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SUMMARY

Answers to the most complex biological questions are rarely determined solely

from the experimental evidence. It requires subsequent analysis of many data sources

that are often heterogeneous. Most biological data repositories focus on providing

only one particular type of data, such as sequences, molecular interactions, protein

structure, or gene expression. In many cases, it is required for researchers to visit

several different databases to answer one scientific question. It is essential to develop

strategies to integrate disparate biological data sources that are efficient and seamless

to facilitate the discovery of novel associations and validate existing hypotheses.

This thesis presents the design and development of different integration strategies

of biological and clinical systems. The BioSPIDA system is a data warehousing so-

lution that integrates many NCBI databases and other biological sources on protein

sequences, protein domains, and biological pathways. It utilizes a universal parser

facilitating integration without developing separate source code for each data site.

This enables users to execute fine-grained queries that can filter genes by their protein

interactions, gene expressions, functional annotation, and protein domain representa-

tion. Relational databases can powerfully return and generate quickly filtered results

to research questions, but they are not the most suitable solution in all cases. Clini-

cal patients and genes are typically annotated by concepts in hierarchical ontologies

and performance of relational databases are weakened considerably when traversing

and representing graph structures. This thesis illustrates when relational databases

are most suitable as well as comparing the performance benchmarks of semantic web

technologies and graph databases when comparing ontological concepts.

Several approaches of analyzing integrated data will be discussed to demonstrate

xiv



the advantages over dependencies on remote data centers. Intensive Care Patients are

prioritized by their length of stay and their severity class is estimated by their diagno-

sis to help minimize wait time and preferentially treat patients by their condition. In

a separate study, semantic clustering of patients is conducted by integrating a clinical

database and a medical ontology to help identify multi-morbidity patterns. In the

biological area, gene pathways, protein interaction networks, and functional annota-

tion are integrated to help predict and prioritize candidate disease genes. This thesis

will present the results that were able to be generated from each project through uti-

lizing a local repository of genes, functional annotations, protein interactions, clinical

patients, and medical ontologies.
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CHAPTER I

INTRODUCTION

1.1 Overview

As the volume of biological data sources continues to grow, there is a rising demand for

an efficient system that can accurately integrate pertinent information. Researchers

are commonly faced with challenges to answer complex biological questions, and the

number of available databases has risen from 96 in 2001 to 1,552 in 2014 [147]. Specific

studies can require joining many databases before an analysis can be conducted. Sci-

entists may spend 80% of their time retrieving and pre-processing their data [414]. For

example, verification of whether a particular gene sequence is associated with a spe-

cific biological process or structure would require visiting three separate data centers

on gene sequence, protein sequence, and macromolecular structure. NCBI provides

a comprehensive volume of database resources that include DNA sequences (Gen-

bank) [40], annotated genes (Entrez Gene) [313], protein sequences (RefSeq) [398],

protein domains (CDD) [317], 3-dimensional molecular structures (MMDB) [520],

chemical molecules (PubChem) [521], and biomedical literature (Pubmed).

It is not a trivial task to centralize data from a variety of sources into one location

with uniform access. Wang et al. cites data integration as one of the most important

research areas, but it is faced with the challenges of heterogeneity, autonomy and

maintainability [522]. Separate resource sites uses their own structure to store and

represent their biological data. It is not possible to enforce a standard model that is

used across all possible biological data types. The environment is constantly changing

and as new discoveries are made, new data structures are created to meet shifting

demands.

1



In navigational approaches, users must manually join two data sources with a

“point and click” interface. It is not realistic to ask scientists to tediously inspect

all returned records for a given query [182]. Data warehouses attempt to alleviate

these demands by integrating all relevant information into a local repository. All

queries are executed on a local machine rather than an external server. Service-based

approaches do not require investigators to store any data and provides a virtual view

of the integrated sources. There is an ongoing debate as to which approach is most

appropriate to handle the data integration requirements of a complex environment

that is constantly evolving. Service-based approaches are well suited for cases where

researchers need to integrate and search many data sources that are all up-to-date

and undergoing rapid changes [304]. Data warehouses require serious maintenance

challenges to regularly match data from external sources that are constantly updated.

However, user queries yield excellent response times and facilitate fine granular access

to the data [453]. Biological sciences contain many diverse data types and it is difficult

to create a global schema that precisely captures all necessary features. Often, a great

deal of richness in the data structures is lost in conversion to a relational model.

Data warehouses can create a powerful system that delivers effective results, but

they require extensive knowledge in database development as well as considerable

setup-time to import each data source.

This dissertation attempts to alleviate the shortcomings of data warehousing while

simultaneously taking advantage of the many compelling features that locally inte-

grated databases bring the biological and clinical sciences. A universal parser auto-

matically translates different biological resources without custom source code for each

data model. Standardized hierarchical ontologies are integrated by utilizing the state

of the art technologies in natural language processing and Graph databases. Appli-

cations of unified resources are presented in the biological domain by using diverse

datasets to prioritize disease candidate genes. In the clinical domain, integration of

2



patient databases with standardized ontologies facilitate improved prioritization of

intensive care admissions and accurate clustering of multimorbidity conditions.

1.2 Contributions of this thesis

The work presented in this thesis represent a number of contributions to the data

integration and analysis techniques for the biological and clinical sciences:

• A relational translator (BioSPIDA) can convert public biological databases in

ASN.1 or XML format to local relational databases without custom source

code as long as a schema file is provided for each resource. The implementa-

tion is comparatively lightweight to other data warehousing solutions, because

of parallelization, parsing with efficient memory management, and removal of

redundant data.

• Disease candidate genes can be prioritized by many additional data sources,

due to integrated biological data. A local warehouse contains information on

pathways, literature, gene expression, protein domains, and gene ontology.

• Techniques are introduced to improve healthcare with the data analysis of Elec-

tronic Health Records and the integration of standardized medical terminolo-

gies. This includes the prioritization of intensive care admissions and the clus-

tering of multimorbidity conditions.

1.3 Structure of this thesis

Chapter 2 This chapter discusses a background of the many technologies utilized

in this dissertation. Data centers can vary in their integration methods as well in

the structures that are used to represent records. Many distance metrics are used

in this thesis, and there is a large variety of semantic similarity measures for con-

cept graphs. The current approaches for data representation, data integration and

semantic similarity measures are reviewed.
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Chapter 3 This chapter covers the BioSPIDA system and the development of the

final integrated data warehouse of many separate biological resources. BioSPIDA was

used to convert NCBI databases, and additional databases were constructed from

other external resources. The details of how XML and ASN.1 records are efficiently

translated into a relational database are discussed, and the advantages of rapid query

execution speeds are illustrated.

Chapter 4 This chapter introduces a method to prioritize candidate disease genes

by the integration of many data sources. The biological sources are provided by

the data warehouse built in Chapter 3. A diffusion kernel matrix is constructed for

five separate data types on pathways, literature, gene expression, protein domains,

and gene ontology. The similarities between genes for each of these data types are

calculated from different measures ranging from semantic similarity to vector cosine

distance.

Chapter 5 This chapter discusses a clinical integration project that utilizes pub-

licly accessible patient databases and standardized medical terminologies. Natural

language processing is applied to diagnosis records to map terms to ontological con-

cepts. A Graph database is built to fully convert a medical ontology for semantic

similarity measures to accurately find commonalities between patients.

Chapter 6 This chapter develops a prioritization method for intensive care patients

by the natural language processing of diagnosis records with linking to terms from

a medical ontology. Patient diagnosis concepts can be recognized, and their length

of stay can be predicted by assessing their severity level. Patients in different cate-

gories of length of stay and severity level can be accurately prioritized under different

ordering schemes.

Chapter 7 This chapter introduces a density-based clustering method that can ef-

fectively place multimorbidity patients into similarly related groups. With the usage

of Graph Databases, semantic similarity measures facilitate robust distance metrics
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that can accurately compute the strength of common patient characteristics.

Chapter 8 This chapter is the conclusion of the thesis where the current work is

summarized and potential avenues for future work are introduced.
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CHAPTER II

BACKGROUND

Several major approaches of database integration exist in the bioinformatics domain,

but there is no single best approach that outperforms all others. Each method has its

own challenges, and it is important to review the existing data integration regimes to

highlight the advantages and disadvantages of each strategy. Data sources can also be

represented with a variety of different models that have their own strengths and weak-

nesses. This chapter discusses the different data integration and data representation

regimes with providing examples of successful research projects.

Semantic similarity measures are another important topic in the biomedical do-

main. Terms in large volumes of unstructured textual resources can be mapped to

standardized concepts. Semantic similarity measures can be used to calculate the

degree of relatedness between these terms. However, the accuracy of these measures

can depend on the corpus coverage as well as the specific domain. The last section

of this chapter covers many of the state of art approaches for calculating semantic

similarity.

2.1 Data Representation

Data integration is mainly concerned where data resides and how the different data

sources are interconnected with each other, but there is a great deal of variation

on how the data and knowledge may be represented at each of these data sources.

The first section in this chapter will discuss models for data represention and their

disadvantages and advantages.
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2.1.1 Relational schemas

The relational model [102] of a database is organized into terms of tuples (rows),

attributes (columns) and relations (tables). Relational data models are a mature

and battle tested technology and are well understood by many industry professionals.

However, its technology is not without criticisms especially for the biological data

sciences. Biological entities can be complex hierarchical objects and modelling into

relational objects is not trivial even for the most experienced database designers [277].

Objects must be explicitly structured and precise, and in the biological data sciences,

relationships are usually ambiguous and not completely understood [304].

2.1.2 Semi-structured data

Semi-structured data frees data modelling from the rigid constraints of relational

databases. It can be viewed as a series of labels with associated values, and it supports

the nesting of labels. XML is a format supported by the WWW Consortium [56] and

is an example of semi-structured data. XML allows for a more natural modelling

of biological entities, because it highly flexible and has rich capabilities for linking

data [1]. However, it cannot model complex relationships, such as many-to-many

links between entities which are required to accurately describe pathways [304]. The

Semantic Web is a data model that can use XML as its syntax and will be discussed

in Section 2.2.6. The Semantic Web can be viewed as a paradigm shift where the

World Wide Web is interconnected by pages in a machine-interpretable format [43],

rather than a set of documents solely for keyword search and retrieval. Each page

is expressed in RDF [337], which is a semi-structured data model that can describe

arbitrarily complex relationships.

2.1.3 Ontologies

Ontologies are an explicit specification of concepts and their representations for a

particular field of study [195]. The World Wide Web Consortium (W3C) provides
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several data models, including Resource Description Framework (RDF) [337], RDF

schema (RDFS) [320], Web Ontology Language (OWL) [328], and the standard web

query language for RDF (SPARQL) [379]. RDF is described as a series of triples,

containing a subject, object, and predicate. The Semantic Web expresses ontologies in

OWL format [328] which is built on top of RDF. An ontology is a set of concepts within

a domain with a shared vocabulary that expresses the properties and relationships

of each concept [195]. Ontologies are greatly beneficial in integrating data that span

multiple disciplines, because they help to resolve semantic inconsistencies which are

especially evident in the biomedical community [304].

Two regularly used ontologies in the biomedical community are Gene Ontology

(GO) [20] and SNOMED CT [472]. The Gene Ontology (GO) consortium describe

biological processes, cellular components, and molecular functions with the goal of

producing a gene product vocabulary for all organisms. Systematized Nomenclature

of Medicine - Clinical Terms (SNOMED-CT) is an ontological resource for the clinical

domain that is used for clinical decision support, ICU monitoring, indexing medical

records, medical research, and disease surveillance. By expressing the relationships

among the various concepts, the ontology organizes the concepts in a structured way,

thus reducing the number of possible interpretations of these concepts.

2.2 Data Integration

This section will review the most common data integration approaches in the bio-

logical sciences and also give examples of present approaches for each methodology.

In some cases, it can be preferable to query external sources for information, while

in others it is beneficial to build a locally accessible repository. The strengths and

weaknesses of each strategy as well as the appropriate development settings will be

discussed.
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2.2.1 Navigational Integration

Navigational integration arose from the fact that an increasing number of sources on

the web require users to visit and browse through several pages and hyperlinks before

they reach their desired information [114]. Its justification is that many of these

sources would not be accessible or found without point-and-click navigation [161]. Its

goal is to facilitate the discovery of deeply linked pages by performing a quick search

of related links. Sources are defined as sets of pages, and queries detect all possible

paths between entities [60,161,345]. Relational databases do not permit the answering

of such queries, but navigational integration is not a true integration of sources. It is

particularly vulnerable to naming ambiguities which are frequent in the biomedical

community. It also requires cooperation between all of the data centers [315].

The Sequence Retrieval System (SRS) [138] parses flat files that contain structured

text with field names. It keeps track of cross-references between sources by storing

local indexes for each field. After retrieving relevant entries at query-time, these links

are utilized to suggest more results to the user. The Entrez system [369] is an access

point to all sources provided by the National Center for Biotechnology Information

(NCBI)1. Similar to SRS, different data sources are linked, so returned entries also

have related links to other sources. BioNavigator2 is a commercial solution that

allows users to specify their preferred execution path when submitting queries. These

execution paths can be reused later for similar type queries.

2.2.2 Data Warehousing

Data warehousing consolidates all of the designated data for research projects into

one consolidated location. The data is migrated from multiple data sources into

the central repository. The imported data can be cleaned, filtered, or transformed

1http://www.ncbi.nlm.nih.gov/
2http://www.bionavigator.com/
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to meet the specific needs of the project, and it is then loaded into the warehouse.

Executed queries are not evaluated at the sources, but on the local schema. This

creates fast access and excellent response time to user queries. This is not trivial,

because performance is often cited as a primary feature by biologists [199]. Since all

of the data is locally housed, it avoids problems of low network response time and

unavailability of sources. There are also very important benefits to research projects

that have the ability to validate and transform data prior to integration [115].

Despite these advantages, data warehousing has its shortcomings. The warehouse

must be regularly reloaded or it runs the risk of returning outdated results. Changes

in the data model of the sources requires continuous modifications of the local schema.

Many biological data sources change their data structure roughly twice a year [473].

The volume of the data may also be too large for the warehouse to handle. Only the

most experienced may be capable to create a global schema that captures the data

models of all the desired sources, and the richness of the individual data sources can

be lost [304]. Warehouses may be best suited to projects that are focused on a very

specific and narrow area of research.

IGD [417] integrated over 20 different data sources into one huge relational database.

Since it had its own global schema, specific parsers had to be written to translate the

schema for each of the individual sources. It was difficult to maintain the system and

was discontinued. Atlas [453] integrates local instances of biological sequences, ontolo-

gies, and molecular interactions including: GenBank [41], RefSeq [400], UniProt [28],

Human Protein Reference Database (HPRD) [397], Biomolecular Interaction Net-

work Database (BIND) [27], Database of INteracting Proteins (DIP) [536], Molecular

Interactions Database (MINT) [76], IntAct [258], NCBI Taxonomy, Gene Ontology

(GO) [20], Online Mendelian Inheritance in Man (OMIM) [206], LocusLink [399],

Entrez Gene [314], and HomoloGene [314]. It stores similar types using common data

models and utilizes a C++ API to perform sequence and feature retrieval tasks. With
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integrated information, new associations could be derived, such as projecting known

protein-protein interactions in one species onto another. Other examples of successful

biological data warehouse projects are University of California at Santa Cruz (UCSC)

Genome Browser [253], Genomics Unified Schema (GUS) [113], BIOZON [45], and

MoDA [354]. BioWarehouse [288] and BioDWH [494] are examples of open source

toolkits for locally constructing data warehouses from biological data sources.

2.2.3 Mediated Integration

Mediated integration focuses on query translation, as opposed to data warehouses

that are focused on data translation. All of the data is left at the source. Queries

are translated into sub-queries against many data sources. Query translation systems

retrieve the returned data from the disparate data sources and abstractly present the

information to the end user. They provide immediate access to up-to-date data from

multiple data sources [546], but data cleansing can be difficult because it is not housed

locally [347]. They are relatively inexpensive, because the data resides at its sources,

but rely heavily on network connectivity and must be maintained when changes are

made by the data sources.

According to surveys of database integration in biomedicine [10,479], there are four

main classes of query translation systems that manage integration between the data

sources: i.) pure mediation, ii.) global conceptual schema, iii.) multiple conceptual

schemas, iv.) hybrid approaches. Global-as-view (GAV) [499] and Local-as-view

(LAV) [292] are also used in the literature. GAV is equivalent to global conceptual

schema and LAV matches with multiple conceptual schemas.

2.2.3.1 Pure Mediation

Pure mediation, also referred as Federated Databases [198], use developed software

for each integrated database to accurately transform the data from the sources. The

software, also known as “wrappers,” must be carefully constructed according to the
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domain and features of the underlying data sources. In pure mediation, any data

source change requires revisions and recompilation of the wrapper source code. Fed-

erated databases can be seen as a middle-ground between no integration and total

integration and came before more advanced methods of mediator-based integration.

They use a common data model, so it is difficult to represent diverse data types that

represent all data sources. Federated Databases are most appropriate for research

that requires the most up-to-date information from many related public data sources.

BioKleisli [96] was a pioneer in applying the federated database approach to the

biomedical sciences. It was able to answer queries, such as finding many non-human

homologs of genes located on particular human chromosomes. It uses a high-level

query language, Collection Programming Language (CPL), that is more expressive

than SQL and can query against several sources. The data model is object-oriented

and is more expressive than a relational model, including lists, variants and nested

records. It is well suited to handle complex data types common in biological entities.

However, CPL requires source specific wrappers for each integrated database, and

there is no specific molecular biology ontology to help formulate queries. This requires

extensive knowledge of the structure of the data sources.

BioMart is a query-oriented data management system where each participating

database in the federation must import their data into a local BioMart implementa-

tion. AceDB was a federated database that provided a common schema for multiple

small genome projects. Other examples of federated databases include OPM [82] and

GMOD [474].

2.2.3.2 Global Conceptual Schema

Federated databases can be challenging because there are many source schemas of the

different data sources used in the federation. Mediator-based integration address this

problem by utilizing a mediator schema that describes the sources and the relations
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among them [315, 523]. A mediated schema is generally a graph with entities repre-

sented as nodes and relationships between entities represented as edges. Queries are

acted directly against the mediated schema and not the union of the data sources. The

mediator is responsible to reformulate the query on the corresponding data sources.

This enables the user to ask general questions without knowing the details of the un-

derlying data sources. Mediated schemas are best suited for researchers who benefit

from the simpler abstraction and have to ask very complex questions that span many

different data sources.

In a mediated global conceptual schema, also known as global as view (GAV),

the information required to transform the data sources is stored separately from the

source code of the wrapper. GAV stores a global schema that contains a common

vocabulary with mappings to each data source. It is very easy to reformulate queries

because they immediately unfold into the equivalent definitions of the data sources.

However, it is much more difficult to add or remove a data source, because it involves

a direct modification of the mediated schema. It can be problematic to conceptualize

a mediated global conceptual schema, because sources can have large variation in

their data models even if they are in the same domain.

DiscoveryLink [199], developed by IBM, is a mediated system that serves as an

intermediary to several biological sources. It submits SQL queries to a global schema

with a structured object-relational model. TAMBIS [29] is a mediator-based and

ontology-driven system. It was built on top of the BioKleisli system. Queries are

constructed from a global schema and then formulated into CPL. Unlike many other

projects that utilize ontologies, the ontologies in TAMBIS are not used for schema

mapping between the data sources. Instead, they define the relationships between con-

cepts. Similar to TAMBIS, K2/Kleisli [113] adds a layer on top of Kleisli combining

the component schemas into a global schema and making the source databases trans-

parent to the user. The data model for TAMBIS is structured and object-relational.
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K2/BioKleisli has a semi-structured object-oriented data model. Other mediated

systems with global conceptual schemas are ARIADNE [8], BioDataServer [158],

BACIIS [336] and BIS [278].

2.2.3.3 Multiple Conceptual Schemas

In multiple conceptual schemas, also known as local as view (LAV), each source de-

scribes its own conceptual schema and are not required to share the same vocabulary.

It is up to the data sources to describe the relations of the local schema in terms of the

global mediated schema. The relations in the source schema are expressed in terms of

a query in the mediated schema. This makes it very simple to add or remove sources,

but query formulation is more complicated and intensive. The inter-schema links de-

fine semantic relationships among concepts, and it can be difficult to model in highly

heterogeneous cases of the data sources. LAV is the preferred method for large-scale

integration because any changes of the data sources have a lower impact. GAV is

more suitable when the integrated data sources are well known and stable [214].

INDUS [63] integrates heterogeneous biological data sources utilizing ontologies

as a semantic framework of the integrated data. Users may create their own ontolo-

gies to view a collection of data sources with tables structured according to their

definitions. User queries can be answered without the need for a common global on-

tology. BioMediator uses a mediated schema to query across multiple structured and

semi-structured data sources. Each user can create custom mediated schemata and

ask diverse questions of the data sources. KIND [196] is a semi-structured object-

oriented data model that builds an F-logic schema of the sources. Links between

the integrated sources are governed by F-logic rules. In OntoFusion [382], virtual

schemas are developed that represent ontologies of the data structure of the sources.

The mapping process merges the virtual schemas into a unified global schema.
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2.2.3.4 Hybrid Approaches

A hybrid approach is a compromise between global conceptual schemas and inter-

schema links. Multiple conceptual schemas are still created, but a shared vocabulary

is utilized as in a global conceptual schema when developing semantic specifications

for each of the target sources. This hybrid approach simplifies the query translation

process.

DataFoundry provides federated access to its data sources but caches the most

frequently accessed records and maintains a global relational schema that can be

queried with SQL [110]. TINet is a hybrid approach where most of its data sources

are accessible by a federated model, except GenBank [41] and SwissProt [49] are main-

tained in centralized repositories [131]. SEMEDA has a relational database backend

to store ontologies and database metadata while access to heterogeneous data sources

is provided with federated systems [270].

2.2.4 Peer Data Management Systems

Peer Data Management Systems (PDMS) is viewed as the next evolutionary step

in data integration systems. [193] As the number of data sources increases, it is in-

creasingly difficult to develop a global mediated schema that encompasses the entire

domain. PDMS decentralize sharing by allowing multiple mediated schemas that are

integrated into the system. Peers provide data and a semantic mapping between one

or a few other data sources. The PDMS can then traverse a semantic network to

answer specific queries. They do not require stable data sources or a global mediated

schema. Groups of users can create their own mediated schemas and appropriately

map them to other peers on the network. They are the next step in mediated in-

tegration, but few biological projects have yet adapted to a peer data management

system [304]. There are several competing projects in peer data management systems,

including the Hyperion Project [15] and the Piazza project [204]. BioFuice [261] is
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a data integration project in bioinformatics which uses bidirectional peer mappings

between sources. It can execute queries and aggregate information from sources with

explicit links between peers.

2.2.5 Service-oriented Integration

Service-oriented approaches allow access to multiple heterogeneous sources through

computer interoperability. Individual data sources grant access to their data via Web

Services (WS). Contrary to Data Warehouses and Mediated Integration, Service-

oriented Integration is a decentralized approach that supports interaction through a

web application programming interface (API) [455]. They are several different Web

Service Description Languages (WSDL). These include Simple Object Access Proto-

col (SOAP), and REpresentational State Transfer (REST). SOAP is a protocol that

transfers XML-based messages over networks [54]. REST is a protocol that is im-

plemented with HTTP methods [148]. Service-oriented approaches are advantageous

to the field of bioinformatics, because they provide up-to-date information from var-

ious data sources [546]. However, it requires that many data sources provide WS as

well as standardization in nomenclature and protocols. There are also the additional

challenges of network connectivity and bottlenecks.

BioMoby [524] is an open source ontology-based WS for accessing heterogeneous

data sources. It does not follow the RDF or OWL standards provided by W3C. This

is in part due to the project originating in 2001 before these standards were stable.

The MOBY Object Ontology contains IS-A, HAS-A, and HAS relationships between

data formats. It utilizes SOAP for data exchange. Distributed Annotation System

(DAS) [128] provides access to multiple distributed data sources using SOAP-based

WS, and it is widely used in the genome annotation community. Taverna [223,362], a

part of MyGrid [475], is a graphical workflow application that allows users to integrate

many different software components, including SOAP or REST Web services. Taverna
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is aimed at integrating a growing number of biological tools and databases, and it has

the ability to monitor running processes and data production. BioPython [75,101] is

a suite of python libraries that can carry out a wide range of bioinformatics problems.

It can access key online databases, read sequence file formats and process 3D macro

molecular structures.

2.2.6 Semantic Integration

In the biological community, most web pages are in a format easily readable by human

beings (e.g. HTML). The goal of the Semantic Web is to describe information that

can be understood by computer algorithms. Its aim is to create an interconnected

network that can be easily processed, because of universal standards for data descrip-

tion [14]. Semantic Integration is an exciting addition to bioinformatics facilitating

automatic machine reasoning and inferences with ontology-based integration [358].

However, they have similar limitations to Data Warehousing. It translates data from

multiple sources all into a local repository in RDF format. It requires experienced

database designers to convert the data sources into triples, and the translators must

be periodically updated in the event of a data model change. The local warehouse

must also be regularly updated to keep the data current. Semantic integration also

does not have the speed advantages of a data warehouse. The data is densely stored

as triples and it can not take advantage of the advanced indexing that a relational

database would provide.

Bio2RDF [39] converts data into RDF format by applying Semantic Web technolo-

gies to various biological sources, such as Entrez Gene [314], KEGG [248], OMIM [206],

PDB [42], and UniProt [28]. The RDF documents are linked with normalized Uni-

form Resource Identifiers (URI) and can be queried with SPARQL. YeastHub [92]

integrates different types of yeast data in RDF format from data sources, such as

SGD [90], MIPS [333], BIND [27] and GO [20]. Health Care and Life Sciences Interest
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Group (HCLS) [93] aims to discover the benefits of the Semantic Web for the life sci-

ences and translational research. It imports data from general sources, such as Entrez

Gene [314], GO [20], HomoloGene3, and also domain-specific sources such as the Allen

Brain Atlas (ABA) [244]. Other applications of Semantic Web technologies in the Life

Sciences are Cell Cycle Ontology (CCO) [13], BioGateway [12], CardioSHARE [511],

NeuroCommons [425], Linked Life Data project [145], and GenoQuery [290].

2.3 Semantic Similarity

The final section in this background discusses the many different types of semantic

similarity measures. When concepts are annotated to a standardized ontology, the

difficulties of integrating heteregenous information can be alleviated by disambiguat-

ing biomedical terms. Semantic similarity measures are used to calculate the degree

of relatedness between these terms, but there is no clear choice for the best strategy.

The performance of these measures can depend on the chosen corpus, field of study,

or evaluation benchmark. Measures can be calculated by edge counting, overlapping

features, information content or hybrid methods, and this section reviews many of

the state of the art approaches.

2.3.1 Edge based

Ontologies are a directed graph where nodes are connected by taxonomic (is-a) links,

and in some cases non-taxonomic links. Rada et al [403] defines the distance between

two concepts as the shortest path that links both entities in the ontology by is-a links:

disrad(c1, c2) = min∀i |pathi(c1, c2)| (2.1)

where |path(a, b)| is the length of the path that connects terms a and b. Pedersen

et al [376] converts distance to similarity by inverting the path length between the

3http://www.ncbi.nlm.nih.gov/homologene/
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concepts:

simpath(c1, c2) =
1

disrad(c1, c2)
(2.2)

Subsequently, various modifications and improvements have been made to edge-

counting measures. Leacock & Chodorow (1998) (LCH) [282] define similarity as

the ratio of path length to the maximum depth in the taxonomy with a logarithmic

scaling:

simlch(c1, c2) = −log
(

δ(c1, c2)

2 ·max depth

)
(2.3)

where δ(c1, c2) = min∀i |pathi(c1, c2)|, and max depth is equal to the maximum depth

in the taxonomy. The LCH similarity can also be rescaled to the unit interval by

dividing by log(2 ·max depth) [19]:

simscaled
lch (c1, c2) = 1− log(δ(c1, c2))

log(2×max depth)
(2.4)

Wu and Palmer (1994) [533] take into account the relative depth in the taxonomy

of the concepts being evaluated. Deeper linked concepts are viewed as more similar,

because specializations are more distinct. The relative depth of both concepts is rep-

resented by the depth of the least common subsumer lcs(c1, c2), their closest common

parent with maximum depth. Wu and Palmer define similarity with the following

equation:

simwp(c1, c2) =
2× depth(lcs(c1, c2))

depth(c1) + depth(c2)
(2.5)

Pekar and Staab (2003) [377] calculate similarity as a ratio of the shortest paths

from the terms and their LCS, and the shortest path from the LCS and the hierarchy

root:

simpk =
δ(LCS(c1, c2), root)

δ(c1, LCS(c1, c2)) + δ(c2, LCS(c1, c2)) + δ(LCS(c1, c2), root)
(2.6)

where δ(c1, c2) is the length of the number of edges of the shortest distance between

c1 and c2.
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2.3.2 Hybrid approaches

Hybrid approaches use path length in addition to other structural characteristics,

such as local densities and relative depth of concepts. Li, Bander, and McLean

(2003) [294] measure semantic similarity by combining shortest path length and the

minimum depth of the LCS into a non-linear function:

simli(c1, c2) = e−α·δ(c1,c2) · e
βh − e−βh

eβh + e−βh
(2.7)

where δ(c1, c2) is equal to the minimum path length between c1 and c2, and h is equal

to the minimum depth of their LCS. α ≥ 0 and β ≥ 0 are parameters that scale

the contribution of p and h. Al-Mubaid and Nguyen (2006) [6] also combine the

minimum path-length with depth. A cluster is defined with each of the branches in

the hierarchy. They introduce a common specificity Cspec measure (Cspec) that is the

difference between the depth of a cluster Dc and the depth of the LCS:

Cspec(c1, c2) = Dc − depth(lcs(c1, c2)) (2.8)

Al-Mubaid and Nguyen utilize the Cspec measure to weight lower level pairs of concepts

as more similar than higher level pairs:

disAMN(c1, c2) = log((δ(c1, c2)− 1)α × (Cspec)
β + k) (2.9)

where α and β are tuning parameters and k is a constant. The authors use α =

β = k = 1. The hybrid approaches do provide higher accuracy as compared to pure

path-based methods, but it can be rigorous to the tune the weights appropriately

according to the input ontology [434].

2.3.3 Feature-based measures

Edge-counting measures treat taxonomical links with uniform distance. Feature-

based methods attempt to overcome this limitation by measuring the degree of over-

lapping features between ontological concepts. These strategies are developed from
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the Tversky [498] model. The features of a concept are usually considered as the set

of its subsumers including itself [207]. Let ψ(c1) and ψ(c2) represent the features of

concept c1 and c2 respectively. Let Ψ(c1) ∩ Ψ(c2) be the shared features of concepts

c1 and c2. Let Ψ(c1) \Ψ(c2) be the set obtained when eliminating features of c2 from

the features of c1. LetΨ(c2) \Ψ(c1) be the set obtained when eliminating features of

c1 from the features of c2. The Tversky model defines similarity between c1 and c2 as

the difference between shared and unshared features:

simtve(c1, c2) = α ·F (ψ(c1)∩ψ(c2))−β ·F (ψ(c1)\ψ(c2))−γ ·F (ψ(c2)\ψ(c1)) (2.10)

where α, β, and γ are tuning parameters that weight each component. Batet [434]

define taxonomic distance as the ratio between distinct and shared features:

distBatet(c1, c2) = log2

(
1 +

|Ψ(c1) \Ψ(c2)|+ |Ψ(c2) \Ψ(c1)|
|Ψ(c1) \Ψ(c2)|+ |Ψ(c2) \Ψ(c1)|+ |Ψ(c1) ∩Ψ(c2)|

)
(2.11)

In Rodriguez and Egenhofer [420], the semantic similarity is computed by:

simRE(c1, c2) =
|Ψ(c1) ∩Ψ(c2)|

γ · |Ψ(c1) \Ψ(c2)|+ (1− γ) · |Ψ(c2) \Ψ(c1)|+ |Ψ(c1) ∩Ψ(c2)|
(2.12)

where γε[0, 1] is a parameter to tune symmetry. Feature-based methods do utilize

more semantic knowledge than edge counting measures, but they are limited by their

coverage and have a large dependency on tuning parameters according to the input

ontology.

2.3.4 Information Content measures

To address the limitations of path based measures, Resnick (1995) [411] introduced

the information content (IC) of concepts by incorporating corpus-based statistics into

points of ontological graphs. The information content is the specificity of each concept

and is calculated from the concept frequency in a large corpus of text. The IC of a
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term is the negative log of the probability of its occurrence:

ICcorpus(c) = −log(p(c)) = −log(
freq(c)

freq(root)
) (2.13)

freq(c) = freq(c, C) +
∑

csεchildren(c)

freq(cs)

where freq(c, C) is the number of times a concept c occurs in a corpus C, freq(c)

is recursively defined as the frequency of concept c in addition to the frequencies of

its children. By definition, concepts with higher frequencies are less informative and

result in a lower IC. Resnick defines the notion of semantic similarity by the shared

information between two terms. The Most Informative Common Ancestor (MICA)

is the concept which subsumes the two concepts with maximum IC. The equation for

semantic similarity proposed by Resnick is:

simres(c1, c2) = IC(MICA(c1, c2)) (2.14)

The criticism for Resnick’s measure is that many concepts that differ taxonomically

may share the same MICA and will result with identical semantic similarity. Subse-

quent measurements incorporate the information content of the compared concepts.

Lin (1998) [297] proposed the semantic similarity as a ratio between the shared IC

between both terms and their individual IC:

simlin(c1, c2) =
2 · IC(MICA(c1, c2))

IC(c1) + IC(c2)
(2.15)

Jiang and Conrath (1997) [240] define the semantic distance (inverse of similarity) be-

tween two terms as the difference between the information content of each individual

concept and the information content of their subsumer:

distjcn(c1, c2) = IC(c1) + IC(c2)− 2 · IC(MICA(c1, c2)) (2.16)

As Pedersen et al. [376] relates the similarity to the minimum path length with the

simpath measure, the Jiang and Conrath distance can be converted in the same manner

simjcn = 1
distjcn

.
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simlin and simjcn are relative measures between shared information and the infor-

mation to fully describe each term. They do not take into account absolute measures

and are displaced from the ontology graph. Schilicker et al. (2006) [445] proposes the

relevance similarity measure which uses the probability of the MICA as a weighting

factor:

simRel(c1, c2) = simlin × (1− p(MICA(c1, c2)) (2.17)

In most cases the MICA summarizes the information shared by both concepts, but

concepts can have multiple inheritances and MICA may only capture the information

partially. To accommodate for this limitation, Couto et al. [108, 109] proposed the

GrASM and DiShIn strategies to aggregate the IC from their disjoint common ances-

tors. Disjoint common ancestors (DCA) are common ancestors that do not subsume

any other common ancestors. It replaces the IC of the MICA with the average IC of

all contributing DCA.

