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SUMMARY

The vector finite element method has gained great attention since overcoming the
deficiencies incurred by the scalar basis functions for the vector Helmholtz equation.
Most implementations of vector FEM have been non-adaptive, where a mesh of the
domain is generated entirely in advance and used with a constant degree polynomial basis
to assign the degrees of freedom. To reduce the dependency on the users' expertise in
analyzing problems with complicated boundary structures and material characteristics,

and to speed up the FEM tool, the demand for adaptive FEM grows high.

For efficient adaptive FEM, error estimators play an important role in assigning
additional degrees of freedom. In this proposal study, hierarchical vector basis functions
and four error estimators for p-refinement are investigated for electromagnetic

applications.

XVi



CHAPTER 1: INTRODUCTION

There are many practical applications that require electromagnetic analysis as an
aid to the design of electrical systems. Often, due to the complexity of the geometric
structures typically encountered, the analysis must be carried out by numerical
techniques. For example, in the area of microelectronic systems, technological advances
result in a greater density of circuits integrated into a small area, the use of multilevel
structures, and a variety of materials. Closed form solutions to Maxwell’s equations are
limited to structures with simple geometries. Consequently, in electromagnetics,
attention has been directed toward numerical analysis methods such as the finite element
method (FEM), the finite difference time domain (FDTD) method, and the method of

moments (MoM) [1-3].

The finite element method is widely used for analyzing electromagnetic field
problems, because it offers several advantages. The global matrix within the FEM
formulation is sparse since each degree of freedom (DOF) is interlinked only to nearest
neighbors [1-3]. Procedures have been developed for solving sparse matrices to reduce
fill-in and minimize memory resources [4,5]. The FEM can easily deal with complex
geometric cell shapes, various materials, and curved boundaries [1-3]. Furthermore, one
major difficulty associated with the FEM in the past, the treatment of unbounded domains
associated with scattering and radiation problems, has been solved by a number of mesh

truncation techniques [1,3,6-8].



More importantly, the recent introduction of vector finite elements solved several
problems that occurred from attempts to solve the vector Helmholtz equation with scalar
elements [9]. Vector finite elements enforce the continuity of the tangential component of
the vector quantities but not the normal component. They confine spurious eigenvalues to

the zero eigenvalue subspace. They also appear to model singularities more accurately.

In recent years, a number of interpolatory and hierarchical vector elements have
been proposed in the literature [1,3,10-25]. These two types of elements offer a trade-off
in their relative efficiency and ease of interpretation. The coefficients of interpolatory
functions are the sampled values of the appropriate field at various locations, and thus
provide a straightforward interpretation of the result. Hierarchical functions, on the other
hand, build on basis functions of lower-order in a systematic way, and permit a more
efficient computational procedure that minimizes the number of equations that must be

recomputed as the basis function order is gradually increased.

In common with all numerical solution procedures, FEM results contain
discretization error caused by expanding a continuous function with a finite number of
elements. This error can be reduced by diminishing the size of the elements, h-refinement,
or increasing the polynomial order, p-refinement, so that the basis functions may better
capture the variation of the unknown function over the patched local domain of the
calculation [2]. H-refinement techniques have been used in conjunction with low-order

vector basis functions for a number of years [2]. However, p-refinement techniques have



not been thoroughly studied to date, probably because of the relatively recent

development of higher-order hierarchical vector basis functions.

P-refinement has the advantage that it avoids the time-consuming mesh
regeneration process associated with h-refinement. However, to take full advantage of
either type of refinement technique, the process must be adaptive. In adaptive refinement,
the error estimated from a numerical solution at one level of refinement is employed to
predict which regions within the computational domain most need additional degrees of
freedom. The procedure then assigns additional degrees within those regions and
resolves the problem. Hierarchical vector basis functions are almost always utilized for p-
adaptive refinement since they allow most of the equations within the FEM system to
remain the same from one level of refinement to the next. On the contrary, interpolatory
vector basis functions would require all the equations in the regions undergoing
refinement to be replaced. In addition, an interpolatory expansion requires special

transition elements to connect between regions of different polynomial degree.

Industrial applications demand more efficient and robust computational tools,
since users’ expertise often fails for very complicated structures and the high initial
fabrication cost of modern systems motivates a high certainty of success before
fabrication. For a software tool to be able to analyze a specific problem from the given
geometric and material information alone, some form of refinement must be incorporated

in an adaptive and intelligent way.



Adaptive finite element methods rely on a local error estimator to decide which
elements within the computational domain contain the largest error levels and would
benefit from additional degrees of freedom. Although error estimators have been
developed for scalar equations [26], little research has been directed to date toward error
estimators for the vector electromagnetic field problems of interest. The development,
implementation, and evaluation of error estimators for vector electromagnetic field

problems forms the principal subject matter of this dissertation.

Chapters 2 and 3 review the FEM formulation. The Helmholtz equation is
obtained from Maxwell’s equations, and specialized to the rectangular cavity and parallel
plate waveguide (PPWG) structures that will be used for illustration. The vector FEM
procedure is described, and higher-order hierarchical vector basis functions are reviewed.
Chapter 4 provides a validation study to ensure that the vector FEM computer code is

correctly implemented.

Chapter 5 presents several error estimators, including one based on the normal-
field discontinuity between cells, one related to the tangential-field discontinuity, one
based on the residual error associated with the Helmholtz equation, and one based on the
relative magnitudes of coefficients of higher-order hierarchical bases. The
implementation of these error estimators is described. The performance of these error
estimators is reported in Chapter 5, for several canonical problems associated with the
PPWG geometry. Results suggest that the normal-field discontinuity (NFD) and weak

form residual (WFR) estimators are the most accurate in terms of correctly estimating the



field error. These estimators are implemented within an adaptive p-refinement algorithm
and used to analyze several problems (Chapter 6). The performance of the adaptive p-

refinement algorithm is reported.



CHAPTER 2: BACKGROUND

2.1 Mathematical Foundation
The solution of an electromagnetic field problem must satisfy Maxwell’s

equations and the associated boundary conditions. In general, this boundary-value
problem can be defined by a governing differential equation in a domain I" with the
general form

Lu—f=0 (2.1)
accompanied by boundary or transition conditions

Bu)=0 (2.2)

on the boundary oI .

In electromagnetics, the differential operator £ usually represents the scalar or
vector Helmholtz equations. The function fis a known excitation function and u is the
unknown quantity, such as the electric or magnetic field. The function ¥ may be a scalar
quantity or a vector quantity; u can be replaced by the vector quantity # when the

governing equation is the vector Helmholtz equation.

An analytical solution is possible for relatively few cases, such as:

o The static potential between infinite parallel plates

o Wave propagation in rectangular, circular, and elliptic waveguides

o Cavity resonance within rectangular, cylindrical, and spherical cavities
o Wave scattering by infinite planes, cylinders, or spheres



For most problems of practical interest in electromagnetics, therefore, an approximate
solution is obtained by a numerical method. Typical numerical methods for
electromagnetic problems have their origins in the classical Ritz-variational method and
Galerkin’s method [1,23]. Galerkin’s Method is explained here briefly for further study.
(For the Helmholtz equation the Ritz-variational method leads to the same matrix

equation.)

Galerkin’s method is one of the weighted residual methods and, as that name
suggests, the solution is found by weighting the residual of the differential equation.

Assume # is an approximation of the exact solution # expanded as
& T T
=Y cw, = el {wh=w) {c} (23)
j=1

where w; are the chosen expansion functions and ¢, are coefficients to be determined.

Also, {-} denotes a column vector and the superscript T denotes the transpose of the
vector. Then the residual is given by

r=£u — f#£0 (2.4)
A system of equations is obtained by weighing the residual with a set of test functions

{t,} and equating the weighted residual to zero over the domain:

R, = [t,rdl =0 2.5)
r

The approximate solution to equation (2.1) is obtained by solving this system of
equations. In Galerkin’s method, the testing or weighting functions are taken to be the
same as the expansion functions. Therefore, the weighting functions are chosen as

t,=w,,j=12,..,N (2.6)



and equation (2.5) is written as

R, = [(w,Liw} {c}—w, )dl =0 j=12,..,N. 2.7)

This equation can be written in the form of a matrix equation

[S]{c} = {b} (2.8)
where

S; = | (w,Lw,)dl (2.9)
and

b= [(w,f)dr . 2.10)

To avoid the need to use expansion functions that can accurately capture or
approximate the exact solution over the entire domain, the domain is divided into smaller
subdivisions and functions are defined over each subdomain. If a subdomain is
sufficiently small, and the variation of the exact solution over that subdomain is small,
expansion and testing functions may have a much simpler form than they would require

over the entire domain. The subdivisions are finite elements.

This method, the so-called Galerkin FEM, allows subdomain basis and testing
functions to be capable of approximating the exact solution of more complicated
structures. There is always some error incurred in representing the domain and the

solution by this process but, in general, it will be reduced as the element size decreases.



The generation and solution of the Galerkin FEM system requires the following

steps:
o Define the problem’s computational domain
o Choose discrete elements and expansion functions
o Generate a mesh
o Enforce the residual equation over each element to generate the element
matrices
J Apply boundary conditions and assemble element matrices to obtain the

overall sparse system
o Solve the overall system equation

o Postprocess field data to extract parameters of interest.

In the following sections, the scalar and vector Helmholtz equations are derived
from Maxwell’s equations. These equations are specialized to a two-dimensional cavity
problem and a two-dimensional parallel-plate waveguide problem. The associated FEM

equations are developed.

2.2 Helmholtz Equations

Electromagnetic field problems are described by Maxwell’s equations in
differential form. Consider a closed region I', contained within the surface oI', which
might be truncated by an absorbing boundary condition or closed by perfect electric

conductor (PEC) surfaces. This region might contain inhomogeneous materials with



complex geometrical shapes. Assume that the region is source-free and the field is time-

harmonic with frequency o . Maxwell’s equations are given by

VxE = — jouH (2.11)
VxH= jweE (2.12)
V-¢E =0 (2.13)
V-uH =0 (2.14)

where E and H are the electric and magnetic field intensities, respectively. The

constitutive parameters, ¢ and u, are the permittivity and permeability of the region,

respectively, each of which may vary with position according to the material filling that
region. These parameters can be described in proportion to the free space parameters,

goand p,:

e=¢.¢€ 2.15)
0 (

r

K=, 1 (2.16)

where ¢, and i, are the relative permittivity and permeability, which vary with position.

Two vector Helmholtz equations are derived by combing (2.11) and (2.12). The first is

VX(LVxﬁ)=k§ﬂrﬁ (2.17)
&

”

involving the magnetic field as the primary unknown and the second is

Vx(iVxE)=k§s,E (2.18)

r

10



where the primary unknown is the electric field. In equations (2.17) and (2.18),

k, = w4/e, 1, 1s the wave number. These are often called the curl-curl equations.

When these equations are specialized to two dimensions, there are two

polarizations that arise. The TE-to-z or H, polarization is obtained after employing the

vector identity

t z

Vv, ><|:in x(EHZ):| =-zZV, -LV H
€ €

r r

to reduce the vector equation (2.17) into the scalar equation

1
—V

r

VvV .

t

H,=-k uH,. (2.19)

t

In a similar manner, an equation for the TM-to-z or E, polarization is obtained as

v, -iV,EZ =—k;¢,E,. (2.20)
I

In the preceding equations,

v, =ifc+ij/. 2.21)
ox Oy

Equations (2.19) and (2.20) are scalar Helmholtz equations.

Proper boundary conditions must be specified in conjunction with these
differential equations. References [1,23] provide a complete and detailed discussion. In
this study, an absorbing boundary condition will be used for open regions; it will be
derived in Section 2.4. For a PEC surface, the tangential component of the electric field

must vanish at the boundary of the PEC:

11



=0. (2.22)

tan

PECsurface

At the interface between two homogeneous dielectrics, tangential continuity is expressed:

+

=E

(2.23)

tan t;

surface an | surface

The expansion functions should maintain tangential continuity at material interfaces.

Solving Maxwell’s equations with their boundary conditions is equivalent to
solving the curl-curl equations with their boundary conditions. The curl-curl equation is
converted into a variational functional or a weak form equation before it is discretized.
The FEM converts the functional or weak form equation into a linear system of equations
by discretizing the over-all computational region into many smaller elements. The
approximate solution is obtained by solving the linear algebraic equations using standard

matrix techniques. These steps are described in the following sections.

2.3 Rectangular Cavity Problem

In this section, the vector Helmholtz equations are used to develop scalar and
vector finite element formulations for a 2D rectangular cavity problem. Although two-
dimensional problems can usually be posed in terms of scalar equations, this dissertation
focuses on vector equations in the hope that the results have more applicability to the
general three-dimensional case. Additional details of these derivations may be found in

fundamental books on finite element methods [1-3,23].

In most cases, an analytical solution to (2.17) and (2.18) is not possible. To obtain

a numerical solution, the first step of the FEM procedure is to convert the vector

12



Helmholtz equation into a weak form equation. The equations can be reduced to a weak

form by taking the dot product of either curl-curl equation with a known vector test

function, T . For example, (2.17) is tested to yield

T-Vx(iVxﬁ)=kgﬂ,T-ﬁ (2.24)
&

r

By using a standard vector identity, we obtain

= 1 — 1 — — 1 —\ — O

T-Vx(—VxH)=—VxH-VxT-V.|—(VxH)xT |=ky,T-H (2.25)
€, €, €,

By rearranging terms, (2.25) can be written as

leﬁ-VxT—koz,urT-ﬁ=V-|:i(Vxﬁ)xT:| (2.26)
e €,

By integrating (2.26) over the computation domain I, the right hand term is modified by

Gauss’ law as follows

HV |: V xH xT:|dS—I|:Txl(Vxﬁ):|-ﬁdl (2.27)
a €,
Finally, (2.26) is rearranged to yield
jj[ VxH-VxT-klu,T- H]ds—I[TXL(Vxﬁ)]ﬁdl (2.28)
ar &,

where the boundary Ol is the contour surrounding the interior region I and its outward

normal vector is 7. Equation (2.28) is the weak form of (2.17).

By similar steps, we can obtain a weak form equation for the electric field E as

J’j[ VxE-VxT-kle,T- E]ds_j[Txi(VxE)]ﬁdz (2.29)
or M,

13



Equations (2.28) and (2.29) are called the weak forms of the vector Helmholtz equations.
The left-hand side terms in these equations are common to a wide range of
electromagnetics problems. The right-hand side, which usually provides a means for
incorporating boundary conditions, must be manipulated properly depending on whether
the system of interest is a deterministic or an eigenvalue problem. The weak equation
yields a deterministic system when it models scattering, radiation, and other deterministic
problems associated with a source or excitation. It yields an eigenvalue system when it
models source-free wave propagation in waveguides and source-free resonances in
cavities. The deterministic system will be discussed in Section 2.4. Here, the eigenvalue

system is considered as one example that will be used to verify the FEM implementation.

Consider a region surrounded by a PEC surface. The right hand boundary
integration in (2.28) is nullified since the curl of magnetic field vanishes on the PEC

surface. Equation (2.28) reduces to

Irj [LV"E'VXT}ZS = ];,f(ké u, T -His (2.30)

8}"
In order to obtain a numerical solution, the equation must be discretized. Suppose that the
computational domain is the rectangular cavity I'. This domain must be divided into M

subsections or elements I, , where k=1, 2, 3, ..., M, as illustrated in Figure 2.1 .

14



b

6T (PEC)

Figure 2.1 Discretization of a rectangular cavity

Within each element the field may be approximated by a finite linear combination of
basis functions. These basis functions are known, but are weighted by the corresponding
unknown coefficients. Thus, the total field of interest within I" can be written as a

weighted sum of all basis functions:

N

H(x,z)= ) f,B,(x,2) (2.31)

n=1
where B, (x,z)is a vector basis function that shall be explained in detail in the next

section. These basis functions must provide tangential continuity for any set of
coefficients. Equation (2.31) is substituted into equation (2.30), and the testing functions
are chosen to be the same as the basis functions. The result is a system of equations that
can be expressed in matrix form as

[Alif) = [Blis}. (232)
where [A] and [B] are N by N matrices. These matrices involve entries that may require
integrals over several elements; they are normally computed in an element-by-element

manner. If expressed over a single element I', these entries have the form

15



Al = J’j(iVme -VxEanxdz (2.33)

B., = [[ (4.7, B, Jixd (2.34)

where the superscript denotes an element k.

