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SUMMARY 
 
 
 

The vector finite element method has gained great attention since overcoming the 

deficiencies incurred by the scalar basis functions for the vector Helmholtz equation. 

Most implementations of vector FEM have been non-adaptive, where a mesh of the 

domain is generated entirely in advance and used with a constant degree polynomial basis 

to assign the degrees of freedom. To reduce the dependency on the users' expertise in 

analyzing problems with complicated boundary structures and material characteristics, 

and to speed up the FEM tool, the demand for adaptive FEM grows high. 

 

For efficient adaptive FEM, error estimators play an important role in assigning 

additional degrees of freedom. In this proposal study, hierarchical vector basis functions 

and four error estimators for p-refinement are investigated for electromagnetic 

applications.   
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CHAPTER 1: INTRODUCTION 

 
 

There are many practical applications that require electromagnetic analysis as an 

aid to the design of electrical systems.  Often, due to the complexity of the geometric 

structures typically encountered, the analysis must be carried out by numerical 

techniques.  For example, in the area of microelectronic systems, technological advances 

result in a greater density of circuits integrated into a small area, the use of multilevel 

structures, and a variety of materials.  Closed form solutions to Maxwell’s equations are 

limited to structures with simple geometries.  Consequently, in electromagnetics, 

attention has been directed toward numerical analysis methods such as the finite element 

method (FEM), the finite difference time domain (FDTD) method, and the method of 

moments (MoM) [1-3].  

 

The finite element method is widely used for analyzing electromagnetic field 

problems, because it offers several advantages. The global matrix within the FEM 

formulation is sparse since each degree of freedom (DOF) is interlinked only to nearest 

neighbors [1-3]. Procedures have been developed for solving sparse matrices to reduce 

fill-in and minimize memory resources [4,5]. The FEM can easily deal with complex 

geometric cell shapes, various materials, and curved boundaries [1-3]. Furthermore, one 

major difficulty associated with the FEM in the past, the treatment of unbounded domains 

associated with scattering and radiation problems, has been solved by a number of mesh 

truncation techniques [1,3,6-8]. 
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More importantly, the recent introduction of vector finite elements solved several 

problems that occurred from attempts to solve the vector Helmholtz equation with scalar 

elements [9]. Vector finite elements enforce the continuity of the tangential component of 

the vector quantities but not the normal component. They confine spurious eigenvalues to 

the zero eigenvalue subspace. They also appear to model singularities more accurately.  

 

In recent years, a number of interpolatory and hierarchical vector elements have 

been proposed in the literature [1,3,10-25].  These two types of elements offer a trade-off 

in their relative efficiency and ease of interpretation.  The coefficients of interpolatory 

functions are the sampled values of the appropriate field at various locations, and thus 

provide a straightforward interpretation of the result.  Hierarchical functions, on the other 

hand, build on basis functions of lower-order in a systematic way, and permit a more 

efficient computational procedure that minimizes the number of equations that must be 

recomputed as the basis function order is gradually increased. 

 

In common with all numerical solution procedures, FEM results contain 

discretization error caused by expanding a continuous function with a finite number of 

elements. This error can be reduced by diminishing the size of the elements, h-refinement, 

or increasing the polynomial order, p-refinement, so that the basis functions may better 

capture the variation of the unknown function over the patched local domain of the 

calculation [2]. H-refinement techniques have been used in conjunction with low-order 

vector basis functions for a number of years [2]. However, p-refinement techniques have 
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not been thoroughly studied to date, probably because of the relatively recent 

development of higher-order hierarchical vector basis functions. 

 

P-refinement has the advantage that it avoids the time-consuming mesh 

regeneration process associated with h-refinement. However, to take full advantage of 

either type of refinement technique, the process must be adaptive. In adaptive refinement, 

the error estimated from a numerical solution at one level of refinement is employed to 

predict which regions within the computational domain most need additional degrees of 

freedom.  The procedure then assigns additional degrees within those regions and 

resolves the problem. Hierarchical vector basis functions are almost always utilized for p-

adaptive refinement since they allow most of the equations within the FEM system to 

remain the same from one level of refinement to the next. On the contrary, interpolatory 

vector basis functions would require all the equations in the regions undergoing 

refinement to be replaced.  In addition, an interpolatory expansion requires special 

transition elements to connect between regions of different polynomial degree.  

 

Industrial applications demand more efficient and robust computational tools, 

since users’ expertise often fails for very complicated structures and the high initial 

fabrication cost of modern systems motivates a high certainty of success before 

fabrication. For a software tool to be able to analyze a specific problem from the given 

geometric and material information alone, some form of refinement must be incorporated 

in an adaptive and intelligent way.  
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Adaptive finite element methods rely on a local error estimator to decide which 

elements within the computational domain contain the largest error levels and would 

benefit from additional degrees of freedom.  Although error estimators have been 

developed for scalar equations [26], little research has been directed to date toward error 

estimators for the vector electromagnetic field problems of interest.  The development, 

implementation, and evaluation of error estimators for vector electromagnetic field 

problems forms the principal subject matter of this dissertation. 

 

Chapters 2 and 3 review the FEM formulation.  The Helmholtz equation is 

obtained from Maxwell’s equations, and specialized to the rectangular cavity and parallel 

plate waveguide (PPWG) structures that will be used for illustration. The vector FEM 

procedure is described, and higher-order hierarchical vector basis functions are reviewed.  

Chapter 4 provides a validation study to ensure that the vector FEM computer code is 

correctly implemented.   

 

Chapter 5 presents several error estimators, including one based on the normal-

field discontinuity between cells, one related to the tangential-field discontinuity, one 

based on the residual error associated with the Helmholtz equation, and one based on the 

relative magnitudes of coefficients of higher-order hierarchical bases.  The 

implementation of these error estimators is described.  The performance of these error 

estimators is reported in Chapter 5, for several canonical problems associated with the 

PPWG geometry.  Results suggest that the normal-field discontinuity (NFD) and weak 

form residual (WFR) estimators are the most accurate in terms of correctly estimating the 
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field error.  These estimators are implemented within an adaptive p-refinement algorithm 

and used to analyze several problems (Chapter 6).  The performance of the adaptive p-

refinement algorithm is reported. 
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CHAPTER 2: BACKGROUND 
 
 
 
2.1 Mathematical Foundation 
 

The solution of an electromagnetic field problem must satisfy Maxwell’s 

equations and the associated boundary conditions. In general, this boundary-value 

problem can be defined by a governing differential equation in a domain Γ  with the 

general form 

Lu – f = 0        (2.1) 

accompanied by boundary or transition conditions 

  B(u) = 0       (2.2)  

on the boundary ∂ . Γ

 

In electromagnetics, the differential operator L usually represents the scalar or 

vector Helmholtz equations. The function f is a known excitation function and u is the 

unknown quantity, such as the electric or magnetic field. The function u may be a scalar 

quantity or a vector quantity; u can be replaced by the vector quantity u  when the 

governing equation is the vector Helmholtz equation.  

 

An analytical solution is possible for relatively few cases, such as: 

• The static potential between infinite parallel plates 

• Wave propagation in rectangular, circular, and elliptic waveguides 

• Cavity resonance within rectangular, cylindrical, and spherical cavities 

• Wave scattering by infinite planes, cylinders, or spheres 
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For most problems of practical interest in electromagnetics, therefore, an approximate 

solution is obtained by a numerical method. Typical numerical methods for 

electromagnetic problems have their origins in the classical Ritz-variational method and 

Galerkin’s method [1,23]. Galerkin’s Method is explained here briefly for further study.  

(For the Helmholtz equation the Ritz-variational method leads to the same matrix 

equation.) 

 

Galerkin’s method is one of the weighted residual methods and, as that name 

suggests, the solution is found by weighting the residual of the differential equation. 

Assume u~ is an approximation of the exact solution u expanded as 

}{}{}{}{~
1

cwwcwcu TT
N

j
jj === ∑

=

    (2.3) 

where  are the chosen expansion functions and c  are coefficients to be determined. 

Also, {·} denotes a column vector and the superscript T denotes the transpose of the 

vector. Then the residual is given by 

jw j

r =Lu~  – f ≠  0         (2.4) 

A system of equations is obtained by weighing the residual with a set of test functions 

 and equating the weighted residual to zero over the domain: }{ jt

0== ∫
Γ

ΓrdtR jj      (2.5) 

The approximate solution to equation (2.1) is obtained by solving this system of 

equations. In Galerkin’s method, the testing or weighting functions are taken to be the 

same as the expansion functions. Therefore, the weighting functions are chosen as 

   t jj w=  , j=1,2,…, N     (2.6) 
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and equation (2.5) is written as  

0)}{}{( =−= ∫
Γ

ΓdfwcwLwR j
T

jj     j =1,2,…, N.    (2.7) 

This equation can be written in the form of a matrix equation 

   [S]{c} = {b}       (2.8) 

where 

   S       (2.9) ∫=
Γ

ΓdLww jiij )(

and   

∫=
Γ

Γdfwb ii )( .      (2.10)       

  

To avoid the need to use expansion functions that can accurately capture or 

approximate the exact solution over the entire domain, the domain is divided into smaller 

subdivisions and functions are defined over each subdomain. If a subdomain is 

sufficiently small, and the variation of the exact solution over that subdomain is small, 

expansion and testing functions may have a much simpler form than they would require 

over the entire domain. The subdivisions are finite elements. 

 

This method, the so-called Galerkin FEM, allows subdomain basis and testing 

functions to be capable of approximating the exact solution of more complicated 

structures. There is always some error incurred in representing the domain and the 

solution by this process but, in general, it will be reduced as the element size decreases. 
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The generation and solution of the Galerkin FEM system requires the following 

steps: 

• Define the problem’s computational domain 

• Choose discrete elements and expansion functions 

• Generate a mesh 

• Enforce the residual equation over each element to generate the element 

matrices 

• Apply boundary conditions and assemble element matrices to obtain the 

overall sparse system 

• Solve the overall system equation 

• Postprocess field data to extract parameters of interest. 

 

In the following sections, the scalar and vector Helmholtz equations are derived 

from Maxwell’s equations. These equations are specialized to a two-dimensional cavity 

problem and a two-dimensional parallel-plate waveguide problem.  The associated FEM 

equations are developed. 

 
 
2.2 Helmholtz Equations 
  

Electromagnetic field problems are described by Maxwell’s equations in 

differential form. Consider a closed region Γ , contained within the surface Γ∂ , which 

might be truncated by an absorbing boundary condition or closed by perfect electric 

conductor (PEC) surfaces. This region might contain inhomogeneous materials with 
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complex geometrical shapes. Assume that the region is source-free and the field is time-

harmonic with frequency . Maxwell’s equations are given by ω

−

jω

H×

  E×∇  = Hµjω        (2.11) 

  H×∇ = Eε        (2.12) 

  Eε⋅∇  = 0        (2.13) 

Hµ⋅∇  = 0        (2.14) 

where E and H are the electric and magnetic field intensities, respectively. The 

constitutive parameters, ε and µ , are the permittivity and permeability of the region, 

respectively, each of which may vary with position according to the material filling that 

region. These parameters can be described in proportion to the free space parameters, 

and : 0ε 0µ

  ε         (2.15) 0εεr=

          (2.16) 0µµµ r=

where and are the relative permittivity and permeability, which vary with position. 

 

rε rµ

Two vector Helmholtz equations are derived by combing (2.11) and (2.12).  The first is 

  Hr
r

µk
ε

2
0)1( =∇×∇        (2.17) 

involving the magnetic field as the primary unknown and the second is 

  EE r
r

εk
µ

2
0)1( =×∇×∇       (2.18) 
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where the primary unknown is the electric field. In equations (2.17) and (2.18), 

000 µεωk =  is the wave number. These are often called the curl-curl equations. 

 

When these equations are specialized to two dimensions, there are two 

polarizations that arise.  The TE-to-z or H  polarization is obtained after employing the 

vector identity  

z

zz Hˆ)Hˆ( t
r

tt
r

t ε
zz

ε
∇⋅∇−=








×∇×∇

11  

to reduce the vector equation (2.17) into the scalar equation 

zz HH rt
r

t µk
ε

2
0

1
−=∇⋅∇ .      (2.19) 

In a similar manner, an equation for the TM-to-z or  polarization is obtained as zE

zz EE rt
r

t εk
µ

2
0

1
−=∇⋅∇ .      (2.20) 

In the preceding equations, 

 y
y

x
xt ˆˆ

∂
∂

+
∂
∂

=∇ .       (2.21) 

Equations (2.19) and (2.20) are scalar Helmholtz equations. 

 

 Proper boundary conditions must be specified in conjunction with these 

differential equations. References [1,23] provide a complete and detailed discussion. In 

this study, an absorbing boundary condition will be used for open regions; it will be 

derived in Section 2.4.  For a PEC surface, the tangential component of the electric field 

must vanish at the boundary of the PEC: 
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  0=
PECsurfacetanE .       (2.22) 

At the interface between two homogeneous dielectrics, tangential continuity is expressed:  

  
−+

=
surfacetansurfacetan EE .      (2.23)  

The expansion functions should maintain tangential continuity at material interfaces. 

 

Solving Maxwell’s equations with their boundary conditions is equivalent to 

solving the curl-curl equations with their boundary conditions. The curl-curl equation is 

converted into a variational functional or a weak form equation before it is discretized. 

The FEM converts the functional or weak form equation into a linear system of equations 

by discretizing the over-all computational region into many smaller elements. The 

approximate solution is obtained by solving the linear algebraic equations using standard 

matrix techniques.  These steps are described in the following sections. 

 
 
2.3 Rectangular Cavity Problem 
 

In this section, the vector Helmholtz equations are used to develop scalar and 

vector finite element formulations for a 2D rectangular cavity problem.  Although two-

dimensional problems can usually be posed in terms of scalar equations, this dissertation 

focuses on vector equations in the hope that the results have more applicability to the 

general three-dimensional case.  Additional details of these derivations may be found in 

fundamental books on finite element methods [1-3,23]. 

 

In most cases, an analytical solution to (2.17) and (2.18) is not possible. To obtain 

a numerical solution, the first step of the FEM procedure is to convert the vector 
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Helmholtz equation into a weak form equation. The equations can be reduced to a weak 

form by taking the dot product of either curl-curl equation with a known vector test 

function, T . For example, (2.17) is tested to yield 

HTHT ⋅=×∇×∇⋅ r
r

µk
ε

2
0)1(      (2.24) 

By using a standard vector identity, we obtain 

( ) HTTH1TH1)H1(T ⋅=







××∇⋅∇−×∇⋅×∇=×∇×∇⋅ r

rrr

µk
εεε

2
0   (2.25) 

By rearranging terms, (2.25) can be written as 

( ) 







××∇⋅∇=⋅−×∇⋅×∇ TH1HTTH1

r
r

r ε
µk

ε
2
0     (2.26) 

By integrating (2.26) over the computation domain Γ , the right hand term is modified by 

Gauss’ law as follows 

( ) ( )∫∫∫
∂

⋅







×∇×=








××∇⋅∇

ΓΓ

dln
ε

ds
ε rr

ˆH1TTH1     (2.27) 

Finally, (2.26) is rearranged to yield 

( )∫∫∫
∂

⋅







×∇×=








⋅−×∇⋅×∇

ΓΓ

dln
ε

dsµk
ε r

r
r

ˆH1THTTH1 2
0   (2.28) 

where the boundary ∂ is the contour surrounding the interior region Γ and its outward 

normal vector is n .  Equation (2.28) is the weak form of (2.17). 

Γ

ˆ

 

By similar steps, we can obtain a weak form equation for the electric field E  as 

( )∫∫∫
∂

⋅







×∇×=








⋅−×∇⋅×∇

ΓΓ

dln
µ

dsεk
µ r

r
r

ˆE1TETTE1 2
0   (2.29) 
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Equations (2.28) and (2.29) are called the weak forms of the vector Helmholtz equations. 

The left-hand side terms in these equations are common to a wide range of 

electromagnetics problems. The right-hand side, which usually provides a means for 

incorporating boundary conditions, must be manipulated properly depending on whether 

the system of interest is a deterministic or an eigenvalue problem. The weak equation 

yields a deterministic system when it models scattering, radiation, and other deterministic 

problems associated with a source or excitation. It yields an eigenvalue system when it 

models source-free wave propagation in waveguides and source-free resonances in 

cavities. The deterministic system will be discussed in Section 2.4. Here, the eigenvalue 

system is considered as one example that will be used to verify the FEM implementation.  

 

 Consider a region surrounded by a PEC surface. The right hand boundary 

integration in (2.28) is nullified since the curl of magnetic field vanishes on the PEC 

surface. Equation (2.28) reduces to  

 ( dsµkds
ε r

r
∫∫∫∫ ⋅=








×∇⋅×∇

ΓΓ

HTTH 2
0

1 )      (2.30) 

In order to obtain a numerical solution, the equation must be discretized. Suppose that the 

computational domain is the rectangular cavity Γ .  This domain must be divided into M 

subsections or elements , where k=1, 2, 3, …, M, as illustrated in Figure 2.1 .  kΓ
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(PEC)Γ∂

x
y

Figure 2.1 Discretization of a rectangular cavity  
 
 

Within each element the field may be approximated by a finite linear combination of 

basis functions. These basis functions are known, but are weighted by the corresponding 

unknown coefficients. Thus, the total field of interest within Γ  can be written as a 

weighted sum of all basis functions: 

  ),( zxH ≅ ∑
=

N

n
nn zxBf

1
),(        (2.31) 

where ),( zxBn is a vector basis function that shall be explained in detail in the next 

section.  These basis functions must provide tangential continuity for any set of 

coefficients.  Equation (2.31) is substituted into equation (2.30), and the testing functions 

are chosen to be the same as the basis functions.  The result is a system of equations that 

can be expressed in matrix form as 

  .       (2.32) [ ] [ ] }{B}{A 2 fkf =

where [A] and [B] are N by N matrices.  These matrices involve entries that may require 

integrals over several elements; they are normally computed in an element-by-element 

manner.  If expressed over a single element kΓ  these entries have the form  
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  A  = k
mn dxdzBT

ε
k

nm
r

∫∫ 







×∇⋅×∇

Γ

1      (2.33) 

  B  = k
mn ( )dxdzBTµ

k

nmr∫∫ ⋅
Γ

      (2.34) 

where the superscript denotes an element k.  