2.3.4.1 Intrinsic IC measures

Information content measures depend on annotated corpora which can be difficult to

obtain, time consuming, and often not reliable. Intrinsic IC calculus models estimate

the IC of concepts only by considering the structural information extracted from a

given ontology. Seco et al. [450] define the intrinsic IC of a concept as a function of

the number of its descendants.

ICseco(c) = 1− log(hypo(c) + 1)

log(hypo(root))
(2.18)

where hypo(c) is the number of hyponyms, or descendants, of concept c, hypo(root)

is the number of descendants from the root node. However, this measure does not

differentiate between different levels of generality. Concepts with equal amounts of

descendants are treated equivalently despite how deeply located they are in taxonomy

graphs. Zhou et al. [547] augment ICseco by incorporating the relative depth of each
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concept in the ontology.:

ICzhou(c) = k(ICseco) + (1− k)(
log(depth(c))

log(max depth)
(2.19)

where k adjust the weights of the two features. k = 0.5 was used in the study by

Zhou et al. ICzhou and ICseco have been applied directly on the corpus-based IC

measures (e.g. simres, simlin and simjcn) and have given comparable and superior

results applied to Wordnet [434]. However, they will not properly differentiate IC

without a largely well-defined ontology and detailed taxonomic structure. Concepts

become too similar in a graph structure with minimal depth and a low branching

factor. Sanchez et al [433] developed an IC measure that has less dependency on

taxonomy design and considers multiple inheritances. It measures a ratio between

the number of leaves and number of subsumers of a concept:

ICsanchez = −log

( |leaves(c)|
|subsumers(c)| + 1

max leaves+ 1

)
(2.20)

where leaves(c) is the number of leaves under concept c, subsumers(c) is the set of

ancestors of c including itself, and max leaves is the total amount of leaves in the

taxonomy as a normalizing factor.

2.3.4.2 Redefining edge-counting measures in terms of IC

The advantages of edge-counting measures is there simplicity and low computational

cost, but they omit substantial knowledge from the taxonomy by only focusing on

path length. In an attempt to overcome these limitations, edge-counting measures

can be redefined in terms of the IC of the concepts [432]. The minimum path is

defined as the sum of differential information between two concepts, which simplifies

to the Jiang and Conrath distance measure distjcn:

24



min∀i |pathi(c1, c2)| ∼= (IC(c1)− IC(c2)) + (IC(c2)− IC(c1))

= (IC(c1)− IC(lcs(c1, c2))) + (IC(c2)− IC(lcs(c1, c2)))

= IC(c1) + IC(c2)− 2× IC(lcs(c1, c2)

= distjcn(c1, c2) (2.21)

The depth of concepts corresponds to the minimum path of the concept to the root

node:

depth(c) = min∀i |pathi(c, root)|

∼= IC(c) + IC(root)− 2× IC(lcs(c, root))

= IC(c) + IC(root)− 2× IC(root)

= IC(c)− IC(root)

∼= IC(c) (2.22)

Generally IC(root) can be viewed as 0, because it can subsume any concept, and it

evaluates to zero when computed intrinsically. Therefore, the max depth (used by

simlch) may also be interpreted as the maximum IC (max ic) held by any concept.

To conclude this section, the following edge-counting measures are redefined with

these equivalencies in terms of IC:

simic
path(c1, c2)

∼=
1

distjcn(c1, c2)
(2.23)

simic
lch(c1, c2)

∼= −log
(
distjcn(c1, c2) + 1

2×max ic

)
(2.24)

simic
wp =

2× IC(MICA(c1, c2))

IC(c1) + IC(c2)
(2.25)
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CHAPTER III

INTEGRATING BIOLOGICAL DATA

3.1 Introduction

Biologists have the unique challenge to classify a wealth of information that is con-

stantly growing and evolving. Each new scientific discovery and laboratory advance-

ment can yield new concepts and revise data representation. Resource providers have

the potential to only focus on their own sub-discipline and philosophy of information

structure. The annual Nucleic Acids Research journal database issue has listed over

1,552 database in 2014 covering molecular and cell biology [147]. Pertinent biological

data is frequently stored across many different databases, hindering investigators that

require information from multiple experiment types. It is unrealistic in todays climate

to ask researchers to visit numerous databases with a point and click interface [182].

They are often confronted with this environment to answer common biological ques-

tions. To retrieve all necessary information requires an integrated system that can

query multiple databases and minimize overhead. This chapter introduces a universal

parser and relational schema translator that can be utilized for all NCBI databases in

Abstract Syntax Notation (ASN.1) and all biological databases in Extensible Markup

Language (XML).

These tools facilitate research scientists to locally integrate biological databases

without significant workload or development time, negating many of the shortcomings

experienced from data warehousing. All data is centralized into a local schema where

it can be cleaned, filtered, or annotated according to the needs of the project. Queries

are expedited without a reliance on network connectivity and are given fine granular

access to the data [453]. Any revisions to the data models by the sources do not
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require continuous schema revisions and source code modifications.

Biological Search Propagate Integrate Demonstrate Analyze, BioSPIDA, is a

utility that helps alleviate the shortcomings of local integration. It contains a uni-

versal parser and relational translator written in Python and PostgreSQL that can

be used for all biological databases in ASN.1 or XML format. The software does

not need to be updated upon changes to the source data structure. Researchers are

not required to develop a separate parser for each individual database they wish to

integrate. BioSPIDA provides compelling features that significantly reduce storage

requirements and implementation time to create a fully integrated system. Stream-

ing of XML files into segments eliminate the necessity to initially load data into

Document Object Models. This moderates memory requirements, especially in cases

where file sizes can reach up to gigabytes of data. Parallelization of the parsing

module allows biological databases to be loaded in fractions of time compared to

its execution as an individual process. Storage requirements are minimized by a re-

dundancy removal feature that identifies and removes all data duplications. These

features significantly shrink the bottlenecks required to parse, transform, and load

large biological databases into a locally integrated relational database.

3.2 Related Work

To meet the demands of the complexity and diversity of the biological community,

NCBI has chosen to use Abstract Syntax Notation (ASN.1) [368]. It is a hierarchical

data model that contains records, collections and variant types [208]. Its flexibil-

ity can handle needs for constant database restructuring where a relational system

would be unsuccessful. ASN.1 is equally expressive as it is flexible. The semantics

and biological meaning of the data can be interpreted without additional constraints

of understanding a relational model. The standardized format allows exchange of in-

formation without dependence on a specific hardware or software environment [325].
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As ASN.1 gives many advantages to the scientific community, it creates several lim-

itations for procedures that require a broad range of investigation. Full text records

need post-processing and parsing of their results. Scientists may spend 80% of their

time retrieving, manipulating and preparing their data for analysis [414].

The biological sciences contain many diverse data types and it is difficult to create

a global schema that precisely captures all necessary features. XML is a flexible and

extensible markup language that is ideal in modelling structural heterogeneity and

it is provided by many Web Services in Mediator based approaches [522], such as

NCBI [442], European Molecular Biology Laboratory (EMBL) [518] and DNA Data

Bank of Japan [168]. Despite the advantages of XML, it still has key limitations when

compared to relational schemas. It is difficult to model complex properties that are

required to represent biological pathways and many-to-many relationships [304].

There are many approaches to database integration each with their own advan-

tages and disadvantages as described in Chapter 2. Data warehousing extracts and

integrates information into a local relational database. SQL-level queries give fine

granular access increasing the control, speed and global reach of analysis. Data ware-

houses are most appropriate when performance, local control, and privacy are essential

and have facilitated studies that normally could not be performed under other con-

ditions [304]. Mootha et al was able to identify one of the disease genes implicated

in Leigh syndrome using integrated sequence and annotation data [341]. Shah et

al helped determine yeast orthologs for human genes implicated in disease with se-

quence, taxonomy and genetic disorder databases [453]. Data warehouses can create

a powerful system that delivers effective results, but they require extensive knowl-

edge in database development as well as considerable setup-time to import each data

source. BioSPIDA is a universal parser and relational schema translator for the bi-

ological databases with enhanced features of memory management, parallelization,
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and redundancy removal. In the following sections, each of its components are de-

scribed to effectively illustrate how it can alleviate many of the shortcomings of data

warehousing.

3.3 BioSPIDA

BioSPIDA is a utility that helps reduce the workload and implementation require-

ments for developing a fully integrated data warehouse. It contains a universal parser

and relational translator written in Python and PostgreSQL that can be used for

all NCBI databases in ASN.1 and biological databases in XML format. This al-

lows researchers to create a local schema without detailed domain knowledge of each

database selected for integration. The universal parser only requires a template file of

all ASN.1 data types provided by NCBI or an XSD or DTD document of the biolog-

ical provider’s data model. It automatically determines how to parse each database

without custom source code. The relational translator converts all data types into

a fully representative relational schema that can be accessed with SQL-level queries

for greater specificity of results. The details of these methods are described in the

following sections.

3.3.1 Abstract Syntax Notation

ASN.1 objects can have many attributes that all have different data types. These

include primitive, hierarchical, nested, enumerated, variant, and collection types.

Primitive types hold basic values, such as integers, real numbers, booleans, and strings

of characters. Enumerated types restrict attributes to a list of possible values. Variant

types allow attributes to be many different data types. Attribute types can also

be ASN.1 objects themselves creating a hierarchical structure. Keywords are used

to identify the data type of each attribute, such as Integer, VisibleString, REAL,

BOOLEAN, and ENUMERATED. CHOICE is used for variant data types.

Optional modifiers can be used for attributes that further change their data types.
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The SEQUENCE OF or SET OF keyword treats the attribute as a collection. A

sequence is an ordered collection, while a set does not enforce the order. Authors

of a publication are an example of a sequenced collection, and MeSH terms are an

example of a set collection data type. OPTIONAL and DEFAULT keywords flag

attributes specifying if they are required or have a default value.

ASN.1 objects are rarely a simple tuple of attributes with primitive data types

(Figure 3.1). The data type of an attribute can be an ASN.1 object linking itself

to another tuple of attributes (Figure 3.2). Attributes can also be collections of

values. It is possible for data types of a collection to be lists of primitive values

or nested ASN.1 objects (Figure 3.3). Inside ASN.1 objects, variants may permit

multiple data types for one attribute (Figure 3.4). Attributes also have the ability

to be a tupled nest of child attributes (Figure 3.5). There is not a large set of

restrictions for ASN.1 objects and they can be primitive, enumerated or variant data

types themselves (Figure 3.6).

Textannot−id : := SEQUENCE {
name V i s i b l e S t r i n g OPTIONAL ,
a c c e s s i o n V i s i b l e S t r i n g OPTIONAL ,
r e l e a s e V i s i b l e S t r i n g OPTIONAL ,
v e r s i on INTEGER OPTIONAL}

Figure 3.1: ASN.1 object with only primitive attributes
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Patent−seq−id : := SEQUENCE {

s eq id INTEGER,

c i t Id−pat }

Id−pat : := SEQUENCE {

country V i s i b l e S t r i n g , . . . ,

doc−type V i s i b l e S t r i n g OPTIONAL }

Figure 3.2: ASN.1 object with attribute linking to a child object type

Packed−seg : := SEQUENCE {

dim INTEGER DEFAULT 2 ,

numseg INTEGER,

i d s SEQUENCE OF Seq−id ,

s t a r t s SEQUENCE OF INTEGER, . . . }

Figure 3.3: ASN.1 object with collection attributes of primitive and object types

Score : := SEQUENCE {

id Object−id OPTIONAL ,

va lue CHOICE {

r e a l REAL ,

i n t INTEGER }

Figure 3.4: ASN.1 object with variant attribute permitting multiple data types
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Int−f uzz : := CHOICE {

p−m INTEGER,

range SEQUENCE {

max INTEGER,

min INTEGER } ,

pct INTEGER . . . }

Figure 3.5: ASN.1 object with attribute with nested tuple of child attributes

Na−strand : := ENUMERATED {

unknown ( 0 ) ,

p lus ( 1 ) ,

minus ( 2 ) , . . . ,

o ther (255) }

PDB−mol−id : := V i s i b l e S t r i n g

Product−pos : := CHOICE {

nucpos INTEGER,

protpos Prot−pos }

Figure 3.6: ASN.1 objects that are primitive, enumerated and variant types

The flexibility in the ASN.1 data structure leads to elaborate scenarios yielding

many distinct cases. The following are examples illustrating the possible complexity.

An ASN.1 object can be a variant type that is itself a collection (Figure 3.7). An

attribute can be a collection of ASN.1 objects, where the ASN.1 object derives itself
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into an enumerated data type (Figure 3.8). One of the data types of a variant

attribute can be a tupled list of child attributes (Figure 3.5).

T i t l e : := SET OF CHOICE {

name V i s i b l e S t r i n g , . . . ,

i s s n V i s i b l e S t r i n g ,

abr V i s i b l e S t r i n g ,

i sbn V i s i b l e S t r i n g }

Figure 3.7: ASN.1 object that is a collection of variant types

Dense−seg : := SEQUENCE {

dim INTEGER DEFAULT 2 ,

numseg INTEGER,

s t rands SEQUENCE OF Na−strand , . . . }

Figure 3.8: ASN.1 object with collection attribute of object type that derives into

enumerated type. Na-strand is an object that is an enumerated type (Figure 3.6).

3.3.2 Universal Parser

To build a universal parser for the NCBI databases, a context-free grammar must be

constructed that successfully handles all data types provided by NCBI. Since each

database uses the ASN.1 object model, the grammar must cover all possible types that

are supported by the notation. This leads to an extra layer of complexity, because

data types allow nested combinations that develop into numerous unique cases. The

context-free grammar for ASN.1 notation used by BioSPIDA can be seen in Figure

3.9. The advantage of using a context-free grammar is that NCBI databases can be

selected for download without having to create an individual parser. The universal
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parser in BioSPIDA uses the grammar to read ASN.1 specification files, automatically

learning how to read each database.

〈ASN 〉 ::= word ‘::=’ 〈attributeType〉 | 〈ASN 〉 〈ASN 〉

〈attributeType〉 ::= 〈multi〉 〈variableType〉 〈default〉 〈optional〉

〈multi〉 ::= ‘set of’ | ‘sequence of’

〈variableType〉 ::= word | 〈enumeratedType〉 | 〈choiceType〉

〈enumeratedType〉 ::= ‘enumerated {’ 〈enumeratedList〉 ‘}’

〈enumeratedList〉 ::= word ‘(’ number )’ | 〈enumeratedList〉 ‘,’ 〈enumeratedList〉

〈choiceType〉 ::= ‘choice’ 〈choiceTypeRight〉 | ‘sequence’ 〈choiceTypeRight〉

〈choiceTypeRight〉 ::= ‘{’ 〈attributeList〉 ‘}’

〈attributeList〉 ::= 〈attribute〉 | 〈attributeList〉 ‘,’ 〈attributeList〉

〈attribute〉 ::= word 〈attributeType〉

〈default〉 ::= ‘default’ 〈value〉 | ε

〈optional〉 ::= ‘optional’ | ε

〈value〉 ::= word | number

Figure 3.9: Context-free grammar for ASN.1

BioSPIDA generates ASN.1 template files for each targeted NCBI database by

reading the NCBI ASN.1 specifications file available online1 that contains all sup-

ported data objects. The parent ASN.1 object for the targeted NCBI database must

be supplied to BioSPIDA to create the ASN.1 template file. For example, the parent

objects for the following databases are EntrezGene (Entrez Gene), Pubmed-entry

1http://www.ncbi.nlm.nih.gov/data specs/asn/NCBI all.asn
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(Pubmed), Bioseq-set (GenBank), Bioseq-set (RefSeq), Biostruc (MMDB), CDD

(CDD). If the data structure changes for a given NCBI database, it is only necessary

to redownload the updated NCBI ASN.1 specifications file. There is no obligation for

software code changes. When initially selecting a database for conversion, researchers

must specify whether the uncompressed ASN.1 xml data is locally stored or requires

remote retrieval. If remote retrieval is necessary, BioSPIDA requires a text file of

database records ids to be sent to the NCBI EFetch utility [440].

NCBI provides access to each of their databases either by their ftp site2 or their

EFetch utility. The data for each record is available in xml format and it is structured

according to the document type definition file3. The XML tags identify each possi-

ble attribute and item given for each record. The software code in BioSPIDA does

not require identifying each individual xml tag to search for when parsing database

records. All that is required is the ASN.1 specification file describing the data model

of the target database. BioSPIDA has the ability to learn how to parse the xml from

each NCBI database without human intervention, because NCBI follows a strict set

of guidelines when converting their ASN.1 records to xml format. NCBI presents

XML for each database record that follows the exact structure given by their ASN.1

data model4.

Figures 3.10 and 3.11 compare the ASN data model for EntrezGene with example

xml retrieved from a database record. The parent xml tag is <Entrezgene> which is

the parent ASN.1 object in the definition file. An xml tag is created for each attribute

of the ASN.1 object. <Entrezgene type> conveys that the “Entrezgene” object has

an attribute named “type.” Since the attribute is an INTEGER, it is a primitive

type. Therefore, its value is placed immediately after its identifier.

The data type for the track-info attribute is another ASN.1 object, Gene-track.

2https://www.ncbi.nlm.nih.gov/Ftp/
3http://www.ncbi.nlm.nih.gov/dtd/
4http://www.ncbi.nlm.nih.gov/data specs/asn/
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The value for the track-info attribute cannot be placed immediately after its xml

tag. It must identify it is an ASN.1 object. The <Gene-track> xml tag follows the

<Entrezgene track-info> tag. The same logic is used to recursively list all of the

subsequent attributes and child objects.

Entrezgene : := SEQUENCE {

track−i n f o Gene−track ,

type INTEGER,

source BioSource , . . . }

Gene−t rack : := SEQUENCE {

gene id V i s i b l e S t r i n g ,

c reate−date Date , . . . }

BioSource : := SEQUENCE {

org Org−r e f . . . }

OrgName : := SEQUENCE {

name CHOICE {

binomial BinomialOrgName

v i r u s V i s i b l e S t r i n g

hybrid MultiOrgName . . . }

Figure 3.10: ASN.1 specification for Entrezgene
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<Entrezgene>

<Entrezgene track−i n f o>

<Gene−t rack>

<Gene−track geneid>1246500

<Gene−track create−date>

<Date>

. . .

<Entrezgene source>

<BioSource>

<Biosource org>

<Org−r e f>

<Org−ref orgname>

<OrgName>

<OrgName name>

<OrgName name binomial>

. . .

<Entrezgene type>6

</ Entrezgene>

Figure 3.11: XML for Entrezgene record

If an attribute type is CHOICE, it can have many possible data types. An ad-

ditional xml tag distinguishes the variant attribute. Below the <Orgname> xml

tag, <Orgname name> and <Orgname name binomial> are listed to identify the

attribute and the chosen data type.

NCBI follows a consistent list of guidelines for generating xml of collection at-

tributes in ASN.1 object records. Collections of primitive and variant attributes add
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an “ E” in the xml tag name to identify each entry. Variant types additionally add

the chosen attribute name after the “ E” suffix. Collections of object types do not

add the “ E” suffix in their xml tags. Instead, they have an open and closing tag

of the object name for each item in the list. Figure 3.12 gives an example for these

cases. GB-block contains the keywords attribute that is a collection of VisibleStrings.

Seq-align has a collection of Score objects. The names attribute in the Auth-list ob-

ject is a variant with one of its permitted types being a collection of VisibleStrings.

Title is a collection of variant types. The generated xml for these objects all adhere

to the same conventions (Figure 3.13).
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GB−block : := SEQUENCE {

source V i s i b l e S t r i n g OPTIONAL,

keywords SEQUENCE OF V i s i b l e S t r i n g OPTIONAL, . . . }

Seq−a l i g n : := SEQUENCE {

s co r e SET OF Score OPTIONAL, . . . }

Score : := SEQUENCE {

id Object−id OPTIONAL ,

va lue CHOICE {

r e a l REAL ,

i n t INTEGER } }

T i t l e : := SET OF CHOICE {

name V i s i b l e S t r i n g ,

i so−j t a V i s i b l e S t r i n g ,

ml−j t a V i s i b l e S t r i n g ,

i s s n V i s i b l e S t r i n g , . . . }

Auth− l i s t : := SEQUENCE {

names CHOICE {

std SEQUENCE OF Author ,

ml SEQUENCE OF V i s i b l e S t r i n g ,

s t r SEQUENCE OF V i s i b l e S t r i n g } ,

a f f i l A f f i l OPTIONAL }

Figure 3.12: ASN.1 specification for collection types
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<GB-block>

<GB-block_source >Bradyrhizobium japonicum

<GB-block_keywords >

<GB-block_keywords_E >NifA dependance

<GB-block_keywords_E >sigma factor 54

<GB-block_keywords_E >transcriptional activator

</GB-block_keywords >

</GB-block>

<Seq -align>

<Seq -align_score >

<Score>

<Score_id >

<Object -id>

<Object -id_str >score

</Object -id>

</Score_id >

<Score_value >

<Score_value_int >2813

</Score_value >

</Score>

<Score>

<Score_id >

<Object -id>

<Object -id_str >bit_score

</Object -id_str >

</Object -id>

</Score_id >

<Score_value >

<Score_value_real >2573.13

</Score_value >

</Score>

</Seq -align_score >

</Seq -align>

<Auth -list>

<Auth -list_names >

<Auth -list_names_ml >

<Auth -list_names_ml_E >Brat DJ

<Auth -list_names_ml_E >Castellano -Sanchez A

<Auth -list_names_ml_E >Kaur B

</Auth -list_names_ml >

</Auth -list_names >

</Auth -list>

<Title>

<Title_E >

<Title_E_issn >0042 -6822

</Title_E >

<Title_E >

<Title_E_name >Virology

</Title_E >

</Title >

Figure 3.13: XML for Entrezgene Record with collection types
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The universal parser utilizes the exact rules that NCBI implements to deliver xml

data of their database records. No software revisions are necessary for each additional

NCBI database that must be loaded and parsed. Scientists are only required to specify

the database name, and BioSPIDA creates a new template file that contains all of

the objects used by the selected database.

3.3.3 Relational Translator

Parsers only facilitate retrieval of the data. The information must still be inserted,

stored, and analyzed. BioSPIDA contains a relational translator that automatically

converts the ASN.1 data model from the given template file into a MySQL or Postgres

relational database.

ASN.1 has a broad range of data types, and the translator must also follow a

set of rules to create all tables and subsequent fields. Tables are created for every

ASN.1 object specified in the template file. Attributes that are primitive data types

are directly converted into fields. Enumerated types are also converted into fields as

an integer data type. Separate reference tables are generated to list all of the values

for each enumerated type. For variant types, individual fields are created for each

possible data type. All of the variant attributes fields will be null for the cases not

chosen.

A primary column is added to every table to uniquely identify each row inserted

into the database. The value of the primary key is incremented for each record inser-

tion. These identifying fields also exist in child tables as foreign keys facilitating table

linkages. Separate linking tables are produced for collection types. The linking table

includes a sequence field for SEQUENCE collections, but not for SET collections.

Example tables generated from the relational translator for the Entrezgene database

can be viewed in Figures 3.14-3.16.

Figure 3.14 displays the tables created for the RNA-ref object and the “type”
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attribute. Since the attribute is enumerated, a separate table named RNA-ref -

type types is produced with all possible values.

Figure 3.14: Relational conversion of ASN.1 enumerated types

Figure 3.15 shows an example of a variant type. The ext attribute of the RNA-ref

object can have multiple data types. If ext is a VisibleString, it is identified as a

name. If it is a Trna-ext object, it is identified as tRNA. Therefore, there are fields

in the RNA-ref table for ext tRNA and ext name. Only the field for the selected

data type will not be null.

Figure 3.15: Relational conversion of ASN.1 variant types
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In Figure 3.16, the Prot-ref object has attributes that are collection types. A

separate linking table is generated for the “name” attribute labeled Prot-ref name.

Since, the attribute is a VisibleString, only its value and Prot-ref identifier are needed

in the linking table. The db attribute in the Prot-ref object is a collection of Dbtag

objects. Therefore, the Prot-ref db linking table contains identifier fields for the

Prot-ref table and the Dbtag table. The tables are linked with the Prot-ref id and

Dbtag id columns.

Figure 3.16: Relational conversion of ASN.1 collection types

The universal parser inserts all of the data it retrieves into loading files. A separate

loading file is designated for each table created from the Relational Translator. The

Relational translator also produces the load and create table statements for MySQL

or Postgres. After the loading files are fully populated, the only human intervention

required is to execute the create and load statements to generate a fully converted

relational database.

3.3.4 Efficient Memory Management

Initially BioSPIDA was only tested against the Pubmed, Entrez Gene and OMIM

NCBI databases [202]. Each record in these databases contains a considerable amount

of fields, but the total size usually does not exceed over one megabyte. Parsing these

records did not require an efficient memory management system, because the entire
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Document Object Model (DOM) for each xml file could be loaded seamlessly. This

was not the case for Genbank, Refseq, and MMDB where records grow substantially

in size. The xml file for the largest record in Genbank was over 5.5 gigabytes. This

did not allow xml records to be fully loaded into memory.

xml.dom.minidom is a library included in Python 2.0 which is a lightweight imple-

mentation of the DOM interface5 which would result in memory errors when applied

against larger NCBI databases. Massive records restrict full reads of xml data and

prevent memory storage of transformed ASN.1 objects. lxml is a powerful xml pars-

ing library that facilitated parsing of more extensive xml files6. It supports reading

data from xml files one line at a time, rather than initially loading all DOM data.

BioSPIDA is implemented with the lxml library and the memory requirements for

storing ASN.1 objects are greatly reduced.

For each line of xml, BioSPIDA adds the new data parsed to the current ASN.1

object stored in memory. ASN.1 objects have a nested data structure, and there can

be many child attributes that are also ASN.1 objects [208]. After all xml data is

received for a child ASN.1 object, it is no longer needed for memory storage. Each

completed child ASN.1 object is removed from memory and written to associated

tab-delimited loading files. This significantly reduces the memory requirements even

for cases of very large xml file sizes.

Figure 3.17 compares the memory states of loading XML files in entirety with the

xml.dom.minidom library versus streaming large XML files with the lxml package.

Figure 3.17a is a shortened sample of an xml record from EntrezGene. Figure 3.17b

shows the ASN.1 schema for the EntrezGene object with all referring child objects.

Figure 3.17c depicts the memory state for the complete ASN.1 object after fully

parsing the EntrezGene record. Figures 3.17a - 3.17c illustrate the transformation in

5http://docs.python.org/library/xml.dom.minidom.html#module-xml.dom.minidom/
6http://lxml.de
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data structure as xml files are fully parsed and loaded into memory. The average size

of EntrezGene records is only 24.8 Kb facilitating reading entire xml records without

efficient memory management.

BioSPIDA 1.1 continually refreshes the memory stored by ASN.1 objects to sup-

port parsing of larger database records. Figures 3.17d - 3.17l represent the memory

states of BioSPIDA while reading each line of XML. Initially the track-info attribute

is loaded into the Entrezgene ASN.1 object. The data type of the track-info attribute

is an ASN.1 object, Gene-track (Figure 3.17d). Gene-track has three attributes:

geneid, status, and create-date. The data types for geneid and status are primitive

types, VisibleString and Integer. The attribute create-date is the ASN.1 object Date.

Date has only one attribute, std, which is the ASN.1 object Date-std. Date-std has

3 attributes, year, month and day.

After BioSPIDA has reached the closing xml tag for Date-std, it has completed

parsing the Date-std ASN.1 object (Figure 3.17d). It is no longer needed to store the

Date-std object in memory. The data is inserted into the loading file for the Date-std

database table. After insertion, a unique record identifier from the Date-std table is

returned. In this example, the value 51 is returned and the std attribute is updated

in memory to only contain the identifier number (Figure 3.17e). The next lines in the

xml file complete parsing of the Date and Gene-track objects. Figures 3.17f and 3.17g

show the updated memory states. The rest of the xml file contains the type, gene, and

prot attributes in the Entrezgene ASN.1 object. The prot and gene attributes are the

ASN.1 objects Gene-ref and Prot-ref. Figures 3.17h - 3.17k are the memory states

after the gene and prot attributes are updated after table insertion. After parsing has

completed for the xml file, the parent Entrezgene ASN.1 object is inserted into the

Entrezgene database table and a unique record identifier is returned (Figure 3.17l).
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Figure 3.17: XML Parsing a.) Entrez Gene xml record b.) ASN.1 schema for
Entrez Gene object c.) Memory state parsing full xml record d.- l.) Memory states
incrementally parsing a xml record
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BioSPIDA continually reduces allocated memory after fully loading ASN.1 objects

from xml files. This minimizes the memory requirements to negligible values, but

also brings advantages for cases of abnormal program termination. It can take hours

to parse xml files with massive file sizes reaching up to several gigabytes. Since

BioSPIDA regularly inserts to loading files while parsing xml records, it can easily

resume at the point of termination. Resume technology is imperative for Genbank

and Refseq where xml files can reach enormous sizes.

3.3.5 Parallelization

NCBI databases contain details of nucleotide sequences, medical literature, gene ex-

pression, molecular structure and three-dimensional structures. An entire NCBI

database can range from hundreds of gigabytes to several terabytes. Due to these

high volumes of data, researchers typically only download subsets of databases for

local integration. BioSPIDA attempts to reduce setup overhead by supporting the

download and parsing of NCBI databases on parallel processors. This does not slow

each individual process, because they do not have to be tightly synchronized. Each

process communicates with a Shared Server that contains the next record id number

for each table. The Shared Server also maintains a queue for each xml record to be

parsed. This prevents individual processes from parsing identical xml records and

from using redundant identifier keys during table insertion.

The parallel programming model utilized by BioSPIDA is a Single Instruction

Multiple Data (SIMD) architecture [155]. All tasks execute the same program si-

multaneously, but operate on different data. Parallel processes are executed within a

local area network (LAN) with machines in close physical proximity. BioSPIDA uses a

message-passing model where each task uses its own local memory. Running processes

only send and receive messages to a shared server. The shared server is a dedicated

program to handle read and write requests and communicates asynchronously. It
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is unaware when updates are needed and each running process must explicitly send

requests to receive data. The shared server contains global information of the current

table row ids and the remaining xml records to be parsed. During communication, a

locking mechanism is used to ensure table ids are updated before sending data.

Even though BioSPIDA utilizes a universal parser for each database, minimal im-

plementation was required to support parallel processing. The ASN.1 records for each

database are stored differently at the NCBI ftp site7. EntrezGene contains one large

file for all records, while Genbank, Refseq, MMDB, CDD contain a separate file for

each record. Gene2xml and datatool are utilities provided by the NCBI Toolkit [506]

that are used to convert each ASN.1 record into xml. The Shared Server contains

a queue that holds the file names for each ASN.1 data record (Figure 3.18). For

EntrezGene, the large file is initially split into parts for each parallel processor.

The data files are not available by ftp for every NCBI ASN.1 database. Pubmed

currently has over 24 million records, and NCBI does not provide the database for

download. However, the EFetch utility allows retrieval of specific database records

when given an associated identifier number8. EFetch supports PubMed as well En-

trez Gene, CDD, MMDB, BioSystems, and others9. This is useful for cases where

downloadable ftp data is unavailable or if it is preferred to only receive a subset of

data. For the parallel implementation of Pubmed, the Shared Server contains a queue

of id numbers rather than file names. These id numbers are then sent to EFetch and

the resulting xml records are downloaded from NCBI (Figure 3.19).

7https://www.ncbi.nlm.nih.gov/Ftp/
8http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi
9http://www.ncbi.nlm.nih.gov/books/NBK25497/table/chapter2.chapter2 -

table1/?report=objectonly
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Figure 3.18: Parallel implementation of XML parsing process with ASN.1 records
housed on Local Area Network.

Figure 3.19: Parallel implementation of XML parsing process with ASN.1 records
housed on external NCBI server.
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Before adding support for parallel processing, a small header file must be created

for each database. It specifies whether the xml records are housed locally or are

retrieved online with EFetch. The header file provides a list of identifier numbers for

remote records or a list of file names for local records. The Shared Server reads the

list into its queue. Each parallel process receives a new id number or file name after

completing its current task. The parallel process will download and parse a new xml

record from EFetch if given an id number. If given a file name, the parallel process

matches and parses the local xml file. All parallel processes are connected to a shared

LAN, so there is no need to transfer files between machines if the xml records are

housed locally.

3.3.6 Redundancy Removal

The new features of BioSPIDA are aimed at reducing the system overhead to imple-

ment a locally integrated data warehouse of NCBI ASN.1 databases. Streaming of

large XML files and parallelization lower the memory requirements and setup time.

However, larger NCBI databases can reach up to several terabytes in file sizes and can

necessitate massive amounts of storage space. BioSPIDA attempts to reduce these

requirements by removing any redundancy in the parsed data before insertion into

the MySQL or Postgres database.

Each xml record in NCBI databases contain information from all relevant fields.

A publication record in PubMed includes the title, abstract, all associated authors,

and many other data items. All of this information is appended to tab-delimited

loading files for each associated database table. This can create a lot of redundancy.

It may be rare for a publication to have the same title or abstract, but it is much

less rare to have identical authors or submission dates. The parsing process cannot

check if an author or other entity item was used previously before inserting into its

associated loading file. This would significantly slow execution time to search billions
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of rows before every insertion. It is very common to find duplicate records in loading

files that each have unique row identifier numbers.

It can appear superficially that redundancy can easily be resolved by removing all

duplicate records from each loading file. However, each loading file represents a table

to be inserted into the database. Tables can have foreign keys that refer to other

child tables. If duplicate records were removed from a child table, the parent table

must update its foreign key values to refer to the same records. Redundancies from

loading files cannot be removed in any order. They must occur in a strict order from

child to parent tables.

It is difficult to manually determine the correct order for redundancy removal,

because each converted relational database can contain hundreds of tables with many

possible parent and child connections. A topological sorting algorithm [105] is used

that automatically calculates the order to update each table. It returns a list where

no table will be updated unless all of its child tables have been processed previously.

In Figure 3.20, the order is illustrated for removing redundancy for tables in Entrez

Gene. Object-id has no children and it is the first table to remove all duplicate records.

The tag Object-id id foreign key in Dbtag is updated with the new identifier values

from Object-id after all redundant records are removed. Duplicate records can then

also be removed from Dbtag, because it does not have any other child tables. The

foreign keys in the tables Org-ref db, Gene-ref db, and Prot-ref db are then updated

with the new Dbtag identifier values. Redundancies cannot yet be removed from these

tables, because they have many other child tables (not depicted in Figure 3.20). The

next tables to be checked for duplicates are BinomialOrgName, OrgName, Org-ref,

and Biosource. This process continues until redundancies are removed from every

table and all foreign keys are updated in every parent table.
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Figure 3.20: Order of tables that undergo redundancy removal according to list
returned by topological sort.

