero or the variable cost is relatively small

compared with the fixed cost, like hospitalities, car rental, and many others, quickly

adopted the revenue management technique (see [12]). For the ease of exposition,

this thesis will be stated mainly in the context of airline industry. But the results

hold in other industries as well.

One big difference between revenue management techniques and other profit max-

imization methods is that the former often tries to charge different prices to different

customers through the control of price or availability, even though the products sold

are exactly the same. For example, passengers next to each other on an airplane
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often find their tickets prices very different. The major fact that enables a revenue

management system to charge different prices for the same seats on an airplane is

that customers have different willingnesses to pay for the same seat. Because the

variable cost of a seat is almost zero, selling a seat even at very low price is bet-

ter than leaving the seat empty. When there are too many empty seats, the airline

should lower the price to attract customers. However, offering low price may also

cannibalize the potential revenue from customers with high willingness to pay. To

strike a balance between these two conflicting considerations, the traditional revenue

management makes two major assumptions:

1. Each customer only wants to buy the ticket of one specific fare class (price) and

there is an independent stream of customers for each fare class;

2. The customers that want the cheaper fare class arrive at the system before those

want the more expensive fare class.

With these two assumptions, [35] considers a even simpler model where there are

only two fare classes. The more expensive fare class is referred as class 1 and the

cheaper one as class 2. Since the demand for class 2 arrives first, it is only needed to

determine how many seats to reserve for class 1. The break-even point is to reserve

as many seats for class 1 so that the expected marginal revenue generated from the

reserved seats is equal to the price of class 2. Assume the demand for class 1 is a

random variable with distribution function F (·). Let p1 and p2 denote the price of

the two classes. The reservation level (also known as protection level) x for class 1 is

determined as following:

p1(1− F (x)) = p2 ⇒ x = F−1

(
1− p2

p1

)
. (1)

If the total capacity is denoted as C, C − x is the booking limit of fare class 2.

The idea of balancing the expected revenue from the higher fare class with the

immediate revenue from the lower fare class was extended in [3, 4, 5] to handle the
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case where there are more than two fare classes. The idea is that when considering

the booking limit of one fare class, all of the more expensive fare classes are grouped

into a new mixed fare class. The problem is then reduced to the two-product case as

in [35]. The method is called expected marginal seat revenue (EMSR) methods and

different grouping methods lead to different EMSR methods.

The EMSR type methods successfully captured the trade-off between lost revenue

of pricing the seats too high and the cannibalization effects of pricing the seats too

low. They quickly became the major optimization method in the revenue management

industry and are still popular in practice even today. However, as the industry where

the revenue management techniques are applied evolve, both the practitioners and

researchers found it more and more difficult to justify the two assumptions based on

which the EMSR type and many other classical revenue management methods were

developed: the independent demand assumption and the sequentially low-to-high

demand arrival order.

The independence assumption implies that each customer knows which specific

product she wants and she will not switch to other products even if the desired one is

unavailable. This assumption is reasonable when revenue management ideas were first

developed in airline industry at 1970/1980s. At that time, the number of fare classes

from an airline is usually small. The relatively large price gap between products

makes it insensible for the leisure customers to buy the more expensive ticket. On

the other hand, the airlines introduced many different restrictions to the different fare

classes so that the high-valued customers cannot easily switch to the cheap tickets.

However, after several dozens of years, the airline industry is now very different and

the independence assumption is becoming unrealistic. First of all, many traditional

purchase restrictions in the airline industry have been removed and airlines may also

offer cheap tickets even close to departure time when they think it is profitable to do

so. In this case, customers who originally are willing to buy more expensive tickets
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may switch to the cheaper tickets instead. Besides, nowadays the airlines tend to have

more fare classes than before. These fare classes differ not only in prices, but also in

other attributes like mileage gain, cancellation fee, change fee and so on. With the

development of Internet, more and more tickets are now booked online. Customers

who book tickets online can easily compare the many tickets from many different

airlines and then pick the one that fits their needs best. With the increasing number

of fare classes, the increasing complexity of fare class attributes, and the new shopping

behavior, a customer rarely knows which specific product she wants before actually

seeing the available options. If a customer does not know which product she wants

to book, assuming low-to-high demand arrival order is also meaningless.

On the other hand, the advancement of the Internet technology makes more data

available. Nowadays, in the airline industry, not only the information pertaining to

the customer booking process is recorded, e.g. the fare class that was booked and the

time when the booking was made, also the availability of the fare classes are stored

in the database by constantly taking snapshots of the system status throughout the

booking horizon. The increase of the data amount and the improvement of the data

quality make more sophisticated demand models possible.

The limitations of the historical demand model and the better data availability

lead to the adoption of discrete choice model in revenue management.

1.2 Discrete Choice Models

Discrete choice model is a mathematical model that describes decision makers’ choice

behavior when they are presented with finitely many different alternatives. The set

of all available alternatives is called the offer set and the set of alternatives that the

decision maker actually considers is called the choice set. In general discrete choice

models, the offer set and the choice set are not necessarily the same. More specifically,

the choice set could be a strict subset of the offer set. In this study, we only consider
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the case when the choice set is the same as the offer set.

Discrete choice models have many different variants. Among them, the simplest

one is the multinomial logit (MNL) model. Let A denote the offer set. In the MNL

choice model, each product j in A is associated with an attractiveness parameter

Vj which is a positive number. the attractiveness parameter describes the relative

popularity of a product to the customers. Given the offer set and the attractive-

ness parameters, according to the MNL choice model, the decision maker will choose

product j with probability:

Pj:A =
Vj∑

j′∈A Vj′
.

The derivation of the MNL choice probability can be found in [6].

In practice, the attractivenesses of products of products can also be linked with

the attributes of the products by assuming

Vj = exp(βTxj),

where xj is the attribute vector of product j and β are the attribute parameters.

The MNL choice model is simple and easy to estimate (see [6, 53]). It is also

widely used in practice. However, the MNL choice model is often criticized due

to its independence from irrelevant alternatives (IIA) property. The IIA property

says that for a specific decision maker, the ratio of the choice probabilities of any

two alternatives (given that both of them are in the offer set) is not affected by

the attractiveness of any other alternatives. One classic example that shows the

unrealisticness of the IIA property is the red bus / blue bus problem. Many other

choice models are more general and can overcome the IIA limitation, e.g., the nested

logit model, the mixed logit model, the latent class logit model, and so on. For more

details of these classical choice models, please refer to [6, 53].

In recent years, many new choice models are also proposed. [23] propose a general

attraction model (GAM) where each product is associated with two attractiveness
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parameters, rather than one as in MNL. One of the attractiveness parameters is used

when the product is included in the offer set and the other is used when the product

is not in the offer set. This is to reflect the fact that customers may switch to other

channels / suppliers when the product is not offered here. It is shown that both the

MNL and the NL model are special cases of the GAM. Thus, the GAM is a more

general model and can (partially) avoid the IIA property. [8] develop a Markov chain

choice model where each product is modeled as a state in the Markov chain. The

transition matrix and the initial probabilities to each state are the parameters of

the model. The substitution of products is modeled as state transition and the final

absorbing state is the customer’s choice. It is shown that the GAM can be modeled

exactly using the Markov chain choice model. Thus, the latter is even more general

than the GAM.

[19] propose using a collection of preference lists to represent customers’ pref-

erence. Each preference list is associated with a nonnegative weight to represent

the percentage of the population that have this preference list. According to this

model, each customer chooses the highest-ranked alternative from the available ones.

Although the number of the potential preference lists is factorial in the number of

products, [19] show that a relatively small number of preference lists is usually good

enough for modeling purpose. [54] develop a column generation algorithm to estimate

the preference list model.

1.3 Revenue Management with Choice Models

In the airline industry, when customers book tickets, they will face different tickets

of fare classes from different flights of different airlines. With a little reflection, it can

be seen that such a decision process is well fit for a discrete choice model. [1, 2] are

among the first to use the MNL choice model to characterize and predict the customer

booking behavior in the airline industry. But the optimization model in [2] is quite
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elementary and heuristic. The seminal paper [50] propose a revenue management

model with general customer choice behavior. The optimization problem determines

which assortment to offer in each period and each state. The problem is modeled

as a dynamic programming (DP) model which can incorporate any discrete choice

model. [50] also discuss the data requirement and the parameter estimation problem

for the revenue management problem with choice model. The framework proposed

in [50] quickly became the standard model in revenue management with customer

choice model.

1.3.1 Deterministic approximation methods

Since the DP model is ofter too big to solve and the resulting policy is complicated to

implement in practice, some approximation methods are usually needed. [22] propose

a deterministic approximation model where the stochastic quantities are replaced

with their expected values and the capacity and the demand are treated as contin-

uous. The resulting linear programming model is called choice based deterministic

linear programming (CDLP). In CDLP, the number of decision variables is equal to

the number of potential offer sets, which is exponential in the number of products.

Thus, a column generation algorithm is often needed. The subproblem of the col-

umn generation algorithm is an assortment optimization problem. According to the

equivalence between separation and optimization in [27], if one can show that the

assortment optimization problem with certain choice model can be solved efficiently,

the CDLP with the same choice model can also be solved efficiently. In recent years,

quite a few efforts have been devoted to the assortment optimization problem.

Both [36] and [22] show that the optimal solution to the assortment optimiza-

tion problem with the MNL model is nested by revenue and thus the problem can

be solved efficiently. [14] show that the assortment optimization problem under the

MNL model with totally unimodular constraint can also be solved efficiently through
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linear programming models. [45] develop an efficient algorithm for the assortment

optimization under the MNL model with capacity constraint. [44] discuss the assort-

ment optimization problem under the MNL model with random choice parameters.

It is shown that although the assortment optimization problem is easy to solve under

certain conditions, the problem is generally NP-hard. To solve the same problem,

[37] give a branch-and-cut algorithm and [10] propose a greedy heuristic algorithm.

[46] consider a robust version of assortment optimization problem when the param-

eters are in a compact uncertainty set and show that an efficient algorithm can be

developed. When the consideration sets are nested to each other in the MNL model,

[20] prove that the corresponding assortment optimization problem is NP-complete.

A fully polynomial time approximation algorithm is then proposed. [15] give the nec-

essary and sufficient conditions under which the assortment optimization with nested

logit model is polynomially solvable. When the conditions are satisfied, [33] give an

efficient algorithm to solve the assortment optimization problem with d-level nested

logit model. [17] developed fully polynomial time approximation schemes (FPTAS)

for assortment optimization problem with the nested logit model and the mixed MNL

model. [18] consider the assortment optimization problem under Markov choice model

with capacity constraint. [57] consider the assortment optimization problem under

general attraction model with capacity constraint.

When the choice model is the general attraction model, [23] develop a sales based

linear programming (SBLP) model to approximate the dynamic assortment optimiza-

tion problem. In the SBLP model, the decision variables are the sales quantities of the

products, thus the number of decision variables is only linear in the number of prod-

ucts. This is a significant improvement over the CDLP model. [23] also show that the

CDLP and SBLP solutions can be converted from one to the other within polynomial

time, thus, the two formulations are equivalent. [21] develop an SBLP model under

the Markov chain choice model. A polynomial time algorithm is developed to convert

8



the sales solution to the assortment solution of CDLP.

1.3.2 Approximate dynamic programming methods

Another interesting stream of literature uses approximation dynamic programming

(ADP, see [7, 41] for introduction) to solve the DP model of the dynamic assortment

optimization problem. [59] use an affine function to approximate the value function

and show that the resulting program provides a tighter bound than the CDLP for-

mulation. Based on the affine approximation, the DP is then formulated as a linear

programming model with a large number of constraints. [28] consider using piecewise-

linear function to approximate the value function. [29] prove bounds on how much

the affine approximation and piecewise-linear approximation can tighten the CDLP

formulation. [58] consider a nonlinear approximation to the value function and pro-

pose a simultaneous dynamic programming approach to solve the resulting nonlinear

problem.
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CHAPTER II

JOINT ESTIMATION OF CHOICE MODEL

PARAMETERS AND ARRIVAL RATE

2.1 Introduction

Estimation of demand models is a core part of revenue management. Most modern

demand models consist of two major components: a model of the population of

potential customers, and a model of the choice behavior of the customers in the

population. For example, the model of the population of potential customers often

takes the form of an arrival process, such as a Poisson process with time-dependent

rate function λ(t). The model of the choice behavior of the customers represented

by the population model often takes the form of a discrete choice model, such as a

multinomial logit model, specifying the fraction Pj:S of customers in the population

who would choose alternative j out of choice set S, often including a no-purchase

alternative.

In some traditional revenue management systems the distinction between the pop-

ulation model and the choice model is trivial. These demand models consist of a

separate arrival process for each alternative, as though customers make their choices

before observing the set of available alternatives. In these models the arrival processes

specify both the population of potential customers as well as the customer choices.

In this chapter we focus on demand models in which there is a choice component in

addition to a population component, and we address two major obstacles encoun-

tered when estimating demand models with a population component and a choice

component.
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2.1.1 The No-Purchase Dilemma

The first obstacle is that the sales data that can be obtained in practice usually do not

include data about potential customers who chose the no-purchase alternative. These

no-purchase customers include customers who would have chosen an alternative other

than the no-purchase alternative if a different set of alternatives were offered to the

customer, and therefore it is important for revenue management purposes to include

no-purchase customers in the demand model and to accurately estimate the popu-

lation including such customers and the choice behavior including the no-purchase

alternative. Depending on the demand model, no-purchase customers may include

customers who choose alternatives offered by competitors or no-purchase customers

may include only those customers who decide not to buy anything at this time. This

distinction is important when modeling in practice, but for the purposes of this chap-

ter the distinction is not important.

Next we illustrate the no-purchase dilemma. Consider the following two settings in

which a product is offered at a particular price: In setting A, 100 customers consider

the product, 50 choose to purchase the product, and the other 50 decide that it is

too expensive and choose not to purchase the product. In setting B, 1000 customers

consider the product, 50 choose to purchase the product, and the other 950 decide

that it is too expensive and choose not to purchase the product. In both settings

the seller observes only the 50 customers who purchase the product, and the seller

has no data about the other customers. Thus, based on the available data, the

seller cannot distinguish between setting A with a population of 100 and a purchase

fraction of 0.5, and setting B with a population of 1000 and a purchase fraction of

0.05. This dilemma has been pointed out many times, including by [50] and [56].

On the other hand, it has also been reported in the literature that demand models

with both a population component and a choice component, including a no-purchase

choice, had been estimated successfully with data that do not include no-purchase
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observations; see for example [40]. That raises the question of what the necessary

and sufficient conditions are for demand models to be identifiable, when the demand

models include both a population component and a choice component, including a

no-purchase choice, and whether the conditions can be satisfied with data that do

not include no-purchase observations.

2.1.2 The Nonhomogeneous Arrival Dilemma

Another difficulty in demand model estimation is how to estimate a nonhomogeneous

customer arrival process. Existing estimation methods in the literature either assume

that the arrival process is homogeneous or assume that the time horizon has been par-

titioned into intervals so that the arrival process within each interval is homogeneous.

The dilemma is that if arrivals of no-purchase customers are not observed, then such

partitioning and arrival rate estimation are problematic because the observed sales

rate is affected not only by the unobserved total arrival rate, but also by the sets

of alternatives (assortments) offered during the time horizon. For example, consider

two intervals A and B. During interval A, 100 customers per unit time arrive, and a

particular assortment is offered, resulting in 50 customers per unit time who choose

to purchase a product, and the other 50 choose not to purchase a product. During

interval B, 1000 customers per unit time arrive, and another assortment is offered,

resulting in 50 customers per unit time who choose to purchase a product, and the

other 950 choose not to purchase a product. Note that the seller cannot estimate the

different arrival rates based on the observed data. This dilemma can be regarded as

a more general version of the no-purchase dilemma discussed above, especially when

the intervals are not predetermined or the arrival rate is not piecewise constant.

The difficulties mentioned above are serious obstacles inhibiting the use of modern

demand models in revenue management practice. This chapter makes the following

contributions to dealing with these challenges:
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1. We study the identifiability of demand models consisting of an arrival model

and a choice model, when only data about the assortments offered and the sales

during the time horizon are available. Specifically, we give necessary and suffi-

cient conditions for the identifiability of demand models for the cases in which

the arrival process is homogeneous, piecewise constant, and general nonhomo-

geneous.

2. For the cases in which the arrival process is homogeneous or piecewise constant,

if the demand model is identifiable, then the use of maximum likelihood es-

timation to estimate the demand model is relatively straightforward and has

well-established desirable properties. However, in the case in which the arrival

process is general nonhomogeneous, even if the demand model is identifiable,

maximum likelihood estimation leads to degenerate estimates of infinite arrival

rates at the time points of observed arrivals and an arrival rate of zero at all

other times. We propose an estimation algorithm that jointly estimates a gen-

eral nonhomogeneous arrival process and a choice model. We show that if the

demand model is identifiable, then the estimates produced by the algorithm

converge to the true quantities almost surely.

2.2 Literature Review

[50] is the seminal paper that first suggested incorporating a discrete choice model

of customer behavior into the revenue management. Although the revenue manage-

ment with discrete choice model has a lot of advantages over the traditional revenue

management with independent demand model, [50] do point out that the estimation

of the arrival rate and the choice model parameters using the sales data is difficult.

[50] divide the time horizon into small intervals and the arrival in each small inter-

val is modeled by a Bernoulli random variable, which is a discrete approximation

to the Poisson arrival process. The likelihood of the sales can then be expressed in
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terms of the Bernoulli parameter and the choice model parameters. An expectation-

maximization (EM) algorithm is proposed to maximize the likelihood function. [38]

show that a simpler likelihood function can be formulated by expressing the sales

within a period where the offer set is constant as a filtered Poisson random vari-

able. Thus, the time horizon does not need to be discretized. [38] also show that

an EM algorithm can be developed to solve the new likelihood function. Another

big concern about the estimation problem [50] raised is that there could be multiple

pairs of parameters that lead to the same likelihood. The identifiability of the arrival

rate and the choice model parameters has been noticed since the proposal of revenue

management with discrete choice model.

To overcome the potential non-identifiability problem, [56] suggest using the mar-

ket share of the company so one unique estimate can be determined from the likelihood

function. [56] then develop an efficient EM algorithm to solve the resulting likelihood

function. However, the EM algorithm may not be efficient when there are multiple

historical assortments, which is a typical case in practical revenue management set-

tings. More importantly, the claim (in Section 3.3) that there are always a continuum

of maxima to the likelihood function turns out to be too conservative. For example,

[55] implemented the EM algorithm to an empirical revenue management problem and

show that the parameters can be estimated. As the discussion in this chapter will

show, the maximum likelihood estimator admits a unique maximizer under certain

conditions. [42] develop an heuristic algorithm that uses the demand mass balance

equations to recover the market level demand. The algorithm also uses the airline’s

market share information to determine the relative attractiveness of the no-purchase

option.

Given the sales data, one can write out the conditional likelihood function of the

purchase choices conditioning on that the customers will select product from airline’s

offer sets. By maximizing the conditional likelihood function, the relative popularity
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among the airline’s own products can be determined. The main difficulty of estimating

the arrival rate (or arrival size) and the choice model parameters lies in the fact that

the relative attractiveness of the no-purchase option is hard to determine since the

number customers who purchased nothing is unobserved. On the other hand, once

the relative attractiveness of the no-purchase option is determined, together with

the attractivenesses of the airline’s own products, the arrival rate can then be easily

determined. Several methods of this spirit have been proposed. [40] proposed a

two-step algorithm to estimate the arrival rate and the choice model parameters.