 

 Equation (2.32) is a generalized matrix eigenvalue equation that can be solved by 

standard matrix procedures for the eigenvalues and eigenvectors.  These quantities are 

related to the resonant frequencies and resonant modes of the physical cavity structure.  

 

 For the scalar Helmholtz equations in (2.19) and (2.20), similar FEM matrix 

equations can be derived with corresponding matrix entries of the form 

  =k
mnA dxdzBT

ε
k

nm
r

∫∫ 







∇⋅∇

Γ

1      (2.35) 

and  

  B  = .      (2.36) k
mn ( )dxdzBTµ

k

nmr∫∫
Γ

While these will not be used in the present work, we include them here for completeness. 

 
 
2.4. Parallel-Plate Waveguide Problem 
 

A section of source-free two-dimensional parallel plate waveguide (PPWG) is 

shown in Figure 2.2. The infinity long PPWG structure must be truncated at the input and 

output ports, denoted ∂  and1Γ 2Γ∂ , respectively, surrounding the region of interest. This 

section focuses on the boundary term in equation (2.28) since the other parts of the weak 
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equation are exactly the same as previously discussed for the rectangular cavity problem. 

The weak form of the vector equation in terms of the magnetic field is rewritten for 

convenience: 

 dxdzHkTHT r
r

])1()[( 2µ
ε

⋅−×∇⋅×∇∫∫
Γ

= dtnHT
r

ˆ)1( ⋅×∇×∫
Γ∂ ε

  (2.37) 

The boundary ∂ is the contour surrounding the interior region Γ Γ and its outward normal 

vector is .    n̂

 

2Γ∂1Γ∂

(PEC)Γ∂

(PEC)Γ∂

z
x

y

 

Figure 2.2 Discretization of parallel-plate waveguide 
 
 

The boundary consists of three parts, the input port 1Γ∂ , the output port 2Γ∂ , and 

the PEC walls that will be denoted by Γ∂ . After imposing boundary conditions, the 

equation simplifies to  

dxdzHkTHT r
r

])1()[( 2µ
ε

⋅−×∇⋅×∇∫∫
Γ

 

= dtHnT
r

∫
∂

×∇×⋅−
1

)1ˆ(
Γ ε

dtHnT
r

∫
Γ∂

×∇×⋅−
2

)1ˆ(
ε

    (2.38) 
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where we have used HnTnH ×∇×⋅−=⋅×∇× ˆˆT , and H×∇×n̂ = Enj ×ˆωε  = 0 on 

PEC walls.  To define the boundary-value problem uniquely for the area Γ  bounded by 

, ∂ and the waveguide walls, it is necessary to prescribe a boundary condition for 

each of  and ∂ . 

1Γ∂ 2Γ

∂ 1Γ 2Γ

 
 
2.4.1. Absorbing boundary condition along Output Port 2Γ∂  

 
First, consider the output port, which must support a transmitted wave passing 

through in the direction. This wave has the general form ẑ+

),( zxE t
y  = zj

n

t
n

ne
d

xne βπ −
∞

=
∑ )sin(

1
    (2.39) 

where e  denotes a field amplitude of the n-th mode and  t
n

nβ  = 22 )(
d

nk π
− .     (2.40) 

 

The magnetic field associated with (2.39) is obtained from 

H = + =xH x̂ zH ẑ
ϖµj
1









∂

∂
−

∂

∂
)(ˆ)(ˆ

x
E

z
z

E
x yy   

     = 
ϖµj
1 [ zj

n

t
nn

ne
d

xnej βπ
β −

∞

=
∑ − )sin()(

1
]  - x̂

ϖµj
1 [ zj

n

t
n

ne
d

xne
d
n βππ −

∞

=
∑ )cos()(

1
]  (2.41) ẑ

where use has been made of H =
ϖµj

E×∇− .  In addition, the boundary term can be 

simplified according to 

2

1ˆ
ZZr

Hn
=

×∇×
ε

= )ˆ(1ˆ yz
r

−×
ε

 [
x

H z

∂
∂ - 

z
H x

∂
∂ ] = x̂

rε
1  [

x
H z

∂
∂ - 

z
H x

∂
∂ ]  
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     = x̂
rε

1
ϖµj
1

2)sin(])[(
1

22 zj

n

t
nn

ne
d

xne
d
n βπ

β
π −

∞

=
∑ + .   (2.42) 

where the unit normal to the output port, n , is ˆ ẑ+  in Cartesian coordinates. The 

coefficients can be expressed in terms of the field as  

 =t
ne 2)2( zj

n

ne
d

β

β
ϖµ− dx)

d
xnsin()z,x(H

d

x
π

∫
0

2      (2.43) 

Substituting (2.43) into (2.42) yields 

2

1ˆ
zzr

Hz
=

×∇×
ε

= x̂ xd
d

xn
d
xn

d
njzxH

d n
n

n

d

x
r

′
′

+′ ∑∫
∞

=

)}sin()sin(])[(),({2
1

22

0
2

ππβπ
βε

 

   = x̂ xd)x,x(G)z,x(H
d

d

x
r

′′′∫
0

2
2

ε
     (2.44) 

where 

 = )x,x(G ′ )
d

xnsin()
d
xnsin(])

d
n[(j

n
n

n
∑

∞

=

′
+

1

22 ππβπ
β

 

                          = )
d

xnsin()
d
xnsin(jk

n n
∑

∞

=

′

1

2 ππ
β

     (2.45) 

Equation (2.44) can be used as an absorbing boundary condition on . 2Γ∂

 
 
2.4.2. Absorbing boundary condition along Input Port 1Γ∂   

 
Since it is assumed that the excitation of the waveguide is left-to-right in Figure 

2.2, the field on ∂  will generally consist of an incident field and a reflected field. First, 

consider the reflected field. The reflected wave propagates in the −  direction and is 

denoted by  

1Γ

ẑ
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),( zxE ref
y  = zj

n

ref
n

ne
d

xne βπ +
∞

=
∑ )sin(

1
    (2.46) 

Following the same procedure leading to equation (2.44), 

1

1ˆ
zz

ref

r

Hz
=

×∇×−
ε

  

 = x̂ xd)}
d

xnsin()
d
xnsin(])

d
n[(j)z,x(H{

d n
n

n

d
ref
x

r

′
′

+′ ∑
∞

=1

22

0
1

ππβπ
βε ∫

2  

 = x̂ xd)x,x(G)z,x(H
d

d
ref
x

r

′′′
0

1ε ∫
2       (2.47) 

where G  is given in (2.45). )x,x( ′

 

Now, consider the incident field on 1Γ∂ , which has the form 

),( zxE inc
y  = zj

n

inc
n

ne
d

xne βπ −
∞

=
∑ )sin(

1
      (2.48) 

Through the same procedure described above, we obtain 

1

1

zz

inc

r

Hẑ
=

×∇×−
ε

 

 = x̂ xd)}
d

xnsin()
d
xnsin(])

d
n[(j)z,x(H{

d n
n

n

d
inc
x

r

′
′

+′ ∑
∞

=1

22

0
1

ππβπ
βε

−
∫

2  

 = x̂ xd)x,x(G)z,x(H
d

d
inc
x

r

′′′−

0
1ε ∫

2       (2.49) 

where G  is given in (2.45). )x,x( ′
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An ABC in terms of the total field on 1Γ∂  is obtained by combining equations 

(2.47) and (2.49). The first term on the right hand side of equation (2.38) can be written 

as  

Hn
r

×∇×
ε
1ˆ  = )(1ˆ refinc

r

HHn +×∇×
ε

 

  = )(1)ˆ refinc

r

HHz +×∇−
ε

( ×  on 1Γ∂             (2.50) 

After substituting equations (2.47) and (2.49) into equation (2.50), we obtain 

Hn
r

×∇×
ε
1ˆ  = 

rd
x̂

ε
2 xdxxGHH

d
inc
x

ref
x ′′−∫ ),()(

0

  

  = 
rdε
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 (2.51) 

where G  is given in (2.45). Equation (2.51) is the ABC we will use along )x,x( ′ 1Γ∂ . 

 
 
2.4.3. Derivation of the matrix equation 

 
The weak equation for a parallel plate waveguide with TM-to-y excitation and 

ABCs at the input and output ports is given by 
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Equation (2.52) is derived by replacing the boundary terms in equation (2.38) with the 

new expressions from equations (2.44) and (2.51). 

 

Suppose that the computation domain is discretized into many small triangular 

cells.  The vector expansion functions are defined in conjunction with the cellular model 

of the domain.  Consider the use of curl conforming vector basis functions }nB{ , which 

have a constant tangential and linear normal (CT/LN) vector behavior, and impose 

tangential-vector continuity between cells.  Each basis function straddles two cells, 

except for those that reside along boundaries 1Γ∂  and 2Γ∂ , which only occupy one cell 

and have a large tangential component along the boundary.  The magnetic field is 

approximated as follows 

),( zxH ≅ ∑
=

N

n
nn zxBh

1
),( . 

We use the same vector functions as test functions. 

 

The resulting system equation is a deterministic linear matrix equation of the form 

.  The entries of  have the form [ ] }g{}{ A =h A

mnA = + +  mnI )(
mnB 1 )(

mnB 2

where 

  =mnI dxdzBTkBT nmrnm
r

}1{ 2 ⋅−×∇⋅×∇
Γ

µ
ε∫∫     (2.53) 
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The entries of the excitation vector have the form 

 = mg dtxdxxGzxHxT
d

d
inc
xm

r
∫ ∫
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′′′⋅
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}),(),(ˆ1{4

0
1ε
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The boundary integrals in (2.54) and (2.55) are only nonzero when both )(m xT  and 

)(Bn x  are functions located on the same boundary. For the waveguide geometry, they 

are functions of x. 

 
 
2.5 Summary 

 
This chapter reviewed the derivation of the two-dimensional vector Helmholtz 

equations and specialized them to the problems of a resonant cavity and a parallel-plate 

waveguide.  Expressions for the vector FEM matrix entries, in terms of vector basis and 

test functions, were developed.  These basis functions will be described in Chapter 3. 
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CHAPTER 3: SCALAR AND VECTOR FINITE ELEMENTS 
 
 
 

In the FEM approach, the computational domain is divided into a mesh of 

electrically small elements. Basis functions are defined in conjunction with the FEM mesh 

to approximate the unknown function. Each basis function usually straddles several 

elements and vanishes outside of a small group of contiguous elements. The procedure 

results in a sparse system of equations that facilitates an efficient matrix solution and 

minimizes memory resources.  In general, two general types of basis functions exist for 

electromagnetics.  One is the classical scalar or node-based basis family that has been used 

with finite elements since the 1950s.  The other is the vector or edge-based type of basis 

function, introduced in the 1980s. 

 

Node-based elements have been widely used for numerical solutions of the 

Laplace’s equation and the scalar wave equation. However, these traditional basis functions 

do not work well when used with the three-dimensional vector Helmholtz equation.  Edge-

based vector basis functions were proposed to overcome some of the difficulties that arose 

in connection with the vector Helmholtz equation [1,3,10-25]. This chapter discusses both 

scalar basis functions and vector basis functions for triangular cells, which reasonably 

model the irregular geometries in two-dimensional problems. 
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3.1. Scalar Basis Functions 

In a node-based finite element analysis, the unknown function is approximated by a 

combination of interpolatory scalar Lagrangian basis functions [1,3,23].  The global 

representation for the function can be obtained in the form 

∑
=

=
N

i
ii yxBuyxu

1
),(),(       (3.1) 

where the coefficients {  represent the function values at the nodes and each basis 

function  must be unity at node i and zero at all other nodes within the mesh. If a 

single triangular element (Figure 3.1) is considered, a number of basis functions are 

nonzero within that element depending on the polynomial degree of the expansion. 

}iu
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Figure 3.1 Simplex coordinate of a triangular element 
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For a general way of constructing basis functions of any order, a point P  

within a triangular element can be expressed in terms of simplex coordinates (L

),( yx

1, L2, L3) 

that are defined by 

332211 xLxLxLx ++=       (3.2) 

332211 yLyLyLy ++=       (3.3) 

where 

1321 =++ LLL        (3.4) 

1,, 321 ≥LLL         (3.5) 

As illustrated in Figure 3.1, the simplex coordinate  is zero on the side opposite to the 

vertex i. 

iL

 

Basis functions can be defined in terms of polynomial functions of the simplex 

coordinates, using the polynomial functions 

)(
!

1)(
1

0

kL
s

LR
s

k
s −= ∏

−

=

MM,       (3.6) 

1)(0 =LR M, .        (3.7) 

The M-th order Lagrangian scalar basis functions are defined in terms of simplex 

coordinates as 

)()()(),,( 321321 LRLRLRLLLB kjiijk M,M,M,=    (3.8) 

where a triple index ijk is employed to denote the interpolation point of a specific basis 

function, and where k . The basis function B  interpolates to 1 at point ji −−= M ijk
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kjiLLL ,,),,( 321

=M ),( yxu

 and is exactly zero at the other interpolation points.  Figure 3.2 

shows the interpolation points for M = 3.  Within an element, the representation of the 

unknown function is written in terms of these basis functions as 

∑∑
= =

M i-M

0 0
321 ),,(

i j
ijkijk LLLBα      (3.9) 

where the {αijk} are the coefficients to be determined by the FEM procedure. 
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Figure 3.2 Interpolation points of , M=3 ijkB
 
 

While node-based Lagrangian basis functions work well for representing scalar 

quantities in electromagnetics, serious problems sometimes occur when they are employed 

to represent vector electric or magnetic fields [27]. Usually, when this has been attempted, 
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each Cartesian component of the vector quantity of interest is represented by an 

independent expansion of the form of (3.1) or (3.9).  The Lagrangian functions are 

continuous across cell boundaries, meaning that the tangential and the normal vector 

components are also forced to be continuous across the cell boundaries. Unfortunately, this 

behavior fails to represent the proper field discontinuity at the interface of two different 

materials. The second difficulty lies in the fact that the Cartesian components of the vector 

quantity are seldom aligned with the tangential or normal directions at a physical boundary, 

such as the surface of a conductor. In general, vector Dirichlet or Neumann boundary 

conditions are imposed on either tangential or normal components of electromagnetic fields 

along a boundary.  It becomes more difficult to impose boundary conditions when 

Cartesian components are in use, since the boundary conditions act as a constraint between 

several coefficients in (3.1) instead of an independent constraint on one coefficient.  Third, 

grossly inaccurate solutions (spurious modes) are sometimes obtained from node-based 

discretizations of the vector Helmholtz equation. Spurious modes are believed to be 

associated with inaccurate representations of eigenfunctions within the null space of the 

vector Helmholtz operator.  

 

Edge-based vector basis functions have been developed to address the above 

concerns when analyzing the vector Helmholtz equation with the FEM [15,27]. The 

following section reviews these edge-based elements. 
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3.2. Vector Basis Functions 

Several of the difficulties associated with the use of node-based scalar basis 

functions to represent a vector quantity stem from the use of the Cartesian components of 

the vector function.  Vector basis functions provide a representation that is independent of 

Cartesian components, but is tied locally to tangential and normal vector components at cell 

boundaries.  Vector expansions of this type therefore make it easier to impose appropriate 

boundary and continuity conditions at cell interfaces. 

 

Vector basis functions associate their degrees of freedom with the edges and the 

faces of the cells within the finite element mesh. The type of function that maintains 

tangential continuity along the common edges between abutting elements is known as a 

curl-conforming, edge, or tangential vector basis function. Functions of this type were first 

proposed for triangular cells by Whitney [10]. Nedelec generalized the concept and 

provided a methodology for constructing higher-order vector basis functions of this type 

[11,12]. 

 
 
3.2.1 Zeroth-Order Vector Basis Functions for Triangles 

 
The simplest edge elements were described by Whitney [10]. On the boundaries of a 

triangular cell, these elements have polynomial degree zero (constant) in the tangential 

direction but degree one (linear) in the normal direction.  For a triangular element it is 

difficult to visualize the form of the vector basis by intuition since the edges of an arbitrary 
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triangular element are not in alignment with the x- or y-axis. Therefore, let us consider the 

use of simplex coordinates, , described in Section 3.1. ),,( 321 LLL

 

Within a triangular cell (Figure 3.3), the general form of a Whitney element is 

11110 +−−+ ∇−∇= nnnn
n LLLLΩ .      (3.10) 

where n = 1, 2, or 3 indicates the edge number and the index is assumed to be modulo three 

(in other words, when n = 3 the subscript n+1 is taken to be 1); the subscript 0 indicates the 

order of that basis function.   