There is an exception that BioSPIDA must take into account in determining the

parents of each table in the relational schema. A parent of a table can be either an

object table or a list table. An object table contains a primary key that uniquely

identifies each row. List tables do not have primary keys, because they are only used

for linkages. For example, Pubmed-entry contains a list of Pubmed-urls. Pubmed-

entry urls is a list table that connects the Pubmed-entry and Pubmed-url table.

Therefore, Pubmed-entry urls is a parent of Pubmed-entry and Pubmed-url, because
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it contains the identifier keys for both tables. If a natural topological sort were

executed on this schema, Pubmed-entry url would only be identified as dependent

on these two child tables. However, Pubmed-entry cannot be sorted and undergo

redundancy removal before Pubmed-url. Pubmed-entry contains a list of Pubmed-

urls, and this cannot not be determined by only inspecting the Pubmed-entry table.

The parents of Pubmed-url must be marked as Pubmed-entry url as well as Pubmed-

entry. This relationship can be observed in Figure 3.21a.

If a parent of an object table is a list table, the object table must be merged before

it is sorted and redundancies are removed. In the case of Pubmed-entry, Pubmed-url

would first identify its duplicate rows and update its parent table Pubmed-entry url

with its new identifier key values. Pubmed-entry would then merge with Pubmed-

entry url to create a temporary table with all its associated urls. The temporary

table is then sorted to find and remove all its redundancies. A new Pubmed-entry

table is then split from the temporary merge table with only unique entries. Pubmed-

entry url is again updated but now with the new identifier keys from Pubmed-entry.

If there are any duplicate rows in Pubmed-entry url after updating, they are removed

as well. A simpler case is when an object table’s parent is a list table, but it does not

refer to any other tables. Medline-entry contains a list of pub-types. Its parent list

table is Medline-entry pub-type. Medline-entry pub-type only contains the pub-

type field which is a textual value that does not link to any other table. Medline-

entry would still merge with all the associated text values for Medline-entry pub-type

before its redundancy removal, but it would not be dependent on other child tables

(Figure 3.21b).
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Figure 3.21: Table Relationships a.) Pubmed-entry urls is the parent of Pubmed-
entry and Medline-entry b.) Medline-entry pub type is the parent of Medline-entry

There is a great level of dependencies in relational schemas increasing the chal-

lenges to prevent conflicts when processes are executed simultaneously. M. C. Er

discusses an approach to parallel computation for topological sorting [135]. BioSP-

IDA applies this algorithm and assigns each table a dependency level. The procedure

begins at tables with no children and they are assigned a level 1. Parents of tables

with level 1 are assigned level 2. This process continues incrementing the level for

each parent table until root tables are reached that have no parents. A table can be

reached by multiple paths. In this case, a table is assigned the maximum dependency

level of all possible paths. This algorithm can be observed in Figure 3.22. After

completion, each table has a unique dependency level. This facilitates BioSPIDA to
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parallelize the redundancy removal process and sort tables simultaneously. All tables

at dependency level 1 are sorted and updated in parallel processes. After all processes

are completed, the procedure can then move to the tables at the next dependency

level. This greatly expedites redundancy removal, because each operation is no longer

restricted to occur sequentially.

Figure 3.22: Digraph that illustrates ongoing revisions of dependency level for each
node. (blue) Dependency level for paths that begin at node A. (green) Dependency
level for paths that begin at node C. (red) Dependency level for paths that begin at
node F.

Redundancy removal does not only shrink the system storage requirements. It also

significantly decreases the database load time. It would be counterintuitive to load

billions of records if only half would remain in the final database. After a child table

removes its duplicate records, parent tables must be updated. To update a table, its
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data must be located in the database. This would necessitate loading all initial data

and removing duplicates after the records are updated. It is a slow process to sort and

delete billions of records within a database. Instead, tables can be updated without

loading the data using the unix awk and sort utilities. By utilizing Unix sort and awk

utilities, BioSPIDA is able to remove all redundancy from the tables without initially

loading any extraneous data. Unix sort performs considerably faster than sorting

billions of records within a database and records can be updated before loading any

data. Also, sorting outside the database facilitates a second layer of parallelization.

Tables at the same depth level can be sorted and updated simultaneously since they

do not depend on one another. However, the sorting of an individual table can be

processed in parallel as well. If tables grow to sizes larger than 1 Gb, they are split

into smaller files and sorted on separate nodes. After sorting is complete of all split

files, they are then sort merged by unix and combined into a single ordered table. This

process is illustrated in Figure 3.23. Figure 3.23 depicts the sorting, extracting unique

rows, and updating steps as each table enters redundancy removal. It displays the

second layer of parallelization when larger tables are split and sorted with multiple

nodes. The first layer of parallelization is not shown in the figure, because it has

already been identified that tables can enter redundancy removal simultaneously if

all dependencies are met.
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Figure 3.23: Redundancy removal process for sorting, removing records, and up-
dating parent tables.

3.4 Data Sources

NCBI provides numerous biological databases under a wide variety of domains, such

as sequences, literature, genes, domains, and 3-dimensional structures. BioSPIDA

1.0 [202] was able to parse and convert all NCBI databases developed with an ASN.1

schema. However, ASN.1 is not the only data model used by NCBI along with the
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many other available biological resources. The 2014 Nucleic Acids Research Database

Issue lists a total 1,552 molecular biology databases [147] divided into 14 categories

and 41 subcategories. ASN.1 predates XML, and in the past years many in the

bioinformatics community have turned to XML to meet the needs for open data ex-

change in the biological sciences [68]. ASN.1 has its advantages, because it contains a

compact binary encoding which allows it to store data in one sixth the size of XML.

ASN.1 contains a flexible formal structure while XML defines three different classes of

data (ENTITY, ELEMENT, ATTRIBUTE) with arcane and subtle differences [367].

However, the largest advantage of XML is the amount of programmers with a working

knowledge and its support by volumes of current software. As a result, BioSPIDA

1.1 has been extended to support the parsing of DTD (Document Type Definition)

and (XML Schema Definition) XSD files. Due to many analogous features, support

of XSD and DTD schema files could be accomplished without substantial revisions.

A CHOICE data type in ASN.1 is represented by xs:choice in XSD, and SEQUENCE

is represented by xs:sequence. However, slight modifications were required to handle

inherited groups and the subtle differences between xs:element and xs:attribute data

types. XML DTD and XML Schema are both backed by W3C as standardized repre-

sentations for XML documents. XML Schema was developed to replace DTD due to

its enhanced features, such as inheritance and user-defined data types [285]. How-

ever, many biological resources still use DTD without yet reaching complete adoption

of XSD.

A comprehensive listing of available biological resources with associated data

types, download addresses, and schema definition files is provided in Table 3.1. The

datasets for CDD, Refseq, MMDb, and Entrez Gene can be downloaded in binary

ASN.110 format by ftp. Pubmed can be downloaded in XML format, but only after

10http://www.ncbi.nlm.nih.gov/data specs/asn/NCBI all.asn
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a license agreement11. Records for Pubmed along with Entrez Gene, CDD, Refseq,

and MMDb can be retrieved in ASN.1 format by using the NCBI E-utilities [441].

EFetch12 can retrieve responses for a list of identifiers, but EPost13 is recommended

for larger bulk requests to prevent long URL requests. For BioSPIDA, EPost was used

to iteratively send 10,000 identifiers and retrieve ASN.1 records to build the Pubmed

database. Full text literature can be downloaded by ftp from Pubmed Central in

XML format. The XML is specified with the Journal Article Tag Suite (JATS) for-

mat14 and the DTD15 and XSD16 schema files are provided. BioSystems is an NCBI

database that describes biological systems and their participating genes, proteins and

small molecules. All files can be downloaded by ftp and the data model is available

as a DTD17 or XSD18 schema file.

11http://www.nlm.nih.gov/databases/license/license.html
12eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi
13eutils.ncbi.nlm.nih.gov/entrez/eutils/epost.fcgi
14http://jats.nlm.nih.gov/index.html
15http://jats.nlm.nih.gov/archiving/1.0/JATS-archivearticle1.dtd
16http://jats.nlm.nih.gov/archiving/1.0/xsd/JATS-archivearticle1.xsd
17ftp://ftp.ncbi.nih.gov/pub/biosystems/schema/NCBI Systems.dtd
18ftp://ftp.ncbi.nih.gov/pub/biosystems/schema/NCBI Systems.xsd
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Table 3.1: Data source access for public biological databases.

Data Source Data type URL Schema Model Data Format

NCBI

BioSystems pathways ftp://ftp.ncbi.nih.gov/pub/biosystems/CURRENT XSD XML

CDD domains ftp://ftp.ncbi.nlm.nih.gov/pub/mmdb/cdd ASN.1 Binary ASN.1

Entrez Gene genes ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/ ASN.1 Binary ASN.1

MMDb structure ftp://ftp.ncbi.nlm.nih.gov/mmdb/mmdbdata/ ASN.1 Binary ASN.1

Pubmed literature http://eutils.ncbi.nlm.nih.gov/entrez/eutils/ ASN.1 ASN.1

Pubmed Central literature http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/ JATS XML

Refseq sequence ftp://ftp.ncbi.nlm.nih.gov/refseq/release/complete/ ASN.1 Binary ASN.1

EMBL-EBI

Expression Atlas expression http://www.ebi.ac.uk/gxa/download.html Delimited Text

IntAct interaction http://www.ebi.ac.uk/intact/pages/documentation/downloads.xhtml PSI MI XML

GO ontology http://geneontology.org/GO.downloads.database.shtml MySQL MySQL dump

Interpro domains http://www.ebi.ac.uk/interpro/download.html DTD XML

Reactome pathways http://www.reactome.org/download/ MySQL MySQL dump

Uniprot proteins http://www.uniprot.org/downloads XSD XML

Other Sources

BioGRID interaction http://thebiogrid.org/download.php PSI MI XML

DIP interaction http://dip.doe-mbi.ucla.edu/dip/Download.cgi PSI MI XML

HPRD interaction http://www.hprd.org/download PSI MI XML

KEGG pathway http://www.kegg.jp/kegg/download/ KGML XML

MINT interaction http://mint.bio.uniroma2.it/mint/download.do PSI MI XML

OMIM phenotype http://www.omim.org/downloads Delimited Text

STRING interaction http://string-db.org/newstring cgi/show download page.pl Delimited Text

The European Bioinformatics Institute (EMBL-EBI) is a research institution sup-

ported by over 20 European countries with approximately 85 independent groups19.

They offer a comprehensive range of freely available biological databases, including

proteins, gene expression, pathways, and domains. Uniprot [28] is a database of

protein sequences and functional information is downloadable by ftp in XML. Only

an XSD20 schema file is provided. Interpro [225] is a database of families and pre-

dicted domains of protein sequences. All individual matched signatures for all pro-

teins in the Uniprot Knowledgebase are downloaded by ftp in XML format. Only a

19http://www.ebi.ac.uk/services/all
20http://www.uniprot.org/docs/uniprot.xsd
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DTD21 schema file is provided. IntAct is a molecular interaction database derived

from literature curation and direct submissions. The data is available in PSI-MI

2.5 format. PSI-MI format was developed by the Proteomics Standards Initiative

(PSI) to standardize data exchange for molecular interactions [213]. It is also de-

scribed with an XML Schema model22. Most protein interactions databases provide

their datasets by ftp in PSI-MI 2.5 XML format, including HPRD [397], MINT [76],

DIP [430], and BioGRID [471]. This gives BioSPIDA 1.1 the ability to automatically

convert these databases, since an XSD schema file is used to describe the PSI-MI

data model. Other example databases supported by EMBL-EBI are Reactome [111],

Gene Ontology (GO) [20], and Expression Atlas [251, 252]. Reactome is a peer-

reviewed pathway database containing biological networks and participating nucleic

acids, proteins, and other molecules. The database is available as a MySQL dump

and no parsing is needed. The Gene Ontology Consortium provides a controlled

vocabulary and ontology of terms for describing gene product characteristics. The

database is also available as a MySQL dump. The Expression Atlas provides gene

expression patterns under many biological conditions and are filterable by criteria,

such as developmental state, organism part, environment factor, and cell type. The

data for all differential expression analysis results are downloadable in tab delimited

format. Other independent resources are Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) [156,235,464,483,514–516], Online Mendelian Inheritance

in Man (OMIM) [206], and Kyoto Encyclopedia of Genes and Genomes (KEGG) [248].

STRING is a database of predicted protein interactions derived from literature, co-

expression, and genomic context. Data is publicly available as tab delimited files or

via license approval for a full database dump. OMIM is a phenotype database that

contains information on all known Mendelian disorders on over 12,000 genes. Data

21ftp://ftp.ebi.ac.uk/pub/databases/interpro/match complete.dtd
22http://psidev.sourceforge.net/mi/rel25/src/MIF25.xsd
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is in tab delimited format and is freely available by ftp by application. KEGG is

another comprehensive database for biological pathways as well as for diseases and

drugs. Data is downloadable by ftp but only for paid subscribers. KEGG does offer

an API23 for record retrieval and pathways are provided in KEGG Markup Language

(KGML). KGML is an XML data type described by a DTD24 specification file. Bio-

logical data centers are maintained by many separate teams under different scientific

domains. This review accurately illustrates how quickly complexity can arise, es-

pecially when there is an absence of a parent organization that enforces universally

accepted data exchange standards.

A data warehouse was built from many available public resources to create a lo-

cally integrated system with a diverse set of biological data types. Pathways and

annotations were downloaded from the MySQL dumps of Reactome and GO. The

MySQL schema and loading files were converted into Postgres and inserted into the

relational database. Expression Atlas, STRING, HPRD and OMIM were all directly

loaded into Postgres after download of tab delimited files. This required some manual

query creation of table names and indexes. After Pubmed and Entrez Gene completed

redundancy removal, both databases were created and loaded into Postgres by BioSP-

IDA. The complete system of genes, pathways, annotations, literature, interaction,

and phenotypes can be viewed in Figure 3.24.

23http://www.kegg.jp/kegg/rest/
24http://www.kegg.jp/kegg/xml/KGML v0.7.1 .dtd
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Figure 3.24: Data warehouse for integrated biological resources.
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3.5 Results

BioSPIDA 1.1 was tested against six separate NCBI databases: Entrez Gene, Pubmed,

CDD, Refseq, MMDB, and Biosystems. The fully extracted XML Data for each NCBI

database could grow to considerable storage sizes, such as 302 Gb for Entrez Gene,

208 Gb for Pubmed, and 2.4 Tb for Refseq. Fortunately, XML extraction is only

required once per record and could be deleted after conversion. The XML for each

database is translated into tab delimited database loading files. Sequentially, this

process would have required significant workload to fully convert an entire NCBI

database. Parsing all of Pubmed would have totaled 14.5 days and Entrez Gene and

Refseq would have completed in 14.5 days and 179.3 days. These durations are not

realistic for researchers that wish to have a locally integrated database of NCBI re-

sources. Each database was parsed in parallel with 16 separate nodes. The parallel

runtime reduced to 52.6 hours, 28.7 hours, and 12.3 days for Entrez Gene, Pubmed,

and Refseq. In converting the XML data to raw loading files, there was also a sub-

stantial size reduction. For Entrez Gene, Pubmed, and Refseq, data sizes decreased

to 83.7 Gb (28%) , 62.4 Gb (30%), and 669.12 Gb (28%). For MMDb, the converted

data size was 140.74 Gb (18%) from 730.79 Gb, most likely due to the high XML tag

usage when describing 3-dimensional structures. In translating NCBI ASN.1 schemas

to a relational database, a significant amount of tables were created to accurately de-

scribe each data model. 128 tables were generated for Entrez Gene and 499 for CDD.

Manual creation of these high numbers of tables with accompanying field descriptions

would require a significant undertaking, and the relational translator eliminates these

arduous tasks from development of the local data warehouse. Additionally, a smaller

subset of Homo Sapien records for Entrez Gene was tested in the event that an entire

dataset is not necessary for research. All runtimes and storage sizes are viewable for

each NCBI database in Table 3.2.
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Table 3.2: Parallel runtime and data size output for XML Parsing of NCBI
Databases.

Database XML Data Raw Data Records Tables Parallel runtime Sequential runtime

Biosystems 63.68 Gb 32.3 Gb 579,908 353 6.28 h 6.24 d

CDD 61.50 Gb 21.31 Gb 48,280 499 7.61 h 4.7 d

Entrez Gene 302.01 Gb 83.70 Gb 12,234,134 128 52.67 h 25.6 d

Entrez Gene† 8.48 Gb 3.28 Gb 194,720 128 8.83 h 11.74 h

MMDb 730.79 Gb 140.76 Gb 220,825 224 23.02 h 15.2 d

Pubmed 207.65 Gb 62.4 Gb 21,212,193 43 28.7 h 14.5 d

Refseq 2.37 Tb 669.12 Gb 10,071 339 12.3 d 179.3 d

† Homo Sapien subset
days(d), hours (h)

Redundancy removal was conducted on the Entrez Gene, Pubmed, and Homo

Sapien subset of Entrez Gene to further compare workload and storage space sizes.

The total amount of rows reduced almost 3:1 for each database. The final amount

of records were 1.3 billion (37%) , 645 million (26%), and 34 million (34%) in Entrez

Gene, Pubmed, and Entrez Gene (Homo Sapien). The storage size reductions were

roughly 2:1 after executing redundancy removal on each database. The total sizes

were 41.44 Gb (50%) , 62.4 Gb (50%), 995.7 Mb (30%) for Entrez Gene, Pubmed and

Entrez Gene (Homo Sapien). However, the data sizes decreased even more sharply

when compared to the original extracted XML files at 14%, 15%, 11% for Entrez

Gene, Pubmed, and Entrez Gene (Homo Sapien). Although, the record sizes did

not decrease at the same ratio as the storage sizes, this is still significant because

smaller record volumes lead to smaller indexes and faster query execution. Entrez

Gene (Homo Sapien) may have had a greater reduction, because the focus on one

species dataset could lead to higher record redundancies. The results can be viewed

in Table 3.3.
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Table 3.3: Redundancy removal data size output.

Database XML Data Raw Data Reduced Data Rows Reduced Rows

Entrez Gene 302.01 Gb 83.70 Gb 41.44 Gb 3,576,481,900 1,317,650,325

Entrez Gene† 8.48 Gb 3.28 Gb 995.7 Mb 102,343,424 34,361,458

Pubmed 207.65 Gb 62.4 Gb 31.06 Gb 2,458,574,541 645,501,015

† Homo Sapien subset

Runtimes for redundancy removal on Pubmed, Entrez Gene and the Homo Sapien

subset were examined to identify differences in execution speeds when focusing on

a smaller integration project. Redundancy removal was executed in parallel, and a

separate node was allocated for a table that requested sorting, merging, and updating

operations. A maximum of 8 nodes could be allocated simultaneously. However, it

was rare for more than 8 nodes to be requested, because most tables could not start

redundancy removal until all of their dependent tables had completed. As stated in

Section 3.3.6, there were two layers of parallelization. Tables that were not dependent

on each other could both execute redundancy removal simultaneously. The second

layer of parallelization is if a very large table needs to be sorted. Tables larger than

1 Gb would be split, and smaller files were sorted in parallel and then merged. The

total redundancy removal process for the entire Entrez Gene and Pubmed datasets

were 61.6 hours and 20.9 hours. This included merging tables with associated list

tables, sorting tables, extracting unique rows and lookup tables, and updating parent

tables with new ids. If there were no layers of parallelization, redundancy removal on

tables would occur sequentially, and sorting large tables could not split files and spawn

child processes. A total sequential process would have taken 300.3 hours and 198.3

hours for all of Entrez Gene and Pubmed. The two layers of parallelization created

a 5:1 improvement for Entrez Gene and almost a 10:1 ratio for Pubmed. The ratio

is not significantly higher because many operations cannot occur simultaneously, due

66



to table dependencies. Redundancy removal on Entrez Gene spends a total of 61.2

hours waiting time for operation completion. However, the entire process does not

idle during waiting time. Waiting time accumulates when at least one node is ready

to start redundancy removal on a table, but the process can not initiate because all

dependencies are not yet met. For the Homo Sapien subset, there is only one layer of

parallelization, because no table ever exceeds 1 Gb. Sequentially, the entire operation

would have completed in 4.49 hours. Parallelization reduces execution time to 3.91

hours and total waiting time is 3.84 hours. Again, this is the total waiting time

accumulated for all nodes and the overall process is not idle. However, the speed

increase is not as significant as in the entire dataset for Entrez Gene. This is most

likely due to most operations on the smaller Homo Sapien subset are more accelerated

due to smaller data sizes, as evident in a duration of only 24 minutes for merging,

extracting, and updating. When so many operations can be executed quickly, the

longest operation will carry the majority of the workload and parallelizing smaller

operations will not significantly reduce the runtime. The runtimes for all redundancy

removal operations can be viewed in Table 3.4.
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Table 3.4: Runtimes for redundancy removal and loading table data.

id Action item Pubmed Entrez Gene Entrez Gene†

1 Merging tables with associated list tables 2.59 h 5.58 h 9.04 m

2 Sorting Tables (with parallelization) 77.9 h 118.4 h 4.09 h

Sorting Tables (no parallelization) 113.5 h 281.8 h

3 Extracting unique rows and id lookup table 2.32 h 7.96 h 8.34 m

4 Updating parent table loading files with new ids 2.03 h 5.01 h 6.61 m

5 Waiting for dependent tables to finish sorting or updating 20.9 h 61.2 h 3.84 h

Total runtime for redundancy removal (parallel) 20.9 h 61.6 h 3.91 h

Total runtime for redundancy removal (sequential) 198.34 h 300.3 h 4.49 h

Total runtime for loading Postgres database 13.5 h 16.8 h 15.06 m

† Homo Sapien subset
hours (h), minutes (m)

The total data size for all databases was 676.4 Gb, and in some cases the storage

sizes for indexes grew larger than row data. This is especially true for databases that

required many joins but without as much raw textual content, such as Reactome,

GO, and Entrez Gene. All storage sizes for row and index data can be viewed in

Table 3.5. Entrez Gene and Pubmed both total over 250 Gb, but each are a local

full conversion of an entire NCBI database containing 12 million genes and 24 million

biomedical publications. Both databases are also results of redundancy removal where

an average of 70% of records were eliminated. Without redundancy removal, more

substantial storage space would haven been required, and data reductions made a

locally integrated warehouse of entire NCBI databases much more feasible.
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Table 3.5: Row and index size for integrated data warehouse of biological databases.

Database Index size Row size Total size

Entrez Gene 101 Gb 66 Gb 167 Gb

Entrez Gene† 2.70 Gb 1.67 Gb 4.36 Gb

Expression Atlas 27 Gb 39 Gb 66 Gb

GO 156 Gb 49 Gb 206 Gb

HPRD 28 Mb 91 Mb 120 Mb

OMIM 177 Mb 277 Mb 453 Mb

Pubmed 50 Gb 49 Gb 99 Gb

Reactome 790 Mb 725 Mb 1515 Mb

STRING 68 Gb 163 Gb 231 Gb

† Homo Sapien subset

The final integrated data warehouse contains Entrez Gene, Expression Atlas, GO,

HPRD, OMIM, Reactome, and STRING. In one local relational database, informa-

tion can be extracted and linked pertinent to gene expression, functional annotation,

protein interaction, metabolic pathways, biomedical literature and disease. This facil-

itates richer and more customizable queries that are not possible with a navigational

website provided by many biological resource sites. In Entrez Gene, genes are asso-

ciated with biochemical details including metabolic pathways, protein interactions,

and gene ontology. However, most annotations in Entrez Gene are stored in Gene-

commentary fields that can become deeply nested and recursively linked to itself.

This can lead to SQL queries that require a significant amount of table joins. The

query execution time to extract 3.67 million protein interactions from all genes in

the entire Entrez Gene dataset was 41.5 minutes. However, only one execution is

required, because the results can be stored as another table or a materialized view

and used for future querying and filtering. This was also a more complicated example
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that contained three levels of Gene-commentary fields nested in each other. There

are many benefits to integrating a subset of Entrez Gene Homo Sapien data as well.

In this smaller dataset, 305,597 protein interactions were extracted for 18,089 genes

in 8.28 seconds. 27,081 pathways were found for 7,123 genes in 2.81 seconds. 197,010

gene ontology annotations for 14,885 genes were found in 5.81 seconds. Additionally,

in converting Biosystems XML data to relational tables, genes could be associated to

many more metabolic pathways than identified in Entrez Gene. In Entrez Gene, an

average of 3.81 pathways were linked to each gene. By integrating NCBI Biosystems,

10,288 genes contained a total of 134,333 pathways with an average 13.05 pathways

per gene. This is a significant advantage of locally integrated data. As an example,

to receive details for only 1,000 records from Biosystems through the Web Service

BioPython [75, 101] took a total of 9.53 minutes. With the usage of indexes and a

locally integrated relational database, many other potential linkages can be quickly

queried across biological resources, such as between diseases and relevant publications

or between overexpressed genes and known protein interactions. Using Expression At-

las, 588 human genes were identified to be over expressed in the heart. The associated

publications, abstracts, and mesh terms for these genes were retrieved in 0.74 seconds

with a query linking Expression Atlas, Entrez Gene and the Pubmed database. The

execution was on the complete Entrezgene dataset, so similar queries can be rapidly

processed for other organisms.

3.6 Discussion

It is clear that efficient memory management, parallelization, and redundancy removal

provide a powerful platform to integrate biological sources. Researchers require an

environment that can quickly answer complex questions without manually visiting

many locations to find rich associations. Data structures for the biomedical sciences

are updated continuously and investigators are either dependent on the service level
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of outside centers or are faced with heavy programmatic challenges of creating a local

repository for heterogeneous sources. BioSPIDA automatically generates NCBI rela-

tional databases and removes the necessity of developing custom source code. Setup

time and storage requirements are reduced by the newest feature enhancements. This

facilitates investigators to take advantage of the benefits provided by data warehouses

while minimizing their high overhead shortcomings.

Many further studies can take advantage of a locally integrated data warehouse

with diverse biological sources that are easily linkable. The relational database con-

tains many data sources that facilitate more powerful queries that can expand filters

by multiple criteria. Records can be explored at a deeper level of granularity. The

Reactome database provides more than just the name of a biochemical pathway. Each

Reactome event contains reactions with involved substrates, enzymes and molecular

products. The Gene Ontology Database includes genome annotations for molecular

functions, biological processes and cellular components all organized hierarchically.

This allows a more sophisticated comparison between genes where identifying com-

mon functionality is not only limited to shared annotations. With an ontological

graph structure, semantic similarity can be computed between genes by the shortest

paths between their annotations. All associated references for a set of genes can be

investigated and a natural language processing study could be conducted to identify

the most prevalent keywords. The NCBI ELink25 utility can also be utilized to re-

trieve linked records to other NCBI databases from a set of genes of interest. This

would negate the need to fully integrate an entire NCBI database if unnecessary.

There are other possible enhancements that can help further improve the per-

formance of the parsing and integration process. For redundancy removal, the most

intensive operation is the sorting process. It can be unnecessary to sort and search for

duplicate rows if some fields have very long values. It is unlikely if a field value is over

25http://www.ncbi.nlm.nih.gov/books/NBK25499/#chapter4.ELink
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1,000 characters that there will be another row with its exact duplicate. Entrez Gene

contains four tables that contain fields that reach lengths longer than 1,000 charac-

ters. Each of these tables were longest in the sorting process. Redundancy removal

cannot move to the next dependency level until all tables at the current level are

sorted. Therefore, the total runtime of sorting tables at each level can only execute

as quickly as the time to sort the largest table. By ignoring rows with longer field

values, it can significantly speed the sort time of large tables without possibly large

changes in data reduction. It may also not be necessary to create an index on every

table. Many tables may not currently be utilized for a current study, and it could save

substantial storage space size by reducing indexes. Potential enhancements will con-

tinue to be explored to help develop a compelling system that seamlessly integrates

heterogeneous biological sources.
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CHAPTER IV

PRIORITIZING CANDIDATE DISEASE GENES

4.1 Introduction

The current breakthroughs of genome sequencing and high-throughput experimen-

tal techniques have led to the development of large amounts of quantified data on

biological systems. However, we are still far from a complete understanding behind

the intricate molecular networks involved in human diseases. Many common diseases

are hereditarily complex [181] and are influenced by the affects of many genes, and

even simple Mendelian traits can be subsequently altered by modifier genes [52]. Dis-

secting genetic architectures has profound implications to the treatment of human

disease, but it remains extraordinarily difficult to identify causal genes [51]. Due

to the pleiotropy of genes, genetic heterogeneity, and limited number of cases, it is

a challenging task to fully link the relationship between genetic variation and clini-

cal phenotypes [179]. Traditionally, discovery of causal genes has been accomplished

with statistical methods, such as linkage analysis and positional cloning [52]. How-

ever, the limitations of these approaches have restricted the identification of genetic

associations mainly to Mendelian disease phenotypes [389].

Genome-wide association studies have proven more successful in determining can-

didates for complex forms of disease, but genome-wide techniques often select loci

containing hundreds of potential candidates. Manually identifying the most promis-

ing candidates by reviewing available biological resources would be a daunting task,

due to the large variety of public databases [343]. No single source of data contains all

relevant relations, and verification of genetic associations would require visiting sites

pertaining to functional annotation (KEGG [248], Reactome [111], Gene Ontology

73



(GO) [20], HPRD [397]), expression data (Expression Atlas [251, 252], GEO [33]),

and sequence data (Ensembl [150], Entrez Gene [314]). This overwhelming wealth of

biological data has posed extra challenges to scientists as opposed to original expec-

tations. Currently, there is a high demand for analytical tools that can accurately

integrate, mine, and prioritize relevant information for determining gene candidates

in disease [30, 247]. A single study focusing on coexpression would miss the effects

of post-translation modification, and a study only targeting protein-protein interac-

tion would disregard transcription regulation. Merging diverse types strengthens the

current known evidence and provides a much broader coverage than any single data

source could accomplish by itself [343].

4.2 Related Work

Most existing computational methods that prioritize candidate disease genes are based

on the guilt-by-association principle [184, 463] where associations are discovered by

functional or topological similarities to known disease genes. Previous predictive

studies have taken advantage of available resources, such as gene ontology annota-

tions [159,380], published literature [238], protein interactions [307,380,383] and gene

expression [307,492]. However, presently, disease-gene prediction with application of

only one type of evidence has become more rare. Multiple sources can provide comple-

mentary evidence and as a whole, a larger picture can be delivered regarding the inner

workings of molecular mechanisms. Zhang et al. [545] focus on protein interaction

networks (PPIs), but still integrate multiple data sources by analyzing five separate

databases. Using a Bayesian Regression approach, the integration of multiple protein

interaction networks performed higher than any other network alone. Interestingly,

it was found by Köhler et al. [271] that global measures perform better than local

measures when prioritizing with PPIs. ENDEAVOUR was one of the earlier prioriti-

zation tools that integrate multiple data sources [4, 495]. The ranks from each data
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source are combined into an overall score, but it has the disadvantage that each data

source must have its own metric.

More contemporary prioritization approaches use a unified framework where new

data sources may be added without developing a new methodology. Li and Pa-

tra [293] incorporate gene ontology and a PPI to create a discounted rating system

where the scores from protein interaction, molecular function, cellular component, and

biological process are effectively weighted and combined. Linghu et al. [299] build an

evidence-weighted functional linkage network with a Naive Bayes classifier based on

16 separate genomic features, including protein domains, literature co-occurrence,

ontology, and protein interaction. DIR, developed by Chen et al. [88], utilize multiple

data sources by defining networks with diffusion kernels. Diffusion kernels [274] are

a global measure of similarity and have outperformed metrics that only depend on

immediate neighbors. DIR uses these measures to rank candidate genes and only the

most informative network contributes to the overall score. The current study in this

work is the Weighted INtegration of Gene Sources for Prioritization Ranking of

Each Annotation to Disease (WINGSPREAD). WINGSPREAD also uses multiple

data sources and diffusion kernels to prioritize disease-gene associations. However,

advanced data integration strategies and semantic similarity measures are utilized to

develop edge weights for each network. Furthermore, multiple networks can influence

the final score and are appropriately discounted based on the network informativeness.

4.3 Diffusion kernels

Kernels can efficiently handle complex data types by appropriately defining a similar-

ity matrix between input data objects. A kernel matrix must satisfy the mathematical

requirements of being symmetric and positive definite [143]. Positive definiteness is

defined that for any choice of x1,x2, . . . ,xm ∈ X and coefficients c1, c2, . . . , cm ∈ R,
m∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0 (4.1)
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Kernels can be used for graph similarity metrics, but it is not clear how to construct

a positive definite matrix. Random walks over graphs start at a given vertex z0 and

for each timestep t = 1, 2, . . . , T choose a new vertex zt from the neighbors of zt−1.

This process can be represented by a normalized adjacency matrix

Qij =


1/γij if i ∼ j

0 otherwise

(4.2)

where γij is the degree of vertex j. The matrix Q is treated as a transition matrix

for the random walker at each vertex. The probability of finding a random walker at

node j at time t is pt+1 = Qpt. This relation can be applied recursively by raising

the normalized adjacency matrix to the number of timesteps T:

PT = QT (4.3)

However, PT is not a suitable choice for a kernel, since there is no clear choice for T,

particular choices of T may make certain vertices unreachable, and PT is generally

not positive definite [447].

The exponential of a square matrix H is defined as:

eβH = lim
n→∞

(
1 +

βH

n

)n
(4.4)

It can be shown that an infinitely divisible kernel K can be expressed in exponential

form [274] suggesting the usage of kernels for continuous random walks that satisfy

the equation:

K = eβH (4.5)

This results in the following differential equation:

d

dβ
Kβ = HKβ (4.6)
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The graph Laplacian is defined as:

Lij =


−1 if i ∼ j

γij if i = j

0 otherwise

(4.7)

The negative graph Laplacian is an ideal candidate for H in equation 4.5 because it

satisfies the differential equation 4.6:

dki
dt

= −
∑
j

Aij(ki − kj)

= −ki
∑
j

Aij +
∑
j

Aijkj

= −ki deg(vi) +
∑
j

Aijkj

= −
∑
j

(δij deg(vi)− Aij) kj

= −
∑
j

(Lij) kj

dK

dt
= −LK

Usage of the negative graph laplacian as H in the differential equation 4.6 is called

the heat equation and the resulting kernels are known as diffusion kernels or heat

kernels.