The first step estimated the choice model parameters by maximizing the conditional

likelihood function. Based on the choice model parameters, the likelihood of the

observed numbers of historical purchases can then be written as a function of the no-

purchase attractiveness and the the arrival rate. [40] show that the likelihood function

can be further reduced to a scaler function of the no-purchase attractiveness. The

resulting optimization problem is then easy to solve. [49] also proposed a two-step

algorithm where the first step is the same as that in [40]. [49] noticed that the

ratio between the numbers of expected purchases of two intervals with different offer

sets does not depend on the arrival rate. The ratio is a function of the no-purchase

attractiveness. [49] suggested finding the no-purchase attractiveness by minimizing

the difference between the expected ratio of sales and the actual ratio of sales. As

pointed out in [49], the effectiveness of the two-step method depends on sufficiently

rich data, enough variation in the offer sets, as well as some prior knowledge of the

arrival rate. Neither [40] nor [49] specify the exact conditions under which the two-

step algorithms will work.

Some other papers exclusively focus on the estimation of the choice model param-

eters and the no-purchase attractiveness using only the sales data. [39] shows that if

the choice model involved is some special generalized extreme value models (e.g. a

nested logit model) so that the no-purchase attractiveness is not canceled out in the
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conditional likelihood and there is enough variation in the offer sets, then the param-

eters of the no-purchase option or other completely censored option can be identified

using conditional log-likelihood method or EM algorithm.

Most existing methods that estimate both the arrival rate and the choice model

parameters assume that the arrival rate is homogeneous or assume that the horizon

is partitioned so that the arrival process within each interval is homogeneous. As

we argued in Section 2.1.2, such partitioning could be problematic. [32] explicitly

models the nonhomogeneous arrival process while estimating the arrival rate and

the customer behavior using only the sales data. In [32], a parameterized arrival

intensity function is assumed and the estimation of the arrival rate boils down to the

determination of the parameters. The methods still requires the practitioners to have

a good knowledge of the market level demand, which is actually unobservable. On the

other hand, when the data are not censored, [30] proposed a nonparametric method

to estimate any nonhomogeneous Poisson process by using one or more realizations of

the historical arrivals. The idea introduced in [30] will be extended in our estimation

method so any nonhomogeneous market level arrival process can be estimated.

2.3 Estimation Problem and Identifiability Conditions

In this section, we will discuss the identifiability conditions of the joint estimation of

the arrival rate and the choice model parameters using only the sales data and the

availability data. In statistics, the identifiability is defined as following ([31]).

Definition 1. If X is distributed according to probability law Pθ where θ ∈ Θ is the

parameter of the distribution, then θ is said to be identifiable on the basis of X in

Θ if for any θ1, θ2 ∈ Θ with θ1 6= θ2, Pθ1 6= Pθ2 (Two probability laws being different

means they differ on a set of nonzero measure).

If a parameter is unidentifiable, there is no consistent estimator for the parameters

and no precise inference of the parameters can be made.
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Throughout this study, we assume the customer choice behavior follows the multi-

nomial logit (MNL) model. The customer arrival process is a Poisson arrival process.

We will discuss three different scenarios of the rate function of the Poisson process

regarding its time homogeneity. The simplest case is when the arrival rate is constant

as adopted in [40], [50], and [56]. This is also the case where the confusion about

the identifiability arises. We then discuss the case when the arrival rate is piecewise

constant and when the arrival rate is any integrable nonnegative function.

2.3.1 Homogeneous arrival process

Let J denote the set of company’s products. The company may offer any A ⊂ J as

the offer set. Let L denote the length of the sales horizon. Throughout the horizon,

we observe N different assortments. Assortment An is offered for Ln time units for

n = 1, · · · , N . We have
∑N

n=1 Ln = L. We make the following assumptions:

1. Arrival customers make purchase decisions according to an MNL choice model.

The attractiveness of product j is Vj and is a constant positive number.

2. The no-purchase option is always available and has constant attractiveness. The

attractiveness of no-purchase is normalized to 1.

3. Ln > 0 for every n.

4. Every product has been offered in some assortment.

5. In the setting where only sales data are observed, an empty assortment does not

provide any information about the arrival rate or the product attractiveness.

So without loss of generality, we assume An 6= ∅ for every n.

We denote the collection of the assortments as S and |S| = N . During the time

interval Ln when An is offered, we observe Cnj purchases of product j for j ∈ An.

An, Ln, and Cnj are the available information for the estimation problem.
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To simplify the notation, we use V (A) to denote the sum of the attractivenesses

of products in A. That is, V (A) =
∑
j∈A

Vj. Given An’s and Ln’s, the likelihood of

observing Cnj is as (2).

`(C|V, λ) =
N∏
n=1

exp

(
−λLn

V (An)

V (An) + 1

) (λLn V (An)
V (An)+1

) ∑
j∈An

Cnj(∑
j∈An Cnj

)
!(∑

j∈An Cnj

)
!∏

j∈An Cnj!

∏
j∈An

(
Vj

V (An)

)Cnj
(2)

It has been pointed out in [56] that when N = 1, (V, λ) is unidentifiable on the

basis of Cnj in {(V, λ) : V > 0, λ > 0}. To see this, when N = 1, the likelihood

function is reduced to

`1(C|V, λ) = exp

(
−λL1

V (A1)

V (A1) + 1

) (λL1
V (A1)
V (A1)+1

) ∑
j∈A1

C1j∏
j∈A1

C1j!

∏
j∈A1

(
Vj

V (A1)

)C1j

.

Then `1(C|V, λ) = `1(C|V ′, λ′) for every C where V ′ = αV and λ′ = αV (A1)+1
α(V (A1)+1)

λ with

any α > 0.

Thus, to make (V, λ) identifiable, we must at least observe two different assort-

ments. Unfortunately, this requirement alone does not guarantee the identifiability

of the parameters, either, as shown in the following example.

Example 1. Let N = 2, A1 = {1}, A2 = {2}. Then

`2(C|V, λ) = exp

(
−λL1

V1

V1 + 1

) (λL1
V1
V1+1

)C1,1

C1,1!
exp

(
−λL2

V2

V2 + 1

) (λL2
V2
V2+1

)C2,2

C2,2!
.

Then for any (V, λ), (V ′, λ′) defined with any k > 1 as following has `2(C|V ′, λ′) =

`2(C|V, λ) for every C:

V ′1
V ′1 + 1

=
1

k

V1

V1 + 1
⇒ V ′1 =

V1

k(V1 + 1)− V1

V ′2
V ′2 + 1

=
1

k

V2

V2 + 1
⇒ V ′2 =

V2

k(V2 + 1)− V2

λ′ = kλ.
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Actually, following the argument in Example 1, it can be shown that even for larger

N , if no two offered assortments have products in common, (V, λ) are unidentifiable.

We next use the Definition 1 to find the necessary and sufficient conditions of

the identifiability. When discussing the identifiability, we will also work with the

log-likelihood function as (3).

``(C|V, λ) =
N∑
n=1

[(
−λLn

V (An)

V (An) + 1

)
+
∑
j∈An

Cnj log

(
λLn

1

V (An) + 1

)
(3)

− log

(∏
j∈An

Cnj!

)
+
∑
j∈An

Cnj log(Vj)

]

Before giving the necessary and sufficient conditions of the identifiability, we first

introduce some notation and definition.

Definition 2. Given a collection of assortments S, assortments A1 and A2 in S are

said to be communicating on S if A1 ∩A2 6= ∅ or there exists A(1), A(2), · · · , A(k) ∈ S

for some k ≥ 1 such that

A1 ∩ A(1) 6= ∅, A(1) ∩ A(2) 6= ∅, · · · , A(k−1) ∩ A(k) 6= ∅, A(k) ∩ A2 6= ∅.

Definition 3. A collection of assortment S are said to be communicating if every

two assortments in S are communicating on it.

The following technical result will be used in the proof of the sufficiency of the

identifiability conditions.

Suppose M ∈ Rm×n, and 1 denotes a vector of ones with appropriate dimension.

Define a system of of equations as following.

Mx = 1, x > 0 (I)

Define two alternative systems of π ∈ Rm as following.

1Tπ > 0, MTπ ≤ 0 (A.1)

1Tπ = 0, MTπ ≤ 0, MTπ 6= 0 (A.2)
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Theorem 1. System (I) has no solution if and only if System (A.1) or System (A.2)

has a solution.

Proof of Theorem 1. When System (A.1) has a solution π, we can pre-multiply both

sides of System (I) with πT and we have:

πTMx = πT1. (4)

According to the second part of the constraints of (A.1) and the requirement that

x > 0, πTMx ≤ 0. While the first part of the constraints of (A.1) says πT1 > 0.

Thus, we reach a contradiction from System (I). This means (I) does not have a

solution.

Similarly, when System (A.2) has a solution, we can also reach a contradiction for

System (I).

We now show when System (I) does not have a solution, System (A.1) or (A.2) have

a solution. We introduce a relaxed system (5) to (I) as following and our discussion

will be based on whether the relaxed system has solution or not.

Mx = 1, x ≥ 0. (5)

1. Neither (I) nor (5) has a solution. Since (5) does not have a solution, according

to Farkas lemma, (A.1) has a solution.

2. (I) does not have a solution but (5) has a solution. This means the following

linear programming problem (6) has optimal objective value equal to 0. If the

optimal objective value is negative, x∗ + 1y∗ > 0 and x∗ + 1y∗ is a solution to

(I), which contradicts our starting assumption.

min
x,y

: −y, s.t.: Mx+M1y = 1, x ≥ 0, y ≥ 0. (6)

According to the strong duality theory, the dual to (6) as below is feasible and

has optimal objective value equal to 0.

max
π

: 1Tπ, s.t.: MTπ ≤ 0, 1TMTπ ≤ −1.
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Because of the second constraint 1TMTπ ≤ −1, the optimal solution π∗ to the

above dual problem also satisfies MTπ 6= 0. Thus, π∗ is a solution to (A.2).

To conclude, when (I) does not have a solution, (A.1) or (A.2) have a solution. This

finishes the proof.

Given the collection of observed assortments, S, we define an incidence matrix MS

of dimension |S|×|J | as MS
nj = 1 if j ∈ An and MS

nj = 0 otherwise. The identification

conditions of the estimation problem can be summarized as following.

Theorem 2. Let S be the collection of assortments observed in history. (V, λ) is

identifiable if and only if the system {MSx = 1, x > 0} has no solution.

Proof. We first prove that when {MSx = 1, x > 0} has a solution x̄, (V, λ) is uniden-

tifiable. To prove this, we just need to find two different sets of parameters (V, λ)

and (V ′, λ′) such that ``(C|V, λ) = ``(C|V ′, λ′) for every C. To achieve this, we pick

V = x̄ and λ to be any positive number. Set V ′ = kV and λ′ = 1
2
k+1
k
λ with any k > 0

and k 6= 1, then (V, λ) 6= (V ′, λ′) and ``(C|V, λ) = ``(C|V ′, λ′) for every C.

Now we prove when {MSx = 1, x > 0} does not have a solution, (V, λ) is identi-

fiable.

Suppose we have (V, λ) and (V ′, λ′) such that ``(C|V, λ) = ``(C|V ′, λ′):

N∑
n=1

[
−λLn

V (An)

V (An) + 1
+
∑
j∈An

Cnj (log λ− log (V (An) + 1) + log Vj)

]

=
N∑
n=1

[
−λ′Ln

V ′(An)

V ′(An) + 1
+
∑
j∈An

Cnj
(
log λ′ − log (V ′(An) + 1) + log V ′j

)]
.

(7)

Here, V ′(A) :=
∑
j∈A

V ′j .

For (7) to hold for all Cnj’s, we must have the coefficients before each Cnj on both
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sides to be the same:

log λ− log (V (An) + 1) + log Vj = log λ′ − log (V ′(An) + 1) + log V ′j ,∀n,∀j ∈ An;

(8)

⇒ λ
V (An)

V (An) + 1
= λ′

V ′(An)

V ′(An) + 1
,∀n. (9)

If products j and l are in the same An for some n, then according to (8), we have

log λ− log (V (An) + 1) + log Vj = log λ′ − log (V ′(An) + 1) + log V ′j ,

log λ− log (V (An) + 1) + log Vl = log λ′ − log (V ′(An) + 1) + log V ′l .

Subtracting the second equation from the first one, we have

log(Vj)− log(Vl) = log(V ′j )− log(V ′l ) ⇒
Vj
V ′j

=
Vl
V ′l
,∀j, l such that j, l ∈ An for someAn.

(10)

If (An1 ∩ An2) 6= ∅, then (10) holds for every j, l ∈ An1 ∪ An2 . Following this logic, it

is easy to check that if Sk is a collection of assortments that is communicating, then

there exists β(Sk) > 0 such that

Vj
V ′j

= β(Sk), ∀j ∈ ∪An∈SkAn. (11)

Since {MSx = 1, x > 0} does not have a solution, according to Theorem 1, there

exists π ∈ RT such that one of the alternative systems as (A.1) and (A.2) holds.

1. When π satisfies (A.1):

1Tπ > 0,
(
MS)T π ≤ 0.

We can partition the collection of assortments in S with nonzero π into S1, · · · ,SK

such that

• Sk are communicating for each k;
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• Sk ∪ {A} is not communicating for any A ∈ Sk′ with k 6= k′.

Thus, Sk’s are maximal communicating collection of assortments. We use πk

to denote the portion of π corresponding to Sk. Then we have
(
MSk

)T
πk ≤ 0

for all k and 1Tπk > 0 for at least one k. Without loss of generality, we

assume 1Tπ1 > 0. Applying Theorem 1 again, we have MS1x = 1, x > 0 does

not have a solution. Thus, at least two assortments in S1 have different total

attractiveness. Without loss of generality, we assume A1 and A2 in S1 have

different total attractivenesses. Substituting (11) into (9), we have

λ
β(S1)V ′(An)

β(S1)V ′(An) + 1
= λ′

V ′(An)

V ′(An) + 1
, n = 1, 2. (12)

Dividing the equation of n = 1 with that of n = 2, we have

β(S1)V ′(A1) + 1

β(S1)V ′(A2) + 1
=
V ′(A1) + 1

V ′(A2) + 1
. (13)

Since V ′(A1) 6= V ′(A2) and both are positive, we have β(S1) = 1. Thus, Vj = V ′j

for j ∈ ∪An∈S1An. Substituting β(S1) = 1 into (9) with n such that An ∈ S1,

we have λ = λ′.

Substituting λ = λ′ into (8) with An ∈ Sk for any k, we have

β(Sk)
β(Sk)V ′(An) + 1

=
1

V ′(An) + 1
⇒ β(Sk) = 1.

Thus, V ′j = Vj for any j ∈ ∪An∈SkAn with any k.

2. When π satisfies (A.2),

1Tπ = 0,
(
MS)T π ≤ 0,

(
MS)T π 6= 0.

Similar as the case when π satisfies (A.1), we partition S into maximal commu-

nicating collections S1, · · · ,SK . Let πk denote the portion of π corresponding

to Sk. We have
(
MSk

)T
πk ≤ 0 for all k. If for some k0, 1Tπk0 > 0, then for

this Sk0 , (A.1) is satisfied and we can then find two assortments in Sk0 with
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different total attractivenesses and the argument goes as previous. If for every

k, 1Tπk ≤ 0, then we must have 1Tπk = 0 for every k since 1Tπ = 0. Since(
MS)T π ≤ 0 and

(
MS)T π 6= 0, for at least one k0,

(
MSk0

)T
πk0 6= 0. Apply-

ing Theorem 1 again, we can find two assortments in Sk0 with different total

attractivenesses. The argument can go as previous again.

Thus, we have (V, λ) = (V ′, λ′) and the theorem is proved.

In practice, the offer sets made available by the airlines or hotels are often nested

by revenue. The companies usually adjust the available assortments by adding a

cheaper product or by removing the cheapest available product. That means, for

these industries, we will observe some historical offer sets A1 and A2 such that A1

is a strict subset of A2. According to Theorem 2, such historical data means the

parameters are identifiable.

2.3.2 Piecewise constant arrival rate

In practice, often the case, the arrival rate is non-homogeneous. We now discuss the

estimation of the arrival rate function and the choice model parameters using the

censored sales data and the availability data. We will first focus on the case when

the non-homogeneous arrival rate is piecewise constant.

Suppose the arrival rate function is piecewise constant and has M pieces. The

arrival rate for the mth piece is λm. A collection of Nm distinct historical offer sets,

denoted as Tm, were offered under the mth piece. Let Amn denote the nth offer set

in Tm. Here we also assume that Amn is nonempty. The length of time when Amn

is offered is denoted as Lmn. There were Cmnj purchases of product j with j ∈ Amn

when Amn was offered. The log-likelihood function is as below.

``(C|λ, V ) =
M∑
m=1

Nm∑
n=1

∑
j∈Amn

(
−λmLmnVj
V (Amn) + 1

+ Cmnj log

(
λmLmnVj
V (Amn) + 1

)
− log (Cmnj!)

)
(14)
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Since we assume the choice model parameters are constant throughout the horizon,

we do not need each Tm satisfy the identifiability condition in Theorem 2. As a

simple example, suppose the piecewise constant arrival rate function is composed of

two pieces. We observe collections of offer sets T1 = {{1, 2}, {1}} and T2 = {{1}} for

the two pieces, respectively. In this example, T1 satisfies the condition in Theorem 2

and we are able to identify λ1, V1, and V2 from the sales information using the sales

information from the first piece. Once we identify V2, we can then use the sales

information of product 2 from the second piece to identify λ2. The identifiability

condition is generalized in Theorem 3 as below. Before stating the theorem, we first

introduce the concepts of communicating collections of offer sets.

Definition 4. Given collections of assortments T1, T2, · · · , Tm, T1 and T2 are said to

be communicating on T1, · · · , Tm if there are A1 ∈ T1 and A2 ∈ T2 such that A1 and

A2 are communicating on T1 ∪ · · · ∪ Tm.

Definition 5. Given collections of assortments T1, T2, · · · , Tm, these collections are

said to be communicating on themselves if every two collections are communicating

on T1, T2, · · · , Tm.

We partition the collections of assortments under different arrival rate pieces

T1, · · · , TM into Q1, · · · ,QQ such that the collections of assortments in each Qq are

communicating on themselves, and Qq ∪ {Tm} is not communicating on Qq ∪ {Tm}

for any Tm ∈ Qq′ with q′ 6= q. Thus, each Qq is a maximal set of collections of

assortments that are communicating.

Note that not every two assortments in Qq are communicating on Qq. For ex-

ample, if T1 = {{1, 2}, {4}}, T2 = {{2}}, and Q1 = {T1, T2}, then T1 and T2 are

communicating but {4} is not communicating with other assortments in Qq.

Given Qq, we further partition all assortments in Qq into maximal communicating

collections of assortments Sq1, · · · ,SqKq .
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The necessary and sufficient condition for the identifiability of the piecewise con-

stant arrival rate function and the choice model parameters are as below.

Theorem 3. Suppose the customer arrival process is a non-homogeneous Poisson

process with piecewise constant rate function. The number and the locations of the

break points of the rate function are known. Customers’ behavior is governed by a

MNL model. Given the sales information Cmnj and the historical availability informa-

tion Amn, the arrival rate function and the choice model parameters are identifiable

if and only if for each Qq, the following system does not have a solution:

MTm∩Skx = 1bmk, ∀m, k;

bmkdk
bmkdk + 1

em =
bmk

bmk + 1
, ∀m, k;

x > 0, bmk > 0, dk > 0, ∀m, k;

not all em = 1

(15)

Proof. We first show the necessity of the conditions. Suppose for someQq, system (15)

has a solution (x0, b0, e0, d0). Set V = x0 for products in Qq and set the arrival rate

λm = 1 for each interval in Qq. Since x0 is a solution to (15), we have V (A) = b0
mk

for every A ∈ Tm ∩ Sk. Scale the attractivenesses of products in Tm ∩ Sk by dk.