 

 

        Figure 3.3 Triangular edge element  
 
 

The zeroth-order edge basis functions defined in Equation (3.10) have the following 

divergence within the element: 

)( 11110 +−−+ ∇−∇⋅∇=⋅∇ nnnn
n LLLLΩ  

= 1111 +−−+ ∇⋅∇−∇⋅∇ nnnn LLLL = 0     (3.11) 
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They appear ideal for representing vector electromagnetic fields in a source-free region, 

since those fields exhibit zero divergence.  However, the divergence is actually nonzero at 

cell boundaries, where it assumes the form of a Dirac delta function.  The curl of the basis 

functions is given by 

)( 11110 +−−+ ∇−∇×∇=×∇ nnnn
n LLLLΩ  

= )()( 1111 +−−+ ∇×∇−∇×∇ nnnn LLLL = 112 −+ ∇×∇ nn LL   (3.12) 

Thus, the curl of these edge basis functions is constant.  It is noteworthy that the basis 

functions defined in equation (3.10) and their curls are complete to the same polynomial 

degree: zero or constant. 

 

Suppose  is a unit-tangential vector along edge n as defined in Figure 3.3.  The 

unit tangential vectors and the simplex coordinates are related as follows: 

nt̂

n
nn Lt

l

1ˆ
1 −=∇⋅ +        (3.13) 

n
nn Lt

l

1ˆ
1 =∇⋅ −        (3.14) 

since  is a linear function that varies from 0 at node (n-1) to 1 at node (n+1), and t  is 

directed from node (n-1) to node (n+1) with unit amplitude. Therefore, 

1+nL n̂

nn

nn
n

n LL
t

ll

1)(ˆ 11
0 =

+
=⋅ −+Ω       (3.15) 

which means n
0Ω  has a constant tangential component along edge n. It also follows that 

0ˆ
10 =⋅ +n

n tΩ         (3.16) 
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since  vanishes at edge (n+1) and 1+nL 1+∇ nL is normal to edge (n+1), and 

0ˆ
10 =⋅ −n

n tΩ         (3.17) 

since  vanishes at edge (n-1) and 1−nL 1−∇ nL is normal to edge (n-1). From equations (3.15), 

(3.16), and (3.17), we conclude that n
0Ω  has no tangential component along edges (n-1) and 

(n+1) but has a constant tangential component along edge n.  In a sense, this basis function 

interpolates to the tangential component along edge n of the cell.  This feature of edge basis 

functions can be used to guarantee the tangential continuity of the global representation 

across inter-element boundaries as long as expansion coefficients in the two adjacent 

elements are equal.  However, these basis functions do not have enough degrees of freedom 

to guarantee normal continuity.  Figure 3.4 shows the actual variation of 1
0Ω  within the cell. 

 

Within a cell, the vector field can be expanded as 

∑
=

=
3

1

0

n
nn NEE         (3.18) 

where {En} are the coefficients of the basis functions, 

00
nnnN Ωl=          (3.19) 

and where l  is the length of edge n of the element.  The global form of the expansion is 

similar, with the tangential continuity imposed between cells and most of the basis 

functions effectively straddling the two cells adjacent to the interpolatory edge. 

n
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Figure 3.4 Zeroth-order curl conforming function of 2332
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Observe that the Whitney type of basis function is mixed-order, with one lower 

polynomial degree along the primary vector direction of the function than in the 

perpendicular direction.  It is also possible to define vector basis functions that are 

complete to a consistent polynomial degree.  (Such functions involve six degrees of 

freedom within a triangle instead of three.)  However, when using basis functions within an 

FEM analysis of the vector Helmholtz equation, the extra degrees of freedom within a 

consistently linear representation appear to be wasted (at least in source-free regions).  It 

appears that, because of the curl operator within the vector Helmholtz equation, it is most 

efficient to employ basis functions that are complete to the same degree as their curl.  

Additional degrees of freedom that do not contribute to the curl of the basis functions are 

not balanced within the FEM system of equations and do not contribute to a more accurate 
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solution.  Furthermore, when analyzing vector cavity problems, the use of polynomial-

complete basis functions results in additional nullspace eigensolutions and no new physical 

eigensolutions, compared to a mixed-order representation [3]. Consequently, for the 

remainder of this study, only the mixed-order vector basis functions of the spaces proposed 

by Nedelec [11] are considered. 

 

Even though Whitney edge elements remove the difficulties caused by nodal 

elements, they are low-order polynomials and therefore the FEM solutions exhibit 

relatively large errors unless the cells within the mesh are very small.  The rate at which the 

solution accuracy improves as the average cell size is reduced is often referred to as the 

convergence rate.  The slow convergence rate associated with the zeroth-order elements 

can be improved by making use of higher-order vector elements. Two different types of 

higher-order edge elements, interpolatory and hierarchical vector basis functions, can be 

constructed based upon the Whitney zeroth-order vector basis functions and span the same 

vector spaces. The major difference between these higher-order vector elements lies in their 

construction. 

 

The interpolatory vector basis functions are defined on a set of points within the 

element. Since each vector basis has its primary value at an interpolation point, the set 

usually exhibits good linear independence.  Their coefficients have a physical meaning as 

the tangential components of the field at the interpolation points.  Their definition also 

makes it easy to impose boundary conditions. The systematic construction of interpolatory 
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vector basis functions is described in [19]. Despite these advantages, interpolatory basis 

functions of a given order are all different from those of the lower-order. Hence, different 

order basis functions can’t be employed together within the same element, which hinders 

their use within a p-adaptive algorithm. 

 

For hierarchical basis functions, the higher-order functions are superimposed upon 

the lower-order functions.  Since computations that have been performed for lower-order 

basis functions do not need to be repeated, they permit a more efficient p-adaptive 

algorithm. In this study, hierarchical vector basis functions are considered. 

 
 
3.2.2 Higher-Order Hierarchical Vector Basis Functions 
 

A set of edge-based basis functions is referred to as hierarchical if the vector basis 

functions of order n are a subset of the vector basis functions of order n+1. Unlike zeroth-

order edge elements, higher-order vector basis functions are not uniquely specified 

[13,14,16,18,20]. In this section, a set of non-hierarchical vector basis functions and 

another set of hierarchical vector basis functions are compared to clarify the concept of 

hierarchical basis functions. The hierarchical concept is explained using easily 

understandable scalar one-dimensional functions.  Two sets of basis function that represent 

a linear tangential/quadratic normal (LT/QN) field along element edges and a quadratic 

field inside the element are compared to clarify the concept of hierarchical vector basis 

functions. 
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Illustration of one-dimensional scalar hierarchical basis functions 

Figure 3.5 depicts the hierarchical principle for one-dimensional scalar basis 

functions.  Piecewise-constant and piecewise-linear approximations of a scalar quantity, 

over a straight segment, are considered.  The representation of a constant function is 

unique, and is easily obtained by multiplying a constant basis function of unit amplitude by 

the appropriate coefficient, as shown in Figure 3.5 (a).  However, there are two different 

ways to express a piecewise-linear function, as illustrated in Figure 3.5 (b) and Figure 3.5 

(c).  A superposition of two linear basis functions, one with linear variation from 0 to 1 and 

the second with linear variation from 1 to 0, can be used to obtain a general linear function 

over the interval.  Those functions are actually interpolatory and use the values of the target 

function at the endpoints of the interval as their coefficients.  An equivalent hierarchical 

representation can be obtained by a superposition of the constant basis function and a 

second basis function varying linearly from 1 to –1.  The coefficient of the constant basis 

function is the average value of the linear function on the left side of Figure 3.5 (c), 

(A+B)/2.  (If the constant basis function is used alone to approximate the target function, 

this would also be its coefficient.)  The linear basis function has an average value of zero 

and does not interfere with the approximation already provided by the constant function.  If 

the linear function is assigned a coefficient of (A-B)/2, the representation is exact. From 

this illustration, the physical meaning of the coefficients should be clear. For the 

interpolatory case, the coefficients are the values at both ends of the interval, whereas in the 

hierarchical basis case, they represent the average value and the first derivative over the 

interval. 
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Figure 3.5 An illustration of basis functions for piecewise-constant and piecewise-linear  
                  approximations of a scalar quantity over a one-dimensional segment  
 
 
Mixed-order non-hierarchical vector basis functions 

A set of non-hierarchical LT/QN vector basis functions proposed by Peterson 

consists of the following functions: 

1+∇ nn LL         (3.20) 

nn LL ∇+1         (3.21) 

)( 12213 LLLLL ∇−∇        (3.22) 

)( 23321 LLLLL ∇−∇        (3.23) 
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where equations (3.20) to  (3.21) are edge-based functions that provide nonzero tangential 

components along the cell edges, while equations (3.22) and (3.23) are face-based basis 

functions that do not contribute to a tangential component on the cell edges. The vector 

basis functions L  and 1+∇ nn L nn LL ∇+1 have a linear tangential behavior on edge (n-1) with 

node n and node n+1 as end points. Two functions related to edge 1 and one face basis 

function are shown in Figure 3.6. Figure 3.6 (a) and 3.6 (b) show the linear variation of the 

tangential component on first edge; on the other two edges, their tangential components 

vanish. These specific functions, when superimposed, have a linear varying normal 

component along all three edges. 

 

The quadratic vector basis functions in equations (3.22) and (3.23) are added to the 

set to provide a complete linear representation of the curl of the field being expanded. By 

assigning two tangential field values at edge end points to each edge and two local 

unknowns per element, an LT/QN field along all edges and a quadratic variation within the 

element are obtained.  The resulting representation is equivalent to the mixed-order 

Nedelec space of minimum polynomial degree 1 [11]. 
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(a) First-order vector basis:  

 

 

 

 

 

 

 

 

 

 

 (b) First-order vector basis: 23
1
1 LL ∇=Ω  

Figure 3.6 Non-hierarchical vector basis functions [17]  
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(c) Face vector basis: )(/ 12213
1

21 LLLLL ∇−∇=Ω  
 
 

Figure 3.6 Continued  
 
 

Mixed-order hierarchical vector basis functions 

A set of hierarchical vector basis functions proposed by Preissig and Peterson [28] 

is shown in Table 3.1. The lower-order basis functions are similar to the other sets proposed 

in the literature, such as the set proposed by Webb [24]. But for the higher-order basis 

functions, the linear independence is enhanced by a special polynomial construction.   

 

For LT/QN vector basis functions, eight functions up to mixed-order 1/2 should be 

considered. Their edge-based functions and face-based functions are separated in Table 3.1. 
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The shape of two edge-based functions related to edge 1 and  one face-based function are 

illustrated in Figure 3.7. 

 

Table 3.1 Hierarchical vector basis functions 
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From Figure 3.7(a) and (b), these basis functions clearly provide a constant and a 

linearly varying tangential component along edge 1, respectively. They provide zero 

tangential components on the other two edges and a linear variation in normal component 

along all three edges. The face-based basis function, )( 1112/1 nnnnn
n LLLLL ∇−∇= ++−Ω , has 
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no tangential component along any edges but has a quadratic variation in the normal 

component along edge n and edge n+1, but no normal component on edge n-1. 

 

 

 

 

 

 

 

  

  

  

 

 

(a)  First-order vector basis: 2332
1
0 LLLL ∇−∇=Ω  

Figure 3.7 Hierarchical vector basis functions  
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(b) First-order vector basis: 2332
1
1 LLLL ∇+∇=Ω  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
(c) Face vector basis: )( 12213

1
2/1 LLLLL ∇−∇=Ω  

 
Figure 3.7 Continued  
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Two unknowns per edge of the mesh are assigned: the average of the tangential 

component of the field is assigned to the 0/1 mixed-order basis function and the derivative 

of the tangential component of the field is assigned to the complete 1 basis function. The 

edge-based functions can represent a linear tangential/linear normal (LT/LN) variation, 

while the face-based functions represent a quadratic variation of the field. Therefore, an 

overall LT/QN variation of the field is obtained by these hierarchical vector basis functions. 

 
 

3.3. Summary 
 

This chapter has reviewed node-based and edge-based basis functions for 

representing electromagnetic fields.  While node-based scalar functions have been 

successful for scalar equations, the literature suggests that edge-based vector functions 

provide a more robust formulation for the FEM solution of the vector Helmholtz equation. 

 

 Interpolatory and hierarchical functions have been described.  Hierarchical 

functions offer some computational advantages when used with adaptive refinement 

procedures.  The hierarchical functions of Table 3.1 will be implemented within a computer 

program that uses the FEM procedure to analyze the two-dimensional parallel-plate 

waveguide geometry introduced in Chapter 2.  Chapter 4 provides some numerical results 

to illustrate the performance of the approach. 
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CHAPTER 4: VERIFICATION OF HIERARCHICAL VECTOR 
                               FINITE ELEMENTS 
 
 
 

In the previous chapters the basic mathematical background of the FEM and 

vector elements are expounded. Before error estimators are investigated, it is necessary to 

verify whether or not the vector FEM is correctly implemented. To this effect, the air-

filled parallel plate waveguide will be analyzed using hierarchical vector elements. Two 

configurations, shown in Figure 4.1 and Figure 4.2, will be considered. The first is a 

section of unterminated waveguide that should support a pure traveling wave (T-PPWG). 

The second guide is short-circuited at 2zz = and should support a pure standing wave (S-

PPWG). An exact analysis of T-PPWG and S-PPWG gives the fields, transmission 

coefficients and reflection coefficients. By comparison to this solution, the accuracy of 

the result obtained from the FEM analysis will be evaluated.  

 

 

Figure 4.1 Unterminated parallel plate waveguide 
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Figure 4.2 Parallel plate waveguide with short-circuited end  
 
 

 In the following sections the analytic solutions for the parallel plate waveguides 

will be derived and the simulation results for field propagation and scattering parameters 

will be compared to those derived from the analytic solution.  

 
 

4.1. Analytical Solution 
 
 Consider the test structures first. The computational domain of interest in the 

parallel plate waveguide is confined between the input port, 1Γ∂ , and the output port, 2Γ∂ . 

The incident wave is traveling from input to output ports. The output port can be changed 

to a short circuit, an open port, or a partial blocked septum. The short-ended PPWG (S-

PPWG) and open-ended PPWG (T-PPWG) structures have analytical solutions and that 

permits a determination of the accuracy of a vector finite element result.  

 

An incident wave, E , is generated from a source at z  to the left of 

the domain shown in Figures 4.1 and 4.2. From the view point of the circuit analysis 

technique a reflected wave might be generated by any geometric or material 

discontinuities in a manner to satisfy the boundary conditions. Some fraction of the 

),( zxinc
y 1z<
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incident wave propagates through to the output port. As in chapter II, the derivation of 

the analytic solution starts with a known incident electric field consisting of a single 

mode. The incident electric field is rewritten here. 

),( zxE inc
y = zjinc e

d
xe 1

1
βπ −






sin   =      (4.1) zjinceE 1

0
β−

The field leaving the region ( ) has the form 2zz >

),( zxE t
y = zjt e

d
xe 1

1
βπ −






sin =TE .     (4.2) zjince 1

0
β−

where T is the transmission coefficient. To the left of the region, there is also a reflected 

field of the form 

),( zxE ref
y = zjref e

d
xe 1

1
βπ +






sin = .     (4.3) zjinceRE 1

0
β−

where R is a constant reflection coefficient. As mentioned above a portion of the incident 

wave reaches the output port and continues to propagate along the waveguide. Some 

energy carried by the incident wave will be reflected and propagates in the opposite 

direction. As a result the total wave in the computational domain is the superposition of 

the incident and the reflected wave from  to :  1z 2z

 

),( zxE tot
y = +  = +  ),( zxE inc

y ),( zxE ref
y

zjinceE 1
0

β− zjinceRE 1
0

β−

= [ zjrefzjinc eeee
d
x

11
11

ββπ +− +





sin ]        (4.4) 

The transmission coefficient and the reflection coefficient are defined as the ratio of the 

reflected wave to the incident wave and the transmitted wave to the incident wave, at 

some arbitrary position z, respectively.  
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Consider the open-ended PPWG and short-ended PPWG with length equal to one-quarter 

of the guided wavelength,  as shown in Figure 4.3 and Figure 4.4 below. gλ

 

 

Figure 4.3 Unterminated parallel plate waveguide 

 

Figure 4.4 Parallel plate waveguide with short-circuited end  
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 For the T-PPWG, the incident wave propagates through the computational domain 

without reflection. For the S-PPWG, a reflected wave is generated in order to satisfy the 

boundary condition that the tangential electric field vanishes at the PEC wall.  Therefore, 

the relationship of amplitude of the incident, the transmitted and the reflected wave at 

position  are as follows, 1zz =

  e , e   for T-PPWG     (4.7) inct e11 = 01 =ref

  , e   for S-PPWG.     (4.8) 0 incref e11 −=1 =
te

Substituting (4.7) and (4.8) into equations (4.5) and (4.6) for the transmission coefficient 

and the reflection coefficient at 0=z  gives  

                   = 0, T =1   for T-PPWG      (4.9)  0R 0

       = -1, T =0   for S-PPWG.                         (4.10) 0R 0

where the subscript means the reflection and transmission coefficients at z = 0. In general 

the phase of the reflection coefficient is varying according to measuring position as  

 
),(
),(

),(
1

1
1 zxE

zxE
zxR inc

y

ref
y= l12

0
βjeR −= .       (4.11) 

where 

                   = 0 for T-PPWG       (4.12)  ),( 1zxR

                  ),( 1zxR l12
0

βjeR −= ( ) πje−−= 1 =1      for S-PPWG.   (4.13) 

  

 Since the input port is located a quarter wavelength away from the output port, the 

phase of the reflection coefficient is πλβ −=− 42 1 /g  with ,/2 1βπλ =g the guide 

wavelength. The transmission coefficient, however, is just dependent on the amplitude of 

 49



the transmitted wave.  According to equation (4.5) with equations (4.9) and (4.10), the 

transmission coefficients for T-PPWG and S-PPWG at 0=z  are  












∂x
E tot

y

)

( ref ee1−

                   = ),( 2zxT l1

1

1 βj
inc

t

e
e
e −= = 2

π
j

e
−

 for T-PPWG    (4.14)  

                   = 0      for S-PPWG.      (4.15) ),( 2zxT

 

 Since the primary unknown in this study is the transverse magnetic field, the 

analytic magnetic field is required for comparison to the approximate magnetic field. 

