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ABSTRACT 

This document summarizes the basic relevant theory of probe corrected 

near-field measurements on a cylinder. It presents the basic theory of 

cylindrical wave solutions to the time harmonic wave equation and the 

application of these solutions to cylindrical near-field measurement 

systems. An application of the theory to the determination of correct 

focus of planar aperture parabolic reflector antennas is given. The 

technique is based on calculating the feed position of the reflector by 

statistically comparing the measured or calculated aperture phase dis-

tribution to the theoretical phase distribution. The theoretical phase 

distribution is obtained by wavefront image techniques. 

Several numerical simulations of the theory are presented. The 

programs written for these simulations are listed in the Appendix. 

The numerical examples include both far-field pattern calculations and 

defocused reflector feed position calculations. 
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GLOSSARY OF SYMBOLS 

V 	 del operator of vector analysis 

angular frequency 

permeability 

permittivity 

free-space wavenumber 

carat symbol used over coordinate 
variable to indicate a unit vector 
directed along that coordinate 

arrow symbol used over variables 
to indicate vector quantities 

(x,y,z) 	 -rectangular coordinates of a point 

(r,4),z) 	 cylindrical coordinates of a point 

(R03,0 	 spherical coordinates of a point 

general position vector in any coordi-
nate system 

scalar solution to the time harmonic 
wave equation or aperture phase function 

wavenumber in cylindrical wave 
expansions 

/k2-h2  and 47---TT , respectively 

any one of four cylindrical Bessel 
function (i=1,2,3,4) Z 1  = J Z2  = Y 
z3 = H (1) z4 = H(2) 	

n 	n' n 	n' 
n 	n 

-4- + 	-4- 
L, M, and N 

4- 4- 
E , H 

4- 
A 

independent vector solutions to the 
time harmonic wave equation 

electric and magnetic field intensities 

magnetic vector potential 
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n
(h), b

n
(h), 

c
n
(h), d

n
(h) 

cylindrical wave amplitude functions 

intrinsic impedance of medium 

J 	 current density 

closed surface or summation symbol 

A determinant 

C 	 integration contour in the complex 
plane 

11 in complex variable theory 

m,n,i,i 	 integer subscripts and superscripts 

A 	 free space wavelength 

A(k) 	 plane wave spectrum function 

k 	 vector wavenumber with components 
k , k , k 
x y z 

p 	 focal length of parabola 
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CHAPTER I 

INTRODUCTION 

Near-field techniques have been shown to be a potentially powerful 

method for the determination of the far-field patterns of antennas. 

Although the planar measurement surface has received the most attention, 

experimental and theoretical work have been performed in cylindrical and 

spherical systems also. The advantages of near-field techniques for far-

field pattern determination are many. They include time and cost effec-

tiveness, accuracy that is comparable to or better than that for the far-

field range, and none of the size limitations for large antennas that are 

associated with conventional far-field ranges. There are disadvantages 

to near-field techniques. These include the requirement for a more 

complicated and expensive measurement system, the requirement for a 

more extensive procedure to calibrate the near-field probes as compared 

to far-field probes, the patterns are not obtained in real time, and 

computer software plays an important role in calculating the patterns. 

There has been little or no work done on the application of near-

field techniques to antenna diagnostics other than far-field pattern 

determination. The techniques are applicable, however, to antenna diag-

nostics such as the determination and location of defective elements in 

phased array antennas, on site tests of aircraft radar antennas by means 

of portable near-field probe positioners, and the determination of 

correct focus for large reflector antennas. Part of this report is 

addressed to the latter application. 
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This report concerns near-field techniques in cylindrical coordinates. 

It is organized into four major parts plus relevant appendices. Chapter 

II presents a review of solutions to the time harmonic wave equation 

is cylindrical coordinates. Solutions are developed for both scalar 

and vector waves. The approximations which are valid in the far-field 

region of a source are then developed. In Chapter III, the basic theory 

of probe corrected near-field measurements on a cylinder is developed. 

It is shown that the response of a probe which requires no correction is 

that of the short dipole. Finally spatial sampling of near fields on a 

cylinder is discussed. Chapter IV presents a technique for the determina-

tion of correct focusof planar aperture parabolic reflector antennas 

from near-field measurements on a cylinder. The technique involves both 

cylindrical wave and plane wave modal expansions of the near field radiated 

by the antenna. Finally, Chapter V presents the basic numerical 

considerations that are required to implement the theory. In addition, 

numerical simulations of the theory are presented. All computer programs 

used in the simulations are included in the Appendix. 
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CHAPTER II 

CYLINDRICAL WAVE EXPANSIONS 

2.1 Introduction  

The cylindrical wave expansion is the most general solution to the 

Helmholtz wave equation in the cylindrical coordinate system. This 

chapter presents a mathematical development of the cylindrical wave 

expansion for a region of space containing no free-charge density such 

as the region external to a radiating antenna. Both the scalar and vector 

cylindrical wave expansions are presented. The scalar wave expansion is 

the simplest and is presented first. The scalar expansion is useful as 

a representation of the acoustic pressure field in cylindrical coordinates. 

• It can also be used to represent any rectangular component of the electro-

magnetic field vectors in a simple medium. The vector cylindrical wave 

expansion is the most general solution to the vector Helmholtz wave 

equation in cylindrical coordinates. Thus it can be used to represent 

the total vector field of any one of the electromagnetic field vectors. 

The chapter is concluded with a development of the far-field approximations 

to both the scalar and vector cylindrical wave expansions. 

2.2 The Scalar Cylindrical  
Wave Expansion  

Although modal expansions of time varying scalar fields are not 

of interest in most electromagnetic field problems, solutions to the 

scalar wave equation are much simpler to obtain. Thus the scalar case 

makes an appropriate introduction to the vector case. In addition, 



the technique used in the following section to generate the vector cylin-

drical wave expansion first requires the solution to the scalar wave 

equation in cylindrical coordinates. 

In a linear, homogeneous, isotropic medium, i.e., a simple medium, 

which contains no sources the electromagnetic field vectors E, H, D, and B 

and the magnetic vector potential A. all satisfy the same differential 

equation. For time variation of the form e 
jwt , this equation is 

2 	k2 -± 
= 0 

where C denotes any one of these field vectors and k = wit7 . This 

(2-1) 

equation is commonly referred to as, the vector Helmholtz wave equation. 

Because it is a vector equation, it: can be replaced by a system of three 

simultaneous scalar equations to obtain a solution. Unfortunately, 

this is impractical in most cases, for the equations are coupled and 

difficult to solve simultaneously. There is one exception, however. 

-+ 
If C is written in its rectangular form C = xC x 

+ yC
y 

+ zC
z
, three 

independent equations are obtained and in this case 

V2C. + k
2
C. = 0 

where the subscript i can be either x, y, or z. 

(2-2) 

Although the Ci  in Equation (2-2) are rectangular components of 

the vector C, there is no restriction on the coordinate system in which the 

differential equation is solved. Let Ci  be expressed in cylindrical 

coordinates as a function of r, 0, and z as defined in Figure 1. In 

4 
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(r,q,z) 

1 • 
/ 	r i 

'■-...___-.%. 	I 
$ 	̀\ 1 

%I 

X 

Figure 1. Coordinate System Definitions. 
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addition, let C. be replaced by the scalar function Or,+,z) in order 

to eliminate notational difficulties casued by the subscript. In 

cylindrical coordinates, Equation (2-2) then becomes 

3 
r 3r - 

[ 
pr 

2 	2 
1 	

, 
+ k2lp = o (2-3) 

r
2 3+2 	az2 

The normal procedure for obtaining a solution to a partial 

differential equation such as Equation (2-3) is to use the method of 

separation of variables in which * is written as a product of three 

functions of the form 

*(r,+,z) = *1 (r)*2 (+)* 3 (z) 	 (2-4) 

Substitution of this into Equation (2-3) then yields an equation 

which can be separated into three independent ordinary differential equa-

tions that can be solved by standard techniques. However, the resulting 

product solution for * must be summed over a set of mode indices to form 

the total solution. By varying the amplitude of each mode in the sum, 

the solution can be made to represent any function which satisfies 

Equation (2-3). 

Substitution of Equation (2-4) into Equation (2-3) and division by 

4' yields 

2 

	

d* 	
1 	d 	

d
2
*
3 1 	d 	1 	 2 _,_ 1 	, 

	

r* dr r  dr 	2 	 -r  47--  2 " = v  
1 	

r /P2 4 	
3 dz 

(2-5) 



To separate this into three ordinary differential equations, let 

2 
1 d*2 	2 
*
2 d(I)2  - P  

d
2
* 

1 3 
= -h

2 

11)3 de 

for which case Equation (2-5) reduces to 

(2-6) 

(2-7) 

r* dr - dr 
1 d [1. 41] _ E-2- - h2  k2 	 (2-8) = 0 
1 	 r

2  

Multiplication of this equation by r 2*1 yields the familiar Bessel equation 

d 	d*i 
r — r ---] + 	(k2--h.2 ) r2 - pl* = 0 

dr 	dr 	 1 (2-9) 

The solutions for *
2 and *3 are the familiar complex exponential. 

That for *
1 is any one of the four cylindrical Bessel functions. These 

solutions will be written 

*
1 
 = Z

p 
 (Ar), i=1,2,3,4 	 (2-10) 

*2 = ejP0 • 	 (2-11) 

*3 = e-jhz (2-12) 

where h and p are yet to be specified from boundary conditions. The 

choice of the algebraic sign in the exponent of the solutions for * 2  and 

* 3 is arbitrary. These have been chosen to agree with the convention 

used in [1] and [2]. The functions Z i 
(Ar) are the four cylindrical 

7 



Bessel functions 

Zi  (Ar) = J (Ar) 

Z
2 

(Ar) = Y (Ar) 
p 	p 

Z
3 

(Ar) = H
(1) 

(Ar) 

= J (Ar) + j Y(Ar) 

Z
4 

(Ar) = H (2)  (Ar)
p 	 p 

= J (Ar) - 	Y
P 
 (Ar) 

where A must satisfy the relation 

A2 = k2 - h2 

(2-13) 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

The function J (Ar) is the Bessel function of the first kind, Y (Ar) is 

the Bessel function of the second kind, H
(1) (Ar) is the Hankel function 

of the first kind, and H
(2)

(Ar) is the Hankel function of the second 

kind. 

In the present case, a solution for * is sought which represents 

waves in free space propagating outward from some finite size source 

located at or near the origin of the coordinate system. This is a 

sufficient and necessary constraint on the solution to specify the para-

meter p and the Bessel function which appears in the solution. Because 

the solution must be periodic in (I) in order to be single valued, it follows 

that p must be an integer. This will be denoted by n. The proper choice 

of the Bessel function can be made by examining their large argument 

asymptotic expansions. These are 

8 
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2 
cos (Ar -27111--- ] J

n
(Ar) 	nAr 

1:11] y
n
(Ar) 	

2 
linAr sin (Ar - 2   

F-2 	i 	2n+1 

n 	 TrAr 
H (1) (Ar) 	e- r . 

2n+1
Tr

] 
2 	-j {Ar 

H( 
2)

( Ar) 	e 	 4 nAr 

Of these four functions, it can be seen that only H
(2)

(Ar), i.e., 

the Hankel function of the second kind, represents waves diverging 

from the origin. This follows because its phase varies as e
jAr

. 

Thus the product solution for IP becomes 

*(r,,,z) = H (2)  (Ar) ejn(l)e-jhz  

(2-18) 

(2-19) 

(2-20) 

(2-21) 

(2-22) 

This solution for IP is called a mode because it is - not only a 

function of position but also of the two mode parameters n and h. To 

construct a total solution, a linear combination of all modes must 

be formed. Because n is an integer, the linear combination in n must 

be a summation similar to a Fourier series. The linear combination in h 

must be an integral over some contour in the complex plane. This is 

similar to the representation of a time function by the inverse Laplace 

transform. In the present case, a finite power constraint on the total 

field requires that the integral 

oo 7 

f f 01)*  POdz 	 (2-23) 

-co -Tr  
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be finite. This is a sufficient condition for the integral in h to be 

over real values only of h. Thus the field expansion is mathematically 

complete in the sense that it is in the form of a Fourier integral 

representation [3]. 

The total solution for * is formed by multiplying each mode by 

an amplitude function and combining all elementary mode solutions 

into a modal expansion. This is given by 

flr,cp,z) = 	f n (h) H
(2)

(Ar) 
n=-03 

e
jn* 

e
jhz 

dh (2-24) 

where c
n
(h) is the complex amplitude of each mode in the solution. 

The mode amplitude is a function of the mode parameters n and h. 

Examination of Equation (2-24) shows that if r is a constant, the solu-

tion is in the form of a Fourier series in cp and a Fourier integral in h. 

This suggests a convenient procedure for determining the mode amplitude 

function c
n
(h) if * is known on a given cylinder. Let r 1 

be the radius 

of that cylinder. It follows from Fourier inversion of Equation (2-24) 

that c n (h) is given by 

m 	
jhz -jn* 

IT 

eed*dz cn (h) = 	
1 	

I I IP (r ,$,z) 	 (2-25) 
2 (2) 

• 	4ff H 	(Ar ) n 	1 -m ir 

Thus it is possible to solve: for P(r,4),z) at any point in space 

external to a given cylinder on which * is known by first evaluating 

Equation (2-25) and then Equation (2-24). Equation (2-25) is a straight-

forward two-dimensional Fourier integral with well known techniques for 
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numerical solutions. However, Equation (2-24) is not so simple. 

Fortunately, it is the far-field approximation to 11) that is of interest 

in most applications. This approximation will be developed in Section 2.4 

for the vector field solution to the wave equation. 

The mode solution of Equation (2-24) can be used to represent 

any one of the three rectangular components of the electromagnetic 

field vectors. A total vector solution can then be written as the 

vector sum of the x, y, and z components. Each component in the vector 

sum would have a different amplitude function C1(h), where i can be either 

x, y, or z. Although these amplitude functions are different for each 

component, they are not independent, for the total solution must satisfy 

Maxwell's equations. Thus a tedious procedure would be required to obtain 

a vector modal expansion which must then be converted from three rectan-

gular components to three cylindrical components. Fortunately, this 

procedure can be circumvented by use of the method described in the 

following section. 

2.3 Vector Cylindrical Waves  

In a series of interesting papers published in 1935 through 1937, 

Hansen [4] described a useful technique for generating a complete set 

of vector solutions to the Helmholtz equation. The technique requires 

only that the scalar wave equation be solved by the conventional technique 

described in the preceding section. The vector solution is then obtained 

from appropriate operations on the scalar solution. The technique has 

been used extensively in spherical coordinates, but the literature shows 

little or no application to other coordinate systems. However, it is 



applicable to any coordinate system in which the scalar wave equation 

can be solved by the method of separation of variables. It leads to 

rapid solutions to the vector wave equation in the more familiar rec-

tangular, cylindrical, and spherical coordinate systems. Its applica-

tion to cylindrical systems will be described in this section. A useful 

reference to this technique is Section 7.1 of [5]. 

The scalar function * of Equation (2-22) is a solution to the scalar 

Helmholtz equation in the cylindrical coordinate system. Let a be any 

constant unit vector (i.e., the direction and magnitude of a must, in 

general, be a constant, although in spherical systems, a solution can 

be obtained with a = r). Three independent vector solutions to Equation 

(2-1) can then be formed as follows: 

L = V*i  
(2-26) 

i 
M = Vxa* 	 (2-27) 

N = 1 —

k 

OxMi  (2-28) 

12 

where the superscript i has been introduced to•indicate which of the 

four cylindrical Bessel functions is used in the product solution for *. 