Given this, if we scale λm by factor em, due to the second set of equations in (15),

we know the purchasing rate for every A ∈ Tm ∩ Sk will be the same as before for

every m and k. Since we always scale the attractivenesses of products in Sk by the

same factor dk, the relative attractivenesses among them will not be affected. Since

not all em = 1, some arrival rates will be different after the scaling. Thus, we find

two sets of parameters with which likelihood functions are the same for all purchase

data. Thus, the estimation problem is unidentifiable.

We now prove the sufficiency of the conditions. To achieve this, we show that if

the estimation problem is unidentifiable, (15) has a solution for some Qq. Given the

estimation problem is unidentifiable, there exists (λ, V ) 6= (λ′, V ′) that give rise to
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the same likelihood for all purchase data. By equalizing the parameters before Cmnj

on both sides, we have

λmVj
V (Amn) + 1

=
λ′mV

′
j

V ′(Amn) + 1
, ∀m, n, and j ∈ Amn. (16)

If products j and j′ are in the same assortment, and product j′ and l are in another

same assortment, then
Vj
V ′j

=
Vj′

V ′
j′

= Vl
V ′l

. In this logic, there exists βk

V ′j
Vj

= βk, ∀j ∈
⋃
A∈Sk

A, ∀Sk ∈ Qq. (17)

For every assortment A in Tm ∩ Sk, we also have

λ′m
βkV (Amk)

βkV (Amk) + 1
= λm

V (Amk)

V (Amk) + 1
. (18)

Without loss of generality, suppose λ1 6= λ′1, then βk 6= 1 for all Sk such that T1∩Sk 6=

∅.

Let A1 and A2 be any two assortment in T1 ∩ Sk for some k, we have

λ′1β1V (A)

β1V (A) + 1
=

λ1V (A)

V (A) + 1
, for A = A1, A2. (19)

Dividing the two equations, we have β1V (A2)+1
β1V (A1)+1

= V (A2)+1
V (A1)+1

. Since β1 6= 1, we have

V (A1) = V (A2). In this way, we can show that the assortments in T1 belonging to

the same communicating collection Sk for some k have the same total attractivenesses.

Now pick another T2 that belongs to the same Qq as T1 and shares some products

in common with T1. Clearly, the shared products have different V and V ′. Thus,

λ2 6= λ′2. By the same logic as for T1, we can show assortments in T2 ∩ Sk for some k

have the same total attractiveness. Keep including other T in Qq that shares some

products with the T which has already been discussed. We will have V (A1) = V (A2)

for any A1, A2 ∈ Tm ∩ Sk for any Tm,Sk ∈ Qq.

By setting x = V , bmk equal to the common total attractiveness of assortments in

the same Tm ∩ Sk, dk = βk, and em = λ′/λ, we obtain a solution to (15).
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If we convert the not-all-equal-to-1 requirement of (15) to
∑

m(em − 1)2 > 0,

the identifiability conditions (15) can be checked by solving a nonlinear feasibility

problem. Also, in practice, strictly nested assortments will probably be offered within

the same interval due to the say a revenue management system adjusts the availability.

In this case, it is easy to check that the estimation problem is indeed identifiable.

2.3.3 Any integrable arrival rate

When the product attractivenesses are constant and the arrival rate is constant or

piecewise constant, the identifiability of the arrival rate and the choice model param-

eters relies on one essential fact: under at least one interval over which the arrival

rate is constant, shall we have two assortments with different total attractivenesses.

When this condition is satisfied, with the variation in the total attractiveness and

the change in the total purchase rate, we can infer the arrival rate and attractiveness

parameters. When the arrival rate is any integrable nonnegative function, even we

observe two different assortments that will have different total attractivenesses, we

can not attribute the difference between the purchase patterns to the different assort-

ments. The difference may be caused by the change of the arrival rate. Thus, when

the structure of the arrival rate function is unknown, one historical sample path is

not sufficient for the identification of the arrival rate and choice model parameters.

In this section, we assume we have H ≥ 2 sample paths of historical availability

and purchase information. 1 The hth sample offered nonempty assortment Ah,n as its

nth assortment. Nh consecutively different assortments were offered in sample h. We

observe the historical availability information, the product chosen by the customers,

and the occurrence time of the purchases 2. The total number of purchases in sample

1When the arrival rate is constant or when the arrival rate is piecewise constant and the number
and the locations of the break points are known, we can concatenate the intervals with the same
arrival rate from different sample paths into one path. By doing so, the likelihood function does not
change.

2In practice, a company most likely will record the transaction times for every traction. When
the arrival rate is constant or when the arrival rate is piecewise constant and the number and the
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h is Ih. The ith purchase in sample h occurred at time th,i. The horizon length is L.

We also let th,0 = 0 and th,Ih+1 = L. The choice set at time t of sample h is Ah(t).

The ith purchase in sample h selected product ch,i.

We assume the attractiveness of product j is Vj and it is constant throughout the

horizon. The attractiveness of no-purchase is normalized to 1. We assume the Poisson

arrival process is non-homogeneous. Given arrival rate function λ(t), we define

Λh =

∫ L

0

λ(t)

∑
j∈Ah(t) Vj∑

j∈Ah(t) Vj + 1
dt (20)

as the accumulative purchase arrival rate during history h. Given this notation, the

probability density there is no purchase during time [0.L] \ {th,i}i=1,··· ,Ih of history h

is exp(−Λh). The probability density that in history h, purchases indeed happened

at time points {th,i} with purchased products ch,i for i = 1, · · · , Ih is

Ih∏
i=1

λ(th,i)
Vch,i∑

j∈Ah(th,i)
Vj + 1

.

Thus, the likelihood function of the sales pattern is as Equation (21).

`(t, c|λ, V ) =
H∏
h=1

[
exp(−Λh)

(
Ih∏
i=1

λ(th,i)
Vch,i∑

j∈Ah(th,i)
Vj + 1

)]
. (21)

Given any two arrival rate functions λ(t) and λ′(t), suppose λ(t) 6= λ′(t) if and

only if t ∈ T where T ⊂ [0, L]. If T has measure zero, then `(t, c|λ, V ) = `(t, c|λ′, V )

almost surely since the probability that some purchases happened during T is zero.

Thus, the maximum likelihood estimator can at most identify two arrival rate func-

tions if they differ over a nonzero measure set. On the other hand, if two arrival rate

functions differ only over a zero measure set, then their cumulative arrival rate func-

tions are identical. Given that in most revenue management models, the cumulative

rate matters is the only interesting input information about arrival, such identifia-

bility should be sufficient. Thus, in the subsequent discussion, the identifiability of

locations of the break points are known, this detailed transaction time information does not provide
extra information than the aggregated sales information for the purpose of estimation.
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the arrival rate function will be in this sense, and the equality between arrival rate

functions means they are equal almost everywhere.

Let D(t) := {Ah(t) : h = 1, · · · , H} be the collection of assortments offered across

different samples at time t. In each sample, a finite number of consecutively different

assortments were offered, each assortment is offered for certain positive amount of

time. Thus there are a finite number of distinctiveD(t) values throughout the horizon.

We represent them as D1,D2, · · · ,DM .

We partition {D1,D2 · · · ,DM} into Z1, · · · ,ZZ such that the collections in each

Zz are communicating on themselves (as defined in Definition 5), and Zz ∪ {Dm} is

not communicating on Zz ∪ {Dm} with any Dm /∈ Zz. Thus, each Zz is a maximal

set of collections of assortments that is communicating. The sufficient and necessary

conditions for the identifiability of the piecewise constant rate function λ(t) and the

choice parameter V are stated as below. Given Zm, we partition the assortments in

it into maximal communicating collections of assortments Sz1, · · · ,Szkm .

Theorem 4. Suppose the Poisson arrival rate λ(t) is an integrable nonnegative func-

tion. λ(t) and the choice parameters V are identifiable if and only if for each Zm the

following system does not have a solution:

MDm∩Skx = 1bmk, ∀m, k;

bmkdk
bmkdk + 1

em =
bmk

bmk + 1
, ∀m, k;

x > 0, bmk > 0, dk > 0, ∀m, k;

not all em = 1

(22)

The following lemma states the necessary condition for the equality of the like-

lihood functions of two different sets of parameters (λ(t), V ) and (λ′(t), V ′). The

lemma will be useful in the proof of the identifiability conditions.

Lemma 1. Given (λ(t), V ) 6= (λ′(t), V ), if `(t, c|λ, V ) = `(t, c|λ′, V ′) for almost all
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purchase patterns (t, c), then

λ(t)
Vc∑

j∈Ah(th,i)
Vj + 1

= λ′(t)
V ′c∑

j∈Ah(th,i)
V ′j + 1

(23)

for every c and almost every t.

Proof. We prove the result by contradiction. Suppose for some h0 and c, there exists

a set T of t where Equation (23) is violated and the measure of T is positive. We

further partition T into T + and T − as below

T + =

{
t ∈ T : λ(t)

Vc∑
j∈Ah(th,i)

Vj + 1
> λ′(t)

V ′c∑
j∈Ah(th,i)

V ′j + 1

}
, (24)

and

T − =

{
t ∈ T : λ(t)

Vc∑
j∈Ah(th,i)

Vj + 1
< λ′(t)

V ′c∑
j∈Ah(th,i)

V ′j + 1

}
.

Without loss of generality, we assume T + has positive measure. Since `(t, c|λ, V ) =

`(t, c|λ′, V ′) for almost all purchase patterns (t, c), we first select (t0, c0) corresponding

to the case where no purchase happened during any histories. Then the equality

between the likelihood functions implies

exp

(
H∑
h=1

Λh

)
= exp

(
H∑
h=1

Λ′h

)
. (25)

We further select purchase pattern (t+, c+) corresponding to the case where one pur-

chase happened at t+ of T + of history h0 and no other purchases happened. Note

such purchase pattern has positive probability since T + has positive measure. Thus,

`(t, c|λ, V ) = `(t, c|λ′, V ′) holds for (t+, c+) implies

exp

(
H∑
h=1

Λh

)
λ(t+)

Vc+∑
j∈Ah(t+) Vj + 1

= exp

(
H∑
h=1

Λ′h

)
λ′(t+)

V ′c+∑
j∈Ah(t+) V

′
j + 1

. (26)

(25) and (26) imply

λ(t+)
Vc+∑

j∈Ah(t+) Vj + 1
= λ′(t+)

V ′c+∑
j∈Ah(t+) V

′
j + 1

,

which contradicts the facts in (24). Thus, the result is established.
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Now we are ready to prove Theorem 4.

Proof of Theorem 4. We first show the necessity. Suppose system (22) has a solution

(x̄, b, d, e) for one z. Here we let x̄ denote the portion of products corresponding to the

products that were offered in Zz. Set the product attractivenesses in Zz equal to x̄.

According to the first equation of (22), V (Amk) = bmk for any Amk ∈ Dm ∩ Sk. Scale

the attractivenesses of products in Sk by dk. Scale the arrival rate corresponding to

Dm by em. According to the second equation of (22), the purchase rate before and

after scaling are the same. Since we scale the product attractivenesses in the same

Sk with the same scaler, their relative attractivenesses will stay the same. Since not

all em = 1, we find two different set of parameters and their corresponding likelihood

function are identical. Thus, the estimation problem is unidentifiable.

We now prove the sufficiency. Suppose (λ(t), V ) and (λ′(t), V ′) have the same

likelihood function. According to Lemma 1, the equality between the likelihood func-

tions means there exists T ⊂ [0, L] such that the measure of T is L and for any

purchase patterns (t, c), Equation (23) holds for t ∈ T . For m = 1, · · · ,M , let tm be

any time point in T such that D(t) = Dm. Using Lemma 1, we then have

λ(tm)
Vj∑

j∈Ah(tm) Vj + 1
= λ′(tm)

V ′j∑
j∈Ah(tm) V

′
j + 1

, ∀m, h, and j ∈ Ah(tm). (27)

According to (16), (27) can be viewed as the implication of the equality of the

likelihood function in the case where

1. the arrival rate is piecewise constant with known break points, and

2. under the mth piece, the offered assortments are Dm.

According to the Theorem 3, (27) and the unsolvability of (22) implies V = V ′ and

λ(tm) = λ′(tm) for m = 1, · · · ,M . Since tm can be almost every point in [0, L], we

have λ(t) = λ′(t) for almost every t. Thus, the sufficiency is proved.
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Remark 1. The identifiability of the piecewise constant arrival rate function and the

product attractiveness does not depend on the number of break points in the arrival

rate function. Knowing that every function could be approximated by a piecewise

linear function, we expect when the assortments from the historical samples satisfies

the conditions in Theorem 4, we could approximately recover the true arrival rate

function (not necessary piecewise constant) and the product attractiveness. On the

other hand, given any number of historical data, if we allow the decision space to

include all piecewise constant function when maximizing the likelihood function (21),

the optimal solution will try to put all the arrival intensity to the time points where

a purchased occurred, with zero arrival rate at other intervals. We should carefully

select the decision space to avoid such nonsense solutions.

2.4 Estimation Method

We now propose an estimation method to estimate the arrival rate function λ(t)

and the choice model parameters V . The available data for estimation are multiple

historical samples of the availability and the purchase information. Specifically, from

each sample, we know the following:

1. historical assortments (we know the assortment used at any time point for any

sample path);

2. occurrence time of each purchase;

3. the product chosen at each purchase.

Such data requirement is not restricted in practice. For example, an airline company

typically estimates an arrival model and a choice model for each day of week. For

each given day of week, the company can extract multiple streams of availability and

booking information for the day of the week. Such information can be used in our

method to estimate λ(t) and V .
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Suppose we have H ≥ 2 historical samples. As the notation used in Section 2.3.3,

we let Ah(t) denote the assortment available at time t in sample h. There are Ih

purchases in sample h and let I =
∑H

h=1 Ih. The ith purchase in sample h occurred at

time th,i. We merge the occurrence times of all the purchases from all the histories and

sort them in ascending order. Let t(i) denote the occurrence time of the ith purchase

for i = 1, · · · , I − 1. For notational convenience, we define t(0) = 0 and t(I) = L. Let

c(i) denote the product chosen by the ith purchase. Let A(i) denote the assortment

available when the ith purchase happened.

We also let B to denote the set of break points of the assortments from all history

data. That is, if t ∈ B, then for some history, the assortment got changed at time

t. Given B, we can divide the time horizon to |B| + 1 subintervals. We use B

to denote the set of these subintervals. According to the definition of B, for any

subinterval b ∈ B, the assortment during b of any history is constant. We let Ahb

denote the assortment during subinterval b of history h. Let Chbj denote the number

of purchases of product j during subinterval b of history h. Let Chb denote vector of

purchases of all products.

Our estimation method has two steps. The first step estimates the product at-

tractivenesses V using a maximum likelihood estimator. Given the estimated V , the

second step constructs the cumulative arrival rate function.

2.4.1 Estimation of V

Suppose the product attractivenesses are V and the cumulative arrival rate for interval

b is Λb. Given these parameters, the likelihood of the purchase pattern during interval

b of history h is as following:

f(Chb|Λb, V, Ahb) =
exp

(
−Λb

V (Ahb)
V (Ahb)+1

)(
Λb

V (Ahb)
V (Ahb)+1

) ∑
j∈Ahb

Chbj∏
j∈Ahb Chbj!

∏
j∈Ahb

(
Vj

V (Ahb)

)Chbj
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The scaled log-likelihood for the whole purchase pattern is as following:

LLH(Λ, V ) =
1

H

∑
b∈B

H∑
h=1

log f(Chb|Λb, V, Ahb) (28)

Given any V , LLH(Λ, V ) is concave in Λ. According to the first order condition, the

optimal Λ is given by

ΛH
b (V ) =

∑H
h=1

∑
j∈Ahb Chbj∑H

h=1
V (Ahb)
V (Ahb)+1

. (29)

Substituting ΛH(V ) back to LLH(Λ, V ), we can reduce optimization problem as fol-

lowing:

max
V ∈Θ

: LLH(ΛH(V ), V ) =
1

H

|B|+1∑
b=1

H∑
h=1

log f(Chb|ΛH
b (V ), V, Ahb) (30)

where Θ = {V : V ≤ Vj ≤ V̄ ,∀j} and V and V̄ are known positive quantities. The

optimal solution V from (30) is our estimate of the product attractivenesses.

2.4.2 Construction of cumulative arrival rate function

We now describe how to construct the estimated cumulative arrival rate function after

we have an estimate V of the product attractivenesses.

For the ith purchase among all purchases, define ai as below:

ai =
H∑
h=1

∫ t(i)

t(i−1)

∑
j∈Ah(t) Vj∑

j∈Ah(t) Vj + 1
dt.

The integral in the definition of ai denotes the effective time length for purchases. It

is the natural time length filtered by the purchasing probability. Since for a given

history in practice, Ah(t) is a piecewise function, the integral should also be easy to

calculate. For example, if the (i−1)st purchase and the ith are both during subinterval

b, then

ai =
H∑
h=1

(
t(i) − t(i−1)

) V (Ahb)

V (Ahb) + 1
.
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Given ai, define the cumulative arrival rate at t(i) as following:

Λ(t(i)) =
i∑

i′=1

t(i) − t(i−1)

ai
, i = 1, · · · , I. (31)

Once we determine the cumulative arrival rate t(i) for all i’s, we connect the consecu-

tive Λ(t(i))’s using a piecewise linear function. This gives us the estimated cumulative

arrival rate function.

2.4.3 Convergence proof

In this section, we prove that the choice model parameters from the estimation

model (30) and the cumulative arrival rate function using interpolation points as (31)

converge to the true quantities almost surely, as the sample sizeH increases. Through-

out this section, we assume that the number of breakpoints in B is bounded as H

increases.

2.4.3.1 Convergence of V

Let HbA denote the set of history samples among H total samples such that Ahb = A.

Let Ch
bA denote the vector of the numbers of purchases for all products during interval

b of the sample h when Ahb = A. ΛH
b (V ) defined as in (29) can be rewritten as:

ΛH
b (V ) =

∑H
h=1

∑
j∈Ahb Chbj∑H

h=1

∑
j∈Ahb

Vj∑
j∈Ahb

Vj+1

=

∑
A∈2J

∑
h∈HbA

∑
j∈AC

h
bAj∑

A∈2J |HbA|
∑
j∈A Vj∑

j∈A Vj+1

(32)

And the log-likelihood function LLH(ΛH(V ), V ) can be rewritten as:

LLH(ΛH(V ), V ) =
1

H

|B|+1∑
b=1

∑
A∈2J

∑
h∈HbA

log f(Ch
bA|ΛH

b (V ), V, A)

=

|B|+1∑
b=1

∑
A∈2J

|HbA|
H

1

|HbA|
∑
h∈HbA

log f(Ch
bA|ΛH

b (V ), V, A) (33)

For each b and A, we assume that lim
H→∞

|HbA|
H

exists and we denote the limit as

αbA. Let Λ0
b denote the true cumulative arrival rate during interval b. Let V 0

j denote

the true attractiveness of product j.
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Lemma 2. For given b, if lim
H→∞

|HbA|
H

= αbA for every A, then ΛH
b (V ) on Θ uniformly

converges to Λb(V ) :=

∑
A∈2J

αbAΛ0
b

∑
j∈A V

0
j∑

j∈A V
0
j
+1∑

A∈2J
αbA

∑
j∈A Vj∑
j∈A Vj+1

almost surely as H goes to infinity.

Proof. We can divide both the numerator and the denominator of (32) by H and we

get

ΛH
b (V ) =

1
H

∑
A∈2J

∑
h∈HbA

∑
j∈J C

h
bAj

1
H

∑
A∈2J |HbA|

∑
j∈A Vj∑

j∈A Vj+1

.