Within the computational domain, the total magnetic field associated with equation (4.4) 

is of interest and can be derived from  

totH = + =tot
xH x̂ tot

zH ẑ
ϖµj
1










 ∂
−











∂

∂
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d
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11
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ββπ
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π +− +
















+ cos ẑ      (4.16) 

As long as the tangential component of the field is known on some boundary, full 

knowledge of wave beyond that boundary can be guaranteed. The tangential component 

of magnetic field, the x-component in equation (4.16), is 

ref
x

inc
x

tot
x HHH +=  = zjzjincee

d
x

11
1

1 ββπ
ϖµ
β +−















 −
sin     (4.17) )

The simpler form of this equation is  

tot
xH  = zjincee

d
x

1
1

1 βπ
ϖµ
β −















 −
sin         (4.18) 
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for the T-PPWG and 

tot
xH  = ( )zjzjinc eee

d
x

11
1

1 ββπ
ϖµ
β +− +















 −
sin  = ( z

d
xeinc

1
112

β
π

ϖµ
β

cossin 














 − )  (4.19) 

for the S-PPWG. As with the total electric field, equation (4.18) has no variation with z in 

its amplitude but the magnetic wave in equation (4.19) is sinusoidal in z. It is similar to 

the standing wave made by a plane wave incident to an infinitely long PEC wall. 

 

In this section, T-PPWG and S-PPWG are chosen as two testbeds for verifying 

the accuracy of the numerical vector finite element solution. The transmission/reflection 

coefficients in equations (4.13), (4.14) and the analytic solution of the magnetic field in 

equations (4.18) and (4.19) will be compared to the numerical solutions. Once the FEM 

solution for the magnetic field is found, the scattering parameters at the input and output 

ports and the tangential field component can be calculated.  In the following section these 

quantities are calculated from the numerical solution. 

 
 

4.2. Numerical Solutions 
 
 The FEM solution coefficients obtained with interpolatory vector elements 

represent the field values at the interpolation points. The coefficients obtained with 

hierarchical elements, however, do not carry a physical meaning. The FEM solution for 

the magnetic field value at an arbitrary position in the computational domain is the linear 

superposition of the product of basis functions, evaluated at that location and their 

appropriate coefficients.  
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In this section the magnetic field will be obtained with hierarchical vector basis 

functions. From the numerical results the transmission coefficient at the output port and 

the reflection coefficient at the input port will be computed. Simulation results show how 

close the approximate fields and scattering parameters are to the analytic solutions. 

 
 

4.2.1 Numerical Magnetic Field 
 

The x-components of the magnetic field along the four dotted lines in Figures 4.3 

and 4.4 are of interest. To get the x-component of the magnetic field  at a specific z 

position all elements including the dotted lines, z kz= , should be specified.  For 

simplicity of explanation, consider a cell adjacent the first dotted line at z . The 

approximate magnetic field in that cell has following form 

kz=

),(~ zxH = ∑
=

N

p
pp zxBh

0
),(        (4.20) 

where the parameters in (4.20) are 

pB  : The hierarchical vector basis functions in a cell 

ph : The coefficient of pB  

 : The number of basis functions in a cell N

),(~ zxH  is an approximation of the exact magnetic field . ),( zxH

 

Each vector basis functions, ,pB is defined in the physical domain by 

transforming the basis function pΩ from a reference cell defined by simplex coordinates. 

The geometrical transformation of domain is described in many basic FEM books [1-3].  
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The characteristics of hierarchical vector basis functions are explained in detail in 

Chapter III. The x-component of ),( zxH  is the product of a unit vector in the x direction 

and the magnetic field: 

),(~
kx zxH = ),(~ˆ kzxHx ⋅ = ∑

=

⋅
N

p
kpp zxBxh

0
),(ˆ .    (4.21) 

The x-component field amplitude involves the superposition of every basis function with 

a nonzero x-component. For all other cells along the dotted line, , the x-component 

of the approximate magnetic field can be calculated in the same way.  Equation (4.21) is 

obtained from the FEM solution and compared to the analytic magnetic field values for 

the T-PPWG and S-PPWG structures. The simulation results are given below in Figures 

4.5 and 4.6. 

kzz =
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(a) Order = 0 

 

(b) Order = 1 

Figure 4.5 Magnetic field for the open-ended parallel plate waveguide 
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(c) Order = 2 

 

(d) Order = 3 

Figure 4.5 Continued 
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(a) Order = 0 

 
(b) Order = 1 

Figure 4.6 Magnetic field for the short-circuited parallel plate waveguide  
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(c) Order = 2 

 

 
(d) Order = 3 

 
Figure 4.6 Continued 
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 Figures 4.5 and 4.6 show a comparison of the numerical results and the analytic 

solutions for the x-component of magnetic field.  The stars indicate the approximate 

magnetic field and the solid lines represent the analytic solutions. Results are presented 

for the four dotted lines in Figures 4.3 and 4.4, for T-PPWG and S-PPWG, respectively. 

 

The simulation results indicate that the numerical solution obtained with vector 

hierarchical elements grows more accurate as the order of the basis function polynomial 

is increased. This provides some verification that the FEM code is functioning correctly. 

 
 
4.2.2 The Numerical Transmission and Reflection Coefficients 
 

In this section scattering parameters are considered for evaluating the accuracy of 

the approximate solution obtained with vector hierarchical elements. Scattering 

parameters play an important role in reducing a complex field analysis in microwave 

engineering to a simple circuit analysis technique. Since most of microwave engineering 

applications require scattering parameters, no additional redundancy is necessary to 

calculate them. Therefore they provide a practical test as to whether or not the numerical 

FEM solutions reach the expected accuracy. 

 

 From the analytic scattering parameters in equation (4.9) for T-PPWG and in 

equation (4.13) for S-PPWG, the fact that no reflected wave and no transmitted wave 

exist is manifested. Therefore, the transmission coefficients for T-PPWG and the 

reflection coefficients for S-PPWG are of interest. Approximate transmission coefficients 

for T-PPWG and reflection coefficients for S-PPWG will be calculated from the 
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approximate solutions for the magnetic field in each case. Equations (4.5) and (4.6) relate 

the amplitude of the transmitted electric field and the amplitude of the reflected electric 

field to the numerical magnetic field coefficients.  

 

 The amplitude of the incident field, e , is given. The coefficients of the total 

field are obtained from the FEM solution, 

inc
1

{ }ih . For T-PPWG, the total magnetic field is 

the same as the transmitted field and the x-component of the magnetic field in equation 

(4.18) is given by  

t
xH = = tot

xH 21
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1 zjt e
d
xe βπ
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β −















 −
sin .       (4.22) 

From  (4.20) the amplitude of the first transmitted mode is 

te1  = 
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πsin),(
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Substituting tot
xH~ in equation (4.21) into equation (4.23) gives the approximate amplitude 

of the transmitted wave: 

te1
~  = 
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xzxBxh
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Γ

π    (4.24) 

where M is the number of cells contiguous to 02 == zz  and ),(,, 02 =zxB pxi  is the x-

component of a p-th order polynomial basis pB in an element i along the output port. The 

domain ∂ represents the cell boundary of an element i adjacent to the output port. The Oi ,Γ
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line integration is calculated along Oi ,Γ∂ . Consequently the approximate transmission 

coefficient is 

M

i

N

p
∑∑
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11z
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+ zje β 11



dx
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From equation (4.19) the incident wave and the reflected wave at input port, z 1z= , for 

S-PPWG are  

inc
xH = 1

1 jincee
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sin       (4.26) 

and 
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1
1 jref ee
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For S-PPWG the amplitude of the reflected wave can be obtained by subtracting the 

incident field from total field, to yield  
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The reflection coefficient derived from equation (4.27) is obtained from 
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By manipulating this equation into a form for e we obtain ref
1
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Replacing  with tot
xH tot

xH~  and  with equation (4.26) gives e  in the form  inc
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Substituting equation (4.31) into equation (4.6) gives the reflection coefficient at the 

input port, : 1zz =
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From equations (4.25) and (4.32), the transmission error and the reflection error are 

obtained as: 
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and     
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 From the point of view of power conservation, a fraction of the incident power is 

reflected and some of the incident power is consumed while passing through the medium. 

The remaining power is delivered to the output port. Therefore if the material of the 

medium is lossless, then 

 1.       (4.35)  1
2

2
2 =+ ),(),( zxRzxT

By incorporating equations (4.25) and (4.32) into equation (4.35), another error measure 

in terms of power deliverance is derived as 

  Pe
1

1 1
2

2
2 ),(~),(~ zxRzxT −−

=       (4.36)  
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This error will be useful to check the accuracy of the numerical solution even if an 

analytic solution is not available. In addition, it can be used to stop the iteration of an 

adaptive FEM procedure when this measure reaches the desired accuracy. 

 

The combination of equations (4.33) and (4.36) for T-PPWG and the combination 

of equations (4.34) and (4.36) for S-PPWG are presented in Figure 4.7 and 4.8. In these 

figures, the triangular-cell model is fixed and the polynomial degree of the basis is 

increased to obtain more degrees of freedom. For both S-PPWG and T-PPWG structures, 

the error in the reflection and transmission coefficients converge to zero as the number of 

degrees of freedom in the FEM solution is increased. Consequently the power 

conversation law of equation (4.35) is well satisfied by both configurations as the number 

of DoF increases. 

 
 

4.3 Summary 
 
 In this chapter, the fields within a parallel-plate waveguide and the associated 

reflection and transmission coefficients were used to evaluate the correctness of the FEM 

implementation. The numerical results for an open PPWG and a short-circuited PPWG 

are observed to improve in accuracy as the order p of the expansion is increased. These 

results suggest that the computer implementation is correctly programmed. 

 

The FEM implementation incorporating hierarchical vector basis functions will be used 

to assess the performance of several error estimators in Chapter 5. 

 

 63



 

(a) Power Deliverance Error 

 

(b) Reflection Error 

Figure 4.7 Scattering parameter error for the short-circuited parallel plate waveguide 
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(a) Power Deliverance Error 

 

(b) Transmission Error 

Figure 4.8 Scattering parameter error for the unterminated parallel plate waveguide 
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CHAPTER 5: ERROR ESTIMATORS 
 
 
 

Discretization error is intrinsically incurred when modeling a continuous solution 

with a finite number of expansion functions. It plays a crucial role in determining the 

accuracy of the final solution. A posteriori error estimators allow assessment of the 

quality of the computed solution by assigning an error value to a local element, to a local 

edge (for 2D) or a local face (for 3D). A posteriori error estimators can be used in 

connection with an adaptive refinement procedure to reduce the discretization error by 

distributing the degrees of freedom (DOF) in an optimal manner. 

  

In this chapter four a posteriori error estimators considered in the current study 

will be explained in detail. These are the  

• Normal Field Discontinuity (NFD) Error Norm 

• Discontinuity of the Curl of Field (DCF) Error Norm 

• Weak Form Residual (WFR) Error Norm  

• Coefficient Sensitivity of the Highest-Order Polynomial (CSH) Error Norm. 

To obtain an optimum DoF distribution, the local error norm should reflect the actual 

error in the numerical solution and allow a user to identify the area with relatively higher 

local error. However, in practice the actual solution is not known. Thus, this study will 

attempt to answer the following questions: 

• Can the error estimator be implemented? 

•  Is the assigned error in proportion to the actual error? 
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•  Does the assigned error decrease as the DoF increases and the solution 

improves? 

The first is practical: it is easy to define an a posteriori error estimator that is not easy to 

compute.  The second question is fundamental. The third one addresses the need for an 

error estimator that can be used as a termination criterion for an adaptive refinement 

procedure. A related issue is the validity of a global error estimate derived from local 

error estimator. 

 

The first question will be explained in the following sections describing the 

definition of each error estimator. The second and third question will be answered by 

presenting simulation results that compare actual error patterns with those of the 

numerical error estimators. In this chapter simulations will be used to demonstrate two 

aspects of the error estimators: the first is the local error performance and the second is 

the global error performance.  

 

Before the error estimators are discussed, we describe the manner in which the 

actual error in a numerical solution is determined. Subsequent sections will address how 

well each of the error estimators approximate the actual error. 
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5.1 Exact Solution for the T-PPWG and S-PPWG Structures 

For problems with an exact analytical solution, the exact solution is a 

convenient reference to test the performance of each error estimator. The T-PPWG 

and S-PPWG structures shown in Figure 4.1 and Figure 4.2 will be used to analyze 

four error estimators. For these structures the analytic solution was presented in 

Chapter IV.  

 

The x-component of the magnetic field for the T-PPWG and S-PPWG 

structures is derived in equations (4.18) and (4.19) and rewritten in equations (5.1) 

and (5.2) for convenience. 
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The z-component derived by substituting equations (4.7) and (4.8) into the second 

term in the right-hand side in equation (4.16) is given by each of the following: 
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Equations (5.1) and (5.3) are for T-PPWG and Equations (5.2) and (5.4) are for S-

PPWG. The magnetic field at an arbitrary point in the computational domain is easily 

obtained and can be compared to the numerical FEM solution. The details of the error 

norm computation will be considered in the next section. 
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5.1.1 Error Norm Calculation 
 

The numerical magnetic field is computed as: 

∑
=

=
N

i
ii zxBhzxH

1
),(),(~                               (5.5) 

where the coefficient set {  represents the approximate solution found by the FEM , 

N is the number of the degrees of freedom used, and the tilda sign over the magnetic 

field means it is approximate. The vector basis functions have been detailed in 

Chapter III. Once the FEM solution is found, the numeric value of the field can be 

calculated by equation (5.5).  

}ih

 

The error in the FEM result is defined by the norm as 2L
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Equation (5.6) can be manipulated for easy implementation into the form 
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where  is the peak value of  the x-component of the incident magnetic field  at 

the input port , M represents the number of sample points per cell and  is the error 

in 

inc
peakH

pE

H~  at a point. The norm of a vector quantity is defined as 2L

22

2

~~
zxLzx AAAA +=+ .                 (5.8) 

When the point p is on the cell boundary, the numerical magnetic field is not unique. 

The tangential component is uniquely determined due to the curl-conforming vector 

basis. For the normal component, however, two cells abutting an edge may have two 

different values. A new definition of error for points on edge is given by the average 

 69



2
2,1, pp

p

EE
E

+
= .                        (5.9) 

The subscript represents the two cells sharing the edge on which the point p is located.  

 
 
5.1.2 Simulation Results 

 
In this section the basic mesh for T-PPWG and S-PPWG is explained and 

simulation results will be presented. The simple PPWG has no rapid variation and the 

FEM results are reasonably accurate as the DoF reaches a certain level. Consequently 

a coarse mesh (Figure 5.1) is used to be able to show the variation of the local error 

norm and global error norm as a function of the DoF. 

 

The mesh is a basic frame in x-z plane for the homogeneous air-filled T-

PPWG and S-PPWG structures. The PEC walls are not denoted. The number on the 

dotted line represents the global edge number. The incident wave propagates from the 

input port to the output port. The top edges (8, 16, and 23) and the bottom edges (1, 

10 and 17) are PEC walls. The S-PPWG has additional PEC walls at the output port 

edges (18 and 21). The field values along the two solid lines, one along the 

propagation direction, at x = 0.3, and the other along the x-axis, at z = -0.15 will be 

used for the local error investigation. 
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Figure 5.1 Coarse mesh for the parallel plate waveguide 
 
 

Consider first the global error defined by equation (5.7). It is calculated by 

numerical quadrature with several sample points in each cell not on a boundary. To 

investigate the number of quadrature points required, Figure 5.2 plots the value of 

(5.7).  Figure 5.2 shows that as the number of sample points in a cell increases the 

global error converges to some value for each polynomial order. When over 300 

sample points per cell are employed, the convergent value may be taken as the exact 

evaluation of the error norm. 
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(a) T-PPWG 

 

(b) S-PPWG 

Figure 5.2 Global error computed as a function of the number of quadrature points 
                    used for three orders of vector basis functions 
 
 
Figure 5.3 shows the behavior of the global error computed from (5.7) for the T-

PPWG and S-PPWG structures, obtained with 325 sample points per cell with 5 

 72



different basis polynomial orders: CT/LN, LT/QN, QT/CuN, etc. The percentage error 

is indicated on each figure. 

 

 

 

(a) T-PPWG 

 

(b) S-PPWG 

Figure 5.3 Global error defined from (5.7) as a function of the basis function order 
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Figure (5.4) shows the behavior of the global error computed from (5.9) for T-PPWG 

and S-PPWG structures, obtained at the midpoint of each edge with 5 different basis 

polynomial orders as in Figure (5.3). The percentage error is indicated on each figure.  