We also can prove that diffusion kernels are positive definite, since any even power

of a symmetric matrix is also positive definite:

eβH = lim
n→∞

(
1 +

βH

n

)n
= lim

2n→∞

(
1 +

βH

2n

)2n

(4.8)

Matrix exponentiation shares many properties with ordinary exponentiation [186].

This includes the power series expansion:

eβH = I +H +
1

2!
H2 +

1

3!
H3 + . . . (4.9)
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Using these properties, the matrix exponentiation can be computed in a finite amount

of time by calculating the normalized eigenvectors of v1, v2, . . . vn and corresponding

eigenvalues of λ1, λ2, . . . λn of the negative graph Laplacian L:

Ls =

(
n∑
i=1

viλiv
T
i

)s

=
n∑
i=1

viλ
s
iv
T
i (4.10)

eβL = I +

(
n∑
i=1

viβλiv
T
i

)
+

(
n∑
i=1

vi
(βλi)

2

2
vTi

)
+ . . . =

n∑
i=1

vie
βλivTi (4.11)

In WINGSPREAD, the negative graph Laplacian is calculated for similarity matri-

ces from six separate data sources. The normalized eigenvectors is then computed for

each Laplacian, and the β can be tuned by the summation operation in equation 4.11.

4.4 Methods

4.4.1 Data sources

4.4.1.1 Protein interaction

Disease genes are often highly connected and participate in the same interaction net-

works [170,480]. Differences in the network properties have been used to build many

candidate gene prioritization methods [4,84,85,88,157,174,177,271,279,287,296,342,

404, 451, 545]. As shown by Zhang et al. [545], utilizing several protein interaction

networks can also improve accuracy. In the current study, three protein interaction

networks were downloaded from Human Protein Reference Database (HPRD) [397],

the Biological General Repository for Interaction Datasets (BioGRID) [471], and

Biomolecular Interaction Network Database (BIND) [27]. HPRD contains human

protein-protein interactions, and BioGRID contains protein and genetic interactions.

BIND covers high-throughput and manually curated molecular interactions. All re-

dundant links were removed, and an integrated interaction network was created for

all Homo Sapien genes.
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4.4.1.2 Gene Ontology

The Gene Ontology system is widely used as a standard for functionally annotating

large sets of genes [20]. It consists of three structured ontologies describing molecular

function (MF), biological process (BP), and cellular component (CC). Goh et al. [184]

showed that genes associated with the same disorder have significantly higher (GO)

homogeneity. This knowledge can be used to identify uncharacterized disease genes

and has been utilized frequently in previous integrative prioritization approaches [3,

4, 85,86,157,174,271,293,296,299,342,366,381,404,451,497].

With semantic similarity measures, the functional relationships between gene

products can be calculated even if protein pairs do not share any annotations. Con-

cepts are represented in a hierarchical ontological tree, and semantic similarity can

be calculated by edge-based or node-based measures. Edge-based methods rely pri-

marily on counting the number of edges linking GO terms in the ontological directed

acyclic graph (DAG). Node-based methods rely on comparing the individual proper-

ties of compared terms. The information content (IC) is a common property measure

for ontological terms which returns the level of specificity or informativeness. IC is

defined as the negative log likelihood of a term c:

IC(c) = −log p(c) (4.12)

where p(c) is the probability of occurrence of term c in a specific corpus. Node-based

methods have several advantages, since they are not as sensitive to the intrinsic

structure of DAG and terms at the same level are not treated equivalently. However,

in node-based methods the IC is calculated based on occurrences in an external corpus

that is constantly changing. They also can be biased with a preference for well-

annotated terms. See Section 2.3 for a more complete survey of ontological similarity

measures. In biological problems, no method is clearly preferred over all others and

the most most suitable method usually depends on the context [197,385].
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Wu et al. [530] developed an edge- and node-based hybrid method, known as

Hybrid Relative Specificity Similarity (HRSS), that consistently outperformed com-

peting methods in determining functional similarity between gene products. It was

compared against several edge-based [176,232,531] and node-based [240,297,384,411]

methods by inferring physical protein-protein interactions and estimating the func-

tional conservation of orthologs. HRSS is calculated based on the scores of three

components, α, β, and γ. α measures the specificity of the terms lowest common

ancestor. β measures the generality of the compared terms. γ measures the local

distance between terms and their lowest common ancestor. All of these terms are

calculated according to information content measures:

distIC(u, v) = IC(v)− IC(u) = log p(u)− log p(v) (4.13)

αIC = distIC(root,MICA) = −log p(MICA) (4.14)

βIC =
distIC(termi,MILi) + distIC(termj,MILj)

2
(4.15)

γ = dist(MICA, termi) + dist(MICA, termj) (4.16)

where MICA is the most informative common ancestor of termi and termj, MILi

and MILj are the most informative leaf nodes of termi and termj. The final equation

for HRSS is the following:

HRSS(termi, termj) =
1

1 + γ
· αIC
αIC + βIC

(4.17)

The best-match average (BMA) strategy finds the best semantic similarity value for

each term and calculates the average:

HRSSBMA(P,Q) =

∑
tpi∈TP HRSS(tpi, TQ) +

∑
tqj∈TQHRSS(tqj, TP )

| TP | + | TQ |
(4.18)

where P and Q are gene products, TP and TQ are the sets of all GO terms assigned

to P and Q, and HRSS(ui, V ) = maxvj∈V {HRSS(ui, vj)}.
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All Homo Sapien genes with annotated GO terms were retrieved from the NCBI

Entrez Gene [313] database. The HRSS similarity score was calculated for all BP

and MF GO terms for all pairs of Homo Sapien genes. Similar to the method for

the funSim score by Schlicker et al. [445], the final semantic similarity measure was

determined by squaring the MF score and BP score:

GOSemSim =
1

2

[(
BPscore

max(BPscore)

)2

+

(
MFscore

max(MFscore)

)2
]

(4.19)

where BPscore and MFscore is the HRSS similarity score between gene products BP

and MF GO terms.

4.4.1.3 Domains

Candidate genes may share similar functions to disease genes [242], and these func-

tions may be due to common protein domains. Protein domains are functional units

of proteins, and previous methods have incorporated domain knowledge to improve

candidate gene prioritization [3, 4, 165, 177, 299, 497]. It was found in many of these

studies that proteins with the same domains tend to share similar functions. A

common method to identify the function of newly discovered proteins is to transfer

annotation from well-characterized homologous proteins that share a common ances-

try [401]. Homologous protein identification methods that are purely sequence-based

pose difficulties, because of multi-domain architectures and complex evolutionary re-

lationships [466]. Domains are the building blocks for all proteins and present one of

the most useful levels at which protein function can be understood [94,104]. Studies

have shown that comparing domain architectures is an effective method for detecting

evolutionary relationships [151].
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However, these methods are challenged by “promiscuous” domains that com-

bine in many ways to conduct auxiliary functions to the primary role of the pro-

tein [34,47,283]. Most domain-based measures treat all domains equally, but “promis-

cuous” domains are not directly related by homology and should be given less im-

portance. Lee et al [284] developed a Weighted Domain Architecture Comparison

(WDAC) of domain architecture similarity that accurately distinguishes between

“promiscuous” and conventional domains and improves homology identification. The

Inverse Abundance Frequency (IAF) measures the abundance of domains and is de-

rived from the Inverse Document Frequency statistic used commonly in information

retrieval [541]:

IAF (d) = log2
pt
pd

(4.20)

where pt is the number of total proteins and pd is the number of proteins containing

domain d. Highly conserved protein domains appear in a relatively small number of

domain architectures, and their neighbor proteins are also conserved during evolu-

tion [35]. Domains with identical abundance levels can have different levels of distinct

domain partners. The Inverse Versatility (IV) of a domain, d, is defined as:

IV (d) =
1

fd
(4.21)

where fd is the number of distinct domain families adjacent to domain d. The weight

of a domain is calculated by:

W (d) = IAF (d)× IV (d) (4.22)

The domain architecture for each protein is constructed using the Vector Space Model

(VSM) [429]:

xi =


IAF (di)× IV (di) if di ∈ p

0 otherwise

(4.23)

where p is the given protein, di is the given domain, di ∈ p is whether the given

domain exists in the protein’s domain architecture, x = (x1, x2, . . . , xn), and n is the
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number of protein domains in the dataset. The similarity between two protein domain

architectures is calculated and returns a range of [0, 1] using the cosine similarity score:

sim(X, Y ) =

∑n
k=1 xkyk√∑n

k=1 x
2
k ×

√∑n
k=1 y

2
k

(4.24)

where x and y are vectors of two domain architectures X and Y.

All Homo Sapien genes with annotated protein domains were retrieved from the

Interpro [225] database. The WDAC score is calculated for all pairs of annotated

Homo Sapien genes. This method was chosen as a more sophisticated approach than

a standard cosine similarity score between frequency vectors. In comparison, Lee et

al. [284] found that the true positive rate (TPR) for WDAC results (91%) were 6%

higher than unweighted domain architecture comparison (85%).

4.4.1.4 Pathways

Disease genes are more likely to share common pathways, because conditions can

result from pathway breakdown [250]. Biologically, if any of the pathway components

were disabled, they could potentially result in similar phenotypes [58]. Pathway

methods are used by various gene prioritization methods [4, 85, 88, 157, 174, 177, 271,

296, 451]. In this study, pathways are retrieved from NCBI BioSystems [175] which

contains records from several pathways databases including KEGG [248], BioCyc [64],

Reactome [111], Pathway Interaction Database [443], and WikiPathways [257, 388].

After download of the NCBI BioSystems database, an interaction network was created

with links for all pairs of Homo Sapien genes with a shared pathway. 12 high count

generic pathways were removed, because the records were closer to categories than

true biological pathways. These included Signal Transduction, Metabolism, Gene

Expression, Immune System, Cell Cycle, Disease, and Developmental Biology.
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4.4.1.5 Expression

Gene expression is one of the least biased types of evidence. Information is provided by

high-throughput analysis and the expression level of thousands of genes is monitored

simultaneously. Gene expression can give valuable information about the when and

where that molecular functions are exerted, and the functional relationships between

genes can be inferred [132, 402]. Disease genes are expected to be co-expressed, and

utilizing expression data in combination of other data sources has been found to

increase performance [307]. Gene expression data has been used previously in several

gene-prioritization studies [3, 4, 85,174,271,287,299,342,451].

STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) [88, 156,

235,464,483,514–516] is a biological database of known and predicted PPIs for a large

number of organisms that includes direct (physical) and indirect (functional) asso-

ciations. The latest version 9.1 contains information of roughly 5.2 million proteins

from 1,133 species. It imports knowledge of protein associations from databases of

physical interactions and curated biological pathways. Protein-protein associations

are also derived from functional genomics data using microarray analyses. Across

diverse experimental conditions, co-regulation of genes can be an accurate predictor

of functional associations [477]. STRING imports functional associations from gene

expression data from the ArrayProspector server [236]. Predictions are derived from

a variety evidence types including high-throughput experiments, co-expression, lit-

erature, genomic context, and PPI databases. A confidence score between 0 and 1

is assigned for each predicted association, and the scores are derived by benchmark-

ing against the common reference set, Kyoto Encyclopedia of Genes and Genomes

(KEGG) [249].

In this study, the co-expression network for Homo Sapien genes is developed from
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the STRING database1. A tab-delimited file2 of all protein links and confidence

scores is downloaded from the STRING server. A coexpression network is then built

between all Homo Sapien genes where the edges are weighted by the confidence score

between 0 and 1.

4.4.1.6 Literature

Text-mining was one of the first approaches for disease-gene prediction, and Pubmed

currently has over 24 million records [389]. A computational approach, such as natural

language processing [539], has the ability to analyze millions of biomedical articles

exponentially faster than any scientist could conduct manually. Biomedical literature

is one of the best repositories of information about disease genes. However, gene-

prioritization methods can be challenged when processing the texts of biomedical

articles, due to lack of a consistent representation of key concepts and biases towards

well-studies genes. Several previous approaches have integrated text-mining tools to

derive gene-disease associations [4, 85,174,177,271,279,287,296,299,342,381,451].

In this study, the literature association network is also created from the STRING

database. STRING computationally predicts interactions from genomic features, gene

orthology, and text mining of scientific texts. A large body of literature is parsed to

search for statistically relevant co-occurrences of gene names and extract semanti-

cally specified interactions using Natural Language Processing [437]. A literature

association network is built from the text mining confidence scores from the STRING

database between all pairs of Homo Sapien genes. The edges in the network are

weighted from the confidence score on a scale from 0 to 1.

1http://string-db.org/
2http://string-db.org/newstring download/protein.links.detailed.v9.1.txt.gz
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4.4.2 Data Integration

An integrated data warehouse developed by BioSPIDA [202] and a Neo4j Graph

database are utilized to create six separate adjacency networks on protein interac-

tion, protein domains, pathways, expression, literature, and gene ontology. With a

converted relational database of Entrez Gene, 305,597 protein interactions were ex-

tracted and associated with 18,089 genes. These interactions came from three source

databases: The Human Protein Reference Database (HPRD) [397], the Biological

General Repository for Interaction Datasets (BioGRID) [471], and Biomolecular In-

teraction Network Database (BIND) [27]. HPRD contains human protein-protein

interactions, and BioGRID contains protein and genetic interactions. BIND covers

high-throughput and manually curated molecular interactions. The integration of

these three protein networks created an adjacency matrix with 129,536 linkages be-

tween 17,487 genes. The pathway dataset was built by extracting 3,348 pathways

from 10,288 genes in Entrez Gene. In the pathway adjacency matrix, an entry was

set to 1 if the pair of genes shared a pathway and 0 otherwise. A total of 2,755,903

edges were set in the matrix. Many more edges were able to be generated, due to

the usage of the BioSPIDA data warehouse. BioSPIDA integrates BioSystems XML

data into relational tables, and genes could be associated to many more metabolic

pathways than identified in Entrez Gene. In Entrez Gene, an average of 3.81 pathway

annotations were linked to each gene. By integrating NCBI Biosystems, 10,288 genes

contained a total of 134,333 pathway annotations with an average of 13.05 annota-

tions per gene. For the ontology network, 197,010 gene ontology annotations were

extracted for 14,885 genes. The adjacency matrix created for the ontology network

was fully connected, since semantic similarity was calculated between every pair of

genes. As opposed to the protein interaction matrix and pathway matrix, entries

were not restricted to boolean 0 or 1 values. They ranged from 0 to 1 where 1 is

completely identical and 0 is no similarity. The HRSS semantic similarity measure
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by Wu et al. [530] was used to calculate the score between each pair of genes. HRSS

requires graph computations and common ancestry queries that are either not possi-

ble or with unrealistic runtimes for a relational database. Neo4j is a highly scalable

Graph Database (GD) that natively stores nodes, and it contains an embedded, disk-

based, fully transactional Java persistence engine3 that delivers excellent performance

benchmarks [31,125]. To build a Neo4j Graph Database, tab delimited files of all GO

concepts and relationships were exported from the BioSPIDA GO relational tables.

The tab delimited files were then directly loaded into Neo4j community edition 2.0.1

using their batch inserter4. 38,618 nodes and 77,323 relationships were inserted into

the Graph Database in 1 second and totaling 24.07 Mb.

Two steps were required to build the protein domain network. First, 20,253 genes

were matched to their associated Uniprot [28] identifiers. Then, the Uniprot identi-

fiers are used to link to the Interpro [225] database. Interpro is a database of families

and predicted domains of protein sequences. All individual matched signatures from

a number of member databases are combined into one searchable resource. Exam-

ples include Pfam [36], PROSITE [224], SUPERFAMILY [525], SMART [291], and

PANTHER [490]. Although it is advantageous that Interpro is comprised of many

signatures from disparate sources, in many cases the predicted domains can overlap.

In extracting the domains for each gene, overlapping regions were resolved by re-

moving any smaller entries than were inside others. A total of 68,908 domains were

associated to 14,585 genes. The domain adjacency matrix was also a fully connected

network, because the domain similarity had to be calculated for every pair of genes.

Domain similarity was determined by the WDAC comparison metric developed by

Lee et al [284]. The final score in each entry of the matrix ranged from 0 to 1 where

1 was identical and 0 was no similarity.

3http://www.neo4j.org/
4http://docs.neo4j.org/chunked/milestone/batchinsert.html

87



The final two matrices used in this study were for gene expression and co-referenced

literature. Both of these matrices were built using the STRING [156, 235, 464, 483,

514–516] database. The BioSPIDA data warehouse contains the correlation scores

for all proteins in the STRING database. These scores can be linked to Entrez Gene

records, since it has ENSEMBL protein identifiers. Each correlation score was also

on a scale from 0 to 1. The total amount of nodes (genes) and edges (relationships)

for all six matrices can be viewed in Table 4.1. There are slightly fewer genes in each

matrix, because any entries without ‘live’ status in Entrez Gene were excluded.

Table 4.1: Matrix size for each data source in gene prioritization.

Data source Genes Annotations Complete graph Representation

Domains 20,253 2,268,886 205,081,878 1.1%

Expression 14,405 717,215 103,744,810 0.7%

Gene Ontology 16,413 129,379,289 134,685,078 96%

Literature 17971 1,463,983 161,469,435 0.9%

Pathways 9,953 2,755,903 49,526,128 5.6%

Protein interaction 17,487 132,300 152,888,841 0.1%

4.4.3 Parameter Tuning

Before prioritization of candidate disease genes, all matrices for each data source must

be converted into diffusion kernels. As described in Section 4.3, diffusion kernels are

created by computing the negative graph Laplacian of the adjacency matrix and

then taking the matrix exponential. However, the domain, ontology, expression, and

literature matrices are all weighted adjacency matrices. Their entries can contain any
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value between 0 and 1. Therefore, the weighted graph Laplacian must be calculated:

Lij =


−wl if i ∼ j∑

l∼(i,k)wl if i = j

0 otherwise

(4.25)

where l ∼ (i, j) means edge l connects nodes i and j, and wl is the weighted value for

edge l.

The matrix exponential e−βL contains an input parameter β to control the ex-

tent of diffusion. As stated in equation 4.11, if the eigenvalues are computed for

the Laplacian, this parameter can be tuned without repeating the expensive matrix

exponential operation:

e−βL =
n∑
i=1

vie
βλivTi (4.26)

Without computing a matrix exponential on each iteration, cross-validation is used

to tune each parameter for all six data type matrices.

Köhler et al. [271] defined 110 disease-gene families5 on the basis of entries from

the Online Mendelian Inheritance in Man (OMIM) [206] database. Using gene-centric

assessment, known disease (seed) genes from these families are tested relative to a

background gene set. The background gene set is created from the 100 nearest genes

to a disease gene according to their genomic distance on the same chromosome. Cross-

validation is used to the measure the performance of the training procedure and tune

the parameters for each diffusion kernel matrix. The fold enrichment score [271,299]

is defined as the average rank before prioritization divided by the rank after priori-

tization. For 100 genes, the average rank is 50 and the enrichment score is (average

rank)/(prioritization score rank). If the test disease gene is ranked 1, its enrichment

score is 50/1 = 50. In leave-one-out cross validation, a test gene is removed from

its disease set and placed with its 100 nearest neighboring genes. The prioritization

5http://compbio.charite.de/genewanderer/diseaseGeneFamilies.html
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score is then calculated for the interval of 100 genes based on their connectivity to the

remaining disease seed genes. With the use of the diffusion kernel K, each candidate

gene j was assigned according to the following score:

score(j) =
∑

i ∈ disease gene family

Kij (4.27)

Leave-one-out cross-validation is repeated for each gene in every disease set and a

final assessment score is established. A grid search is performed on parameter values

from 10−6 to 102. The final parameter values and highest average enrichment score

for each matrix can be viewed in Table 4.2.

Table 4.2: Highest performing parameter for each diffusion kernel.

Data source β Enrichment

Domains 2.0× 10−1 9.39

Expression 6.0× 10−2 16.34

Gene Ontology 9.0× 10−4 3.87

Literature 3.0× 10−3 39.89

Pathways 9.0× 10−4 20.92

Protein interaction 8.0× 10−2 18.60

4.4.4 Performance Assessment

After the creation of a diffusion kernel for each data type and parameter tuning,

prediction scores for candidate genes must be evaluated for each of the 110 disease

gene families. There are a total of six data matrices based on ontologies, expression,

literature, protein interaction, protein domains, and biological pathways. Also using

leave-one-out cross-validation, a receiver-operating characteristic (ROC) curve is de-

veloped to assess how well known disease (seed) genes are ranked relative to non-seed

genes. The ROC curve plots true positive rate (sensitivity) versus false positive rate
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(1 - specificity):

Sensitivity =
TP

(TP + FN)
(4.28)

1− Specificity =
FP

(FP + TN)
(4.29)

(4.30)

Sensitivity is defined as the frequency that a “target” gene is assigned above a given

threshold, and specificity is the percentage of genes ranked below the threshold.

Therefore, a sensitivity/specificity value of 80/90 would indicate that the correct

disease gene is ranked amongst the best-scoring 10% of genes in 80% of the prior-

itizations [4]. The sensitivity and specificity values are plotted on ROC curves for

each data type and the area under the curve (AUC) is used as a standard measure

for performance. During initial tests, the results for gene ontology and domains were

significantly lower than the other four datasets (AUCgo = 0.53, AUCdomain = 0.58).

In comparison, an AUC score from random guessing would roughly equal 0.5. After

further investigation, it was found that many of the disease networks in the GO,

domain and other datasets were not informative. Similar to the method by Chen et

al. [88], this study defines the informativeness I lG of a network in disease family G

and data type l with a set A of known genes as:

DKPC l(i, j) =

∣∣ {(s, t) | Kl(s, t) < Kl(i, j)}
∣∣∣∣ {(s, t) | Kl(s, t) > 0}

∣∣ (4.31)

I lG =

∑
i 6=j∈ADKPC

l(i, j)

C2
|A|

(4.32)

As stated previously, the possible data types of the network are protein interactions,

GO, protein domains, pathways, expression, and literature. C2
|A| is the binomial

coefficient with parameters |A | and 2. This equates to the average informativeness

between all pairs of genes. In equation 4.31, informativeness between a gene pair is

defined as the percent of values with a lower diffusion kernel score.
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In analyzing the results for AUC for GO, it was found that only 23/110 diseases

received a score above 0.7. Interestingly, only 36 diseases had a score above 0.68

for the informativeness of its network. Other networks exhibited this behavior as

well where the AUC scores significantly decreased when the informativeness dropped

to lower levels. Several different thresholds were chosen for each network, because

networks varied on the required informativeness level before returning acceptable

AUC scores. GO was prescribed the highest threshold at 0.68. Diseases below this

threshold averaged an AUC score of 0.51, but above returned an average of 0.73.

Informativeness only reports the disease network strength in comparison to all other

gene pairs. Having a high informativeness does not necessarily imply a high similarity.

In comparison, GO was a complete network where edge weights were computed for

every gene pair with a metric that could return low similarity measures. Literature

did not require a threshold, since all diseases had a high network informativeness and

returned a high AUC score. All remaining threshold values for each data type and

AUC scores for diseases above and below threshold are reported in Table 4.3.

Table 4.3: Average AUC scores for diseases above and below threshold.

Data source Informativeness ↑ AUC↑ AUC↓ Diseases ↑

Domains 0.58 0.75 0.52 43

Expression 0.58 0.85 0.57 65

Gene Ontology 0.68 0.73 0.52 36

Literature 0.0 0.97 110

Pathways 0.56 0.88 0.66 89

Protein interaction 0.63 0.85 0.58 79

↑ Above threshold
↓ Below threshold

The network informativeness thresholds are then used to integrate scores from all

six data types. Without the thresholds, it would not be appropriate to integrate GO
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or domain network scores, due to their low AUC score. Li and Patra [293] integrate

weighted scores from four separate data types into their final prediction score, but

no contribution is permitted from any data source with an AUC score below 0.7. In

an experimental setting, a very informative network should in theory make accurate

predictions when prioritizing candidate disease genes. However, the actual AUC score

would be unknown, because it is not possible to determine true or false positives on

prioritizations of new genes that have no existing associations. The informativeness

of a network of known disease genes would still be able to calculated. Therefore, in

this study, a threshold is selected for each of the six data types based on network

informativeness. The AUC score is then calculated to represent how well disease

genes are discriminated from its 100 nearest neighbors. This reflects a realistic setting

where techniques such as linkage analysis or positional cloning can only pinpoint the

responsible area for a disease to a rough location on a chromosome.

The next step is to weight the scores from each data type into a final assessment

score. DIR [88] also integrates multiple data types, but only the score from the most

informative network may contribute to the final score for each disease. This does

eliminate poorly scoring networks from significantly reducing the overall score, but it

only allows one data source to contribute for each disease. Li and Patra [293] allow

all data sources to factor into the final ranking for a candidate gene, but only if the

AUC score is above a 0.7 threshold. The final score is calculated by weighting a

discounted rating with the AUC score from each data source. WINGSPREAD also

utilizes discounted rating, but uses weights from the informativeness of each data

type and a threshold for each network. If the informativeness is below a threshold,

the data source will not be used to calculate the final ranking. A discounted rating
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is calculated by:

ratingi = ratingmax −
⌊

(ri − 1) · ratingmax
N

⌋
(4.33)

dri =
ratingi

log2(ri + 1)
(4.34)

where N is total amount of candidate genes (100), ratingmax is the selected maximum

rating, and ri is the returned prioritization ranking. For example, if the selected

maximum rating is 5, and the prioritization method ranks a candidate gene 30th out

of 100, the rating score would be 5−
⌊
30×5
100

⌋
= 5− 1 = 4. The rating is then reduced

by the ranking number to create a discounted rating score dri. In this example,

dri = 4
log2(30+1)

= 0.82. Discounted rating originated from discounted cumulative gain

(DCG) scoring widely used in information retrieval [234, 293]. In DCG, there is a

larger difference in scores between top ranked items than lower ranked items.

In WINGSPREAD, the final weighted discounted rating for a candidate gene in

a disease set is calculated as:

wdri =

∑
l∈M−log(1− I lG)× drli∑

l∈M−log(1− I lG)
(4.35)

whereM is the set of all data sources, and I lG (equation 4.32) is the informativeness

for disease G and data source l. The logarithm is applied to informativeness to help

contribute to the stability of the score. Networks with higher informative levels will

be weighted more highly. Discounted ratings is also used to give greater scores to

candidate genes with higher ranks. Network informativeness thresholds, logarithms

of informative weights, and discounted ratings are all used to prevent lower scoring

networks from degrading performance.

After the weighted discounted ratings are calculated for all 100 candidate genes,

the scores are ordered from highest to lowest. For leave-one-out cross-validation, one

of the 100 candidate genes is the removed gene from the disease set. The weighted

discounted rating of the removed disease gene is retrieved, and its place in the ordered

list is reported (1 is the best possible score and 100 is the worst).
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The AUC scores are calculated for all diseases and all data sources, and the most

informative networks for each disease are determined. The ROC curves are then

plotted for each individual data source as well as for the integrated data sources.

The final results are compared to estimate how much the performance raised after

integrating multiple data sources versus only utilizing individual sources.

4.5 Results

In analyzing the results for each data source, literature gave by far the highest accu-

racy with an overall AUC score of 0.96. All 110 diseases scored an AUC over 0.70 for

the literature dataset. The AUC scores for all data types as well as the number of

diseases above an AUC score of 0.70 can be seen in Table 4.4. GO and domains were

the lowest scoring data sources with an overall AUC score of 0.53 and 0.58 and with

only 23 and 31 diseases above 0.70 AUC. However, if the ROC is only calculated for

diseases above a network informativeness threshold, all AUC scores are raised con-

siderably. This is in exception to literature, because all networks already score above

the informativeness threshold. Intuitively, this is an appropriate method for an ex-

perimental setting, because realistically any network that is not deemed informative

should be disregarded from making predictions. A final score is then calculated by

integrating each data source and appropriately weighting their contribution accord-

ing to equation 4.35. As noted previously, a score from a source will receive a weight

of 0 if its informativeness is below threshold. The AUC score when integrating all

data sources is 0.9543, slightly higher than the AUC score of 0.9521 for literature, the

highest scoring data type. The ROC curves for each data source with and without

the network informativeness threshold can be seen in Figures 4.1 and 4.2. Figure 4.2

also includes the ROC curve for the integrated data sources.

95



Table 4.4: AUC scores for all data sources with and without informativeness thresh-
old.

Data source AUC Diseases † AUC↑ Diseases ↑

Domains 0.58 31 0.71 43

Expression 0.70 61 0.82 65

Gene Ontology 0.53 23 0.73 36

Literature 0.95 110 0.95 110

Pathways 0.83 92 0.86 89

Protein interaction 0.71 79 0.80 79

↑ Above informativeness threshold
† AUC score > 0.70
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Figure 4.1: ROC performance curves for all six data sources with no network infor-
mativeness thresholds.
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Figure 4.2: ROC performance curves for all six data sources with network informa-
tiveness thresholds.

The overall AUC score for integrated data sources is only increased by 0.2% from

the score for literature. However, the AUC score for literature is already substan-

tially high without a large area for improvement. Disease genes are identified at top

1/100 ranks in 770/1183 of prioritizations. To compare the integrative strategy, the

weighting methods by Li and Patra [293] and DIR [88] are also tested. Li and Patra

weight scores from each data source by the AUC score returned for each disease:

wdri =

∑
l∈M(µlG · drli)∑

l∈M(µlG)
(4.36)

where dri is calculated using the same techniques as in equation 4.34 and µlG is the

AUC score returned for disease G and data type l.

DIR only uses the score from the data type with the most informative network.

This is to prevent from degrading the AUC score from higher performing networks.

Intuitively this makes sense, because if literature is known to return high AUC scores,

an average with scores from lower scoring networks, such as domain or GO could
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significantly reduce overall accuracy. The formula for most informative discrimination

used in this study is the following:

l∗ = arg maxl {I lG}

wdri = drl
∗

i (4.37)

In testing the integration methods for all six data sources, the informative weight-

ing method in WINGSPREAD (equation 4.35) still received the highest overall AUC

score at 0.9543. The AUC weighting method (equation 4.36) received a score of

0.9537. This was in despite of weighting with AUC scores for each data source and

disease. As stated previously, in an experimental setting, the true AUC scores for

these diseases and data sources technically would not be known in the discovery of

new genes. This is because the AUC scores were generated in cross-validation only

for known genes, so it is encouraging a higher score was achieved by only weighting

the network informativeness of known disease genes. Using the most informative dis-

crimination method (equation 4.37) received a score of 0.9503 which was lower than

the highest scoring literature network. This was probably due to the fact that other

data source networks could provide a higher informativity score for certain diseases

but still resulted in lower prediction performance. The informativeness only depicts

how many scores in the network are higher than the similarity values between all

known disease genes. It does not give information pertaining to the overall distribu-

tion of scores in the network. For example, it was found with the GO network that

higher informative scores (percentiles) were needed before reaching acceptable AUC

levels. Therefore, most informative discrimination most likely used other networks

when they had higher informativeness levels than literature but lower performance.

So, the overall AUC score was less than when only using literature.

The most informative discrimination method used by DIR was slightly different
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than this study. The most informative network is used for each disease gene associa-

tion rather than for only calculating the overall ranking:

score(b) =
∑
a∈A

maxl∈M{DKPC l(b, a)} (4.38)

where A is the set of disease genes, b is the tested candidate gene, and DKPC is

derived by equation 4.31.

However, this method also compares network informativeness between data sources

when calculating rankings without factoring the actual distributions of the diffusion

kernel values. For example, the difference in kernel values at the 80th and 90th

percentile could be substantially larger than the kernel values at the 20th and 30th

percentile. So, it may not be reliable to only use percentile scores. DIR did not use

literature as one of their data sources. In excluding literature, the AUC score using its

most informative discrimination method (equation 4.38) was 0.8508. When using the

most informative method by this study (equation 4.37), the AUC score was 0.8505.

The choice of most informative method did not substantially alter results.

Gene prioritization tools can give optimistic estimates of their predictive power

because of “knowledge contamination,” since knowledge of disease-gene associations

are rapidly integrated into biomedical articles, ontologies, and pathways after pub-

lication [226, 343]. In an effort to duplicate a real world experimental setting, the

integrative strategy is tested by removing data sources that could introduce biases

towards well-studied genes. Pathways, literature, and ontologies were removed from

the integrated data sources. With only utilizing interaction, domains and expression,

the AUC score using informative weighting was 0.856. This was higher than all in-

dividual networks: interaction (0.823), domains (0.710), and expression (0.833). The

ROC curves for the integrated data and 3 individual data sources are plotted in Fig-

ure 4.3. The AUC scores for individual networks are slightly different than Figure 4.2,

because the nearest 100 genes are changed based on available annotations. If a near-

est gene does not contain available annotations for all integrated data types, it could
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potentially inflate the scores by preferencing genes with available annotations. The

AUC scores for AUC weighting and most informative discrimination were also both

lower at 0.856 and 0.844. This process was repeated by adding other data source com-

binations including gene ontologies, pathways, or both. Each case returned a higher

overall score for informative weighting than the other integrative methods and also a

higher score than any individual network. For each case, Gene Ontology did slightly

decrease the overall AUC score when added to available data sources. This may be

due to generally the lower performance for Gene Ontology. The AUC scores for each

weighting method and individual data sources can be viewed for all integration cases

in Table 4.5. The ROC curves for the remaining cases of integrated data sources can

be viewed in Figures 4.4 - 4.6.

Table 4.5: AUC scores for all combinations of data sources with different integrative
strategies.

Data sources
Informative
Weighting

AUC
Weighting

Most
Informative

Discrimination

Diseases Interaction Domains Expression Pathways GO Literature

INT, DOM,
EXP

0.857 0.856 0.844 96 0.823 (79) 0.710 (43) 0.833 (65)

INT, DOM,
EXP, GO

0.854 0.851 0.839 99 0.822 (79) 0.708 (43) 0.832 (65) 0.695 (36)

INT, DOM,
EXP, PATH

0.867 0.859 0.851 105 0.802 (79) 0.701 (43) 0.824 (65) 0.859 (89)

INT, DOM,
EXP, PATH,
GO

0.866 0.859 0.850 105 0.801 (79) 0.708 (43) 0.824 (65) 0.859 (89) 0.686 (36)

INT, DOM,
EXP, PATH,
GO, LIT

0.954 0.954 0.950 110 0.801 (79) 0.708 (43) 0.823 (65) 0.859 (89) 0.685 (36) 0.952 (110)

All decimal values are AUC scores
Values in parentheses represent the number of scored diseases
INT protein interaction; DOM protein domains; EXP gene expression; PATH biological pathways; GO gene ontology; LIT biomedical literature
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Figure 4.3: ROC performance curves with network informativeness thresholds for
protein domains, gene expression, and protein interactions for testing accuracy with-
out “knowledge contamination.”