Equation (2.32) is a generalized matrix eigenvalue equation that can be solved by
standard matrix procedures for the eigenvalues and eigenvectors. These quantities are

related to the resonant frequencies and resonant modes of the physical cavity structure.

For the scalar Helmholtz equations in (2.19) and (2.20), similar FEM matrix

equations can be derived with corresponding matrix entries of the form
1
AL= || [—VT,,, -VBn]dxdz (2.35)
I gr

and

B! = H (,urTmBn )dxdz . (2.36)
Iy

While these will not be used in the present work, we include them here for completeness.

2.4. Parallel-Plate Waveguide Problem
A section of source-free two-dimensional parallel plate waveguide (PPWGQG) is
shown in Figure 2.2. The infinity long PPWG structure must be truncated at the input and

output ports, denoted oI, anddl’,, respectively, surrounding the region of interest. This

section focuses on the boundary term in equation (2.28) since the other parts of the weak

16



equation are exactly the same as previously discussed for the rectangular cavity problem.
The weak form of the vector equation in terms of the magnetic field is rewritten for

convenience:

&

r

”[(v xT) -(iv x H)—T -k*pu, Hdxdz= j(fxiv x H) - hdt (2.37)
r o &

The boundary oI is the contour surrounding the interior region I" and its outward normal

vector is 7.

6T (PEC)

~<
=
&

8T (PEC)

Figure 2.2 Discretization of parallel-plate waveguide

The boundary consists of three parts, the input port oI, , the output port oI',, and

the PEC walls that will be denoted by oI . After imposing boundary conditions, the

equation simplifies to

[Jiew=T) (VX )T - u Hdxd-
. &,

¥

=—j(7-ﬁxiwﬁ)dt—j(f-ﬁxiwﬁ)dr (2.38)
€ &

or, r or, r
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where we have used TxVxH -i=-T -ixVxH, and ixVxH = josixE = 0 on
PEC walls. To define the boundary-value problem uniquely for the area I' bounded by

ol',,ol', and the waveguide walls, it is necessary to prescribe a boundary condition for

each of oI', and oI, .

2.4.1. Absorbing boundary condition along Output Port 0T,

First, consider the output port, which must support a transmitted wave passing

through in the + Z direction. This wave has the general form
El(x,2) =Y sin(%)e-fﬁnz (2.39)
n=1

wheree! denotes a field amplitude of the n-th mode and
B, = [k’ —(%)2. (2.40)

The magnetic field associated with (2.39) is obtained from

_ ) .1 | .CE . OE
H=H Xx+H_z= (—H)-z2(—D)
’ jou oz ox

- J%ﬂ 7B sin(")e 5 - ﬁ [ el cos™Te ]2 241

n=l1

where use has been made of H = _?XE In addition, the boundary term can be
JOH
simplified according to
L1 — . ~ OH . oH
nx—VxH zzxi(—y)[ Z-aHx]ZxL[ . O,
€, 72, g, Ox Oz g, Ox 0z
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2L oSy _—M
xg w; 2 4 B2 e’ sin(hye P (2.42)

where the unit normal to the output port, 7, is +Z in Cartesian coordinates. The

coefficients can be expressed in terms of the field as

—2au
p.d

e, =(——

—— e IH (x, zz)sm(—)dx (2.43)

Substituting (2.43) into (2.42) yields

.1 = Aid J nm's onme
zxg—erHZ_zz—xgdl. (H (x', zz);ﬁ [( d) + 32 ]sin( g )sin( y )bdx
.20 , o
i ! (X2, )G(x,x' )dx (2.44)
where
Gx,x')= ifj—'[( )+ B sin ™ ) sin ")
_ & jk? o onm! o nmx
;ﬁn sin( y )sin( Z ) (2.45)

Equation (2.44) can be used as an absorbing boundary condition on oI, .

2.4.2. Absorbing boundary condition along Input Port O,

Since it is assumed that the excitation of the waveguide is left-to-right in Figure
2.2, the field on oI', will generally consist of an incident field and a reflected field. First,
consider the reflected field. The reflected wave propagates in the — Z direction and is

denoted by

19



EY (x,2) = ze”f sm(—)e”B : (2.46)

n=1

Following the same procedure leading to equation (2.44),

ixLvxHY
£

r z=z

(H(x',2 )Z—[( ) +,5,,]Sln( )Sm(—)}d '

A 2
x_
Ed nlﬂ

O ey

d
3 id j H' (x',z, )G(x,x' )dx' (2.47)
0

where G(x,x') is given in (2.45).

Now, consider the incident field on oI, which has the form

E"(x,z) = Zemc sm(—)e-fB : (2.48)

n=1

Through the same procedure described above, we obtain

—éxLVxﬁi""
&

r z=z

—flj{H;"C(x',zl)il P 2 sin( "2 psing "2

=B,
- —fl { H"™(x' z, )G(x,x' )dx' (2.49)

where G(x,x') is given in (2.45).
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An ABC in terms of the total field on oI, is obtained by combining equations

(2.47) and (2.49). The first term on the right hand side of equation (2.38) can be written

as
A 1 T ~ 1 7 inc Trref
nx—VxH =nx—Vx(H™+H')
g, g,
= (—2)xiw(ﬁ“’f +H'™) on or, (2.50)
&

r

After substituting equations (2.47) and (2.49) into equation (2.50), we obtain

d
ﬁxL xH = fci J- (H? — H"™)G(x,x")dx'
g, de, v

r

d
_ 32 J.(Hx —2H")G(x, x")dx'
deg, 3

d d
S jHTf (x,2)G(x,x")dx' i r jH;’;'” (x,2)G(x,x)dx’  (2.51)
de, 3y de, 7

where G(x,x') is given in (2.45). Equation (2.51) is the ABC we will use along oI, .

2.4.3. Derivation of the matrix equation
The weak equation for a parallel plate waveguide with TM-to-y excitation and

ABC s at the input and output ports is given by

ﬂ( VxT -VxH-ku T - dexdz+§j

or;

[ ! T- xIH (x',z))G(x, x)dxjd
€
%j[ _.ch.Hx(x',zz)G(x,x')dx'}dt
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= SIL ! T- XIHW (x',2))G(x,x")dx ]dt (2.52)

Equation (2.52) is derived by replacing the boundary terms in equation (2.38) with the

new expressions from equations (2.44) and (2.51).

Suppose that the computation domain is discretized into many small triangular

cells. The vector expansion functions are defined in conjunction with the cellular model
of the domain. Consider the use of curl conforming vector basis functions {B,}, which
have a constant tangential and linear normal (CT/LN) vector behavior, and impose
tangential-vector continuity between cells. Each basis function straddles two cells,
except for those that reside along boundaries oI, and oI',, which only occupy one cell

and have a large tangential component along the boundary. The magnetic field is

approximated as follows

H(x,z)= ZN: h B, (x,2).

n=1

We use the same vector functions as test functions.

The resulting system equation is a deterministic linear matrix equation of the form

[A] {h} ={g}. The entries of A have the form
A,,=1,,+ B+ B

mn mn

where

I ﬂ —VxT, VxB, —k’uT, B, tdxdz (2.53)
T r
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&

o, “r

d
B(U;% I{L]_’m )ACJ.E,” (x', z, )G(x,x')dx'}dt (254)
0

&

or, r

d
BE=2 [ T, 5[ B, (26002 Y 2.55)
0
The entries of the excitation vector have the form

d
g =— (4 T’xj H"™ (x',2,)G(x,x")dx"\dt . (2.56)
0

4L
a’arl £,

The boundary integrals in (2.54) and (2.55) are only nonzero when both Tm (x¥) and

B, (x) are functions located on the same boundary. For the waveguide geometry, they

are functions of x.

2.5 Summary

This chapter reviewed the derivation of the two-dimensional vector Helmholtz
equations and specialized them to the problems of a resonant cavity and a parallel-plate
waveguide. Expressions for the vector FEM matrix entries, in terms of vector basis and

test functions, were developed. These basis functions will be described in Chapter 3.
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CHAPTER 3: SCALAR AND VECTOR FINITE ELEMENTS

In the FEM approach, the computational domain is divided into a mesh of
electrically small elements. Basis functions are defined in conjunction with the FEM mesh
to approximate the unknown function. Each basis function usually straddles several
elements and vanishes outside of a small group of contiguous elements. The procedure
results in a sparse system of equations that facilitates an efficient matrix solution and
minimizes memory resources. In general, two general types of basis functions exist for
electromagnetics. One is the classical scalar or node-based basis family that has been used
with finite elements since the 1950s. The other is the vector or edge-based type of basis

function, introduced in the 1980s.

Node-based elements have been widely used for numerical solutions of the
Laplace’s equation and the scalar wave equation. However, these traditional basis functions
do not work well when used with the three-dimensional vector Helmholtz equation. Edge-
based vector basis functions were proposed to overcome some of the difficulties that arose
in connection with the vector Helmholtz equation [1,3,10-25]. This chapter discusses both
scalar basis functions and vector basis functions for triangular cells, which reasonably

model the irregular geometries in two-dimensional problems.
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3.1. Scalar Basis Functions
In a node-based finite element analysis, the unknown function is approximated by a
combination of interpolatory scalar Lagrangian basis functions [1,3,23]. The global

representation for the function can be obtained in the form
N
”(an/):zuiBi(X,J’) (31)
i=1

where the coefficients {u,} represent the function values at the nodes and each basis
function B, (x,y) must be unity at node i and zero at all other nodes within the mesh. If a

single triangular element (Figure 3.1) is considered, a number of basis functions are

nonzero within that element depending on the polynomial degree of the expansion.

Figure 3.1 Simplex coordinate of a triangular element
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For a general way of constructing basis functions of any order, a point P (x, )

within a triangular element can be expressed in terms of simplex coordinates (L;, Lo, L3)

that are defined by
x=Lx +L,x, +L;x, (3.2)
y=Ly +Ly,+Ly, (3.3)
where
L+L,+L, =1 (3.4)
L,L,,L,2>1 (3.5)

As illustrated in Figure 3.1, the simplex coordinate L, is zero on the side opposite to the

vertex i.

Basis functions can be defined in terms of polynomial functions of the simplex

coordinates, using the polynomial functions

s—1

R, (M, L) =$H(ML—k) (3.6)

R,(M,L)=1. (3.7)
The M-th order Lagrangian scalar basis functions are defined in terms of simplex
coordinates as

B (L,L,,Ly)=R,(M,L)R;(M, L,)R, (M, L) (3.8)
where a triple index ijk is employed to denote the interpolation point of a specific basis

function, and where k=M—i—j . The basis function B, interpolates to 1 at point
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(L,,L,,L;) = (L,'—j,ij and is exactly zero at the other interpolation points. Figure 3.2
MM M

shows the interpolation points for M = 3. Within an element, the representation of the

unknown function is written in terms of these basis functions as
M

M
ty (%, 9) = 2 D 0y By (Ly Ly, Ly) (3.9)

i=0 j=0

where the {aj} are the coefficients to be determined by the FEM procedure.

003

300 o ® 030
210 120

Edge 3

Figure 3.2 Interpolation points of B, , M=3

While node-based Lagrangian basis functions work well for representing scalar
quantities in electromagnetics, serious problems sometimes occur when they are employed

to represent vector electric or magnetic fields [27]. Usually, when this has been attempted,
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each Cartesian component of the vector quantity of interest is represented by an
independent expansion of the form of (3.1) or (3.9). The Lagrangian functions are
continuous across cell boundaries, meaning that the tangential and the normal vector
components are also forced to be continuous across the cell boundaries. Unfortunately, this
behavior fails to represent the proper field discontinuity at the interface of two different
materials. The second difficulty lies in the fact that the Cartesian components of the vector
quantity are seldom aligned with the tangential or normal directions at a physical boundary,
such as the surface of a conductor. In general, vector Dirichlet or Neumann boundary
conditions are imposed on either tangential or normal components of electromagnetic fields
along a boundary. It becomes more difficult to impose boundary conditions when
Cartesian components are in use, since the boundary conditions act as a constraint between
several coefficients in (3.1) instead of an independent constraint on one coefficient. Third,
grossly inaccurate solutions (spurious modes) are sometimes obtained from node-based
discretizations of the vector Helmholtz equation. Spurious modes are believed to be
associated with inaccurate representations of eigenfunctions within the null space of the

vector Helmholtz operator.

Edge-based vector basis functions have been developed to address the above

concerns when analyzing the vector Helmholtz equation with the FEM [15,27]. The

following section reviews these edge-based elements.
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3.2. Vector Basis Functions

Several of the difficulties associated with the use of node-based scalar basis
functions to represent a vector quantity stem from the use of the Cartesian components of
the vector function. Vector basis functions provide a representation that is independent of
Cartesian components, but is tied locally to tangential and normal vector components at cell
boundaries. Vector expansions of this type therefore make it easier to impose appropriate

boundary and continuity conditions at cell interfaces.

Vector basis functions associate their degrees of freedom with the edges and the
faces of the cells within the finite element mesh. The type of function that maintains
tangential continuity along the common edges between abutting elements is known as a
curl-conforming, edge, or tangential vector basis function. Functions of this type were first
proposed for triangular cells by Whitney [10]. Nedelec generalized the concept and
provided a methodology for constructing higher-order vector basis functions of this type

[11,12].

3.2.1 Zeroth-Order Vector Basis Functions for Triangles

The simplest edge elements were described by Whitney [10]. On the boundaries of a
triangular cell, these elements have polynomial degree zero (constant) in the tangential
direction but degree one (linear) in the normal direction. For a triangular element it is

difficult to visualize the form of the vector basis by intuition since the edges of an arbitrary
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triangular element are not in alignment with the x- or y-axis. Therefore, let us consider the

use of simplex coordinates, (L,,L,,L,), described in Section 3.1.

Within a triangular cell (Figure 3.3), the general form of a Whitney element is

ﬁ(’; = Ln+1VLn—1 - Ln—]VLnH (3 10)

where n = 1, 2, or 3 indicates the edge number and the index is assumed to be modulo three
(in other words, when n = 3 the subscript n+1 is taken to be 1); the subscript 0 indicates the

order of that basis function.

3 Edge 3

Figure 3.3 Triangular edge element

The zeroth-order edge basis functions defined in Equation (3.10) have the following

divergence within the element:
V ) ﬁg = V * (Ln+1VLn—1 - Ln—IVLn+1)

= Ln+1V : VLn—l - Ln—lV : VLn+1 = 0 (311)
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They appear ideal for representing vector electromagnetic fields in a source-free region,
since those fields exhibit zero divergence. However, the divergence is actually nonzero at
cell boundaries, where it assumes the form of a Dirac delta function. The curl of the basis

functions is given by
V x ﬁ(,)l = V X (Ln+1VLn—l - Ln—IVLnH)

=Vx(L, VL _)-Vx(L,_VL,_)=2VL _ xVL_ (3.12)

n+l n+l1 n
Thus, the curl of these edge basis functions is constant. It is noteworthy that the basis
functions defined in equation (3.10) and their curls are complete to the same polynomial

degree: zero or constant.

Suppose 7, is a unit-tangential vector along edge n as defined in Figure 3.3. The

unit tangential vectors and the simplex coordinates are related as follows:

tn ‘ VLn+1 (313)
[ .VL_ = % (3.14)

since L, is a linear function that varies from 0 at node (n-1) to 1 at node (n+1), and ¢, is

directed from node (n-1) to node (n+1) with unit amplitude. Therefore,

— A L. +L 1
Qg 'ln =(n+1£—n_l)=€— (315)

n n

which means Q' has a constant tangential component along edge 7. It also follows that

~

Qi =0 (3.16)

n+l
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since L ,, vanishes at edge (n+1) and VL ,,is normal to edge (n+1), and

Q) -t , =0 (3.17)
since L,_, vanishes at edge (n-1) and VL,_, is normal to edge (n-1). From equations (3.15),
(3.16), and (3.17), we conclude that Q; has no tangential component along edges (-1) and

(n+1) but has a constant tangential component along edge n. In a sense, this basis function
interpolates to the tangential component along edge » of the cell. This feature of edge basis
functions can be used to guarantee the tangential continuity of the global representation
across inter-element boundaries as long as expansion coefficients in the two adjacent

elements are equal. However, these basis functions do not have enough degrees of freedom

to guarantee normal continuity. Figure 3.4 shows the actual variation of Q_ within the cell.