 

 

(a) T-PPWG 

 

(b) S-PPWG 

Figure 5. 4 Global error defined from (5.9) as a function of the basis function order 
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These global error levels will be used as reference value for comparison with the 

numerical error estimators in order to judge the validity of the four error estimators.  

 

Figures 5.5 through 5.8 show the variation of the local error at points along the 

x- and z-lines shown in Figure 5.1.  Figures 5.5 and 5.6 represent edge-based local 

error and Figures 5.7 and 5.8 represent cell-based local error.  Figures 5.5 through 5.8 

support the conclusion that the global and local error decreases as the basis 

polynomial order increases. These results further collaborate the conclusion that the 

FEM approach is correctly implemented.  In the following sections, these results will 

be compared with those of the error estimators (obtained without use of the exact 

solution). 
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(a) T-PPWG 

 
 
 

(b) S-PPWG 
 

Figure 5.5 Local edge-based actual error along the z-axis where x= 0.3  
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(a) T-PPWG 
 

 
 

(b) S-PPWG 
 

Figure 5.6 Local edge-based actual error along the x-axis where z= -0.226  
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(a) T-PPWG 

 

 
 

(b) S-PPWG 
 

Figure 5.7 Local cell-based actual error along the z-axis where x= 0.3  
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(a) T-PPWG 
 

 
(b) S-PPWG 

 
Figure 5.8 Local cell-based actual error along the x-axis where z= -0.226  
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5.2 Normal Field Discontinuity (NFD) Error Estimator  
 

The discontinuity of the field or its constitutive flux at the cell boundary can be taken 

as an error estimator since the physical unknown quantities only violate the continuity 

conditions due to the discretization error [29-36]. The true magnetic field and flux density 

satisfy the following [35]: 

• 0=⋅ Bn̂  at the surface of a perfect electric conductor (PEC). 

• the normal components of B are continuous at the interface of two elements. 

• JHn =×ˆ  at the surface of a PEC.  

• the tangential components of magnetic field, H , at the interface of two elements 

are continuous.  

 

In the approximate solution being considered, however, the flux density or the field 

may not be continuous due to the coarse mesh. So the larger this discontinuity is, the 

more erroneous the computed solution is. Thus the normal component discontinuity of B  

and the tangential component discontinuity of H  can be taken as measures of the 

discretization error.  

 

Using the local Gauss’ law as applied in Figure 5.9, an error estimator can be derived 

and used for testing the accuracy of the solution at each element [35,37,38]. From the 

local Gauss’ law we obtain 

0≠= ∫
S

ndSBe        (5.10) 

or  
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where  is the normal component of the magnetic flux on the surrounding surface  (in 

3D problem). In a 2D problem, the integral reduces to the cell boundaries surrounding 

cell i in Figure 5.9. The surface integration with respect to variable dS  corresponds to a 

line integration in 2D. The normal direction at the surface S  is denoted , which also 

corresponds to the normal direction of the cell boundary in 2D. 

nB S

i

ids

 

 

Figure 5.9 Gauss’ law     
 
 

The discontinuity error associated with an edgel  shared by element i and element j is 

derived directly from the discontinuity of  [35,38,39] in Figure 5.10, resulting in nB

   
( )

∫ ∑
−

=
1

1

S i

njni

B
dSBB

Maxe       (5.12) 

where the index j=1, 2, and 3 representing the three elements abutting element i. 
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Figure 5.10 Boundary conditions. 

 

This error estimator is easily adapted to the nature of the edge-based basis functions 

[33,34, 40], since the edge-based basis may have discontinuous normal components.  

 

In the next two sections the normal field discontinuity (NFD) error estimator will 

be defined for the 2D problem and simulation results will be presented to illustrate its 

performance. 

 
 
5.2.1 Definition of Normal Field Discontinuity Error Estimator 

 
The system of equations for the FEM formulation is expressed in terms of the 

magnetic field. The error at edge k is 

( ) ( ) kikjjkii
k

kikjki
k

k dnHµHµdnBBE l
l

l
l ∫∫ ⋅−=⋅−= ˆˆ ,,,,

11    (5.13) 

where l is the dimension of edge k at the boundary of two elements i and j,  is the 

outward normal unit vector to element i, and µ  represents the permeability of the 

medium consisting of cell i. For problems that have the electric field as the primary 

unknown, the electric flux density and permittivity can replace the magnetic flux density 

and permeability in (5.13). For a 3D problem, the boundary increment will be replaced 

k in̂

i

dl
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by , the interface surface between two elements. The local error at the edge k will be 

normalized by the peak value of the incident magnetic field H  and total number of 

the interfacing edges:  

ds

inc
peak

       e        (5.14) )/( edge
inc
peakkk NHE ×=

In this study the evaluation of the integration in (5.13) is approximated by the value at the 

midpoint of the edge. The global average error norm will be defined by  

∑∑
==

=
×

=
edgeedge N

k
k

N

k
k

edge
inc
peak

a eE
NH

e
11

1 .     (5.15) 

To see how closely the error norms follow the actual error, along the  x- and z- paths in 

Figure 5.1, several simulation results will be presented for the global and local error 

norms versus the total number of degrees of freedom.  

 
 

5.2.2 Evaluation of the NFD estimator 
 
 The global NFD error is compared with the actual global error reported in Figure 

5.11. The local error estimate is evaluated in Figures 5.12 and 5.13. These estimators are 

applied with the same FEM solutions used for the actual error. In this case, the FEM 

solutions are obtained with a uniform order for the basis functions, where the order 

corresponds to the Nedelec mixed-order spaces described in Chapter III. 

 

 The global error estimator decreases as the order of the basis increases. The 

lowest number of DoF occurs for CT/LN polynomials, the next one occurs for LT/QN 

functions, and so on until five different representations are included. The global NFD 

estimator is within 31% of the actual error at all three discretization levels. By comparing 
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Figures 5.12 and 5.13 with Figure 5.5 and 5.6, it appears that the local error NFD 

estimator is within in the range of 40%-150% of the actual local error levels. 

 

 
(a) Error Norm for T-PPWG 

(b)  

 
(c) Error Norm for S-PPWG 

 
Figure 5.11 Global error comparison of NFD error estimator with the actual error  
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(a) T-PPWG 

 
(b) S-PPWG 

 
Figure 5.12 Local NFD error along the z-axis where x= 0.3 
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(a) T-PPWG 

 
(b) S-PPWG 

 
Figure 5.13 Local NFD error along the x-axis where z= -0.226 
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5.3 Discontinuity of the Curl of Field (DCF) Error Estimator 
 

In this section, an error estimator based on the electric field will be derived from 

the primary unknown variable, the magnetic field. It is called “the discontinuity of the 

curl of field” (DCF) error estimator. The estimator measures the discontinuity in the 

tangential electric field at cell boundaries. The electric field must be obtained from the 

magnetic field by differentiation.  

 

In this study, the 2D magnetic field transverse to y is the primary variable and its 

complementary electric field is directed out of the plane with only a y component. The 

electric field should be same in magnitude and phase at both sides of the cell boundaries. 

The degree of discrepancy in E at the interfacing edges will be used as an error 

estimator.    

y

 
 
5.3.1 Definition of DCF Error Estimator 
 

The DCF error norm is based on the error  

kE = 







×∇×∇× 2)(1)(

)( H-Hˆ
21

12 11

rr εε
n   [     (5.16) ]/ 2mA

where edge k  is the interfacing edge between element 1 and element 2, and  n is the 

normal unit vector at the interface of two contiguous cells, 1 and 2. The quantity inside of 

the bracket is the electric field discontinuity. The expression in (5.16) is evaluated at the 

center of edge k. 

)(ˆ 12
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The curl of the magnetic field is        

H×∇ i
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where  is number of degrees of freedom in the element e and is the number of 

face DoF associated with the element. The edge DoF with non-zero order polynomial 

degrees belongs to the gradient subspace of the solution space. Therefore their curl values 

are zero. The discontinuity is determined by two zeroth-order basis functions on other 

edges that are not the interfacing edge, and by face basis functions that reside inside of 

the cell. As the order of the basis polynomial increases and the zeroth-order 

representation is improved, the main contribution to the discontinuity is from the face 

basis functions. The DCF error estimator essentially ignores discretization error due to 

basis functions in the gradient subspace. 

eN fN

 

Coming back to the main subject of this section, kE  represents the tangential 

discontinuity of the electric field at the interelement edges. Equation (5.16) is normalized 

as follows 

NEe kk /=           (5.18) 

where  

edgeedge
peakinc

edge
peakinc NωNEjωNHN ×=×=××∇= 0ε,, ε ]/[ 2mA  

and  is the number of interior edges in the mesh. For all interfacing edges, e  

represents the relative error norm associated the local edge k. The global average error 

edgeN k
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norm, , of the same numerical solution is defined by averaging the sum of all error 

norms in the same way as in equation (5.15). 

ae

 
  
5.3.2 Evaluation of DCF Estimator 
 

Figure 5.14 compares the global DCF estimator with the actual global error for 

the PPWG examples.  Each marker on the plots corresponds to a different order of basis 

function, following Nedelec’s mixed-order spaces. While five different orders, CT/LN, 

LT/QN, QT/CuN, etc., are employed for the global error, only the lower three orders are 

reported for the local error plots. The error estimator and the actual error exhibit 

agreement to approximately 56%. The comparison of Figures 5.5 and 5.6 with Figures 

5.15 and 5.16 conclude that the local error of DCF is in agreement with the actual local 

error within in the range over 1250% - 6500% depending on the structure.  
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(a) T-PPWG 

 

(b) S-PPWG 

Figure 5.14 Global error comparison of the DCF error estimator and the actual  
                                   error in the FEM solution 
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(a) T-PPWG 

 
(b) S-PPWG 

 
Figure 5.15 Local DCF error along the z-axis where x= 0.3 
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(a) T-PPWG 

 
(b) S-PPWG 

 
Figure 5.16 Local DCF error along the x-axis where z= -0.226 
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5.4. Weak Form Residual (WFR) Error Estimator  

The finite element formulation is based on the solution of a weak form of the 

residual equation. Since that residual equation is exactly satisfied by the numerical 

solution, that residual cannot be used directly to estimate the solution error. A closely 

related estimate can be obtained from the normal derivative discontinuity at interelement 

cell boundaries. Most residual error estimators in the literature contain a residual error 

term and the normal derivative discontinuity term as well. The gradient of the field and 

the normal discontinuity of the field derivative can’t measure the errors in the FEM 

solution but only its steepness and curvature [46,47]. These error estimators can 

efficiently detect where the field variation is very rapid, such as near the singularities. 

They fail, however, when higher-order elements are employed [46]. Therefore, better 

approaches to estimate the residual and normal discontinuity have been proposed, known 

as the local Dirichlet analysis and local Neumann analysis [47-54].  

 

Fernandes et. al proposed several error estimators and compared their 

performance [48-52]. One method known as the local error method calculates the local 

error by solving a differential equation defined by the Neumann problem on each element. 

A second simplified approach, called the incomplete residual method, is faster than the 

first approach since the error estimator is derived directly from the driving function of the 

error differential equation instead of solving it [48]. A third approach, named the 

complete residual error estimator, includes estimating the error of the gradient of the 

solution as well as the solution itself without deteriorating its speed and simplicity [50]. 

Residual errors are tested by separating the effect of the error estimate on the choice of 
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the element to be refined and that of the refinement termination [51]. The local error 

method shows better performance than the extended complete residual and incomplete 

residual methods [50,51]. The implementation of these proposed error estimators is 

explained in [49].  

 

Even though these residual error estimators are used for electrostatic or 

magnetostatic problems with scalar basis functions, their extension to a vector 

formulation is not difficult [36,55-57]. Normal discontinuity as well as volumetric error 

estimators derived by O.C. Zienkiewicz et al. [58] and W. Daigang et al.[59] have been 

modified for the vector Helmholtz equation [55]. Validation is provided by showing that 

the global error estimate agrees with the exact error norm for a rectangular cavity 

problem. The h- and p- refinements were tested with the proposed error estimators 

[40,54,55] but p-refinement was not fully tested since these articles only used the first 

two orders of Webb’s vector basis functions [56,57,60].  

 

In this section two residual error estimators will be introduced. The residual error 

can be defined in two different ways, from the strong vector Helmholtz equation or the 

variational weak form of that equation: 

 

• Residual from the Vector Helmholtz Equation:  

   er = H×∇×∇
rε

1 - Hrµk 2
0        (5.19) 
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• Residual from the Weak Form:  

dsµk
ε

r r
r

e ∫ 







⋅×∇⋅×∇= HT-H1T 2

0     (5.20) 

The quantity in (5.19) is called the strong form of the residual (SFR) while (5.20) is the 

weak form residual (WFR). The two residuals are not exactly zero because of insufficient 

meshes, provided that the function T  in (5.20) is not one of the test functions used to 

construct the FEM system. Therefore they can be used to construct error estimators. 

These error estimators are often used in combination with error estimators that reflect the 

boundary discontinuity such as the DCF or NFD error estimators in previous sections 

[36,56,57].  

 

The SFR involves two consecutive derivatives of the field. If used with CT/LN 

vector basis functions, the second derivative of the zeroth-order CT/LN basis function is 

zero. Since the zeroth-order basis function carries the average value of the tangential 

variation at the edge, its contribution to error norm should be very significant. Thus the 

SFR is not straightforward to implement and will not be practical until a way to estimate 

the second derivative of the basis function is developed. The SFR implementation 

remains for further study. 

 

In this section the WFR in (5.20) will be considered. The manipulation of (5.20) 

yields two formulations, described previously in equation (2.38) and equation (2.52). 

From equation (2.52), a global error norm will be derived and it will be used to test the 

FEM solution along with the power conservation law when the problem has no analytical 

solution. A local error norm will be derived from (2.38) in the following sections.  
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5.4.1 Definition of the Global Weak Form Residual Error Estimator 
 

Equation (2.52) is given as  

dxdzHTkHT r
r

∫∫ 







⋅−×∇⋅×∇

Γ

µ
ε

21  + dtxdxxGzxHxT
d

d

x
r

∫ ∫
∂









′′′⋅

1

),(),(ˆ12

0
1

Γ ε
 

+ dtxdxxGzxHxT
d

d

x
r

∫ ∫
∂









′′′⋅

2

),(),(ˆ12

0
2

Γ ε
 

= dtxdxxGzxHxT
d

d
inc
x

r
∫ ∫

∂








′′′⋅

1

),(),(ˆ14

0
1

Γ ε
      (5.21) 

From equations (2.54) and (2.56), a global system matrix is constructed of the form 

  [ ] =         (5.22) }g{}{ A h

where the global matrix [  is N-by-N in size and is sparse. The N denotes the number of 

test functions and basis functions within the computational domain, which are usually the 

same. Most of the non-zero elements are gathered near the diagonal and form a band. 

However, the absorbing boundary condition terms position a number of non-zero entries 

outside that band. Two column matrices, 

]A

{ }h  and { }g , are N -by-1 in size. {  is the set 

of unknowns. For { , the non-zero elements represent the contributions of the global 

test functions on the input port.  By solving (5.22) the FEM solution is obtained.  

}h

}g

 

 Different matrices [ ]A′ and { }g′  can be formed by another set of test functions. 

In FEM system, the set of test functions is the same as the set of basis functions. Suppose 

equations are obtained with one set of test functions substituted into (5.22) that are 

different from the specific basis functions. Since the FEM solution {  is approximate, 

the residual matrix  

}h
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 { } [ ]{ } { } { }0g A ≠′−′= hr .       (5.23) 

will not be zero, where {  is a column matrix of dimension m -by-1. The parameter 

is the number of alternative test functions employed for 

}r ′

m′ [ ]A′  and{ , which is usually 

different from the number of basis functions originally used to obtain the FEM system. 

To assign a global error to the FEM solution, the global WFR estimator is defined by 

}g′

                  1001
2

×=
∑

′

=

N

r
m

i
Li

ge .       (5.24) 

where is obtained using global test function i. The normalization factor is  ir

2L

m

i
ie gNN ∑

′

=        (5.25) 

where  is the number of cells in the computational domain and  eN

dtxdxxGzxHxT
d
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),(),(ˆ14 2

1
1ε

 .  (5.26) 

The limits and denote the integration range along the cell edge that is limited to the 

length of the edge along the input port. 

1x 2x

 

If the FEM solution {  is the exact solution, then the residual matrix {  contains 

nothing but zero elements independent of the test function. The global WFR error norm 

in (5.24) can be used to evaluate the FEM solution accuracy even when no analytical 

solution is available. In this study, test functions of one order higher than the basis 

functions will be employed to compute the WFR estimator. 

}h }r
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5.4.2 Definition of Local Weak Form Residual Error Estimator 
 

The manipulation of the weak form equation in (5.20) yields the local residual 

vector 

=kR ][ dxdzHkTHT r
rk

])1()[( 2µ
ε

⋅−×∇⋅×∇∫∫
Γ

dtHnT
k r
∫
Γ∂

×∇×⋅+ )1ˆ(
ε

.  (5.27) 

If imposed over a single element, kΓ  is the interior of the cell k and represent the cell 

boundary. A local element matrix can be obtained in the same form as equation (5.22) for 

element k, and it is given by  

kΓ∂

  [ ] .       (5.28) kkh }g{}{ A k =

The subscript means that each matrix is defined by degrees of freedom in a local element 

k and the dimensions m and represent the number of test and basis functions 

overlapping cell k. The right hand side vanishes unless the cell boundary is contiguous to 

the input or the output port. The local residual vector for cell k is defined by 

n

 .       (5.29) { }kr [ ] kkh }g{}{ A k −=

 

 Normally the test functions residing on the cell boundary are involved in local 

residuals for neighboring cells, and thus the residual is not localized cell-by-cell. A 

careful choice of test functions circumvents this problem. First, test functions should be 

independent of any other cell for the local residual purpose. In other words, the test 

functions should be tangentially confined to a single cell. They are the subset of test 

functions in Table 3.1 that have no nonzero tangential component on the cell boundary. 