For the numerator, we know the limit lim
H→∞

|HbA|
H

exists. We analyze the term

lim
H→∞

1

H

∑
h∈HbA

∑
j∈A

Ch
bAj

based on the boundedness of |HbA|.

• When |HbA| is unbounded, according to the strong law of large numbers,

1

|HbA|
∑
h∈HbA

∑
j∈A

Ch
bAj

converges to Λ0
b

∑
j∈A V

0
j∑

j∈A V
0
j +1

almost surely as H goes to infinity. Since |HbA|
H

con-

verges to αbA deterministically, 1
H

∑
h∈HbA

∑
j∈A

Ch
bAj converges to αbAΛ0

b

∑
j∈A V

0
j∑

j∈A V
0
j +1

almost surely as H goes to infinity.

• When |HbA| is bounded, limH→∞
∑

h∈HbA

∑
j∈AC

h
bAj is bounded almost surely.

Thus, 1
H

∑
h∈HbA

∑
j∈AC

h
bAj converges to 0 almost surely as H goes to infin-

ity. Because αbA = 0 when |HbA| is bounded, we can also state the result as

1
H

∑
h∈HbA

∑
j∈AC

h
bAj converges to αbAΛ0

b

∑
j∈A V

0
j∑

j∈A V
0
j +1

almost surely.

Since the numerator is a constant function of V , the convergence is also uniform on Θ.

Thus, 1
H

∑
A∈2J

∑
h∈HbA

∑
j∈J C

h
bAj on Θ uniformly converges to

∑
A∈2J

αbAΛ0
b

∑
j∈A V

0
j∑

j∈A V
0
j +1

almost surely.

By the convergence of |HbA|
H

and the boundedness of Θ, the denominator

1

H

∑
A∈2J

|HbA|
∑

j∈A Vj∑
j∈A Vj + 1
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also uniformly converges to
∑
A∈2J

αbA

∑
j∈A Vj∑

j∈A Vj+1
on Θ.

Combining the convergence results of the numerator and the denominator, we

prove the results.

The following lemma is from Lemma 1 of [52]. It gives the conditions under which

a sequence of sample average function uniformly converge to the expected function

almost surely as the sample size increases.

Lemma 3. Suppose a compact set Θ, a random vector Y with dimension m× 1 and

distribution function G, and a function φ : Rm× → R are given. If the following

conditions are satisfied:

1. φ(y, θ) is G-measurable for each θ ∈ Θ;

2. There exists b(y) such that |φ(y, θ)| ≤ b(y) for each θ ∈ Θ and b(y) is G-

integrable;

3. φ is almost surely continuous in the sense that for each fixed θ ∈ Θ, the set

{y : limγ→θ φ(y, γ) = φ(y, θ)} has probability 1.

then P

(
lim
n→∞

sup
θ∈Θ

∣∣ 1
n

∑n
i=1 φ(Yi, θ)−

∫
φ(y, θ)dG(y)

∣∣ = 0

)
= 1.

Let Γ := {(Λ, V ) : V ∈ Θ,Λ ∈ [Λ(V )− δ,Λ(V ) + δ]} for some sufficiently small

δ > 0 such that Λ and V in Γ are all bounded away from 0. Then Γ is a compact set.

Lemma 4. For given b, if lim
H→∞

|HbA|
H

= αbA for every A, then 1
H

∑
h∈HbA

log f(Ch
bA|Λb, V, A)

on Γ uniformly converges to αbAE[log f(CbA|Λb, V, A)] almost surely as H goes to in-

finity. That is:

P

(
lim
H→∞

sup
(Λ,V )∈Γ

∣∣∣∣∣ 1

H

∑
h∈HbA

log f(Ch
bA|Λb, V, A)− αbAE[log f(CbA|Λb, V, A)]

∣∣∣∣∣ = 0

)
= 1

(34)

Proof. We prove the results based on the boundedness of HbA.
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• When HbA is bounded. In this case, αbA = 0 and
∑

h∈HbA
log f(Ch

bA|Λb, V, A) is

the summation of a finitely many random variables. Since Λ and V in Γ are

bounded away from 0, sup
(Λ,V )∈Γ

∑
h∈HbA

log f(Ch
bA|Λb, V, A) is finite almost surely.

Then

P

(
lim
H→∞

sup
(Λ,V )∈Γ

∣∣∣∣∣ 1

H

∑
h∈HbA

log f(Ch
bA|Λb, V, A)− αbAE[log f(CbA|Λb, V, A)]

∣∣∣∣∣ = 0

)
(35)

=P

(
lim
H→∞

1

H
sup

(Λ,V )∈Γ

∣∣∣∣∣ ∑
h∈HbA

log f(Ch
bA|Λb, V, A)

∣∣∣∣∣ = 0

)
= 1 (36)

• When HbA is unbounded. It is easy to check that log f(Chb|Λb, V, A) is almost

surely continuous on Γ. Since Λ and V in Γ are bounded away from 0,

sup
(Λ,V )∈Γ

| log f(Chb, A|Λ, V )| <∞

and is integrable. According to Lemma 3, 1
|HbA|

∑
h∈HbA

log f(Ch
bA|Λb, V, A) on Γ

uniformly converges to E[log f(CbA|Λb, V, A)] almost surely. Since |HbA|
H

deter-

ministically converges to αbA, 1
H

∑
h∈HbA

log f(Ch
bA|Λb, V, A) on Γ uniformly con-

verges to αbAE[log f(CbA|Λb, V, A)] almost surely

To conclude, we prove the results.

Lemma 5. For given b, if lim
H→∞

|HbA|
H

= αbA for every A, then

1

H

∑
h∈HbA

log f(Ch
bA|ΛH

b (V ), V, A)

on Θ uniformly converges to αbAE[log f(CbA|Λb(V ), V, A)] almost surely as H goes to

infinity. That is, for any given ε > 0,

P

 lim
H→∞

sup
V ∈Θ

∣∣∣∣∣∣ 1

H

∑
h∈HbA

log f(ChbA|ΛHb (V ), V, A)− αbAE[log f(CbA|Λb(V ), V, A)]

∣∣∣∣∣∣ > ε

 = 0

(37)
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Proof. Given ε > 0,

P

 lim
H→∞

sup
V ∈Θ

∣∣∣∣∣∣ 1

H

∑
h∈HbA

log f(ChbA|ΛHb (V ), V, A)− αbAE[log f(CbA|Λb(V ), V, A)]

∣∣∣∣∣∣ > ε


≤P

 lim
H→∞

sup
V ∈Θ

∣∣∣∣∣∣ 1

H

∑
h∈HbA

log f(ChbA|ΛHb (V ), V, A)− αbAE[log f(CbA|ΛHb (V ), V, A)]

∣∣∣∣∣∣ > ε

2


(38)

+ P

(
lim
H→∞

sup
V ∈Θ

∣∣αbAE[log f(CbA|ΛHb (V ), V, A)]− αbAE[log f(CbA|Λb(V ), V, A)]
∣∣ > ε

2

)
(39)

We now consider the two terms in turn. For the first term, since ΛH(V ) on Θ

uniformly converges to Λ(V ) almost surely, when H is large enough (H could depend

on sample path), (ΛH(V ), V ) ∈ Γ for V ∈ Θ. By Lemma 4,

P

 lim
H→∞

sup
V ∈Θ

∣∣∣∣∣∣ 1

H

∑
h∈HbA

log f(ChbA|ΛHb (V ), V, A)− αbAE[log f(CbA|ΛHb (V ), V, A)]

∣∣∣∣∣∣ > ε

2


=P

 lim
H→∞

sup
(Λ,V )∈Γ

∣∣∣∣∣∣ 1

H

∑
h∈HbA

log f(ChbA|Λb, V, A)− αbAE[log f(CbA|Λb, V, A)]

∣∣∣∣∣∣ > ε

2

 = 0

For the second term, since E[log f(CbA|Λb, V, A)] is Lipschitz continuous on Γ, there

exists δ∗ such that if |Λb − Λ′b| ≤ δ∗,

αbA sup
V ∈Θ
|E[log f(CbA|Λb, V, A)]− E[log f(CbA|Λ′b, V, A)]| ≤ ε

2
.

Since ΛH
b (V ) on Θ uniformly converges to Λb(V ) almost surely, for almost every

sample path, when H is sufficiently large, supV ∈Θ |ΛH
b (V ) − Λb(V )| ≤ δ∗. Thus, the

second term is also equal to 0.

In summary, we have for every ε > 0,

P

 lim
H→∞

sup
V ∈Θ

∣∣∣∣∣∣ 1

H

∑
h∈HbA

log f(ChbA|ΛHb (V ), V, A)− αbAE[log f(CbA|Λb(V ), V, A)]

∣∣∣∣∣∣ > ε

 = 0

and the lemma is proved.

We can now apply Lemma 5 to the objective function of the auxiliary estimator.
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Corollary 1. Suppose for every b and every A, lim
H→∞

|HbA|
H

= αbA, then LLH(ΛH(V ), V )

on Θ uniformly converges to
|B|+1∑
b=1

∑
A∈S+

b

αbAE[log f(Chb|Λ(V ), V, A)] almost surely. That

is:

P

 lim
H→∞

sup
V ∈Θ

∣∣∣∣∣∣LLH (ΛH(V ), V
)
−
|B|+1∑
b=1

∑
A∈S+

b

αbAE [log f (Chb|Λ(V ), V, A)]

∣∣∣∣∣∣ = 0

 = 1

Let S+
b denote the collection of assortments such that αbA > 0 if A ∈ S+

b and

αbA = 0 if A /∈ S+
b . The following result is a direct application of the information

inequality.

Lemma 6. If {S+
b : b = 1, · · · , |B| + 1} satisfies the identifiability condition in

Theorem 4, then (Λ(V 0), V 0) is the unique maximizer of the following problem:

max
V ∈Θ

|B|+1∑
b=1

∑
A∈S+

b

αbAE log f(CbA|Λb(V ), V, A)

Lemma 7. Suppose there is a function Q0(θ) such that a) Q0(θ) is uniquely maxi-

mized at θ0; b) Θ is compact; c) Q0(θ) is continuous; d) Qn(θ) converges to Q0(θ) in

the sense that

P

(
lim
n→∞

sup
θ∈Θ
|Qn(θ)−Q(θ)| = 0

)
= 1.

If θn is a maximizer of Qn(θ) within Θ, then θn converges to θ0 almost surely.

Proof. For any ε > 0, since θn is a maximizer of Qn, Qn(θn) > Qn(θ0) − ε
3
. Because

of the convergence condition d),

P
(

lim
n→∞

(Q0(θn)−Qn(θn)) > −ε
3

)
=1− P

(
lim
n→∞

(Q0(θn)−Qn(θn)) ≤ −ε
3

)
≥1− P

(
lim
n→∞

|Q0(θn)−Qn(θn)| ≥ ε

3

)
≥1− P

(
lim
n→∞

sup
θ∈Θ
|Q0(θ)−Qn(θ)| ≥ ε

3

)
=1
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Similarly, we have Qn(θ0) > Q0(θ0)− ε
3

with probability approaching 1 as n increases.

Combining these three inequalities, we have

Q0(θn) > Qn(θn)− ε

3
> Q0(θ0)−−2ε

3
> Q0(θ0)− ε

with probability 1. Thus, for any ε > 0, Q0(θn) > Q0(θ0) − ε with probability

approaching 1 as n increases. Let N be any open subset of Θ around θ0. Clearly

Θ ∩ N c is compact. Since Q0(θ) is continuous and is uniquely maximized at θ0, we

have sup
θ∈Θ∩N c

Q0(θ) < Q0(θ). Choosing ε = Q0(θ0) − sup
θ∈Θ∩N c

Q0(θ), it follows that

Q0(θn) > sup
θ∈Θ∩N c

Q0(θ) with probability approaching 1 as n increases. Thus, θn ∈ N

with probability approaching 1 as n increases. We can choose the neighborhood

arbitrarily small and the result is proved.

Theorem 5. If lim
H→∞

|HbA|
H

= αbA for every A and b, and the set of collections of

assortments in {S+
b : b = 1, · · · , |B| + 1} satisfies the identifiability condition in

Theorem 4, then the estimate of V from (30) converges to V 0 almost surely as H goes

to infinity.

Proof. According to Corollary 1, the sample log-likelihood function uniformly con-

verges to its expected version almost surely as sample size increases. According to

Lemma 6, when the identifiability condition is satisfied, the expected log-likelihood

function has a unique maximizer. By applying Lemma 7, we have the almost sure

convergence of the estimate of V .

2.4.3.2 Convergence of Λ(t)

We now prove the convergence of the cumulative arrival rate function. We first

show that the contribution from a single purchase to the cumulative arrival rate is

negligible. Let li = t(i) − t(i−1).

Lemma 8. sup
i

sup
V ∈Θ

li
ai

= 0 almost surely as H goes to infinity.
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Proof. Let lib denote the length of b ∪ [ti−1, ti]. Then:

li
ai

=

∑
b∈B lib∑

b∈B lib
∑H

h=1
V (Abh)
V (Abh)+1

Since each Ahb is nonempty and V ∈ Θ, V (Ahb)
V (Ahb)+1

≥ V
V+1

for any h and b. And we

have

sup
i

sup
V ∈Θ

∑
b∈B lib∑

b∈B lib
∑H

h=1
V (Abh)
V (Abh)+1

≤ sup
i

∑
b∈B lib∑

b∈B libH
V
V+1

=
V + 1

HV

The right hand side goes to 0 almost surely as H goes to infinity. Thus, the result is

proved.

For any t ∈ (0, L], let It denote the number of purchases from all histories before

time t.

Lemma 9. For any t ∈ (0, L], let b(t) denote the intersection between interval b and

interval [0, t]. Let Λ0(b(t)) denote the true cumulative arrival rate for the interval

b(t). Suppose for any b and A, limH
Hb(A)
H

= αbA. If V ∈ Θ, then
∑It

i=1
li
ai

on Θ

uniformly converges to the following almost surely as H goes to infinity:

∑
b

Λ0(b(t))
∑

A αbA
V 0(A)
V 0(A)+1∑

A αbA
V (A)
V (A)+1

.

Proof. For each given interval b(t), except for the first purchase during this interval

whose previous purchase is in interval b− 1, for all other purchases,

li
ai

=
1∑H

h=1
V (Abh)
V (Abh)+1

.

Thus,

∑
i:ti∈b(t)

li
ai

=

(∑
i:ti∈b(t) 1

)
− 1∑H

h=1
V (Abh)
V (Abh)+1

+
l′b
a′b
, (40)

where
l′b
a′b

denote the contribution from the first purchase during b(t). According to

Lemma 8,
l′b
a′b

on Θ uniformly converges to 0 almost surely. Since |B| is bounded, the
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sum of such terms from all intervals also uniformly converges to 0 almost surely. For

the first term on the right hand side of (40),(∑
i:ti∈b(t) 1

)
− 1∑H

h=1
V (Abh)
V (Abh)+1

=

1
H

((∑
i:ti∈b(t) 1

)
− 1
)

1
H

∑H
h=1

V (Abh)
V (Abh)+1

Using the strong law of large numbers, the numerator converges to

Λ0(b(t))
∑
A

αbA
V 0(A)

V 0(A) + 1

almost surely. The denominator has already been shown to converge to
∑

A αbA
V (A)
V (A)+1

.

Thus, the result is proved.

Theorem 6. For any given t ∈ [0, L], let Λ(t) denote the estimated cumulative arrival

rate obtained by interpolating through Λ(t(i)) as defined in (31). If lim
H→∞

|HbA|
H

= αbA

for every A and b, and the set of collections of assortments in {S+
b : b = 1, · · · , |B|+1}

satisfies the identifiability condition in Theorem 4, then Λ(t) converges to Λ0(t) almost

surely for every t.

Proof. According to our construction method of the cumulative arrival rate,

It∑
i=1

li
ai
≤ Λ(t) ≤

It∑
i=1

li
ai

+
lIt+1

alt+1

.

By Lemma 8, the extra term
lIt+1

alt+1
uniformly goes to zero almost surely. According to

Lemma 9,
∑It

i=1
li
ai

converges to
∑

b

Λ0(b(t))
∑
A αbA

V 0(A)

V 0(A)+1∑
A αbA

V (A)
V (A)+1

almost surely. Thus,

Λ(t)
a.s.−−→

∑
b

Λ0(b(t))
∑

A αbA
V 0(A)
V 0(A)+1∑

A αbA
V (A)
V (A)+1

. (41)

On the other hand, when the identifiability condition is satisfied, we know the

estimate V converges to V 0 almost surely. Thus, V (A) converges to V 0(A) almost

surely. Substitute V (Ahb) with V 0(Ahb) in (41), we have Λ(t) converges to Λ0(t)

almost surely for every t.
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2.5 Numerical Examples

In this section, we illustrate the performance of the estimation algorithm described

in the previous section through some numerical examples.

2.5.1 Effects of variations of assortments

As we have shown in Theorem 2, for the homogeneous arrival case, the necessary and

sufficient condition for the identifiability of the arrival rate and the product attrac-

tivenesses is there should be variation in historical assortments, where the variation

is in terms of the total attractiveness of an assortment. Actually, not only the ex-

istence of variation is critical for the identifiability, also the amount of the variation

will greatly affect the estimation quality. The following experiment illustrates this

idea.

In this set of experiments, two different assortments were offered: S1 = {1} and

S2 = {1, 2}. Each assortment will be offered for one unit of time. The attractiveness

of product 1 is fixed at 1. The attractiveness of product 2 will be set to different values

to reflect the variation between the two historical assortments. As the attractiveness

of product 2 increases, the variation also increases. By varying the attractiveness of

product 2, we can study the effects of the variation on the estimation quality.

Besides the variation among the historical assortments, the percentage of cus-

tomers who purchase our products may also affect the estimation. We define the

purchase rate α as Equation (42).

α :=
λ V1
V1+V0

+ λ V1+V2
V1+V2+V0

2λ
=

V1
V1+V0

+ V1+V2
V1+V2+V0

2
(42)

To filter out the effects of purchase rate, the attractiveness of the no-purchase product

is set so that the purchase rate is equal to some predetermined value.

In this set of experiments, we set α = 0.5 and set λ = 10, 000. V2 will be increased

from 0.1 to 2.0, at an increment of 0.1. We generate the random number of purchases

for the corresponding product attractivenesses and arrival rate. Given the number of
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purchases for each product and the assortment information, we can express the log-

likelihood function in terms of V1, V2, V0, and λ as Equation (3). In the estimation,

we set the attractiveness of product 1 as reference and scale V1 equal to 1. We

then maximize the log-likelihood function with respect to V2, V0, and λ. Under each

parameter setting, 30 sets of synthetic data are generated. Correspondingly, we obtain

30 estimates. Figure 1a below shows the average percentage errors of the estimates of

V2 and λ under different values of V2. Figure 1b shows the variation of the estimation,

which is defined to be the sample deviation of the estimation divided by the true value,

under different values of V2. As we can see from the plots, the estimation of the arrival

rate and V0 is greatly affected by the value V2. When V2 is small, which means the

two historical assortments are very similar to each in terms of total attractiveness,

the estimation of arrival rate λ and V0 is inaccurate and very unstable. On the other

hand, the estimation of V2 is much less sensitive to the variation between the two

assortments. In fact, the average percentage errors of V2 under all values of V2 are

within 1%. Thus, airline companies should offer different assortments throughout

the horizon not only as a way to respond to the market change, they also need the

different assortments to improve their ability to learn the market.
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Figure 1: Quality of estimation VS. variation of assortments
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2.5.2 Effects of Purchase Rate

We know that the unobservation of the no-purchase option and the lack of variation

among historical assortments lead to the unidentifiability of the arrival rate and the

product attractiveness. When there is enough variation among historical assortments,

it is also interesting to study the relationship between purchase rate as defined in (42)

and the estimation quality. The purchase rate is very closely related to the market

share of the company in practice.