Within a cell, the vector field can be expanded as

3
Ial A7 O
E=;EnNn (3.18)
where {E,} are the coefficients of the basis functions,
N =10Q) (3.19)

and where ¢ is the length of edge n of the element. The global form of the expansion is

similar, with the tangential continuity imposed between cells and most of the basis

functions effectively straddling the two cells adjacent to the interpolatory edge.
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Figure 3.4 Zeroth-order curl conforming function of Q} = L,VL, — L,VL,

Observe that the Whitney type of basis function is mixed-order, with one lower
polynomial degree along the primary vector direction of the function than in the
perpendicular direction. It is also possible to define vector basis functions that are
complete to a consistent polynomial degree. (Such functions involve six degrees of
freedom within a triangle instead of three.) However, when using basis functions within an
FEM analysis of the vector Helmholtz equation, the extra degrees of freedom within a
consistently linear representation appear to be wasted (at least in source-free regions). It
appears that, because of the curl operator within the vector Helmholtz equation, it is most
efficient to employ basis functions that are complete to the same degree as their curl.
Additional degrees of freedom that do not contribute to the curl of the basis functions are

not balanced within the FEM system of equations and do not contribute to a more accurate
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solution. Furthermore, when analyzing vector cavity problems, the use of polynomial-
complete basis functions results in additional nullspace eigensolutions and no new physical
eigensolutions, compared to a mixed-order representation [3]. Consequently, for the
remainder of this study, only the mixed-order vector basis functions of the spaces proposed

by Nedelec [11] are considered.

Even though Whitney edge elements remove the difficulties caused by nodal
elements, they are low-order polynomials and therefore the FEM solutions exhibit
relatively large errors unless the cells within the mesh are very small. The rate at which the
solution accuracy improves as the average cell size is reduced is often referred to as the
convergence rate. The slow convergence rate associated with the zeroth-order elements
can be improved by making use of higher-order vector elements. Two different types of
higher-order edge elements, interpolatory and hierarchical vector basis functions, can be
constructed based upon the Whitney zeroth-order vector basis functions and span the same
vector spaces. The major difference between these higher-order vector elements lies in their

construction.

The interpolatory vector basis functions are defined on a set of points within the
element. Since each vector basis has its primary value at an interpolation point, the set
usually exhibits good linear independence. Their coefficients have a physical meaning as
the tangential components of the field at the interpolation points. Their definition also

makes it easy to impose boundary conditions. The systematic construction of interpolatory
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vector basis functions is described in [19]. Despite these advantages, interpolatory basis
functions of a given order are all different from those of the lower-order. Hence, different
order basis functions can’t be employed together within the same element, which hinders

their use within a p-adaptive algorithm.

For hierarchical basis functions, the higher-order functions are superimposed upon
the lower-order functions. Since computations that have been performed for lower-order
basis functions do not need to be repeated, they permit a more efficient p-adaptive

algorithm. In this study, hierarchical vector basis functions are considered.

3.2.2 Higher-Order Hierarchical Vector Basis Functions

A set of edge-based basis functions is referred to as hierarchical if the vector basis
functions of order n are a subset of the vector basis functions of order n+1. Unlike zeroth-
order edge elements, higher-order vector basis functions are not uniquely specified
[13,14,16,18,20]. In this section, a set of non-hierarchical vector basis functions and
another set of hierarchical vector basis functions are compared to clarify the concept of
hierarchical basis functions. The hierarchical concept is explained using easily
understandable scalar one-dimensional functions. Two sets of basis function that represent
a linear tangential/quadratic normal (LT/QN) field along element edges and a quadratic
field inside the element are compared to clarify the concept of hierarchical vector basis

functions.
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Illustration of one-dimensional scalar hierarchical basis functions

Figure 3.5 depicts the hierarchical principle for one-dimensional scalar basis
functions. Piecewise-constant and piecewise-linear approximations of a scalar quantity,
over a straight segment, are considered. The representation of a constant function is
unique, and is easily obtained by multiplying a constant basis function of unit amplitude by
the appropriate coefficient, as shown in Figure 3.5 (a). However, there are two different
ways to express a piecewise-linear function, as illustrated in Figure 3.5 (b) and Figure 3.5
(c). A superposition of two linear basis functions, one with linear variation from 0 to 1 and
the second with linear variation from 1 to 0, can be used to obtain a general linear function
over the interval. Those functions are actually interpolatory and use the values of the target
function at the endpoints of the interval as their coefficients. An equivalent hierarchical
representation can be obtained by a superposition of the constant basis function and a
second basis function varying linearly from 1 to —1. The coefficient of the constant basis
function is the average value of the linear function on the left side of Figure 3.5 (c),
(A+B)/2. (If the constant basis function is used alone to approximate the target function,
this would also be its coefficient.) The linear basis function has an average value of zero
and does not interfere with the approximation already provided by the constant function. If
the linear function is assigned a coefficient of (A-B)/2, the representation is exact. From
this illustration, the physical meaning of the coefficients should be clear. For the
interpolatory case, the coefficients are the values at both ends of the interval, whereas in the
hierarchical basis case, they represent the average value and the first derivative over the

interval.
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Figure 3.5 An illustration of basis functions for piecewise-constant and piecewise-linear
approximations of a scalar quantity over a one-dimensional segment

Mixed-order non-hierarchical vector basis functions

A set of non-hierarchical LT/QN vector basis functions proposed by Peterson

consists of the following functions:

LVL,, (3.20)
L,.VL, (3.21)
L,(LVL,—L,VL,) (3.22)
L(L,VL,—LVL)) (3.23)
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where equations (3.20) to (3.21) are edge-based functions that provide nonzero tangential
components along the cell edges, while equations (3.22) and (3.23) are face-based basis
functions that do not contribute to a tangential component on the cell edges. The vector

basis functions L, VL ,, and L , VL have a linear tangential behavior on edge (n-1) with

n+l
node n and node n+1 as end points. Two functions related to edge 1 and one face basis
function are shown in Figure 3.6. Figure 3.6 (a) and 3.6 (b) show the linear variation of the
tangential component on first edge; on the other two edges, their tangential components
vanish. These specific functions, when superimposed, have a linear varying normal

component along all three edges.

The quadratic vector basis functions in equations (3.22) and (3.23) are added to the
set to provide a complete linear representation of the curl of the field being expanded. By
assigning two tangential field values at edge end points to each edge and two local
unknowns per element, an LT/QN field along all edges and a quadratic variation within the
element are obtained. The resulting representation is equivalent to the mixed-order

Nedelec space of minimum polynomial degree 1 [11].
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(a) First-order vector basis: Q2

T T T S T T T TR SR

= L,VL,

1
1

(b) First-order vector basis: Q

Figure 3.6 Non-hierarchical vector basis functions [17]
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(c) Face vector basis: Q|,, = L,(L,VL, — L,VL,)

Figure 3.6 Continued

Mixed-order hierarchical vector basis functions

A set of hierarchical vector basis functions proposed by Preissig and Peterson [28]
is shown in Table 3.1. The lower-order basis functions are similar to the other sets proposed
in the literature, such as the set proposed by Webb [24]. But for the higher-order basis

functions, the linear independence is enhanced by a special polynomial construction.

For LT/QN vector basis functions, eight functions up to mixed-order 1/2 should be

considered. Their edge-based functions and face-based functions are separated in Table 3.1.
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The shape of two edge-based functions related to edge 1 and one face-based function are

illustrated in Figure 3.7.

Table 3.1 Hierarchical vector basis functions

—edge/ face - - - =
Order Qorder” (L) =Qp(LVL + Q5 (L)VLy Vx Q|(L1,L2,L3)
_1 .
' Qg (D)= (=Ly)VL| = (Ly + L3)VL, 2
Mlxed 2 . P
0/1 Q1 (D)= (L) + L3)VL] + (L))VL,
3 .
Qg1 (D)= (=Ly)VLy + (L)VL, 2
1 .
O (D)= (~Ly)VL; + (L3 = Ly )VL, 0
Complete — — 0
1 Q) (L)=(Ly = L|)VLy + (-L{)VL,
3 _
Q] (L)=(Ly)VL; + (L])VL, 0
Mixed =f = _ 3
v, Q)9 ()= (=L Ly)VL = (L1Ly + L1L3)VL, (3L —1]
2
—f . B
Qo (L)=(L{Ly +LyL3)VL; +(L1Ly)VL, [3L, -1]
ﬁé(i):(2L2L3 —Lz2 VL - (L22 + L§ —4LyLy)VL, 0
Complete [—; - TR 2
Q) (L)=- (L] + L3 = 4L L3)VL| + (2L Ly — L])VL, 0
—3 . _ 2 2
2 05(0)= (2LyLy — L5)VL| + (L] = 2L1Ly)VL, 0
6{ (L)=(LyLy = LyLy)VLy + (LyL3y = LyLy)VL, 0
—f . 2 ~
Mixed Q5 3 (L) =(=L1L3)VL] — LiLy (Ly + L3)VL, [4L1Ly - Ly]
1Xe 7 2
2/3 Q5 3 (L) = (-LyLyL3)VL; = L{L3(Ly + L3)VL, [-L3 +3L,Ly — LyL3]
—f . 2

From Figure 3.7(a) and (b), these basis functions clearly provide a constant and a
linearly varying tangential component along edge 1, respectively. They provide zero

tangential components on the other two edges and a linear variation in normal component

along all three edges. The face-based basis function, Q, = L, (L,VL,,, —L,, VL,), has
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no tangential component along any edges but has a quadratic variation in the normal

component along edge n and edge n+1, but no normal component on edge n-1.
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(a) First-order vector basis: Q| = L,VL, — L,VL,

Figure 3.7 Hierarchical vector basis functions
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(b) First-order vector basis: Q, = L,VL, + L,VL,
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(c) Face vector basis: Q|,, = L,(L,VL, — L,VL,)

Figure 3.7 Continued
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Two unknowns per edge of the mesh are assigned: the average of the tangential
component of the field is assigned to the 0/1 mixed-order basis function and the derivative
of the tangential component of the field is assigned to the complete 1 basis function. The
edge-based functions can represent a linear tangential/linear normal (LT/LN) variation,
while the face-based functions represent a quadratic variation of the field. Therefore, an

overall LT/QN variation of the field is obtained by these hierarchical vector basis functions.

3.3. Summary

This chapter has reviewed node-based and edge-based basis functions for
representing electromagnetic fields. While node-based scalar functions have been
successful for scalar equations, the literature suggests that edge-based vector functions

provide a more robust formulation for the FEM solution of the vector Helmholtz equation.

Interpolatory and hierarchical functions have been described.  Hierarchical
functions offer some computational advantages when used with adaptive refinement
procedures. The hierarchical functions of Table 3.1 will be implemented within a computer
program that uses the FEM procedure to analyze the two-dimensional parallel-plate
waveguide geometry introduced in Chapter 2. Chapter 4 provides some numerical results

to illustrate the performance of the approach.
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CHAPTER 4: VERIFICATION OF HIERARCHICAL VECTOR
FINITE ELEMENTS

In the previous chapters the basic mathematical background of the FEM and
vector elements are expounded. Before error estimators are investigated, it is necessary to
verify whether or not the vector FEM is correctly implemented. To this effect, the air-
filled parallel plate waveguide will be analyzed using hierarchical vector elements. Two
configurations, shown in Figure 4.1 and Figure 4.2, will be considered. The first is a
section of unterminated waveguide that should support a pure traveling wave (T-PPWG).
The second guide is short-circuited at z = z, and should support a pure standing wave (S-
PPWG). An exact analysis of T-PPWG and S-PPWG gives the fields, transmission
coefficients and reflection coefficients. By comparison to this solution, the accuracy of

the result obtained from the FEM analysis will be evaluated.

—
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| | x

| |ﬂl_'2 7
| |

| |

Z

2

|| — g
J ———
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Z z

Figure 4.1 Unterminated parallel plate waveguide
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Figure 4.2 Parallel plate waveguide with short-circuited end

In the following sections the analytic solutions for the parallel plate waveguides
will be derived and the simulation results for field propagation and scattering parameters

will be compared to those derived from the analytic solution.

4.1. Analytical Solution

Consider the test structures first. The computational domain of interest in the
parallel plate waveguide is confined between the input port, oI, , and the output port, oI, .
The incident wave is traveling from input to output ports. The output port can be changed
to a short circuit, an open port, or a partial blocked septum. The short-ended PPWG (S-
PPWG) and open-ended PPWG (T-PPWG) structures have analytical solutions and that

permits a determination of the accuracy of a vector finite element result.

An incident wave, E ;”C (x,z), is generated from a source at z < z, to the left of

the domain shown in Figures 4.1 and 4.2. From the view point of the circuit analysis
technique a reflected wave might be generated by any geometric or material

discontinuities in a manner to satisfy the boundary conditions. Some fraction of the
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incident wave propagates through to the output port. As in chapter II, the derivation of
the analytic solution starts with a known incident electric field consisting of a single

mode. The incident electric field is rewritten here.
inc inc s X —jBiz _ pinc —jPz
E"(x,z)=¢, Sln(yje Bz = gl (4.1)
The field leaving the region ( z > z, ) has the form
t t e ™ —-jBiz _ inc _—jPz
E!(x,2)=¢, sm(;)e Bz = TR e~ (4.2)

where 7 is the transmission coefficient. To the left of the region, there is also a reflected

field of the form
EY (x,2)=¢/ sin[g)e”ﬁ'z =RE;“e™ ™. (4.3)

where R is a constant reflection coefficient. As mentioned above a portion of the incident
wave reaches the output port and continues to propagate along the waveguide. Some
energy carried by the incident wave will be reflected and propagates in the opposite
direction. As a result the total wave in the computational domain is the superposition of

the incident and the reflected wave from z, to z,:

B\ (x,2)=E)" (x,2) T EY (x,2) =E“e” "+ RE; "
. [ Lo N
ZSHI[;)[QII"LB JBiz +elref e+/l312] (44)

The transmission coefficient and the reflection coefficient are defined as the ratio of the
reflected wave to the incident wave and the transmitted wave to the incident wave, at

some arbitrary position z, respectively.
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E t _]BIZZ
sin
B E (x,2,) B B e

d
21 inc lﬂC
Ey (x,zl) sin E mc —1[3121
d

e‘]ﬁl(zz—zl) (45)

re/" +JBlzl

&ﬁ

ref

ref Si
EY (x,7) (

R = Sll = Eirw(x z ) - emc
y ’<] sin| =~ elmc e_/BIZl 1
d

e+./28121 (4.6)

Consider the open-ended PPWG and short-ended PPWG with length equal to one-quarter

of the guided wavelength, A, as shown in Figure 4.3 and Figure 4.4 below.

__H%___
|
e —
|
|
|
s

S
= z=—%{ z=-1{ z=0

Figure 4.4 Parallel plate waveguide with short-circuited end

48



For the T-PPWG, the incident wave propagates through the computational domain
without reflection. For the S-PPWG, a reflected wave is generated in order to satisfy the
boundary condition that the tangential electric field vanishes at the PEC wall. Therefore,
the relationship of amplitude of the incident, the transmitted and the reflected wave at

position z = z, are as follows,
ef=e", e/’ =0 for T-PPWG 4.7)
el =0, e =—e for S-PPWG. (4.8)
Substituting (4.7) and (4.8) into equations (4.5) and (4.6) for the transmission coefficient
and the reflection coefficient at z = 0 gives
R,=0, T,=1 for T-PPWG (4.9)
R,=-1, T,=0 for S-PPWG. (4.10)

where the subscript means the reflection and transmission coefficients at z = 0. In general

the phase of the reflection coefficient is varying according to measuring position as

R(x,z,) = % = R,e”/" 4.11)
v (62
where
R(x,z,)=0 for T-PPWG (4.12)
R(x,z,) = Re”™ =(~1)e™=1  for S-PPWG. (4.13)

Since the input port is located a quarter wavelength away from the output port, the

phase of the reflection coefficient is —2B,A,/4=—n with A, =27/f,, the guide

wavelength. The transmission coefficient, however, is just dependent on the amplitude of
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the transmitted wave. According to equation (4.5) with equations (4.9) and (4.10), the

transmission coefficients for T-PPWG and S-PPWG at z =0 are

t

T(x,2,)= =™ = ¢ for T-PPWG (4.14)
1

T(x,z,) =0 for S-PPWG. (4.15)

Since the primary unknown in this study is the transverse magnetic field, the
analytic magnetic field is required for comparison to the approximate magnetic field.
Within the computational domain, the total magnetic field associated with equation (4.4)

1s of interest and can be derived from

o 1 aEtot 6Etot
Htot — Hi()t )’C‘, +H;ot 2: )’(\f y _2 y
: jaou oz ox

= (__Bl) Sin(ﬂj(e{me_‘iﬁ]z _ el"‘?fe"'fﬁlz) )%
WU d
{]_nd] COS(gj(ef“e_"ﬁ‘z CRRE (4.16)

ajt

As long as the tangential component of the field is known on some boundary, full
knowledge of wave beyond that boundary can be guaranteed. The tangential component

of magnetic field, the x-component in equation (4.16), is

ﬁ;{)t — ﬁ;‘nc + ﬁxﬂ’f :(__Blj sin[ﬂj(elmce_mlz — equ/'e+jBIZ) (417)
@y d

The simpler form of this equation is

i =(_‘ il jsin[ﬂje;"ce-fﬁlz (4.18)
DU d
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for the T-PPWG and

]7;01‘ :(__Bl) sin[%Jelinc (e—J'Blz + e+]ﬁlz ) = (—_ 2B1€1mc }Siﬂ[%) COS(Blz) (419)

W oyl
for the S-PPWG. As with the total electric field, equation (4.18) has no variation with z in
its amplitude but the magnetic wave in equation (4.19) is sinusoidal in z. It is similar to

the standing wave made by a plane wave incident to an infinitely long PEC wall.