0.0 0.2 0.4 0.6 0.8 1.0
False Postive Rate

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
 P

o
st

iv
e
 R

a
te

Receiver operating characteristic

all (area = 0.854)
expression (area = 0.832)
interaction (area = 0.822)
domains (area = 0.708)
go (area = 0.695)

Figure 4.4: ROC performance curves for protein domains, gene expression, protein
interactions, and gene ontology with network informativeness thresholds.

101



0.0 0.2 0.4 0.6 0.8 1.0
False Postive Rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ru

e
 P

o
st

iv
e
 R

a
te

Receiver operating characteristic

all (area = 0.867)
pathways (area = 0.859)
expression (area = 0.824)
interaction (area = 0.802)
domains (area = 0.709)

Figure 4.5: ROC performance curves for protein domains, gene expression, protein
interactions, and biological pathways with network informativeness thresholds.
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Figure 4.6: ROC performance curves for protein domains, gene expression, protein
interactions, biological pathways, and gene ontology with network informativeness
thresholds.
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In comparison to previous prioritization methods, the overall performance for

WINGSPREAD was higher when calculating the AUC score for all 110 disease prior-

itizations. In the study by Chen et al. [88], the AUC score achieved for the 110 disease

families defined by Köhler et al. [271] was 0.80 for DIR. ENDEAVOUR and GeneWan-

derer were tested as well returning scores of 0.785 and 0.749. WINGSPREAD returns

an AUC score of 0.954 when incorporating all six evidence types. Removing the data

sources that can be susceptible to knowledge contamination reduces the score, but

still results in higher performance than the other competing methods. With only

domains, interaction, and expression data sources, WINGSPREAD returns an AUC

score of 0.857. This score is only for 96 diseases. The exclusion of diseases is either

due to not containing enough annotations for disease genes or network informative-

ness is not high enough for any of the included data types. As more data types are

added, AUC scores are returned for a greater amount of diseases (Table 4.5).

In calculating the AUC for all diseases, the GO and domain data sources did score

well below acceptable levels for a predictive model. However, it is illustrative how the

diseases with an informative network gave very high AUC scores even for the lower

performing data sources of GO and domains. The top 5 scoring diseases for each

data source can be observed in Table 4.6. Network informativeness can be viewed as

a filtering method, where annotations from certain data sources are very predictive

for a particular disease, while they are not as relevant for others.
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Table 4.6: Top diseases by AUC score for each evidence type.

Disease interaction domains pathways go literature expression all

Interaction

Cholestasis 0.99 0.81 0.73 0.54 0.99 0.66 0.99

Elliptocytosis 0.99 0.95 0.90 0.25 0.99 0.99 0.99

Leukoencephalopathy with vanishing white matter 0.99 0.22 0.95 0.68 0.99 0.99 0.99

Bare lymphocyte syndrome type II 0.99 0.60 0.99 0.82 0.99 0.48 0.99

Adrenoleukodystrophy 0.99 0.78 0.99 0.70 0.99 0.82 0.99

Domains

Hypokalemic periodic paralysis 0.78 0.99 0.97 0.50 0.99 0.99

Pituitary dwarfism 0.99 0.98 0.56 0.50 0.99 0.85 0.99

Juvenile myelomonocytic leukemia 0.90 0.96 0.71 0.33 0.99 0.59 0.99

Elliptocytosis 0.99 0.95 0.90 0.25 0.99 0.99 0.99

Noonan Syndrome, Costello syndrome, Cardiofaciocutaneous 0.98 0.93 0.94 0.51 0.94 0.69 0.99

Gene Ontology

Multiple Acyl-CoA Dehydrogenase deficiency 0.78 0.79 0.99 0.87 0.99 0.99 0.99

Adrenoleukodystrophy 0.99 0.78 0.99 0.70 0.99 0.82 0.99

Achromatopsia 0.64 0.67 0.99 0.81 0.99 0.99

Bare lymphocyte syndrome type II 0.99 0.60 0.99 0.82 0.99 0.48 0.99

Kartagener syndrome 0.39 0.55 0.99 0.58 0.86 0.86 0.91

Domains

Polycystic kidney disease 0.68 0.91 0.99 0.99 0.09 0.99

Pseudohypoaldosteronism, type I, autosomal recessive 0.99 0.67 0.99 0.99 0.98 0.99 0.99

Fundus albipunctatus 0.66 0.50 0.98 0.97 0.99 0.86 0.99

Cerebrooculofacioskeletal syndrome 0.99 0.74 0.98 0.92 0.99 0.92 0.99

Congenital myasthenic syndromes 0.99 0.85 0.82 0.92 0.99 0.96 0.99

Literature

Polycystic kidney disease 0.68 0.91 0.99 0.99 0.09 0.99

Fundus albipunctatus 0.66 0.50 0.98 0.97 0.99 0.86 0.99

Multiple Acyl-CoA Dehydrogenase deficiency 0.78 0.79 0.99 0.87 0.99 0.99 0.99

Hyper-IgM syndrome 0.87 0.47 0.99 0.84 0.99 0.63 0.99

Bare lymphocyte syndrome type II 0.99 0.60 0.99 0.82 0.99 0.48 0.99

Expression

Multiple Acyl-CoA Dehydrogenase deficiency 0.78 0.79 0.99 0.87 0.99 0.99 0.99

Leukoencephalopathy with vanishing white matter 0.99 0.22 0.95 0.68 0.99 0.99 0.99

Maple-syrup urine disease 0.90 0.83 0.99 0.56 0.99 0.99 0.99

Elliptocytosis 0.99 0.95 0.90 0.25 0.99 0.99 0.99

Stickler syndrome 0.84 0.83 0.98 0.75 0.98 0.99 0.99

104



4.6 Discussion

WINGSPREAD accomplishes gene prioritization by integrating six available data

sources on protein interaction, gene ontology, pathways, protein domains, literature,

and gene expression. Many previous methods do incorpoate multiple data sources,

but usually by focusing on a few databases. It is more common for prioritization

strategies to incorporate two to three types of evidence [3,177,279,381,446,497,512,

532, 545], but less frequently are scores integrated from many data sources into an

overall ranking [4, 85, 88, 293, 299]. Approaches with integrative methods, such as

ENDEAVOUR [4] and ToppGene [85], usually develop a metric for each data source

rather than using a unified framework. In a unified framework, new data sources can

easily be added without developing a new methodology.

Previous prioritization methods traditionally use metrics to measure associations

commonly based on general techniques such as cosine similarity or shared annotations.

Li and Patra [293] and BRIDGE [89] use cosine similarity methods for ontology and

pathway evidence. Linghu et al. [299] and POCUS [497] use shared annotation scor-

ing for gene ontology and protein domains. As with DIR [88], WINGSPREAD uses

a unified framework for integration by representing each data source as a diffusion

kernel. Further, sophisticated similarity metrics are used to develop edge weights

for each networks. By utilizing the Neo4j Graph database, the HRSS semantic sim-

ilarity [530] can be quickly computed between GO terms for all gene pairs. This is

a more advanced method than vector cosine similarity and has outperformed com-

peting methods in determining functional similarity between gene products. The

WDAC metric was used for calculating the protein domain similarity rather than

only computing by shared domains between gene products. WDAC was developed

by Lee et al. [284], and the study returned better results at identifying homology

between multidomain proteins than unweighted domain architecture methods. Us-

ing the BioSPIDA [202] data warehouse, multiple protein interaction networks from
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BIND, BioGRID and HPRD were able to retrieved and merged into one association

matrix. BioSPIDA also provided access to the BioSystems pathway data source. This

facilitated significantly greater pathway information per gene than could be obtained

by only focusing on the KEGG or Reactome database. BioSPIDA also provided

easy linkage to the STRING database to retrieve correlation scores for literature and

expression data.

By downloading several databases for each evidence type and utilizing sophisti-

cated similarity metrics, a high AUC score was achieved when integrating all data

sources. In all cases of integrated data, the informative weighting method did not

lower the overall score. The most informative discrimination method by DIR does

prevent from degrading scores from higher performing evidence types. However, it is

not possible to achieve a higher overall ranking than returned from the best evidence

network. In informative weighting, a high ranking from two evidence types could

potentially move the candidate gene to an even higher ranking, since it has multiple

support. Informative weighting achieved a higher overall AUC in all data integration

cases than most informative discrimination and also AUC weighting. The AUC score

for a data source and disease is known beforehand in AUC weighting, and it is used

for weighting and as a threshold. However, this would not be realistic in a search for

unknown disease genes, and it is encouraging the informative weighting method in

WINGSPREAD was still able to return a higher overall AUC score.

The GO and domain evidence types did not return high overall AUC scores when

compared to other data sources, such as interaction, literature, pathways, and expres-

sion. As can be viewed in Table 4.4, GO and domains did not yield very substantial

results for several diseases. GO only received an AUC score above 0.7 for 36 dis-

eases and for 43 diseases for protein domains. This may be due to diseases below

this threshold not containing closely related genes in GO and protein domain anno-

tations. These evidence types may also require further testing with other similarity
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strategies. There is a large variety of semantic similarity measures [107], and their

success can depend on the quality of the hierarchical structure of an ontology as well

as how balanced annotations are from a given corpus [169]. For example, in GO,

many annotations are inferred electronically from sequence similarity of gene prod-

ucts. It is debatable whether these annotations should be included. Many state of

the art approaches have proven successful in semantic similarity computations in the

biomedical domain [241,378,432,446,505,540], and the best strategy may depend on

the given dataset for a particular study.

Other similarity methods are available for protein domain comparison that can

incorporate pair-wise comparison of domain architectures [481] or feature architec-

ture similarities [268]. Additionally, methods have been developed to predict domain-

domain interactions from sequence [77,409] and structure based models [187,543]. Do-

main interaction databases also exist, such as DOMINE [405] and INTERDOM [356],

that contain known and predicted interactions compiled from a variety of sources.

For gene expression, suspected genes in disease-associated pathways may only be

activated in specific cellular compartments or tissues [476]. Tissue specificity may be

important in selecting the appropriate gene expression studies when calculating cor-

relation values for a specific disease network. Many complex diseases are associated

with changes in gene expression in affected tissues, and certain proteins only interact

in specific compartments [239]. BioSPIDA has also integrated access to the Gene

Expression Atlas [251, 252]. The Expression Atlas provides gene expression patterns

under many biological conditions, such as developmental state, organism part, en-

vironment factor, and cell type. By focusing on specific expression studies for each

disease, the predicted AUC scores could potentially be raised for the gene expression

network.

These similarity metrics and databases can potentially be integrated to add stronger

and additional evidence for prediction approaches. Future studies can help develop
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these possible improvements for gene prioritization methods and aid in dissecting the

complex genetic architectures behind human diseases.
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CHAPTER V

INTEGRATING CLINICAL DATA

5.1 Introduction

Healthcare is a data-rich domain and electronic health records (EHRs) are growing

at a rapid pace increasing the demand for efficient data analytics. In 2012, worldwide

digitized healthcare data was estimated equal to over 500 petabytes and is forecasted

to reach over 25,000 petabytes by 2020 [144]. As the volumes of healthcare data

continues to explode, so does its complexity. EHRs are comprised of an enormous

variety of data that is structured, unstructured and semi-structured. Unstructured

information includes discharge records, doctor notes, and medical imagery such as

MRI and CT scans. Structured data can easily be queried and interpreted from

machines such as billings and laboratory instrument readings. Despite the steady

stream of information from healthcare professionals and medical devices, it is rarely

captured and organized into an effective modeling platform for analytics research.

Unraveling the complexities of “Big Data” in the medical field can provide many

insights to real-time decision making and yield immediate benefits to patients while

lowering costs of care [548].

The potential of colossal healthcare data repositories relies on successfully com-

bining primary data with external data sources at both the individual and population

level. Often a single data source does not provide the necessary information for ac-

curately conducting a successful analyses for the study in question [103], and it has

become essential to supplement existing data by linking to additional data sources.

As part of the American Recovery and Reinvestment Act of 2009, the Health Informa-

tion Technology for Economic and Clinical Health (HITECH) Act provides up to 27
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billion in incentives for professionals and hospitals to achieve ‘meaningful use’ of elec-

tronic health records. Its goal is to help practitioners and hospitals adopt electronic

health records while improving the ability to share and exchange data. Historically,

healthcare expenditure in the United States has risen from roughly 9% of the GDP

in the 1970s to 17.3% in 2009 [215] without seeing an increase in life expectancy. It

is important for the HITECH act to not be another missed opportunity as standard

medical practice moves from subjective decision making to evidence-based healthcare.

Without effectively mining and integrating Big Data, the healthcare industry will

be in information overload unable to extract new knowledge for providers and patient

care. There is a dramatic growth in publicly accessible critical care databases to

facilitate informed choices to healthcare practitioners. However, many studies are

poorly designed and utilize external datasets that are ill equipped to answer pertinent

research questions [489]. To accurately aggregate, manage and analyze big data,

healthcare providers must integrate diverse and distributed data while identifying

the appropriate data sources for individual studies.

5.2 Related Work

5.2.1 Critical Care Databases

Due to the Meaningful Use legislation from the HITECH Act of 2009, a set of strict

terminology standards are defined for use in certified EHRs. These healthcare stan-

dards and increased adoption of EHRs have led to a dramatic growth in critical

care databases that are easily accessible. Despite the advantages of publicly avail-

able health records, there are few references that accurately survey the existing data

sources [535].

After researchers have identified the needed variables for an individual study,

they must consider several factors when investigating available databases for critical

care. These include accessibility, cost, population representation, included variables
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for each patient, and reliability of coded data. Hospital adoption of electronic medi-

cal records has shown promise to improve the quality of intensive care by secondary

analyses [103]. The Department of Veterans Affairs created the Inpatient Evaluation

Center (IPEC) that includes patient data from over 100 VA hospitals. It includes ex-

cellent risk-adjustment measures, but requires partnering with a VA investigator [410].

The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) [426]

database contains 30,000 ICU patients admitted to the Beth Israel Deaconness Med-

ical center. It contains time-stamped treatments as well as minute-to-minute data

on physiologic variables. The database contains laboratory results, diagnosis codes,

text-based records, discharge summaries, and radiology interpretations. Users can

freely gain access to MIMIC-II via the internet1.

Other types of critical care data sources are created for benchmarking or qual-

ity improvement and for administrative purposes. Most benchmarking and quality

improvement databases provide clinically rich data to develop risk-adjustment mod-

els. Patients voluntarily contribute their data, but the use of the data sources are

not universally accessible and usually require a partnership with the provider. The

APACHE database contains data from 45 participating hospitals, but access requires

a partnership with Cerner [549]. Access to the eICU [330] Research Institute requires

partnership with University of Maryland. Administrative data is not as detailed as

electronic medical records or benchmarking databases, but they include demograph-

ics, admission source, diagnosis codes, length of stay, and billing charges for each

hospital stay. The Healthcare Cost and Utilization Project (HCUP) is the largest

collection of payer inpatient data in the United States (US) [99]. HCUP’s Nationwide

Inpatient Sample provides a representative sample of hospitals and patients and can

be obtained for a low cost2. Other administrative databases from government agencies

1http://physionet.org/mimic2/mimic2 access.shtml
2http://www.hcup-us.ahrq.gov/nisoverview.jsp
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or private groups are more expensive and not as easily accessible [50,423,534].

The Informatics for Integrating Biology and the Bedside3 (i2b2) is an NIH-funded

scalable informatics framework that provides clinical investigators a suite of tools

for the integration of medical records and clinical research data [350]. i2b2 is built

on a Hive framework which is a set of server-side software modules (“cells”) that

either store data or contain analysis tools [349]. i2b2 provides de-identified EHR

data that are downloadable as research datasets4. These are a series of discharge

summaries from Partners HealthCare listed for natural language processing NLP

challenges, including de-identification [502], smoking status [501], obesity [500],

medication [503], and relations [504].

5.2.2 Biomedical Terminologies

Many biomedical terminologies were developed as a method to accurately represent

knowledge about clinical events and healthcare data. By advancing from clinical notes

only composed of free text entries, concepts could be defined without ambiguity and

hierarchically classified with subtypes [133]. Clinical vocabularies contain a list of

terms that organize and identify healthcare diagnostic and procedural data. In each

biomedical terminology specific terms are used to define concepts of its particular

domain. There are numerous available medical terminologies with classification sys-

tems specific to the application field, such as diagnoses, laboratory measurements,

medications, and procedures.

The International Classification of Diseases Ninth Revision Clinical Modification

(ICD9-CM) [353] is published by the World Health Organization (WHO) and is the

most common classification systems used in the United States for representing patient

conditions [134]. It is the accepted standard for classifying morbidity and for creating

diagnosis related group (DRG) assignments for billing purposes. The data structure

3http://www.i2b2.org/software
4https://i2b2.org/NLP/DataSets/
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for ICD9-CM is tabular with limited concept hierarchies and no support for semantic

linkages. The Systematized Nomenclature of Medicine, Clinical Terms (SNOMED

CT) [472] is a more a comprehensive clinical terminology for coding clinical findings,

procedures or diseases. It is an ontology that contains concepts, descriptions, and

relationships. The 2012AB release totaled 296,237 terms with 539,711 relationships5.

SNOMED CT is the largest logical terminology in healthcare and is becoming more

widely adopted in patient records, but it has its disadvantages [352, 365]. Its logic-

based ontology has undergone many design reincarnations and it is more structured

to describe patient conditions rather than patient care [205]. The International

Shortlist for Hospital Morbidity Tabulation (ISHMT) format is a more generalized

compilation of diagnoses created by the Hospital Data Project (HDP) of European

Union Health Monitoring Program. It contains a higher aggregation level than ICD-9

with a total of 130 separate diagnoses divided into 21 groups. The official conversion

table from ICD codes to ISHMT identifiers is available online6 and the format has

been adopted by adopted in 2005 by Eurostat, the OECD (Organisation for Eco-

nomic Co-operation and Development) and the WHO-FIC (Family of International

Classifications) Network. The Current Procedural Terminology (CPT) [25] is a list-

ing of terms and codes for reporting diagnostic and therapeutic procedures. It is

one of the most widely used systems for conducting research, developing guidelines,

and for reporting medical services to health insurance carriers [449]. Since, not all

supplies, procedures, and services could be coded using the CPT system, the Cen-

ters for Medicare and Medicaid Services (CMS) introduced the Healthcare Common

Procedure Coding System (HCPCS) [65]. It extends CPT by including codes from

external health services such as ambulatory services and durable medical equipment.

In HCPCS, all Level I codes are from the CPT terminology set [462]. Level II codes

5http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/SNOMEDCT/sourcemetastats.html
6http://apps.who.int/classifications/apps/icd/implementation/hospitaldischarge.htm
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contain ancillary healthcare services and dental procedures adopted from the Cur-

rent Dental Terminology (CDT) [22]. The International Classification of Diseases

Tenth Revision Clinical Modification (ICD-10-CM) [66] was designed by WHO to

provide several enhancements to improve coding accuracy, such as diagnosing mul-

tiple conditions, and expanded codes to capture more detail. Unlike ICD-9-CM,

ICD-10-CM does not contain a procedure code set [449]. CMS contracted with 3M

Health Information Systems to develop the International Classification of Diseases,

Tenth Revision, Procedure Coding Set (ICD-10-PCS) [26, 67] to report procedures

on inhospital claims. HCPCS and CPT will continue to report procedures on other

types of claims after adoption of ICD-10-CM/PCS [259]. The United States Health-

care system will require use of ICD-10 by October 1, 2015 [149]. Logical observation

identifiers names and codes (LOINC) [327] represent laboratory test names including

chemistry, hematology, microbiology and toxicology. RxNorm [303] is a standardized

drug nomenclature developed jointly by the National Library of Medicine (NLM) and

Veterans Health Administration.

The Unified Medical Language System (UMLS) [298] was developed by NLM to

help healthcare professionals extract and integrate biomedical information from the

diverse array of available sources. Often healthcare systems are required to share

information and UMLS facilitates the automatic mapping of clinical concepts from

different coding systems [48]. UMLS is comprised of three separate knowledge sources:

Metathesaurus, Semantic Network, and SPECIALIST Lexicon and Lexical Tools.

The Metathesaurus arranges mapping between biomedical concepts and the 2014AA

Release contains a total of 2.97 million concepts held in over 148 different sources7.

The Semantic Network represents knowledge in the biomedical domain by defining

concepts and the linkages between them. The SPECIALIST Lexicon contains many

vocabularies commonly used in biomedical source with syntactic and morphological

7http://www.nlm.nih.gov/research/umls/knowledge sources/metathesaurus/release/statistics.html
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information. The Lexical tools aid in natural language processing by creating lexical

variants, normalizing words, and word indexes. The UMLS knowledge sources greatly

benefit the healthcare community by bringing together many clinical vocabularies to

aid in the creation of electronic health records, natural language processing, and

information retrieval.

5.2.3 Natural language processing

Information technology has transformed health care by capturing huge amounts of

patient related information during points of service including diagnosis, laboratory

tests, medication, and radiology imaging. This provides an unprecedented wealth

of opportunities to biomedical research where sophisticated analysis tools such as

data mining, machine learning, and text mining can develop knowledge discovery

in patient stratification, drug interactions, disease comorbidities, and clinical out-

comes [237]. Despite the enormous potential of the continual large-scale adoption of

electronic EHRs, researchers are still faced with the technical challenges of integrating

heterogeneous patient data without agreed standards [276].

Many health-care systems in EHRs maintain structured codified data types such as

drug prescriptions, laboratory results, and billing diagnoses [269]. However, unstruc-

tured clinical text is the most abundant type because it allows medical professionals

to freely express detailed assessments and case nuances when generating discharge

summaries, radiology reports, pathology reports, family history, and other narra-

tives [332,422]. The unstructured nature of clinical text provides extra challenges to

EHR integration since it is highly heterogeneous and contains many abbreviations,

spelling errors, negations and domain-specific references [334]. To derive structured

phenotypes from clinical text, phrases and lexical permutations must be recognized

with natural language processing (NLP) [427] and mapped to controlled medical vo-

cabularies. For example, associated terms are linked to concepts in RxNorm [303]
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for medications, Read vocabulary for symptoms, ICD10 [529] or SNOMED CT [472]

for diagnoses, or LOINC [327] for laboratory measurements. Typical tasks involved

in natural language processing include boundary detection, tokenization, normal-

ization, part-of-speech tagging, shallow parsing, and entity recognition. Examples

of NLP-based systems that recognize clinical phenotypes are cTAKES [438], i2b2

HITEx [542], BioMedICUS8, MedEx [537], MedLEE [160], MedTagger [302], Sec-

Tag [119, 120], SymText [267] and MetaMap [16, 17, 137]. There are several surveys

that provide a more complete review of available systems [123,334,360,458,461,544].

To further the development of integrating large amounts of clinical data, differ-

ent techniques have been developed to accurately extract clinically relevant features

contained in the EHR. Patrick et al. [375] built an automated system to convert clin-

ical notes into SNOMED CT concept. All SNOMED CT tokens were indexed and

negation and qualifying terms are identified. Pakhomov et al. [372] match diagnoses

to the most frequent examples to a database of 22 million manually coded entries

from the Mayo Clinic clinical notes. A Naive Bayes classifier is used for the least cer-

tain codes. Kang et al. developed an ensemble voting strategy incorporating seven

publicly available concept annotation systems and achieved an F-score higher than

any participant in the 2010 i2b2/VA challenge [504]. Adamusiak et al. [2] directly

integrated 89 UMLS terminologies directly into a clinical workflow with a powerful

relational database. Henriksson et al. [212] utilizes the MIMIC-II database to extract

multiword terms and identify synonym relations of SNOMED CT preferred terms

with distributional semantics. A more complete review of concept extraction from

clinical documents is provided by Meystre et al. [334].

8http://code.google.com/p/biomedicus/
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5.2.4 Clinical Data Warehouses

Clinical Data Warehouses (CDW) facilitate a unified view of clinical data by con-

solidating various data sources including medical imaging, discharge summaries, and

laboratory results. However, without linking these resources to public repositories

with controlled vocabularies, translational medicine will be unable to utilize the rich

information from medical guidelines, scientific literature, and biomedical databases

for diagnosis and treatment [309, 364]. The adoption of CDWs in hospitals has con-

tinuously risen from 64% in 2008 to 45% in 2013 [216], due to their abilities to address

various needs of the hospital including administration, patient monitoring [428], and

finding significant associations among phenotypes [487]. However, CDWs have cur-

rently been unsuccessful in delivering their promises for improved and personalized

healthcare largely from conventional data warehouses inability to meet the needs of

diverse hospital environments [139,228]. Biomedical studies require complex integra-

tion of highly heterogeneous clinical and research data, and the traditional infras-

tructure of CDWs are unable to expedite the potential advancements highlighted by

the digitization of health records [457]. Many state of the art translational research

platforms are currently able to integrate large sets of clinical information with pub-

lic omics data to further our understanding of disease [61, 210]. Examples of these

systems include BRISK [484], caTRIP [324], cBio [69], G-DOC [311], iCOD [456],

iDASH [361], and tranSMART [482], SysBioCube [95], STRIDE [305], BTRIS [98],

and DW4TR [222]. As mentioned previously, i2b2 is a translational research platform

that contains a suite of software modules called cells that can be extended and in-

corporated into existing systems. Many CDWs rely on the architecture of i2b2 [350]

including tranSMART, ONCO-i2b2 [452], and BioSTOR [70]. These high-throughput

technologies can analyze a broad spectrum of biological data in the context of clinical

care and deliver exploration and visualization capabilities not provided by a con-

ventional CDW. Despite the advancements translational research platforms bring to

117



personalized medicine, the majority of contemporary systems are limited in interop-

erability and data exchange. Few platforms utilize standard terminologies and on-

tologies that facilitate the mapping of local data to controlled vocabularies. Without

these local alignments, systems have an abridged ability to cross-reference external

databases to retrieve additional information. They cannot conduct semantic links to

terminologies and exploit subsumption properties that enable progressive computer

reasoning. Several translational medicine solutions follow a semantic web approach.

Here, links between documents are replaced by links of the interior data elements

with added semantics [43]. Through semantic web technologies, these systems can

map private data to public resources with controlled vocabularies and automatically

infer domain knowledge through semantic reasoning. Examples include IPTrans [340],

Corvus [221,326], ASSIST [5], MATCH [460], SESL [407], Receptor Explorer [91],

and TCM [80]. However, many of these systems do not take full advantage of se-

mantic web technologies without using existing controlled vocabularies and mapping

between local and external resources. Several surveys provide a more complete cov-

erage of available CDW [61, 112] and semantic web solutions [81, 309] in translation

medicine.

5.3 Methods

In this study, the MIMIC-II database, freely available from PhysioNetWorks after

application9, is downloaded as tab-delimited files and imported into a local Postgres

9.1.5 relational database. After completion, all ICU stays and patients are stored with

accompanying diagnoses, laboratory readings, procedures, and administered medica-

tions. To provide linkages to an ontology, SNOMED CT International Release Jan-

uary 2014 is downloaded from the U.S. National Library of Medicine10. To bring

9http://physionet.org/mimic2/
10http://download.nlm.nih.gov/umls/kss/IHTSDO20140131/SnomedCT Release INT -

20140131.zip
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together biomedical vocabularies, the 2014AA UMLS Full Release Files are retrieved

from the U.S. National Library of Medicine11. These contain every vocabulary in the

Metathesaurus including a semantic network and natural language processing tools.

The core files of SNOMED CT are in tab delimited format and can easily be in-

serted into relational tables in the Postgres database using the COPY command12.

These tables and all other other integrated relational tables used in this study can be

viewed in Table 5.1. UMLS provides the ICD-9-CM Diagnostic codes to SNOMED

CT Map13 as well as the ICD-9-CM Procedure codes to SNOMED CT MAP14. The

SNOMED CT diagnosis mapping and procedure mapping both exists as two files

each. Each file contains a one-to-one map and a one-to-many map. In the one-to-one

map, a single SNOMED CT concept fully represents an ICD-9-CM code while the

one-to-many (partial) maps can be broader or narrower than the ICD-9-CM code.

Fortunately, both files are in tab delimited format with identical field descriptions.

Therefore, they can freely be imported into an identical relational table in the Post-

gres database. After all MIMIC-II clinical records and SNOMED CT mapping files

both exist in the relational database, a single SQL query can easily return matching

SNOMED CT concepts for all assigned ICD-9-CM codes during a patient ICU stay.

In the cases of one-to-many mappings where multiple SNOMED CT concepts are

returned for a single ICD-9-CM code, the SNOMED CT concept with the maximum

core usage is selected. The core usage is stored in the mapping files and reflects the

percent of total code usage in patient claims data.

11http://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html
12http://www.postgresql.org/docs/9.1/static/sql-copy.html
13http://download.nlm.nih.gov/umls/kss/mappings/ICD9CM TO SNOMEDCT/ICD9CM -

SNOMEDCT map 201312.zip
14http://download.nlm.nih.gov/umls/kss/mappings/ICD9CMV3 TO -

SNOMEDCT/ICD9CMV3 SNOMEDCT map 201301.zip
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Table 5.1: Tables used for concept mapping in clinical data integration.

Table Source Description

icd9cm snomed map UMLS Mapping from ICD-9-CM diagnosis and procedure codes

to SNOMED CT concepts

icd9-cm diagnosis UMLS Full text description of all ICD-9-CM diagnosis codes

icd9-cm procedure UMLS Full text description of all ICD-9-CM procedure codes

mrconso UMLS Mapping for each UMLS concept including SNOMED

CT

curr relationship f SNOMED CT Relationships

curr concept f SNOMED CT Contains Id and active flag for all concepts

curr description f SNOMED CT Full text description for all concepts

icustay detail MIMIC-II Contains gender, age, and admission id for each patient

ICU stay

icd9 MIMIC-II Contains associated icd-9 diagnosis codes for all patient

ICU stays

procedureevents MIMIC-II Contains associated procedures for all patient ICU stays

d codeditems MIMIC-II Contains icd-9 procedure codes

In the associated records for each ICU stay in MIMIC-II, there are many diag-

noses and procedures that do not have an equivalent mapping to SNOMED CT in

the tables provided by U.S. National Library of Medicine. This would result in a

substantial loss of clinical information for patient records that cannot match to as-

sociated ontological concepts. Metamap is a concept extraction tool developed by

the National Library of Medicine for mapping biomedical text to Concept Unique

Identifiers (CUI) in UMLS [17]. It uses a variety of natural language processing

techniques including tokenization, boundary detection, part-of-speech tagging, and

word-sense disambiguation [18]. The September 2013 release was downloaded15 and

15http://metamap.nlm.nih.gov/MainDownload.shtml
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installed locally to perform concept extraction on unlinkable ICD-9 codes. Metamap

was executed on the diagnosis or procedure description for each ICD-9 code. How-

ever, the majority of words and sentences in descriptions for ICD-9 codes in the

MIMIC-II database are heavily abbreviated and truncated. The long descriptions for

ICD-9 diagnosis and procedure codes are available in excel files online from Centers

for Medicare and Medicaid Services16. These excel files can be directly imported as

relation tables into the Postgres database. Metamap returns UMLS concepts with

associated scores and semantic types after its execution on long descriptions of ICD-9

codes. Potential UMLS concepts are returned by Metamap with accompanying scores

and semantic types. The maximum score is 1000.0 and higher scores imply a greater

relevance of the UMLS concept to the biomedical text. The 2013 release of MetaMap

can return up to 133 distinct semantic types, and it is important to exclude UMLS

concepts with semantic types not relevant to diagnosis or procedures. Table 5.2 pro-

vides all accepted semantic types during execution of Metamap. The UMLS concept

with the maximum score and approved semantic type is selected as the matching

entry for each ICD-9 code.

Table 5.2: Accepted semantic types returned by Metamap for linking ICD-9-CM
codes to SNOMED CT.

Diagnosis Procedure

Disease or Syndrome Therapeutic or Preventive Procedure

Sign or Symptom Diagnostic Procedure

Pathologic Function

Finding

Injury or Poisoning

Congenital Abnormality

16http://www.cms.gov/Medicare/Coding/ICD9ProviderDiagnosticCodes/Downloads/ICD-9-
CM-v32-master-descriptions.zip
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After all matching UMLS concepts are returned for unlinkable ICD-9 codes, the

UMLS concepts must then be mapped to SNOMED CT. Metathesaurus in UMLS

provides a concept names and sources table (MRCONSO) in Rich Release Format

(RRF) [220] and contains a string or text label (STR) for each SNOMED CT Atomic

Unique Identifier (AUI). The fields in this file are pipe delimited and all records can

be imported into a relational table in the Postgres database. The CUIs returned

from Metamap are sent to an SQL query that retrieves the accompanying records

from the MRCONSO table. The MRCONSO table has several flags that helps select

the most appropriate SNOMED term for each UMLS concept. TTY is the term type

in source. It can have many possible values but only SNOMED CT terms with FN

or OAF are permitted for retrieval. FN is defined as the full form of descriptor and

OAF is defined as an obsolete active full specified name. Other flags that exist in

the MRCONSO table are SUPPRESS and ISPREF. SUPPRESS is a suppressible

flag with four possible values, but only entries with Y and N are retrieved. Y is non-

obsolete content deemed suppressible and N is defined as not obsolete. ISPREF is the

atom status and values of Y or N mark whether the entry is preferable. Combinations

of values for these flags create a precedence structure in retrieving mappings from

UMLS concepts to SNOMED CT. Entries that are preferable and not suppressible

with FN term type are selected first. If these do not exist, entries with FN term type

and without the preferable flag are returned. OAF term type entries are selected

only if no FN entries can be found. The SNOMED CT Concepts table contains all

concepts with identifier numbers and an active flag. After all matching SNOMED

CT concepts are returned, they are joined to the SNOMED Concepts table (curr -

concept f in Table 5.1) in the database and all items not marked as active are filtered.

This process repeats itself for each patient ICU entry in MIMIC-II and its workflow

can be viewed in Figure 5.1.
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Figure 5.1: Process for linkage of diagnoses and procedures from MIMIC-II clinical
entries to SNOMED-CT concepts.

By integrating MIMIC-II, SNOMED CT, and UMLS mappings into a local rela-

tional database, biomedical terminologies can quickly be mapped to associated con-

cepts in the SNOMED CT ontology with powerfully customizable SQL queries. How-

ever, relational databases have many limitations in the biomedical domain because

they deliver unimpressive performance for applications that deeply analyze relation-

ships between entities [125]. They are increasingly disadvantaged when required to

traverse many nodes of a ontological graph. Relational databases use foreign keys

to perform table joins with logical pointers. They must conduct an index lookup for

each edge traversal and this is more expensive depending on the size of the dataset.