Second, the test functions should be different from the basis functions used for the FEM 

solution, . In this study hierarchical functions of one additional polynomial degree kh}{ 
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will be employed for computing the error estimator. Using test functions satisfying these 

conditions, Equation (5.27) is manipulated into the form  

=kR ][ ∫∫
Γ
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2
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1 µ
ε

    (5.30) 

f
baT /  represents a member of the next greater-degree mixed-order test function set defined 

in Table 3.1 that has no tangential component on the cell boundary. A new local residual 

vector is computed as follows 

 { }kr ′ [ ] kkh }g{}{ A k ′−′= .       (5.31) 

The residual { }  is a column vector with the number of entries the same as the number 

of test functions used in cell k. Note that each entry may change depending on the 

normalization of the hierarchical vector test function. Therefore, the test functions should 

be scaled to unit-stored energy according to 

kr ′

iii TST =ˆ   .       (5.32) 

where 
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The local WFR error estimator is defined for cell k as 
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where is the number of test functions used in equation (5.30). The WFR norm is one 

way of estimating the residual over the cell. The normalization value is the same as in 

equation (5.25), but uses  

m′

{ } dtxdxxGzxHxT
d

g
x

x

inc
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e

r
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1
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 .  (5.35) 

where T represents a normalized test function of the next higher degree abutting the 

input port. The average error is the sum of all local error estimates. Simulation results for 

the global WFR and the local WFR error estimates are presented in the next section. 

e
max

ˆ

 
 
5.4.3 Evaluation of WFR Error Estimator 
 

Figures 5.17 compares the global WFR error estimate to the actual FEM error 

from these results for the T-PPWG and S-PPWG examples. It appears that the WFR 

estimator is within 44% of the actual error based on five different basis orders.  Figures 

5.18 and 5.19 plot the local error estimates along the x- and z-axis and should be 

compared with cell-based actual local errors in Figures 5.7 and 5.8 for the lower three 

basis orders. The results are in agreement with the actual error to within 1400%.   
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(a) T-PPWG 

 
(b) S-PPWG 

 
Figure 5.17 Global error comparison of WFR error estimator 

 101



 

 
(a) T-PPWG 

 
(b) S-PPWG 

 
Figure 5.18 Local WFR error along the z-axis where x= 0.3 
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(a) T-PPWG 

 
(b) S-PPWG 

 
Figure 5.19 Local WFR error along the x-axis where z= -0.226 
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5.5. The Coefficient Sensitivity of the Highest-Order Polynomial  
       (CSH) Error Estimator 
 

J. P. Webb suggested a new kind of error estimator. The sensitivity of a global 

quantity of interest to a new added DoF in a cell is taken as a targeted error estimator for 

that global quantity. Many FEM error estimators are focused on the field itself, but, in a 

specific application, users are more interested in secondary quantities such as inductance, 

capacitance, or scattering parameters. Webb classified the error estimators into two 

categories: a general error indicator (GEI) and a targeted error indicator (TEI). A GEI is 

used to estimate the accuracy of the field, the primary variable itself in an FEM 

formulation. However, the improvement of the field accuracy may be slow within an 

adaptive FEM procedure. It may be more efficient to base the adaptive process on the 

accuracy of a specific global quantity, say one of the scattering parameters. To speed up 

the adaptive refinement procedure to yield accurate scattering parameters, a TEI was 

proposed [61-63].   

 

The ideal targeted error indicator (TEI) is very costly because the FEM has to 

resolve a problem having each element order increased by one in order to calculate the 

sensitivity of scattering parameters to the new DoFs. An approximate approach to this 

ideal TEI has been proposed to calculate the sensitivity to a new added DoF in an element 

without all new DoFs. It outperforms the ideal TEI in terms of cost and speed [62].  

 

In this section, a new GEI error estimator is proposed that is motivated from the 

easy calculation of sensitivity and the characteristics of hierarchical vector elements. The 

estimator approximates the sensitivity of the stored energy that the highest degree 
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hierarchical polynomial contributes to an element, relative to that of all lower degree 

hierarchical polynomials in that element. The more energy that is stored in the highest 

degree polynomial, the more additional DoF should be assigned to that cell during the 

subsequent adaptive refinement step. The magnetic FEM formulation is used in this study 

and the stored magnetic energy can be easily calculated from 

dxdzHHU
e

H ∫∫ ⋅= ~~
2
1

~ µ  

       ∑ ∫∫
∈

⋅
ep e

ppp dxdzBBh2

2
1 µ=      (5.36) 

where e represents the element of interest and p represents the polynomial order in that 

element. Since (5.36) depends on the normalization of each hierarchical vector basis 

function, they should be scaled to unit stored energy as explained in (5.33) and (5.34), 

using 

∫∫ ⋅
=

e
ii

i dxdzBB
S 1  .     (5.37) 

In this calculation, Gauss-Quadrature numerical integration is employed. The normalized 

vector function is denoted by 

iii BSB =ˆ .       (5.38) 

Once the FEM solution is obtained with the normalized basis, equation (5.36) reduces to 

HU ˆ ∑∑ ∫∫
∈∈

=⋅=
ep

p
ep e

ppp hdxdzBBh 22 ˆ
2
1ˆˆˆ

2
1 µ .     (5.39) 

The introduction of a normalization factor for the vector basis functions makes the 

problem much easier; the simple calculation of the square of the coefficient of interest 

gives the magnitude of the stored energy of that basis function. 
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The new error estimator is named the “coefficient sensitivity of the highest-order 

polynomial” (CSH) error estimator. If the sensitivity of the highest-order coefficients is 

large, the energy stored in the highest-order basis is still substantial and additional basis 

functions are required in that cell. Compared to the previous error estimators, the CSH 

error estimator begins with the LT/QN hierarchical vector basis functions in order to have 

two different orders, in this case, constant and linear variation in the tangential 

component, available. The CSH error norm can be associated with cell edges. 

 
 

5.5.1 Definition of CSH Error Estimator 
 
Consider first the numerical magnetic field given by the linear combination 
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  (5.40)
 

where the vector basis/test functions are normalized as in (5.38) over a physical element. 

The bracket classifies the basis function order according to Table 3.1. All the basis 

functions in a bracket are used together when uniformly increasing the polynomial order. 

With the CSH error estimator, a minimum of CT/LN and LT/QN basis functions should 

be used to obtain meaningful results. The error estimator requires the calculation of the 

ratio of the energy of the LT/QN functions to that of the combination of the CT/LN and 

LT/QN functions. 
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The CSH error estimator is defined by  
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∑
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where  is the set of basis function with a/b order in Table 3.1. The denominator is the 

total energy stored by all basis functions used in a cell. The numerator sums the energy 

kept in the highest basis functions. A local error could be assigned to an edge or a cell, 

either of index k. Two CSH local error estimators, are given by 
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for an edge-based error norm where subscript 1 and 2 represent two cells sharing edge k. 

and 
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, 100
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e             (5.43) 

for a cell-based error norm. The edge-based error norm is averaged by two contiguous 

cells when the edge is shared. In equation (5.43), the subscript i represents the three local 

edges on cell k. The global average error estimate is defined by the sum of all local error 

estimates.  

 
 
 

5.5.2 Evaluation of CSH Error Estimator 
 

 
Figure 5.20 reports the edge-based global error from equation (5. 42) while Figure 

5.21 reports the cell-based global error of equation (5.43). The simulation results in 

Figures 5.20 and 5.21 confirm that the global CHS error estimator decreases as the basis 
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polynomial order increases, but they only agree within 85% for edge-based and 120 % 

for cell-based errors. Figures 5.22 through 5.25 depict the local error estimator for edge-

based and cell-based errors as well. They are to be compared to the actual local error in 

Figures 5.5 through 5.8. The edge-based local estimator agrees within 100% within the 

actual local error while the cell-based estimator is in agreement within 260% of the actual 

error.  Even though these CSH estimators appear to be poor at estimating the true error, 

they could be used within a p-adaptive technique to systematically improve the numerical 

solution.  
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(a) T-PPWG 

 

(b) S-PPWG 
 

Figure 5.20 Global error comparison of the edge-based CSH error estimator 
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(a) T-PPWG 

 

(b) S-PPWG 
 

Figure 5.21 Global error comparison of the cell-based CSH error estimator 
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(a) T-PPWG 

 
 

(b) S-PPWG 
 

Figure 5.22 Local edge-based CSH error along the z-axis where x= 0.3  
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(a) T-PPWG 
 

 
(b) S-PPWG 

 
Figure 5.23 Local edge-based CSH error along the x-axis where z= -0.226  
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(a) T-PPWG 

 
 
 

(b) S-PPWG 
 

Figure 5.24 Local cell-based CSH error along the z-axis where x= 0.3  
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(a) T-PPWG 
 

 
(b) S-PPWG 

 
Figure 5.25 Local cell-based CSH error along the x-axis where z= -0.226  
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5.6 Evaluation of Error Estimators by Comparing Global Errors and     
      Local Errors with Actual Errors 
 
 In the previous sections, simulation results for global and local errors obtained 

from four error estimators are compared with the actual errors. The same FEM solution is 

used for comparison. For the T-PPWG and S-PPWG examples, the actual error is easily 

calculated.  

 

In this section, the four error estimators previously introduced will be evaluated in 

terms of their accuracy in estimating the global error and local error. The previous 

functions will be used as the source of the prediction accuracy. The percentage errors in 

the estimates are tabulated in Table 5.1 and 5.2 for T-PPWG and S-PPWG, respectively. 

Each percentage error is based on the difference of the two values specified on the plots 

of the global error. Tables 5.3 through 5.6 represent the percentage difference between 

the local estimates and the actual local error. At the bottom of each table, the average 

values of the global or local errors are presented for comparison. In these tables, a 

percentage error less than 100% implies that the estimate is within a factor of 2 of the 

actual error. Such an estimate is likely to be quite useful in an adaptive refinement 

procedure. 

 

The estimate from the cell-based and edge-based CSH estimators approaches 

100 %. For these structures, the CSH estimator significantly under-estimates the actual 

error as the order of the basis polynomial increases. Thus, the CSH estimator produces 

error estimates that are essentially zero and lead to a percentage error of 100%.  For the 

DCF and WFR estimators, the local error estimates are much larger than 100%. These 
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estimators over-estimate the actual error as the order increases. However, the average 

local error estimates decrease as the order of the basis functions increases, and provide 

some guidance to an adaptive refinement process.  

 

 For the global error, the NFD error estimator appears to offer the best 

performance and the cell-based CSH estimator seems the worst. The NFD estimator also 

appears best at estimating local error. Although the error range of the DCF and WFR 

estimators is very broad, the local estimates decrease in proportion to the actual errors. 

 

It is not possible to draw a conclusion as to which estimator is the best in overall 

performance. To further explore the utility of these estimators for local error presentation, 

a numerical solution is corrupted with a known error and used to test each estimator in 

the following section. 

 

Table 5.1 Percentage error in the global error estimates for T-PPWG  

EST 

order 

NFD DCF WFR Cell-based 

CSH 

Edge-based 

CSH 

0 9.31 22.55 64.16   

1 59.31 63.14 67.18 225.27 37.66 

2 17.11 11.31 38.98 58.27 91.26 

3 59.92 39.65 3.932 95.10 99.11 

4 6.30 73.52  99.45 99.89 

Average 30.40 42.03 43.56 119.53 81.98 
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Table 5.2 Percentage error in the global error estimates for S-PPWG 

 

EST 

order 

NFD DCF WFR Cell-based 

CSH 

Edge-based 

CSH 

0 8.05 38.03 70.01   

1 58.75 64.01 66.56 154.85 50.67 

2 15.64 17.13 37.12 69.96 93.63 

3 61.70 41.83 1.93 96.41 99.35 

4 5.20 120.03  99.60 99.92 

Average 29.87 56.21 43.91 105.20 85.90 

 

 

Table 5.3 Percentage error in the local error estimates along the x-axis for T-PPWG  

 

EST 

order 

NFD DCF WFR Cell-based 

CSH 

Edge-based 

CSH 

0 178.75 1997.56 969.23   

1 28.56 604.24 392.73      315.39 27.60 

2 232.63 299.12 1773.46 5.43 48.59 

3 77.97 133.79 1968.64 91.15 96.65 

4 251.80 15634.79  98.59 99.37 

Average 153.94 4272.32 1276.02 127.63 68.05 
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Table 5.4 Percentage error in the local error estimates along the x-axis for S-PPWG  

 

EST 

order 

NFD DCF WFR Cell-based 

CSH 

Edge-based 

CSH 

0 132.22 1245.12 414.17   

1 6.15 492.76 1155.76 176.52 4.68 

2 220.75 287.80 1661.28 66.32 27.13 

3 90.64 30.14 2364.85 96.90 97.25 

4 247.25 27591.66  99.61 99.05 

Average 139.40 6447.54 1399.01 109.84 57.03 

 

 

Table 5.5 Percentage error in the local error estimates along the z-axis for T-PPWG  

 

EST 

order 

NFD DCF WFR Cell-based 

CSH 

Edge-based 

CSH 

0 51.53 600.68 559.68   

1 78.61 701.70 486.66 479.27 99.99 

2 37.53 1329.73 1671.92 32.50 100.00 

3 18.46 1568.53 1900.03 89.39 100.00 

4 56.68 2033.88  98.37 100.00 

Average 48.56 1246.90 1154.58 174.88 100.00 

 

 118



Table 5.6 Percentage error in the local error estimates along the z-axis for S-PPWG  

 

EST 

order 

NFD DCF WFR Cell-based 

CSH 

Edge-based 

CSH 

0 10.32 530.19 519.85   

1 78.28 689.53 539.12 791.97 99.99 

2 27.00 1365.52 3555.63 85.89 100.00 

3 12.25 1616.05 1032.17 91.52 100.00 

4 66.95 2057.34  98.23 100.00 

Average 38.96 1251.73 1411.69 266.90 100.00 
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5.7 Error Estimators Applied to Structures with a Cell Corrupted 
      with a Known Error 
  

 In this section, the four error estimators previously introduced are tested to see if 

each estimator can identify a cell with higher error relative to neighboring cells. To this 

effect, a cell in the test structures, T-PPWG and S-PPWG, is corrupted with a known 

error. This study can provide insight into which error estimator is best in actual local 

error presentation, which was missed in the previous section. 

 

Consider the triangular-cell mesh for the PPWG structure shown in Figure 5.26. A 

known error is added to one cell located near the center of the mesh (the cell highlighted 

with bold dashed lines in Figure 5.26).  

 

Figure 5.26 Mesh with a cell corrupted with a known error 
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The specific process of constructing the known error is as follows. First, the error 

is obtained by selecting values for the coefficients of an expansion in interpolatory vector 

basis functions. This representation of the error can be expressed as  

∑
=

=
N

i
iik zxIczxE

1
),(),(        (5.42) 

where ),( zxI i  denotes an interpolatory vector basis function, and the coefficients {  

are chosen to produce the derived error function. The function in (5.42) can be projected 

onto the set of hierarchical basis functions 
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Although this projection process is only correct if the basis functions are orthogonal, it is 

adequate for constructing an error function to test the estimators. The un-corrupted FEM 

solution obtained with hierarchical functions has the form  
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Therefore, the corrupted FEM solution can be expressed by superposition as  
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Each error estimator will be tested using this corrupted FEM solution. The local error 

estimates for the un-corrupted and corrupted structures are presented below.  

 
 
5.7.1 Simulation Results 
 

Figure 5.26 shows a mesh used for the local error estimates. Additional cells are 

used compared to the mesh in Figure 5.1 to better judge the sensitivity of the error 

estimators. A cell with edges 41, 45, and 46 is corrupted and depicted as bold dashed 

lines. Local errors are calculated along two vertical and horizontal lines. 

 

Figures 5.27 and 5.29 show the actual local error behavior for the T-PPWG 

results (after being corrupted with a known error) along the z-axis and x-axis, 

respectively. Figures 5.31 and 5.33 show similar behavior for the S-PPWG. Figures 5.28, 

5.30, 5.32, and 5.34 show the local errors as estimated by the four estimators for the same 

structures. The dashed line with square markers represents the local errors for the un-

corrupted structures, while the bold line with circle markers represents the corrupted 

cases. The estimated local error functions are plotted for comparison.  