In this section, T-PPWG and S-PPWG are chosen as two testbeds for verifying
the accuracy of the numerical vector finite element solution. The transmission/reflection
coefficients in equations (4.13), (4.14) and the analytic solution of the magnetic field in
equations (4.18) and (4.19) will be compared to the numerical solutions. Once the FEM
solution for the magnetic field is found, the scattering parameters at the input and output
ports and the tangential field component can be calculated. In the following section these

quantities are calculated from the numerical solution.

4.2. Numerical Solutions

The FEM solution coefficients obtained with interpolatory vector elements
represent the field values at the interpolation points. The coefficients obtained with
hierarchical elements, however, do not carry a physical meaning. The FEM solution for
the magnetic field value at an arbitrary position in the computational domain is the linear
superposition of the product of basis functions, evaluated at that location and their

appropriate coefficients.
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In this section the magnetic field will be obtained with hierarchical vector basis
functions. From the numerical results the transmission coefficient at the output port and
the reflection coefficient at the input port will be computed. Simulation results show how

close the approximate fields and scattering parameters are to the analytic solutions.

4.2.1 Numerical Magnetic Field
The x-components of the magnetic field along the four dotted lines in Figures 4.3
and 4.4 are of interest. To get the x-component of the magnetic field at a specific z

position all elements including the dotted lines, z =z, , should be specified. For
simplicity of explanation, consider a cell adjacent the first dotted line at z=z, . The

approximate magnetic field in that cell has following form
~ N —_—
H(x,z)= Y .h,B,(x,z) (4.20)
p=0
where the parameters in (4.20) are

B b The hierarchical vector basis functions in a cell

h,: The coefficient of Ep
N : The number of basis functions in a cell

H(x, z) is an approximation of the exact magnetic field H(x,z).

Each vector basis functions, Ep, is defined in the physical domain by

transforming the basis functionﬁp from a reference cell defined by simplex coordinates.

The geometrical transformation of domain is described in many basic FEM books [1-3].
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The characteristics of hierarchical vector basis functions are explained in detail in
Chapter III. The x-component of H (x,z) is the product of a unit vector in the x direction

and the magnetic field:
~ ~ N —
H (x,z,)=5%-H(x,z,) = Y h,% B, (x,2,). (4.21)
p=0

The x-component field amplitude involves the superposition of every basis function with
a nonzero x-component. For all other cells along the dotted line, z = z, , the x-component
of the approximate magnetic field can be calculated in the same way. Equation (4.21) is
obtained from the FEM solution and compared to the analytic magnetic field values for
the T-PPWG and S-PPWG structures. The simulation results are given below in Figures

4.5 and 4.6.
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Figure 4.5 Magnetic field for the open-ended parallel plate waveguide
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Figure 4.5 Continued
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Figure 4.6 Magnetic field for the short-circuited parallel plate waveguide
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Figure 4.6 Continued
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Figures 4.5 and 4.6 show a comparison of the numerical results and the analytic
solutions for the x-component of magnetic field. The stars indicate the approximate
magnetic field and the solid lines represent the analytic solutions. Results are presented

for the four dotted lines in Figures 4.3 and 4.4, for T-PPWG and S-PPWG, respectively.

The simulation results indicate that the numerical solution obtained with vector
hierarchical elements grows more accurate as the order of the basis function polynomial

is increased. This provides some verification that the FEM code is functioning correctly.

4.2.2 The Numerical Transmission and Reflection Coefficients

In this section scattering parameters are considered for evaluating the accuracy of
the approximate solution obtained with vector hierarchical elements. Scattering
parameters play an important role in reducing a complex field analysis in microwave
engineering to a simple circuit analysis technique. Since most of microwave engineering
applications require scattering parameters, no additional redundancy is necessary to
calculate them. Therefore they provide a practical test as to whether or not the numerical

FEM solutions reach the expected accuracy.

From the analytic scattering parameters in equation (4.9) for T-PPWG and in
equation (4.13) for S-PPWG, the fact that no reflected wave and no transmitted wave
exist is manifested. Therefore, the transmission coefficients for T-PPWG and the
reflection coefficients for S-PPWG are of interest. Approximate transmission coefficients

for T-PPWG and reflection coefficients for S-PPWG will be calculated from the
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approximate solutions for the magnetic field in each case. Equations (4.5) and (4.6) relate
the amplitude of the transmitted electric field and the amplitude of the reflected electric

field to the numerical magnetic field coefficients.

inc

The amplitude of the incident field, e", is given. The coefficients of the total
field are obtained from the FEM solution, {4, }. For T-PPWG, the total magnetic field is

the same as the transmitted field and the x-component of the magnetic field in equation

(4.18) is given by

H!=H"= (—_ il jel’ sin(ﬂje'm‘z2 . (4.22)
’ (oji} d

From (4.20) the amplitude of the first transmitted mode is

d
el = {L_‘Bif:l”}e+fﬁ122} [He (x,zz)sin(%)dx. (4.23)

0
Substituting H “"in equation (4.21) into equation (4.23) gives the approximate amplitude

of the transmitted wave:

3 = [L_Bio;uﬂ .E Sh 5B, (x,z, = O)sin(%)dx

_([Z2en]] oy B (r.z. =0)sin| =
H 5 d ﬂ S rj’ h.,B,.,(xz, _0)sm( y )a’x (4.24)

i=l p=0gr, ,

where M is the number of cells contiguous to z =2z, =0 and Ei’x’p(x,z2 =0) is the x-
component of a p-th order polynomial basis B ,1n an element 7 along the output port. The

domain O , represents the cell boundary of an element i adjacent to the output port. The
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line integration is calculated along oI ,. Consequently the approximate transmission

coefficient is

[ (s

i=1 p=0g

T(x,2,) =2 = (4.25)

inc inc

€ €

From equation (4.19) the incident wave and the reflected wave at input port, z = z,, for

S-PPWG are

H;”C:(_ Bl Jsin(mjelﬂlce—lﬁlzl (426)
T d

H;e,-_( Blj , ( )e(ef . (4.27)
DU d

For S-PPWG the amplitude of the reflected wave can be obtained by subtracting the

and

incident field from total field, to yield

H = ( , ) ( ) M= H - H (4.28)
@ d “

The reflection coefficient derived from equation (4.27) is obtained from

d d
I HY s1n( )dx _[ B e/ et I sin( nx) Sln( )dx (4.29)
0 d oY ’ d d

By manipulating this equation into a form for e/ we obtain

d
e/? = 2w e P IH’” s1n( jdx
B.d 0 d
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wy - Bz o tot inc
1 .
(2 j I( -H! )s n( y )dx (4.30)

P.d 0

Replacing H!” with H “and H"™ with equation (4.26) gives e/ in the form

d
ar@/' (Zmuj - Bz |:'[ Sln[ )dx ‘[Hmc Sln( d )dx:|
0

where
d - d N
I H" sm(—)dx :.[ 2 h,B, . (x,z, )sm(—)dx
0 0 p=0
M N o
=33 _[ hpo’x(x,zl)sm[—de
i=l p=0or,,
and
[ e ™ o(-B T e - T -Bd) .. _,
IH;nL sin —_— dx =I _ M Sin i elmce—jﬁlzl Sin il dx — 1 elmce—jﬁlzl )
0 d o\ Ol d d 2op
Therefore,

~ ref 2’(15 — B,z MY . ™ inc z
e :(—B :je DN hpox(x,zl)s1n(7ja’x +e/ e/ (4.31)
1

i=1 p=0gr, ,
Substituting equation (4.31) into equation (4.6) gives the reflection coefficient at the

input port, z =z, :

~ref

M N
[ﬁ]e”ﬁ‘z‘ [zz j hp£_3 (x, 2, )Sln( y )dx:|+e’"‘
Rix,z) = O =2

inc inc

€ €

(4.32)

From equations (4.25) and (4.32), the transmission error and the reflection error are

obtained as:
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inc 20)“ SN 53 . L%
e +|:(B’ndjj|22 lj hi,pBi,x,p(x’ZZ = O)sm(d)dx

i=1 p=05h0
= — (4.33)
€
and
. |R(x,z))— R(x,2)| e =/ | |+
Ol Rwzy | [ e

ell.m, (1 + e—j2B121 )+ [zm'lje—jﬁlzl {izl\[: hpgp,x (x’ Z] )Sin(T;dex:|

= - . (439

From the point of view of power conservation, a fraction of the incident power is
reflected and some of the incident power is consumed while passing through the medium.
The remaining power is delivered to the output port. Therefore if the material of the

medium is lossless, then
T*(x,z,)+ R’ (x,z,)=1. (4.35)
By incorporating equations (4.25) and (4.32) into equation (4.35), another error measure

in terms of power deliverance is derived as

e =§1—T2(x,22;—R2(x,21)§ (4.36)
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This error will be useful to check the accuracy of the numerical solution even if an
analytic solution is not available. In addition, it can be used to stop the iteration of an

adaptive FEM procedure when this measure reaches the desired accuracy.

The combination of equations (4.33) and (4.36) for T-PPWG and the combination
of equations (4.34) and (4.36) for S-PPWG are presented in Figure 4.7 and 4.8. In these
figures, the triangular-cell model is fixed and the polynomial degree of the basis is
increased to obtain more degrees of freedom. For both S-PPWG and T-PPWG structures,
the error in the reflection and transmission coefficients converge to zero as the number of
degrees of freedom in the FEM solution is increased. Consequently the power
conversation law of equation (4.35) is well satisfied by both configurations as the number

of DoF increases.

4.3 Summary

In this chapter, the fields within a parallel-plate waveguide and the associated
reflection and transmission coefficients were used to evaluate the correctness of the FEM
implementation. The numerical results for an open PPWG and a short-circuited PPWG
are observed to improve in accuracy as the order p of the expansion is increased. These

results suggest that the computer implementation is correctly programmed.

The FEM implementation incorporating hierarchical vector basis functions will be used

to assess the performance of several error estimators in Chapter 5.
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Error of Power Deliverance for SPPWG
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Figure 4.7 Scattering parameter error for the short-circuited parallel plate waveguide
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Error of Power Deliverance of TPPWG
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Figure 4.8 Scattering parameter error for the unterminated parallel plate waveguide
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CHAPTER 5: ERROR ESTIMATORS

Discretization error is intrinsically incurred when modeling a continuous solution
with a finite number of expansion functions. It plays a crucial role in determining the
accuracy of the final solution. 4 posteriori error estimators allow assessment of the
quality of the computed solution by assigning an error value to a local element, to a local
edge (for 2D) or a local face (for 3D). 4 posteriori error estimators can be used in
connection with an adaptive refinement procedure to reduce the discretization error by

distributing the degrees of freedom (DOF) in an optimal manner.

In this chapter four a posteriori error estimators considered in the current study
will be explained in detail. These are the

e Normal Field Discontinuity (NFD) Error Norm

e Discontinuity of the Curl of Field (DCF) Error Norm

e Weak Form Residual (WFR) Error Norm

e (Coefficient Sensitivity of the Highest-Order Polynomial (CSH) Error Norm.
To obtain an optimum DoF distribution, the local error norm should reflect the actual
error in the numerical solution and allow a user to identify the area with relatively higher
local error. However, in practice the actual solution is not known. Thus, this study will
attempt to answer the following questions:

e Can the error estimator be implemented?

e s the assigned error in proportion to the actual error?
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e Does the assigned error decrease as the DoF increases and the solution
improves?

The first is practical: it is easy to define an a posteriori error estimator that is not easy to

compute. The second question is fundamental. The third one addresses the need for an

error estimator that can be used as a termination criterion for an adaptive refinement

procedure. A related issue is the validity of a global error estimate derived from local

error estimator.

The first question will be explained in the following sections describing the
definition of each error estimator. The second and third question will be answered by
presenting simulation results that compare actual error patterns with those of the
numerical error estimators. In this chapter simulations will be used to demonstrate two
aspects of the error estimators: the first is the local error performance and the second is

the global error performance.

Before the error estimators are discussed, we describe the manner in which the

actual error in a numerical solution is determined. Subsequent sections will address how

well each of the error estimators approximate the actual error.
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5.1 Exact Solution for the T-PPWG and S-PPWG Structures

For problems with an exact analytical solution, the exact solution is a
convenient reference to test the performance of each error estimator. The T-PPWG
and S-PPWG structures shown in Figure 4.1 and Figure 4.2 will be used to analyze
four error estimators. For these structures the analytic solution was presented in

Chapter I'V.

The x-component of the magnetic field for the T-PPWG and S-PPWG
structures is derived in equations (4.18) and (4.19) and rewritten in equations (5.1)

and (5.2) for convenience.

H, Z[_—ﬂ‘] sin(ﬁjef"“e”ﬁ‘z (5.1)
wu d
H = (;Ti‘) sin(%}ef“ (77 + 7% )= [—_ zzl:lmc J sin(%) cos(B,z) (5.2)

The z-component derived by substituting equations (4.7) and (4.8) into the second

term in the right-hand side in equation (4.16) is given by each of the following:

2 cos[ﬂje{"ce_jﬂ‘z (5.3)
aud d
Ir _ Jﬂ'- X inc _—jpfz inc _+jfz ) _ 27z’-elinc 7x :
=| —— |cos| — |le,“ e —e" e |=| ——— |cos| — |sin| S,z 5.4
o (d](l | )(WJ (dj (B2) 64

Equations (5.1) and (5.3) are for T-PPWG and Equations (5.2) and (5.4) are for S-
PPWG. The magnetic field at an arbitrary point in the computational domain is easily
obtained and can be compared to the numerical FEM solution. The details of the error

norm computation will be considered in the next section.
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5.1.1 Error Norm Calculation

The numerical magnetic field is computed as:
~ N —_—
H(x,z) =) hB(x,2) (5.5)
i=1

where the coefficient set {hi} represents the approximate solution found by the FEM ,

N is the number of the degrees of freedom used, and the tilda sign over the magnetic
field means it is approximate. The vector basis functions have been detailed in
Chapter III. Once the FEM solution is found, the numeric value of the field can be

calculated by equation (5.5).

The error in the FEM result is defined by the L’ norm as

~ H ‘17— 1’-~I‘L2 dxdz

e = — . (5.6)
[[ || Ldxdz
Equation (5.6) can be manipulated for easy implementation into the form
M _ M
DlHP -, Y,
€= = inc = - inc (57)
M‘Hx,peak N‘Hx,peak
where H .., is the peak value of the x-component of the incident magnetic field at

the input port , M represents the number of sample points per cell and £, is the error

in H ata point. The L* norm of a vector quantity is defined as

2
+

2

A

X

A

z

L,

A +A

(5.8)

When the point p is on the cell boundary, the numerical magnetic field is not unique.
The tangential component is uniquely determined due to the curl-conforming vector
basis. For the normal component, however, two cells abutting an edge may have two

different values. A new definition of error for points on edge is given by the average
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_ qul +qu2

, : (5.9)

The subscript represents the two cells sharing the edge on which the point p is located.