Graph Databases have maintained to continually attract attention due to a more

natural modeling of data and a larger emphasis on interconnections between entities

and relationship properties [9,418]. They are able to directly traverse to neighboring

nodes by dereferencing physical pointers negating the need for index lookups. For

certain connected data operations, they are reported to reach speeds with execution

123



times one thousand times faster than relational databases [7, 38].

To accurately compare concepts in SNOMED CT, it was essential to addition-

ally store the ontology in a Graph Database (GD). Neo4j is a highly scalable GD

that natively stores nodes, relationships and attributes in a property graph model

rather than relying on a relational layout of the data. It is quickly becoming one of

the most popular choices due to its free open-source GNU General Public License

(GPL), and it contains an embedded, disk-based, fully transactional Java persistence

engine17 that delivers excellent performance benchmarks. [31, 125] To build a Neo4j

Graph Database, tab delimited files of all SNOMED concepts and relationships were

exported from SNOMED CT Postgres relational tables. The tab delimited files were

then directly loaded into Neo4j community edition 2.0.0 using their batch inserter18.

However it was found that in the creation of a SNOMED Graph Database, there were

many cycles in the relationships between nodes. This greatly impedes many graph

operations such as returning all paths between nodes. By utilizing the Postgres re-

lational database, a SQL query quickly found cycles including only 2 nodes with a

double join of the SNOMED Relationship table. Finding cycles containing more than

2 nodes was unrealistic with a relational database due to manual construction of ta-

ble joins and expensive index lookups. Therefore, no cycles were removed from the

SNOMED relational database, and it was extracted and imported into Neo4j creat-

ing a directed ontological graph. With the Graph Database, powerful queries could

be rapidly executed using Cypher, the declarative graph query language of Neo4j.

These included node operations such as shortest path, depth level, and common an-

cestor queries which were either not possible or unrealistic to execute on a relational

database. The Cypher query language was quickly able identify all cycles with 2 or

more nodes. To remove cycles, an edge was selected for deletion based on multiple

17http://www.neo4j.org/
18http://docs.neo4j.org/chunked/milestone/batchinsert.html
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criteria. Neo4j calculated three different features for all nodes involved in cycles:

maximum depth, shortest path, and fan-in count. Maximum depth is the maximum

amount of nodes between the current node and head node of the ontological graph.

Shortest path is the shortest distance (number of edges) that can be traveled from

the current node to the head node. Fan-in count is the number of incoming edges to

the current node in the cycle. In each cycle, edges were removed if the outgoing node

had a smaller maximum depth than the incoming node. This is to prevent edges from

connecting a shallow node to a deeper node in the cycle. There are cases where the

maximum depth of all nodes in the cycles are equal. Here, edges are removed based

on the node’s shortest path distance to the head of the ontological graph. If the nodes

for all edges in a cycle have equal maximum depth and shortest path distance, edges

are selected for removal based on fan-in count. An edge is eliminated if an outgoing

node has a larger fan-in count than the incoming node. Nodes with larger degrees of

incoming nodes are expected to be more generalized. Therefore, an edge in a cycle

is removed if it connects to a node with a smaller fan-in count. Traversing upward

in the ontological graph should increase generalization rather than specificity. After

all selected edges were eliminated, a new tab delimited file was extracted from the

Postgres database of all SNOMED relationships without cycles. The current Neo4j

database was emptied and reloaded with a directed acyclic graph of the SNOMED

ontology. By utilizing a relational database, graph database, and natural language

processing, a powerful clinical system was constructed able to conduct term mapping,

rapid node traversals, and concept extraction on patient records.

5.4 Results

The local storage of a relational database containing all ICU records in MIMIC-

II, SNOMED concepts, and UMLS mappings required modest storage sizes. The

MIMIC-II database totaled 244 million records with 33 gigabytes (GBs) in row size
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and 26 GB in index size. The SNOMED CT relational database and UMLS mapping

table (mrconso) totaled 4.8 GB and 2.5 GB. Storage size statistics for all tables in the

Postgres relational database can be viewed in Table 5.3. After all data was loaded

into the relational database, an SQL query could be constructed to map patients into

ISHMT format diagnoses. The runtime for this query was 23.2 minutes, and patient

distributions were generated for ISHMT ICD groups and for higher level ISHMT ICD

chapters (Tables 5.4 and 5.5).

Table 5.3: Storage sizes for integrated clinical relational database.

Database Index size Row size Total size Tables

MIMIC-II 33 Gb 26 Gb 60 Gb 40

SNOMED CT 3.2 Gb 1.6 Gb 4.78 Gb 9

UMLS 1.5 Gb 992 Mb 2.51 Gb 4
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Table 5.4: ISHMT ICD Group frequencies of MIMIC-II patient ICU stays.

Diagnosis Total Frequency

Hypertensive diseases 14511 0.39

Conduction disorders and cardiac arrhythmias 10186 0.27

Ischaemic heart disease 8788 0.24

Heart failure 8185 0.22

Complications of surgical and medical care 7981 0.21

Anaemias 7784 0.21

Diabetes Mellitus 7637 0.21

Liveborn infants 7372 0.20

Renal failure 7176 0.19

Pneumonia 4500 0.12

Chronic obstructive pulmonary disease and bronchiectasis 4120 0.11

Acute myocardial infarction 3964 0.11

Septicaemia 3637 0.10

Cerebrovascular diseases 3265 0.09

Diseases of oesophagus 3173 0.09

Mood disorders 2012 0.05

Angina pectoris 1875 0.05

Mental and behavioural disorders due to alcohol 1852 0.05

Intracranial injury 1759 0.05

Pulmonary heart disease & diseases of pulmonary circulation 1658 0.04

Asthma 1146 0.03

Dyspepsia and other diseases of stomach and duodenum 1078 0.03

Paralytic ileus and intestinal obstruction without hernia 984 0.03

Atherosclerosis 937 0.03

Intestinal infectious diseases except diarrhea 936 0.03

Diseases of pancreas 805 0.02
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Table 5.5: ISHMT ICD Chapter frequencies of MIMIC-II patient ICU stays.

Diagnosis Total Frequency

Diseases of the circulatory system 24267 0.65

Endocrine, nutritional and metabolic diseases 18907 0.51

Factors influencing health status and contact with health services 18861 0.51

Injury, poisoning and certain other consequences of external causes 14701 0.40

Diseases of the respiratory system 14395 0.39

Diseases of the genitourinary system 11015 0.30

Diseases of the digestive system 10860 0.29

Symptoms, signs and abnormal clinical and laboratory findings, not

elsewhere classified

10029 0.27

Diseases of the blood and bloodforming organs and certain disorders

involving the immune mechanism

9792 0.26

Mental and behavioural disorders 7143 0.19

Diseases of the nervous system 5149 0.14

Certain conditions originating in the perinatal period 4959 0.13

Neoplasms 4673 0.13

Certain infectious and parasitic diseases 4583 0.12

Diseases of the musculoskeletal system and connective tissue 4199 0.11

Diseases of the skin and subcutaneous tissue 3317 0.09

Congenital malformations, deformations and chromosomal abnor-

malities

2169 0.06

Diseases of the eye and adnexa 1442 0.04

Diseases of the ear and mastoid process 219 0.01

Pregnancy, childbirth and the puerperium 196 0.01
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Utilizing Postgres and Metamap, many ICD-9 diagnoses and procedures from pa-

tient records were mapped to associated SNOMED CT concepts. MIMIC-II version

2.6 contained a total of 37,130 ICU stays with 335,366 diagnoses. These contained

5,645 unique diagnoses where 4,800 could be directly linked using the ICD-9-CM

Diagnostic codes to SNOMED CT Map provided by UMLS. The remaining 845 di-

agnoses were executed by Metamap in 22.5 minutes. Metamap returned 572 UMLS

concepts of valid semantic types. These UMLS concepts were queried against the

mrconso table in the Postgres relational database and returned 519 mappings to

SNOMED terms that were not obsolete or suppressed. In total, 5,319 of 5,645 ICD-9

diagnoses were able to be successfully mapped to SNOMED CT. This process was

repeated for patient procedures. 33,709 ICU stays had assigned procedures with 1,750

unique entries. 1,199 were able to be directly linked using the ICD-9-CM Procedure

codes to SNOMED CT Map. Metamap was executed on the remaining 572 entries

in 4.6 minutes and returned 444 UMLS concepts with valid semantic types. After

querying against the mrconso table, the UMLS concepts returned 223 mappings to

SNOMED CT that were not obsolete or suppressible. A total of 1,422 out of 1,750

unique procedures were successfully mapped to SNOMED CT. The Graph Database

of SNOMED CT was quickly constructed with the Neo4j Batch Inserter. 349,948

Nodes and 740,968 Relationships were loaded in 7 seconds totaling 243.5 Mb in stor-

age. Connected data operations could be quickly performed to identify and remove

cycles. A Cypher query assigned the depth level to nodes. The runtimes up to depth

level 4 can be seen in Table 5.6. Neo4j was able to assign the depth level to thousands

of nodes in under 11 seconds for each operation. The shortest paths for 1,420 nodes

involved in cycles was calculated in 19.9 minutes. A total of 756 two node cycles

and 115 many (three or more) node cycles were found when analyzing the SNOMED

Graph Database. For two node cycles, 400 edges, 149 edges and 169 edges were able

to be removed based on maximum depth, shortest path and fan-in count. The edges
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for the remaining 38 cycles were removed from manual inspection. For many node

cycles, 79 edges, 5 edges, and 31 edges were removed from maximum depth, shortest

path, and fan-in count. After removal, the Neo4j database could be quickly emptied

and reloaded with a SNOMED Graph Database with no cycles.

Table 5.6: Neo4J Cypher query runtimes for assigning node depth levels.

Depth level Nodes Runtime

1 20 2839 ms

2 523 4724 ms

3 11,797 7694 ms

4 30,898 10704 ms

5.5 Discussion

This current system utilizes many state of the art techniques with natural language

processing and Graph Databases to develop a data warehouse that can accurately

map descriptions to standard biomedical terminologies. With Metamap, concepts

can be extracted and recognized into UMLS to enable linkage to many other biomed-

ical vocabularies. The Metathesaurus facilitates the conversion of UMLS identifiers

into other ontologies and is not only limited to SNOMED CT. Future implementations

can take advantage of other repositories by converting laboratory measurements into

LOINC, medications into RxNorm, medical imagery into DICOM, and procedures

into CPT. Furthermore, natural language processing can be used to analyze and rec-

ognize concepts in the unstructured data more deeply by incorporating the detailed

notes in discharge summaries, radiology reports, pathology reports, and other narra-

tives.
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CHAPTER VI

PRIORITIZING ICU PATIENTS

6.1 Introduction

The current climate of critical care has a heavy challenge to meet growing patient

demands while hospital capacity continues to shrink at an alarming rate. Accord-

ing to American Hospital Association, the number of hospital beds has reduced by

almost 25 percent in a period of 20 years [23]. Due to Certificate of Need (CON)

regulations, an average occupancy level of 85 percent was required before approval

to increase capacity [57]. Since, many hospitals had average occupancy below these

rates, there was an impression in the health care community that there was excess

capacity. For nonprofit hospitals, average rates had reached as low as 66 percent [191].

Consequently, available beds have continued to decrease across states.

In April 2002, a Lewin Group survey reported 62 percent of U.S. hospitals reached

or exceeded maximum operating levels. The percentages raised to 79 percent for

urban hospitals and 82 percent for level I trauma centers [24]. The Center for Disease

Control reported the number of annual emergency department (ED) visits climbed

by almost a quarter for the decade ending in 2002. The number of EDs reduced by

15% for the same period [322].

Setting hospital capacity by focusing on occupancy levels has led to serious cir-

cumstances. There have been access blocks and substantial increases in waiting

times [329]. The relationship between waiting time and average occupancy is not

linear. At a point, the average delay can start to rise exponentially to even small

increases in utilization [190]. Wait time is dependent on the time between arrivals

and service duration. These measures have significant variability, and delays can be
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considerably different for identical utilization levels. It is not sufficient to only em-

phasize average occupancy levels when evaluating the process flow of a health care

center.

Increasing average wait times for medical care has led to complications that are

more significant than economic incentives. Poor patient flow has been found to be

associated with elevated mortality rates, longer length-of-stay, and heightened read-

mission [72, 412]. Sprivulis et al. linked ED overcrowding to a 30% relative increase

in mortality [468]. Chalfin et al. identified delays to intensive care were correlated

with longer lengths of stay and higher mortality [71]. During periods of stress, a

decision to admit a patient may not be entirely clinically driven and nurses are prone

to medical errors [300].

Early discharges are more likely at high occupancy levels. The average length of

stay can be reduced up to 16% for patients discharged from a busy intensive care unit

(ICU) [256]. However, the likelihood of returning increases substantially [129, 256,

465]. KC et al. found overall bounce-back probability was 14% but rose to 37.4% for

early discharged patients [256]. Higher severity patients are associated with longer

revisit stays raising their net total length of stay. These factors effectively reduce

hospitals peak capacity, because the readmission loads add unexpected flow related

stresses [300]. Readmitted patients have also been found to have higher mortality

rates in addition to longer length of stays. Snow et al. identified mortality rates for

returning patients were 26%, three times the general population for surgical intensive

care units [465]. Readmissions from premature discharge can increase costs and lead

to overall worsening of medical conditions for patients [24].

It is essential to improve the process flow of health care centers with motivations

that are not purely economic. The demand for intensive care is high. Green et al.

determined 90% of ICUs in New York have insufficient capacity to provide proper

medical care [191]. While economics tend to favor high occupancy [183], the quality
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of care does not. This paper evaluates different priority methods to minimize waiting

times for admission to intensive care units. An emphasis is placed on the severity of

medical conditions rather than exclusively focusing on market factors. The goal is to

maximize the quantity of patients served without sacrificing the quality of care.

6.2 Related Work

In a perfected system, all patients would arrive at the same rate and all patients

would have the same condition that requires identical service time. This system

would be 100% efficient as many automated manufacturing plants [300]. This is not

the case in the health care community. Patients arrive unexpectedly with an immense

diversity of conditions. Therefore, it is necessary to optimally fit the distributions for

patient arrival and service time. In most studies, the inter-arrival times are regarded

as a negative exponential distribution [413]. The length of stay (LOS) can have

different distributions for different patient types [272]. The fit distributions can vary

from exponential, negative exponential, log-normal, or Weibull [100, 329, 454, 496].

Kokangul et al. applied a Kolmogrov-Smirnov test on five years of admissions to

a teaching hospital and found arrivals distributed as a Poisson process and LOS

distributed as log-normal [272].

Siddharthan et al. classified patients into emergency and non-emergency care [459].

After collecting data from an emergency department in Florida, patients were grouped

as emergency care for major trauma, critical care, minor trauma, and non-critical

care cases. Non-emergency care was classified only for primary care patients. 53.3

percent of patients were found to require emergency care and 46.7 percent were non-

emergency. The average arrival rate, service rate and waiting time were calculated

for both types. The study assumes arrivals follow a Poisson probability distribution

and service rate follows an exponential distribution. Using a proper priority queue

discipline, [233] it found the average waiting time to reduce by 10 percent for all

133



patients. The queue gave highest priority to emergency care patients, because they

had the larger average service time.

Chan et al. utilized a more sophisticated priority queue with 9 categories of pa-

tients [73]. Each category is classified by low, medium, or high LOS and by low,

medium, or high severity. All groups of patients are tested with three different pri-

ority models. The model assumes a patient must be discharged for new arrivals if

intensive care units are at full capacity. This is due to the inherent urgency of intensive

care. Each priority model enforces the discharge order for patients in intensive care.

The three models are based on lowest nominal length-of-stay, smallest probability

of readmission, and lowest readmission load. Readmission load is return probabil-

ity multiplied by average LOS for successive visits. The study results reported the

readmission load model outperformed all other priority schemes by up to 10%.

Dobson et al. attempts to accurately estimate the expected number of patients

transferred to accommodate more critical arrivals [124]. The study does not use a

complex priority scheme compared to Chan et al. Instead, patients are more simply

discharged by lowest remaining length of stay. A Markov model is utilized to study

the effects of ICU workload on patient bumping.

The difficulty of assigning priority to ICU admissions is to correctly identify the

severity of incoming patients. Escobar et al. assess the severity of each patient

by assigning the probability of mortality based on sex, age, primary condition and

chronic ailments [136]. 16,090 ICD admission diagnoses were grouped into 44 broad

categories. Graham et al. used a simpler approach by classifying a diagnosis into

high, medium, or low risk [189].

Adding to the complications of accurately identifying patient severity, clinicians

typically write diagnosis records in free-textual format. There have been successful

attempts to use machine learning and natural language techniques to correctly as-

sociate notes with hierarchical codes, such as SNOMED-CTr and ICD-9 [79, 116,
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372, 375, 386, 424]. However, these methods have been found to have considerably

lower performance in data poor cases [424]. More successful results were attained

when a large volume of clinical reports, laboratory results and follow-up reports were

available.

Regarding strategies for analyzing ICU workflow, Chan et al. only prioritized

patients by how they were bumped from the ICU rather than admitted. Discharges

were enforced by attempting to minimize readmission load according to several fac-

tors, including return probability and LOS. Dobson et al. also prioritized patient

transfers from the ICU [124]. They were ordered according to their remaining length

of stay. Both of these studies used sophisticated priority schemes, but were not en-

tirely realistic. Patients were automatically admitted when requesting ICU entry by

bumping lower priority patients. However, in healthcare settings it is not uncommon

for average wait times for an ICU to exceed 4 hours [321], and bumping patients can

cause significant medical complications [129,256,465].

6.3 Methods and Computational Design

6.3.1 Data preparation

32,531 medical records were retrieved from a large urban hospital over a one year

period from March 2010 to April 2011. Each record included the patients id, regis-

tration number, diagnosis, and entrance and exit times of each reserved room during

the entire hospital stay. Five separate intensive care units were analyzed for this

study: Cardiovascular (CV) Surgery, Neurosurgery, Medical, Neuroscience, and Sur-

gical. Since the distribution of LOS may vary among different patient types [272],

Matlabr 8.1 was used to fit the LOS distribution for each ICU.

Of 5,465 hospital ICU visits, 813 contained a missing entry. 14.8 percent of records

included the time a patient exits an ICU room without the time of entry. These

offending records were temporarily removed to calculate the LOS distributions for
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each ICU unit (Table 6.1). The fitted distributions were then used to sample entrance

times for the records with missing entries.

Table 6.1: Length of stay distribution.

ICU LOS Distribution

CV Surgery LogNormal ( 3.89, 0.94 )

Neurosurgery GeneralizedExtremeValue ( 0.61, 13.50, 24.21 )

Medical LogLogistic( 3.71, 0.42 )

Neuroscience GeneralizedExtremeValue( 0.51, 14.8, 22.6 )

Surgical GeneralizedExtremeValue( 0.64, 21.0, 31.4 )

Arrival rates were calculated after all hospital ICU visits contained complete

records for entry and exit. Full lists of entrance times were generated, and distri-

butions were fitted from interarrival times for each ICU. Arrivals were separated by

emergency and scheduled surgery admissions (Tables 6.2, 6.3). Other statistics were

calculated to help identify the process flow of patients through the system. These

included return rates after a patient leaves an ICU and after a patient is forcibly

bumped from an ICU. Mortality rates were determined for patients entering an ICU

(Table 6.4).

Table 6.2: Emergency arrival distribution.

ICU Emergency arrival distribution

CV Surgery Exponential ( 31.11 )

Neurosurgery Gamma ( 0.82, 39.88 )

Medical Weibull ( 10.65, 0.88 )

Neuroscience Exponential ( 72.23 )

Surgical Gamma ( 0.82, 19.15 )
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Table 6.3: Scheduled arrival distribution.

ICU Scheduled arrival distribution

CV Surgery Gamma ( 0.76, 99.64 )

Neurosurgery Weibull ( 24.52, 0.71 )

Medical Gamma ( 0.33, 4,746.4 )

Neuroscience Exponential ( 72.72 )

Surgical Gamma ( 0.70, 51.92 )

Table 6.4: Probabilities for ICU returns and mortality.

ICU P (R) P (M) P (R | t)

CV Surgery 0.06 0.34 0.33

Neurosurgery 0.13 0.32 0.42

Medical 0.03 0.34 0.43

Neuroscience 0.06 0.36 0.27

Surgical 0.09 0.13 0.33

P (R) Return probability from icu exit
P (M) Mortality probaility
P (R | t) Return probability after early discharge

6.3.2 Natural language processing of clinical diagnosis records

The medical records obtained were not comprehensive enough to conduct a full con-

textual analysis. In particular, the diagnoses from patient records received did not

contain standardized codes, such as ICD-9. They were free text entries ranging only

up to 54 characters at maximum. This limits text analysis for each record to a few

words at most, but it is useful to test the applicability of natural language processing

when the content is very minimal.

Due to the difficulty of uniquely matching a patient’s diagnosis with minimal
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content and non-restricted entries, the goal is to instead classify the severity of a

patients condition based on these free text entries. Severity is calculated by identifying

key words shown to have high prevalence in cases of mortality.

Of 2,950 diagnoses, 486 resulted in mortality. The clinical terms used in mortality

cases were treated with higher severity. A list of words was generated from all di-

agnosis records. Another list was produced only from the mortality records. NLTK,

a natural language processing toolkit for Python, was used to tokenize the words in

each list [44]. It was important to only include words in the English dictionary and

remove any common stop words. Wordlist is a corpus included in NLTK that contains

234,943 unique English words, and the English Stopwords corpus contains 127 unique

words. These corpora facilitate more significant words to be identified in diagnosis

records, but many medical terms may be improperly excluded. It is possible that

common words used by clinicians are not included in the standard English dictionary

provided by the NLTK library.

SNOMED-CTr is a standardized reference that contains millions of medical con-

cepts developed by the American Pathologists and the United Kingdoms National

Health Service [472]. The July 2011 release contained 988,921 unique medical terms.

We use this release to augment the list of English words provided by the NLTK

corpus. SNOMED-CT was tokenized and stop words were removed using the NLTK

library. SNOMED-CT was found to contain 94,581 unique words and when combined

with the Wordlist corpus, the union created a joint corpus of 304,760 unique words.

This added 69,817 medical words facilitating more content for analysis. With only

utilizing the Wordlist corpus, 6,008 words were matched from diagnosis records. The

joint SNOMED-CT Wordlist corpus matched 6,535 words increasing the data size by

8.7 percent.

The severity score is calculated by determining the frequency distribution for all
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strings occurring in diagnosis records that resulted in survival and mortality. In N-

gram language models, the probability of a sentence is computed by multiplying the

frequencies of consecutive words. The number of words can vary, but usually a bigram

or trigram model is chosen due to data sparsity:

p(s) =
i+1∏
i=1

p(wi | wi−1i−n+1) (6.1)

p(wi | wi−1i−n+1) =
c(wii−n+1)∑
wi
c(wii−n+1)

(6.2)

where n is the number of preceding words, p(s) is the probability of a sentence,

p
(
wi|wi−1i−n+1

)
is the probability of a word with n preceding words, c

(
wii−n+1

)
is the

count of instances of wi preceded by wi−1, wi−2, . . . , wi−n+1 words,
∑

wi
c
(
wii−n+1

)
is

the count of all instances preceded by wi−1, wi−2, . . . , wi−n+1 words.

Unfortunately, the standard n-gram model will not accurately estimate sentence

probabilities due to data sparsity. Smoothing techniques must be utilized or probabil-

ities of sentences with zero count n-grams will also equal zero. Chen et al performed a

comparative study of different smoothing techniques and found Modified Kneser-Ney

Smoothing to have excellent performance [87]. Kneser-Ney Smoothing uses a single

discount value D to reduce the counts of the n-grams, and then adds the counts of

smaller n-1 grams. Modified Kneser-Ney Smoothing is a variation that uses three

discount parameters as follows:

139



Y =
n1

n1 + 2n2

D1 = 1− 2Y
n2

n1

D2 = 2− 3Y
n3

n2

D3+ = 3− 4Y
n4

n3

D(c) =



0 if c = 0

D1 if c = 1

D2 if c = 2

D3+ if c ≥ 3

(6.3)

where n1, n2, n3, n4 are counts for the number of n-grams with exactly 1, 2, 3 and 4

instances.

The following is the full equation for Modified Kneser-Ney Smoothing:

pKN(wi | wi−1i−n+1) =
c(wii−n+1)−D(c(wii−n+1))∑

wi
c(wii−n+1)

+ γ(wi−1i−n+1)pKN(wi | wi−1i−n+2) (6.4)

γ(wi−1i−n+1) =
D1N1(w

i
i−n+1�) +D2N2(w

i−1
i−n+1�) +D3+N3+(wi−1i−n+1�)∑

wi
c(wii−n+1)

(6.5)

where N1

(
wi−1i−n+1�

)
is the number of n-grams that occur exactly once with the prefix

words wi−1, wi−2, . . . , wi−n+1. N2 and N3+ are defined analogously.

The next step is to calculate the posterior probability of patient mortality given the

diagnosis sentence. The likelihood of the diagnosis sentence for survival and mortality

are calculated using Modified Kneser-Ney smoothing. The priors for patient survival

and mortality are determined from the dataset. The posterior probability of patient

mortality is then calculated with Bayes formula:

P (πM | s) =
P (s | πM)P (πM)∑
iεM,S P (s | πi)P (πi)

(6.6)
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where P (s | πM)P (πM) and P (s | πS)P (πS) are the likelihood of a sentence multi-

plied by the prior of patient survival or mortality.

After the posterior probability for mortality is calculated for every patient, they

are clustered into 3 severity groups using K-means clustering. It was found that

this approach accurately separated patients into groups with higher mortality rates

(Table 6.5).

Table 6.5: Severity group results from K-Means clustering

Cs # Patients P̄ (πM | s) P (M)

1 577 0.0165 0.172

2 456 0.301 0.285

3 370 0.864 0.476

Cs severity group
P̄ (πM | s) average posterior probability for mor-

tality in severity group.
P (M) mortality rate in severity group.

Patients were then separated into 9 different groups based on high, medium and

low severity and length of stay. The return rate and average return length of stay were

calculated for each group and ICU. Since, there are five different ICU departments,

it resulted in 45 groups of statistics (Table 6.6).
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Table 6.6: Patient group results after clustering.

CS CLOS
CV Surgery Medical Neurosurgery Neuroscience Surgical

P (R) LOSR P (R) LOSR P (R) LOSR P (R) LOSR P (R) LOSR

1 1 0.115 133.29 0.150 49.90 0.080 37.85 0.103 30.40 0.033 114.98

1 2 0.074 133.29 0.207 49.90 0.039 37.85 0.167 30.40 0.066 114.98

1 3 0.070 133.29 0.105 49.90 0.100 37.85 0.118 30.40 0.169 114.98

2 1 0.100 78.70 0.125 50.48 0.030 116.96 0.235 75.10 0.116 187.05

2 2 0.129 78.70 0.140 50.48 0.056 116.96 0.071 75.10 0.088 187.05

2 3 0.136 78.70 0.267 50.48 0.107 116.96 0.125 75.10 0.179 187.05

3 1 0.115 39.15 0.111 70.64 0.031 133.97 0.045 186.84 0.192 156.17

3 2 0.038 39.15 0.160 70.64 0.024 133.97 0.071 186.84 0.111 156.17

3 3 0.048 39.15 0.231 70.64 0.067 133.97 0.091 186.84 0.130 156.17

CS Severity group
CLOS LOS group
P (R) Return rate for patient group
LOSR Average return length of stay for patient group

6.3.3 Simulation Model

A simulation model was built using SimPy [348] to aid in the development and eval-

uation of the process flow of five intensive care units. A separate submodel was

created for each ICU: CV Surgery, Neurosurgery, Medical, Neuroscience and Surgi-

cal. Each submodel had both scheduled and emergency arrivals. Scheduled arrivals

were direct transfers after an appointed operation or surgical procedure, and emer-

gency arrivals were unexpected admissions. The inter-arrival distributions were fitted

using Matlabr 8.1 for both cases (Tables 6.2, 6.3).

Different numbers of beds were allocated and a separate queue was designated for

each ICU. The full computer model contains scheduled and emergency arrivals for all

five ICUs. Further, each ICU is modeled in detail, including service, queues, clinical

and patient workflow, and their inter-dependencies on patient care and resources.
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After a patient departs an intensive care unit, they are transferred to an interme-

diate care room before dismissal. The patient may return to an ICU after transfer to

an intermediate room or they may exit the hospital.

Estimated probabilities from hospital records were utilized in the simulation model.

The return and mortality rates were separately calculated for each ICU (Table 6.1).

The Return module in our computerized model captures all possibilities for returns

and exits. It also includes mortality cases where patients do not survive their ICU

stay.

The simulation model tests six different queuing methods and each is executed

in SimPy for a period of 7 days with ten replications. The results reported for each

queuing model are averages over all replications.

6.3.4 ICU Resource Allocation

The goal of this system is to aggressively test the process flow of the hospital un-

der heavy conditions. The given numbers of beds were approximated for each ICU

according to an M/M/s queuing model. The model assumes there are s identical

servers with unlimited waiting room capacity. Service duration follows an exponen-

tial distribution while arrivals occur at a constant rate according to a Poisson process.

Given the number of servers s, average arrival rate λ, and average service time 1
µ
, the

mean waiting time in the queue Wq can be calculated under the M/M/s model by

equation 6.10 [194]:

p0 =

[
s−1∑
n=0

(ρs)n

n!
+

ρsss+1

s!(s− ρs)

]−1
ρ < 1

pn =


λn

n! µn
p0 (1 ≤ n ≤ s)

λn

sn−s s! µn
p0 (n ≥ s)
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pD = 1−
i−1∑
n=0

pn (6.7)

ρ = λ/sµ (6.8)

Lq =
ρ

1− ρ
pD (6.9)

Wq = Lq/λ (6.10)

where equation 6.9 is the mean number of patients in the queue. Equation 6.7 calcu-

lates the probability that an arrival will experience a delay for service. Equation 6.8

is the average utilization for the queuing system, and s is the number of servers.

In the 2001 US National Hospital Ambulatory Medical Care Survey (NHAMCS),

the average waiting time for an ICU bed reported was approximately 4.1 hours [321].

In this study, the average arrival rate and service duration were determined for each

intensive care unit. Using the M/M/s model, the average wait times were calculated

with the given number of beds for each ICU (Table 6.7).

Table 6.7: M/M/s Queuing Model parameters for each ICU.

ICU λ λs µ sr se

CV Surgery 0.125 0.013 0.011 18 16

Neurosurgery 0.105 0.034 0.015 20 11

Medical 0.122 0.002 0.017 14 11

Neuroscience 0.042 0.014 0.015 7 6

Surgical 0.140 0.032 0.013 20 15

λ Arrival rate (patients/hour)
λs Arrival rate from scheduled surgeries (patients/hour)
µ Service rate (patients/hour)
sr Number of beds in hospital
se Number of beds in simulation model

Parameters in the simulation model are determined empirically so as to match the
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hospital statistics for ICU admission delay to accurately evaluate the benefits for dif-

ferent test settings. Using the M/M/s model, performance measures were calculated

for each ICU for different levels of bed availability. Since the M/M/s assumption of

exponential service times can lead to underestimating actual congestion [192], the

number of beds selected by the simulation model were associated with mean waiting

times between 1.8 − 3.2 hours (Table 6.8): CV Surgery (16), Neurosurgery (11),

Medical (11), Neuroscience (6), Surgical (15)

Table 6.8: Estimated wait times for each ICU using M/M/s Queuing Model.

CV Surgery Neurosurgery Medical Neuroscience Surgical

11 705.541 8 52.162 8 60.122 3 267.681 11 413.788

12 51.580 9 14.948 9 15.611 4 23.198 12 42.430

13 18.190 10 5.684 10 5.834 5 5.606 13 15.265

14 7.972 11 2.333* 11 2.396* 6 1.531* 14 6.725

15 3.755 12 0.972 12 1.006 7 0.417** 15 3.170*

16 1.809* 13 0.400 13 0.419 16 1.525

17 0.871 14 0.160 14 0.171** 17 0.733

18 0.414** 15 0.062 18 0.348

16 0.023 19 0.161

17 0.008 20 0.073**

18 0.003

19 0.001

20 0.000**

s Number of beds
Wq average wait time (hours)
* Wq for s used by simulation model.
** Wq for s used by the hospital.
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6.3.5 Classification of severity group

After a patient arrives at the hospital in the simulation model, they are classified

into one of nine different groups based on their severity score and LOS. The LOS

is generated from the distribution for the requested ICU. There are prior values for

the percentage of patients in each severity group. However, the LOS distributions

are slightly different for each severity group (Table 6.6). For example, it is rare to

find a patient with high severity and high LOS. It would not be entirely accurate

to assign the severity group based only on prior probabilities. Therefore, a posterior

probability is calculated by multiplying the prior probability with the likelihood given

a patient’s LOS:

P (LOS;µs, σs) =
1

LOS σs
√

2π
e
−(lnLOS − µs)2

2σ2
s (6.11)

P (LOS | Cs) = P (LOS;µs, σs) (6.12)

P (LOS) =
∑
s∈S

P (Cs)P (LOS | Cs) (6.13)

P (Cs | LOS) =
P (Cs)P (LOS | Cs)

P (LOS)
(6.14)

where Cs is the severity group class, LOS is the sampled value for length of stay from

the ICU distribution, and µs and σs are parameters of the log-normal distribution for

Cs in equation 6.11. Equation 6.12 is the likelihood of observing the LOS given Cs.

Equation 6.13 marginalizes the overall probability for LOS over all severity cluster

distributions. Equation 6.14 is the posterior probability of belonging to Cs given the

LOS, and P (Cs) is the prior probability of belonging to Cs,

The severity group is assigned to the admitted patient based on the calculated pos-

terior probabilities for each class. Each group has a set of mortality rates determining

whether the patient will die during their stay in the ICU (Table 6.5).
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6.3.6 Managing Artificial Variability

There is substantial natural variability in hospital admissions through the emergency

department, but there is also artificial variability. In this study, we found that 28.2%

of entries were admitted to an ICU from elective surgeries. If adjusted for patient vol-

ume, scheduled surgical admissions can vary even more than through the Emergency

Department (ED) [301]. This can have reciprocal effects where high surgical volumes

can delay operations and increase waiting times for an available room. Operations

can be cancelled due to a shortage of ICU beds.

In this study, the distribution is calculated for interarrival times to each ICU from

scheduled and unscheduled admissions. A Passive model is first tested that uses no

priority scheme and factors natural and artificial variability of arrivals. Each model

reports the total patients served, severe patients admitted, average waiting times,

return rate, and mortalities.