It follows that these three vectors do indeed satisfy Equation (2-1) by 

direct substitution. This is shown as follows: 

2÷ 	2-+ 	2 	2 
VL+kL=V (V*) +k V* 

= V [V
2
* + k

2
*] 

=0 (2-29) 
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2+ 	2+ 	2 
VM+kM=V 

= Vxa[V

= 0 

2+ 	
2(IT V N +k

2+
N =V 

1 = 

= 0 

These follow directly from the 

	

V2 (0q) 	= V(V
2 
 *) 

2 	+ 
V (VxC) = Vx(V 

" 
(Vxa*) 

2 
 * 

1 	4: 
VxMl 

2-* 
Vx[V M 

useful 

+ 2 
 C) 

2 
+kVxa* 

+ k
2
*1 

4. 
+ kVxM 

2+ 
+ k M1 

identities 

(2-30) 

(2-31) 

(2-32) 

(2-33) 

The vectors L, M, and N are functions of the coordinates r,4>, and 

z and of the cylindrical wave parameters n and h. Any general solution 

for a vector field must be written as a linear combination of the three 

vectors for all values of n and h similar to the general scalar solution 

of Equation (2-24). It is convenient at this point to write a general 

solution for the vector magnetic p9tential function A(r,4,z). The 

corresponding solutions for the magnetic field intensities can then be 

obtained from the familiar relations; 

+ 1 + 
H = — VxA 

1.1 

+ 	-1 + 
E = 

]WE 

(2-34) 

(2-35) 



The vector A satisfies Equation (2-1) as do both E and H. The reason 

for first writing the solution for is that this is the most direct 

approach to show that the vector L cannot appear in the general solution 

for E or H. 

The most general solution for A is obtained in a way similar to 

the way that the most general solution for the scalar IP was written in 

Equation (2-24). However, in this case, three complex amplitude functions 

must be introduced because there are three independent vector functions 

in the solution. The solution for I will be written as 

I (r,c1),z). = ;-3-* 
Jw 

kn (h)Mnh 	(r, ,z) + bn
(h)N h

(r,cp,z) 
+ 

n=-oo 

+ c 
n 
 (h)L

nh 
 (r,c1),zildh (2-36) 

where a
n
(h), b

n
(h), and c

n
(h) are scalar amplitude functions of the 

three vectors. The superscript i, that indicates which of the four 

Bessel functions is used in the field expansion, must be chosen to 

satisfy the boundary conditions of the region in which the expansion is 

made. The factor — i has been added to simplify the resulting expression 
to 

for the electric field intensity E. 

In the present case, a 'solution is desired for the region of 

space external to sane cylinder enclosing all sources. Thus the choice 

i = 4 must be made in Equation (2-36) as has been discussed in the 

preceding section. Solutions for the electric and magnetic field inten-

sities follow from Equations (2-34) and (2-35) and the useful relations 

14 
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Vxt= 0 

-* 1 
M = VA 

These solutions are 

CO 

E = 
n (h)Mnh bn

(h)N
nh 

dh 
-0-41 

n=-00 
...CO 

34-01.1 	
(h)N 	+ b (h)M 	dh n 	nh 	n 	nh 

k 	7 	J H 	. 
n=-0* 

(2-37) 

(2-38) 

(2-39) 

(2-40) 

where the coordinate dependence has been omitted for simplicity. The 

absence of the vector L in the solution results from the fact that H 

is obtained as the curl of A and the curl of L is identically zero. 

The constant unit vector a in Equation (2-27) can be chosen 

4. 
arbitrarily. However, it is convenient to choose this so that M has no 

z component. The choice a = z does this. For this case, the solution 

-0- 
for M and N yields 

	

+ 	jncp -jhz 
M = m e e 

	

nh 	nh  

	

4- i 	i 	jncl) -jhz 
N = n e e 

	

nh 	nh  

where 

n 

	

-+i 	in_ i m 	= r 	Z (Ar) 	(I) 
D nh • 	r n 	 r 

(2-41) 

(2-42) 

(2-43) 

	

BZ 	2 + i 	̂ 112 n ^ 
n = -r 	+ Sr-  zi (Ar) + z - Z (Ar)  nh 	k dr 	JCI n 	k n 

(2-44) 



With the introduction of these solutions into Equation (2-39), 

the solution for the electric field intensity becomes 

16 

= 	
ejn0 	

n 
(h);■- 

 n 
1 4
h 
 b n (h) iy

nh
1 e-jhzdz  

n=-0. 
(2-45) 

It can be seen from this that E is written as the sum of two solutions - . 

Because the m vector contains no z component, this part of the solution 

is tranverse electric to the z direction, or (TE)
z . Similarly, it 

follows that the n 
-4- 
 vector is transverse magnetic to the z direction, or 

(TM) 
z

. 

On any cylinder for which r is a constant, each scalar component 

of Equation (2-45) is in the form of a Fourier series in 0 and a Fourier 

transform integral in z. Thus it follows that the inverse relationship 

co Tr 

an  (h)mnh  + bn 	n (h)n h  = 12 f 	E(r1 ,0,z)ej n(1)  eihz  d0dz (2-46) 

-. Tr  

must exist, where r1  is the radius of the cylinder. Examination of this 

shows that it is sufficient to know only two vector components of -E.  on 

the cylinder in order to determine both an (h) and bn (h) for any given n 

or h. Normally, it is the tangential components E. and E z  that are used 

to do this. When Equation (2-46) is separated into its scalar components 

and solved for a
n
(h) and b

n
(h) as functions of E

0 
 and Ez , the result is 

nhI
z
(n,h) 

an  (h) 2  
A2r a  ra (2) (Ar g lar L_ n 	1 arl 	 i

! () 

n (AY' 

(2-48) 



I
z
(n,h) 

b(h) - 	 n  
A
2 	

) (2 
H n  (Ari ) 

(2-49) 

and I
z(n,h) are given by 

r 

f I Eo (r 1 ,0,z)e
-jnO

e
jhz

dOdz 

—oo 

co r  

I 	Ez (r1 ,0,z)e
-jn¢ejhzdOdz 

-co -7r 

( 2-50) 

(2-51) 
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where the functions I
0 
 (n,h) 

I
0 
 (n,h) 	- 

Iz (n,h) 	= 

1 
2  

47 

1 
2 

47 
 

Both of these integrals are Fourier transform integrals which can be 

solved numerically with the efficient fast Fourier transform (FFT) 

algorithm. 

In order to use the above equations, it is necessary to know 

the exact tangential fields on the cylinder of radius r 1 . If these 

fields are measured, it follows that the measuring probe must be ideal 

or the measured data must be corrected for its directional response 

characteristics. A method for doing this will be described in the 

following chapter. Once an (h) and bn (h) have been determined, Equation 

(2-45) can be used to evaluate the electric field intensity at any point 

external to the cylinder of radius r
1. 

The far-field approximation to 

Equation (2-45) is developed in the next section. 

2.4 The Far-Field Approximation to  
the Cylindrical Wave Expansion  

In the previous section, a general expression for the electric 

field intensity external to a closed surface containing all sources was 

developed. In general, the evaluation of this expression is a formi-

dable task. However, a considerable,  simplification results if the field 



(2-53) 

(2-54) 

".n--1/2 2A -jAr 
m = -0) nh 	 — e 

- 	.n+h 
nnh = -(rh-zA) 	.1?-1 -jArirr 

• 

Substitution of these expressions into the equation for the 

general solution for E yields 

is to be evaluated in the far-field region of the source. In this sec-

tion, the far-field approximation to the cylindrical wave expansion 

given by Equation (2-45) is developed. First, the Hankel functions 

-4-4
h  which appear in the cylindrical wave vectors mom,  and n

nh 
are replaced n 

by their large argument asymptotic expansions. The integral in Equation 

(2-45) is then evaluated by the method of steepest descent. The far 

field is then shown to be a spherical transverse electromagnetic field. 

For large r, the cylindrical wave vectors m
nh 

and n which are nh 

defined in Equations (2-43) and (2-44), can be simplified considerably 

if the Hankel function H
(2)

(Ar) and its partial derivative with respect 

to r are replaced by their large argument asymptotic expansions. The 

large argument asymptotic expansion for H
(2)

(Ar) has been given in Equa- 
n 	3H (2) 

tion (2-21). The corresponding expansion for 	
Dr 	

can be obtained by 

taking the partial derivative of this-equation with respect to r to 

yield 

	

n 	3 	
[2; -jAr 

	

Dr 	 11 r 
e 

 

(2) 

(2-52) 

where the term involving r 3/2 has been neglected for large r. The 

-0-4 
resulting expressions for the cylindrical wave vectors mnh 

and n
nm 

 are 
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(2-55) 

1 " ^ 
- 	(rn-zA)bn (h)le

-jAr
e
-jhz

dh 

where A = /k2-h2  . This equation will be transformed into one more 

suitable for application of the method of steepest descent by making 

the change in variables 

h = ksina 	 (2-56) 

and by converting the far-field point to spherical coordinates with the 

transformations 

r = Rsin0 	 (2-57) 

z = Rcos6 	 (2-58) 

The result is 

CO 

4-.1/2
k. 
 3/2 	 n 

7RsinO
ejnO E = 3 	 [03an

(keine) 2  (2-59) 

- (rsina-zcosa)b
n
(ksinc)lcos

3/2 
 a e 

-9(Rsin(a+6) da  

where C is the contour illustrated in Figure 2. 

The integral in the above expression is-evaluated in Appendix A 

using the method of steepest descent. The resulting expression for the 

electric field intensity is shown to be 
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C 

-Tr. / 2 
	,.. Re(a) 

Tr/2 

Figure 2. The Contour of Integration C 
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-2ksine -jkR r 	n jncp " E- 	e 	L . j e 	(0a
n
(kcose)R

n=-00 (2-60) 

+ j(rcose-zsine)bn (kCos0)] 

Because e = rcose - zsine, this equation can be separated into the 

spherical components 

ER 
= 0 (2-61) 

-j2ksine -jkR y j nbn (kcose)ej" 
n=-03 

0. 
nO 

E qs 
 ._ -2ksin 	e-jkR 	1 ine

n
( kcose)ej 

R n=-0D 

(2-62) 

(2-63) 

Thus the far-field electric field intensity is transverse to the radial 

direction, as would be expected. 

Comparison of Equations (2-39) and (2-40) reveals that the far-

field magnetic field intensity can be obtained from the solution for the 

electric field intensity by simply interchanging the amplitude weighting 

functions a
n
(h) and b

n
(h) and by including the multiplicative factor 

-k/jull. The resulting expressions are 

HR  = 0 (2-64) 

(2-65) 

(2-66) 
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where n = )/17 . Thus the far-field magnetic field intensity is also 

transverse to the radial direction and is related to the solution for E 

by the vector equation 

H 
4- 	RxE 

= (2-67) 

Because both E and H have no radial components and are mutually perpen-

dicular, the far field comprises a spherical transverse electromagnetic 

field. 

Examination of the foregoing solutions shows that the far field 

is determined only by those values of an (h) and bn (h) for which 

-k 5 h 5 k because Ikcosel 5 k. Thus it can be concluded that the part of 

the near field for which Ihi > k represents evanescent waves in the 

vicinity of the antenna. These waves represent reactive energy storage 

which in no way influences the far--field structure except to the extent 

that they are necessary to support a particular current distribution on 

the antenna. In Section 3.6 a spatial sampling criterion is discussed 

for the near field on the surface of a cylinder enclosing an antenna. 

In that section, it will be assumed that the reactive energy stored out-

side the cylinder is negligible. This assumption will be shown to be 

true for any antenna which is not a high-Q or supergain structure. 
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CHAPTER III 

ANTENNA PATTERN DETERMINATION 

FROM NEAR-FIELD MEASUREMENTS 

ON A CYLINDER 

3.1 Introduction  

In the preceding chapter, a method has been described which allows 

one to determine the far-field pattern of an antenna if the tangential 

components of the near field electric field intensity are known over a 

cylinder enclosing the antenna. The method requires that the exact near 

field be known and does not account for the directional response effects 

of a measuring probe. In this chapter, the problem will be reformulated 

so that these effects can be corrected for. It will be shown that the 

cylindrical wave harmonics for the field radiated by an antenna can be 

determined independently of the measuring probe provided the cylindrical 

wave harmonics for the field radiated by the probe when it is used as 

a transmitter are known. The basic! assumption is that the probe is a 

reciprocal measuring device so that its transmitting and receiving 

characteristics are the same. 

3.2 Lorentz Reciprocity  
Applied to the Coupling  
Between Two Antennas  

Because it can be used to deduce a number of fundamental properties, 

the Lorentz reciprocity theorem is one of the most useful theorems 

in applied electromagnetics. This theorem is the key to the derivation 

of the probe correction of near-field measurements and can be applied 



to any coordinate system. Because of its basic role in the derivations 

of this chapter, this section will be devoted to a tutorial review of 

the development of this theorem. 

Figure 3 shows a closed surface E containing two current'source 

distributions 1'1 
and 1 	Let E1  and H1 be the fields radiated by J 1 . 

Similarly, define E 2  and H2  as the fields radiated by J 2 . Because each 

set of fields must independently satisfy Maxwell's equations, it follows 

that 

VX-E.
1 
= -jwpH 1  

VX11 = 	+ 1 
1 	1 	1 

Vx.t
2 

= -jwini2 

VXit2 
= jwc-P2 

+ 12 

4 4 	4 
To obtain the Lorentz theorem, the relation V.(E 1

xH2 - E 2
xH1 ) 

(3-1) 

(3-2) 

is first expanded and then Equations (3-1) and (3-2) are substituted for 

each curl term in the expansion. The result is 

	

4 4 4 4 	4 4 	4 4 	4 4 
V-(E

1
xH

2 
- ExH) = (7xE1

).11
2 

- (VxH2
).E - (VxE 2

).H
1 

	

4 4 	4 4 4 
+ (VxH

1
)•E 2 = -J2 •E1 

+ J 1 •E 2 

By integrating this over the volume V and applying the divergence theorem 

to the left side of the equation, the Lorentz theorem is obtained. It is 

(3-3) 

24 
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Figure 3. Illustration for the Lorentz 
Reciprocity Theorem. 
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f (E1)H2 - -E.
2
XA

1
)-; da 

-0. 
1 
 -0- 

2 
= f(E

2 
 -J

1 
 - E J )dv 

V 

(3-4) 

In a source free region, the right hand side of Equation (3-4) is 

zero because JI  = J2  = 0. In the present case, it is desired to apply 

the theorem to the region external to E which contains no sources, i.e., 

the sources are inside E. It follows that if E contains all sources 

and the spherical surface at infinity E m  contains E, then the volume 

integral on the right side of Equation (3-4) is the same for the region 

inside E co  as it is for the region inside E. Subtraction of the two 

equations for the two different regions yields 

f - A ).; da -1 2 	2 1 
E 

= 	4- -0. 	.+  J (E
1
xH

2 
- E

2
xH

1
)•R da 

E co 

(3-5) 

To obtain the desired result, it is necessary to. use the fact 

that the fields over an infinite sphere produced by any finite source 

near the origin are in the form of a spherical TEM wave for which E.  and 

H have the relation given by Equation (2-67). Substitution of this for 

both H
1 
 and H

2 in the integrand of Equation (3-5) yields 



(E1xH2 
- E

2
xH

1
) 

= n E
1
x(RxE

2
) - E

2 
 x(RxE 

1 

1 [1-+
E1 	

- 	+ 
= — ( •E

2 
 )R. - (E

1 
 •R)E - (E

2
•E

1
)R + (4E

2 
 •R ^ )E -11 

n  

= 0 

where the fact that E
1 

= E
2 •R = 0 on E , has been used. Thus it follows 

that if there are no sources external to E, the Lorentz theorem reduces 

to 

(EixH2  - E2x111 )•n da = 0 
	

(3-7) 

This is the form of the theorem which will be applied in the following 

section. 