5.1.2 Simulation Results

In this section the basic mesh for T-PPWG and S-PPWG is explained and
simulation results will be presented. The simple PPWG has no rapid variation and the
FEM results are reasonably accurate as the DoF reaches a certain level. Consequently
a coarse mesh (Figure 5.1) is used to be able to show the variation of the local error

norm and global error norm as a function of the DoF.

The mesh is a basic frame in x-z plane for the homogeneous air-filled T-
PPWG and S-PPWG structures. The PEC walls are not denoted. The number on the
dotted line represents the global edge number. The incident wave propagates from the
input port to the output port. The top edges (8, 16, and 23) and the bottom edges (1,
10 and 17) are PEC walls. The S-PPWG has additional PEC walls at the output port
edges (18 and 21). The field values along the two solid lines, one along the
propagation direction, at x = 0.3, and the other along the x-axis, at z = -0.15 will be

used for the local error investigation.
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Figure 5.1 Coarse mesh for the parallel plate waveguide

Consider first the global error defined by equation (5.7). It is calculated by
numerical quadrature with several sample points in each cell not on a boundary. To
investigate the number of quadrature points required, Figure 5.2 plots the value of
(5.7). Figure 5.2 shows that as the number of sample points in a cell increases the
global error converges to some value for each polynomial order. When over 300
sample points per cell are employed, the convergent value may be taken as the exact

evaluation of the error norm.
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Figure 5.2 Global error computed as a function of the number of quadrature points
used for three orders of vector basis functions

Figure 5.3 shows the behavior of the global error computed from (5.7) for the T-

PPWG and S-PPWG structures, obtained with 325 sample points per cell with 5
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different basis polynomial orders: CT/LN, LT/QN, QT/CuN, etc. The percentage error

is indicated on each figure.
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Figure 5.3 Global error defined from (5.7) as a function of the basis function order
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Figure (5.4) shows the behavior of the global error computed from (5.9) for T-PPWG
and S-PPWG structures, obtained at the midpoint of each edge with 5 different basis

polynomial orders as in Figure (5.3). The percentage error is indicated on each figure.

Edge-hased Actual Average Error
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Figure 5. 4 Global error defined from (5.9) as a function of the basis function order
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These global error levels will be used as reference value for comparison with the

numerical error estimators in order to judge the validity of the four error estimators.

Figures 5.5 through 5.8 show the variation of the local error at points along the
x- and z-lines shown in Figure 5.1. Figures 5.5 and 5.6 represent edge-based local
error and Figures 5.7 and 5.8 represent cell-based local error. Figures 5.5 through 5.8
support the conclusion that the global and local error decreases as the basis
polynomial order increases. These results further collaborate the conclusion that the
FEM approach is correctly implemented. In the following sections, these results will
be compared with those of the error estimators (obtained without use of the exact

solution).
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Figure 5.5 Local edge-based actual error along the z-axis where x= 0.3
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Local Edge-based Actual Error along x-axis
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Figure 5.6 Local edge-based actual error along the x-axis where z=-0.226
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Local Cell-based Actual Error along z-axis
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Figure 5.7 Local cell-based actual error along the z-axis where x= 0.3
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Lecal Cell-based Actual Error along x-axis
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5.2 Normal Field Discontinuity (NFD) Error Estimator

The discontinuity of the field or its constitutive flux at the cell boundary can be taken
as an error estimator since the physical unknown quantities only violate the continuity
conditions due to the discretization error [29-36]. The true magnetic field and flux density
satisfy the following [35]:

e 7i-B =0 atthe surface of a perfect electric conductor (PEC).

e the normal components of B are continuous at the interface of two elements.

e 7nxH =J atthe surface of a PEC.

e the tangential components of magnetic field, H , at the interface of two elements

are continuous.

In the approximate solution being considered, however, the flux density or the field

may not be continuous due to the coarse mesh. So the larger this discontinuity is, the
more erroneous the computed solution is. Thus the normal component discontinuity of B

and the tangential component discontinuity of H can be taken as measures of the

discretization error.

Using the local Gauss’ law as applied in Figure 5.9, an error estimator can be derived
and used for testing the accuracy of the solution at each element [35,37,38]. From the

local Gauss’ law we obtain

eszndS;tO (5.10)
N

or
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e=[B,dS, + [B,,ds, + B, .ds, (5.11)
J J J

Sl SZ S3
where B, is the normal component of the magnetic flux on the surrounding surface S (in

3D problem). In a 2D problem, the integral reduces to the cell boundaries surrounding

cell 7 in Figure 5.9. The surface integration with respect to variable dS, corresponds to a
line integration in 2D. The normal direction at the surface S is denoted ds;, which also

corresponds to the normal direction of the cell boundary in 2D.

Figure 5.9 Gauss’ law

The discontinuity error associated with an edge / shared by element i/ and element ; is

derived directly from the discontinuity of B, [35,38,39] in Figure 5.10, resulting in

e = Max (5.12)

I (Bni - an )dSl
5 2B

where the index j=1, 2, and 3 representing the three elements abutting element i.
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Figure 5.10 Boundary conditions.

This error estimator is easily adapted to the nature of the edge-based basis functions

[33,34, 40], since the edge-based basis may have discontinuous normal components.

In the next two sections the normal field discontinuity (NFD) error estimator will
be defined for the 2D problem and simulation results will be presented to illustrate its

performance.

5.2.1 Definition of Normal Field Discontinuity Error Estimator
The system of equations for the FEM formulation is expressed in terms of the

magnetic field. The error at edge £ is

£= (B =5 ) i = [ - ) Ay 613
k k

where 7, is the dimension of edge k at the boundary of two elements i and j, 7, is the
outward normal unit vector to element i, and u, represents the permeability of the

medium consisting of cell i. For problems that have the electric field as the primary
unknown, the electric flux density and permittivity can replace the magnetic flux density

and permeability in (5.13). For a 3D problem, the boundary increment d! will be replaced
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by ds, the interface surface between two elements. The local error at the edge £ will be

normalized by the peak value of the incident magnetic field H,, and total number of

the interfacing edges:

e, = E J(H"™, xN,,.) (5.14)

peak
In this study the evaluation of the integration in (5.13) is approximated by the value at the

midpoint of the edge. The global average error norm will be defined by

N eqge
e, =————— > E, = Zek : (5.15)
Hpeak x Nedge k=1
To see how closely the error norms follow the actual error, along the x- and z- paths in

Figure 5.1, several simulation results will be presented for the global and local error

norms versus the total number of degrees of freedom.

5.2.2 Evaluation of the NFD estimator

The global NFD error is compared with the actual global error reported in Figure
5.11. The local error estimate is evaluated in Figures 5.12 and 5.13. These estimators are
applied with the same FEM solutions used for the actual error. In this case, the FEM
solutions are obtained with a uniform order for the basis functions, where the order

corresponds to the Nedelec mixed-order spaces described in Chapter III.

The global error estimator decreases as the order of the basis increases. The
lowest number of DoF occurs for CT/LN polynomials, the next one occurs for LT/QN
functions, and so on until five different representations are included. The global NFD

estimator is within 31% of the actual error at all three discretization levels. By comparing
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Figures 5.12 and 5.13 with Figure 5.5 and 5.6, it appears that the local error NFD

estimator is within in the range of 40%-150% of the actual local error levels.
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Figure 5.11 Global error comparison of NFD error estimator with the actual error
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Local NFD Errer along z-axis
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Figure 5.12 Local NFD error along the z-axis where x= 0.3

85



Local NFD Error along x-axis
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5.3 Discontinuity of the Curl of Field (DCF) Error Estimator

In this section, an error estimator based on the electric field will be derived from
the primary unknown variable, the magnetic field. It is called “the discontinuity of the
curl of field” (DCF) error estimator. The estimator measures the discontinuity in the
tangential electric field at cell boundaries. The electric field must be obtained from the

magnetic field by differentiation.

In this study, the 2D magnetic field transverse to y is the primary variable and its
complementary electric field is directed out of the plane with only a y component. The
electric field should be same in magnitude and phase at both sides of the cell boundaries.

The degree of discrepancy in E at the interfacing edges will be used as an error

estimator.

5.3.1 Definition of DCF Error Estimator

The DCEF error norm is based on the error

- 1 — 1 _
Ekzn(lz)x{EVle-EVtz} [A/m”] (5.16)

where edge k is the interfacing edge between element 1 and element 2, and 7"?is the
normal unit vector at the interface of two contiguous cells, 1 and 2. The quantity inside of
the bracket is the electric field discontinuity. The expression in (5.16) is evaluated at the

center of edge k.
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The curl of the magnetic field is

VxH =) hVxB =hVxB)+hVxB;+hVxB;+> h'VxB/  (517)

i=1 i=1
where N, is number of degrees of freedom in the element eand N, is the number of

face DoF associated with the element. The edge DoF with non-zero order polynomial
degrees belongs to the gradient subspace of the solution space. Therefore their curl values
are zero. The discontinuity is determined by two zeroth-order basis functions on other
edges that are not the interfacing edge, and by face basis functions that reside inside of
the cell. As the order of the basis polynomial increases and the zeroth-order
representation is improved, the main contribution to the discontinuity is from the face
basis functions. The DCF error estimator essentially ignores discretization error due to

basis functions in the gradient subspace.

Coming back to the main subject of this section, E, represents the tangential
discontinuity of the electric field at the interelement edges. Equation (5.16) is normalized
as follows

e, =|E,|/N (5.18)
where

x N [4/m’]

| T inc,peak _
edge — ‘]COSE x Nedge =w 50 x Nedge

N = ‘V x ﬁinc,peak

and N,

e

is the number of interior edges in the mesh. For all interfacing edges, e,

represents the relative error norm associated the local edge k. The global average error
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norm,e,, of the same numerical solution is defined by averaging the sum of all error

norms in the same way as in equation (5.15).

5.3.2 Evaluation of DCF Estimator

Figure 5.14 compares the global DCF estimator with the actual global error for
the PPWG examples. Each marker on the plots corresponds to a different order of basis
function, following Nedelec’s mixed-order spaces. While five different orders, CT/LN,
LT/QN, QT/CuN, etc., are employed for the global error, only the lower three orders are
reported for the local error plots. The error estimator and the actual error exhibit
agreement to approximately 56%. The comparison of Figures 5.5 and 5.6 with Figures
5.15 and 5.16 conclude that the local error of DCF is in agreement with the actual local

error within in the range over 1250% - 6500% depending on the structure.
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Comparison Average Error for TPPWG
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Figure 5.14 Global error comparison of the DCF error estimator and the actual
error in the FEM solution
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Local DCF Error along z-axis
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Figure 5.15 Local DCF error along the z-axis where x= 0.3
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Figure 5.16 Local DCF error along the x-axis where z=-0.226
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5.4. Weak Form Residual (WFR) Error Estimator

The finite element formulation is based on the solution of a weak form of the
residual equation. Since that residual equation is exactly satisfied by the numerical
solution, that residual cannot be used directly to estimate the solution error. A closely
related estimate can be obtained from the normal derivative discontinuity at interelement
cell boundaries. Most residual error estimators in the literature contain a residual error
term and the normal derivative discontinuity term as well. The gradient of the field and
the normal discontinuity of the field derivative can’t measure the errors in the FEM
solution but only its steepness and curvature [46,47]. These error estimators can
efficiently detect where the field variation is very rapid, such as near the singularities.
They fail, however, when higher-order elements are employed [46]. Therefore, better
approaches to estimate the residual and normal discontinuity have been proposed, known

as the local Dirichlet analysis and local Neumann analysis [47-54].

Fernandes et. al proposed several error estimators and compared their
performance [48-52]. One method known as the local error method calculates the local
error by solving a differential equation defined by the Neumann problem on each element.
A second simplified approach, called the incomplete residual method, is faster than the
first approach since the error estimator is derived directly from the driving function of the
error differential equation instead of solving it [48]. A third approach, named the
complete residual error estimator, includes estimating the error of the gradient of the
solution as well as the solution itself without deteriorating its speed and simplicity [50].

Residual errors are tested by separating the effect of the error estimate on the choice of
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the element to be refined and that of the refinement termination [51]. The local error
method shows better performance than the extended complete residual and incomplete
residual methods [50,51]. The implementation of these proposed error estimators is

explained in [49].

Even though these residual error estimators are used for electrostatic or
magnetostatic problems with scalar basis functions, their extension to a vector
formulation is not difficult [36,55-57]. Normal discontinuity as well as volumetric error
estimators derived by O.C. Zienkiewicz et al. [58] and W. Daigang et al.[59] have been
modified for the vector Helmholtz equation [55]. Validation is provided by showing that
the global error estimate agrees with the exact error norm for a rectangular cavity
problem. The h- and p- refinements were tested with the proposed error estimators
[40,54,55] but p-refinement was not fully tested since these articles only used the first

two orders of Webb’s vector basis functions [56,57,60].

In this section two residual error estimators will be introduced. The residual error
can be defined in two different ways, from the strong vector Helmholtz equation or the

variational weak form of that equation:

e Residual from the Vector Helmholtz Equation:

1 _ _
7=Vx—VxH- kju H (5.19)

&

”
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e Residual from the Weak Form:

fe=j(VxT.iVxﬁ-k§ﬂ,T-ﬁst (5.20)
&

r

The quantity in (5.19) is called the strong form of the residual (SFR) while (5.20) is the
weak form residual (WFR). The two residuals are not exactly zero because of insufficient
meshes, provided that the function T in (5.20) is not one of the test functions used to
construct the FEM system. Therefore they can be used to construct error estimators.
These error estimators are often used in combination with error estimators that reflect the

boundary discontinuity such as the DCF or NFD error estimators in previous sections

[36,56,57].

The SFR involves two consecutive derivatives of the field. If used with CT/LN
vector basis functions, the second derivative of the zeroth-order CT/LN basis function is
zero. Since the zeroth-order basis function carries the average value of the tangential
variation at the edge, its contribution to error norm should be very significant. Thus the
SFR is not straightforward to implement and will not be practical until a way to estimate
the second derivative of the basis function is developed. The SFR implementation

remains for further study.

In this section the WFR in (5.20) will be considered. The manipulation of (5.20)
yields two formulations, described previously in equation (2.38) and equation (2.52).
From equation (2.52), a global error norm will be derived and it will be used to test the
FEM solution along with the power conservation law when the problem has no analytical

solution. A local error norm will be derived from (2.38) in the following sections.
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5.4.1 Definition of the Global Weak Form Residual Error Estimator

Equation (2.52) is given as

d
j LLVXYT-Vxﬁ—kzurY_”-ﬁdedz + EI[LT~)2'[Hx(x',zl)G(x,x')dx'th‘
€ d g\ & 0

or, r

d
+ 2 [LT fcj H (x',z, )G(x,x')dx'}dt
d g\ € 0

d
== [if % j Hr (x’,zl)G(x,x')dx’]dt (5.21)

r 0

From equations (2.54) and (2.56), a global system matrix is constructed of the form
[A]{h} = (g} (5.22)

where the global matrix [A] is N-by-N in size and is sparse. The N denotes the number of

test functions and basis functions within the computational domain, which are usually the
same. Most of the non-zero elements are gathered near the diagonal and form a band.
However, the absorbing boundary condition terms position a number of non-zero entries
outside that band. Two column matrices, {4} and {g}, are N -by-1 in size. {1} is the set
of unknowns. For {g}, the non-zero elements represent the contributions of the global

test functions on the input port. By solving (5.22) the FEM solution is obtained.

Different matrices [A']and {2’} can be formed by another set of test functions.

In FEM system, the set of test functions is the same as the set of basis functions. Suppose
equations are obtained with one set of test functions substituted into (5.22) that are

different from the specific basis functions. Since the FEM solution {h} is approximate,

the residual matrix
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ry=[aTin-1g'}# o). (5.23)
will not be zero, where {r} is a column matrix of dimension m'-by-1. The parameter
m'is the number of alternative test functions employed for [A'] and {g'}, which is usually

different from the number of basis functions originally used to obtain the FEM system.

To assign a global error to the FEM solution, the global WFR estimator is defined by

i

g

= %100, (5.24)

where 7, is obtained using global test function i. The normalization factor is
N=N,> gl (5.25)
i 1?

where N, is the number of cells in the computational domain and
= j[ T xjH"“’(x z,)G(x, x)ded . (5.26)
arl
The limits x1 and x2 denote the integration range along the cell edge that is limited to the

length of the edge along the input port.