The Smooth Model is similar to the Passive Model, except it uses an ideal surgery

schedule where there is no artificial variability. This is to help determine the effects

the surgery schedule has on the hospital process flow. The average time between

arrivals is calculated for scheduled admissions for each ICU (Table 6.8). Instead

of using the fitted distributions for scheduled admissions, patients arrive at times

equidistant from each other for each ICU.

The Smooth Model is not realistic, because even operation times can vary in ideal

cases where elective surgeries are scheduled at efficient times. It is only used for

evaluation purposes. All subsequent models utilize fitted distributions for scheduled

admissions, but test different priority methods for admitting and bumping patients.

6.3.7 Priority Models

Typically, a queue admits entries on a first-come-first-serve (FCFS) basis. However,

priority queues allow different classes to be treated differently. Without preemption,
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higher class items can jump ahead of others within the queue. However, service

cannot be interrupted for any items in process. In a preemptive priority class, higher

class items can discontinue other items currently in service [190]. In this study, both

preemptive and non-preemptive models were tested to analyze the process flow of

intensive care units.

Four different priority models were evaluated in our simulation model. Specifically,

we derive and test models that both restrict and allow bumping while factoring the

consequent mortality and return rates.

Greedy: The greedy method [459] gives patients with highest LOS the greatest

priority. Using queuing theory, Siddhartan et al. showed that admitting patients with

larger LOS before others lowered the overall average wait time [459]. The Greedy

model is non-preemptive where bumping of patients is not permitted in any case.

Higher priority patients in the queue are not permitted to interrupt lower priority

patients in service.

Hybrid: The hybrid method admits patients based on their severity and their

LOS. A patient in the highest severity group will be admitted first, but patients in

the lower severity groups will be ordered according to their average LOS. The Hybrid

model is also a non-preemptive method. It factors admission not only on efficiency,

but also on the severity of the patients condition.

The next two priority models are both preemptive. They allow the service of lower

priority patients to be interrupted if a higher priority patient is admitted.

Severity (Conservative) Bumping: The Conservative Bumping model is identical

to the Hybrid model in the order patients are placed in the queue. However, a severe

patient (Cs = 3) in the queue can bump a non-severe patient (Cs < 3) from service.

Non-severe patients cannot bump any patients from service. Non-severe patients are

bumped by lowest remaining length of stay plus the associated readmission load:
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LOStot = LOSrem + P (RP )× LOSPret (6.15)

where LOSrem is the remaining service time, P (RP ) is the average return rate for

the patient group, and LOSPret is the average service time for returns for the patient

group (Table 6.6), LOStot is the estimated total service time. The readmission load

is the product of return probability times return LOS, which is calculated using a

similar method to the study by Chan et al [73].

Aggressive Bumping: Severe patients can still not be discharged from the ICU

while in service. However, non-severe patients will be bumped when any type of

patient requests admission to the ICU. Patients are discharged in the same order

as the Conservative Bumping model. Aggressive Bumping is similar to the method

used by Chan et al., except severe patients are restricted from ICU transfer before

completion of service.

If a patient is bumped while in service, they will have a higher return rate as

found in our hospital transfer records data (Table 6.4). Subsequently, the returned

patients also have a higher mortality rate. All four different priority models are tested

to determine the effects on waiting time, return rate and mortality.

6.4 Results

Table 6.9 reports the results for all six queuing models. Without enforcing any pri-

orities for admission, the Passive Model reported higher average waiting time in the

queue (62.03 min) and fewer total patients served (2,257).

The Smooth Model also does not enforce priorities, but arrivals from elective

surgeries occur at a constant rate. The hospital only schedules surgeries Monday

through Friday and operating hours can vary significantly. The Smooth Model is

an ideal case that removes all variation from scheduled surgery arrivals. It gave

impressive results when compared to the Passive Model at 56.22 minutes for average

149



waiting time and 2,261 for total patients served. This raised the amount of patients

as well as lowering delays. This showed reducing artificial variability is beneficial if

it is possible to enforce a more regimented surgery schedule.

Table 6.9: Priority Queuing Model Results.

Model # Patients # Sev Patients P (R) P (M) B Wq Wqs

Passive 2,257 547 0.089 0.286 0 62.03 63.57

Smooth 2,261 548 0.088 0.291 0 56.22 57.01

Greedy 2,306 559 0.091 0.286 0 36.22 28.86

Hybrid 2,287 564 0.084 0.288 0 35.86 13.20

Conservative Bumping 2,299 571 0.108 0.292 201 15.79 2.48

Aggressive Bumping 2,295 568 0.119 0.300 373 3.30 2.09

P (R) return rate
P (M) mortality probability
B number of bumped patients
Wq average waiting time in the queue for all patients
Wqs average waiting time in the queue for severe patients

Priority queuing models were tested with artificial variability utilizing the fitted

distributions for scheduled surgery arrivals. The Greedy model only prioritizes pa-

tients by their expected LOS. It was able to serve 2,306 patients at an average waiting

time of 36.22 minutes. This model could not capitalize on the benefits of uniform

patient arrivals as with the Smooth Model, but it was able to significantly lower the

average wait time due to more efficiently prioritization of patient admittance.

The Greedy model focuses on efficiency rather than patient severity. The Hybrid

Model prioritizes severe patients above all others. Non-severe patients are prioritized

by expected LOS identical to the Greedy Model. The Hybrid Model served 2,287

patients at 35.86 minutes average waiting time. Less patients are served than in the

Greedy Model, but the average waiting time for severe patients was 13.20 minutes

compared to 28.86 minutes. The Hybrid Model also had the lowest return rate at
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8.4%.

The Conservative Bumping and Aggressive Bumping models reported results with

substantial differences. Both preemptive queuing models prioritize patients by sever-

ity identical to the Hybrid Model. The Conservative model can only bump less severe

(Cs < 3) patients from service when the most severe (Cs = 3) request ICU admission.

The Aggressive Model bumps less severe patients from service for any patient request-

ing admission. The Conservative Bumping model served 2,299 patients and bumped

an average of 201 from service. The average waiting time was 2.48 minutes for severe

patients and 15.79 minutes for all patients. The mortality rate was only raised by 0.4

percent compared to the Hybrid Model. The Aggressive Model served 2,295 patients

bumping 373 patients with an average waiting time of 3.3 minutes. The return rate

increased by 1.0 percent and it reported the highest mortality rate for any model

at 30.0%. Interestingly, it served four less patients than the Conservative Bumping

Model and only 8 more patients than the Hybrid Model. It is clear that bumping can

prove to be beneficial but only in heavily restricted cases.

6.5 Discussion

Healthcare centers that focus on operating at highest efficiency may consequently

sacrifice the quality of care. By evaluating several different priority methods, the

ICU system-based simulation model helps identify the costs of prioritizing by severity

rather than efficiency. Severe priority methods do raise overall waiting times and

lower the amount of patients served, but added benefits reduce further medical com-

plications. Shorter wait times for severe patients result in lower return and mortality

rates. Severe priority methods can show substantial enhancements by conservatively

allowing bumping policies. Permitting early discharges with severe priority models

resulted in wait times close to the most efficient models. However, without firm

restrictions, bumping can significantly raise the mortality and return rates.
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There are several potential future research studies that can be conducted with

appropriate types of data. Our approach is applicable to other hospital data streams,

for example, ICD diagnosis codes, patient resource needs, and hospital utilization

status. Specifically, it would be beneficial to accurately categorize the diagnosis for

each patient using individual ICD diagnosis codes. This would help determine if a

patient return was due to an early discharge or because of an entirely new condition.

Further, in our earlier readmission work [286], hospital resource usage and utilization

information were employed to help predict patient readmission characteristics and

the impact on patient needs and quality of care.

The studied hospital has five distinctly specialized intensive care units. There

may be events where the requested ICU is full and a patient is diverted to an ICU

of a different specialty [273]. It would be advantageous to examine the implications

regarding permitted diversions for associated conditions. An analysis could be con-

ducted whether patients benefit from diversions to ICUs of different specialties rather

than remaining in the queue for the desired location.

Patient admissions can also be evaluated more globally. If estimated wait times

were available for each hospital, the costs can be considered for redirecting patients

to another hospital. The studied hospital herein has a sister medical center at a loca-

tion about six miles away. It would be interesting to review records for cases where

patients were blocked access and directed to this alternative location. A future study

will analyze these cases and determine if transfer times were lower than estimated

wait times for direct admission. Even in circumstances where total wait time were

reduced by diversion, complications can result from the additional transit time. Opti-

mizing patient flow in healthcare settings is a challenging balance between managing

efficiency and maintaining quality of care. Hospitals can become more proficient and

resourceful in daily operations by continuing to build system models that attempt to

identify and investigate all significant interdependent factors.
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CHAPTER VII

CLUSTERING PATIENTS BY SEMANTIC SIMILARITY

7.1 Introduction

Multimorbidity is the nonrandom association between 2 or more chronic medical con-

ditions in one individual [508]. Patients with multimorbidities have a lowered quality

of life with worsened medical conditions that are correlated with psychological distress

and postoperative complications [153, 180, 527]. These factors result in higher costs

of care in a healthcare industry [527] that is predominantly designed and evaluated

by quality measurements for single diseased individuals [469, 470]. Multimorbidities

are not rare isolated cases and can reach prevalence rates of over 50% in specific pop-

ulations [154,508]. According to a study by Barnett et al. [32], half of newborns are

expected to suffer from multiple chronic conditions during their last 15 years of life.

Investigative studies that facilitate a larger understanding of multimorbidity patterns

will have profound implications for patient treatment decision support and prognosis

strategies that focus care around the patient rather than the disease [227,246].

Clinical practice guidelines are simply not relevant to “typical” patients with mul-

tiple chronic conditions [59,306], because disease management and patient pathways

are devised around single diseases [469, 470]. There is little evidence for patient

treatment with multiple chronic conditions [316], and single-diseased guidelines often

cannot address the complex needs of patients with multimorbidty [493]. Furthermore,

physicians in many cases are unable to follow the best practices for each disease due

to incompatible treatments [55, 408], such as interacting medications.

There is a need for strategies that can accurately identify sub-populations with

153



multiple chronic conditions to develop treatment regimes that are relevant and appro-

priate for patients with multimorbidity. Several studies have focused on the highest

absolute frequencies of specific combinations of diseases [513], but there are an enor-

mous amount of theoretically possible permutations [509]. Given only a few diseases,

there are already hundreds of thousands of different possible combinations requiring

many calculations and very large samples. Newcomer et al. analyzed 17 conditions of

interest and found only examples of 1,507 different combinations of coexisting condi-

tions, but this is still too large for opportunities of targeted care management [355].

Frequencies of chronic conditions have limited value, since they are determined solely

from prevalence rates in a population where the most common diseases return the

most common combinations. It is more informative to view disease patterns from the

nonrandom associations of health problems [507].

Data mining techniques provide an opportunity to identify meaningful groups of

patients “up front” without calculating thousands of prevalence rates and conducting

multivariable regression analyses. Previous studies have utilized multivariable regres-

sion analyses to predict patient outcomes [53,127,229], but it involves analyzing many

patient-level characteristics on data sets that are often limited in size. Cluster anal-

ysis is a data mining technique that identifies groups of highly similar items within

data sets [140]. It is exploratory by nature and has applications in many fields, such

as market research, social network analysis, crime analysis, and climatology. Simple

tabulations of disease frequencies are difficult to interpret, and clustering provides a

unique opportunity to investigate the co-occurrence of multiple chronic conditions.

By identifying specific combinations of comorbidities, healthcare outcomes can be

improved from care management strategies that are more targeted to the individual.
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7.2 Related Work

7.2.1 Semantic Similarity

When clinical documents are annotated to concepts in a standardized ontology, se-

mantic similarity measures can be used to calculate the degree of relatedness between

terms. Semantic similarity measures are particularly important to the biomedical do-

main, due to the large volumes of unstructured textual resources and the significance

of terminologies. By classifying clinical records to standardized ontological concepts,

patients can be semantically analyzed and subjects with similar conditions can be

identified [432]. Information retrieval can be improved by extending user’s queries

with semantically similar terms [376]. Semantic technologies can also accelerate the

integration of heterogeneous clinical information by disambiguating medical concepts

and identifying equivalencies when linking separate sources [478]. Ontologies have be-

come an important component of biomedical research, and in response, a wide variety

of semantic similarity approaches have been developed. However, there is no clear

choice for the best strategy, because different measures perform differently depend-

ing on the circumstances. Results can vary depending on the corpus, benchmark, or

applied terminology [173,385].

As discussed in Section 2.3, semantic similarity approaches can be divided into two

broad categories, edge-based measures and information content measures. Edge-based

measures simply compare entities by counting the amount of taxonomic links between

items. Rada et al. [403] calculates the distance between items as the minimum path

connecting them:

disrad(c1, c2) = min∀i |pathi(c1, c2)| (7.1)

Wu and Palmer [533] calculate the minimum path but also factor the relative depth

of both concepts in the taxonomy. The similarity measure is determined from the

depth of the Least Common Subsumer (LCS), the most specific ancestor common to
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both concepts:

simwp(c1, c2) =
2× depth(lcs(c1, c2))

depth(c1) + depth(c2)
(7.2)

Leacock and Chodorow [282] use the minimum path and maximum taxonomy depth

to calculate similarity:

simlch(c1, c2) = −log
(

δ(c1, c2)

2 ·max depth

)
(7.3)

where δ(c1, c2) = min∀i |pathi(c1, c2)|.

Information content (IC) measures compute similarity by determining the amount

of shared information between concepts. IC quantifies the amount of information a

term provides. The IC of a term is calculated by:

ICcorpus(c) = −log(p(c)) = −log(
freq(c)

freq(root)
) (7.4)

where p(c) is the probability of a concept c appearing in a corpus. Resnick [411]

quantified similarity by the IC of the most informative common ancestor (MICA):

simres(c1, c2) = IC(MICA(c1, c2)) (7.5)

The Lin [297] and Jiang & Conrath [240] measures also factor the IC of the compared

concepts:

simlin(c1, c2) =
2 · IC(MICA(c1, c2))

IC(c1) + IC(c2)
(7.6)

distjcn(c1, c2) = IC(c1) + IC(c2)− 2 · IC(MICA(c1, c2)) (7.7)

Resnick, Lin, and Jiang & Conrath are all corpus-based measures, because concept

appearance frequencies must be estimated from the given corpora. Textual corpora

contain words that must be disambiguated and matched to standardized concepts

in the medical ontology. The probability of each concept may not be calculated

accurately due to the sparseness of the data, which is especially evident in the clinical

domain, due to limited coverage of biomedical terms [376].
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To overcome the limitations of corpus-based IC measures, the principles of infor-

mation theory are applied in recent studies to create an intrinsic IC computation. The

following measures do not rely on corpora, but are more advanced than edge-based

measures by incorporating additional semantic evidence. Seco et al. [450], Zhou et

al. [547], and Sanchez et al. [433] depend on values, such as the number of hyponyms,

subsumers, and leaves:

ICseco(c) = 1− log(hypo(c) + 1)

log(hypo(root))
(7.8)

ICzhou(c) = k(ICseco) + (1− k)(
log(depth(c))

log(max depth)
(7.9)

ICsanchez = −log

( |leaves(c)|
|subsumers(c)| + 1

max leaves+ 1

)
(7.10)

Sanchez et al. [433] reported that its metric outperformed both intrinsic IC calcula-

tions by Seco et al. and Zhou et al. when comparing correlations against the Miller

and Charles benchmark [338]. A subsequent study by Sanchez et al. [432] evalu-

ated semantic similarity correlation with the Pedersen benchmark [376] using the

SNOMED CT ontology and the Mayo Clinic Corpus of Clinical Notes [376]. Results

were found that almost all measures based on intrinsic IC calculations outperformed

corpus-based measures.

With effective patient distance metrics based on semantic similarity, healthcare

can be expanded by accurately identifying relevant cases of interest and producing

medically relevant interpretations. Melton et al. [331] evaluated five distance met-

rics to determine patient similarity. The metrics varied on how deeply the ontology

or information content was incorporated. Patient records were observed by experts

who manually assessed similarity scores. An expert correlation was calculated for

each distance metric. The author concluded that information content and the usage

of an ontology improve biomedical semantic similarity measures but fall far short
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of performance compared to experts. Cao et al. [62] advance patient similarity by

only extracting features pertaining to disease, finding, medication, and procedure.

Patient similarity is calculated by determining the probability of each feature in the

given corpus and using the Aslam and Frost metric [21]. Plaza et al. [392] map terms

in patient records to UMLS and create concept graphs. Concepts in each graph

are weighted based on how highly they are connected in the taxonomy. Similarity

is then calculated by comparing each patient’s concept graph. Pivovarov and El-

hadad [391] introduce a hybrid-based approach by combining ontological and corpus

based methods and determining similarity by context vectors and SNOMED onto-

logical knowledge. Mabotuwana et al. [308] extract concepts from medical reports

into a document vector space model but expanded to a semantic vector [312]. Each

feature in the semantic vector represents a concept in the SNOMED ontology. For

all mapped concepts from a patient records, feature values are set to 1. All parent

concepts are set proportionally smaller based on their distance from the mapped con-

cepts. Chan et al. [74] received positive performance by using a simpler vector model.

Using an ontological vector, features were set to only a certain depth in the hierar-

chy. It was found that level 4 returned the best similarity results when matching

a query to database health records. This study also uses an ontological vector and

SNOMED CT to calculate patient similarity, but unlike Chan et al., it investigates

several semantic similarity measures. Chan et al. and Mabotuwana et al. both use a

a simple inverse of path length to calculate the similarity to higher level concepts. In

this study, the semantic similarity measure with the highest performance is used to

set the feature value of level 4 concepts.

7.2.2 Clustering

Cluster analyses has previously been used in health care services research to discover

patterns of multimorbidities, but it is an exploratory classification method where
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different algorithms can produce difference results [140]. There is a large variety of

clustering methods, and a specific algorithm may be more appropriate than others

depending on the dataset. The most common distinction between clustering types is

whether clusters are hierarchical (nested) or partitional (unnested). In hierarchical

clustering, clusters are permitted to have subclusters and the set of nested clusters

are organized as a tree. In partitional clustering, the entire dataset is divided into

non-overlapping clusters where items belong to only one subset. Different cluster-

ing algorithms are defined by the specific procedures and steps that are followed to

determine each subset of data. However, clustering may also be categorized by the

methods that objects can be assigned to each cluster. Items may belong to clusters

exclusively or assignments can be overlapping. Overlapping clustering allow objects

to simultaneously belong to more than one group. In fuzzy clustering, items belong

to every cluster, but a probability is calculated to determine the weight of each mem-

bership to each group. Additionally, clustering may be complete or partial. Complete

clustering assigns every object in the data set to a cluster while in partial clustering

this rule is not enforced. Certain items may be outliers or noise, and partial cluster-

ing is advantageous in these cases where it is not preferable to assign clusters to the

complete dataset [485].

As there are an array of different clustering algorithms and item assignment meth-

ods, there is also variation in the types of clusters that are generated. In Prototype-

based clusters, all objects are closer to the prototype of their assigned cluster than to

the prototypes of the remaining clusters. A prototype is typically the average (mean)

of all the points in the cluster. K-means is a prototype-based partitional clustering

technique [310]. In Graph-based clusters, a group of objects are connected to only

to one another but not to any objects outside the group. Agglomerative Hierarchical

Clustering [351] can be interpreted as graph-based clustering by repeatedly merging

connected components. Density-based clusters form dense regions of objects while
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ignoring noisy objects in low density regions. DBSCAN [137] is a density-based clus-

tering algorithm that produces a partial clustering of the dataset by ignoring noise

and outliers.

The accurate use of cluster analysis to identify clinically relevant comorbidity pat-

terns depends on selection of a suitable algorithm with appropriate distance measures

that can quantify degrees of nonrandomness. In previous studies, there is high het-

erogeneity in the applied methodological criteria for knowledge discovery of patients

with multiple chronic conditions [395]. This leads to a diversity of multimorbidty

patterns found across many different studies. Exploratory factor analysis [346] is a

common alternative technique to clustering to identify symptom groups [172,219,260,

393, 396, 444]. Its objective is to map high numbers of correlated observed variables

into a common causal factor. The main motivation for exploratory factor analyses

are association measures that adjust for non-random comorbidity and disease clus-

ter visualizations with health problems that overlap into multiple groups [393, 396].

However, exploratory factor analysis requires data to be in a continuous format and

authors have utilized tetrachoric correlations to bypass this restriction for diagnos-

tic variables [275, 395]. Also, factor models may fail to correspond to the common

causes of symptoms where methods that permit a wider variety of causal specifica-

tions can be more successful [363]. Multiple correspondence analyses [171], Unified

clustering [357], and Structural Equation Modelling [363] (SEM) are less conventional

implementations that attempt to accommodate for the limitations of exploratory fac-

tor analysis and clustering.

Clustering is the most common technique used in identifying multimorbidity pat-

terns, due to its ability to isolate potentially meaningful disease clusters without

initially specifying all theoretically possible combinations. Several studies group dis-

eases by hierarchical clustering and utilizing a Jaccard coefficient or Yule Q as a

proximity measure [106,243,318,319]. However, these techniques do not allow health

160



problems to simultaneously exist in multiple clusters. By hierarchically clustering pa-

tients instead of diseases, Newcomer et al. [355] and Goldstein et al. [185] both bypass

this limitation. Despite successfully returning multimorbidity patterns, hierarchically

clustering is not without its technical difficulties. They have a lack of robustness, each

data point is forced into a cluster, and dendograms are a complicated interpretation

of determining the appropriate number of clusters [344]. The current study utilizes a

density-based clustering algorithm, known as OPTICS [11] with a semantic distance

proximity measure that alleviates many of these shortcomings. Clusters vary by den-

sity relieving the necessity to initiate parameters that significantly influence results.

Patients are not coerced into cluster assignment by ignoring outliers and focus is

placed only on similarly related items.

7.3 Methods

Using the techniques described in Section 5.3, the diagnoses and procedures from

ICU stays for all patients from the MIMIC-II database were mapped to SNOMED

CT concepts. Similar to the study by Chan et al. [74], age, gender and associated

SNOMED CT concepts were mapped to an ontological vector:

v = [g1g2e1e2 . . . e100a1a2 . . . am]T (7.11)

where g1 and g2 are Boolean variables for male and female, ek is a Boolean variable

for age k ∈ [1, 99] and e100 for age ≥ 100. ai represents the patient record’s semantic

similarity to the ith SNOMED CT level 4 concept where i ∈ [1,m] and m is the

amount of concepts in the SNOMED CT taxonomy at depth level 4. Level 4 nodes

have a shortest path of 4 edges to the head node.

Chan et al. maps all SNOMED CT concepts from a patient EHR to their equiv-

alent level 4 nodes in the SNOMED CT hierarchy. In the ontological vector, each

element ai is set to the maximum semantic similarity between the ith level 4 node

and all descending SNOMED CT concepts identified in the patient EHR. If the level
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4 node has no concept descendants in the EHR, ai is set to 0. Chan et al. calculate

semantic similarity with the following equation:

1

1 +minj=1..ndij
(7.12)

where dij is the shortest path length from the ith SNOMED CT level 4 concept and

the jth SNOMED CT patient EHR concept.

This is similar to the path length similarity measure defined by Pedersen et

al. [376]. However, in analyzing semantic similarity measures, it was found in previ-

ous studies that path length has low correlation with experts [376]. There are many

biomedical semantic similarity measures that are divided into higher level approaches

that are either based on edge counting or information content (See Section 2.3). Dif-

ferent measures perform differently, and results depend on the dataset and field of

interest in the biomedical domain [173, 385]. Due to these discrepancies, it is impor-

tant to test the most popular methods with the current MIMIC-II dataset developed

in Section 5.3. There are nearly 350,000 nodes in the SNOMED CT Graph Database,

and it is apparent that semantic similarity cannot be calculated between all possible

node pairs. However, the studies by Pedersen et al. [376] and Hliaoutakis [217] both

provide a list of biomedical concept pairs and similarity scores manually assigned by

experts. These benchmarks have been used to evaluate semantic similarity measures

in multiple studies [6, 37,371,376,432,433].

In this study, nine different measures are calculated for semantic similarity be-

tween SNOMED CT concepts. These include edge-based measures (Path [376],

LCH [282] and Wu & Palmer [533]), corpus-based information content (IC) mea-

sures (Resnick [411], Lin [297], Jiang & Conrath [240]), and intrinsic IC measures

(Seco [450], Zhou [547] and Sanchez [433]).

For information content measures, counts are calculated for all mapped SNOMED

CT concept to ICU patient stays. These counts are then assigned as properties to

the equivalent nodes in the Neo4j SNOMED CT Graph Database. For information
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content, a parent node inherits the counts of all its children nodes. Therefore, after

assignment of the corpus counts to the current node, the counts are percolated upward

and added to the counts of all parent nodes. In this fashion, the head node will always

be the node with the highest count.

Almost all semantic similarity measures require identification of the lowest com-

mon ancestor between compared concepts. A Cypher query is constructed to re-

trieve the lowest common ancestor for all concept pairs from the Pedersen et al. [376]

and Hliaoutakis [217] benchmarks. After completion of percolating term counts and

graph queries, all required information is provided to calculate each semantic simi-

larity measure. The semantic similarity measure with the highest correlation is used

for the value of the level 4 node in the ontological vector. Correlation is calculated

by Spearman’s rank correlation coefficient [289]:

ρ = 1− 6
∑
d2i

n(n2 − 1)
(7.13)

where di is the difference between ranks. The Sanchez intrinsic IC measure is found

to have the highest correlation and is more effective than the Path similarity mea-

sure used in the study by Chan et al. [74]. Path was reported as one of the lowest

performing metrics when compared to other semantic similarity measures [376,387].

After the ontological vector for each patient ICU stay is calculated, a similarity

matrix is constructed with each entry containing the cosine distance between vectors:

1− ~u · ~v
‖~u‖‖~v‖

(7.14)

Since an adjacency matrix is symmetric, it is only necessary to perform n(n−1)
2

in-

stead of n2 operations. With a matrix containing an entry for all possible patient

comparisons, it is possible to create similarly related groups from the many available

clustering procedures. A density-based clustering procedure is selected due to its abil-

ity to discard outliers and infer the number of clusters. DBSCAN is a density-based

clustering algorithm that is able to discover clusters of arbitrary shape and handle
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noise and outliers effectively [137]. For each cluster, the neighborhood of a given

radius (Eps) must contain the minimum number of members (MinPts). To aid in

the appropriate selection of Eps, a k-distance distribution can be generated for the

dataset [435]. By setting k to the MinPts in each cluster, the maximum Eps distance

is calculated for each point’s k-nearest neighbors. A distribution of these k-distances

(k=30) is then created for all patient ICU stays in the MIMIC-II database (Figure

7.1). K is set to 30 as an appropriate minimum number of patients in each cluster.

In observing the k-distance distribution, the distribution substantially increases at a

threshold value of roughly 0.30 for epsilon.
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Figure 7.1: K-distance distribution of MIMIC-II patient ICU stays (K=30).

In the dataset, it is very possible that there may be clusters of patients that are

moderately separated while others are more densely packed. However, in DBSCAN,
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epsilon is a set value and the expectation is that clusters will have approximately the

same density. In response to the limitations of DBSCAN, the OPTICS [11] algorithm

was developed to allow clustering of varying density. The output of the algorithm is

a reachability plot which is a bar plot of distances, and clusters are represented by

“dents” in the plot. However, it is not explicit how to determine the clusters from

the reachability plot, and visual and automatic methods can vary without a clear

best choice for a horizontal cut-line. Sander et al. [436] developed an algorithm to

automatically create a hierarchical representation of clusters from a reachability plot

by setting MinPts = 2 and Eps = ∞. Under these settings, the core-distance of

every object is its distance to its nearest neighbor. The methods in this study use the

OPTICS algorithm with the Sander et al. settings, and new clusters are created each

time the reachability plot increase by a distance of 10% of the average of its leftmost

and rightmost neighboring points. If the containing points of a newly formed cluster

already exist in smaller clusters, the smaller clusters will become hierarchical children

of the new larger cluster.

Hierarchical clustering with OPTICS does return a superfluous amount of clusters,

because there is a great deal of overlapping where more specific clusters are contained

within larger clusters. To alleviate this issue, the average distance between all cluster

members are calculated. Any cluster is removed that exceeds an average distance

of 0.3. In the groups leftover, if any larger cluster contains smaller clusters, the

smaller clusters are disregarded. Finally, all clusters where 10% of patients do not

contain a morbidity condition are not included. This yields a much smaller and more

informative list of clusters of multimorbidity patients than the initial groups originally

returned by the OPTICS algorithm.
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7.4 Results

The SNOMED CT Graph Database built by Neo4j was utilized to calculate the low-

est common ancestor between all compared concepts in the Pedersen et al. [376] and

Hliaoutakis [217] benchmarks. A total of 60 common ancestors were computed in

156.13 seconds. This was a significantly lightweight implementation when compared

against popular semantic web [43] applications that utilize Triple Stores. Triple Stores

contain data entities that are only composed of subject-predicate-object fields. They

can be stored in Resource Description Framework (RDF) [337] or Web Ontology Lan-

guage (OWL) [328], and SPARQL [379] is the standard web query language for RDF.

SNOMED CT can be converted into OWL format using the OWL transform script

provided in the downloaded SNOMED CT Release files. However, after conversion,

the loading of the OWL for SPARQL processing completed in 448.3 seconds and

required up to 9 Gb in memory. Neo4j contained an optimized data structure for

graph networks and was a much more suitable choice for traversing large ontological

networks.

Of the nine separate semantic similarity measures tested, all edge counting mea-

sures performed the poorest. Generally the Pedersen [376] benchmark gave higher

values for correlation than Hliaoutakis [217]. However, no edge counting measure

exceeded a correlation value of 0.7 for the Pedersen benchmark. For information

content measures, despite its simplicity, Resnik scored the highest in both studies.

The intrinsic Seco and Zhou scores both did not perform as well as the corpus based

information content measures. However, the most up to date intrinsic IC measure by

Sanchez et al. returned the highest average of both studies. Therefore, the intrinsic

IC Sanchez measure was used for calculation in creating the ontological vector of

semantic similarity to level 4 SNOMED CT concepts. All results can be viewed in

Table 7.1.
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Table 7.1: Semantic similarity correlation with experts

Measure Pedersen 2007 [376] Hliaoutakis 2005 [217]

Path [376] 0.694 0.335

LCH [282] 0.694 0.335

Wu & Palmer [533] 0.554 0.318

Resnik [411] 0.808 0.49

Lin [297] 0.796 0.474

Jiang & Conrath [240] 0.754 0.482

Intrinsic (Seco) [450] 0.65 0.486

Intrinsic (Zhou) [547] 0.754 0.469

Intrinsic (Sanchez) [433] 0.754 0.535

After creation of the ontological vector for each ICU stay, the OPTICS clustering

algorithm executed in 2.48 hours. The graph of reachability distances can viewed in

Figure 7.2. As observable in the graph, there are many valleys where patients become

more densely clustered.

Figure 7.2: Reachability Plot from OPTICS clustering of semantic distances be-
tween MIMIC-II patient ICU stays.

Hierarchical clustering with optics does return a superfluous amount of clusters,

because there is a great deal of overlapping where more specific clusters are contained

within larger clusters. To alleviate this issue, the average distance between all cluster
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members was calculated. Any cluster was removed that exceeded an average distance

of 0.3. In the groups leftover, If any larger cluster contained smaller clusters, the

smaller clusters were disregarded. Finally, all clusters where 10% of patients did not

contain a morbidity condition were not included. This yielded a much smaller and

more informative list of clusters of multimorbidity patients than the initial groups

originally returned by the OPTICS algorithm.

The hierarchical clustering algorithm is performed on the set of reachability dis-

tances in 2.58 minutes and over 2,331 clusters are returned. This reduces to 449

after removing clusters with a greater average distance than 0.3. 332 smaller clus-

ters were then eliminated due to already being represented in larger clusters. The

final clusters were excluded if 10% of patients in the group did not contain a mor-

bidity. As a result, 22 multimorbidity clusters totaling 1,030 patients were identified

in conclusion of the process. The general conditions of all patients in each cluster

were determined by mapping their ICD-9 codes into ISHMT format. The procedures

with the largest frequency were also calculated. The statistics for each cluster can be

viewed in Table 7.2.

Each cluster is identified by the most frequent diagnoses and procedures of all

included patients. Prados-Torres et al. [395] surveyed 14 multimorbidity studies and

found 97 separate disease patterns were reported primarily due to the variation in

approaches and datasets. However, the three most common themes were metabolic

syndromes ( heart disease, diabetes, and obesity ), mental health, and musculoskeletal

disorders. The metabolic syndrome is consistent in the clusters identified in our

study. Clusters 3, 7, 8, 9 are all comprised of conditions related to cardiovascular

disease and metabolic disorders. The clusters can vary by the specific diagnoses,

such as coronary arteriosclerosis, angina, high cholesterol, or diabetes. However,

the clusters also differ between the common procedures. This helps understand the

prevalent operations for each group of patients, and at a higher level of granularity,
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can potentially help determine the best treatment for clusters with similar conditions

but different procedures.

Cardiopulmonary bypass operation has the highest frequency in clusters 7-9, but

angiocardiography and placement of stent are the most common procedures in cluster

3. Metabolic disorders have been found to be a precursor to Cardiovascular disease

and Type 2 Diabetes [526], and similar metabolic clusters were identified in previous

studies [106, 260, 396, 444]. High cholesterol is correlated to cerebrovascular disease

both in clusters 11 and 14, and it has been shown that cholesterol can be an impor-

tant precursor to stroke risk [211]. Interestingly, cluster 14 also has patients with

depressive disorder, and depression is frequently described as a condition that follows

stroke [201]. A similar cluster was found by [444]. Cluster 15 is diabetic neuropathy

where long-standing diabetes can develop nerve damage throughout the body that

affects the digestive and renal system. Cluster 16 is diabetic ketoacidosis where burn-

ing fatty acids produce ketone bodies that result in excessive urine production and

potentially impaired kidney function due to dehydration. Clusters 12 and 21 contain

patients with peptic ulcers, anaemias, and gastroduodenitis. Anemia is one of the

symptoms of an ulcer. Helicobacter pylori is a bacteria that infects the stomach and

its responsibility in causing gastroduodenitis and peptic ulcer development has been

studied [538]. A similar cluster was identified in the longitudinal analysis by Wong

et al. [528].