In this experiment, two assortments were offered in history: {1} and {1, 2}. Both

Product 1 and Product 2 have attractiveness equal to 1. This guarantees there is

enough variation between the two historical assortments. The attractiveness of the

no-purchase option is varied so that the purchase rate could be set at different values.

We also modify the arrival rate accordingly so that the expected number of purchases

is equal to 5,000. Given V1, V2, V0, λ, and the assortment, we generate the random

number of purchases of both products. We then use the purchase data and maximum

likelihood method to estimate V1, V2, V0, and λ. Under each parameter setting,

we repeat the data generation and estimation process for 30 times. The average

percentage error and the variation of the estimate are as shown in Figure 2a and

Figure 2b, respectively.
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As shown in the figures, when the purchase rate is below 10%, the estimates of V0

and λ are inaccurate and unstable. The estimates of V0 and λ quickly improves as the

purchase rate increases. Thus, big airline companies have a natural advantage over

the smaller ones in the sense that they can potentially learn the market conditions

more accurately.

Since the information about the attractiveness of product 2 relative to product 1

is all captured in the sales data when assortment {1, 2} is offered, the estimation

quality of V2 is not affected by the purchase rate.

2.5.3 Estimation of nonhomogeneous arrival rate

In this section, we deal with the case where the arrival rate function could be any

integrable function and is unknown to the decision maker. We will use the estima-

tion method developed in Section 2.4 to estimate the product attractiveness and the

cumulative arrival rate function. In this set of experiments, we assume there are 4

products. Each product has attractiveness equal to 1. Note that if we combine two

such products by summing up their attractiveness and summing up their purchase,

we effectively create a new product with attractiveness equal to 2. Thus, assuming

all products have the same attractiveness is without loss of generality. The selling

horizon T is equal to 1 unit of time. The number of assortments during one selling

horizon is a uniform random integer between 1 and 3. Given the number of assort-

ments during the horizon, we generate a uniform random real number between 0 and

1 for each assortment. We then allocate the time length of the horizon to the as-

sortments proportional to the random numbers. The availability of a product in an

assortment is determined by a Bernoulli random variable with parameter 0.7. Note

that during one selling horizon there may be some assortments that are the same

with each other.

The nonhomogeneous arrival rate functions we test in the experiments include the
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following:

• constant: constant arrival rate function, λ(t) = λ.

• pw2: piecewise constant rate function with 2 pieces,

λ(t) =


λ
2
, t ∈

[
0, T

2

]
λ, t ∈

(
T
2
, T
]

• linear: linear arrival rate function, λ(t) = λt.

• cyclic: cyclic arrival rate function, λ(t) = λ sin(2πt)+1
2

.

Given the arrival rate function and the assortment throughout the horizon of

all samples, we can define the expected purchase rate as a function of no-purchase

attractiveness V0 as following:

α(V0) =

∑
h

∫
t

V (Ah(t))
V (Ah(t))+V0

λ(t)dt∑
h

∫
t
λ(t)dt

. (43)

To filter out the effects of purchase rate, we set V0 so that α(V0) is equal to some

predetermined value. After we determining V0, we can also set λ to control the

expected total number of purchases from all samples.

Figure 3a - Figure 3d plot the estimated cumulative arrival rate and the actual

cumulative arrival rate when the purchase rate is 0.5 and the expected number of

purchases from all samples is equal to 3,000. Given there are 30 samples, that is about

100 purchases from each sample, which is not a big number in practice. As we can

see, the estimation method we developed in Section 2.4 can recover the actual arrival

rate function reasonably well. Especially, the trend in the true arrival rate function

can be correctly captured. For example, when the actual arrival rate is piecewise

constant, as Figure 3b shows, in all 5 estimation experiments, our estimation results

detect the kink point at t = 0.5, where the arrival rate changes.
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(a) The actual arrival rate is constant
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(b) The actual arrival rate is piecewise

constant
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(c) The actual arrival rate is linear
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(d) The actual arrival rate is cyclic

Figure 3: Estimation of cumulative arrival rate.

The solid line is the actual cumulative arrival rate and the 5 dashed lines are estimated

from 5 different experiments.

In each experiment, we also evaluate the estimation error of the product attrac-

tiveness, the no-purchase attractiveness, and the arrival rate. To calculate the error of

the attractivenesses, the estimated attractiveness of product 1 is normalized to be 1.

All other attractivenesses are now relative to that of product 1. To evaluate the error

of the estimate of the arrival rate function, we compare the estimated cumulative

arrival rate with the true cumulative arrival rate at the end of the horizon. In most of

our estimation experiments, if the cumulative arrival rate is over-estimated or under-

estimated at the beginning of the horizon, it is over-estimated or under-estimated
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throughout the horizon. Thus, the estimated cumulative arrival rate has its biggest

error roughly at the end of the horizon. We calculate the average percentage error

of V2, V3, V4, V0, and Λ(T ). We also calculate the sample standard deviation of the

percentage errors of these quantities. The results are as shown in Table 1. The small

average percentage errors in the table indicate that the estimation method we devel-

oped has small bias. The sample standard deviations of percentage errors of V2 and

V3 are much smaller than that of V0 and Λ(T ). This is because unlike V0 and Λ(T ),

the information of the relative popularity among product 1, product 2, and product 3

is not lost due the unobserved no-purchase data.

2.6 Conclusion

In this chapter, we study the estimation of the choice model parameters and the

market level arrival rate using only the sales data. We give sufficient and necessary

conditions under which the estimation parameters are identifiable. Our conditions

cover the cases when the arrival rate is constant, when the arrival rate is piecewise

constant, and when the arrival rate is any integrable rate function. These conditions

are established for the first time in literature and they can help to resolve the confu-

sion regarding the estimation problem with censored data. The confusion has been

existing for a long time both in industry and research society. We also develop a

novel estimation algorithm that can recover any arrival rate function when the iden-

tification conditions are satisfied. The algorithm not only has theoretical convergence

guarantee, it also has good performance with limited data. The algorithm can be

very useful for practitioners to discover the arrival pattern in the market.
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CHAPTER III

REVENUE MANAGEMENT UNDER CHOICE MODEL

WITH BUY-DOWN EFFECTS

3.1 Introduction

Revenue management techniques have been used extensively in many industries, e.g.,

the airline industry, the hospitality industry, the car rental industry and so on. When

customers want to purchase some product in these industries, they usually first in-

quire what products are available. Then they evaluate all the available alternatives

and make the choice among them. Such a decision process is well suited for a discrete

choice model. Also, most of the discrete choice models can incorporate customers’

sensitivities to various attributes of the products. Because of these advantages, using

discrete choice models to describe customers’ purchasing behavior has been one clear

trend recently in both the revenue management literature and the revenue manage-

ment industry.

One immediate question that revenue management researchers and practitioners

need to answer is how to determine the product availability given the customer choice

behavior so that the revenue performance can be maximized. The determination

of the availability is often referred to as the assortment optimization problem or

the dynamic optimization problem, depending whether capacity constraint and the

temporal dimension are introduced. Various studies have been devoted to address

the assortment optimization problem under different customer choice models (see

Section 3.2 for more details).

In this study, we will incorporate the buy-down effects into the customer choice
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model and develop algorithms for how to solve the corresponding assortment opti-

mization problem both statically and dynamically. The buy-down effects refer to the

phenomenon that the fact an alternative being the cheapest one among the choice

set will dramatically increase its attractiveness to the customer. Such effects are in-

tuitive to understand. When several products have more or less the same attributes

except the price, most of the purchases, if there are any, will go to the one with the

lowest price. Even when the products have different attributes, being the cheapest

will often send the product to the top of the search results in many search engines.

The top position usually attracts the most eye impressions and thus will result in

more purchases.

As an example, Figure 4a and 4b gives the distribution of the sales of all the

available fare classes on a same flight when fare class 8 and 7 are the cheapest available,

respectively. The fare classes in the plot are sorted in descending order of prices and

fare class 1 is the most expensive. The data of the plot are from a real world company

for whom we did a revenue management project. As we can see from the plot, when

fare class 8 was the cheapest, most of the bookings occurred to fare class 8. When fare

class 8 was taken down and fare class 7 became the cheapest available, most of the

bookings occurred to fare class 7. Being the cheapest greatly boosted the sales of fare

class 7. The relative sales between fare class 6 and fare class 7 before and after fare

class 7 became the cheapest available are also very different. In the later case, fare

class 7 became much more popular relative to fare class 6. This is in sharp contrast

with the MNL choice model, which will assert the relative popularity between fare

class 6 and 7 be the same as long as both products are in the assortment.

When the buy-down effects are extremely strong, customers ignore the difference

of any other attributes and only purchase the cheapest available product. Such a

phenomenon will be called 100% buy-down effects. For example, in airline industry,

many low-cost airlines adopt a simple product structure so the price is essentially the
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Figure 4: Sales distribution when different fare classes are the cheapest available

only difference among different seats on the same flight. In this case, customers may

still trade off among different flights which have different departure times, but only

the cheapest available seats in each flight will be considered. In this case, the airline

company only needs to post one price tag for each flight, which is in fact the current

practice for most of the low-cost airline companies.

We remark that although we motivate the customer choice model with 100% buy-

down effects from the revenue management applications with undifferentiated fares,

the problem arises naturally in retailing as well. In retail industry, it does not makes

sense to post multiple prices for one product. This can be viewed as if the retailer post

multiple prices for one product, all the customers will only stick to the cheapest price

if they buy. Given that customers still choose from similar products, the assortment

optimization problem under choice model with 100% buy-down effects can also be

viewed as a special case of the pricing problem, where there is only a finite menu of

prices to choose from.

Similar with the general buy-down effects, the 100% buy-down effects cannot be

captured by a traditional choice model like MNL or NL. These choice models always
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assign a positive choice probability for each product in the choice set. Modifying the

existing choice model so it can be used with 100% buy-down effects will be useful

in practice and solving the resulting dynamic assortment optimization problem have

been a challenge for airline industry and hospitality industry for quite a long time.

One important feature of the buy-down effects is that the attractiveness of a

product is not only a function of its own attributes, it is also dependent on the

attributes of other products in the same choice set. Such dependency cannot be

captured by any of the traditional choice models like multinomial logit model (MNL)

or nested logit model (NL). Ignoring the buy-down effects in demand estimation

would result in lower predictions of more expensive products and higher predictions of

cheaper products. Such forecast further exacerbates the problem by encouraging less

capacity be reserved for the more expensive products. The resulting behavior is known

as the “spiral-down” effect [11]. One way to modify the MNL choice model so that it

can reflect the buy-down effects is through the introduction of a special parameters

for the cheapest product (see [13] for details). With such modification, the estimation

procedure of the MNL model is the same as the estimation of a general MNL model.

However, both the static and the dynamic assortment optimization problem with

such modified MNL choice model will be more complicated. Developing an efficient

algorithm will be one of the main tasks of this chapter.

Another important problem that will be tackled in this section is related to compe-

tition. In revenue management with customer choice model, there is usually a special

alternative in the choice set which is often referred to as the no-purchase alternative.

The no-purchase alternative is an aggregation of all the alternatives that are not

offered by the company itself. It includes not only the alternative that a customer

really does not purchase anything and leaves the system, but also all the alternatives

from competitors. In reality, it is difficult to know what alternatives the competitors
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will offer in advance. Usually, the best a company can do is to have some distribu-

tion estimation about competitors’ offerings. This makes the no-purchase alternative

random. How to solve the assortment optimization problem with buy-down effects

and random no-purchase alternative will be another focus of the section.

3.1.1 Contributions

The main contributions of this chapter include the following.

• We develop a compact sales based linear programming model (SBLP) for the

dynamic assortment optimization problem under MNL choice model with gen-

eral or 100% buy-down effects. In the SBLP models, the decision variables

correspond to the sales of each product. The number of decision variables in

the SBLP with 100% buy-down effects is quadratic in the number of products.

• We develop efficient polynomial algorithms that convert the sales solution of

the SBLP model to the corresponding assortment solution. The assortment

solution is more suitable for implementation.

Neither our definition of the decision variables in the SBLP formulation nor the

conversion algorithm from sales solution to assortment solution is a straight-

forward extension of those in [23]. In fact, when there is buy-down effects, we

have to define multiple sales variables for one product, instead of just one sales

variable for each product in [23].

• We develop polynomial time algorithms to solve the static assortment optimiza-

tion problem with 100% buy-down effects and random no-purchase alternative.

The assortment optimization algorithm can then be used to solve the dynamic

assortment optimization problem through column generation algorithm.

• When the attractiveness of the no-purchase alternative in the MNL model is un-

certain, and the customers have general buy-down behavior, we prove that under
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very mild conditions, the optimal assortment has some nice nesting structure.

The nesting structure allows us to reduce the assortment optimization prob-

lem with general buy-down effects and random no-purchase alternative to the

assortment optimization problem with 100% buy-down effects and random no-

purchase alternative. Thus, both the static and dynamic assortment optimiza-

tion problem with general buy-down effects and random no-purchase alternative

can be solved efficiently.

3.2 Related literature

The 100% buy-down effects have been noticed for a long time in practice. In airline

industry, the customers who only purchase the cheapest available product are termed

as priceable demand and the customers who care about other attributes of the prod-

ucts and may choose a more expensive product even though a cheaper one is available

are termed yieldable demand. [9] first noticed that as the competition among airline

companies increase and the prevalence of the Internet, more and more demands will

be of the priceable type and [9] suggest that the revenue management models should

be modified to accommodate this change.

As we have said in the introduction, the assortment optimization problem with

100% buy-down effects can be viewed as a pricing problem. Most existing literature

implicitly discuss the 100% buy-down effects through the pricing model. [25] con-

sider a multiproduct dynamic pricing problem where the demand for each product

is a stochastic point process. The intensity of the point process for one product is

a function of the vector of prices for all the products. The decision variables are

continuous. If customers choose the products at different prices according to a choice

model, the intensity functions can be defined accordingly. Two asymptotically op-

timal heuristics based on a deterministic model are developed in [25]. [60] study a

dynamic problem for substitutable flights. The probability that a customer chooses
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one particular flight is a general function of the price vector. Various bounds of the

dynamic programming problem and some heuristic methods are developed.

To our best knowledge, the revenue management problem under choice model

with general buy-down effects has not been discussed in existing literature. But the

problem is of great importance in practice. As [9] argued, the real demand is a mix

of yieldable demand and priceable demand. On the other hand, the assortment and

pricing optimization problem under customer choice model without the buy-down

effects has been studied intensively.

The static assortment optimization problem under choice model can be an im-

portant building block to develop efficient algorithms for the dynamic assortment

optimization problem. [14] study the assortment optimization problem under MNL

model with totally unimodular constraints. The study is of particular interest to

us since the 100% buy-down effects can be enforced by allowing only one price for

one product. This can be expressed as totally unimodular constraints. [16] study

the pricing problem under NL model, of which MNL is a special case, with quality

consistency constraints. When the prices are allowed to be continuous, [34] study

the multiproduct pricing problem under MNL and NL choice model. [26] study the

multiproduct pricing problem under NL model with product-differentiated price sen-

sitivities. [43] study the multiproduct pricing problem under NL model with price

bounds. [45] develop an efficient algorithm for the assortment optimization under the

MNL model with capacity constraint.

[44] discuss the assortment optimization problem under the MNL model with ran-

dom choice parameters. The problem is more general than one of our problems in

that the attractivenesses of both company’s own products and the no-purchase al-

ternative are random. It is shown in [44] that although the assortment optimization

problem is easy to solve under certain conditions, the problem is generally NP-hard.

To solve the same problem, [37] give a branch-and-cut algorithm and [10] propose
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a greedy heuristic algorithm. [46] consider a robust version of assortment optimiza-

tion problem when the parameters are in a compact uncertainty set and show that

an efficient algorithm can be developed. When the consideration sets are nested to

each other in the MNL model, [20] prove that the corresponding assortment opti-

mization problem is NP-complete. A fully polynomial time approximation algorithm

is then proposed. [15] give the necessary and sufficient conditions under which the

assortment optimization with nested logit model is polynomially solvable. When the

conditions are satisfied, [33] give an efficient algorithm to solve the assortment op-

timization problem with d-level nested logit model. [17] developed fully polynomial

time approximation schemes (FPTAS) for assortment optimization problem with the

nested logit model and the mixed MNL model. [18] consider the assortment opti-

mization problem under Markov choice model with capacity constraint. [57] consider

the assortment optimization problem under general attraction model with capacity

constraint.

The dynamic assortment (pricing) optimization problem studies how to deter-

mine the assortment (prices) throughout the planning horizon so that the consumed

resources are within capacity limit, given that both the customer arrival process and

the customer choice behavior are random. Although the problem can be modeled as

a Markov decision problem, the resulting model is usually too large to solve. As an

alternative, [22] propose a deterministic approximation model where the stochastic

quantities are replaced with their expected values and the capacity and the demand

are treated as continuous. The resulting linear programming model is called choice

based deterministic linear programming (CDLP). In CDLP, the number of decision

variables is equal to the number of potential offer sets, which is exponential in the

number of products. Thus, a column generation algorithm is often needed. The sub-

problem of the column generation algorithm is an assortment optimization problem.

According to the equivalence between separation and optimization in [27], if one can
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show that the assortment optimization problem with certain choice model can be

solved efficiently, the CDLP with the same choice model can also be solved efficiently.

Thus, many of the static assortment optimization researches we just discussed can

also be umbrellaed under this branch.

One particularly interesting research about the dynamic assortment optimization

problem we found is [23], which develop a sales based linear programming (SBLP)

model to approximate the dynamic assortment optimization problem. In the SBLP

model, the decision variables are the sales quantities of the products, and the number

of decision variables is only linear in the number of products. This is a significant im-

provement over the CDLP model. [23] also show that the CDLP and SBLP solutions

can be converted from each other within polynomial time. Thus, the two formulations

are equivalent. Developing SBLP formulations for other choice models has received a

lot of attention recently. [21] develop an SBLP model under the Markov chain choice

model. A polynomial time algorithm is also developed to convert the sales solution

to the assortment solution of CDLP.

3.3 Dynamic Assortment Optimization with General Buy-
down Effects

In this section, we describe the choice model we use that incorporates the buy-down

effects and propose a compact sales based model for the dynamic assortment opti-

mization problem. An efficient algorithm is developed to convert the sales solution

to an implementable solution.

3.3.1 MNL model with buy-down effects

We now describe a modified MNL choice model that can handle the buy-down effects.

Let J = {1, · · · , J} be the set of products that the decision maker can offer. The

collection of sets J1, · · · , JM form a partition of J . Let J(j) denote the subset

that product j belongs to. In airline industry, the partition could be according to
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itineraries and Jm contains all the fare classes on the itinerary m. In retailing, the

partition could be according to products and Jm contains all the possible prices tags

that can be applied to product m.

Within each subset, if the assortment is not empty, the cheapest available product

will receive the buy-down effects. When product j is the cheapest available among

J(j), its attractiveness to the customer is wj. Otherwise, the attractiveness is vj. We

assume wj ≥ vj. Let I(j, A) = 1 if product j is the cheapest available among J(j)

when the assortment is A. Otherwise, I(j, A) = 0. Denote the attractiveness of the

no-purchase option as v0. When the assortment is A, a customer chooses product

j ∈ A with probability equal to:

Pj:A =
wjI(j, A) + vj(1− I(j, A))

v0 +
∑

j′∈A[(wj′I(j′, A) + vj′(1− I(j′, A))]
. (44)

If j /∈ A, then Pj:A = 0.