If the FEM solution {h} is the exact solution, then the residual matrix {r} contains
nothing but zero elements independent of the test function. The global WFR error norm
in (5.24) can be used to evaluate the FEM solution accuracy even when no analytical
solution is available. In this study, test functions of one order higher than the basis

functions will be employed to compute the WFR estimator.
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5.4.2 Definition of Local Weak Form Residual Error Estimator
The manipulation of the weak form equation in (5.20) yields the local residual

vector

(R, = [[[(Vx D)V x H) =T k", Hldxdz + [ (T i~V x H )i (5.27)
- & &

r ory, r
If imposed over a single element, I', is the interior of the cell k£ and oI, represent the cell

boundary. A local element matrix can be obtained in the same form as equation (5.22) for
element £, and it is given by

[A], B}, = (g}, (5.28)
The subscript means that each matrix is defined by degrees of freedom in a local element
k and the dimensions m and n represent the number of test and basis functions
overlapping cell k. The right hand side vanishes unless the cell boundary is contiguous to

the input or the output port. The local residual vector for cell & is defined by

i =[A] 4y, — g}, - (5.29)

Normally the test functions residing on the cell boundary are involved in local
residuals for neighboring cells, and thus the residual is not localized cell-by-cell. A
careful choice of test functions circumvents this problem. First, test functions should be
independent of any other cell for the local residual purpose. In other words, the test
functions should be tangentially confined to a single cell. They are the subset of test
functions in Table 3.1 that have no nonzero tangential component on the cell boundary.
Second, the test functions should be different from the basis functions used for the FEM

solution, {A}, . In this study hierarchical functions of one additional polynomial degree

98



will be employed for computing the error estimator. Using test functions satisfying these

conditions, Equation (5.27) is manipulated into the form

[R], = ”(Vx]_’a{b-SLVxﬁ—kgyrfl{b-ﬁjdxdz (5.30)
Ly

T/, represents a member of the next greater-degree mixed-order test function set defined

in Table 3.1 that has no tangential component on the cell boundary. A new local residual
vector is computed as follows

U= AT — e (531)
The residual {r'}, is a column vector with the number of entries the same as the number

of test functions used in cell &. Note that each entry may change depending on the
normalization of the hierarchical vector test function. Therefore, the test functions should

be scaled to unit-stored energy according to

T, =8T, : (5.32)

1

where

(5.33)
The local WFR error estimator is defined for cell & as
Zl |I’l’| 1’
E, ="Tx100 (5.34)
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where m' is the number of test functions used in equation (5.30). The WFR norm is one
way of estimating the residual over the cell. The normalization value is the same as in
equation (5.25), but uses

x2
fe)=" [iT R[H (7, )G(x,x')dx'}dr - (535)
dsle

ol r x1

where T - represents a normalized test function of the next higher degree abutting the

input port. The average error is the sum of all local error estimates. Simulation results for

the global WFR and the local WFR error estimates are presented in the next section.

5.4.3 Evaluation of WFR Error Estimator

Figures 5.17 compares the global WFR error estimate to the actual FEM error
from these results for the T-PPWG and S-PPWG examples. It appears that the WFR
estimator is within 44% of the actual error based on five different basis orders. Figures
5.18 and 5.19 plot the local error estimates along the x- and z-axis and should be
compared with cell-based actual local errors in Figures 5.7 and 5.8 for the lower three

basis orders. The results are in agreement with the actual error to within 1400%.
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Figure 5.17 Global error comparison of WFR error estimator
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5.5. The Coefficient Sensitivity of the Highest-Order Polynomial
(CSH) Error Estimator

J. P. Webb suggested a new kind of error estimator. The sensitivity of a global
quantity of interest to a new added DoF in a cell is taken as a targeted error estimator for
that global quantity. Many FEM error estimators are focused on the field itself, but, in a
specific application, users are more interested in secondary quantities such as inductance,
capacitance, or scattering parameters. Webb classified the error estimators into two
categories: a general error indicator (GEI) and a targeted error indicator (TEI). A GEI is
used to estimate the accuracy of the field, the primary variable itself in an FEM
formulation. However, the improvement of the field accuracy may be slow within an
adaptive FEM procedure. It may be more efficient to base the adaptive process on the
accuracy of a specific global quantity, say one of the scattering parameters. To speed up
the adaptive refinement procedure to yield accurate scattering parameters, a TEI was

proposed [61-63].

The ideal targeted error indicator (TEI) is very costly because the FEM has to
resolve a problem having each element order increased by one in order to calculate the
sensitivity of scattering parameters to the new DoFs. An approximate approach to this
ideal TEI has been proposed to calculate the sensitivity to a new added DoF in an element

without all new DoFs. It outperforms the ideal TEI in terms of cost and speed [62].

In this section, a new GEI error estimator is proposed that is motivated from the
easy calculation of sensitivity and the characteristics of hierarchical vector elements. The

estimator approximates the sensitivity of the stored energy that the highest degree

104



hierarchical polynomial contributes to an element, relative to that of all lower degree
hierarchical polynomials in that element. The more energy that is stored in the highest
degree polynomial, the more additional DoF should be assigned to that cell during the
subsequent adaptive refinement step. The magnetic FEM formulation is used in this study

and the stored magnetic energy can be easily calculated from

Uﬁzéﬁyf]-f]dxdz

— WY 02 [[B, B dui: (5.36)

pee
where e represents the element of interest and p represents the polynomial order in that
element. Since (5.36) depends on the normalization of each hierarchical vector basis
function, they should be scaled to unit stored energy as explained in (5.33) and (5.34),

using

(5.37)

In this calculation, Gauss-Quadrature numerical integration is employed. The normalized

vector function is denoted by

A

B, =S.B,. (5.38)

Once the FEM solution is obtained with the normalized basis, equation (5.36) reduces to

U, =%y2}2;”z§p -lg’pdxdz:%Zﬁi. (5.39)

pee e pee
The introduction of a normalization factor for the vector basis functions makes the
problem much easier; the simple calculation of the square of the coefficient of interest

gives the magnitude of the stored energy of that basis function.
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The new error estimator is named the “coefficient sensitivity of the highest-order
polynomial” (CSH) error estimator. If the sensitivity of the highest-order coefficients is
large, the energy stored in the highest-order basis is still substantial and additional basis
functions are required in that cell. Compared to the previous error estimators, the CSH
error estimator begins with the LT/QN hierarchical vector basis functions in order to have
two different orders, in this case, constant and linear variation in the tangential

component, available. The CSH error norm can be associated with cell edges.

5.5.1 Definition of CSH Error Estimator

Consider first the numerical magnetic field given by the linear combination

3 (5.40)

where the vector basis/test functions are normalized as in (5.38) over a physical element.
The bracket classifies the basis function order according to Table 3.1. All the basis
functions in a bracket are used together when uniformly increasing the polynomial order.
With the CSH error estimator, a minimum of CT/LN and LT/QN basis functions should
be used to obtain meaningful results. The error estimator requires the calculation of the
ratio of the energy of the LT/QN functions to that of the combination of the CT/LN and

LT/QN functions.
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The CSH error estimator is defined by

2

A

> [,

E =50 (5.41)

> fi,

ieSy

2
LZ
where S, is the set of basis function with a/b order in Table 3.1. The denominator is the

total energy stored by all basis functions used in a cell. The numerator sums the energy
kept in the highest basis functions. A local error could be assigned to an edge or a cell,
either of index k. Two CSH local error estimators, are given by

_ El,k + E2,k

eedge,k -

x 100 (5.42)

edge
for an edge-based error norm where subscript 1 and 2 represent two cells sharing edge £.
and

3

E,. .
Ceell = z “EL %100 (5.43)

i=l edge

for a cell-based error norm. The edge-based error norm is averaged by two contiguous
cells when the edge is shared. In equation (5.43), the subscript i represents the three local
edges on cell k. The global average error estimate is defined by the sum of all local error

estimates.

5.5.2 Evaluation of CSH Error Estimator

Figure 5.20 reports the edge-based global error from equation (5. 42) while Figure
5.21 reports the cell-based global error of equation (5.43). The simulation results in

Figures 5.20 and 5.21 confirm that the global CHS error estimator decreases as the basis
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polynomial order increases, but they only agree within 85% for edge-based and 120 %
for cell-based errors. Figures 5.22 through 5.25 depict the local error estimator for edge-
based and cell-based errors as well. They are to be compared to the actual local error in
Figures 5.5 through 5.8. The edge-based local estimator agrees within 100% within the
actual local error while the cell-based estimator is in agreement within 260% of the actual
error. Even though these CSH estimators appear to be poor at estimating the true error,

they could be used within a p-adaptive technique to systematically improve the numerical

solution.
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Figure 5.20 Global error comparison of the edge-based CSH error estimator
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Figure 5.21 Global error comparison of the cell-based CSH error estimator
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Figure 5.22 Local edge-based CSH error along the z-axis where x= 0.3

111



Local Edge-based CSH Error along x-axis
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Figure 5.23 Local edge-based CSH error along the x-axis where z=-0.226
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Local Cell-based CSH Error along z-axis
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Figure 5.24 Local cell-based CSH error along the z-axis where x= 0.3
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Local Cell-based CSH Error along x-axis

25 T T T T T T T
-8 CT/LN
-~ LT/ON
. —— LT/CuN
_1Aar A
g
i
1k 4
0s5r A

i ===ﬂ—
0.1 .15 0.z 0.25 03 0.35 0.4 0.45 0.4
K-axis where z = 0.226

(a) T-PPWG

Local Cell-based CSH Error along x-axis

'4 T T T T T T £
35F -B- CT/M _
=== [ T/ON
—— CT/CuM
3 - -
251 -
s 40 1
g
15+ -
'] - -
0ar -
0 PN 8

0.1 0.15 nz 0.2a 0.3 035 0.4 0.45 0.4
w-axis where z = 0.226

(b) S-PPWG

Figure 5.25 Local cell-based CSH error along the x-axis where z= -0.226
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5.6 Evaluation of Error Estimators by Comparing Global Errors and
Local Errors with Actual Errors

In the previous sections, simulation results for global and local errors obtained
from four error estimators are compared with the actual errors. The same FEM solution is
used for comparison. For the T-PPWG and S-PPWG examples, the actual error is easily

calculated.

In this section, the four error estimators previously introduced will be evaluated in
terms of their accuracy in estimating the global error and local error. The previous
functions will be used as the source of the prediction accuracy. The percentage errors in
the estimates are tabulated in Table 5.1 and 5.2 for T-PPWG and S-PPWG, respectively.
Each percentage error is based on the difference of the two values specified on the plots
of the global error. Tables 5.3 through 5.6 represent the percentage difference between
the local estimates and the actual local error. At the bottom of each table, the average
values of the global or local errors are presented for comparison. In these tables, a
percentage error less than 100% implies that the estimate is within a factor of 2 of the
actual error. Such an estimate is likely to be quite useful in an adaptive refinement

procedure.

The estimate from the cell-based and edge-based CSH estimators approaches
100 %. For these structures, the CSH estimator significantly under-estimates the actual
error as the order of the basis polynomial increases. Thus, the CSH estimator produces
error estimates that are essentially zero and lead to a percentage error of 100%. For the

DCF and WFR estimators, the local error estimates are much larger than 100%. These
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estimators over-estimate the actual error as the order increases. However, the average
local error estimates decrease as the order of the basis functions increases, and provide

some guidance to an adaptive refinement process.

For the global error, the NFD error estimator appears to offer the best
performance and the cell-based CSH estimator seems the worst. The NFD estimator also
appears best at estimating local error. Although the error range of the DCF and WFR

estimators is very broad, the local estimates decrease in proportion to the actual errors.

It is not possible to draw a conclusion as to which estimator is the best in overall
performance. To further explore the utility of these estimators for local error presentation,
a numerical solution is corrupted with a known error and used to test each estimator in

the following section.

Table 5.1 Percentage error in the global error estimates for T-PPWG

EST NFD DCF WFR Cell-based | Edge-based

order CSH CSH
0 9.31 22.55 64.16

1 59.31 63.14 67.18 225.27 37.66

2 17.11 11.31 38.98 58.27 91.26

3 59.92 39.65 3.932 95.10 99.11

4 6.30 73.52 99.45 99.89

Average 30.40 42.03 43.56 119.53 81.98
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Table 5.2 Percentage error in the global error estimates for S-PPWG

EST NFD DCF WFR Cell-based | Edge-based

order CSH CSH
0 8.05 38.03 70.01

1 58.75 64.01 66.56 154.85 50.67

2 15.64 17.13 37.12 69.96 93.63

3 61.70 41.83 1.93 96.41 99.35

4 5.20 120.03 99.60 99.92

Average 29.87 56.21 43.91 105.20 85.90

Table 5.3 Percentage error in the local error estimates along the x-axis for T-PPWG

EST NFD DCF WFR Cell-based | Edge-based

order CSH CSH
0 178.75 1997.56 969.23

1 28.56 604.24 392.73 315.39 27.60

2 232.63 299.12 1773.46 5.43 48.59

3 77.97 133.79 1968.64 91.15 96.65

4 251.80 15634.79 98.59 99.37

Average 153.94 4272.32 1276.02 127.63 68.05
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Table 5.4 Percentage error in the local error estimates along the x-axis for S-PPWG

EST NFD DCF WFR Cell-based | Edge-based

order CSH CSH
0 132.22 1245.12 414.17

1 6.15 492.76 1155.76 176.52 4.68

2 220.75 287.80 1661.28 66.32 27.13

3 90.64 30.14 2364.85 96.90 97.25

4 247.25 27591.66 99.61 99.05

Average 139.40 6447.54 1399.01 109.84 57.03

Table 5.5 Percentage error in the local error estimates along the z-axis for T-PPWG

EST NFD DCF WFR Cell-based | Edge-based
order CSH CSH

0 51.53 600.68 559.68

1 78.61 701.70 486.66 479.27 99.99

2 37.53 1329.73 1671.92 32.50 100.00

3 18.46 1568.53 1900.03 89.39 100.00

4 56.68 2033.88 98.37 100.00
Average 48.56 1246.90 1154.58 174.88 100.00
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Table 5.6 Percentage error in the local error estimates along the z-axis for S-PPWG

EST NFD DCF WFR Cell-based | Edge-based
order CSH CSH
0 10.32 530.19 519.85
1 78.28 689.53 539.12 791.97 99.99
2 27.00 1365.52 3555.63 85.89 100.00
3 12.25 1616.05 1032.17 91.52 100.00
4 66.95 2057.34 98.23 100.00
Average 38.96 1251.73 1411.69 266.90 100.00
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5.7 Error Estimators Applied to Structures with a Cell Corrupted
with a Known Error
In this section, the four error estimators previously introduced are tested to see if
each estimator can identify a cell with higher error relative to neighboring cells. To this
effect, a cell in the test structures, T-PPWG and S-PPWG, is corrupted with a known
error. This study can provide insight into which error estimator is best in actual local

error presentation, which was missed in the previous section.

Consider the triangular-cell mesh for the PPWG structure shown in Figure 5.26. A
known error is added to one cell located near the center of the mesh (the cell highlighted

with bold dashed lines in Figure 5.26).

Figure 5.26 Mesh with a cell corrupted with a known error

120



The specific process of constructing the known error is as follows. First, the error
is obtained by selecting values for the coefficients of an expansion in interpolatory vector

basis functions. This representation of the error can be expressed as
—_— N —_—
E (x,2) =D ¢, (x,2) (5.42)
i=1

where 1,(x,z) denotes an interpolatory vector basis function, and the coefficients {c,}
are chosen to produce the derived error function. The function in (5.42) can be projected

onto the set of hierarchical basis functions {Ei} to yield

N
E (x,2)= ) ¢, B(x,2) (5:43)
i=1
The error coefficients, e, ,, are calculated using

e = ”E(x,z)-gj(x,z)ddeZi [[e.1,(x.2)- B, (x, 2)dxdz

cell k i=l cell k

= ZN: c; ”Ii (x,2) B, (x,z)dxdz . (5.44)

cell k

Although this projection process is only correct if the basis functions are orthogonal, it is
adequate for constructing an error function to test the estimators. The un-corrupted FEM

solution obtained with hierarchical functions has the form
—_— N —_—
H,(x,z) = th,iBi (x,2) (5.45)
i=1
Therefore, the corrupted FEM solution can be expressed by superposition as

N N
H,(x,2)= Y (h,, +e)B.(x,2)= Y h{ B,(x,2) (5.46)
i=1 i=1
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Each error estimator will be tested using this corrupted FEM solution. The local error

estimates for the un-corrupted and corrupted structures are presented below.