Clusters 2, 4, 5, and 6 all cover neonatal patients. More neonatal clusters are

developed than previous multimorbidity works that have higher focus on elderly pop-

ulations [55,152,318,319,393,444,527], and the current clustering method also calcu-

lates patient separation by age and gender. Most neonatal clusters contain neonatal

jaundice, and it can be caused by a multitude of factors, such as respiratory distress,

sepsis, and anemia [394]. Cluster 19 covers intestinal diseases and several neoplasms,

including ovarian and cervical cancer. One of the most common malignancies that
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cause bowel obstruction is ovarian cancer [415]. Kirchberger et al. also found a similar

cluster with gastrointestinal disorders and cancer [260]. Cluster 22 includes biliary

tract disorders and cancers. Cluster 20 comprises of patient with neoplasms but with

kidney cancer and diabetes. Associations between these two conditions have been

investigated [200]. Cluster 13 covers patients with respiratory failure where one of

the causes may be pneumonia, and urinary tract infections and cardiac arrythmias

are possible subsequent complications [255]. As each cluster is scientifically verified,

it is apparent that not all conditions follow a strict causal relationship, highlight-

ing one of the main disadvantages of previous studies that utilize exploratory factor

analysis [172,219,260,393,396,444].

Table 7.2: Descriptions of patient clusters after optics clustering

Cluster Description Patients

Median Age

(25th Percentile,

75th Percentile)

Most Prevalent Conditions and Procedures

1 Cardiovascular disease with dia-

betes and stomach disease

171 62.4 (54.4,69.3) Coronary arteriosclerosis 100.00%

Hypercholesterolemia 55.56%

Diabetes 35.67%

Gastroesophageal reflux disease 17.54%

Atrial fibrillation 16.96%

Hyperlipidemia 15.79%

Tobacco dependence 8.77%

Catheterization of left heart 94.74%

Cardiopulmonary bypass operation 94.15%

Angiocardiography of left heart 77.78%

2 Neonatal cardiovascular disease

with respiratory disease and jaun-

dice

59 Neonate Patent ductus arteriosus 100.00%

Respiratory distress syndrome in the newborn 93.22%

Neonatal jaundice 98.31%

Neonatal bradycardia 33.90%

Anemia of prematurity 30.51%

Phototherapy 94.92%

Insertion of endotracheal tube 77.97%

Continuous positive airway pressure 71.19%

Enteral feeding 72.88%

3 Cardiovascular disease with high

cholesterol and elevated lipid lev-

els

144 56.8 (52.1,64.4) Coronary arteriosclerosis 100.00%

Hypercholesterolemia 35.42%

Hyperlipidemia 14.58%

Diabetes Mellitus 14.58%

Injection of therapeutic agent 100.69%

Placement of stent in coronary artery 50.69%

Angiocardiography of left heart 32.64%

Angiocardiography of right heart 23.61%

4 Neonatal jaundice with respira-

tory disease

28 Neonate Neonatal jaundice 100.00%

Respiratory distress syndrome in newborn 25.00%

Neonatal bradycardia 82.14%

Phototherapy of newborn 82.14%

Enteral feeding 57.14%

Continuous positive airway pressure 25.00%
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5 Neonatal jaundice with respira-

tory disease and sepsis

22 Neonate Neonatal jaundice 100.00%

Patent ductus arteriosus 86.36%

Bacterial sepsis of newborn 77.27%

Chronic respiratory disease in perinatal period

50.00%

Anemia of prematurity 50.00%

Neonatal bradycardia 45.45%

Retinopathy of prematurity 40.91%

Phototherapy of newborn 90.91%

Enteral feeding 90.91%

Diagnostic lumbar puncture 86.36%

Artificial respiration 86.36%

Insertion of endotracheal tube 86.36%

6 Neonatal conjunctivitis with jaun-

dice and respiratory disease

46 Neonate Neonatal conjunctivitis 100.00%

Neonatal jaundice 78.26%

Respiratory distress syndrome 43.48%

Neonatal bradycardia 32.61%

Phototherapy of newborn 78.26%

Enteral feeding 76.09%

Artificial respiration 39.13%

Insertion of endotracheal tube 39.13%

7 Cardiovascular disease with in-

farction, diabetes mellitus, and

high cholesterol.

47 66.1 (57.6,70.8) Impending infarction 100.00%

Coronoary arteriosclerosis 100.00%

Hypercholesterolemia 61.70%

Diabetes Mellitus 48.94%

Atrial fibrillation 21.28%

Hyperlipidemia 19.15%

Cardiopulmonary bypass operation 95.74%

8 Cardiovascular disease with

angina, elevated cholesterol, and

diabetes mellitus

41 64.5 (60.2,67.8) Coronoary arteriosclerosis 100.00%

Diabetes Mellitus 65.85%

Hypercholesterolemia 82.93%

Angina 34.15%

Cardiopulmonary bypass operation 90.24%

9 Cardiovascular disease and sur-

gical complications with elevated

cholesterol and diabetes mellitus

38 69.3 (59.0,72.2) Coronary arteriosclerosis 100.00%

Hypercholesterolemia 73.68%

Postoperative cardiac complication 50.00%

Atrial fibrillation 50.00%

Diabetes Mellitus 28.95%

Angina 23.68%

Cardiopulmonary bypass operation 97.37%

10 Cardiovascular disease with

aortic insufficiency and gastroe-

sophageal reflux disease

36 52.2 (40.1,59.7) Aortic insufficiency 71.05%

Congenital aortic insufficiency 55.26%

Gastroesophageal reflux disease 15.79%

Hyperlipidemia 13.16%

11 Cerebrovascular disease with high

cholesterol

45 56.9 (44.2,60.3) Cerebral Aneurysm 53.33%

Cerebral hemorrhage 37.78%

Hypercholesterolemia 13.33%

Arteriography of cerebral arteries 100.00%

Aneurysm clipping 37.78%

Embolization 22.22%

12 Digestive disease with peptic ul-

cer, anaemias, and cardiac ar-

rhythmias

30 72.5 (68.2,81.2) Peptic ulcer 80.00%

Anaemias 73.33%

Atrial fibrillation 23.33%

Heart failure 23.33%

Hypothroidism 16.67%

Hypercholesterolmeia 16.67%

Endoscopic control of duodenal bleeding 56.67%

Endoscopic control of gastric bleeding 43.33%

Esophagogastroduodenoscopy 40.00%

13 Respiratory disease with pneumo-

nia, cardiac arrythmias, and uri-

nary system disorders

25 77.8 (69.5,88.2) Acute respiratory failure 56.00%

Pneumonia 52.00%

Atrial fibrillation 48.00%

Urinary tract infectious disease 36.00%

Artificial respiration 80.00%

Tracheostomy 72.00%

Insertion of endotracheal tube 72.00%

Enteral feeding 48.00%
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14 Intracranial injury with cardiac

arrhythmias, and high cholesterol.

42 79.7 (72.0,83.9) Subdural hemorrhage 100.00%

Atrial fibrillation 26.19%

Hypercholesterolemia 19.05%

Coronary arteriosclerosis 16.67%

Incision of cerebral meninges 61.90%

15 Diabetes mellitus with nerve dis-

orders, arteriosclerosis, and kid-

ney disease, stomach disease

21 37.2 (35.3,37.9) Diabetic autonomic neuropathy 100.00%

Gastroparesis 100.00%

Neurological disorder 80.95%

Coronary arteriosclerosis 90.48%

Renal Failure 52.38%

16 Diabetes Mellitus with metabolic

disorders and kidney disease

34 22.1 (20.4,31.4) Ketoacidosis 100.00%

Diabetes Mellitus 100.00%

Hyperlipidemia 35.29%

Depressive disorder 26.47%

Renal Failure 26.47%

17 Fractures and respiratory injury 48 42.8 (26.5,50.9) Fracture 100.00%

Pulmonary contusion 35.42%

Traumatic Pneumothorax 33.33%

18 Esophagus disorder with alco-

holism, cirrhosis, and platelet dis-

orders

38 52.5 (45.6,55.0) Esophageal varices 73.68%

Alcoholic cirrhosis 60.53%

Cirrhosis of liver 34.21%

Chronic hepatitis C 55.26%

Alcoholism 52.63%

Thrombocytopenic disorder 34.21%

Esophagogastroduodenoscopy 26.32%

Esophageal polypectomy 23.68%

Platelet Transfusion 23.68%

Esophagoscopy 21.05%

19 Gynaecological cancer with in-

testinal disease

24 58.1 (48.2,70.8) Peritoneal cancer 100.00%

Ovarian cancer 83.33%

Cervical cancer 62.50%

Paralytic ileus 33.33%

Intestinal cancer 25.00%

Bilateral salpingectomy with oophorectomy 79.17%

Excision of lesion of mesentery 75.00%

Supracervical hysterectomy 25.00%

20 Kidney Cancer with diabetes mel-

litus and anaemias

21 66.1 (53.3,78.5) Kidney Cancer 100.00%

Diabetes mellitus 38.10%

Anaemias 33.33%

Nephroureterectomy 85.71%

Excision of regional lymph nodes 33.33%

21 Digestive disease with peptic ulcer

and anaemias

24 59.3 (46.6,75.4) Peptic ulcer 91.67%

Anaemias 83.33%

Hypertension 29.17%

Gastroduodenitis 41.67%

Packed blood cell transfusion 83.33%

Esophagogastroduodenoscopy 83.33%

22 Hepato-biliary and pancreas dis-

eases and neoplasms

46 (51.8,82.4) Gall Bladder and Biliary Tract Disease 76.09%

Diseases of Pancreas 39.13%

Neoplasms of liver, pancreas or bile duct 34.78%

Endoscopic retrograde cholangiopancreatography

100.00%

Artificial respiration 30.43%

Insertion of endotracheal tube 23.91%
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7.5 Discussion

Results from previous multimorbidity clustering studies have greatly varied mainly

due to the high heterogeneity in the chosen methodology. Approaches have differed

from sample size, number of baselines diseases, age recruitment, and the chosen sta-

tistical procedures [395]. In most cases, the chronic diseases used for analysis of

multimorbidities were chosen beforehand and decided by prevalence rates [318, 319,

395,444,510]. In this study, since all diagnoses are mapped to standardized concepts

in SNOMED CT, it is not necessary to make prior decisions of which conditions

to exclude or include in the clustering of patients. Prior methods that simply re-

port the most common co-occurring conditions have proven unsuccessful, because

they do not accurately account for nonrandom association nor are they influenced

by the complete case history of the patient. Cluster analysis methods have suffi-

ciently identified multimorbidity groups with validated clinical basis from previous

research [106, 243, 318, 319]. However, the hierarchical techniques of agglomerative

clustering create a complicated denndrogram that is not easily interpretable and dis-

eases are constrained from group overlapping. Newcomer et al. [355] and Goldstein et

al. [185] overcome these limitations by clustering patients instead of diseases, but pa-

tients may not be excluded from clusters and agglomerative methods still do not pro-

vide a clear strategy on appropriate distance metrics and stopping criterion [344]. By

using a semantic similarity measure with highest performance on established bench-

marks, a more standardized approach is developed in this study for determining an

appropriate distance metric. The OPTICS clustering method does not force every pa-

tient to join a cluster and focus can be placed on closely related cases. The Sander et

al. [436] algorithm for hierarchically clustering OPTICS reachability plots provides a

consistent method to accurately interpret and form patient groups from dendrograms.

A total of 22 clusters were identified containing 1,030 patients. Since patient

ICU stays were mapped to SNOMED CT, groups could be classified by the most

173



prevalent SNOMED CT diagnoses and procedures. Additionally, since SNOMED CT

is a hierarchy, closely related concepts could be grouped into common parent concepts

to give a clearer representation of the most frequent conditions in each cluster. As

opposed to previous studies, similarities between patients were not based on a limited

set of previously chosen high level chronic conditions. Each patient could potentially

be identified by any of the 96,168 diagnoses in SNOMED CT. Additionally, common

characteristics of patients can be determined from their procedures as well as their

diagnoses.

Through further validation of clustering methods of patients with multimorbidi-

ties, data mining techniques will be able to more confidently discover nonrandom

co-occurring conditions and the relationships behind their etiology. Future studies

can take advantage of the additional wealth of information provided in EHRs by au-

tomatically mapping laboratory measurements, medications, procedures, and other

clinical records to standard ontologies, such as LOINC [327], RxNorm [303], and

CPT [25]. Natural language processing can be used to analyze and recognize terms in

the unstructured data more deeply by incorporating the detailed notes in discharge

summaries, radiology reports, pathology reports, and other narratives. The current

study was able to identify multimorbidity clusters by only integration to SNOMED

CT with patient diagnoses and procedures. There are many present initiatives, such

as BioVU [419] and eMERGE [188] that are currently integrating patient records with

genetic samples for analyses. With linking genetics to medical records, in-depth mor-

bidity studies will be able to determine whether co-occurring diseases are related due

to a common pathway from a single genetic variant [269]. As integration strategies of

EHRs and related public resources continue to advance, more novel associations will

be discovered to unravel the origins behind multimorbidity conditions.
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CHAPTER VIII

CONCLUSION

In this dissertation, various methods were proposed towards the integration of bi-

ological and clinical data for the purposes of improving healthcare and discovering

novel associations to disease. Most of the current biomedical knowledge is stored

in distributed and heterogeneous data sources, and as a result, problems arise with

data connectivity, integrity, redundancy, consistency and expandability [45]. Data

warehousing is an ideal choice for researchers who wish to focus in a specific area

by providing a quick and effective way to answer targeted queries. Greater control

of curation and filtering features have the potential to deliver essential data quality.

However, data volumes are usually too large to house locally, and it can be very com-

plicated to create a global schema that accurately reflects all data types. Mediator

based approaches always provide the most recent data without having to develop a

global model, but there is not as much user control as in data warehousing. The

availability of a mediated system is dependent on the availability of each external

data source, and there can be large latencies in the retrieval of data. In Chapter 3,

the BIOSPIDA system is introduced that alleviates many of the shortcomings of

data warehousing. A universal parser can extract and transform any external data

source as long as an XML or ASN.1 schema file is provided. No revisions are required

to the universal parser if the data model changes for any of the data sources, and

parallelization of the conversion speeds the creation of a fully integrated repository.

Investments in hardware are less demanding with efficient memory management and

redundancy removal eliminates large volumes of data to fractions of their original

size. In a field that is constantly evolving, it is essential to develop a data integration
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solution that can keep up to date with external data model changes while delivering

sufficient processing speeds.

Chapter 4 discusses an application towards the analysis of integrated biological

data and healthcare by attempting to determine linkages between genes and diseases.

The BioSPIDA system developed in Chapter 3 was utilized to create networks of gene

annotations, including protein interactions, literature, expression, domains, pathways,

and ontologies. With an integrated warehouse of diverse data types, associations to

thousands of Homo Sapien genes could be quickly retrieved in seconds, facilitating

the quick development of data for analysis. According to Rifaieh et al., scientists may

spend 80% of their time retrieving and assembling their data [414]. The usage of data

warehouse allowed queries to easily pre-process and deliver the needed information.

All six networks were analyzed, and the diseases that were most predictive for each

data type were reported.

The following chapters discuss the advantages of electronic health records (EHRs)

and their enormous potential to transform healthcare into a data-rich domain. How-

ever, this potential is dependent on the ability to successfully combine primary data

with external data sources at both the individual and population level. Many studies

are poorly designed and do not properly utilize external datasets. The “Big Data”

generated from medical practice is rarely captured and organized into an effective

modeling platform. Biomedical terminologies were developed as a method to accu-

rately represent knowledge about clinical events and healthcare data. Sophisticated

analysis tools can be developed by recognizing structured phenotypes from hetero-

geneous patient data and mapping terms from clinical text to controlled medical

vocabularies. Chapter 6 demonstrates an application of prioritizing ICU patients by

severity and increasing the vocabulary of terms by integrating with the SNOMED

CT ontology. This facilitated the creation of a severity model by conducting natural
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language processing on free text entries of diagnosis records. Chapters 5 and 7 illus-

trate a deeper integration of clinical data with public ontologies by creating a local

data warehouse of MIMIC-II, UMLS and SNOMED CT. UMLS maps diagnosis and

procedures entries to SNOMED CT and natural language processing is used to recog-

nize unknown entries. By linking clinical records to standardized terminologies, the

semantic distance between patients can be computed and similarity related clusters

can be created. This helps to identify distinct multimorbidity groups and furthers

the investigation of the functional relationships behind co-occurring conditions.

Each of these studies would not have been possible without the support of data

integration technology, and it was found that the most suitable approach is dependent

on the item of research. Semantic databases provide a machine-interpretable format

where it is feasible to develop automatic reasoning methods. Natural language pro-

cessing can recognize standardized concepts with an acceptable accuracy, but it is

preferable to utilize mapped terminologies from structured and codified data when

provided. Graph Databases can powerfully calculate sophisticated semantic distance

between concepts when terms are linked to a publicly maintained ontology. The tech-

niques of data warehousing, natural language processing, and graph databases have

all contributed to creating a flexible data integration system for the biological and

clinical systems. However, the next step in medical research is for the development

of systems that can integrate both omics data and patient records in the creation of

personalized healthcare.

Linking large-scale DNA databanks directly to electronic medical records could

potentially transform healthcare by developing new rich genotype-phenotype associ-

ations [218, 339, 439]. These associations can be incorporated into patient care by

reducing medication errors, improving diagnostic tests, and practice guidelines [167,

254,370,517] . A number of recent initiatives (eMERGE [188], BioVU [419]) have un-

dertaken Electronic Health Driven Genome Research (EDGR) by recruiting patient
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cohorts and coupling medical records with microarray genotyping data. Previous

studies have proven that successful results can be attained from EDGR by discov-

ering novel genetic variants linked to disease [118], determining genomic regions as-

sociated with patient phenotypes [295], and detecting drug-gene interactions [122].

Despite these advancements, EDGR is faced with a number of challenges before it

can be embraced more largely by healthcare centers. EHR-derived phenotypes cou-

pled with DNA samples can provide sufficient enough level of information to discover

and reproduce existing genetic variant disease associations. However, it is critical to

accurately create definitions for cases and controls for each phenotype. Physicians

frequently overturn incorrect diagnosis coding, and the sole usage of codes is not as

reliable of a method for prediction of patient phenotypes. Frequently, natural lan-

guage processing is required for information extraction of the unstructured data of

clinical notes, inpatient histories, and discharge summaries. For example, concept

recognition techniques may be needed to identify which medications, laboratory tests

or diagnosis terms are necessary to determine a particular phenotype. The successful

discovery of novel genotype-phenotype associations are also challenged by overlapping

diseases, dataset sizes and selection biases. Overlapping diseases must be specified

and excluded for each condition of interest [416]. Much larger sample sizes than those

ordinarily attained may be required to accurately discern linkages between genotypes

and phenotypes [230]. Datasets are not a selection from the whole world populations,

and selection bias is a real possibility for all clinical studies [519].

Although great promise can emerge from the integration of genomic data with

patient care, it simultaneously increases the complexity and amount of clinical data.

Clinical phenotyping of patient records represent a “Big Data” problem in health-

care analytics, due to its intrinsic heterogeneity and enormous depth [97]. A popular

definition of big data is proposed by Laney with the “3V” model [281]. Big data is

described by three fundamental features of high volumes of data mass, high velocity
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of data flow, and high variety of data types. Big data in healthcare is especially chal-

lenging not only as a result of large data volumes, but also from the diversity of data

types and the speed at which it must be managed [162]. However, efficient analysis

and interpretation of big medical data can lead to new avenues for exploration and

a better understanding of diseases with improved diagnostic and therapeutic strate-

gies [141]. Potential benefits include detecting diseases at earlier stages and successful

predictions of medical complications, lengths of stay, and elective surgery [406].

Big data analytics is typically broken down with distributed processing and ex-

ecuted across multiple nodes. Many big data tools have emerged from open-source

development and Apache Hadoop1 is one of the most significant distributed data

processing platforms. The architecture of Hadoop originated from proprietary tech-

nology developed by Google to accommodate and index immense volumes of infor-

mation, known as MapReduce [117]. Based on the Google File System [178], Hadoop

can execute fault-tolerant distributed processing of large data sets across clusters of

computers. This is facilitated with its implementation of the MapReduce algorithm

and its own distributed database architecture, HBase2, which was derived from the

Google File System [488]. As the technology behind Hadoop continues to mature, new

related software extend its applicability in the bioinformatics domain [406]. Mahout3

is a machine learning library and can be used for the classification and clustering of

data. However, the large scale and high dimensionality of patient records still provide

infrastructure challenges for data mining, storage and integration. Cloud computing

is a feasible solution where processing and storage capacity are dynamically provi-

sioned. The cloud is a virtual machine (VM) prepackaged with needed software and

executes tasks on parallel processors [83]. Many cloud computing services have been

1http://hadoop.apache.org/
2http://hbase.apache.org/
3https://mahout.apache.org/
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emerging in the commercial sector including Google Compute Engine4 and Ama-

zon Elastic Compute Cloud (EC2)5. Numerous vendors provide open-source Hadoop

platforms, including Amazon Web Services (AWS)6, Cloudera7, Hortonworks8 and

MapR9, and many are available as cloud versions [359]. Cloud computing can acceler-

ate the potential benefits of EHR sharing with the integration of genetic profiles and

population-based information. By the storage of biomedical data on cloud servers

without large hardware investments, resources and operation costs can be reduced

limiting electronic health record startup expenses [83,146,209,245,448].

We currently live in an exciting period with many potential avenues for research in

the health sciences that would not have been possible before the development of data

integration, natural language processing, and “Big Data” technologies. All of these

studies in this dissertation present potential areas where data analytics can improve

health care. Future implementations will investigate the further advancements that

can be made by linking even larger datasets of patient records to genomic regions.

The progression of natural language processing will continue to improve its accuracy

in recognizing clinical concepts from the unstructured notes of discharge summaries

and patient histories. As more patient records are consolidated from many hospital

visits, longitudinal studies will be available to develop a fuller understanding of the

progression of disease. To process these large volumes of information, the arrival of

“Big Data” technology and cloud computing could not come at a more perfect time

for the clinical sciences.

4https://cloud.google.com/products/compute-engine/
5http://aws.amazon.com/ec2/
6http://aws.amazon.com/elasticmapreduce/
7http://www.cloudera.com/
8http://hortonworks.com/
9http://www.mapr.com/
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[444] Schäfer, I., von Leitner, E.-C., Schön, G., Koller, D., Hansen, H.,
Kolonko, T., Kaduszkiewicz, H., Wegscheider, K., Glaeske, G., and
van den Bussche, H., “Multimorbidity patterns in the elderly: a new ap-
proach of disease clustering identifies complex interrelations between chronic
conditions,” PloS one, vol. 5, no. 12, p. e15941, 2010.

[445] Schlicker, A., Domingues, F. S., Rahnenführer, J., and Lengauer,
T., “A new measure for functional similarity of gene products based on gene
ontology,” BMC bioinformatics, vol. 7, no. 1, p. 302, 2006.

[446] Schlicker, A., Lengauer, T., and Albrecht, M., “Improving disease gene
prioritization using the semantic similarity of gene ontology terms,” Bioinfor-
matics, vol. 26, no. 18, pp. i561–i567, 2010.

[447] Schölkopf, B., Tsuda, K., and Vert, J.-P., Kernel methods in computa-
tional biology. MIT press, 2004.

[448] Schweitzer, E. J., “Reconciliation of the cloud computing model with us
federal electronic health record regulations,” Journal of the American Medical
Informatics Association, vol. 19, no. 2, pp. 161–165, 2012.

[449] Scott, K. S., Health Information Management Technology: An Applied Ap-
proach, ch. 5. Clinical Vocabularies and Classification Systems. American
Health Information Management Association, 2012.

[450] Seco, N., Veale, T., and Hayes, J., “An intrinsic information content met-
ric for semantic similarity in wordnet,” in ECAI, vol. 16, p. 1089, Citeseer,
2004.

[451] Seelow, D., Schwarz, J. M., and Schuelke, M., “Genedistillerdistilling
candidate genes from linkage intervals,” PLoS One, vol. 3, no. 12, p. e3874,
2008.

[452] Segagni, D., Tibollo, V., Dagliati, A., Perinati, L., Zambelli, A.,
Priori, S., and Bellazzi, R., “The onco-i2b2 project: integrating biobank
information and clinical data to support translational research in oncology.,”
Studies in health technology and informatics, vol. 169, pp. 887–891, 2010.

219



[453] Shah, S., Huang, Y., Xu, T., Yuen, M., Ling, J., and Ouellette, B.,
“Atlas–a data warehouse for integrative bioinformatics,” BMC bioinformatics,
vol. 6, no. 1, p. 34, 2005.

[454] Shahani, A., Korve, N., Jones, K., and Paynton, D., “Towards an oper-
ational model for prevention and treatment of asthma attacks,” Journal of the
Operational Research Society, pp. 916–926, 1994.

[455] Shi, X., “Semantic web services: an unfulfilled promise,”

[456] Shimokawa, K., Mogushi, K., Shoji, S., Hiraishi, A., Ido, K.,
Mizushima, H., and Tanaka, H., “icod: an integrated clinical omics database
based on the systems-pathology view of disease,” BMC genomics, vol. 11,
no. Suppl 4, p. S19, 2010.

[457] Shin, S.-Y., Kim, W. S., and Lee, J.-H., “Characteristics desired in clin-
ical data warehouse for biomedical research,” Healthcare informatics research,
vol. 20, no. 2, pp. 109–116, 2014.

[458] Shivade, C., Raghavan, P., Fosler-Lussier, E., Embi, P. J., Elhadad,
N., Johnson, S. B., and Lai, A. M., “A review of approaches to identify-
ing patient phenotype cohorts using electronic health records,” Journal of the
American Medical Informatics Association, pp. amiajnl–2013, 2013.

[459] Siddharthan, K., Jones, W., and Johnson, J., “A priority queuing model
to reduce waiting times in emergency care,” International Journal of Health
Care Quality Assurance, vol. 9, no. 5, pp. 10–16, 1996.

[460] Siddiqi, J., Akhgar, B., Gruzdz, A., Zaefarian, G., and Ihnatowicz,
A., “Automated diagnosis system to support colon cancer treatment: Match,”
in Information Technology: New Generations, 2008. ITNG 2008. Fifth Inter-
national Conference on, pp. 201–205, IEEE, 2008.

[461] Simpson, M. S. and Demner-Fushman, D., “Biomedical text mining: A
survey of recent progress,” in Mining Text Data, pp. 465–517, Springer, 2012.

[462] Sinha, P., Sunder, G., Bendale, P., Mantri, M., and Dande, A., “Ex-
tended coding system for patient care procedures,” Electronic Health Record:
Standards, Coding Systems, Frameworks, and Infrastructures, pp. 131–135.

[463] Smith, N. G. and Eyre-Walker, A., “Human disease genes: patterns and
predictions,” Gene, vol. 318, pp. 169–175, 2003.

[464] Snel, B., Lehmann, G., Bork, P., and Huynen, M. A., “String: a web-
server to retrieve and display the repeatedly occurring neighbourhood of a
gene,” Nucleic acids research, vol. 28, no. 18, pp. 3442–3444, 2000.

220



[465] Snow, N., Bergin, K., Horrigan, T., and others, “Readmission of pa-
tients to the surgical intensive care unit: patient profiles and possibilities for
prevention.,” Critical care medicine, vol. 13, no. 11, p. 961, 1985.

[466] Song, N., Joseph, J. M., Davis, G. B., and Durand, D., “Sequence
similarity network reveals common ancestry of multidomain proteins,” PLoS
computational biology, vol. 4, no. 5, p. e1000063, 2008.

[467] Spivak, M. D., The Joy of TEX. American Mathematical Society, 1985.

[468] Sprivulis, P., Da Silva, J., Jacobs, I., Frazer, A., Jelinek, G., and
others, “The association between hospital overcrowding and mortality among
patients admitted via western australian emergency departments,” Medical
Journal of Australia, vol. 184, no. 5, p. 208, 2006.

[469] Starfield, B., “New paradigms for quality in primary care.,” The British
Journal of General Practice, vol. 51, no. 465, p. 303, 2001.

[470] Starfield, B., Lemke, K. W., Bernhardt, T., Foldes, S. S., Forrest,
C. B., and Weiner, J. P., “Comorbidity: implications for the importance of
primary care in casemanagement,” The Annals of Family Medicine, vol. 1, no. 1,
pp. 8–14, 2003.

[471] Stark, C., Breitkreutz, B.-J., Reguly, T., Boucher, L., Bre-
itkreutz, A., and Tyers, M., “Biogrid: a general repository for interaction
datasets,” Nucleic acids research, vol. 34, no. suppl 1, pp. D535–D539, 2006.

[472] Stearns, M. Q., Price, C., Spackman, K. A., and Wang, A. Y.,
“Snomed clinical terms: overview of the development process and project sta-
tus.,” in Proceedings of the AMIA Symposium, p. 662, American Medical Infor-
matics Association, 2001.

[473] Stein, L. D., “Integrating biological databases,” Nature Reviews Genetics,
vol. 4, no. 5, pp. 337–345, 2003.

[474] Stein, L. D., Mungall, C., Shu, S., Caudy, M., Mangone, M., Day, A.,
Nickerson, E., Stajich, J. E., Harris, T. W., Arva, A., and others,
“The generic genome browser: a building block for a model organism system
database,” Genome research, vol. 12, no. 10, pp. 1599–1610, 2002.

[475] Stevens, R. D., Robinson, A. J., and Goble, C. A., “mygrid: personalised
bioinformatics on the information grid,” Bioinformatics, vol. 19, no. suppl 1,
pp. i302–i304, 2003.

[476] Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P.,
Beazley, C., Ingle, C. E., Dunning, M., Flicek, P., Koller, D., and
others, “Population genomics of human gene expression,” Nature genetics,
vol. 39, no. 10, pp. 1217–1224, 2007.

221



[477] Stuart, J. M., Segal, E., Koller, D., and Kim, S. K., “A gene-
coexpression network for global discovery of conserved genetic modules,” sci-
ence, vol. 302, no. 5643, pp. 249–255, 2003.

[478] Sugumaran, V. and Storey, V. C., “Ontologies for conceptual modeling:
their creation, use, and management,” Data & knowledge engineering, vol. 42,
no. 3, pp. 251–271, 2002.

[479] Sujansky, W., “Heterogeneous database integration in biomedicine,” Journal
of biomedical informatics, vol. 34, no. 4, pp. 285–298, 2001.

[480] Sun, J. and Zhao, Z., “A comparative study of cancer proteins in the human
protein-protein interaction network,” BMC genomics, vol. 11, no. Suppl 3, p. S5,
2010.

[481] Syamaladevi, D. P., Joshi, A., and Sowdhamini, R., “An alignment-free
domain architecture similarity search (adass) algorithm for inferring homology
between multi-domain proteins,” Bioinformation, vol. 9, no. 10, p. 491, 2013.

[482] Szalma, S., Koka, V., Khasanova, T., and Perakslis, E. D., “Effec-
tive knowledge management in translational medicine,” Journal of translational
medicine, vol. 8, no. 1, p. 68, 2010.

[483] Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth,
A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., and
others, “The string database in 2011: functional interaction networks of pro-
teins, globally integrated and scored,” Nucleic acids research, vol. 39, no. suppl
1, pp. D561–D568, 2011.

[484] Tan, A., Tripp, B., and Daley, D., “Briskresearch-oriented storage kit for
biology-related data,” Bioinformatics, vol. 27, no. 17, pp. 2422–2425, 2011.

[485] Tan, P.-N., Steinbach, M., and Kumar, V., “Cluster analysis: basic con-
cepts and algorithms,” Introduction to data mining, pp. 487–568, 2006.

[486] Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D., Dalvi,
N., Dong, X. L., Kadiyska, Y., Miklau, G., and Mork, P., “The piazza
peer data management project,” ACM Sigmod Record, vol. 32, no. 3, pp. 47–52,
2003.

[487] Tatonetti, N., Denny, J., Murphy, S., Fernald, G., Krishnan, G.,
Castro, V., Yue, P., Tsau, P., Kohane, I., Roden, D., and others,
“Detecting drug interactions from adverse-event reports: interaction between
paroxetine and pravastatin increases blood glucose levels,” Clinical Pharmacol-
ogy & Therapeutics, vol. 90, no. 1, pp. 133–142, 2011.

[488] Taylor, R. C., “An overview of the hadoop/mapreduce/hbase framework
and its current applications in bioinformatics,” BMC bioinformatics, vol. 11,
no. Suppl 12, p. S1, 2010.

222



[489] Terris, D. D., Litaker, D. G., and Koroukian, S. M., “Health state
information derived from secondary databases is affected by multiple sources of
bias,” Journal of clinical epidemiology, vol. 60, no. 7, pp. 734–741, 2007.

[490] Thomas, P. D., Kejariwal, A., Campbell, M. J., Mi, H., Diemer,
K., Guo, N., Ladunga, I., Ulitsky-Lazareva, B., Muruganujan, A.,
Rabkin, S., and others, “Panther: a browsable database of gene products
organized by biological function, using curated protein family and subfamily
classification,” Nucleic acids research, vol. 31, no. 1, pp. 334–341, 2003.

[491] Thompson, H. S., Beech, D., Maloney, M., and Mendelsohn, N., “Xml
schema part 1: structures second edition,” 2004.

[492] Tiffin, N., Kelso, J. F., Powell, A. R., Pan, H., Bajic, V. B., and
Hide, W. A., “Integration of text-and data-mining using ontologies success-
fully selects disease gene candidates,” Nucleic acids research, vol. 33, no. 5,
pp. 1544–1552, 2005.

[493] Tinetti, M., Bogardus Jr, S., and Agostini, J., “Potential pitfalls of
disease-specific guidelines for patients with multiple conditions.,” The New Eng-
land journal of medicine, vol. 351, no. 27, pp. 2870–2874, 2004.
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a data warehouse kit for life science data integration,” Journal of integrative
bioinformatics, vol. 5, no. 2, p. 93, 2008.

[495] Tranchevent, L.-C., Barriot, R., Yu, S., Van Vooren, S., Van Loo,
P., Coessens, B., De Moor, B., Aerts, S., and Moreau, Y., “Endeavour
update: a web resource for gene prioritization in multiple species,” Nucleic
acids research, vol. 36, no. suppl 2, pp. W377–W384, 2008.

[496] Tu, J., Mazer, C., Levinton, C., Armstrong, P., and Naylor, C., “A
predictive index for length of stay in the intensive care unit following cardiac
surgery.,” CMAJ: Canadian Medical Association Journal, vol. 151, no. 2, p. 177,
1994.

[497] Turner, F. S., Clutterbuck, D. R., Semple, C. A., and others,
“Pocus: mining genomic sequence annotation to predict disease genes,” Genome
biology, vol. 4, no. 11, pp. R75–R75, 2003.

[498] Tversky, A., “Features of similarity.,” Psychological review, vol. 84, no. 4,
p. 327, 1977.

[499] Ullman, J. D., “Information integration using logical views,” in Database
TheoryICDT’97, pp. 19–40, Springer, 1997.
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