3.3.2 The decision problem and its MDP formulation

Product j’s revenue is rj. Without loss of generality, we assume that products in the

same subset are ordered in descending order of their revenues. There are F resources

the company can use to assemble the products. As an example, the resources refer to

the flights legs in airline industry. Product j will use Bjf units of resource f . Let Bj

denote the vector (Bjf )f=1,··· ,F . The capacity of resource f is bf . The selling horizon

is divided into T discrete-time periods. Period T denotes the end of the horizon. In

each period, there is one customer arrival with probability λ and no customer arrival

with probability 1− λ. Note that the arrival rate λ is allowed to be time-dependent

and all the following analysis still holds true. We ignore the time dependency for the

ease of exposition. Customers choose the product from the assortment according to

Equation (44).

The decision maker’s problem is to dynamically determine the assortment to offer

in each period so the expected revenue can be maximized. The problem can be
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modeled as a Markov decision process. Let s = (s1, · · · , sF ) be a vector whose f th

element denotes the remaining capacity of resource f . Let vt(s) denote the maximum

expected revenue-to-go given that the state in period t is s. The Bellman equations

for the MDP are as following:

vt(s) = max
A

{
λ
∑
j∈A

Pj:A(rj + vt+1(s−Bj)) + (1− λ+ λP0:A)Vt+1(s)

}
, ∀t, s. (45)

The boundary conditions are VT (s) = 0 for all s.

Although the backward induction algorithm can be used to solve the MDP prob-

lem (45), the large state space and decision space make the algorithm computationally

intractable. For example, suppose an airline network has 10 flights and 20 itineraries,

and each flight has 100 seats. Such a network is a quite small in practice. In the

dynamic assortment optimization problem for this network, there will be 10010 states

and 220 possible decisions. On the other hand, even problem (45) can be solved ex-

actly, the resulting policy is a big lookup table. Such a policy is difficult to store and

implement in practice. To overcome these difficulties, some approximation methods

need to be developed.

3.3.3 CDLP formulation

One popular deterministic approximation to the MDP formulation (45) is to replace

all the stochastic quantities with their expected values and to treat the capacity

and demand as continuous (see [22, 36]). The resulting model is called choice based

deterministic linear programming formulation (CDLP).

Let the decision variable u(A) denote the fraction of time when assortment A is

offered. Let R(A) and Qf (A) denote the expected revenue and the expected con-

sumption of resource f when assortment A is offered throughout the horizon. Using
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the definition of choice probability as in (44), their definitions are as following:

R(A) = λT
∑
j∈A

Pj:Arj (46)

Qf (A) = λT
∑
j∈A

Pj:ABjf (47)

With this notation, the CDLP formulation is as following:

max
u

∑
A

R(A)u(A)

s.t.
∑
A

Qf (A)u(A) ≤ bf ∀ f

∑
A

u(A) ≤ 1

u(A) ≥ 0 ∀ A

(CDLP)

The first set of constraints in (CDLP) guarantee that the resource consumption

should not exceed their capacity limit. The unit constraint says that we can only

operate within the planning horizon.

The CDLP model offers an upper bound to the original MDP problem (45). [36]

proves that as the arrival and capacity scale to infinity proportionally, the upper

bound is asymptotically tight. In fact, the CDLP formulation is generic and it can

be used to accommodate any choice model. One only needs to replace the definition

of choice probability Pj:A in (46) and (47). One potential drawback of the CDLP

formulation is that the number of decision variables in the CDLP is exponential in

the number of products. Often, a column generation algorithm is used to solve the

CDLP formulation.

The gist of the column generation algorithm is to figure out the promising columns

given the current dual variables. Suppose the dual variable corresponding to the

capacity constraint f is πf and the dual variable corresponding to the unit constraint

is µ. The subproblem of the column generation algorithm is as following:
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max
A

R(A)−
∑
f

πf ·Qf (A)− µ = max
A

λT
∑
j∈A

Pj:A

(
rj −

∑
f

Bjfπf

)
− µ. (48)

The essence of problem (48) is an assortment optimization problem with modi-

fied revenue of product j equal to rj −
∑

f Bjfπf . If we can solve this assortment

optimization problem within polynomial time, according to [27], the CDLP can also

be solved within polynomial time. Although the column generation algorithm can be

used to solve the dynamic assortment optimization problem, we will use the SBLP

formulation, which is much more compact and easier to solve than the CDLP formu-

lation. We will come back to the column generation algorithm when the no-purchase

alternative is random.

3.3.4 SBLP formulation

We now propose an SBLP formulation for the revenue management problem under

customer choice model with buy-down effects. Let xj denote the sales of product j

when it is the cheapest available among J(j). Let xjj′ denote the sales of product

j′ when product j is the cheapest available among J(j′). Since the revenues of the

products are of decreasing order in each subset, for each j, we only need to define xjj′

for j′ < j and j′ ∈ J(j). Let x0 denote the number of customers who ‘purchase’ the

no-purchase alternative. The SBLP formulation is as following:
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max
∑
j∈J

rjxj +
∑

j′∈J(j),j′>j

rj′x
j
j′

 (49a)

s.t.
∑
j∈J

xj +
∑

j′∈J(j),j′>j

xjj′

+ x0 = λT (49b)

∑
j∈J

Bjfxj +
∑

j′∈J(j),j′>j

Bj′fx
j
j′

 ≤ bf ∀ f ∈ F (49c)

xjj′

vj′
≤ xj

wj
∀ j ∈ J ,∀j′ ∈ J(j) and j′ < j (49d)∑

j∈Jm

xj
wj

≤ x0

v0

∀ m ∈ {1, . . . ,M} (49e)

x ≥ 0

The flow balance constraint (49b) guarantees that each arrival customer either

buy some product or leave the system without purchasing anything. Constraint (49c)

guarantees that the capacity of each resource will not be exceeded. The quantity
xj
′
j

vj

can be viewed as a normalized approximation of the time that product j is offered

when some other product j′ in J(j) is the cheapest available. Similarly,
xj
wj

can be

viewed as an approximation of the time that product j is offered as the cheapest avail-

able product in J(j). If whenever product j is offered and it is the cheapest available

product in J(j), product j′ (j′ < j and j′ ∈ J(j)) is also offered, then constraint (49d)

will hold with equality. The less than or equal to relation in constraint (49d) allows

product j′ not be offered all the time when j is the lowest available. Since the no-

purchase option is always available, constraint (49e) makes sure that at any time,

either the assortment in Jm is not empty and some product is the cheapest in it or

no alternative from Jm is offered.

All constraints in the formulation (49) are intuitively necessary. But it is still

unclear whether these constraints are sufficient to guarantee that a sales solution

to (49) is actually achievable by offering certain assortments for certain amount of
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time, e.g. a CDLP solution. On another hand, the sales quantities are difficult

to implement in practice. For implementation purpose, we also need to convert an

SBLP solution to a CDLP solution. We address these two questions by offering an

conversion algorithm as Algorithm 1.
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Algorithm 1 Algorithm of converting an SBLP solution to a CDLP solution

Input:
An SBLP solution x
Set of products J and its partition J1, J2, · · · , JM
Attractiveness of product j: vj and wj, for all j ∈ J
Attractiveness of the no-purchase alternative: v0.
Total arrival: λ · T

Initialize:
Set u(A) = 0 for all A ⊂ J and A 6= ∅
Set x = x
Set i = 0

1: if xj = 0 for all j ∈ J then
2: Set u(∅) = 1−

∑i
i′=1 u(Ai′). Output u as the CDLP solution.

3: for m = 1, · · · ,M do
4: if xj = 0 for all j ∈ Jm then
5: Define Ym = −∞
6: else
7: Pick any j(m) ∈ Jm such that xj(m) > 0. Define

Ym = min

{{
xj(m)

wj(m)

}
∪

{
x
j(m)
j

vj
: j′ < j(m), j′ ∈ Jm, xj(m)

j′ > 0

}}

8: Compute I = min {Ym : Ym > 0}
9: Define

Ai+1 =
⋃

m:Ym>0

(
{j(m)} ∪ {j : x

j(m)
j > 0}

)
10: Define

u(Ai+1) =
I
(∑

m:Ym>0

(
wj(m) +

∑
j:x

j(m)
j >0

vj

)
+ v0

)
λT

11: for m = 1, · · · ,M do
12: if Ym > 0 then
13: Update xj(m) as

xj(m) = xj(m) − I · wj(m)

14: for all j with j < j(m) and x
j(m)
j > 0 do

15: Update x
j(m)
j as

x
j(m)
j = x

j(m)
j − I · vj

16: Update i = i+ 1. Go back to step 1
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Figure 5 provides a graphical illustration of Algorithm 1. In the example of Fig-

ure 5, M = 2, J1 = {1, 2, 3}, and J2 = {4, 5}. In Figure 5, interval
xj
wj

’s within the

same Jm are placed adjacently. For j′ < j and j′ ∈ J(j), interval
xj
j′

vj′
is placed under-

neath interval
xj
wj

and the two intervals are aligned to left. Because of Constraint 49d,

interval
xj
j′

vj′
will be completely underneath

xj
wj

. For each
xj
wj

, we can find its overlap

with all
xj
j′

vj′
’s beneath it. If there are no intervals underneath

xj
wj

, the overlap is defined

to be
xj
wj

itself. This overlap is actually the Ym in step 7 of Algorithm 1. We further

take the minimum of Ym’s and we obtain interval I1 in Figure 5. The assortment

corresponding to I1 is A1 = {1, 4} with u(A1) = (w1+w4+v0)I1
λT

. After A1 is generated,

all subintervals under I1 are removed and a new iteration begins. The second assort-

ment is A2 = {1, 4, 5} with u(A2) = (w1+w5+v4+v0)I2
λT

. Following this logic, 9 different

nonempty assortments will be generated. Note that the assortment corresponding to

interval I10 in Figure 5 is empty.

𝑥0/𝑣0

∅𝑥1/𝑤1 𝑥2/𝑤2

𝑥1
2/𝑣1

𝑥3/𝑤3

𝑥4
5/𝑣4

𝑥1
3/𝑣1

𝑥2
3/𝑣2

𝑥4/𝑤4 𝑥5/𝑤5 ∅

𝐼1 𝐼2 𝐼3 𝐼4 𝐼5 𝐼6 𝐼7 𝐼8 𝐼9 𝐼10

𝐽2

𝐽1

Figure 5: Conversion of a feasible SBLP solution to a feasible CDLP solution.

The following theorem says that Algorithm 1 will terminate after finite steps.
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Theorem 7. Given a feasible SBLP solution x, Algorithm 1 will terminate after at

most N iterations, where N is the number of positive elements in x.

Proof of Theorem 7. In each iteration, because of the definition of I, at least one of

the positive elements of x will be reduced to 0. Thus, after at most N iterations, x

will be reduced to 0 and the algorithm stops.

Below are some other properties of Algorithm 1.

Lemma 10. Given a feasible SBLP solution, the following results hold for each iter-

ation i:

1. x satisfies constraints (49d) and (49e);

2. The expected sales resulted from offering assortment Ai+1 for u(Ai+1) · T unit

of time are equal to the sales subtracted from x in iteration i.

Proof of Lemma 10. Suppose that at the beginning of an iteration, x satisfies con-

straints (49d) and (49e). Thus,

xjj′

vj′
≤ xj

wj
∀ j ∈ J ,∀j′ ∈ J(j) and j′ < j∑

j∈Jm

xj
wj

≤ x0

v0

∀ m ∈ {1, . . . ,M}

During iteration i, one of the
xj
wj

’s will be subtracted by I, and the same with x0
v0

.

Thus, constraint (49e) still holds in the next iteration.

If I has intersection with
xj
wj

, then both
xj
j′

vj′
and

xj
wj

will be subtracted by the same

quantity I, leaving constraint (49d) valid in the next iteration. If I has no intersection

with
xj
wj

, constraint (49d) will be the same in the next iteration and still holds trivially.

Given the above inductive results and the condition that the starting solution x

is feasible (thus satisfies constraints (49d) and (49e)), the first part of the lemma is

established.

The second part of the result is straightforward if we substitute the definition of

u(A) to calculate the expected sales.
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Now we are ready to show the equivalence between the SBLP formulation and the

CDLP formulation.

Theorem 8. Given any feasible solution x for (49), a feasible solution u for (CDLP)

can be computed in polynomial time, and vice versa, such that the two solutions rep-

resent the same number of bookings for each product and have the same objective

values.

Proof of Theorem 8. First we show that for any feasible solution u for (CDLP), there

is a feasible solution x for (49) representing the same number of bookings and having

the same objective value. Given u, let x denote the resulting number of bookings.

For example, if j ∈ Jm, then xj =
∑
{A : I(j,A)=1} λTPj:Au(A). Then, x satisfies (49b).

Since u is feasible for (CDLP), it follows that x satisfies (49c). Since bookings xjj′

take place only when j is the cheapest available product in the subset J(j′), (49d)

follows from the IIA property of the MNL choice model. Finally, since the alternative

not to book anything is always available, (49e) is satisfied by x.

For the other direction, given x, we use Algorithm 1 to convert x to a CDLP

solution. According to Lemma 10, the corresponding CDLP solution generates the

same sales as x.

The SBLP formulation has J(J+1)
2

decision variables and 1 + F + J(J+1)
2

+ M

constraints, both of which are quadratic in the number of products and linear in

the number of resources. Thus, the SBLP formulation is much more compact than

the CDLP formulation. Given an SBLP solution, Algorithm 1 provides an efficient

conversion algorithm to a CDLP solution.

3.4 Dynamic Assortment Optimization with 100% Buy-down
Effects

In this section, we discuss the dynamic assortment optimization when the buy-down

effects are extreme and customers always purchase the cheapest available product
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within a subset, if they ever choose to purchase anything. 100% is a prominent

phenomenon in airline industry. For many leisure airline markets, customers always

only choose the lowest available tickets on a flight. In hotel industry, a hotel needs to

decide one price tag for each room type, this can be interpreted as if the prices above

the tag are still available, but customers always choose the lowest available price. Of

course, in the above two examples, customers may still choose among different flights

or different room types. Thus a customer choice model with 100% buy-down effects

is appropriate for the application and has attracted lots of attention in practice.

Although 100% buy-down effects can be viewed as a special case of the general

buy-down effects, due to its practical importance, we separately give the model and

the solution methods.

As in Section 3.3.1, let J = {1, · · · , J} denote the set of products which the

company has. The collection of sets J1, · · · , JM form a partition of J . Customers

only consider the cheapest available product from each subset Jm. Subset Jm can be

all fare classes from the same flight in airline industry, or all price tags for the same

room type in hotel industry. The attractiveness of product j is wj. Let J(j) denote

the subset that product j belongs to. Let I(j, A) = 1 if product j is the cheapest

available in J(j) when assortment A is offered. Let I(j, A) = 0 otherwise. The choice

probability that a customer chooses product j when assortment A is offered is as

following:

Pj:A =
wjI(j, A)

v0 +
∑

j′∈Awj′I(j′, A)
. (50)

There are F resources the company can use to assemble the products. Product j

will use Bjf units of resource f . Let Bj denote the vector (Bjf )f=1,··· ,F . The capacity

of resource f is bf . The selling horizon is divided into T discrete-time periods. Period

T denotes the end of the horizon. In each period, there is one customer arrival with

probability λ and no customer arrival with probability 1− λ.

With such setup, we can develop an MDP model for the dynamic assortment
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optimization problem with 100% buy-down effects. The only difference is that the

choice probability in Equation (45) now refers to (50). Similarly, we can define R(A)

and Qf (A) using the new choice probability. With the updated R(A) and Qf (A), the

formulation CDLP can also be used as a deterministic approximation to the MDP.

For the CDLP formulation with 100% buy-down effects, an efficient column gen-

eration algorithm can be developed.

Suppose the dual variable corresponding to the the first constraint (the unit con-

straint) is π. The dual variable corresponding to recourse constraint f is πf . Then

the pricing problem of the column generation algorithm is as following:

max
A

R(A)−
∑
f

πfQf (A)− π. (51)

The pricing problem is an assortment optimization with modified revenue r′j = rj −∑
f πfBjf . We define a set of new variables xj. xj = 1 if product j is in the assortment

and 0 otherwise. Problem (51) can be reformulated as following:

max
x

:

∑
j∈J wjr

′
jxj∑

j∈J wj + v0

(52)

s.t.
∑
j∈Jm

xj = 1, ∀m (53)

xj ∈ {0, 1}, ∀j (54)

The objective function (52) is the same as the revenue of an assortment under MNL

choice model. The constraints (53) are totally unimodular. Thus, the algorithm in

[14] can be used to solve the problem.

A more efficient way to solve the deterministic approximation problem is through

the SBLP formulation. Let xj denote the sales of product j. Let x0 denote the

number of customers that choose the no-purchase option. The SBLP formulation
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with the 100% buy-down effects is as below.

max
x

:
∑
j∈J

rjxj (55)

s.t.
∑
j∈J

xj + x0 = λT (56)

∑
j∈J

Bjfxj ≤ bf , ∀f (57)

∑
j∈Jm

xj
wj
≤ x0

v0

, ∀m (58)

xj ≥ 0, ∀j (59)

Constraint (56) makes sure that each customer either buys some product or leave the

system without buying anything. Constraint (58) guarantees that the no-purchase

option is always available.

As a simplified version of Algorithm 1, Algorithm 2 below converts a feasible SBLP

solution to a CDLP solution that leads to the same expected sales and revenue.
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Algorithm 2 Algorithm of converting an SBLP solution to a CDLP solution

Input:
An SBLP solution x
Set of products J and its partition J1, J2, · · · , JM
Attractiveness of product j: wj, for all j ∈ J
Attractiveness of the no-purchase alternative: v0.
Total arrival: λ · T

Initialize:
Set u(A) = 0 for all A ⊂ J and A 6= ∅
Set x = x
Set i = 0

1: if xj = 0 for all j ∈ J then
2: Set u(∅) = 1−

∑i
i′=1 u(Ai′). Output u as the CDLP solution.

3: for m = 1, · · · ,M do
4: if xj = 0 for all j ∈ Jm then
5: Define Ym = −∞
6: else
7: Pick any j(m) ∈ Jm such that xj(m) > 0. Define

Ym =
xj(m)

wj(m)

8: Compute I = min {Ym : Ym > 0}
9: Define

Ai+1 =
⋃

m:Ym>0

{j(m)}

10: Define

u(Ai+1) =
I
(∑

m:Ym>0wj(m) + v0

)
λT

11: for m = 1, · · · ,M do
12: if Ym > 0 then
13: Update xj(m) as

xj(m) = xj(m) − I · wj(m)

14: Update i = i+ 1. Go back to step 1

3.5 Assortment Optimization with Buy-down Effects and
Random No-purchase

All choice models used in the revenue management literature have one special al-

ternative called the no-purchase alternative. The no-purchase alternative aggregates

all alternatives that are not from the company of interest. It includes the products
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from competitors and the alternative of leaving the system without buying any thing.

In many revenue management models with customer choice behavior, including the

models we have discussed so far in this thesis, the no-purchase alternative is assumed

to be known and constant. This is a strong assumption, especially considering that

the no-purchase alternative includes all products from competitors. In practice, one

has to admit that it is difficult to know what the competitors will offer in advance.

The best a company can do is to have a probabilistic estimation of its competitors’

offerings. In this case, the no-purchase alternative in the choice model will be ran-

dom. Also, in practice, different customers may have different sets of alternatives

as no-purchase. If the company cannot offer personalized assortments to customers,

as is the case in practice, a better way to handle the inhomogeneity of customers’

unknown no-purchase alternative is to view the no-purchase alternative as a random

variable.

In this section, we study the assortment optimization problem with buy-down

behavior and random no-purchase alternative. Determining the optimal assortment

is an important problem in retailing or other industries where inventory is sufficient

or managed through some other system. When the dynamic assortment optimization

problem is approximated through a CDLP formulation, the subproblem of the column

generation algorithm is actually an assortment optimization problem.