3.3 Probe Correction of  
Near-Field Measurements  

on a Cylinder  

In this section, a method will be presented to obtain the cylin-

drical wave amplitude functions for the field radiated by an antenna 

from probe corrected near-field measurements over the surface of a cylinder 

containing the antenna. The method has as its basis the Lorentz reciprocity 

theorem which was summarized in the preceding section. It will be shown 

that the solution for the cylindrical wave amplitude functions requires 

the knowledge of the cylindrical wave amplitude functions for the field 

radiated by the measuring probe when it is used as a transmitter. A 

27 
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method for obtaining this information is discussed in Chapter V. 

In Figure 4, let Ea  be a cylinder of radius ra  that contains an 

arbitrary test antenna connected to signal generator A. Denote the field 

radiated by the test antenna by k(1) and H a (). Let this field be 

incident on a probe antenna whose reference origin 0' is located at the 

point (r 
o 
 , • ,z 

o 
 ). Let the probe be connected via a waveguide or trans- 

mission line feeder to generator B. Denote the field radiated by the 

-3- 	 4- 	 -3. 
probe when generator B is activated by E b (r

4. 
 ') and H

b
(r
4- 	

r '), where ' is 

measured with respect to 0'. Let the field scattered by the test antenna 

4- 	 4. 
when generator B is activated be denoted by E

as
(r
4- 
 ) and H

as
(r
4.  
) and the 

field scattered by the probe when generator A is activated by tbs(') 

and H
bs

(r'). In the following analysis, it will be assumed that there are 

no multiply scattered fields between the test antenna and the probe so that 

the total scattered field is given by these terms. 

It is desired to solve for the signal induced across the terminals 

of generator B when only generator A is activated. If generator B is 

then replaced by a linear detector having an input impedance equal to 

the output impedance of generator B, it will be shown that the cylindrical 

wave amplitudes for the field radiated by the test antenna can be calculated 

from the detector output voltage if its amplitude and phase are known as 

functions ofcp
o 

and z
o 

over the cylinder of radius r
o
. It will be assumed 

that the cylindrical wave amplitudes for the field radiated by the probe 

when generator B is activated are known. Without loss of generality, it will 

be assumed that both generators A and B are matched to their respective 

line feeders. Otherwise the theory holds with only slight modifications. 
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Figure 4. Geometry for the Probe Correction Derivation. 
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In Figure 4, let V be the volume bounded by the surfaces E l , Eb , and 

Ems , where E l  is the cylinder of radius r l , Eb  is the closed surface lying 

just outside the probe antenna and shield enclosing generator B which 

cuts the feeder for the probe at Sb , and E00  is the sphere of infinite 

radius. Because V contains no sources, it follows from the Lorentz 

reciprocity theorem that 

( (la + Ebs) x (Tib + 
Has) 

 - (lb + las ) x (la + libs ) !•rda  = 
+E
b+E (3-8) 

where all multiply scattered terms have been neglected. The integrand 

of this expression vanishes identically over E. as shown in the preceding 

section. The integrand also vanishes over E
b 

except for the area S
b 

because the tangential components of E vanish at the surface of a good 

4 	 4 
conductor. Also, E

bs 
= 0 and H

bs 
=.,0 over S

b 
by virtue of their defipi- 

tion. Thus it follows that Equation (3-8) reduces to 

4 4 4 4 4 	4 4 

1 (E

a
xHb 

- E
b
xH

a
) • (-r) da + f 

4 
 (E 
a 
 xH 

 as 
 - EasxHa

) • (-r) da 

E 1 
(3-9) 

f 	 . 
4 

 bs
xH 

4- 	4 4 	 r 4 4- 	4 4 
+ 	(E

b 
- E

b
xH
bs

) • (-r) da + f (E
a
xH

b 
- E

b
xH

a
) • (-x') da = 0 

El 	
S
b  

where the terms involving products of the scattered fields have been 

4 	 4 
neglected and where it has been assumed that E

b 
+ E

as 
= E

b 
and H

as 
= H

b 

over S
b
. These assumptions are valid if the scattered fields over E

1 

and S
b 

are small compared to the incident fields. Without them, the - 

desired solution to Equation (3-8) would be impossible. 
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Let the four integrals in Equation (3-9) be denoted by I l , 1 2 , 1 3 , 

and 14 , respectively. It can be shown [6] that the integral 1 4  is propor-

tional to the negative of the open circuit received voltage of the probe 

antenna. From network theory, it is known that the received voltage 

into any load impedance is proportional to this open-circuit voltage for 

a fixed frequency. Thus the integral over S b  will be replaced by 

-Kv(r 
o 
 , (1) 

o 
 ,z 

o
), where K is a constant which can change with frequency 

and v(r
o 
 (1) 

o 
 , z o

) is the received voltage by the probe which is a 

function of probe position (r , (1) , z ). 
o o o 

To evaluate the integral for I1  in Equation (3-9), the cylindrical 

wave expansions of the fields over E l  will be written initially in the 

forms 

4 
-E.a (P) = an 

( h) M (r ) + -bn (h) 	(1.) nh 

Ha (r) = j 	(b n 	nh 
(h)M (r) + an (h)N(r)1 wp 

- 	
nh 

k 	 4.4 	 4 4- 

4-

b
(r 	

+ 	 4- 4 4- 
E

4- 
') = C

m 	
4 

(n)M Cr')
4  
	+ dm 
	mn (n)N (r') 

4-4 4 
Hb (r') - 	( 	(n)m

4 4- 
 Cr') 	c (n)N 	Cr')

] 

	

m d 	n 	 M 

-k 	4- 

	 n 

(3-10) 

(3-11) 

(3-12) 

(3-13) 

After I 1 is evaluated for these fields, the result must be summed in m 

and n and integrated in n and h to obtain the final value of the integral. 

With the vector addition theorems developed in Appendix B, the origin 

.4- 
for E

b 
and H

b 
is first changed from 0' to 0. The result is 
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00 j 94 inzo  
(;) = / (-1) k  H (2) (Xr o1  ) e 	

°e 	(cm (n) 	(1) + dm  (n); 1  (1)) 	
(3-14) 

m+2,  

tib  (1") = 

00 	 jit0 	inz -k r L 	H (2) (air °) e 	
0 

jwu 	 m+i o 

(3-15) 

x 

 (

d (n) -A 1  (r) + c (n); 1  (P)) 

	

m 	-kn 	m 

where A = ✓k2-n2 . Substitution of these expressions and those for Ea 

and Ha  into the integrand for I 1 
 gives 

jnz c°  
I = 1 	jwp (-1)

2.
H
(2) (Xr ) m+k o ee

o 	

[ a
n (h)dm (n) + 

+ b (h) cm
nh 

(n)) (14 xM + Nnh  N 
n 	 J 

xN
(4.m 4 1 -).4 + 1 )1 •rr^ 
nh
xN+ 

 nh
xM 

 -2,71 1 d.dz  

an (h)cm (P) + n (h)dm (n)) 

(3-16) 

4 
where the vectors M and N are functions of the coordinates (r,4,z). 

From the orthogonality properties of the cylindrical wave vectors 

developed in Appendix C, it follows that the terms involving the 

4-4 	1 	" 	4-4 	+ 3 
productsMxM 	•randN xN .  • r have zero contribution to 

nh -kn 	nh 

Equation (3-16). The remaining terms can be evaluated with the aid of 

Equation (C-3). Thus I
1 
becomes 

kr 	co r I 1 - 	
1 	L 	(-1) H (2)

(Ar o ) 

j24
Oe

jnz
0 

e 

( 
a
n
(h)c

m (n) + 
n
(h) dm (n)] 

(3-17) 

[4:
2A3 

nk
d(n+h) 	

n 
(3' (Ar1n  ) H(2) (Ar1  ) - -n 

(Ar 1  ) H (  
kn 

2)  (An
1 

 )1] 
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where (5
ais the Kronecker delta and d(n+h) is the Dirac delta function. 

This expression can be simplified with the aid of the identity 

J' (Ar ) H (2)  (Ar) - J (Ar ) H
(2)'

(Ar ) = 2(-1)n  
-n 1 n 	1 	-n 1 n 	1 	wAr 

Thus I
1 
reduces to 

1 
(3-18) 

2 	 jncp jriz 

1 	wp n+m 
H(2)(Ar0 	

o 
) e 	e 	15(rl+h) (a 

n 
 (h)c

m 	
( 71) + b n  (h)dm  (11)] 	(3-19) 

which is independent of r
1. 

When this expression is summed over all m 

and n and integrated in rl and h, the result is 

co 	jncp ao 
I
1 = WTI- 	' e 	f 	, an 	y cm(-h)H (2)

m  (Aro  ) rH- 
87 

n= 	-m 	 m=-co 

-jhzco  
+ b

n
(h) 	d

m
(-h) H

n+m 
(Ar

o
)1 e 	

o 
dh 

(2) 

m= -co 
(3-20) 

4- 	4- 	4- 
Because multiple scattering is neglected, E

a
, H

a
, E

as
, and H

as 
satisfy 

the homogeneous wave equation outside of E
a
. Thus by the lOrentz 

reciprocity theorem it follows that 1 2  is identically zero. Similarly, 

1
3 is also zero. Thus it follows that Equation (3-9) reduces to 

v(r ,(1) ,z ) = 
o o o 

inct'° 7 	( 

	

Le 	jA
2
a (h)lc nm (-h) H (2)  (Ar ) 

co 

n+m 	o 
1 

	

4w
2
k
2 

n=-co 	-co 	m= -m 

2) 	
-jhz co 

	

+ bn (h) y dm (-h) Hn+m (Arod 	° e 	dh 
( 

m=-m 
(3-21) 
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where v(r 
o 
 4 ,z 

o  ) has been normalized by choosing the constant of propor- 

tionality defined in the preceding to be 327
3
k
2
/wp. 

Examination of this equation reveals that v(r 
o  4  o 

 ,z 
o
) is in the 

form of a Fourier series in 4)
o 

and a Fourier integral in z
o
. Thus the 

equation has an inverse which is given by 

a
n
(h) 	cm(-h) H(2) n+m (Ar

o
) + b

n (h) 	dm 
 (-h)H

(2) 
 n+m (Aro ) 

m=_. 	 m=-. 
(3-22) 

_2 	it 	 -jn4 jhz 
r 

0 0 0 
e 	°dcf) d o 

- 	
z = 2 J 	f v(r 4 ,z ) e o A 	0,  -n 

This is the desired result. It relates the cylindrical wave amplitude 

functions a
n
(h) and b

n
(h) of an arbitrary test antenna to the two- 

dimensional Fourier transform of the output voltage of a probe antenna 

when the measurement surface is a cylinder of radius r
o
. If the cylin- 

drical wave amplitude functions for the probe antenna are known, it 

follows that Equation (3-22) can be solved for a n (h) and bn (h) provided 

two independent measurements of v(r 
o 
4 ,z 

o
) are made. 

Let v'(r 
o  4  o 

 ,z 
o
) represent the voltage output of the probe antenna 

when it is rotated 90 °  about its longitudinal axis. An equation identical 

to Equation (3-22) can be written which realtes an (h) and bn (h) to - 

v'(r 
o 
 4 ,z 

o
) with the exception that c

m
(-h) and d

m
(-h) must be replaced 

by the amplitude functions for the rotated probe. If these are denoted 

by cm(-h) and d'(-h), then this equation and Equation (3-22) can be solved 

simultaneously for an (h) and bn (h) to obtain 

k
2 

a
n
(h) = 

2 	[I
n
(h) 1 d; (-h) H

n+m(2) (Ar 
o

) 

(3-23) 
CO 

- 	 d (-h) Hn+m (2) (Ar 
o

) 
rn   

A An(h) 	 m= 
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2 
b
n (h) = A2A (I'(h) 	cm(-h) Hn+m (Ar

o ) 
(2) 

n
(h) 	m=-. 

4-
n (h) y cr'n (-h) H (2)  (AT o)] n+m  

where 

(3 -24) 

it 

-n  

jhz
e 	

dO dz o o o 	 0 0 

co 

 I (h) = f f v(r ,cp ,z ) 	

0 
(3-25) 

it 	 -7; 	
°d4 

jhz 
r(h) = f f v'(r 

-n 	
,0 ,z )e 	0e 	dcp dz o o o 	 o o 

03 	 03 

A
n (h) = f 	cm (-h)H (2) (Ar ) I I 	d'(-h)H (2) (Ar ) n+m o 	m 	n+m o 

] I m  

- I 1 c;(-h)Hn4111
(2)  

(Aro ) 	7 	m  d (-h)Hn+m 
(2)

(Aro  )1 m=-. 

m= 

(3-26) 

(3-27) 

It is assumed that the probe responds predominantly to one polarization 

component so that a solution for an (h) and bn (h) exists, i.e., An (h) 

must not be zero. 

Equations (3-23) through (3-27) form the basis of the method for 

the determination of the cylindrical wave functions for the field 

radiated by an arbitrary antenna from measurements made with a probe 

on a cylinder containing the antenna. By using these equations to 

determine the cylindrical wave amplitude functions an (h) and bn (h), 

the far field of the antenna can be determined from Equations (2-62) 

and (2-63). Because the far field is determined from only those values 

of a
n 
	and bn (h) for which -k 5 h 5 k, it follows that the cylindrical 

wave amplitude functions for the probe need be known only for arguments 

inside this interval. In the next chapter, a method will be developed 



for calculating the aperture field distribution for antenna A from these 

cylindrical wave amplitude functions under the assumption that antenna A 

has a planar aperture. 

3.4 Probe Correction  
in the Quasi Near Field  

A simplification in the probe correction can be obtained if the 

radius of the cylinder on which the near-field measurements are made 

is large enough to make certain approximations. These approximations make 

it possible to eliminate the Hankel functions from the probe correction 

equations to obtain a solution which involves the probe far-field 

functions themselves and not the cylindrical wave amplitudes in the probe 

far-field expansions. The simplification is based on a large argument 

approximation to the probe correction equations that involves an integral 

definition of the Hankel functions. This solution is presented in this 

section. 

The basic probe correction equations have been given in Equations 

(3-23) through (3-27). The terms in these equations which involve the 

probe response are of the form 

(2) 
E y m(-h) Hn+m (Ar

o
) 

m 
(3-28) 
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where ym (h) is any one of the four cylindrical wave amplitude functions 

in the probe field expansion and r is the radius of the measurement 

cylinder. As discussed in Section 2.4, the wavenumber h is related to 

the elevation angle in the probe far-field pattern by the relation h = 

k cos°, and A is given by A = 1777 = k sine . 