5.7.1 Simulation Results

Figure 5.26 shows a mesh used for the local error estimates. Additional cells are
used compared to the mesh in Figure 5.1 to better judge the sensitivity of the error
estimators. A cell with edges 41, 45, and 46 is corrupted and depicted as bold dashed

lines. Local errors are calculated along two vertical and horizontal lines.

Figures 5.27 and 5.29 show the actual local error behavior for the T-PPWG
results (after being corrupted with a known error) along the z-axis and x-axis,
respectively. Figures 5.31 and 5.33 show similar behavior for the S-PPWG. Figures 5.28,
5.30, 5.32, and 5.34 show the local errors as estimated by the four estimators for the same
structures. The dashed line with square markers represents the local errors for the un-
corrupted structures, while the bold line with circle markers represents the corrupted

cases. The estimated local error functions are plotted for comparison.

Figures 5.28-5.34 were obtained using CT/LN basis functions for the NFD, DCF,
and WFR estimators and LT/QN basis functions for the edge-based and cell-based CSH
estimators. Even though the error corruption is confined to a cell, the error function
calculated by each error estimator predicts additional error into the neighboring cells or
edges (except for the cell-based CSH error estimator). The results show that each

estimator detects the error in the corrupted cell.
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Figure 5.27 The actual local error with and without the additional corruption, as plotted
along the z-axis at x = 0.24 for the T-PPWG structure
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Figure 5.28 The error functions produced by the estimators for the corrupted and un-

corrupted results. The error is plotted along the z-axis at x = 0.24 for the T-
PPWG structure
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Figure 5.28 Continued
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Figure 5.28 Continued
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Figure 5.29 The actual local error with and without the additional corruption, as plotted
along the x-axis at z = -0.18 for the T-PPWG structure
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Figure 5.30 The error functions produced by the estimators for the corrupted and un-
corrupted results. The error is plotted along the x-axis at z =-0.18 for the T-
PPWG structure
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Figure 5.30 Continued
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Figure 5.31 The actual local error with and without the additional corruption, as plotted
along the z-axis at x = 0.24 for the S-PPWG structure
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Figure 5.32 The error functions produced by the estimators for the corrupted and un-
corrupted results. The error is plotted along the z-axis at x = 0.24 for the S-
PPWG structure
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Figure 5.32 Continued
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Figure 5.33 The actual local error with and without the additional corruption, as plotted
along the x-axis at z = -0.18 for the S-PPWG structure
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Figure 5.34 The error functions produced by the estimators for the corrupted and un-

corrupted results. The error is plotted along the x-axis at z=-0.18 for the S-
PPWG structure
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Figure 5.34 Continued
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Local Cell-based CSH Estimator along x-axis
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Figure 5.34 Continued

5.7.2 Evaluation of Error Estimators

The errors in the various estimates obtained from the corrupted data are tabulated
in Tables 5.7 through 5.10. In this calculation, the actual local error with corruption is
taken as a reference. The percentage error in the local estimates is much larger than
previous values (which were obtained for structures with no known error corruption)
shown in Tables 5.3 through 5.6. From the plots, all error estimators can identify the

corrupted cell or edge.
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Points on the tables represent cells abutting the vertical or horizontal lines for
cell-based estimators such as WFR and CSH. For edge-based estimators such as NFD,
DCF, and CSH, points represent edges along the vertical and horizontal lines in the mesh.
For the NFD, DCF, and WFR estimators, CT/LN basis functions are employed and for

the CSH estimator, LT/QN basis function is used in the following tables 5.7 through 5.13.

Table 5.7 Percentage errors in the local error estimates for points along the z-axis

for T-PPWG
Point 1 2 3 4 5 Average
EST
NFD 143.46 148.63 59.38 155.59 154.87 132.39
DCF 9274.84 | 9473.87 | 40721.18 | 9605.53 | 9519.27 | 15718.93
WFR 1265.36 | 1299.71 | 202.21 1302.35 | 1237.42 | 1061.41
Cell-based CSH 143.46 148.63 59.38 155.59 154.87 132.39
Edge-based CSH 99.21 99.21 74.31 99.19 99.22 94.23
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Table 5.8 Percentage errors in the local error estimates for points along x-axis

for T-PPWG
Point 1 2 3 4 5 Average
EST
NFD 151.41 148.24 27.77 156.71 154.68 127.77
DCF 7256.03 | 9140.89 | 71699.80 | 10265.30 | 7641.80 | 21200.76
WFR 1335.60 | 1339.90 | 202.20 | 1146.10 | 1194.82 | 1043.73
Cell-based CSH 85.80 88.60 64.84 83.44 83.29 81.19
Edge-based CSH 90.16 94.12 11.77 93.67 89.91 75.93
Table 5.9 Percentage errors in the local error estimates for points along z-axis
for S-PPWG
Point 1 2 3 4 5 Average
EST
NFD 157.37 136.33 74.65 67.91 144.61 116.18
DCF 11486.38 | 13192.98 | 40756.40 | 3143.07 | 7006.58 | 15117.08
WFR 141.94 338.35 1226.53 | 1900.00 | 4119.26 | 1545.22
Cell-based CSH 65.45 85.73 28.09 96.69 98.18 74.83
Edge-based CSH 99.93 99.40 76.50 99.15 99.24 94.84
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Table 5.10 Percentage errors in the local error estimates for points along x-axis

for S-PPWG
Point 2 3 4 5 Average
EST

NFD 160.19 150.00 21.59 113.90 160.40 123.01

DCF 2509.03 | 3010.19 | 62904.16 | 29106.01 | 9074.14 | 21320.71

WFR 1238.60 | 795.31 241.00 | 1498.87 | 1495.65 | 1053.89
Cell-based CSH 89.39 93.94 67.07 75.48 78.78 80.93
Edge-based CSH 90.82 97.00 28.33 82.55 81.83 76.11

Table 5.11 Percentage error of the error at point 3 to sum of errors at all points

EST NFD DCF WFR | Cell based | Edge based

Cases CSH CSH

Along z-axis for 8.97 51.81 3.81 8.97 15.77
T-PPWG

Along x-axis for 4.35 67.64 3.87 15.97 3.10
T-PPWG

Along z-axis for 12.85 53.92 15.88 7.51 16.13
S-PPWG

Along x-axis for 3.51 59.01 4.57 16.5 7.44
S-PPWG

Average of percentage 7.42 58.10 7.03 12.24 10.61

error
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Table 5.11 shows the ratio of the error at point 3 to the sum of the errors at all five
points for the preceding tables. These results suggest the sensitivity of each error
estimator to detecting an area with high local relative error. The smaller the value in

Table 5.11, the more sensitive the estimator is.

Even though the WFR estimator is not very accurate in predicting the actual error
levels, it is very good at detecting cells with high local error. The best error estimators at
identifying high local errors are the WFR and NFD estimators, which according to Table
5.11 predict the error within an average of 7%. The DCF is not very accurate in
predicting the actual error levels. The CSH estimator shows reasonable performance, too,

in this regard.

Table 5.12 Ratio of edge-based actual local error to local error estimates at point 3

EST Actual NFD DCF Edge based
Cases CSH
Along z-axis for T-PPWG 7.7737 | 1.2459 | 32.7180 246.7818
Along x-axis for T-PPWG 3.8314 | 1.1014 | 21.1621 | 6.0975e+005
Along z-axis for S-PPWG 10.3664 | 26.7725 | 111.7788 | 281.6626
Along x-axis for S-PPWG 3.8314 | 1.1332 | 12.8862 | 9.1855e+005
Average 6.4507 | 7.5633 | 44.6363 | 3.8221e+005
Error of Average (%) 0 17.2477 | 591.9602 | 5.9250e+006
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Table 5.13 Ratio of cell-based actual local error to local error estimates at point 3

EST Actual | WFR Cell_based

Cases CSH

Along z-axis for T-PPWG 5.6508 | 1.2005 17.5657

Along x-axis for T-PPWG 5.6508 | 1.2005 17.5657

Along z-axis for S-PPWG 3.8903 | 1.3051 19.4558

Along x-axis for S-PPWG 3.8903 | 1.3051 19.4558

Average 4.7706 | 1.2528 18.5107

Error of Average (%) 0 73.7392 288.0162

Tables 5.12 and 5.13 show the ratio of the local error when corrupted to the un-
corrupted local error at point 3. As shown in Figures 5.27 through 5.34, the actual
corrupted error exists only at point 3. The ratio is calculated from the local errors

indicated at points on the plots.

To summarize the performance of the error estimators, the NFD estimator is able
to detect the relative variation caused by the corruption error within 18% of the actual
local error. The WFR estimator shows reasonable performance (within 70% of the actual
error) in detecting the relative variation of local error. The DCF estimator is bad at
detecting areas with high error. For the CSH estimators, the edge-based CSH estimator
cannot detect the relative variation of the local error, while the cell-based CSH estimator
is a little better in performance. The best at detecting the relative variation of the local

error are the NFD and WFR estimators.
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From these tables, we conclude that the NFD and WFR estimators are best at

detecting the relative local error variation and areas with high local error.
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5.8 Summary

Four error estimators are introduced for the purpose of guiding an adaptive FEM
procedure. The assessment of the accuracy of the same FEM solution by each error
estimator in terms of local and global error is carried out and simulation results are

presented.

Figures 5.35 and 5.36 compare the performance of all error estimators for
structures with no known error corruption in terms of global error performance. The
predictions of the NFD, DCF, and WFR estimators are confined below 100% of the
actual error and the WFR estimator improves as the order of basis increases. CSH
underestimates the actual error levels and therefore appears to stagnate near 100% as the
order of basis increases. As mentioned in the previous section, the NFD and WFR

estimators show good performance in detecting a cell with high local error.

By comparing these with the actual errors, we conclude that all four error
estimators are poor at predicting the actual errors. However, all error estimators except
the edge-based CSH and DCF estimators can detect the relative variation of the actual
local error. The local error norms and the global average error norms decrease as the
order of hierarchical basis increases. Furthermore, they all are practical from the point of

view of ease of implementation.
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Evaluation of Error Estimator for TPPWG
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Figure 5.35 Comparison of error estimators for T-PPWG (un-corrupted)
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150 T T T T T T T
) - NFD
—— [OCF
140 —&- Edge-based CSH []
-= WFR
120 b =& Cel-based CSH |4
100 - .
T a0t .
o
BO .
40+ -
2+ .
0 I I 1 I < 1 1
1] 50 100 150 200 250 300 350 400

No of DOF

Figure 5.36 Comparison of error estimators for S-PPWG (un-corrupted)
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The NFD and WFR estimators can detect the relative variation of the actual error
and the regions of a mesh with high local error. They also show good performance with
respect to global error in Figures 5.35 and 5.36. Thus, they appear superior to the other

estimators for use in an adaptive refinement code.

In the next chapter, the NFD and WFR error estimators will be used within

adaptive refinement algorithms applied to structures containing one or more septums,

which have no analytical solution.
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CHAPTER 6: ADAPTIVE P-REFINEMENT FEM

The primary purpose of the a posteriori error estimators evaluated in Chapter 5 is
to guide an adaptive refinement process. The adaptive process is hoped to provide a
result of sufficient accuracy far more efficiently (with fewer degrees of freedom and
smaller computer time and memory) than would be the case if a uniform polynomial
order was used throughout the mesh. In this chapter, two simple p-adaptive algorithms
are implemented and used for illustration. The structures considered are PPWG
geometries containing septums to provide rapid field variation in localized regions. Since
these problems do not yield analytical solutions, numerical results obtained with high
order interpolatory basis functions (Nedelec mixed-order 7/8) are used as a reference

solution.

The two error estimators identified in Chapter 5 as the better performers (the
normal-field discontinuity (NFD) estimator and the weak form residual (WFR) estimator)
will be used and their results compared. The NDF estimator is edge-based, while the

WFR estimator is cell-based.

The adaptive refinement algorithm requires a control strategy for guiding the
process. Two different approaches will be considered. Initially, with either approach, a
result is generated using the lowest-order basis functions (those of Nedelec mixed-order
0/1, or the CT/LN type). The error estimator is applied to this result to yield a map of the

local error within the mesh. In the first refinement implementation, the basis polynomial
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order in those cells or along those edges with the top 25% of the reported error levels is
increased by one degree. Hierarchical functions are used, so that various orders may
overlap a given cell. At this point, the basis functions orders are adjusted so that the
maximum difference in order within any cell is limited to 2 degrees. This ensures
reasonably continuous representations throughout the mesh. Then the procedure repeats
iteratively: a new FEM analysis based on the updated distribution of basis functions is
carried out, the error estimator is applied to the new result to generate an error map, and a
new distribution of degrees of freedom is determined. Once cells or edges reach the
maximum available degree (Nedelec mixed-order 4/5 in the present implementation) the
equivalent number of degrees of freedom will instead be assigned to the cells/edges with
the highest predicted error that have not yet reached the maximum available degree. This

approach is denoted the single-step adaptive refinement algorithm.

The single-step algorithm suffers from the drawback that it must gradually iterate
toward having some regions of the mesh with high-order basis functions, regardless of
the initial error map. Therefore, a second algorithm (the multi-step adaptive refinement
algorithm) will also be considered. The steps involved in the multi-step algorithm are the
same as those of the single-step algorithm, except that in addition to incrementing the
polynomial orders of the basis functions in regions with the highest 25% error by one
degree, the process also increments the orders of the basis functions in regions with the
highest 10% error by a second degree. In this manner, the multi-step algorithm more
rapidly increases the polynomial orders in regions where the estimated error is the

highest.
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Figure 6.1 shows the two PPWG test structures that will be used for illustration.
In order to provide regions within the FEM mesh where relatively rapid field variation
might occur and benefit from greater polynomial orders, septums are introduced into the
waveguides. Although these structures act as filters, and their performance as a function
of frequency makes an interesting application, for the purpose of the present investigation

they will only be considered as testbeds for the various p-refinement algorithms.

8
s

(a) Ix

|
3

(b)

Figure 6.1 (a) One-septum T-PPWG structure
(b) Two-septum T-PPWG structure

6.1 Simulation Results
Simulation results are presented below for the single-step and multi-step adaptive

refinement algorithms, based on the NFD and WFR estimators. Figure 6.2 shows the
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performance of the single-step algorithm used in conjunction with the NFD estimator, for
the PPWG structure in Figure 6.1a. Figure 6.2a reports the actual and estimated error
levels as the adaptive refinement process is carried out. The horizontal line at 10% error
is provided to aid the reader in comparing the results of the various simulations. Figure
6.2b reports the percent error in the power conservation check discussed in Section 4.2.2.
We note that the power check is within 0.1% when the number of degrees of freedom
exceeds 400. Figures 6.2¢ and 6.2d report the error in the transmission coefficient and
reflection coefficient, respectively, as the adaptive process is carried out. The reference
solution in all cases is that obtained using order 7/8 interpolatory basis functions

throughout the mesh.

Figure 6.3 shows similar plots for the multi-step refinement algorithm with the
NFD estimator, for the PPWG structure in Figure 6.1a. The improvement in power
conservation, and the error in transmission and reflection coefficients, is generally about
the same with respect to the number of degrees of freedom as with the single-step

algorithm.
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NFD Estimator v.s. Actual Average Error
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Figure 6.2 The NFD estimator with 25% single-step iteration technique
for the structure in (a) of Figure 6.1
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NFD Estimator v.s. Actual Average Error
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Figure 6.3 The NFD estimator with 25%+10% multi-step iteration technique
for the structure in (a) of Figure 6.1
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Figure 6.4 shows the performance of the single-step algorithm used in conjunction
with the WFR estimator, for the PPWG structure in Figure 6.1a. In these simulations, the
WEFR consistently underestimates the error in the solution. However, the actual solution
error converges faster than it did with the NFD estimator. The power conservation is
within 0.1% at less than 300 degrees of freedom, and there is a similar improvement in
the accuracy of the transmission and reflection coefficients. The improvement in power
conservation, and the error in transmission and reflection coefficients, is generally about
the same with respect to the number of degrees of freedom as with the single-step

algorithm.