3.5.1 Notation and the assortment optimization problem

Let J = {1, 2, · · · , J} be the set of products the company has to offer. The revenue of

product j is rj. The collection of sets J1, J2, · · · , JM form a partition of J . Let J(j)

denote the subset that product j belongs to. Within each subset, if the assortment

is not empty, the cheapest available product will receive the buy-down effects. When

product j is the cheapest available among J(j), its attractiveness is wj, otherwise

the attractiveness is vj. We assume wj ≥ vj. Let I(j, A) = 1 if product j is the
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cheapest available among J(j) when the assortment is A. Otherwise, I(j, A) = 0.

The no-purchase alternative has L possible attractivenesses. The attractiveness is

equal to v0l with probability Pl.

Given the notation, when the assortment is A, product j is chosen with probability

equal to:

Pj:A =
L∑
l=1

I(j, A)wj + (1− I(j, A))vj∑
j′∈A[I(j′, A)wj′ + (1− I(j′, A))vj′ ] + v0l

Pl. (60)

The corresponding assortment optimization is as following.

max
A∈2J

:
∑
j∈A

Pj:Arj (61)

In the remaining of the section, we first study the (static) assortment optimiza-

tion problem when there is 100% buy-down effects. We develop a polynomial time

algorithm to solve the assortment optimization problem. The component of the algo-

rithm is to convert the original multi-dimensional optimization problem to a single-

dimensional problem by heavily using the complementary slackness. The idea was

first developed in [47], where it was used to solve a nonlinear nonseparable continuous

knapsack problem. We show that the idea can also be adapted to solve the assortment

optimization problem where the decision variables are actually discrete. We also show

that the final single-dimensional problem can be solved within constant time. When

there is general buy-down effects, we show that the optimal assortment is nested by

revenue within each subset Jm. With the nesting property, we show that the assort-

ment optimization problem with general buy-down effects and random no-purchase

alternative can be reduced to an assortment optimization problem with 100% buy-

down effects and random no-purchase alternative. Thus, the assortment optimization

problem with general buy-down effects can also be solved within polynomial time.
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3.5.2 Assortment optimization with 100% buy-down effects and random
no-purchase alternative

We reformulate the assortment optimization problem with 100% buy-down effects

and random no-purchase alternative. Let xj = 1 if product j is included in the

assortment and 0 otherwise. With such definition, given any binary vector x, we can

quickly determine the corresponding assortment and denote it as A(x). Since only

the cheapest product within each Jm will be considered by the customers due to the

100% buy-down effects, we can impose the requirement that exactly one product from

each Jm is set to be 1. To accommodate the case that there is no product from Jm

is selected, we can introduce one dummy product to Jm. The dummy product has 0

attractiveness and 0 revenue. Thus, including the dummy product will not affect the

actual choice probability and revenue. With such setup, the assortment optimization

problem with 100% buy-down and random no-purchase alternative problem can be

modeled as following:

max
x

:
L∑
l=1

∑
j∈J wjrjxj∑

j∈J wjxj + v0l

Pl

such that :
∑
j∈Jm

xj = 1, ∀m

xj ∈ {0, 1}, ∀j ∈ J

(62)

Problem (62) is a nonlinear integer programming problem. If we remove the

integer constraints, the optimization problem can be relaxed as (63) below. Note

xj ≤ 1 is not required since the unit constraints will guarantee each xj be bounded

by 1.

max
x

:
L∑
l=1

∑
j∈J wjrjxj∑

j∈J wjxj + v0l

Pl

such that :
∑
j∈Jm

xj = 1, ∀m

xj ≥ 0, ∀j ∈ J

(63)
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Theorem 9. There always exists an optimal solution to problem (63) that is integral.

Theorem 9 asserts that we can remove the integer constraints without introducing

any optimality gap. Proof of Theorem 9 is postponed to the Appendix.

Since the logarithm function is a monotonically increasing function and the ob-

jective value of (63) is nonnegative for every feasible solution, the following problem,

which is obtained by transforming the objective function through the logarithm func-

tion, has the same optimal solution as (63).

Z∗ := max
x

: log

(∑
j∈J

wjrjxj

)
+ log

(
L∑
l=1

Pl∑
j∈J wjxj + v0l

)

such that :
∑
j∈Jm

xj = 1, ∀m

xj ≥ 0, ∀j

(64)

We define a parametric function f(·) : R+ → R based on the sum
∑

j∈J wjxj as

following:

f(s) = max
x

: log

(∑
j∈J

wjrjxj

)
+ log

(
L∑
l=1

Pl
s+ v0l

)

such that :
∑
j∈Jm

xj = 1, ∀m

∑
j∈J

wjxj = s

xj ≥ 0, ∀j ∈ J

(65)

The domain of s is
[
s :=

∑M
m=1 minj∈Jm wj, s̄ :=

∑M
m=1 maxj∈Jm wj

]
.

Theorem 10. maxs∈[s,s̄] f(s) = Z∗.

Proof of Theorem 10. Suppose x∗ is an optimal solution that leads to the optimal

value Z∗ in (64). Let s∗ =
∑

j∈J wjx
∗
j . Then s∗ ∈ [s, s̄] and x∗ is a feasible solution

to problem f(s∗). Thus, we have

max
s∈[s,s̄]

f(s) ≥ f(s∗) = z∗ (66)
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On the other hand, suppose f(s) is maximized at s∗ ∈ [s, s̄] and the corresponding

solution to f(s′) is x′. Clearly, x′ is also a feasible solution to problem (64) and the

corresponding objective value is equal to f(s′). Thus:

Z∗ ≥ Z(x′) = max
x∈[s,s̄]

f(s) (67)

Combining (66) and (67), Theorem 10 is proved.

For a given s, the second term of the objective function of (65) is constant with

respect to x. Problem (65) then has the same optimal solution as the following

problem. This is also because the logarithm function is a monotonically increasing

function.

max
x

:
∑
j∈J

wjrjxj

such that :
∑
j∈Jm

xj = 1, ∀m

∑
j∈J

wjxj = s

xj ≥ 0, ∀j ∈ J

(68)

The dual of problem (68) is as following:

min
π,µ

:
M∑
m=1

πm + sµ

such that :πm + wjµ ≥ wjrj, ∀m,∀j ∈ Jm

(69)

where πm is the dual variable corresponding to the mth unit constraint and µ is the

dual variable corresponding to the summation constraint.

Problem (68) has bounded feasible region, thus it has optimal solution. Also, since

problem (68) has m + 1 equality constraints, there exists an optimal solution with

m + 1 basic variables and only these basic variables can be positive. The mth unit

constraint implies that there is at least one positive xj in each subset Jm. This gives

us m basic variables, one from each Jm. Thus, the basic variable solution contains

exactly two basic variables from the same subset.
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Suppose for an optimal basic solution to (68), Jm contains two basic variables

and j1, j2 ∈ Jm are the two basic variables, specifically. According to the strict

complementary slackness condition,

πm + wjµ− wjrj = 0, j = j1, j2. (70)

From the system of equations (70), we can solve for µ and πm. Once µ is

determined, problem (69) can be solved and the optimal value of other π’s are

πm′ = maxj∈Jm′ wjrj − µwj, for all m′ 6= m.

Given the optimal dual solution (µ, π), according to the complementary slackness

condition, in the optimal solution to problem (68), xj = 0 if πJ(j) + wjµ− wjrj > 0.

Let

S = {j : πJ(j) + wjµ− wjrj = 0}. (71)

Given the optimal dual solution (µ, π), in the optimal solution to problem (68),

only xj with j ∈ S may be positive. All other xj’s with j /∈ S are equal to 0. Since

The optimal solution to problem (68) is also optimal to problem (65), problem (65)

can be expressed as

fµ,π(s) = log

(∑
j∈S

wjrjxj

)
+ log

(
L∑
l=1

Pl
s+ v0l

)

= log

(∑
j∈S

(πJ(j) + wjµ)xj

)
+ log

(
L∑
l=1

Pl
s+ v0l

)

= log

(∑
m

πm
∑

j:j∈Jm∩S

xj + µ
∑
j∈S

wjxj

)
+ log

(
L∑
l=1

Pl
s+ v0l

)

= log

(∑
m

πm + µs

)
+ log

(
L∑
l=1

Pl
s+ v0l

)
, (72)

with s =
∑

j∈J wjxj and xj ≥ 0 for j ∈ S.

The last equality holds since
∑

j∈Jm xj = 1 and all xj with j /∈ S is equal to 0.

Note that once we determine the subset Jm as the only subset that contains two

basic variables and determine which two products in Jm are the basic variables, the

81



corresponding dual optimal solution (µ, π) are determined. They are independent of

the value of s. Thus, to optimize f(s), we can optimize fµ,π(s) over the domain of

s for each (µ, π) pairs. We then compare the optimal value for all (µ, π) and pick

the largest value. There are in total
∑

m
|Jm|(|Jm|−1)

2
pairs of (µ, π). Thus, if we can

maximize fµ,π(s) polynomially, the original assortment optimization problem can also

be solved polynomially.

Theorem 11. The function defined as (72) with feasible domain [s1, s2] achieves its

maximum either at s1 or at s2.

Theorem 11 says that for each given (µ, π), to maximize fµ,π(s), we only need to

consider the smallest and largest possible value of s. Using this nice property, we

develop Algorithm 3 to solve the assortment optimization problem with 100% buy-

down effects and random no-purchase. The computational complexity of Algorithm 3

is O(MJ2), where M is the number of subsets and J is the number of products. Proof

of Theorem 11 is in Appendix.
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Algorithm 3 Assortment Optimization Algorithm with 100% Buy-down and Ran-
dom No-purchase

1: Set R = 0, x = 0
2: for m = 1, · · · ,M do
3: for j, j′ ∈ Jm with j 6= j′ do
4: Solve for µ and πm from the two equations (70) for j and j′

5: procedure Check Jm
6: for k ∈ Jm and k 6= j, k 6= j′ do
7: if πm + wkµ− wkrk < 0 then
8: continue to Step 3 with next pair of j and j′

9: for m′ = 1, · · · ,M do
10: πm′ = mink∈Jm′ wkrk − wkµ
11: wm′ = min{wk : wkrk − wkµ = πm′ , k ∈ Jm′}
12: xm′ = arg min{wk : wkrk − wkµ = πm′ , k ∈ Jm′}
13: w̄m′ = max{wk : wkrk − wkµ = πm′ , k ∈ Jm′}
14: x̄m′ = arg max{wk : wkrk − wkµ = πm′ , k ∈ Jm′}
15: w =

∑
m′ wm′ , w̄ =

∑
m′ w̄m′

16: if fµ,π(w) > fµ,π(w̄) then
17: R(m, j, j′) = fµ,π(w); x′ = x
18: else
19:

20: R(m, j, j′) = fµ,π(w̄); x′ = x̄

21: if R(m, j, j′) > R then
22: Set R = R(m, j, j′), x = x′

23: Output x as the optimal assortment. xm is the index of the product selected from
subset Jm.

3.5.3 Assortment optimization with general buy-down effects and ran-
dom no-purchase

When the buy-down effects is 100%, the assortment optimization problem (61) essen-

tially needs to determine which one of the products in Jm should be included in the

assortment, for each subset Jm ∈ J . This is so because even if we include two or more

products in Jm, only the lowest available one will be considered by the customers.

However, this will not be the case when the buy-down effects are not 100%. Multiple

products from Jm can be included in the assortment since the more expensive ones

will still be considered. In this sense, the assortment optimization problem with gen-

eral buy-down effects is more difficult than the one with 100% buy-down effects. To
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solve the problem, we will first show that the optimal solution to problem (61) with

general buy-down effects has some nesting property.

Theorem 12. There exists an optimal solution A∗ to problem (61) that is nested by

revenue within each subset. That is, if j ∈ A∗, rj′ ≥ rj, and J(j′) = J(j), then

j′ ∈ A∗.

The proof of Theorem 12 is long and complicated. We postpone it to the Appendix

for clarity. Given that the optimal assortment is nested in revenue within each subset

Jm, we only need to determine the cheapest product to include in each Jm. Thus, we

can reduce the assortment optimization problem with general buy-down effects to the

one with 100% buy-down effects. The reduction algorithm can be stated as following.

Algorithm 4 Algorithm of reducing general buy-down effects to 100% buy-down
effects
Input:

Set of products J and its partition J1, J2, · · · , JM
Attractiveness of product j: vj and wj, for all j ∈ J
Revenue of product j: rj, for all j ∈ J

1: for m = 1, · · · ,M do
2: for j = 1, · · · , |Jm| do
3: Let Am,j be the set of j most expensive products in Jm
4: Let w′j =

∑
j′∈Am,j [wj′I(j′, Am,j) + vj′(1− I(j′, Am,j))]

5: Let r′j =

∑
j′∈Am,j

rj[wj′I(j′,Am,j)+vj′ (1−I(j′,Am,j))]
w′j

The idea of the reduction is to view all products in a nesting cut as an aggregate

product. The fact that we can only choose one cut in each Jm is equivalent to saying

that we can only choose one aggregate product from each Jm. r′j and w′j define a

product in the 100% buy-down case. The partition of J in the reduced problem is

the same as before. We then can use Algorithm 3 to obtain the optimal assortment.
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3.6 Conclusion

In this chapter, we study the revenue management problem with buy-down effects.

We first give a very compact SBLP formulation for the dynamic assortment optimiza-

tion problem under customer choice behavior with buy-down effects. In the SBLP

formulation, both the number of constraints and the number of decision variables are

at most quadratic in the problem input. We also give an efficient algorithm to con-

vert an SBLP solution to a CDLP solution. Thus, the SBLP formulation is strictly

dominating its CDLP counterpart. We then discuss the static assortment optimiza-

tion problem under customer choice behavior with buy-down effects and random

no-purchase alternative. The problem is of great practical importance since the al-

ternatives from the competitors are part of the no-purchase alternative and they are

rarely known in advance with certain. We develop efficient polynomial algorithm to

solve the assortment optimization problem with 100% buy-down effects or general

buy-down effects. The static assortment optimization problem can be used when

the resource capacity is sufficient or in the subproblem of the column generation al-

gorithm for the CDLP formulation. For industries where the buy-down effects are

prominent, our treatment provides an economic formulation. Also, the solutions from

our formulation and algorithm can be implemented easily.
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APPENDIX A

PROOFS FOR CHAPTER 3

A.1 Proof of Theorem 9

The following lemma is useful when proving Theorem 9.

Lemma 11. Consider a function f : [−δ, δ]→ R defined as following:

f(x) =
L∑
l=1

Pl
cx+ a

bx+ dl
,

where c ≥ 0, a ≥ 0,Pl ≥ 0 and dl > 0 for every l, and bx+dl > 0 for every x ∈ [−δ, δ]

and every l. Let f ′(x) denote the derivative of f at x. If f ′(0) ≥ 0, then f(x) ≥ 0

for any x ∈ [0, δ].

Proof of Lemma 11. We have

f ′(x) =
L∑
l=1

Pl
cdl − ab

(bx+ dl)2
. (73)

The denominator term in every summand of the derivative is always positive. When

b < 0, since Pl > 0 for every l, c ≥ 0 and a > 0, the numerator term in every

summand of the derivative is also nonnegative. Thus, when b < 0, f ′(x) ≥ 0 for every

x ∈ [−δ, δ]. We now focus on the case when b ≥ 0.

When b ≥ 0, the numerator term cdl−ab ≥ 0 if dl ≥ ab
c

and cdl−ab < 0 otherwise.

Since the denominator of the summand is always positive, the sign of each summand

is solely determined by the sign of its numerator. If dl ≥ ab
c

for every l, then every

summand is nonnegative for all x ∈ [−δ, δ]. We now assume for some l’s, dl ≥ ab
c

,

and for others, dl <
ab
c

. Without loss of generality, we assume

d1 ≤ d2 ≤ · · · ≤ dk−1 <
ab

c
≤ dk ≤ · · · ≤ dL.
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Given f ′(0) ≥ 0, we have

∑
l

Pl
cdl − ab
d2
l

=
k−1∑
l=1

Pl
cdl − ab
d2
l

+
L∑
l=k

Pl
cdl − ab
d2
l

≥ 0 (74)

⇒
L∑
l=k

Pl
cdl − ab
d2
l

≥
k−1∑
l=1

Pl
ab− cdl
d2
l

(75)

Note the summands at the left hand side and the right hand side are both nonnegative.

For x ∈ [0, δ]

f ′(x) =
L∑
l=k

Pl
cdl − ab
(dl + x)2

−
k−1∑
l=1

Pl
ab− cdl
(dl + x)2

=
L∑
l=k

Pl
cdl − ab
d2
l

d2
l

(dl + x)2
−

k−1∑
l=1

Pl
ab− cdl
d2
l

d2
l

(dl + x)2

≥
L∑
l=k

Pl
cdl − ab
d2
l

d2
k

(dk + x)2
−

k−1∑
l=1

Pl
ab− cdl
d2
l

d2
k

(dk + x)2
(76)

= f ′(0)
d2
k

(dk + x)2
≥ 0

Equality (76) because d
d+x

> d′

d′+x
≥ 0 as long as d > d′ ≥ 0 and x > 0.

Thus, in both cases, when b < 0 and when b ≥ 0, we have f ′(x) ≥ 0 for x ∈ [0, δ]

if f ′(0) ≥ 0.

The function in Lemma 11 has a nice property that it will be nondecreasing from

any point onward as long as at that point the function is nondecreasing. We will

show that the objective function of problem (63) is of this type.

Proof of Theorem 9. We prove the theorem by construction. Suppose an optimal

solution x∗ to problem (64) contains fractional values. Without loss of generality, we

assume x∗1 and x∗2 with 1, 2 ∈ J1 are fractional. Also, we assume w1r1 ≥ w2r2. We

define function f(z) as below:

f(z) =
L∑
l=1

∑J
j=1 wjrjx

∗
j + (w1r1 − w2r2)z∑J

j=1wjx
∗
j + v0l + (w1 − w2)z

Pl. (77)
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The domain of f(z) is [−x∗1, x∗2]. f(z) is the objective value if we shift z unit from x∗2

to x∗1. By assumption, c := w1r1−w2r2 ≥ 0. We also have dl :=
∑

j∈J wjx
∗
j + v0l > 0

for every l, and
∑

j∈J wjx
∗
j + v0l + (w1 +w2)z ≥ v0l > 0 for every l and z ∈ [−x∗1, x∗2].

Pl ≥ 0 for every l and a :=
∑J

j=1wjrjx
∗
j ≥ 0 are obvious. Thus, function f satisfies all

the requirements in Lemma 11. Since x∗ (corresponding z = 0) is an optimal solution

to problem (64) and 0 is an interior point in the domain of function f , we must have

f ′(0) = 0. Thus, according to Lemma 11, f ′(z) ≥ 0 for any z ∈ [0, x∗2]. This means

f(x∗2) ≥ f(0). Thus shifting all of x∗2 to x∗1 leads to a solution that is also optimal.

The new solution has one less fractional components. Repeating this process, we can

remove all the fractional components and obtain an integral optimal solution. This

proves the theorem.

A.2 Proof of Theorem 11

Lemma 12. Suppose fµ,π(s) = log (π + µs) + log
(∑L

l=1
Pl

s+v0l

)
where v0l and Pl are

positive for every l. The feasible region of f is [s, s̄] ⊂ R++. If f ′µ,π(s0) = 0 for some

s0 ∈ (s, s̄), then f ′µ,π(s) > 0 for any s ∈ (s0, s̄].