The first step in expressing Equation (3-28) in terms of the probe 

far-field pattern rather than in terms of the i m (-h) is to replace the 

Hankel function by its integral definition. This is [5] 

n + j co  +jw 

H
(2)

(p) - e
-jpr/2 

ejpcos0+jp(i)d0 
P 

 

Before substitution of this into Equation (3-28), it is convenient to 

change the variable of integration by replacing 0 with the variable + r. 

This transforms the integral definition into one with symmetrical integra-

tion limits. The result is 

n I+1= 

H
(2) 

(p) = e] 
 

e-3pcos0+jp0d0 

7 

(3-30) 

(3-29) 

When Equation (3-30) is substituted into Equation (3-28), the 

substitution -h = kcos(r-8) is made, and the order of summation and 

integration in the resulting expression is reversed, the equation becomes 

m (-h)
(2)

(Ar ) n+m o 

fie° 
 ejnr/2 .My

m (kCOS(n-edeil 
7 

x e -jkrosinecos0+jn0d0 (3-31) 
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This integral can be broken into three parts: one over the path from 

tO 	+ j0, one over the path from 

▪  

to +]i, and one over the 

7 
path from 7  + jo to 2 + jco. For kr

o 
sufficiently large, the first and 

third integrals are small because the exponent of the complex exponential 

contains a real and negative part over the respective paths for these 

integrals that is proportional to kr o . Thus these two terms will be 

neglected. 

Comparison of the bracketed term in Equation (3-31) to the far-

field expressions in Equations (2-62) and 2-63) reveals that this term 

can be written in terms of the probe far field expressions. For example, 

if 1m  = cm , the bracketed term is E (7-8,0)/sin8, where the superscript 

p implies "probe". If ym  = dm, the bracketed term is Et: (7-0,0)/jsin8. 

The former choice will be made for illustration in the following. 

Equation (3-31) then becomes 

n 
. 	 110 	-T 

n 1 
	

o tos0 - 
--a-- 	EP  (n-0,0) e-jkrsin 
	kr

o
sine_l c14,  

sin() 	0 
n _ 2 

 

(3-32) 

The desired result is obtained from this equation by making 

a stationary phase approximation to the integral under the assumption 

of large kro. This is done in Appendix D to obtain 
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EP  (w.-0 ,0) s

- 

in

- 

e 	kr
o
sinOcos0

n 	0 

-jkr
osinecos0n 

jn0
n e 	

• 	

le -  - (3-33) 



where 

n 
= sin -1  [kr 	sine o 

 

 

(3-34) 

  

A similar expression is obtained for ym  = bm  by making the substitution 

j -1 Ep (IT-6,.) for EP  (Tr-6,4) in this equation. 
6 

Denote the part of Equation (3-33) that does not involve the probe 

response by Kp  (r o ,6,.n
). The quasi near-field approximation to the coupling 

equation of Equation (3-22) then becomes 

Kp (rd  e ,c1) n) [an (h)EP4: (n-8 . n) - jbn (h)EPe  or-8 , q, nd 
m 7 

= k2  

v(r 	,z ) e -jn4 
	jhz 

 d. dz 
A
2 

o 0 o 	 o o 
(3-35) 

where as usual h = Iccos6 and A = k sine, and . n  is given by Equation (3-34). 

This equation can be solved for an (h) and bn (h) provided two independent 

measurements of v(r,z ) are made. 
o o o 

Let v'(r
oo 

 ,z 
o
) represent the voltage output of the probe when it 

is rotated 90°  about its longitudinal axis. Similar to the procedure 

described in the previous section, a second coupling equation can be 

written with the exception that EP and E8 	be replaced by the fields 
6 

of the rotated probe. If these are denoted by EP'  and E ' , then this 
6 

equation and Equation (3-35) can be solved simulaneously for an (h) and bn (h) 

to obtain 
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an

(h) - 	 2 	p' 
K sin 6 E (ff-0,0) 

(3-38) 
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a (h) = 	
1  

n  
K
p
(r
o
,6,4)

n
)sin

2 

x 
-EP  (w-6,4) )I

n 
 (h)+EP (w-6,4) n)In (h) 

n  (3-36) 
EP(11-04 n )E (71--64n)-EP  or-e,0 n 0 )(7-84n) 

b (h) = 	
1  

K
p
(r
o
,6,4)

n
)sin

2
e 

j0 1 (7-134
n
)In

(h)-je(w-04n  )In  (h) 
1 

0(7-8,4) )E (7-84 )-EP  (71--6,4) )0(7-0,4) n ) 
e 	n cf) 	n 	6 	n 4) 

x (3-37) 

where I
n
(h) and I

n
(h) have been defined in Equations (3-25) and (3-26). 

Some insight into the probe correction process can be gained by 

examination of these results. For example, let the probe be vertically 

polarized so that E 	0. When the probe is rotated 90° , it follows 

I  that E eP  = 0. Also, for kro 
large, Equation (3-34) shows that 4)n 

= 0. 

Thus, under these conditions, Equations (3-36) and (3-37) reduce to 

1 
	In  (h) 

b (h) - 
n .   . 	p, K sin2  6 Ee (7-04) 

(3-39) 

Aside from the factor K , it can be seen from these that the cylindrical 

wave amplitude functions corresponding to a particular elevation angle 
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6 (or wavenumber h = kcos0) are obtained from the probe response at 

an elevation angle of ¶-6. This could have been predicted from the 

geometry of the measurement system because, for example, if the eleva-

tion angle of the probe with respect to the antenna is 0, the elevation 

of the antenna with respect to the probe is r-0. 

Although the approximations made in this section are useful for 

gaining an insight into the probe correction, it can be seen by comparing 

Equations (3-36) and (3-37) to the exact solutions in Equations (3-23) 

and (3-24) that, with the exception of the Hankel functions in the exact 

solution, there is little difference in the computational requirements 

between the two solutions. Because the Hankel functions can be evaluated 

numerically by means of very efficient recursion relations, the exact 

solution can be implemented almost as efficiently as the approximate 

solution. In particular, if the summations in the exact solutions 

that involve the probe functions are evaluated in advance and stored 

in a computer file, there is no advantage to be gained with the approximate 

solution. 

3.5 The Response of an  
Ideal Probe  

Because the solution of Equations (3-23) through (3-27) for the 

cylindrical wave amplitude functions for the field radiated by an arbitrary 

antenna require a knowledge of the cylindrical wave amplitude functions 

for the measuring probe response, the question of the response of an ideal 

measuring probe arises. If the probe is ideal, it requires no correction 

and Equations (2-48) and (2-49) can be used to determine the cylindrical 

wave amplitude functions for the test antenna. It will be shown in this 

section that the ideal probe response is that of a short dipole. 
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To obtain the desired results, it will be assumed that the 

probe response is desired to be directly proportional to the z component 

of the electric field on the cylinder. From Equations (2-41) through 

(2-44), it is seen that only the vector N in the field expansion for the ' 

test antenna has a z.component. Therefore, the solution for E z  

can be written 

Ez (r4,z) y 	e31-14) bn-(h) 
A2 

n=-00  

(2) 
H 	(Ar) e jhz

dz (3-40) 

When this is compared to Equation (3-21), it can be seen that if 

v(r,c1),z) 	is to be directly proportional to E z , the cylindrical wave 

amplitude functions for the probe must be given by 

cm (h) = 0 for all m (3-41) 

d
m
(h) = 0 	m # 0 (3-42) 

d
o
(h) = constant (3-43) 

The constant in the latter equation will be normalized to the value 

k in order to simplify the following. 

Thus, if the probe is used as a transmitter, its radiated field 

follows from Equations (2-39) through (2-44) to be 
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E (r, ,z) = j kN
o
4  
h
(r,c1),z)dh 

= -r 	jhAH (2)
(Ar)e-jhz  dh 

OD 

OD 

 

 

+ z I A2
H (Ar)e jhz

dh (3-44) 

Because the integration does not involve either r or z, this equation can 

be rewritten in the form 

2 
" 	a 2 

t(r,cp,z)= r 	z(k
2 
 + TodaraZ 

" OD 

X 	
H

(2)
(Ar) e

-jhz
dh (3-45) 

where A 2 
= k

2
-h

2
. The value of the integral in this equation is given in 

[7]. It is 

e
-jkR 

J 2  

where R
2 
= r

2 
+ z

2 
and R is the spherical distance from the origin 

(3-46) 

to the field point. To obtain the desired results, Equation (3-46) 

is first substituted into Equation (3-45) and the required differentiation 

is performed. Next, the cylindrical coordinates r and z are changed to 

the spherical coordinates R and B with the transformations r = Rsin6 and 

z = Rcose. Finally, the cylindrical unit vectors r and z are changed to 

spherical 

z = RcosO 

coordinates with the transformations r = Rsin8 + ecose and 

- esine. After a lengthy and tedius procedure, the result is 
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- 	[i^ 
E(R,64) = j 2 k3  e 

jkR 
  Rcos 6 

x 	j2 	1. 	2 
- 6 sin 6 

(kR)
2 

(kR) 
3. 

x _ 
kR 	(kR) 	(k1R) 

This is the field radiated by a short dipole. 

(3-47) 

3.6 Spatial Sampling on the Cylinder  

Because the measurement of the near field of any antenna over 

some surface enclosing the antenna potentially requires the accumulation 

of a large amount of data, the problem of determining an optimum spatial 

sampling rate is one of great practical importance. Sampling rates 

which are too high result in the acquisition of more data than are nec-

cessary to characterize a given near field, while rates that are too 

low result in data which may be meaningless. In this section, the deter-

mination of a reasonable sampling rate on a cylinder enclosing the antenna 

is discussed. Specifically, high-Q antennas, such as supergain antennas, 

will be excluded from the discussion because no a priori upper bound on 

the required sampling rate for such antennas can be specified. The 

exclusion of this class of antennas is not restrictive in most cases 

because they are rarely if ever encountered in practice. 

To establish a sampling criterion for the near field on a cylinder 

enclosing an antenna, the variation of the field with the coordinates on 

the cylinder can be studied by examination of the cylindrical wave expan-

sions developed in Section 3.3. It was shown that each component of the 

field on a cylinder can be written in the form of a Fourier series in the 



Q 	P 
2wmax{Wm ,We }  
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azimuth angle (I) and a Fourier integral in the axial distance z. Thus 

it follows that the results of the sampling theory of Fourier transform 

analysis can be used to establish a sample spacing criterion on the cylinder 

if upper bounds on the angular harmonic n and the wavenumber h can be 

determined. An examination of the antenna quality factor, or Q, is one 

means of establishing these bounds. 

The Q of an antenna is an important parameter which can be related 

to the effect of the antenna size on gain, bandwidth, and efficiency. 

A high Q means that a large amount of reactive energy is stored in the 

near field of the antenna. This implies large currents on the antenna 

structure, high ohmic losses, a narrow bandwidth, and extreme frequency 

sensitivity. Although it is difficult in general to relate the antenna 

Q to the degree to which it is a supergain structure, it has been shown 

that a supergain antenna is necessarily a high-Q antenna [8]. Thus the 

exclusion of high-Q antennas from the discussion will also exclude supergain 

antennas. 

The Q of an antenna which has been tuned to resonance by the 

addition of a reactive element is defined as [9] 

(3-48) 

where 	and W
e 

are the time average magnetic and electric energies 

stored in the near field of the antenna and P is the total power radiated 

by the antenna. If the Q of a single cylindrical wave with mode indices 

n and h is defined'as 



n=-co 
7 ICnh I 2Pnnhdh 

n=-co 

C
m m 	2 

f 1Cnh i Pnhdh  
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m e 
2wmax{W

nh
,W
nh 

(3-49) nh 	P
nh 

 

 

it follows from Equation (3-48) that the Q of an antenna which radiates 

a spectrum of cylindrical waves is given by the linear combination 

(3-50) 

where c
nh 

is the complex amplitude of the cylindrical wave with mode 

indices n and h. This equation is simply a weighted average of the 

1  
Qnh  over all n and h, where the weighting factors are IC 2ral l 

Pnh *  

Collin and Rothschild [9] have evaluated P
nh 

and Q
nh 

 for a 

single cylindrical wave radiated by an ideal, loss-free antenna of radius 

a. The term "ideal, loss-free antenna of radius a" was originally 

defined by Chu [10] as one having no energy storage for R < a, where R 

is the spherical radial distance from the center of the smallest sphere 

of radius a completely enclosing the antenna. In the present case, it is 

interpreted as an antenna for which there is no energy storage for r < a, 

where a is the radius of the smallest cylinder completely enclosing the 

antenna. The Q for this ideal antenna must be less than or equal to 

that for any other loss-free antenna fitting into the cylinder r = a, 

because any field for r < a can only add to the energy storage. 

The expressions for P
nh 

and Q
nh 

 for (TE)
z 

and (Tm)
z 

cylindrical 

waves are identical and are given by [9] 
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P 	- 2( k2-h
2

)  
top 

wk
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4Aa 	2 	2 2 	2 2 + 	+1-A a )(J
nn)] 

4(k2-h
2
) 

(3-51) 

(3-52) 

- [(n+1)J n  -AaJ ni-,]2 	[(n+1)Yn
-AaY

n+1 ] L 	• -  
2) 	• 

where h < k and the argument of the Bessel functions is Aa = (k
2
-h

2
) a. 

For .h Z k, P
nh 

= 0 and Q
nh 

 is undefined. 

Collin and Rothschild [9] have shown that the quantity (1-(h/k)
2
)Q nh 

1 
P Q increases very rapidly when n becomes larger than Aa. Because 

2wE nh nh 

this term aside from the factor 
21 

, appears in the numerator of the 
e. 

general expression for Q in Equation (3-50), it follows that Q can become 

large if Cnh  is not small for n > Aa. Because A < k for real h, it follows 

that the highest significant angular harmonic in the cylindrical wave 

expansion of the fields of an antenna which is not a high-Q structure is 

N = ka. If a is taken to be the radius of the smallest sphere completely 

enclosing the antenna, this result agrees with the conclusions reached by 

Chu [10] and Harrington [8] in studying the physical limitations of antennas 

using spherical wave expansions. In general, however, the radius of the 

smallest cylinder completely enclosing an antenna is less than or equal to the 

radius of the smallest sphere, the two being equal if the antenna is oriented 

so that its longest dimension is perpendicular to the axis of the cylinder. 

A sample spacing criterion for the azimuth angle cf) on a cylinder 

enclosing an antenna can be obtained by applying the Nyquist sampling 



criterion of Fourier transform theory to the above result. If N is the 

maximum angular harmonic in the cylindrical wave expansion of a given 

field, then it follows that the maximum angular separation between 

adjacent samples is 

Lici) = 
N
-7r 

" 

(3-53) 
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In this case N must be chosen as the smallest integer greater than ka, 

where a is the radius of the smallest cylinder completely enclosing the 

antenna. 

The above limit on N has been verified by Ludwig [11] for a par-

ticular antenna. He has shown that over 99.9 per cent of the total 

power radiated by a circular aperture horn is contained in spherical 

waves with angular harmonics inl 5 ka, where a is the radius of the 

smallest sphere containing the aperture. Because a is a function of the 

location of the origin of the sphere with respect to the center of the 

aperture, he was able to demonstrate the variation of the maximum 

significant angular harmonic with the radius of the sphere by varying 

the position of the origin. Because both cylindrical wave and spherical 

wave expansions are in the form of a Fourier series in the azimuth angle (I), 

it follows that his results are directly applicable to cylindrical wave 

expansions for this particular antenna for which the radius of the smallest 

cylinder completely enclosing the antenna is the same as the radius of the 

smallest sphere. 