 

Figures 5.28-5.34 were obtained using CT/LN basis functions for the NFD, DCF, 

and WFR estimators and LT/QN basis functions for the edge-based and cell-based CSH 

estimators. Even though the error corruption is confined to a cell, the error function 

calculated by each error estimator predicts additional error into the neighboring cells or 

edges (except for the cell-based CSH error estimator). The results show that each 

estimator detects the error in the corrupted cell. 
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(a) Actual edge-based error 

 

(b) Actual cell-based error 

Figure 5.27 The actual local error with and without the additional corruption, as plotted  
                    along the z-axis at x = 0.24 for the T-PPWG structure 
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(a) NFD estimator 

 
(b) DCF estimator 

Figure 5.28 The error functions produced by the estimators for the corrupted and un- 
                    corrupted results. The error is plotted along the z-axis at x = 0.24 for the T- 
                    PPWG structure 
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(c) WFR estimator 

 
(d) Edge-based CSH estimator 

Figure 5.28 Continued 
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(e) Cell-based CSH estimator 

Figure 5.28 Continued 
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(a) Actual edge-based error 

 

 

(b) Actual cell-based error 

Figure 5.29 The actual local error with and without the additional corruption, as plotted  
                    along the x-axis at z = -0.18 for the T-PPWG structure 
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(a) NFD estimator 

 

(b) DCF estimator 

Figure 5.30 The error functions produced by the estimators for the corrupted and un- 
                    corrupted results. The error is plotted along the x-axis at z = -0.18 for the T- 
                    PPWG structure 
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(c) WFR estimator 

 
(d) Edge-based CSH estimator 

Figure 5.30 Continued 
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(e) Cell-based CSH estimator 

 

Figure 5.30 Continued 
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(a) Actual edge-based error 

 

(b) Actual cell-based error 

 
Figure 5.31 The actual local error with and without the additional corruption, as plotted  
                    along the z-axis at x = 0.24 for the S-PPWG structure 
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(a) NFD estimator 

 
(b) DCF estimator 

Figure 5.32 The error functions produced by the estimators for the corrupted and un- 
                    corrupted results. The error is plotted along the z-axis at x = 0.24 for the S- 
                    PPWG structure 
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(c) WFR estimator 

 

(d) Edge-based CSH estimator 

Figure 5.32 Continued 
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(e) Cell-based CSH estimator 

 
Figure 5.32 Continued 
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(a) Actual edge-based error 

 

(b) Actual cell-based error 

 
Figure 5.33 The actual local error with and without the additional corruption, as plotted  
                    along the x-axis at z = -0.18 for the S-PPWG structure 
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(a) NFD estimator 

 
(b) DCF estimator 

Figure 5.34 The error functions produced by the estimators for the corrupted and un- 
                   corrupted results. The error is plotted along the x-axis at z = -0.18 for the S- 
                   PPWG structure 
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(c) WFR estimator 

 

(d) Edge-based CSH estimator 

Figure 5.34 Continued 
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(e) Cell-based CSH estimator 

Figure 5.34 Continued 
 

 
 
5.7.2 Evaluation of Error Estimators 
 
 The errors in the various estimates obtained from the corrupted data are tabulated 

in Tables 5.7 through 5.10. In this calculation, the actual local error with corruption is 

taken as a reference. The percentage error in the local estimates is much larger than 

previous values (which were obtained for structures with no known error corruption) 

shown in Tables 5.3 through 5.6. From the plots, all error estimators can identify the 

corrupted cell or edge. 
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 Points on the tables represent cells abutting the vertical or horizontal lines for 

cell-based estimators such as WFR and CSH. For edge-based estimators such as NFD, 

DCF, and CSH, points represent edges along the vertical and horizontal lines in the mesh.  

For the NFD, DCF, and WFR estimators, CT/LN basis functions are employed and for 

the CSH estimator, LT/QN basis function is used in the following tables 5.7 through 5.13.  

  

Table 5.7 Percentage errors in the local error estimates for points along the z-axis 
                for T-PPWG 
 

          Point 

EST 

1 2 3 4 5 Average 

NFD 143.46 148.63 59.38 155.59 154.87 132.39 

DCF 9274.84 9473.87 40721.18 9605.53 9519.27 15718.93

WFR 1265.36 1299.71 202.21 1302.35 1237.42 1061.41 

Cell-based CSH 143.46 148.63 59.38 155.59 154.87 132.39 

Edge-based CSH 99.21 99.21 74.31 99.19 99.22 94.23 
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Table 5.8 Percentage errors in the local error estimates for points along x-axis  

                for T-PPWG 

 

          Point 

EST 

1 2 3 4 5 Average 

NFD 151.41 148.24 27.77 156.71 154.68 127.77 

DCF 7256.03 9140.89 71699.80 10265.30 7641.80 21200.76

WFR 1335.60 1339.90 202.20 1146.10 1194.82 1043.73 

Cell-based CSH 85.80 88.60 64.84 83.44 83.29 81.19 

Edge-based CSH 90.16 94.12 11.77 93.67 89.91 75.93 

 

 

 

Table 5.9 Percentage errors in the local error estimates for points along z-axis  

                for S-PPWG 

 

          Point 

EST 

1 2 3 4 5 Average 

NFD 157.37 136.33 74.65 67.91 144.61 116.18 

DCF 11486.38 13192.98 40756.40 3143.07 7006.58 15117.08

WFR 141.94 338.35 1226.53 1900.00 4119.26 1545.22 

Cell-based CSH 65.45 85.73 28.09 96.69 98.18 74.83 

Edge-based CSH 99.93 99.40 76.50 99.15 99.24 94.84 
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Table 5.10 Percentage errors in the local error estimates for points along x-axis 

                  for S-PPWG 

 

          Point 

EST 

1 2 3 4 5 Average 

NFD 160.19 150.00 21.59 113.90 160.40 123.01 

DCF 2509.03 3010.19 62904.16 29106.01 9074.14 21320.71

WFR 1238.60 795.31 241.00 1498.87 1495.65 1053.89 

Cell-based CSH 89.39 93.94 67.07 75.48 78.78 80.93 

Edge-based CSH 90.82 97.00 28.33 82.55 81.83 76.11 

 

Table 5.11 Percentage error of the error at point 3 to sum of errors at all points 
 

 
              EST 

Cases 

NFD DCF WFR Cell_based 

CSH 

Edge_based

CSH 

Along z-axis for  

T-PPWG 

8.97 51.81 3.81 8.97 15.77 

Along x-axis for  

T-PPWG 

4.35 67.64 3.87 15.97 3.10 

Along z-axis for  

S-PPWG 

12.85 53.92 15.88 7.51 16.13 

Along x-axis for  

S-PPWG 

3.51 59.01 4.57 16.5 7.44 

Average of percentage 

error 

7.42 58.10 7.03 12.24 10.61 
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Table 5.11 shows the ratio of the error at point 3 to the sum of the errors at all five 

points for the preceding tables. These results suggest the sensitivity of each error 

estimator to detecting an area with high local relative error. The smaller the value in 

Table 5.11, the more sensitive the estimator is. 

 

Even though the WFR estimator is not very accurate in predicting the actual error 

levels, it is very good at detecting cells with high local error. The best error estimators at 

identifying high local errors are the WFR and NFD estimators, which according to Table 

5.11 predict the error within an average of 7%. The DCF is not very accurate in 

predicting the actual error levels. The CSH estimator shows reasonable performance, too, 

in this regard.   

 

Table 5.12 Ratio of edge-based actual local error to local error estimates at point 3 
 
 

              EST 

Cases 

Actual NFD DCF Edge_based

CSH 

Along z-axis for T-PPWG 7.7737 1.2459 32.7180 246.7818 

Along x-axis for T-PPWG 3.8314 1.1014 21.1621 6.0975e+005

Along z-axis for S-PPWG 10.3664 26.7725 111.7788 281.6626 

Along x-axis for S-PPWG 3.8314 1.1332 12.8862 9.1855e+005

Average 6.4507 7.5633 44.6363 3.8221e+005

Error of Average (%) 0 17.2477 591.9602 5.9250e+006
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Table 5.13 Ratio of cell-based actual local error to local error estimates at point 3 
 

              EST 

Cases 

Actual WFR Cell_based 

CSH 

Along z-axis for T-PPWG 5.6508 1.2005 17.5657 

Along x-axis for T-PPWG 5.6508 1.2005 17.5657 

Along z-axis for S-PPWG 3.8903 1.3051 19.4558 

Along x-axis for S-PPWG 3.8903 1.3051 19.4558 

Average 4.7706 1.2528 18.5107 

Error of Average (%) 0 73.7392 288.0162 

 

Tables 5.12 and 5.13 show the ratio of the local error when corrupted to the un-

corrupted local error at point 3. As shown in Figures 5.27 through 5.34, the actual 

corrupted error exists only at point 3. The ratio is calculated from the local errors 

indicated at points on the plots.   

 

To summarize the performance of the error estimators, the NFD estimator is able 

to detect the relative variation caused by the corruption error within 18% of the actual 

local error. The WFR estimator shows reasonable performance (within 70% of the actual 

error) in detecting the relative variation of local error. The DCF estimator is bad at 

detecting areas with high error. For the CSH estimators, the edge-based CSH estimator 

cannot detect the relative variation of the local error, while the cell-based CSH estimator 

is a little better in performance. The best at detecting the relative variation of the local 

error are the NFD and WFR estimators.  
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 From these tables, we conclude that the NFD and WFR estimators are best at 

detecting the relative local error variation and areas with high local error.  
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 5.8 Summary  

 Four error estimators are introduced for the purpose of guiding an adaptive FEM 

procedure. The assessment of the accuracy of the same FEM solution by each error 

estimator in terms of local and global error is carried out and simulation results are 

presented.  

 

Figures 5.35 and 5.36 compare the performance of all error estimators for 

structures with no known error corruption in terms of global error performance. The 

predictions of the NFD, DCF, and WFR estimators are confined below 100% of the 

actual error and the WFR estimator improves as the order of basis increases. CSH 

underestimates the actual error levels and therefore appears to stagnate near 100% as the 

order of basis increases. As mentioned in the previous section, the NFD and WFR 

estimators show good performance in detecting a cell with high local error.  

 

By comparing these with the actual errors, we conclude that all four error 

estimators are poor at predicting the actual errors. However, all error estimators except 

the edge-based CSH and DCF estimators can detect the relative variation of the actual 

local error. The local error norms and the global average error norms decrease as the 

order of hierarchical basis increases. Furthermore, they all are practical from the point of 

view of ease of implementation.   
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Figure 5.35 Comparison of error estimators for T-PPWG (un-corrupted) 

 

Figure 5.36 Comparison of error estimators for S-PPWG (un-corrupted) 
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The NFD and WFR estimators can detect the relative variation of the actual error 

and the regions of a mesh with high local error. They also show good performance with 

respect to global error in Figures 5.35 and 5.36.  Thus, they appear superior to the other 

estimators for use in an adaptive refinement code. 

 

 In the next chapter, the NFD and WFR error estimators will be used within 

adaptive refinement algorithms applied to structures containing one or more septums, 

which have no analytical solution.  
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CHAPTER 6: ADAPTIVE P-REFINEMENT FEM 
 
 
 

The primary purpose of the a posteriori error estimators evaluated in Chapter 5 is 

to guide an adaptive refinement process.  The adaptive process is hoped to provide a 

result of sufficient accuracy far more efficiently (with fewer degrees of freedom and 

smaller computer time and memory) than would be the case if a uniform polynomial 

order was used throughout the mesh.  In this chapter, two simple p-adaptive algorithms 

are implemented and used for illustration.  The structures considered are PPWG 

geometries containing septums to provide rapid field variation in localized regions.  Since 

these problems do not yield analytical solutions, numerical results obtained with high 

order interpolatory basis functions (Nedelec mixed-order 7/8) are used as a reference 

solution. 

 

The two error estimators identified in Chapter 5 as the better performers (the 

normal-field discontinuity (NFD) estimator and the weak form residual (WFR) estimator) 

will be used and their results compared.  The NDF estimator is edge-based, while the 

WFR estimator is cell-based. 

 

The adaptive refinement algorithm requires a control strategy for guiding the 

process.  Two different approaches will be considered.  Initially, with either approach, a 

result is generated using the lowest-order basis functions (those of Nedelec mixed-order 

0/1, or the CT/LN type).  The error estimator is applied to this result to yield a map of the 

local error within the mesh. In the first refinement implementation, the basis polynomial 
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order in those cells or along those edges with the top 25% of the reported error levels is 

increased by one degree.  Hierarchical functions are used, so that various orders may 

overlap a given cell.  At this point, the basis functions orders are adjusted so that the 

maximum difference in order within any cell is limited to 2 degrees.  This ensures 

reasonably continuous representations throughout the mesh.  Then the procedure repeats 

iteratively: a new FEM analysis based on the updated distribution of basis functions is 

carried out, the error estimator is applied to the new result to generate an error map, and a 

new distribution of degrees of freedom is determined.  Once cells or edges reach the 

maximum available degree (Nedelec mixed-order 4/5 in the present implementation) the 

equivalent number of degrees of freedom will instead be assigned to the cells/edges with 

the highest predicted error that have not yet reached the maximum available degree.  This 

approach is denoted the single-step adaptive refinement algorithm. 

 

The single-step algorithm suffers from the drawback that it must gradually iterate 

toward having some regions of the mesh with high-order basis functions, regardless of 

the initial error map.  Therefore, a second algorithm (the multi-step adaptive refinement 

algorithm) will also be considered.  The steps involved in the multi-step algorithm are the 

same as those of the single-step algorithm, except that in addition to incrementing the 

polynomial orders of the basis functions in regions with the highest 25% error by one 

degree, the process also increments the orders of the basis functions in regions with the 

highest 10% error by a second degree.  In this manner, the multi-step algorithm more 

rapidly increases the polynomial orders in regions where the estimated error is the 

highest. 
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Figure 6.1 shows the two PPWG test structures that will be used for illustration.  

In order to provide regions within the FEM mesh where relatively rapid field variation 

might occur and benefit from greater polynomial orders, septums are introduced into the 

waveguides.  Although these structures act as filters, and their performance as a function 

of frequency makes an interesting application, for the purpose of the present investigation 

they will only be considered as testbeds for the various p-refinement algorithms. 

 

 

 

 

 Figure 6.1 (a) One-septum T-PPWG structure  
                             (b) Two-septum T-PPWG structure  
 
 
 

6.1 Simulation Results 
 

Simulation results are presented below for the single-step and multi-step adaptive 

refinement algorithms, based on the NFD and WFR estimators.  Figure 6.2 shows the 
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performance of the single-step algorithm used in conjunction with the NFD estimator, for 

the PPWG structure in Figure 6.1a.  Figure 6.2a reports the actual and estimated error 

levels as the adaptive refinement process is carried out.  The horizontal line at 10% error 

is provided to aid the reader in comparing the results of the various simulations.  Figure 

6.2b reports the percent error in the power conservation check discussed in Section 4.2.2.  

We note that the power check is within 0.1% when the number of degrees of freedom 

exceeds 400.  Figures 6.2c and 6.2d report the error in the transmission coefficient and 

reflection coefficient, respectively, as the adaptive process is carried out.  The reference 

solution in all cases is that obtained using order 7/8 interpolatory basis functions 

throughout the mesh. 

 

Figure 6.3 shows similar plots for the multi-step refinement algorithm with the 

NFD estimator, for the PPWG structure in Figure 6.1a.  The improvement in power 

conservation, and the error in transmission and reflection coefficients, is generally about 

the same with respect to the number of degrees of freedom as with the single-step 

algorithm. 
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(a) Comparison of numerical estimates to the actual error 

 
 
 

 
(b) Power conservation error 

 
Figure 6.2 The NFD estimator with 25% single-step iteration technique 

                                for the structure in (a) of Figure 6.1 
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(c) Transmission coefficients error 

 
 
 

 
(d) Reflection coefficients error 

 
Figure 6.2 Continued 
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(a) Comparison of numerical estimates to the actual error 
 
 
 

 
 

(b) Power conservation error 
 

Figure 6.3 The NFD estimator with 25%+10% multi-step iteration technique 
                            for the structure in (a) of Figure 6.1 
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(c) Transmission coefficients error 

 
 
 

 
(d) Reflection coefficients error 

 
Figure 6.3 Continued 
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Figure 6.4 shows the performance of the single-step algorithm used in conjunction 

with the WFR estimator, for the PPWG structure in Figure 6.1a.  In these simulations, the 

WFR consistently underestimates the error in the solution.  However, the actual solution 

error converges faster than it did with the NFD estimator. The power conservation is 

within 0.1% at less than 300 degrees of freedom, and there is a similar improvement in 

the accuracy of the transmission and reflection coefficients.  The improvement in power 

conservation, and the error in transmission and reflection coefficients, is generally about 

the same with respect to the number of degrees of freedom as with the single-step 

algorithm. 

 

Figure 6.5 shows similar plots for the multi-step algorithm used in conjunction 

with the WFR estimator.  The rate of convergence with the multi-step algorithm does not 

appear as fast as that of the single-step approach. 
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(a) Comparison of numerical estimates to the actual error 

 
 
 
 

 
(b) Power conservation error 

 
Figure 6.4 The WFR estimator with 25% single-step iteration technique 

                                for the structure in (a) of Figure 6.1  
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(c) Transmission coefficients error 
 
 

 
(d) Reflection coefficients error 

 
 

Figure 6.4 Continued 

 158



 
(a) Comparison of numerical estimates to the actual error 

 
 
 

 
 

(b) Power conservation error 
 

Figure 6.5 The WFR estimator with 25%+10% multi-step iteration technique 
                            for the structure in (a) of Figure 6.1  
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(c) Transmission coefficients error 

 
 
 

 
(d) Reflection coefficients error 

 
 

Figure 6.5 Continued 
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Figure 6.6 shows the performance of the single-step algorithm used in conjunction 

with the NFD estimator for the PPWG structure in Figure 6.1b.  As measured by the 

actual error in the field (Figure 6.6a), the rate of convergence is much slower for the 

structure with additional septums.  While the power conservation check is within 0.1% at 

less than 200 degrees of freedom, the convergence rate of the transmission and reflection 

coefficients is also somewhat slower than the corresponding rates for the one-septum 

structure. 