Figure 6.5 shows similar plots for the multi-step algorithm used in conjunction

with the WFR estimator. The rate of convergence with the multi-step algorithm does not

appear as fast as that of the single-step approach.
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WFR Estimator v.s. Actual Average Error
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Figure 6.4 The WFR estimator with 25% single-step iteration technique
for the structure in (a) of Figure 6.1
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WEFR Estimator v.s. Actual Average Error
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Figure 6.5 The WFR estimator with 25%+10% multi-step iteration technique
for the structure in (a) of Figure 6.1
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Figure 6.6 shows the performance of the single-step algorithm used in conjunction
with the NFD estimator for the PPWG structure in Figure 6.1b. As measured by the
actual error in the field (Figure 6.6a), the rate of convergence is much slower for the
structure with additional septums. While the power conservation check is within 0.1% at
less than 200 degrees of freedom, the convergence rate of the transmission and reflection
coefficients is also somewhat slower than the corresponding rates for the one-septum

structure.

Figure 6.7 shows similar plots for the multi-step algorithm used in conjunction
with the NFD estimator on the structure of Figure 6.1b. The rate of convergence with the

multi-step algorithm is slightly slower than that of the single-step approach.
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Figure 6.6 The NFD estimator with 25% single step iteration technique
for the structure in (b) of Figure 6.1
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Reflection Coefficient Error
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Figure 6.7 The NFD estimator with 25% +10% multi-step iteration technique
for the structure in (b) of Figure 6.1
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Reflection Coefficient Error
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Figure 6.8 shows the performance of the single-step algorithm used in conjunction
with the WFR estimator, for the PPWG structure in Figure 6.1b. As indicated previously,
the WFR estimator significantly underestimates the actual error in the field. However,
the rate of convergence is substantially faster than that of the adaptive refinement

algorithms based on the NFD estimators.
Figure 6.9 shows similar plots for the multi-step algorithm used in conjunction

with the WFR estimator on the structure of Figure 6.1b. The rate of convergence with the

multi-step algorithm is slightly slower than that of the single-step approach.
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WFR Estimator v.s. Actual Average Error
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Figure 6.8 The WFR estimator with 25% single step iteration technique
for the structure in (b) of Figure 6.1
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WFR Estimator v.s. Actual Average Error
BD T T T T T T

*\ -€~ Actual Error
80 v, —— "WFR Estimator 7

Error{%}

20

b
L —
"""%91.
101 .

*-—__\——.L_

. . N N —
0 100 200

300 400 a00 GO0 700
No of DoF

(a) Comparison of numerical estimates to the actual error

Power Conservation Error
D. 1 D'q' T T T T T T

0102

0.1

0.055

Error(%)

0.09

0.094

0.092

0.oa

1 1 1 1 1 1
0 100 200 300 400 a00 B00 700
No of DOF

(b) Power conservation error

Figure 6.9 The WFR estimator with 25% +10% multi-step iteration technique
for the structure in (b) of Figure 6.1
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The following tables present numerical data corresponding to the previous plots
of this chapter. Table 6.1 provides the reference solutions for the structure of Figure 6.1a
obtained with uniform-order interpolatory basis functions. (The “actual” error is zero at
the highest level since that is the reference solution.) Tables 6.2 through 6.5 summarize
the results of the simulations for the structure of Figure 6.1a. Table 6.6 provides the
reference solution for the structure in Figure 6.1b, while Tables 6.7 through 6.10 provide

results of the simulations for that structure.

In Tables 6.1 to 6.5, the row in bold font represents the point in the simulation
where the actual solution error is within 10% of the reference solution, for the PPWG
structure in Figure 6.1a. Tables 6.6, 6.9, and 6.10 similarly indicate where the actual
error is within 20% of the reference solution. (Tables 6.7 and 6.8, based on the NFD
estimator for the structure of Figure 6.1b, report results that always exceed that error
level.) By comparing the number of degrees of freedom required to reach that error level
in each case, we can make several observations about the relative performance of the

algorithms.

First, we observe that there is not much difference between the single-step and
multi-step algorithms in the overall number of degrees of freedom required to reach a
comparable error level. (These results do not show the relative computer time, which
may be somewhat smaller for the multi-step algorithm since there are fewer intermediate

iterative steps required for that approach.)
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Second, we observe that the level of error in the transmission coefficient and
reflection coefficient is comparable to that of the actual error in the field, as one might
expect. The error in the power conservation check is much smaller, and is not as simply
related to the other errors. As pointed out in Chapter 5, the error levels reported by the

two estimators do not track the actual error very well, either.

These results clearly show, however, that the adaptive refinement algorithm based
on the WFR estimator outperforms the algorithm based on the NFD estimator for both
structures. There may be a reason for the relatively poor performance of the NFD
estimator. For these PPWG structures, the presence of the septums is expected to create
rapid field fluctuations in the vicinity of the septum tips. The basis functions used to
represent the fields cannot exactly model the field singularity at those tips. The NFD
estimator, which samples the normal fields at the center of cell edges, might be expected
to be more sensitive to nearby field singularities than the WFR estimator, which works
with fields within the cells. Therefore an adaptive refinement algorithm based on the
NFD estimator might have a greater tendency to report large errors near field
singularities, forcing the refinement process to direct most of the available degrees of
freedom to those regions, to the detriment of the overall distribution of actual error in the

result.
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Table 6.1 Uniform p-refinement with interpolatory vector basis
for one-septum structure

Order | DoF Actual Relative Reflection Transmission
No Average Power Coefficients Coefficients
Error
0/1 84 52.16525 0.99886 0.19157 0.98090
1/2 264 20.72738 0.99902 0.33890 0.94030
2/3 540 10.88942 0.99906 0.38445 0.92264
3/4 912 6.474662 0.99908 0.40200 0.91513
4/5 1380 4.098341 0.99908 0.41093 091116
5/6 1944 3.44189 0.99909 0.41606 0.90883
6/7 2604 2.01325 0.99909 0.41928 0.90736
7/8 3360 0.99909 0.42142 0.90636

Table 6.2 Adaptive p-refinement with single-step of 25% using NFD estimator
for one-septum structure

DoF | Actual Average | Relative Power | Reflection Transmission
No | Error Coefficients Coefficients
84 48.09234 0.99886 0.19156 0.98090
163 38.33930 0.99892 0.25077 0.96749
242 35.01174 0.99894 0.26634 0.96333
327 33.97659 0.99895 0.26896 0.96260
458 21.77441 0.99901 0.33272 0.94250
615 9.94083 0.99907 0.39949 0.91623
732 9.67399 0.99907 0.40106 0.91554
797 9.53427 0.99907 0.40121 0.91548
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Table 6.3 Adaptive p-refinement with multi-steps of 25%+10% using NFD estimator

for one-septum structure

DoF | Actual Average | Relative Power | Reflection Transmission
No | Error Coefficients Coefficients
84 48.0923 0.99886 0.191566 0.98090
219 37.8507 0.99893 0.253112 0.96688
339 34.4163 0.99895 0.269019 0.96259
509 17.2677 0.99905 0.363292 0.93116
696 8.99107 0.99907 0.405000 0.91381
780 8.27354 0.99908 0.408481 0.91226
848 8.01221 0.99908 0.408141 0.91241
870 7.93597 0.99908 0.408336 0.91232

Table 6.4 Adaptive p-refinement with single-step of 25% using WFR estimator
for one-septum structure

DoF | Actual Average | Relative Power | Reflection Transmission
No | Error Coefficients Coefficients
84 52.16525 0.99886 0.19157 0.98090
167 38.53593 0.99895 0.26399 0.96398
239 33.11426 0.99896 0.27743 0.96021
353 14.67843 0.99905 0.37481 0.92659
517 8.624254 0.99907 0.39822 0.91679
588 7.364189 0.99908 0.40258 0.91488
610 7.270222 0.99908 0.40261 0.91487
632 7.194764 0.99908 0.40261 0.91487
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Table 6.5 Adaptive p-refinement with multi-steps of 25%+10% using WFR estimator
for one-septum structure

DoF | Actual Relative Reflection Transmission
No | Average Error | Power Coefficients Coefficients
84 52.1652 0.99886 0.19157 0.98090
222 34.4557 0.99898 0.29214 0.95584
345 28.2070 0.99899 0.30720 0.95112
496 10.2028 0.99907 0.39305 0.91901
605 7.51394 0.99908 0.40204 0.91512
632 7.28962 0.99908 0.40238 0.91497
653 7.06954 0.99908 0.40264 0.91485
667 7.06790 0.99908 0.40264 0.91485

Table 6.6 Uniform p-refinement with Interpolatory vector basis
for two-septum structure

Order | DoF | Actual Average | Relative Reflection Transmission
No Error Power Coefficients Coefficients
0/1 86 86.99498 0.99896 0.28981 0.95654
1/2 268 35.97367 0.99901 0.56689 0.82324
2/3 546 19.18278 0.99907 0.63448 0.77234
3/4 920 11.42511 0.99906 0.65900 0.75152
4/5 1390 7.376884 0.99905 0.67113 0.74070
5/6 1956 6.306470 0.99905 0.67798 (0.73443
6/7 2618 3.749598 0.99904 0.68223 0.73049
7/8 3376 0 0.99904 0.68504 0.72784
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Table 6.7 Adaptive p-refinement with single-step of 25% using NFD estimator
for two-septum structure

DoF Actual Average Relative Reflection Transmission

No Error Power Coefficients Coefficients
86 77.76464 0.99896 0.28981 0.95654
165 71.18441 0.99905 041316 091014
252 69.86788 0.99907 0.44419 0.89542
337 69.95831 0.99907 0.44565 0.89469
427 66.87464 0.99911 0.50021 0.86539
628 61.46841 0.99910 0.60757 0.79370
788 59.84874 0.99910 0.61649 0.78679
874 59.01051 0.99910 0.63982 0.76794

Table 6.8 Adaptive p-refinement with multi-steps of 25%+10% using NFD estimator
for two-septum structure

DoF Actual Average | Relative Power | Reflection Transmission
No Error Coefficients Coefficients
86 77.76464 0.99896 0.28980 0.95654
233 71.24195 0.99905 0.41435 0.90959
372 70.20905 0.99907 0.44597 0.89453
518 62.60296 0.99904 0.52553 0.85020
785 59.41848 0.99906 0.64554 0.76311
902 57.17812 0.99905 0.65712 0.75315
988 57.22235 0.99905 0.66277 0.74818
990 57.18941 0.99905 0.66271 0.74823
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Table 6.9 Adaptive p-refinement with single-step of 25% using WFR estimator
for two-septum structure

DoF Actual Average Relative Reflection Transmission

No Error Power Coefficients Coefficients
86 86.99498 0.99896 0.28981 0.95654
176 63.09614 0.99906 0.43666 0.89910
253 53.59824 0.99908 0.48077 0.87632
371 29.71183 0.99907 0.59755 0.80125
520 20.14653 0.99906 0.62822 0.77743
592 14.60024 0.99906 0.65176 0.75781
617 13.38243 0.99906 0.65617 0.75399
636 13.00406 0.99906 0.65715 0.75314

Table 6.10 Adaptive p-refinement with multi-steps of 25%+10% using WFR estimator
for two-septum structure

DoF Actual Average Relative Reflection Transmission

No Error Power Coefficients Coefficients
86 86.99498 0.99896 0.28980 0.95654
236 56.33796 0.99907 0.47992 0.87678
358 47.99359 0.99909 0.51588 0.85613
527 19.12508 0.99906 0.63871 0.76884
658 14.20549 0.99905 0.65188 0.75769
685 13.05426 0.99905 0.65612 0.75403
686 13.05552 0.99905 0.65612 0.75403
86 86.99498 0.99896 0.28980 0.95654
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6.2 Summary

The WFR and NFD error estimators identified in the preceding chapter as the
most promising were implemented within adaptive refinement algorithms. Two
variations on the adaptive refinement algorithm were employed, and applied to the
analysis of PPWG structures containing septums. Results were presented in the form of

plots and tables.

Figure 6.10 through 6.12 plot the DoF distribution captured after the final
iteration with the NFD and WEFR error estimators. The NFD estimator is carried out for a
one-septum structure while the WFR estimator is carried for one-septum and two-septum
structures. The highest order basis functions are assigned to cells or edges near the
septum in which the rapid variation of field is expected. We can conclude that the WFR
estimators are good at detecting the rapid fluctuation of the field of the given structures

while the NFD estimator is not suitable for the complicated structure.
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Figure 6.10 DoF distribution of the NFD error estimator
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Figure 6.11 DoF distribution of the WFR error estimator for one-septum structure
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(a) The single-step WFR estimator DoF distribution
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(b) The multi-step WFR estimator DoF distribution

Figure 6.12 DoF distribution of the WFR error estimator for two-septum structure
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Table 6.11 summarizes the simulations carried out for p-adaptive FEM schemes
of this chapter. The smaller simulation time of the NFD is due to the fact that only one
sample point is used for error norm calculation, while the WFR estimator takes a longer
computational time since it employed over 300 sample points for the cell-based error
norm. The WFR error estimator shows better performance than the NFD in general since

the NFD can not reach the expected accuracy for the two-septum structure.

Considering the two-septum structure with the WFR estimator, the multi-step
iteration technique requires fewer iterations number to reach around 20% in solution
accuracy. The multi-step technique gives better performance in terms of total simulation

time despite of the greater numbers of DoF at the final iteration.

Table 6.11 Comparison of two iteration techniques for one-septum and two-septum T-

PPWG structures
Septum 1 Septum 2
NFD NFD WFR WFR WFR WFR
Single- | Multi- Single- Multi- Single- Multi-
Step IT | Step IT | StepIT | Step IT | Step IT | Step IT
Global
Average 9.94083 | 8.99107 | 8.624254 | 10.2028 | 20.14653 | 19.12508
Error at
Termination
Iteration 6 5 5 4 5 4
No
DoF No 615 696 517 496 520 527
Operation 70.656 | 117.547 | 344.187 | 287.234 | 351.656 | 305.813
Time (Sec)
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Although the WFR estimator was not very accurate at predicting the actual error
levels, the adaptive refinement algorithms based on the WFR estimator outperformed the

algorithms incorporating the NFD estimator.
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CHAPTER 7: CONCLUSIONS

There are compelling reasons to suggest that computational methods for
electromagnetic analysis be adaptive. Adaptive methods reduce the dependence on user
expertise, provide a more robust self-correcting process of analysis, and can increase user
confidence in the results. In the general engineering and applied mathematics
communities, h-refinement and p-refinement procedures have been explored for more
than two decades. H-refinement techniques have been used with vector finite elements;
the commercial High-Frequency Structure Simulator (HFSS) tool by the Ansoft
Corporation employs h-refinement. To date, however, little attention has been directed at

the use of p-refinement with vector finite elements for electromagnetics.

The present investigation implemented a two-dimensional vector finite element
testbed that employed both interpolatory and hierarchical vector bases of the Nedelec
mixed-order types. Interpolatory elements with mixed-order degrees ranging from 0/1 to
7/8 and hierarchical elements with orders from 0/1 to 4/5 were incorporated. At the
outset of this study, no other investigation had reported the implementation of such a
wide range of polynomial degrees. Background information and results to support the

verification of the finite element testbed were summarized in Chapters 2, 3, and 4.

A key aspect of adaptive refinement algorithms is the error estimator used to drive
the process. No systematic study of error estimators has been reported for vector finite

element problems. In the present investigation, four distinct error estimators were
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implemented and evaluated. Chapter 5 presented the details of their implementation and
the results of this comparison. Surprisingly, none of the error estimators was particularly
good at predicting the actual local or global error levels in a specific solution. All were
adequate at identifying regions of the problem domain with relatively high local error,

although there was a wide variation in their accuracy.

Comparisons with actual error levels in Chapter 5 led to the conclusion that two
estimators, the normal-field discontinuity (NFD) estimator and the weak form residual
(WFR) estimator, were superior in overall performance to the others. These two
estimators were used in additional simulations in Chapter 6, to illustrate the process of

adaptive p-refinement.

Although the present investigation was limited to the two-dimensional case, it is
hoped that because it dealt with vector equations and basis functions, the results have
applicability to the full three-dimensional situation. It is expected that future work will

be directed toward the three-dimensional problem.
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