A z-sample spacing criterion follows in a similar manner. Collin 

and Rothschild [91 have shown that the term PnhQnh 
in Equation (3-50) 

increases rapidly for inl 	lc [
2
-h

2
) a. Thus it follows that ICnh l must 

h2 
	2 n

2 
be small for h > k - 	. This implies that the highest significant 

a 
wavenumber in the cylindrical wave expansion of the field of an antenna 

which is not a high-Q structure is I'll 	k. It follows that the maximum 

z-sample spacing on the cylinder is given by the Nyquist spacing 

AZ = k 

A 
2 

(3-54) 
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It is interesting to compare the two sample spacing criteria 

which have been developed. If the measurement cylinder is the smallest 

cylinder completely enclosing the antenna, then it follows that the arc 

length on the cylinder separating adjacent sample points when sampling 

in the azimuth direction is 

As = aA4 	 (3-55) 

k 

A 
2 

This is the same as the z-sample spacing with the exception that As > Az 
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when sampling on a cylinder of radius greater than a. 

Although the sample spacing criteria defined by Equation (3-53) 

and (3-54) are useful, they are in no way absolute, for it is impossible 

to predict a priori an exact cutoff harmonic for n and an exact cutoff 

wavenumber for h in the cylindrical wave expansion of the fields radi-

ated by a given antenna. In practice, more conservative sample spacings 

have been used. For example, Collin and Zucker [6] state that the 

maximum order angular harmonic in the cylindrical wave expansion of the 

field radiated by an aperture on a cylinder is approximately 2ka, where 

a is the radius of the cylinder. This would lead to a sample spacing in 

the 4) direction of one-half that specified by Equation (3-53). Joy and 

Paris [121 have obtained excellent results in the calculation of the far-

field patterns of reflector antennas using a sample spacing of X/3 on a 

plane located in front of the antenna. This spacing effectively allows 

for a 50 per cent error in the X/2 criterion. In the actual measurement 

of the near field of an antenna, therefore, the sample spacings speci-

fied by Equations (3-53) and (3-54) should be used as guidelines in 

determining the sample spacing between measurement points. In most 

instances, the sample spacings chosen can be easily verified experi-

mentally on the near-field antenna range. 
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CHAPTER IV 

THE DETERMINATION OF ANTENNA 

FOCUS FROM NEAR-FIELD 

MEASUREMENTS ON A CYLINDER 

4.1 Introduction  

The verification of proper far-field focus for large ground-based 

reflector antennas is impractical with conventional techniques once 

the antenna has been installed in the field. However, because it is 

not impractical to perform near-field measurements on the antenna with 

portable near-field probe positioners, near-field techniques may prove to 

be a powerful method for on-site diagnostics such as determining antenna 

focus. 

. This chapter presents a study of the application of cylindrical 

wave techniques to the determination of focus for planar aperture reflector 

antennas. A method is developed for the calculation of the reflector 

aperture fields from the near-field on a cylinder enclosing the antenna. 

The method involves calculation of the cylindrical wave amplitudes for the 

field radiated by the antenna, a transformation of the cylindrical wave 

amplitudes into a plane wave spectrum, and finally the calculation of the 

aperture fields from the plane wave spectrum. 

In order to use the aperture fields to determine correct focus of 

the reflector, it is necessary to know the reflector geometry. In this 

chapter, a parabolic reflector geometry is assumed. A technique is des-

cribed for calculating the position of the feed from the known aperture 



fields. Computer simulations of the techniques described in this chapter 

are presented in the following chapter. 

4.2 Transformation of Antenna  
Near-Fields from a Cylinder  

to a Plane  

Figure 5 shows a planar aperture antenna, _such as a parabolic 

reflector, located inside a measurement cylinder such that the antenna 

aperture is located in the plane defined by x = 0. A method is developed 

in this section by which the aperture fields of the antenna can be cal-

culated from the near-fields on the measurement cylinder. The method 

takes into consideration only the radiating fields of the antenna, i.e., 

the reactive or evanescent fields are neglected. This is a valid assump-

tion for most reflector antennas because they are wide bandwidth, low-Q 

radiators which have very little reactive near-field power. If this were 

not the case, the geometrical optics techniques used in their design 

would not be valid. 

The radiation from a planar aperture antenna is most conveniently 

formulated as a modal expansion in rectangular coordinates. Such an 

expansion is called a plane wave spectrum expansion. It can be shown 

that this is the most general solution to the wave equation in rectangular 

coordinates. The solution for the electric field intensity in a region 

containing no free charge density is given -by [13] 

 

co 
-* 	 -0- 4- 	-jlt•I

dk dkJ J  E(r) = 	A(k) e 
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(4-1) 

where 

_CO 

 

k =xk
x 
+yk +zk 	 (4-2) 
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Figure 5. Illustration of a Planar Aperture Antenna 
Inside a Measurement Cylinder. 
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r =xx+yy+zz 	 (4-3) 

A -3. -4- 
A(k) =xAx +yA +z Az  

The vector function A(k) is called the plane wave spectrum function. 

Its argument k is called the vector wavenumber. 

(4-4) 

Although both A and k have three components, only two are in-

dependent. These will be chosen to be the y and z components. 

It then follows from the condition V.E = 0 that A x is given by 

2-* 	-* 
Also, it follows from the wave equationVE+k

2
E= 0 that kx is given by 

kx  .
=\,/k2_k2_k2 

y z k
2
+k

2 
k
2 

y- Z 

(4-6) 

-j \,/k2+k2-k2  ►  k2+k2- k2 
 y z 	y z 

The latter choice for the algebraic sign of kx  is necessary for a bounded 

solution as x co. The imaginary values of kx  are associated with evanescent 

or reactive power storage in the near-field of the antenna. 

It is desired to use Equation (4-1) to calculate the aperture 

field at x = 0 from the known fields on a cylinder around the antenna. 

To do this, the plane wave spectrum function 1(t) must be related to the 

fields on the cylinder. One way to do this is to use the cylindrical 

wave expansion to calculate the antenna far-field from the near-field on 



the cylinder. Then, by equating this to the far field expression for 

Equation (4-1), the plane wave spectrum function A(k) can be determined. 

However, the technique cannot be used to determine A for k
2 
+ k

2 
k
2 

z 

because evanescent waves do not appear in the far-field expressions. 

As has been discussed, this is not a disadvantage with the reflector 

antennas concerned by this report. 

The far-field expression for Equation (4-1) is obtained by 

evaluating the double integral by the method of stationary phase. 

The result is [13] 

'Tk e 
E - 27 
	[.  

cp A sine + A
z 
 cosh sirup 

, Y 

- 6 Azcoscp (4-7) 
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where Ay  and Az 
are functions of the wavenumbers at the stationary phase 

point of the integral. These are 

k
x 

= k sinecoscp (4-8) 

ky  = k sinesincp 	 (4-9) 

k
z 
= k cosh 

When Equation (4-7) is equated to the far-field expressions developed 

from the cylindrical wave expansions given in Equations (2-60) through 

(2-63), the following relations are obtained: 

(4-10) 



.n 
Ay  sine + Azcosesing) = sine 

y 	3 a
n
(kcose)e

jncl) 

n=-= 

= 

Az
coscp = -jsine 	jnb

n
(kcose)einS  

n=-= 

where the constant factor j'ff has been absorbed into both A and Az 

to simplify the equations. 

(4-11) 

(4-12) 
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For a given or measured electric field intensity distribution on 

the measurement cylinder, it is a straightforward process to calculate 

the cylindrical wave amplitude functions and evaluate the right side of 

Equations (4-11) and (4-12). These,  two equations can then be solved 

simultaneously for A and A
z 
as a function of the arguments given by 

Equations (4-8) through (4-10). Over the plane x = 0, it then follows 

from Equation (4-1) that the tangential aperture fields IE and E z 
are 

given by 

-jk y -jkz 
E 	(o,y,z) 	= J J A y (k x ,k y,k z  )e 	

y e 	z dk y dk z (4-13) 

D 
-jk y -jk z 

Ez (0,17 ,z) 	= f Az 	(k x  ,k  y  ,kz  )e 	Y  e 	z  dk Y
dk (4-14) 

D 

where D is the domain of integration defined by the condition k
2
y
+k2-  k

2
. 

This is the condition for only radiating waves to be included in the formula-

tion. 

The numerical implementation of the techniques described in this 

section will be presented in the next chapter. 
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4.3 Calculation of Antenna  
Focus from Aperture Phase  

Distributions  

Reflector antennas are usually designed by the familiar ray 

tracing techniques of geometrical optics. The antenna feed is assumed 

to be a point source radiator, and the aperture field distribution 

is calculated by tracing rays from this source to the reflector surface 

and then into the aperture. At the reflector surface, Snell's first 

law is used to determine the direction of the reflected rays. By tracing 

rays to each point in the aperture, the aperture phase distribution can be 

calculated as the phase delay experienced by each ray as it propagates 

from the feed to the aperture. 

Parabolic reflector antennas are normally designed so that the 

aperture phase distribution is a constant. This is the condition that 

the reflector be focused for optimum gain in the far-field or at infinity. 

If the feed is not properly positioned, the antenna focus will be degraded, 

and the gain will decrease. In addition, the direction in which the antenna 

is focused can change. Therefore, correct focus is an operational considera-

tion for reflector antenna installations. 

This section is devoted to the problem of determining the _feed 

position of a parabolic reflector antenna if its aperture phase distribu-

tion is known. Thus this is the inverse of the design problem in which 

the aperture phase distribution is to be determined from the feed poSition. 

The technique is general in that it can be applied to any reflector geometry . 

if the correct aperture phase distribution is known for that geometry. 

However, the specific derivations in this section will be for the parabolic 

reflector focused at infinity. The technique is based on a method described 



by Kelleher [14] for calculating the phase distribution over the aperture 

of a reflector antenna. 

Let the phase distribution over an aperture located in the plane 

defined by the relation x = 0 be denoted by *(y,z). If the reflector 

which illuminates the aperture is illuminated by a feed which can be 

considered to be a point source, then Keheller has shown that the phase dis-

tribution function over the aperture is given approximately by 

+ 
V(y , z) = kx'(U(y,Z) -- V(y,z)) (4-15) 

where k = 2VX is the free-space wavenumber, u(y,z) is the vector equation 

of the image wavefront of the point source feed behind the reflector, 

and V(y,z) is the vector equation of some reference equiphase plane. 

To obtain the function U(y,z), consider the geometry shown in 

Figure 6. Let R(y,z) be the vector equation describing the reflector 

surface and n(y,z) the vector unit normal to the reflector. For a point 

source feed located at the point Q in the figure, the ray reflected 

from the reflector at P appears to originate from behind the reflector 

at Q'. The vector from the origin to this image source can be written 

-+ 
U = OQ + 

-+ 
= OQ + n 	(R-00 + n•PQ!I (4-16) 

Because the angle of incidence at P must equal the angle of reflection, 

it follows that 
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Figure 6. Geometry for the Derivation of the Image 
Wavefront: Equation. 



60 

" 

n•PQ' = n.(R-0Q) (4-17) 

Therefore, Equation (4-16) simplifies to 

= OQ + 2;a1•-0Q0 	 (4-18) 

The equation for a parabolic reflector with vertex cutting the 

x axis at the point x = xo  is 

f(x,y,z), = 4p(x-xo
) - y2 - z2 = 0 
	

(4-19) 

where p is the focal length of the reflector. Thus it follows that R 

and n for the parabolic reflector are given by 

+ - 	  
R= x 	

4p 	
+yy+zz 

	

4px
o
+y

2
+z

21 	

(4-20) 

^ 	Vf 
n - TOfT 

x2p -yy-zz  
(4- 2 1) 

   

ki
4p

2 
+ y

2 
+ z

2 

For a focused reflector, the feed is located at the point x = x
o 

+ p 

and y = z = O. Let the feed be defocused from this point by an amount 

a in the x direction, b in the y direction, and c in the z direction. 

-+ 
The vector OQ for the defocused reflector is 
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OPQ = x(a + xo + p) + yb + zc 
	 (4-22) 

Substitution of these into the equation for -6 yields 

U = x(a+x +p(1-2B)) 	Y(h+bB) + z(c+Bz) 
	

(4-23) 

where 

B = 1 + 2 2pa - yb -  zc 

4p
2 
+ y

2 
+ z

2 
(4-24) 

It is convenient to choose the reference plane iI(y,z) so that 

4(17 ,z) = 0 where a = b = c = 0. This will be true if V = x(x o
-p). Thus 

Equation (4-15) becomes 

*(y,z) = k[a + 2p(1•B)] 

zpa  - yb - zc  
= 	- 413 	2 	2 	2 

	

4p +y+ Y 	z 

(4-25) 

This is the desired relation. It gives the aperture phase as a function 

of aperture coordinates and the position of the reflector feed. It 

is valid for defocus distances which are small compared to the dimensions 

of the reflector. It is the subject of the balance of this section to 

determine a, b, and c given the measured distribution for *(y,z). 

Let the function *(y,z) be specified at a discrete set of points 

in the reflector aperture denoted by (y i ,zi ), where 1 5 i 5 M and 1 5 j 5 N, 

and M and N are positive integers. If * is known exactly (i.e., with no 



4pz. 
3 (4-29) Y.. - 13 	2 	2 	2 4 + y. + z, 

P 	1 	3 

measurement error), it follows that Equation (4-25) can be solved for a, 

b, and c from the known values of IP at only three points. However, in 

the presence of measurement error, a statistical approach for obtaining 

a, b, and c will yield the least uncertainty or error. The method which 

will be described in the following is based on the minimum mean squared 

error criterior of statistical estimation theory. 

It is convenient to rewrite Equation (4-25) in the form 

a 	a+f3..1)+Y—c= 	 (4-26) ij 	
13 	13 	13 

where 

a.. = k 1 
13 	 2 	2 	2 

4 + y. + z. 
P  

8p 
(4-27 ) 

 

4pyi  
(4-28) 

13 	2 	2 +z2. 
4 + 	+ z 
p 	

y. 	. 
 

= (yi ,y (4-30) 

7)3_3 	 1 Let 	represent the measured value of the phase at the point (y.,z.) 

in the presence of noise. The square of the rms error between the measured 

and calculated values of ip can then be written 
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e 2 = c v )2  
L  ij 	ij 

i 

y / 	 j 
(a..a + B

i
b + y..c - 

-2 
 ij 	11)13 (4-31) ,  

This equation represents the sum 8f the squared errors at each measurement 

point in the aperture. Because each term in the sum is positive, it 

follows that the minimum value of c
2 

is zero and that the only way this 

	

can be achieved is to have zero error between 	and*ij. at every point
ij 

in the aperture. 

For a measured phase distribution Tij , it is desired to find the 

values of a, b, and c which minimize c
2 
in Equation (4-31). This solution 

represents the best estimate of the reflector feed coordinates in the 

minimum mean squared error sense. The solution is obtained by setting 

equal to zero the partial derivatives of c
2 
 with respect to each of the 

parameters a, b, and c. The three simultaneous equations which are obtained 

can then be solved for a, b, and c. These equations are 

2 
OE 

- a y 1 	2a.
2 

+ b 1 1 	2a...
j  as 	 ij 	 ij i 

i j 	 i j 	
8 

 

+c 	2a ..y.. - 	X 
i j ij ij 	• 	• 3 	

ij 

= 0 	 (4-32) 
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, 

b 

 2 

a 
dE 	 r 	2 

= a 1 1 2a..0.. + b 1 L 2a.. 