 

Figure 6.7 shows similar plots for the multi-step algorithm used in conjunction 

with the NFD estimator on the structure of Figure 6.1b.  The rate of convergence with the 

multi-step algorithm is slightly slower than that of the single-step approach. 

 

 
(a) Comparison of numerical estimates to the actual error 

 
Figure 6.6 The NFD estimator with 25% single step iteration technique 

                                for the structure in (b) of Figure 6.1 
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(b) Power conservation error 
 
 

 

(c) Transmission coefficients error 
 

Figure 6.6 Continued 
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(d) Reflection coefficients error 

 
Figure 6.6 Continued 

 
 

 
(a) Comparison of numerical estimates to the actual error 

 
Figure 6.7 The NFD estimator with 25% +10% multi-step iteration technique 

                           for the structure in (b) of Figure 6.1  
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(b) Power conservation error 
 
 

 

(c) Transmission coefficients error 
 

Figure 6.7 Continued 
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(d) Reflection coefficients error 
 

Figure 6.7 Continued 
 

 

Figure 6.8 shows the performance of the single-step algorithm used in conjunction 

with the WFR estimator, for the PPWG structure in Figure 6.1b.  As indicated previously, 

the WFR estimator significantly underestimates the actual error in the field.  However, 

the rate of convergence is substantially faster than that of the adaptive refinement 

algorithms based on the NFD estimators. 

 

Figure 6.9 shows similar plots for the multi-step algorithm used in conjunction 

with the WFR estimator on the structure of Figure 6.1b.  The rate of convergence with the 

multi-step algorithm is slightly slower than that of the single-step approach. 
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(a) Comparison of numerical estimates to the actual error 
 
 

 
(b) Power conservation error 

 
Figure 6.8 The WFR estimator with 25% single step iteration technique 

                                for the structure in (b) of Figure 6.1  
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(c) Transmission coefficients error 

 
 
 

 
(d) Reflection coefficients error 

 
 

Figure 6.8 Continued 
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(a) Comparison of numerical estimates to the actual error 
 

 

(b) Power conservation error 
 

Figure 6.9 The WFR estimator with 25% +10% multi-step iteration technique  
                           for the structure in (b) of Figure 6.1 
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(c) Transmission coefficients error 
 
 
 

 

(d) Reflection coefficients error 
 

Figure 6.9 Continued 
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The following tables present numerical data corresponding to the previous plots 

of this chapter.  Table 6.1 provides the reference solutions for the structure of Figure 6.1a 

obtained with uniform-order interpolatory basis functions.  (The “actual” error is zero at 

the highest level since that is the reference solution.)  Tables 6.2 through 6.5 summarize 

the results of the simulations for the structure of Figure 6.1a.  Table 6.6 provides the 

reference solution for the structure in Figure 6.1b, while Tables 6.7 through 6.10 provide 

results of the simulations for that structure. 

 

In Tables 6.1 to 6.5, the row in bold font represents the point in the simulation 

where the actual solution error is within 10% of the reference solution, for the PPWG 

structure in Figure 6.1a.  Tables 6.6, 6.9, and 6.10 similarly indicate where the actual 

error is within 20% of the reference solution.  (Tables 6.7 and 6.8, based on the NFD 

estimator for the structure of Figure 6.1b, report results that always exceed that error 

level.)  By comparing the number of degrees of freedom required to reach that error level 

in each case, we can make several observations about the relative performance of the 

algorithms. 

 

First, we observe that there is not much difference between the single-step and 

multi-step algorithms in the overall number of degrees of freedom required to reach a 

comparable error level.  (These results do not show the relative computer time, which 

may be somewhat smaller for the multi-step algorithm since there are fewer intermediate 

iterative steps required for that approach.)   
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Second, we observe that the level of error in the transmission coefficient and 

reflection coefficient is comparable to that of the actual error in the field, as one might 

expect.  The error in the power conservation check is much smaller, and is not as simply 

related to the other errors.  As pointed out in Chapter 5, the error levels reported by the 

two estimators do not track the actual error very well, either.   

 

These results clearly show, however, that the adaptive refinement algorithm based 

on the WFR estimator outperforms the algorithm based on the NFD estimator for both 

structures.  There may be a reason for the relatively poor performance of the NFD 

estimator.  For these PPWG structures, the presence of the septums is expected to create 

rapid field fluctuations in the vicinity of the septum tips.  The basis functions used to 

represent the fields cannot exactly model the field singularity at those tips.  The NFD 

estimator, which samples the normal fields at the center of cell edges, might be expected 

to be more sensitive to nearby field singularities than the WFR estimator, which works 

with fields within the cells.  Therefore an adaptive refinement algorithm based on the 

NFD estimator might have a greater tendency to report large errors near field 

singularities, forcing the refinement process to direct most of the available degrees of 

freedom to those regions, to the detriment of the overall distribution of actual error in the 

result. 
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Table 6.1 Uniform p-refinement with interpolatory vector basis  
                for one-septum structure 
 
 
Order DoF 

No 
Actual 
Average 
Error 

Relative  
Power 

Reflection 
Coefficients 

Transmission 
Coefficients 

0/1 84 52.16525 0.99886 0.19157 0.98090 
1/2 264 20.72738 0.99902 0.33890 0.94030 
2/3 540 10.88942 0.99906 0.38445 0.92264 
3/4 912 6.474662 0.99908 0.40200 0.91513 
4/5 1380 4.098341 0.99908 0.41093 0.91116 
5/6 1944 3.44189 0.99909 0.41606 0.90883 
6/7 2604 2.01325 0.99909 0.41928 0.90736 
7/8 3360 0 0.99909 0.42142 0.90636 

 
 

 

 

Table 6.2 Adaptive p-refinement with single-step of 25% using NFD estimator 
                for one-septum structure 
 
 
DoF 
No   

Actual Average 
Error 

Relative Power Reflection 
Coefficients 

Transmission 
Coefficients 

84 48.09234 0.99886 0.19156 0.98090 
163 38.33930 0.99892 0.25077 0.96749 
242 35.01174 0.99894 0.26634 0.96333 
327 33.97659 0.99895 0.26896 0.96260 
458 21.77441 0.99901 0.33272 0.94250 
615 9.94083 0.99907 0.39949 0.91623 
732 9.67399 0.99907 0.40106 0.91554 
797 9.53427 0.99907 0.40121 0.91548 
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Table 6.3 Adaptive p-refinement with multi-steps of 25%+10% using NFD estimator  
                for one-septum structure 
 
DoF 
No   

Actual Average 
Error 

Relative Power Reflection 
Coefficients 

Transmission 
Coefficients 

84 48.0923 0.99886 0.191566 0.98090 
219 37.8507 0.99893 0.253112 0.96688 
339 34.4163 0.99895 0.269019 0.96259 
509 17.2677 0.99905 0.363292 0.93116 
696 8.99107 0.99907 0.405000 0.91381 
780 8.27354 0.99908 0.408481 0.91226 
848 8.01221 0.99908 0.408141 0.91241 
870 7.93597 0.99908 0.408336 0.91232 
 

 

 

Table 6.4 Adaptive p-refinement with single-step of 25% using WFR estimator  
                for one-septum structure 
 
DoF 
No 

Actual Average 
Error 

Relative Power Reflection 
Coefficients 

Transmission 
Coefficients 

84 52.16525 0.99886 0.19157 0.98090 
167 38.53593 0.99895 0.26399 0.96398 
239 33.11426 0.99896 0.27743 0.96021 
353 14.67843 0.99905 0.37481 0.92659 
517 8.624254 0.99907 0.39822 0.91679 
588 7.364189 0.99908 0.40258 0.91488 
610 7.270222 0.99908 0.40261 0.91487 
632 7.194764 0.99908 0.40261 0.91487 
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Table 6.5 Adaptive p-refinement with multi-steps of 25%+10% using WFR estimator  
                for one-septum structure 
 
DoF 
No   

Actual 
Average Error 

Relative 
Power 

Reflection 
Coefficients 

Transmission 
Coefficients 

84 52.1652 0.99886 0.19157 0.98090 
222 34.4557 0.99898 0.29214 0.95584 
345 28.2070 0.99899 0.30720 0.95112 
496 10.2028 0.99907 0.39305 0.91901 
605 7.51394 0.99908 0.40204 0.91512 
632 7.28962 0.99908 0.40238 0.91497 
653 7.06954 0.99908 0.40264 0.91485 
667 7.06790 0.99908 0.40264 0.91485 
 
 

 

 

 

 

Table 6.6 Uniform p-refinement with Interpolatory vector basis  
                for two-septum structure 
 
Order DoF 

No 
Actual Average 
Error 

Relative  
Power 

Reflection 
Coefficients 

Transmission 
Coefficients 

0/1 86 86.99498 0.99896 0.28981 0.95654 
1/2 268 35.97367 0.99901 0.56689 0.82324 
2/3 546 19.18278 0.99907 0.63448 0.77234 
3/4 920 11.42511 0.99906 0.65900 0.75152 
4/5 1390 7.376884 0.99905 0.67113 0.74070 
5/6 1956 6.306470 0.99905 0.67798 0.73443 
6/7 2618 3.749598 0.99904 0.68223 0.73049 
7/8 3376 0 0.99904 0.68504 0.72784 
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Table 6.7 Adaptive p-refinement with single-step of 25% using NFD estimator  
                for two-septum structure 
 
DoF 
No   

Actual Average 
Error 

Relative 
Power 

Reflection 
Coefficients 

Transmission 
Coefficients 

86 77.76464 0.99896 0.28981 0.95654 
165 71.18441 0.99905 0.41316 0.91014 
252 69.86788 0.99907 0.44419 0.89542 
337 69.95831 0.99907 0.44565 0.89469 
427 66.87464 0.99911 0.50021 0.86539 
628 61.46841 0.99910 0.60757 0.79370 
788 59.84874 0.99910 0.61649 0.78679 
874 59.01051 0.99910 0.63982 0.76794 

 

 

 

 

 

Table 6.8 Adaptive p-refinement with multi-steps of 25%+10% using NFD estimator        
                for two-septum structure 
 
DoF 
No   

Actual Average 
Error 

Relative Power Reflection 
Coefficients 

Transmission 
Coefficients 

86 77.76464 0.99896 0.28980 0.95654 
233 71.24195 0.99905 0.41435 0.90959 
372 70.20905 0.99907 0.44597 0.89453 
518 62.60296 0.99904 0.52553 0.85020 
785 59.41848 0.99906 0.64554 0.76311 
902 57.17812 0.99905 0.65712 0.75315 
988 57.22235 0.99905 0.66277 0.74818 
990 57.18941 0.99905 0.66271 0.74823 

 
 
 
 
 
 
 
 
 

 175



Table 6.9 Adaptive p-refinement with single-step of 25% using WFR estimator  
                for two-septum structure 
  
DoF 
No 

Actual Average 
Error 

Relative 
Power 

Reflection 
Coefficients 

Transmission 
Coefficients 

86 86.99498 0.99896 0.28981 0.95654 
176 63.09614 0.99906 0.43666 0.89910 
253 53.59824 0.99908 0.48077 0.87632 
371 29.71183 0.99907 0.59755 0.80125 
520 20.14653 0.99906 0.62822 0.77743 
592 14.60024 0.99906 0.65176 0.75781 
617 13.38243 0.99906 0.65617 0.75399 
636 13.00406 0.99906 0.65715 0.75314 

 

 

 

 

 

Table 6.10 Adaptive p-refinement with multi-steps of 25%+10% using WFR estimator  
                for two-septum structure 
 
DoF 
No   

Actual Average 
Error 

Relative 
Power 

Reflection 
Coefficients 

Transmission 
Coefficients 

86 86.99498 0.99896 0.28980 0.95654 
236 56.33796 0.99907 0.47992 0.87678 
358 47.99359 0.99909 0.51588 0.85613 
527 19.12508 0.99906 0.63871 0.76884 
658 14.20549 0.99905 0.65188 0.75769 
685 13.05426 0.99905 0.65612 0.75403 
686 13.05552 0.99905 0.65612 0.75403 
86 86.99498 0.99896 0.28980 0.95654 
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6.2 Summary 
 

The WFR and NFD error estimators identified in the preceding chapter as the 

most promising were implemented within adaptive refinement algorithms.  Two 

variations on the adaptive refinement algorithm were employed, and applied to the 

analysis of PPWG structures containing septums.  Results were presented in the form of 

plots and tables. 

 

Figure 6.10 through 6.12 plot the DoF distribution captured after the final 

iteration with the NFD and WFR error estimators. The NFD estimator is carried out for a 

one-septum structure while the WFR estimator is carried for one-septum and two-septum 

structures. The highest order basis functions are assigned to cells or edges near the 

septum in which the rapid variation of field is expected. We can conclude that the WFR 

estimators are good at detecting the rapid fluctuation of the field of the given structures 

while the NFD estimator is not suitable for the complicated structure.  
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(a) The single-step NFD estimator DoF distribution 

 

(b) The multi-step NFD estimator DoF distribution 

Figure 6.10 DoF distribution of the NFD error estimator 
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(a) The single-step WFR estimator DoF distribution 

 

(b) The multi-step WFR estimator DoF distribution 

Figure 6.11 DoF distribution of the WFR error estimator for one-septum structure 
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(a) The single-step WFR estimator DoF distribution 

 

(b) The multi-step WFR estimator DoF distribution 

Figure 6.12 DoF distribution of the WFR error estimator for two-septum structure 
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Table 6.11 summarizes the simulations carried out for p-adaptive FEM schemes 

of this chapter. The smaller simulation time of the NFD is due to the fact that only one 

sample point is used for error norm calculation, while the WFR estimator takes a longer 

computational time since it employed over 300 sample points for the cell-based error 

norm. The WFR error estimator shows better performance than the NFD in general since 

the NFD can not reach the expected accuracy for the two-septum structure.  

 

Considering the two-septum structure with the WFR estimator, the multi-step 

iteration technique requires fewer iterations number to reach around 20% in solution 

accuracy. The multi-step technique gives better performance in terms of total simulation 

time despite of the greater numbers of DoF at the final iteration.  

 

Table 6.11 Comparison of two iteration techniques for one-septum and two-septum T- 
                  PPWG structures 
 

 Septum 1 Septum 2 
 NFD 

Single-
Step IT 

NFD 
Multi-
Step IT 

WFR 
Single-
Step IT 

WFR 
Multi-
Step IT 

WFR 
Single-
Step IT 

WFR 
Multi-
Step IT 

Global 
Average 
Error at 

Termination 

 
9.94083 

 
8.99107 

 
8.624254 

 
10.2028 

 
20.14653 

 
19.12508

Iteration  
No 

6 5 5 4 5 4 

DoF No 615 696 517 496 520 527 

Operation  
Time (Sec) 

70.656 117.547 344.187 287.234 351.656 305.813 
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Although the WFR estimator was not very accurate at predicting the actual error 

levels, the adaptive refinement algorithms based on the WFR estimator outperformed the 

algorithms incorporating the NFD estimator. 
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CHAPTER 7: CONCLUSIONS 
 
 
 

There are compelling reasons to suggest that computational methods for 

electromagnetic analysis be adaptive.  Adaptive methods reduce the dependence on user 

expertise, provide a more robust self-correcting process of analysis, and can increase user 

confidence in the results. In the general engineering and applied mathematics 

communities, h-refinement and p-refinement procedures have been explored for more 

than two decades.  H-refinement techniques have been used with vector finite elements; 

the commercial High-Frequency Structure Simulator (HFSS) tool by the Ansoft 

Corporation employs h-refinement.  To date, however, little attention has been directed at 

the use of p-refinement with vector finite elements for electromagnetics. 

 

The present investigation implemented a two-dimensional vector finite element 

testbed that employed both interpolatory and hierarchical vector bases of the Nedelec 

mixed-order types.  Interpolatory elements with mixed-order degrees ranging from 0/1 to 

7/8 and hierarchical elements with orders from 0/1 to 4/5 were incorporated.  At the 

outset of this study, no other investigation had reported the implementation of such a 

wide range of polynomial degrees.  Background information and results to support the 

verification of the finite element testbed were summarized in Chapters 2, 3, and 4. 

 

A key aspect of adaptive refinement algorithms is the error estimator used to drive 

the process.  No systematic study of error estimators has been reported for vector finite 

element problems.  In the present investigation, four distinct error estimators were 
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implemented and evaluated.  Chapter 5 presented the details of their implementation and 

the results of this comparison.  Surprisingly, none of the error estimators was particularly 

good at predicting the actual local or global error levels in a specific solution.  All were 

adequate at identifying regions of the problem domain with relatively high local error, 

although there was a wide variation in their accuracy.   

 

Comparisons with actual error levels in Chapter 5 led to the conclusion that two 

estimators, the normal-field discontinuity (NFD) estimator and the weak form residual 

(WFR) estimator, were superior in overall performance to the others.  These two 

estimators were used in additional simulations in Chapter 6, to illustrate the process of 

adaptive p-refinement. 

 

Although the present investigation was limited to the two-dimensional case, it is 

hoped that because it dealt with vector equations and basis functions, the results have 

applicability to the full three-dimensional situation.  It is expected that future work will 

be directed toward the three-dimensional problem. 
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