Proof of Lemma 12. The derivative of fµ,π(s) is as following:

f ′µ,π(s) =
µ

π + µs
− 1∑

l
Pl

s+v0l

∑
l

Pl
(s+ v0l)2

=

∑
l

Pl
(s+v0l)2

v0l−πµ
s+π

µ∑
l

Pl
s+v0l

If fµ,π(s0) = 0, we have:∑
l

Pl
(s0+v0l)2

v0l−πµ
s0+π

µ∑
l

Pl
s0+v0l

= 0⇒
∑
l

Pl
(s0 + v0l)2

v0l − π
µ

s0 + π
µ

= 0. (78)

Since
∑

l
Pl

s+v0l
> 0 for any s ∈ [s, s̄], to prove f ′µ,π(s) > 0 for s ∈ (s0, s̄], we only need

to show ∑
l

Pl
(s+ v0l)2

v0l − π
µ

s+ π
µ

> 0. (79)
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Note that the lth summand in (78) and (79) have the same sign. Each of them will

be positive if and only if v0l >
π
µ
. Without loss of generality, suppose:

v01 ≤ · · · ≤ v0l∗ <
π

µ
≤ v0,l∗+1 ≤ · · · ≤ v0L.

We can relax the sum of the positive terms on the left hand side of (79) as following:

L∑
l=l∗+1

Pl
(s+ v0l)2

v0l − π
µ

s+ π
µ

=
L∑

l=l∗+1

Pl
(
v0l − π

µ

)
(
s0 + π

µ

)
(s0 + v0l)

2

(
s0 + π

µ

)
(s0 + v0l)

2(
s+ π

µ

)
(s+ v0l)

2

>
L∑

l=l∗+1

Pl
(
v0l − π

µ

)
(
s0 + π

µ

)
(s0 + v0l)

2

(
s0 + π

µ

)
(s0 + v0l∗)

2(
s+ π

µ

)
(s+ v0l∗)

2

(80)

The last inequality is because a+x
b+x

is strictly increasing with x if b > a > 0 and x > 0.

Similarly, we relax the sum of the negative terms on the left hand side of (79) as

following:
l∗∑
l=1

Pl
(s+ v0l)2

v0l − π
µ

s+ π
µ

=
l∗∑
l=1

Pl
(
v0l − π

µ

)
(
s0 + π

µ

)
(s0 + v0l)

2

(
s0 + π

µ

)
(s0 + v0l)

2(
s+ π

µ

)
(s+ v0l)

2

>
l∗∑
l=1

Pl
(
v0l − π

µ

)
(
s0 + π

µ

)
(s0 + v0l)

2

(
s0 + π

µ

)
(s0 + v0l∗)

2(
s+ π

µ

)
(s+ v0l∗)

2

(81)

Combining (80) and (81), we have

∑
l

Pl
(s+ v0l)2

v0l − π
µ

s+ π
µ

>

(
s0 + π

µ

)
(s0 + v0l∗)

2(
s+ π

µ

)
(s+ v0l∗)

2

(∑
l

Pl
(s0 + v0l)2

v0l − π
µ

s0 + π
µ

)
= 0.

Thus, inequality (79) is proved and we have f ′µ,π(s) ≥ 0 for s ∈ [s0, s̄].

Proof of Theorem 11. We prove the theorem by contradiction. Suppose fµ,π achieves

its maximum at s0 ∈ (s, s̄), then fµ,π(s0) = 0. According to Lemma 12, f ′µ,π(s) > 0

for s ∈ (s0, s̄]. Thus, fµ,π(s̄) > fµ,π(s0). This contradicts the assumption that s0 is a

maximum solution. This proves the result.
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A.3 Proof of Theorem 12

To prove Theorem 12, we consider another optimization problem which focuses on

the assortment optimization within subset J1. For any A ⊂ J1, let:

R(A) =
L∑
l=1

∑
j∈A (I(j, A)wj + (1− I(j, A))vj) rj + vfrf∑
j∈A(I(j, A)wj + (1− I(j4, A))vj) + vf + v0l

Pl, (82)

where f is some given assortment from subsets J2, · · · , JM . Its total attractiveness and

weighted revenue are denoted as vf and rf , respectively. The optimization problem

of focus is:

R∗ = max
A⊂J1

R(A). (83)

For notational brevity, we also define the following:

R′(A) =
L∑
l=1

∑
j∈A vjrj + vfrf∑
j∈A vj + vf + v0l

Pl. (84)

Aj = {1, 2, · · · , j} (85)

r(A) =

∑
j∈A(I(j, A)wj + (1− I(j, A))vj)rj∑
j∈A(I(j, A)wj + (1− I(j, A))vj)

(86)

r′(A) =

∑
j∈A vjrj∑
j∈A vj

(87)

w(A) =
∑
j∈A

(I(j, A)wj + (1− I(j, A))vj) (88)

v(A) =
∑
j∈A

vj (89)

The following two mathematical lemmas are used when we prove properties of the

optimal solution to Problem (83).

Lemma 13. Given any b, r, c, x, a1, a2, y1, and y2, all being positive numbers, if

the following condition is satisfied

y1
b− ca1

(a1 + r)(a1 + x)
+ y2

b− ca2

(a2 + r)(a2 + x)
> 0, (90)
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then there exists a′ ∈ (0, b/c) and y′ > 0 such that the following holds:

y1
b− ca1

(a1 + r)(a1 + x)
+ y2

b− ca2

(a2 + r)(a2 + x)
≤ y′

b− ca′

(a′ + r)(a′ + x)
, (91)

y1
b− ca1

a1(a1 + r)(a1 + x)
+ y2

b− ca2

a2(a2 + r)(a2 + x)
≥ y′

b− ca′

a′(a′ + r)(a′ + x)
. (92)

Proof. Without loss of generality, we assume a1 ≤ a2. Because of inequality (90), we

have y1
b−ca1

(a1+r)(a1+x)
> 0. Thus, a1 < b/c. Next, we discuss the case for a2 > b/c and

the case a2 ≤ b/c separately.

• Case 1: a2 ≥ b/c. We first observe that

y1
b− ca1

a1(a1 + r)(a1 + x)
+ y2

b− ca2

a2(a2 + r)(a2 + x)

≥y1
b− ca1

a2(a1 + r)(a1 + x)
+ y2

b− ca2

a2(a2 + r)(a2 + x)
> 0

Let y′ = y1 + y2. Since g(a) := b−ca
a(a+r)(a+x)

is continuous and decreasing on

interval (0, b/c), there exists a unique a′ ∈ (a1, b/c) such that

y′
b− ca′

a′(a′ + r)(a′ + x)
= y1

b− ca1

a1(a1 + r)(a1 + x)
+ y2

b− ca2

a2(a2 + r)(a2 + x)
.

Thus, y′ and a′ selected as above satisfy Inequality (92). We now show that

Inequality (91) is satisfied by y′ and a′ as well.

y′
b− ca′

(a′ + r)(a′ + x)
= a′y′

b− ca′

a′(a′ + r)(a′ + x)

= a′
(
y1

b− ca1

a1(a1 + r)(a1 + x)
+ y2

b− ca2

a2(a2 + r)(a2 + x)

)
=
a′

a1

y1
b− ca1

(a1 + r)(a1 + x)
+
a′

a2

y2
b− ca2

a2(a2 + r)(a2 + x)

≥ y1
b− ca1

(a1 + r)(a1 + x)
+ y2

b− ca2

(a2 + r)(a2 + x)

The last inequality follows because a′ ∈ (a1, a2), y1
b−ca1

(a1+r)(a1+x)
> 0, and

y2
b−ca2

(a2+r)(a2+x)
≤ 0.
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• Case 2: a2 < b/c. Rearrange (91) and (92) we have the following:

y′ ≥
y1

b−ca1
(a1+r)(a1+x)

+ y2
b−ca2

(a2+r)(a2+x)

b−ca′
(a′+r)(a′+x)

y′ ≤
y1

b−ca1
a1(a1+r)(a1+x)

+ y2
b−ca2

a2(a2+r)(a2+x)

b−ca′
a′(a′+r)(a′+x)

One pair of feasible (a′, y′) can be found if we find some a′ ∈ (0, b/c) such that

y1
b−ca1

(a1+r)(a1+x)
+ y2

b−ca2
(a2+r)(a2+x)

b−ca′
(a′+r)(a′+x)

≤
y1

b−ca1
a1(a1+r)(a1+x)

+ y2
b−ca2

a2(a2+r)(a2+x)

b−ca′
a′(a′+r)(a′+x)

, (93)

which is equivalent to

y1
b−ca1

(a1+r)(a1+x)
+ y2

b−ca2
(a2+r)(a2+x)

y1
b−ca1

a1(a1+r)(a1+x)
+ y2

b−ca2
a2(a2+r)(a2+x)

≤ a′. (94)

Once such an a′ is found, then y′ can be chosen as any number between the LHS

and RHS of Inequality (93). With both the numerator and the denominator

multiplied with a1a2, the LHS of Inequality (94) can be rewritten as(
y1

b−ca1
(a1+r)(a1+x)

a2

)
a1 +

(
y2

b−ca2
(a2+r)(a2+x)

a1

)
a2

y1
b−ca1

(a1+r)(a1+x)
a2 + y2

b−ca2
(a2+r)(a2+x)

a1

which is a convex combination of a1 and a2. Thus the LHS of Inequality (94) is

between a1 and a2. Thus, if we pick a′ equal to the LHS of Inequality (94) and

pick y′ any number between LHS and RHS of Inequality (93), both (91) and

(92) will be satisfied.

To conclude, we establish the results.

Lemma 14. Given b, r, c and x, all being positive, let a1, a2, · · · , aL, and y1, y2, · · · , yL

be any positive real numbers. If A :=
∑L

l=1 yl
b−cal

(al+r)(al+x)
> 0, then

B :=
L∑
l=1

yl
b− cal

al(al + r)(al + x)
> 0.
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Proof. We prove the result by induction on L. For L = 1, the result trivially holds.

We assume the result holds for L = k with k ≥ 1. We next show that the result also

holds for L = k + 1. Without loss of generality, we assume a1 ≤ a2 ≤ · · · ≤ ak+1.

Since A > 0, we have y1
b−ca1

(a1+r)(a1+x)
+ y2

b−ca2
(a2+r)(a2+x)

> 0. According to Lemma 13,

there exists y′ > 0 and a′ > 0 such that Inequality (91) and Inequality (92) hold.

Now a′, a3, · · · , ak+1, and y′, y3, · · · , yk+1 can be viewed as a case when L = k. Since

y′ b−ca′
(a′+r)(a′+x)

+
∑L

l=3 yl
b−cal

(al+r)(al+x)
> 0, according to the inductive assumption, we have

y′
b− ca′

(a′ + r)(a′ + x)
+

L∑
l=3

yl
b− cal

al(al + r)(al + x)
> 0.

SinceB ≥ y′ b−ca′
(a′+r)(a′+x)

+
∑L

l=3 yl
b−cal

al(al+r)(al+x)
, we establish the results for L = k+1.

Lemma 15. Given b, r, c and x, all being positive, let a1, a2, · · · , aL, and y1, y2, · · · , yL

be any positive real numbers. If A :=
∑L

l=1 yl
b−cal

(al+r)(al+x)
> 0, then

C :=
L∑
l=1

yl
b− cal

(al)(al + x)
> 0.

Proof. C−A = r
∑L

l=1 yl
b−cal

al(al+r)(al+x)
. According to Lemma 14, Given A > 0, C−A >

0. Thus, C > 0.

Lemma 16. If j0 ≥ 1 satisfies R(Aj0+1) < R′(Aj0+1), then R′(Aj0+1) < R′(Aj0).

Proof. According to assumption, vj0+1 ≤ wj0+1. Since R(Aj0+1) < R′(Aj0+1), we have

vj0+1 < wj0+1.

R(Aj0+1) < R′(Aj0+1)

⇔
L∑
l=1

v(Aj0)r
′(Aj0) + wj0+1rj0+1 + vfrf

v(Aj0) + wj0+1 + vf + v0l

Pl <
L∑
l=1

v(Aj0)r
′(Aj0) + vj0+1rj0+1 + vfrf

v(Aj0) + vj0+1 + vf + v0l

Pl

⇒
L∑
l=1

Pl
(wj0+1 − vj0+1) (v(Aj0)r

′(Aj0) + vfrf − rj0+1 (v(Aj0) + vf + v0l))

(v(Aj0) + vj0+1 + vf + v0l) (v(Aj0) + wj0+1 + vf + v0l)
> 0

⇒
L∑
l=1

Pl
v(Aj0)r

′(Aj0) + vfrf − rj0+1 (v(Aj0) + vf + v0l)

(v(Aj0) + vj0+1 + vf + v0l) (v(Aj0) + wj0+1 + vf + v0l)
> 0 (95)
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The difference between R′(Aj0+1) and R′(Aj0) can be expressed as following:

R′(Aj0)−R′(Aj0+1)

=
L∑
l=1

Pl
(
v(Aj0)r

′(Aj0) + vfrf
v(Aj0) + vf + v0l

− v(Aj0)r
′(Aj0) + vj0+1rj0+1 + vfrf

v(Aj0) + vj0+1 + vf + v0l

)

=vj0+1

L∑
l=1

Pl
v(Aj0)r

′(Aj0) + vfrf − rj0+1(v(Aj0) + vf + v0l)

(v(Aj0) + vf + v0l)(v(Aj0) + vj0+1 + vf + v0l)
.

Viewing v(Aj0) + vf + v0l as al, vj0+1 as x, wj0+1 as r, rj0+1 as c, v(Aj0)r
′(Aj0) + vfrf

as b, Pl as yl, and with Inequality (95), we can apply Lemma 15 and have R′(Aj0)−

R′(Aj0+1) > 0.

Lemma 17. If j0 ≥ 1 satisfies R(Aj0+1) < R′(Aj0+1), then there exists j∗ < j0 such

that R′(Aj0+1) < R(Aj∗).

Proof. Let J∗ = {j : j < j0, R
′(Aj) ≤ R(Aj)}. J∗ is not empty since 0 ∈ J∗ (A0

denotes the empty assortment). Let j∗ = max J∗. By definition of J∗ and j∗, for

any j ∈ (j∗, j0], R(Aj) < R′(Aj). Due to Lemma 16, R′(Aj∗) > R′(Aj∗+1) > · · · >

R′(Aj0+1). By definition, we have R(Aj∗) ≥ R′(Aj∗). Thus, we have R′(Aj0+1) <

R(Aj∗) and the result is proved.

Corollary 2. If j0 ≥ 1 satisfies R(Aj0+1) < R′(Aj0+1), then R′(Aj0+1) < R∗.

Theorem 13. For any j ∈ J , R′(Aj) ≤ R∗.

Proof. If R(Aj) < R′(Aj), according to Corollary 2, R′(Aj) < R∗. If R(Aj) ≥ R′(Aj),

since R∗ ≥ R(Aj), we have R′(Aj) ≤ R∗. To conclude, we have R′(Aj) ≤ R∗ for every

j.

Lemma 18. Suppose A is an optimal solution to Problem (82). If there exists j /∈ A

such that A := {j′ ∈ A : rj′ < rj} 6= ∅, then A ∪ {j} is also an optimal solution to

Problem (82).
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Proof. We define Ā := {j′ ∈ A : rj′ ≥ rj}. To show A ∪ {j} is also an optimal

solution, we only need to show R(A ∪ {j}) ≥ R(A), which is equivalent to show:

L∑
l=1

Pl
v(Ā)r′(Ā) + vjrj + w(A)r(A) + vfrf

v(Ā) + vj + w(A) + vf + v0l

≥
L∑
l=1

Pl
v(Ā)r′(Ā) + w(A)r(A) + vfrf

v(Ā) + w(A) + vf + v0l

(96)

⇔rj
L∑
l=1

Pl
1

v(Ā) + vj + w(A) + vf + v0l

≥
L∑
l=1

Pl
v(Ā)r′(Ā) + w(A)r(A) + vfrf

(v(Ā) + vj + w(A) + vf + v0l)(v(Ā) + w(A) + vf + v0l)
(97)

Since rj ≥ r(A), Inequality (97) can be established if the following inequality holds:

r(A)
L∑
l=1

Pl
1

v(Ā) + vj + w(A) + vf + v0l

≥
L∑
l=1

Pl
v(Ā)r′(Ā) + w(A)r(A) + vfrf

(v(Ā) + vj + w(A) + vf + v0l)(v(Ā) + w(A) + vf + v0l)
,

which is equivalent to:

r(A)
L∑
l=1

Pl
v(Ā) + vf + v0l

(v(Ā) + vj + w(A) + vf + v0l)(v(Ā) + w(A) + vf + v0l)
(98)

≥
L∑
l=1

Pl
v(Ā)r′(Ā) + vfrf

(v(Ā) + vj + w(A) + vf + v0l)(v(Ā) + w(A) + vf + v0l)
.

On the other hand, since A is optimal, according to Theorem 13, R(A) ≥ R′(Ā).

Thus,

L∑
l=1

Pl
v(Ā)r′(Ā) + w(A)r(A) + vfrf

v(Ā) + w(A) + vf + v0l

≥
L∑
l=1

Pl
v(Ā)r′(Ā) + vfrf
v(Ā) + vf + v0l

⇒
L∑
l=1

Pl
r(A)

v(Ā) + w(A) + vf + v0l

≥
L∑
l=1

Pl
v(Ā)r′(Ā) + vfrf

(v(Ā) + w(A) + vf + v0l)(v(Ā) + vf + v0l)
.

(99)

Inequality (98) can be established if the following holds:∑L
l=1 Pl

v(Ā)r′(Ā)+vf rf
(v(Ā)+w(A)+vf+v0l)(v(Ā)+vf+v0l)∑L
l=1 Pl

1
v(Ā)+w(A)+vf+v0l

≥

∑L
l=1 Pl

v(Ā)r′(Ā)+vf rf
(v(Ā)+vj+w(A)+vf+v0l)(v(Ā)+w(A)+vf+v0l)∑L

l=1 Pl
v(Ā)+vf+v0l

(v(Ā)+vj+w(A)+vf+v0l)(v(Ā)+w(A)+vf+v0l)

,

(100)
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which is equivalent to show:

L∑
l=1

L∑
l′=1

PlP′l(v(Ā) + vf + v0l′)/(v(Ā) + vf + v0l)

(v(Ā) + w(A) + vf + v0l)(v(Ā) + vj + w(A) + vf + v0l′)(v(Ā) + w(A) + vf + v0l′)

≥
L∑
l=1

L∑
l=1′

PlP′l
(v(Ā) + vj + w(A) + vf + v0l)(v(Ā) + w(A) + vf + v0l)(v(Ā) + w(A) + vf + v0l′)

.

(101)

For l = l′, the cross terms are canceled out on both sides. For any l 6= l′, we can

simplify the cross terms by canceling the common term (v(Ā)+w(A)+vf+v0l)(v(Ā)+

w(A) + vf + v0l′) in the denominator and we equivalently show the following:

v(Ā) + vf + v0l′

v(Ā) + vf + v0l

1

(v(Ā) + vj + w(A) + vf + v0l′)

+
v(Ā) + vf + v0l

v(Ā) + vf + v0l′

1

(v(Ā) + vj + w(A) + vf + v0l)

≥ 1

(v(Ā) + vj + w(A) + vf + v0l)
+

1

(v(Ā) + vj + w(A) + vf + v0l′)
.

⇔ v0l′ − v0l

(v(Ā) + vf + v0l)(v(Ā) + vj + w(A) + vf + v0l′)

+
v0l − v0l′

(v(Ā) + vf + v0l′)(v(Ā) + vj + w(A) + vf + v0l)
≥ 0

⇔(v0l − v0l′)
2(vj + w(A)) ≥ 0

The last inequality is straightforward. Thus, we have R(A∪{j}) ≥ R(A) and A∪{j}

is also an optimal solution to Problem (82).

Due to Lemma 18, Theorem 12 can be proved in a straightforward way.
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