	

j 	 i 3 

y 20..y.. - X X 2f3..117).. 

	

j 	
. 

= 0 (4-33) 

- a 1 1 2a ..y. +b 	1 2S Y 
i. j 	 i j 13 ij 	 13 13 

+cX
r 	2  
2,2 	

- Yij 	13 i 
j  

= 0 
	 • 	 (4-34) 

For convenience of notation, these three equations will be 

written in the form 

Aa+Bb+Cc=D 1 	1 	1 	1 

A
2a + B2b + C2c = D2 

A3a + B 3b + C 3c = 03 

(4- 3 5) 

(4-36) 

(4-37) 

ac
2 

ac 
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where the coefficients of a, b, and c are defined in Equations (4-32) through 

(4-34). Simultaneous solution for the defocused feed coordinates yields 

1 
1 

a = A 
	

(B
2  C 3 

 - B3C 2 ) ) 

+ D
2 
 (B

3  c 1 
 - B

1  C 3 
 ) + 

D3(B1C2 
- B

2
C
1
)1 

b = 	1 (A3C 2  - A2C3 ) 

+ D
2
(A

1
C
3 

- A3C1)  + D3
(A1

C
2 
- A

2
C
1
)1 

c = 	[D1 ([ 2C 3  - A3C 2 ) 

+
D2(A3C1 

- A1C3
) • D3 (A1B2 

- A2B1)1 

when 1 is the determinant of the system of equations which is given by 

A = A
1
(B

2
C
3 
- B

3
C
2
) • A

2
(B

3
C
1 
- B 1C3 ) 

+
A3(B1C2 

- B2C 1) 

(4-38) 

(4-39) 

(4-40) 

(4-41) 

In the following chapter, a computer solution for a, b, and c 

is described that is based on these equations. The solution uses simulated 

phase data that is obtained by calculating the phase function for a de- ' 

focused aperture from Equation (4-25) and adding random noise to the data 

to simulate measurement noise. 
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CHAPTER V 

NUMERICAL CONSIDERATIONS 

5.1 Introduction  

The'application of near-field measurement techniques can require 

detailed and tedious numerical methods. This chapter is devoted to a 

discussion of the major numerical considerations that are involved in 

the application of cylindrical wave techniques to near-field measurements. 

In order to correct for the probe response, it is necessary to know the 

cylindrical wave amplitudes for the field radiated by the probe when used 

as a transmitter. The following section describes how these can be 

obtained from the measured probe far-field. Next, the techniques for 

calculating antenna far fields from near fields on a cylinder are 

discussed. Finally, a numerical solution is presented fore  calcillating 

the feed position of a parabolic reflector antenna from the near field 

on a cylinder around the antenna. In each case, numerical examples are 

presented which have been performed with simulated near field data. 

The computer programs which have been used in the examples are presented 

in the appendix. 

5.2 Determination of the Probe  
Correction Coefficients  

To evaluate Equations (3-23) and (3-24) for the amplitude functions 

in the cylindrical wave expansion of the far field radiated by the test 

antenna, it is necessary to know the amplitude functions in the expansion 



67 

of the field radiated by the probe. Because it is necessary to know these 

functions only for wavenumbers such that Ihl < k, it is possible to obtain 

them from a knowledge of the far field radiated by the probe when it is 

connected to a signal source. In this section, a numerical procedure 

is described for obtaining the necessary probe information from the 

measured far field of the probe. 

To calibrate the probe, it is first necessary to measure both 

polarization components of its far field when it is used as a transmitter 

over the surface of a sphere with the probe at the center. It is pre-

ferable, but not necessary, for the phase center of the probe to be 

located at the center of this sphere. If this is true, the number of 

cylindrical wave harmonics that are necessary to represent the field 

radiated by the probe will be a minimum. In any subsequent near-field 

measurements with the probe, the radius of the measurement cylinder is 

taken to be cylindrical radius out to that point on the probe which was 

aligned with the center of the sphere when the probe far field was 

measured. The measurement of the probe far field is most conveniently 

performed with a gantry positioner such as that shown in Figure 7. In 

this figure, rotation in the elevation angle 6 is proVided by•the gantry 

while rotation in the azimuth angle 0 is provided by the base positioner. 

Because it is necessary to resolve the measured probe data into 

Fourier series in the azimuth angle 0, some upper limit on the maximum 

angular harmonic for the probe must be established. This can be done 

by using the criterion established by Harrington [8] that the maximum 

angular harmonic is N = ka, where in this case a is the radius of the 

smallest sphere completely enclosing the probe or its aperture. As an 
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Figure 7. Gantry Positioner for Measuring the Probe 
Far Field. 
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example, the aperture of an open-ended WR-90 waveguide can be enclosed by 

a sphere of radius 1.4 cm. At an operating frequency of 9.375 GHz, 

it follows that N 	(2 x n x  9.375 x 109/3 x 1010 ) x 1.4 = 2.75. 

Thus the choice N = 3 would be made for this probe. 

Let the probe antenna coordinates be defined as shown in Figure 8. 

The far-field electric field intensity radiated by the probe can be expressed 

as 

N 
L 	.n E

e
(6,0) = jsin6 	L 	dn (kcos6)e

jn0 

n=-N 
( 5- 1 ) 

L E 0,0) = sine 	L j
n 
 c
n
(kcose)e

jr10 

n=-N 
( 5-2) 

where cn (h) and dn (h), with h = kcos6, are the amplitude functions for 

-4+ 
the cylindrical wave vectors M and N, respectively, in the expansion 

of the field radiated by the probe. If the probe is rotated 90 °  in the 

right-hand sense about the x-axis, the far-field electric field intensity 

radiated by the rotated probe can be expressed as 

N 
V  

E
6 	 L .n 

 (6,0) = jsin6 	d
n
(kcos6)e

jn0 

n=-N 

N 

	

L 	. 3 11 
E 	= sine 	L 	cn(kcos6)e

jn0 
0 	 n=-N 

(5-3) 

(5-4) 

where c
n
(h) and d

n
(h) are defined similarly. In order to correct for 

the effects of the probe in calculating the cylindrical wave amplitude 

functions for the test antenna, it is necessary to know cn (h), dn (h), 

cn (h), and dn
(h) with the argument h = -kcose = kcos('r-6), where 6 is the 
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X 

Figure 8. Coordinate System Definitions for the 
Measuring Probe. 



elevation angle for the far field of the test antenna. That is, the 

elevation angle for the probe is in the direction opposite from that 

of the test antenna. 

Because Equations (5-1) through (5-4) are in the form of a 

Fourier series in 0, the amplitude functions for a particular value 

of 8 can be obtained by numerically evaluating the Fourier inversion 

integral from the measured fields. For example, the solution for 

d
n
(kcos0) is 

7 
d
n
(kcos0) = 	1 	f E

e
(0,0)e

-jn0d0 
.n+1 

27) 	sin() -7 • 
(5-5) 

This equation requires knowledge of the probe pattern over a full 360 0 

 azimuth angle. However, in use, the probe is always pointed to the center 

of the cylinder. Thus, a better fit of the fields over the front 

hemisphere of the probe can be obtained if only this portion of its 

field is used to evaluate d
n (kcos0). 

Let the probe fields be specified over the azimuth interval 

defined by -0 1  S S 	 It It is straightforward to show that Equation (5-1) 

approximates the measured E 8  (8,o) over this interval with a minimum 

mean square error if the d
n
(kcos0) satisfy the system of 2N+1 vquations 

N 	 sin(m-n)0
1  	0 

(m-n) 
	-jrn dn (kcos0) 	 - 	+1 	f -E0 (0,0)e 	4)d0 • (5-6) 

n=-N 	 0
1 	2j sin0-0 1  

where the integer m is varied from -N to +N to generate the 2N+1 equations. 

The d
n (kcos0) for the probe can be obtained by solving this system of 
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equations with a technique such as the Gauss-Jordan method for solving 

simultaneous equations. The integral on the right of Equation (5-6) 

is most conveniently evaluated from measured data by the trapezoidal 

rule for numerical integration [15]. 

Solutions for c
n
(kcose), d

n
(kcose), and cn

(kcose) can be obtained 

for the probe in the same way. However, for the case of the rotated 

probe functions, it is possible to solve for E e (04) and ye,0 from 

the measured E e (e,cp) and yem, thus making it unnecessary to perform 

measurements on the far field of the rotated probe. The necessary 

transformations are 

1 
E
e
(04) - 

Ee ( Ocose sin(1) - E
0 
 (coscf) 

(5-7) 

 

II-=- sinz esin2 4) 

 

 

E e (E,ocose + E (,0cose sin4 
E (04) = (5-8) 

where 

 

✓1 - sin2 0 sin2O 

  

       

✓1 - sin4 0 sin 
tan -  	 (5-9) 

-sine sin(1) 

tan‘ - 	cose 
  

sine cos4 
(5-10) 

In using these equations, E 0 (E,4) and E (1) (E,;) can be obtained by numerical 

interpolation between the measured values. 
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The amplitude functions for the probe enter into the solutions 

for a
n
(h) and b

n
(h) given by Equations (3-23) and (3-24) in the form 

of summations over the angular harmonics of the probe. The coefficients 

(2) 
in the summations are the Hankel functions Hn+m(Aro)  where A = ✓k2-h2  

and m is the angular harmonic of the probe. In the calculation of the 

cylindrical wave functions for the test antenna, it is necessary, to 

evaluate an 	and bn
(h) at h = kcose. Thus the argument of the Hankel 

function is Ar
o 

= krosine. 

5.3 Method of Far-Field  
Pattern Calculation  

In Section 2.4, it was shown that the far-field electric field 

intensity over the surface of a sphere surrounding an antenna can be 

written in the form 

L :11 	 rup 
E
e
(e4) = jsin0 	L  b

n
(kcos0)ei  

n=-co 
(5-11) 
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r . 
E (6,0 = sine 	L. 3

n
n
(kcos0)eil4 	 (5-12) 

(1) 	 n=-0o 

These equations are in the form of a Fourier series summation in the 

azimuth angle (I) where the Fourier coefficients are functions of the 

elevation angle 0. A mathematical solution for an (h) and bn (h), where 

h = kcos0, has been presented in Equations (3-23) and (3-24) as.a function 

of the measured response of a probe antenna when the probe is used to 

measure the near fields of the antenna over some cylinder enclosing it. 

The numerical implementation of this solution to obtain the far field 

summations of Equations (5-11) and (5-12) is given in this section. 
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The numerical solution can be broken down into the flow 

diagram given in Figure 9. The calculations in that part of the diagram 

concerned with evaluating the cylindrical wave functions for the field 

radiated by the probe when it is used as a transmitter have been described 

in the preceding section and will not be covered here. The basic 

numerical tool in the calculations is the fast Fourier transform (Fri.) 

algorithm which is used to evaluate the Fourier integrals and perform 

the Fourier series summations. 

Aside from the factors involving the cylindrical wave amplitude 

functions of the probe when it is used as a transmitter, it was shown 

in Section 3.3 that the solution for an (h) and bn
(h) requires the evalua-

tion of the integrals 

I
n
(h) 

1 
I
n
(h) 

= f 
-00 

co 

= f 

	

-jn0o 	o  jhz 
f v(r 

o 
 ,O 

 o 
 ,z 

 o 
 )e 	e 	d o 

 dz 
o -71. 

Tr 	, 	 -jrup 	jhz 
f v (r r0 ,z )e 	0e 	°d0 dz 

o 	o 	o 	 o 	o 

(5-13) 

(5-14) 

where v(r 
o 
 ,(1) ,z 

o 
 ) and v (r 

o 
 ,0 

 o 
 ,z 

o
) represent the output voltage of the 

o  

probe on the measurement cylinder of radius r o . The primed function is 

used to denote the probe output after it is rotated 90 °  about:its longi-

tudinal axis. 

Let the measurement cylinder be divided into a lattice of•points 

with coordinates (ro ,n,64,mAz) where 0 n N-1, 0 5 m 5 M-1, and M and 

N are positive integers. To exactly evaluate Equations (5-13) and (5-14) 

from the output voltages of the probe at these points, two conditions 

must be satisfied. First, v and v' must be zero when z < 0 or z > (M-1)Az. 
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Figure 9. Flow-Diagram for the Far Field Evaluation. 
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Second, v and v' must have no angular harmonic n greater than 7/4 

and must be wavenumber limited in h to a maximum wavenumber less than or 

equal to ir/Az. The first condition cannot be met with any radiating 

structure. However, if the test antenna is aligned in the cylinder so 

that it does not radiate appreciably in the ±z direction, it can be met 

approximately if M is chosen large, enough. The second condition can 

be met if the test antenna is not a high-Q structure and the sample inter-

vals A(I) and Az are chosen in accordance with the sampling criteria 

discussed in Section 3.5. If these conditions are met, the integrals 

for In (h) and In (h) can be evaluated most efficiently with a two-dimen- 

sional Fast Fourier Transform (or FFT) algorithm [16]. 

The FFT is an algorithm in which the computations are performed 

"in place," i.e., the two-dimensional input data arrays v(ro ,nA, ,mAz) 

and v'(r
o
,nAcp,mAz) are replaced by the output arrays I n

(MAh) and I(mAh) 

after the calculations are completed. As described by Cochran [16] the 

output values of the integers m and n are 

and Ah is given by 

- —

m 

5. in —

m 

- 1 2 	2 

- 2 
— 	2 < n < — - 1 

(5-15) 

(5-16) 

27 
Ah =MAz 	

(5-17) 

Because the far-field expressions for B e (0,4) and yem are evaluated for 
h = kcos0, the values of 0 corresponding to h = mAh are given by 
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--1 mX 
8
m 

= cos 
MAz 

(5-18) 

Because it is impossible to measure the near field over a complete 

cylinder enclosing an antenna, the present method for determining the 

cylindrical wave functions for the test antenna is most suitable when 

applied to antennas which radiate predominantly in the angular region about 

0 = 
2 
— defined by e c < 0 5 it - e c . In order for all em defined by Equation 

(5-18) to lie in this interval, it follows that Az must satisfy 

A  Az - 
2cos0 

C 

(5-19) 

However, for 0
c 

0, this condition violates the z-sample spacing cri- 

terion discussed in Section 3.5. One solution to this problem is to 

choose z smaller than that specified by Equation (5-19) and to ignore 

the calculations for 0 5 6
c 

and 0 > it - 8 c
. This is not a very effi- 

cient solution because it reduces the resolution of the calculated fields 

for
c 

< 6 :5 it - 8
c
. The decrease in resolution can be overcome by 

augmenting the near-field data arrays with zeros thereby increasing M. 

Although this is an acceptable solution, it is inefficient for it 

increases computer storage requirements, increases computation time, and 

does not make full use of the FFT computations. 

An alternate solution to the above problem is to first J'smooth" 

or "low-pass filter" the near-field data in such a way that it can be . 

resampled by numerical interpolation with•the sample spacing specified 

by Equation (5-19).. Thensmoothing" operation can be accomplished ef- 

ficiently with the FFT algorithm. First, the near-field data arrays 
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are transformed in z so that on output the wavenumber spacing is that 

specified by Equation (5-17). Second, all elements in the transformed 

arrays are set equal to zero for all m such that 

imi > MAz casec (5-2 0) 

Finally, the data arrays are inverse transformed to create the "smoothed" 

arrays. This operation is equivalent to that of filtering the data with 

an ideal "low-pass filter" with a cutoff wavenumber given by 

2-rr 
h

e 
= 	cose

c 
(5-21) 

After the "smoothing" operation, the near-field data arrays are 

wavenumber limited in z such that the Nyquist sample spacing is that 

given by Equation (5-19). Thus the arrays can be resampled in z using 

numerical interpolation with the sample spacing specified by Equation 

(5-19). In order to preserve "in place" calculations, the interpolated 

arrays can directly replace the original arrays during the computations, 

Because the interpolation process will extract fewer than M samples in z, 

it is necessary to set equal to zero some of the elements of the original 

arrays after the interpolation. It can be shown that these zeroes will 

not affect the accuracy of the subsequent FFT operations. Instead, the 

resolution will be improved on output since all M values -of em  

will lie in the interval A c < e 5. R -
c

. 

After the evaluation of In(
mAh) and Ii(mAh), the cylindrical wave 

amplitude functions an (mAh) and bn (mAh) can be solved for using Equations 
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(3-23) and (3-24). The evaluation of the coefficients in these equations 

which are determined by the probe was discussed in the preceding section. 

Because an
(mAh) and b

n
(mAh) are both linear combinations of I n

(mAh) 

and I'(mAh), the computations can again be performed "in place." Thus 

on output, the original data arrays will contain the set of cylindrical 

wave amplitude functions from which the far field of the test antenna can 

be evaluated. 

The calculation of the far-field electric field intensity radi-

ated by the test antenna can be achieved by performing the summations 

indicated by Equations (5-1) and (5-2). Again, this can be done most 

efficiently with the FFT algorithm. However, each a
n
(mAh) and b

n (mAh) 

,n 	 . 
must be multiplied by the factors 3 sine

m 
and 3

n+1 
 sine

m
, respectively, 

before the FFT can be used to perform the summations. Because the calcu-

lations are performed "in place" the output arrays wall be the far-field 

components E
m
,0
n
) and 

E(I)mn) 
 where 

2nTr 
(I) n = N 

0 5 n < N-1 (5-22) 

rcol 
-1 Am = cos 	 - 	m 5 11 - 1 

(M/2) 	v 	2 	2 (5-23) 

The complete calculations are summarized in the flow-diagram of Figure 9. 

The computer program listed in Appendix E has been written to 

perform far-field calculations from the near field on a cylinder. The 

program implements the solution for a
n
(h) and b

n
(h) given in Equations 

(2-48) and (2-49). It is easily modified to implement the probe correc-

tion theory with the change of only two subroutines. These subroutines 



are KOREK and KOEF. An example run of this program will be described 

in the following which illustrates the program operation. The example 

calculations are for the far field radiated by a thin half wavelength 

 
circumferential slot on a cylinder with a wavenumber radius product of 

kr = 12. This calculation was first published by Bailin [17] in 1955. 

Because his calculations were not performed on the computer, he did not 

present a complete two-dimensional pattern but only selected cuts. 

The first step in the program is to initialize all constants and 

form the near field data arrays. In this example, both the 0 and z com-

ponents of E on the cylinder are set up as 64 x 64 complex arrays labeled 

EPHI (64,64) and EZ (64,64), KR = 12 is the cylinder wavenumber radius 

product, NR is an integer input to the plot routines which is 4 greater 

than the array dimension 64, NIB is the dimension of the plotter buffer 

IBUF, and DBM is the maximum number of decibels below 0 dB for which the 

plots are made. DZ is 'the specified z sample spacing on the cylinder 

which is calculated as Az/A from Equation (5-19) with (il' c  = 30° . No z 

filtering was used in this example because the slot on the cylinder 

represents an impulse field along the z direction and the sample spacing 

off the slot is meaningless. 

The program first setsE0  = Ez 
= 0 on the cylinder.' Next, it 

computes Ez  over the slot according to the formula 

Ez = cos(ff0/20o ) (5-24) 

where 20
o 

= 15°  which makes the slot width one-half a wavelength for kr = 12. 

The FFT operations in the program require careful choice of the origin in 

80 
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the data arrays. The top half of the arrays are the near fields on the 

bottom of the cylinder, and vice versa. That is, the data is folded 

in the z direction. This is accomplished by forming the slot field 

in the first row of the EZ array. The first row in the arrays corresponds 

to the center of the cylinder. 

The program first performs a two-dimensional Fourier transform to 

evaluate Equations (5-13) and (5-14). Because the E array contains all 

zeroes, the initial FFT operation on it has been ommitted. The first FFT 

call forward transforms the E
z array by the rows, i.e., in the cp coordinate. 

The second FFT call reverse transforms the E array by the columns, i.e., 

in the z coordinate. After the two FFT operations the first M/2 rows 

contain the transform values for 0 5 h 5 h
c
, the last M/2 rows contain 

the transform values for -h
c 

5 h 5 0, where he is defined by Equation (5-21). 

The first N/2 columns contain the transform values for 0 5 n 5 N/2-1, the 

last N/2 columns contain the transform values for -N/2 5 n 5 -1. 

Next the program evaluates an (h) and bn (h) according to the solu-

tions given by Equation (2-48) and (2-49). This is performed by sub-

routines KOREK which calls on subroutine KOEF to form the coefficients 

of1 00  and I
z in these equations. These coefficients involve Hankel 

functions which are evaluated by subroutine HANKEL. 

After a
n (h) and bn (h) are evaluated by subroutine KOREK, the 

final step in the far-field calculation is to sum the azimuth Fourier 

a.n+1 series according to Equations (5-11) and (5-12). The factors ] 	sine 

n 
and j sine in these respective equations have been included in a

n thy 

and b
n (h) computed'by subroutine KOREK. The azimuth series are summed 
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by a final call to the FFT subroutine for both the 	and Ez 
arrays. 

The two FFT transforms are both inverse row transforms. 

Before plotting, the output arrays are converted to decibels 

and folded in the z direction. The latter step is necessary in order 

for the 1 + M/2 row to correspond to a 90
o elevation angle. Because the 

E far field component (now contained in the E z 
array) is the predominant 

polarization component, subroutine DB is called first for this array with 

the last input variable to the subroutine equal to +1. This normalizes 

the peak value of E to 0 dB. The second call of DB for theE 0  far 

field component uses the last input variable equal to -1. This normalizes 

the peak value of E. relative to the peak value of E.
B
. The final step 

in the program is to normalize both output arrays to the range from 0 to 1 

by calls to subroutine BNORM and then to call the three-dimensional 

plotting subroutine PLT. 

The example output patterns for the slotted cylinder are given 

in Figure 10. These patterns agree with the results published by Bailin 

for this particular example. Because e
c 
was set equal to 30

o in cal- 

culating Az/X from Equation (5-19), the patterds in Figure 10 cover 

the elevation angles defined by 30 ° e <150
o . The azimuth angle range 

covers the complete range of -180 °  0 < 180° . 

A subroutine has been written to perform the z coordinate filtering 

described for the far field flow diagram of Figure 9. .This subroutine 

is listed in Appendix F. In this subroutine, the complex array P(M,N) 

is the input near field array, DELI is the z sample spacing to wavelength 

ratio Az/A in the input data, and THETA is e c  in Equation .. (t-23). ,  The 

variable GAMMA is an angle greater than or equal to THETA which can be 
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a) EleVation Component 

b) Azimuth Component 
• 

Figure 10. Far-Field Pattern Radiated by a Half-Wave Circumferential 
Slot on a Conducting Cylinder. 
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used to vary the cutoff frequency of the low-pass filter according to the 

Tr 2 
equation he  = —x  cos(GAMMA). Normally, GAMMA would be set equal to THETA: 

However, as an example, if THETA = 45 °  and GAMMA = 60° , the elevation 

pattern would be calculated for 45° 
	5_ 135° but would be equal to 

zero for 45°  < g 5_ 600  and 120°  < F3 < 135° . In this way, the far side-

lobes in a pattern can be selectively deleted by varying GAMMA. 

5.4 Method of Antenna  
Focus Calculation  

The flow diagram for calculation of the feed position of a para-

bolic reflector antenna from near-field measurements on a cylinder is 

given in Figure 11. The flow diagram is identical to that for the far 

field pattern calculation of Figure 9 through the block for calculation 

of the cylindrical wave amplitude functions. 

A computer program has been written to calculate the amplitude 

and phase of the tangential electric field over the plane defined by x = 0 

from the near field on a cylinder enclosing the aperture. This program is 

listed in Appendix G. This program implements the flow diagram of Figure 11 

through the block to output the aperture fields E and E. A separate 

program to calculate the feed coordinate positions a, b, and c has 

been written which will be described in the following. 

The program listing in Appendix G includes an example of the use 

of the subroutines to calculate the electriC fields over a uniformly 

illuminated rectangular aperture in the plane x = 0 from the near field 

on a cylinder around the aperture. In the example, the aperture was 

assumed to illuminate a 45 °  sector on the cylinder. The height of, the 

aperture was 7 wavelengths. The fields on the cylinder were assumed 
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Figure 11. Flow-Diagram for the Feed Position Evaluation 
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to be those which would exist if geometrical optics were used to cal-

culate the phase delay associated with ray propagation from the aperture 

to the cylinder. The amplitude distribution on the part of the cylinder 

illuminated by the aperture was assumed to be a constant. 

In the program, the first step is to initialize all constants 

and form the near field arrays. In this example, the only non-zero field 

component on the cylinder is E z . The distribution for Ez  is computed as 

the phase delay from the aperture to the cylinder over that portion of 

the cylinder which is illuminated by the aperture. KR is the wavenumber 

radius product for the cylinder which is taken to be 12 in this example. 

DZ is the ratio of the z sample spacing to wavelength on the cylinder. 

It is taken to be 0.5. DZ2 is the ratio of the desired z sample spacing 

to the wavelength in the calculated aperture fields. It is taken to be 

7/31 in this example in order for all computed samples to lie in the aper-

ture. DY is the desired y-sample spacing to wavelength ratio in the 

aperture. It is taken to be the width of the aperture in wavelengths 

(i.e., 2 x sin(45 °/2) x 27T/KR) divided by the number of computed y 

intervals across the aperture (i.e., 32 - 1 = 31). 

Through subroutine KOREK, the program operation is identical to 

that for the far-field calculation described in the preceding. 

After KOREK, the EPHI and EZ arrays, respectively, contain the values 

n. 
of the terms 3 sine an

(kcose) and 
n+1  sine b

n
(kcose), respectively in 

Equations (4-11) and (4-12). The next step is to perform the azimuth 

series summations in these equations. The FFT could be used. However, 

it would do this for -180°  :5 t < 180° , and it is desired that the valu es, 

of 0 be those in front of the aperture only. Subroutine CWPW performs 
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these summations. It does this only for the values of 8 and cl) for which 

k
x 

is real in Equation (4-8). 

After the two calls to subroutine CWPW, the EPHI and EZ arrays, 

respectively, contain the values of the right hand side of Equations (4-11) 

and (4-12), respectively. The next step is to solve these equations 

simultaneously for A and A. This is performed by subroutine SIMUL. 
y 

After this subroutine, subroutine APERTY is used to perform the integra-

tion in k in Equations (4-13) and (4-14) while APERTZ is used to perform 

the integration in k z . Although the FFT would be more efficient for this 

integration, it does not provide the capability of controlling the sample 

spacing in 'the aperture. the FOLDY and FOLDZ subroutines .  in the program 

are necessary in order for the center elements of the arrays EPHI and EZ 

to correspond to the center of the aperture. 

The final operations in the program are to convert the aperture 

fields to amplitude in decibels and phase in degrees. This is accomplished 

by subroutine DB. Normalization for the plotting subroutine PLT is 

accomplished by subroutines BNORM and PNORM. 

Figure 12 shows the output of the aperture field program for the 

example discussed. Both the amplitude and phase are relatively constant 

over the aperture as would be expected for this example. However, no 

absolute interpretation can be made of the figure because the true 

aperture field for the assumed field on the cylinder is not known. The 

increase in the computed phase at the top of the aperture in this example 

has not been explained. It is felt that .this row in the graph represents 
• 

a scan that is off the aperture because of an oversight in the use Of, 

the computer programs. Examination of the amplitude function seems:to 
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Figure 12. Amplitude and Phase of E z  in the Aperture 
for the Example Calculation. 
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bear this out, for the amplitude of the first row is very small compared 

to the second row. The program needs further "debugging" and should be 

run with measured data in order to effectively test it. Figure 12 does . 

 not display Ey  in the aperture because it was so small (as was expected) 

that it could not be interpreted. 

The far-field pattern radiated by the assumed near-field distribu-

tion on the cylinder has been computed with the program described in the 

preceding section. The elevation component, i.e., E e , of this pattern is 

shown in Figure 13. This pattern exhibits the expected form of that which 

would be radiated from a rectangular aperture. The azimuth component 

was so small that it has not been plotted. 

A numerical test of the minimum mean-square error solution pre-

sented in Section 4.3 for the feed position coordinates of a parabolic 

reflector has been performed on the ,computer. For the test, a parabolic 

reflector with an aperture diameter of 20 wavelengths and a focal length 

to diameter ratio of 0.375 was assumed. The theoretical phase distribution 

over the aperture was calculated from Equation (4-25) for four cases. 

X These were as follows: a feed defocus of -"ET 
n the +x direction, a 

X 	 X i feed defocus of 8 — in only the +y direction, a feed defocus of T
n 

only the +z direction, and a feed defocus of 21  in all three directions 
8 

simultaneously. The calculated aperture phase functions for these 

four cases are displayed in Figures 14 through 17. 

To test the minimum mean-square error solutions for the defocused 

feed position, the calculated phase distribution of Figure 17 was cor.7. 

 rupted with random Gaussian noise in order to simulate a measured phase 

distribution in the presence of measurement noise. The noise was added 
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Figure 13. Far-Field Elevation Component Radiated by the 
Near-Field Distribution on the Cylinder. 
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Figure 14. Aperture Phase Distribution for an 
X Defocus Distance of X/8. 
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Figure 15. Aperture Phase Distribution for a 
Y Defocus Distance of X/8. 
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Figure 16. Aperture Phase Distribution for a 
Z Defocus Distance'of A/8. 
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Figure 17. Aperture Phase Distribution for Simultaneous 
X, Y, and Z Defocus Distances of X/8. 
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to the phase distribution in an amount to make the rms signal to noise 

ratio be 20 dB. It is felt that this is far worse than that which 

would exist in a measurement situation. The noise corrupted phase dis-

tribution is shown in Figure 18. A computer program was written to 

calculate the defocus distances for this distribution by the minimum 

mean-square error solutions given in Equations (4-38) through (4-40). 

The results were 

A  
a - 8.014 

A 
b - 	 8.014 

A  
c - 8.004 

(x direction) 

(y direction) 

(z direction) 

(5-25) 

(5-26) 

(5-27) 

These represent very small errors, less than 0.2%. However, the error 

in these solutions is a function of the number of data points in the phase 

distribution. In this case, that number was approximately 3000. In 

general, the fewer the number of points used, the greater the uncertainty 

in the computed values of a, b, and c. This follows because the minimum 

mean-square error solution represents a statistical average that improves 

when the number of data points are increased. The computer program which 

was written to generate the data in Figures 14 through 18 and calculate 

the defocused feed position is given in Appendix H. 
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Figure 18. Aperture Phase Distribution of Figure 17 
After Addition of Gaussian Random Noise. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

The basic mathematical theory of probe corrected near-field 

measurements has been presented in this report. Also, the major numer-

ical considerations in the implementation of this theory have been 

discussed. A technique for the application of the theory to the 

determination of the correct focus of planar aperture parabolic reflec-

tors has been given. Although the technique has not been experimentally 

verified, it has been demonstrated by numerical simulation that the 

required calculations can be performed by the computer. The major 

uncertainty is the accuracy of the ]Kelleher wavefront technique [14] for 

calculating the theoretical phase distribution in the aperture of a 

defocused parabolic reflector and the effect of systematic (as opposed 

to random) errors in the measurement system. 

It is felt that a considerable simplification in the implemen-

tation of the theory could result if advantage is taken of the symmetry 

of antennas to which it is applied. For example, a parabolic reflector 

with a circular aperture may exhibit circular symmetry in the near field 

of its aperture. If the near field in the aperture is known over any 

two perpendicular diameter lines, it would then be possible to calculate 

the feed position by the minimum mean square error method that has been 

developed. This would greatly reduce the number of points in the aperture 

at which the phase must be calculated. If such a reduction in the amount 

of near field data that must be taken could also be achieved, the technique 
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becomes much more practical. This might be achieved by taking two scans 

on the cylinder, a longitudinal scan in a plane containing the vertical 

diameter line of the aperture and an azimuthal scan in a plane containing 

the horizontal diameter line of the aperture. Whether such circular 

symmetry in the aperture fields could be exploited to obtain a reduction 

in the amount of near field data that must be taken.is not known. However, 

the circular field symmetry may lead to such a simplification. 

The feed position derivations have been based on equating the 

far-field approximations derived from cylindrical wave techniques 

to the far-field approximations derived from plane wave spectrum techniques. 

However, the plane wave spectrum formulation is valid for only one hemisphere 

of space, while the cylindrical wave formulation is valid for almost full 

space, i.e., for a 360°  azimuth angle. Thus a problem of theoretical 

interest is to examine the mathematics of the cylindrical wave solutions 

to determine if they can be reformulated for only one hemisphere of space. 

The resulting theory would then be better suited for application to high 

gain, narrow beam antennas which radiate predominately in one direction. 

Whether this is possible is not known. If it is, however, it would 

eliminate the requirement for measuring the near fields on the cylinder 

behind a directive antenna, thus reducing the amount of near field data 

which must be recorded in a measurement. 

Although the theoretical basis for transforming the near fields 

on a cylinder into the aperture of an antenna is straightforward, it has 

not been verified experimentally. Although such an experimental verifica-

tion is desirable, further numerical simulation may be worthwhile 

before an experimental effort is made. Specifically, modal expansion 



     

techniques should be used to first calculate the near field on a cylinder 

from an assumed planar aperture field distribution. The techniques 

developed in this report could then be used to translate the field on 

the cylinder back into the aperture. In this way, some bounds could 

be obtained on the errors introduced by neglecting the evanescent part of 

the near field in making the transformations from the cylinder to the 

aperture, or vice versa. Although it is felt that these errors are of 

little significance for large reflector antennas, such a numerical 

study should be performed before an experimental verification is 

attempted. 

To this time, there have been no error simulation studies made 

to determine the effects of random and systematic measurement errors on 

calculations made from near-field measurements on a cylinder. Error 

simulation studies for the planar near field measurement surface have 

been performed [20,211. No such error studies have been made for the 

cylindrical surface. This information is necessary if design requirement 

data are to be available for the mechanical and electrical design of • 

cylindrical - near-field ranges. Both random and systematic positional 

errors should be studied to determine the effects of not only errors in 

the probe position but also such errors as would occur if the longitudinal 

axis along which the probe travels is not parallel to the axis of the 

cylinder. 

Finally, the application of plane wave spectrum techniques 

and spherical wave techniques to the focus problem addressed in this report 

should be studied.- If the test antenna has two degrees of angular 

rotation freedom, spherical wave techniques may be applicable. In this 
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case, the near field probe would be held stationary while the test antenna 

is rotated in front of it. In cases where it is impractical to move 

the test antenna, the probe may be rotated by a boom to cover the 

near field of the antenna on concentric circles in a plane parallel 

to the antenna aperture. In this case, plane wave spectrum techniques 

could be used to determine correct focus of the antenna. 
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APPENDIX A 

EVALUATION OF EQUATION (2-59) 

Each scalar component of the integral in Equation (2-59) is of 

the form 

I 
= ; f(a)eRg(a) da  

( A-1) 

This integral can be evaluated fcr large R using the method of steepest 

descent. This method consists of first finding the point a o  on C at 

which g (a) = O. The contour C is then deformed into the path S which 

passes through ao  and on which Re[g(a)] 5 Re[g(a0 )] and Im[g(a)] = 

Im[g(a0 )]. The point ao  is called the saddle point of the integral and 

S the steepest descent path. If this path exists, the change in vari-

ables 

g(a) = g(a0 ) - w2 	 (A-2) 

can be made where w is real and a lies on S. Thus the integral can be 

transformed into 

= e
R
g
(a0) 

f f(a) e
-
R
w2 Al dw 

dw 
(A-3) 

where a is a function of w defined implicitly by Equation (A-2). 
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The method of steepest descent refers to the first term in the 

asymptotic expansion about R = 00 of the integral in Equation (A-3). 

This is shown by Clemmow [18] to be 

Rg(a ) 27 	o I = ± 	
R"(ao ) e 
	T(a0

) 
(A-4)  

where the ambiguity in sign must be resolved by examining 

CJ 

-2 = + 
477-7 a=ao 

(A-5)  

at the saddle point. The sign in Equation (A-5) must be chosen to make 

da tangent to S at a = ao . The corresponding sign - is then used in Equa-

tion (A-4). 

The function g(a) in the integral to be evaluated is 

g(a) = -jksin(a+6) 	 (A-6) 

The saddle point is found by setting g'(a o ) = 0. 

e(a0 ) = -jkcos(a0+6) = 0 	 (A-7) 

The only solution to this equation which lies on C is 

7T a = — - o 2 (A- 8) 
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At a
o
, it follows that g(ao

) = -jk. 

The region of the complex a-plane for which Re[g(a)] s  Re[g(a0 )] 

is defined by the equation 

cos(ct 	(a. 5 0 	 (A-9) 

where a = ar  + jai . This region is the shaded region in Figure 19. The 

steepest descent path must lie in this region to insure convergence of 

the integral. On this path Im[g(a)] = Im[g(a 0)]. Thus the equation for 

the path is 

sin(arl-"cc)sil 	= (A-10) 

This path is sketched in Figure 19. 

To resolve the sign ambiguity in Equation (A-5), da/dw must be 

calculated at the saddle point. At this point gu(a 0 ) = jk. Thus, using 

Equation (A-5), da/dw is given by 

[daldW] 	 1175-  - a-a 	k 
o 

(A-11)  

= ± ( 1+j) /37717 

Examination of Figure 19 at a = a o 
shows that 
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Re( ct) 

Figure 19. The Path of Steepest Descent 
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3a 4  da da = (1 + j--=) r  aar  dw 

cla r 
= (1 + j) dw  

(A-12) 

Since a positive increment in w corresponds to moving along S in the 

positive direction, it follows from Figure 19 that da r/dw > 0 at every 

point on S. Therefore, the positive sign in Equation (A-11) must be 

chosen in order for this equation to agree with Equation (A-12). Thus, 

for the problem at hand, Equation (A-4) becomes 

Rg(a ) 
I = + 	 21T 	e f(ao

) 
itg"(ce ) o  

(A-13) 

With the substitution of the above result into Equation (2-40), 

the far-field electric field intensity becomes 

-2ksine  e-jkR r .n L 3 e 	LOan(kcose) n=-0. 

+j(Y•cose-isine) n (kcos e )] 

This is the desired expressicn. 

(A-14) 
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APPENDIX B 

VECTOR TRANSLATION THEOREMS FOR 

CYLINDRICAL VECTOR WAVE FUNCTIONS 

In the derivation of the response of a probe used to measure the 

near field of an antenna on a cylinder, it is necessary to be able to 

translate the reference coordinate of the probe to that of the antenna 

being tested. The following is a derivation of the necessary theorems. 

Let the coordinates (ro_,4) o  ,z o ) be the location of the origin of 

the coordinate system (r 1 ,0',e) in the coordinate system (r,t,z) as 

shown in Figure 20. It is desired to express the cylindrical vector 

+4 	 +4 
wave functions M

nh
(r',0 1 ,z 1 ) and Nnh

(r',0 1 ,z') as functions of the 

coordinates (r,t,z). These vectors have been defined previously in 

Section 2.3. 

In the system (r',t',z') the generating function 	is given by 

11)(r',(10,e) = li(2)(Ar')e/"I e-jhz' (B -l) 

This can be expressed as a function of (r,t,z) by using Graf's addition 

theorem [19] for the Hankel function, which states 

(2) 	 r 
co 
2 	(2). 	

jrn(4)0-4)) 
Hn (Ar l ) = e 	Hn+m  lAr o )j (Ar)e m=-oo 

(B- 2) 

When this is substituted into Equation (B-l), the generating function 
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X 

Figure 20. Coordinate System for the Cylindrical 
Wave Addition. 
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is transformed into 

6 	jhz 
* = 	H(2) (Ar 	 ElJ (Ar)e-1174 e-jhz 

n+m 
(B-3) 

44 	44 
The vectors Mnh and Nnh 

are obtained by the following operations 

on *: 

44 
Mnh = V'xz* 

441 	44 
N
nh 

=
nh 

0 

(B-4)  

(B-5)  

where the primes denote operations on the primed coordinates (r',0',z'). 

Since the gradient operation is invariant to a coordinate transforma-

tion, these become 

M = 	I 	
jm0 	jhz 

(Ar )e n+m o 	
° Vx iJm(Ar)e-jm* e-jhz 

nh 
4.4 	 (2) 

M= 
(B -6) 

441 
N = nh k 

o m=-0* 

jm00  jhz 
H 
(2) (Ar )a 	e 	° VxVx 	(Ar)e-jr14  

e-jhz 	(B-7)  
nm 0 

  

41 	41 
With the definitions of Mnh 

and N
nh 

from Section 2.3, these 

expressions reduce to 

ro 	 jm00 	
o 

jhz 
M 
-4-4 

(ri 0' z') = 	(-1)m H(2) (Ar )e nh 	' 	 + 1T1 	0 	
M
4.1
-mh(r ''

z) 	(B-8) 
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co 	 jrn¢o jhz -> Nnh (r t ' (1) 1 ' z t ) = 	I (-1)m H (2) (Ar o  )e 	
o 

n+m 	 N1mh (r 	z) 	(B-9) - 	"(I) m=-m 

These are the desired translation theorems. They are valid for all 

r < 
- 0 
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APPENDIX C 

ORTHOGONALITY PROPERTIES OF THE 

CYLINDRICAL WAVE VECTORS 

There are four orthogonality properties of the cylindrical wave 

vectors M and N over a cylinder of constant radius which are useful in 

the evaluation of the Lorentz reciprocity integral in Section 3.3. 

These properties are developed below. 

Property A  

	

f r M1  x Al .;dociz = 0 	for all m, n, n, and h 	(C-1) 
nh mn _n  

This property follows from the fact that the vector TvI contains 

no z-component. Thus, the product Mnh 
x Mi

n 
 has only a z-component which Mme 
 

is zero when scalar-multiplied by the unit vector r. 

Property B 

. 
f f 	

nh x  mfl 

	

• rd4dz = 0 	for all m, n, n and h 	(C-2) 
_m _n  

The integrand in Equation (C-2) can be simplified as follows: 

41 	4 .1 	= V • NxN 	• r 	 nh
) 

mn nh 	mn 
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k2r 

	

mnA2 ( nA Zril (Ar) Zi (Ar) - 	Zi (Ar) Zlin (Ar) j ei(m+n)(1) e-j(n+h)z 

kL
r 

n 

This is identically zero when integrated with respect to and z unless 

m = -n and n = -h. However, under these conditions, the term in 

brackets is identically zero since A = A when n = -h. Thus property B 

follows , immediately. 

Imperty C  

u 	 h  2 A 3 
f 	.isdodz 	-t7 	Z-L (Ar)Z tj (Ar)d(n+h) 

nh mn 	 k 	n 	-n 	
for m = -n (C-3) 

= 0 	otherwise 

The integrand of the above integral can be simplified as follows: 

41 4j 	 4j , 
N x M • r = -N • (rxM ) 
nh mn • nh 	mn 

AA2 i
( 

 - —k ZAr)Z
m
j 
 (Ar)e

j(m+n)0 
e
j(n+h)z 

This is zero when integrated with respect to 0 unless m = -n. In this 

case the integral of the exponential term involving 0 is 27. The inte-

gral of the exponential term involving z results in the factor 276(nth). 

Since this is zero for n + h # 0, it follows that the substitution 

n = -h can be made in the rest of the expression. Thus property C fol-

lows immediately. 
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Property D  

co 7 	 2 3 
i• f 	-IV

Mr 
• 	= 	" A 	ii( ) 	) ( 	) for m =-n 	(C-4) - - 	Z Ar Z' Ar 5 r+h nh 	 k 	n 

= 0 	otherwise 

This property follows Immediately from property C. 

co 7 



APPENDIX D 

STATIONARY PHASE EVALUATION 

OF EQUATION (3-32) 

Equation (3-32) is of the form 

b 	jkrou(0 
I = f A(cp)e 	dcp 

a 

(D-1) 
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It is shown in [3] that for kro sufficiently large, the asymptotic value 

of the integral is given by 

271 	e j 	p(4) )+7/4] o o 
I = A(0 ) o 

kro lun (00)1 
(D-2) 

where the•i- or minus sign in the exponent is chosen to correspond to the 

sign of u"40). The stationary phase point of the integral is 4 0  which 

is obtained by equating the first derivative of 00 to zero. 

11'4o ) = 0 	 (D-3) 

In Equation (3-32), 11(4) is given by 

$  
11($) = -sine [cos 	- 	

n 
 kr

o
sine 

(D-4) 

The derivative of this with respect to 0 is 
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[ 
11 1 (4)) = -sine 	-sin 4 - krsine 

o 
 

n 
(D-5) 

This is zero for 

o 
= sin 

-1 	-n 
[kro

sind 

The second derivative of P(S) is 

(D-6) 

1-1 "(4) = sinecos0 	 (D-7) 

It follows from Equation (D-6) that y"(00) is positive for large kr o . 

Thus from Equation (D-1), the value of the integral of interest is • 

.n 
I = -2-- EP  (n 	e, fin ) sine 	0 

2n 	-jkro
sinecos0

n 
kr sinecos0

n 

j110 11  jn/4 
X e 

This is the desired result. 

(D-8) 
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APPENDIX E 

COMPUTER PROGRAMS FOR THE 

FAR FIELD EVALUATION 
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PROGRAM FARFLD(INPUTOUTFUT.TAPES=/NRUT.TAPE6=OUTPUT) 
C CALCULATES FAA FIELD PATTERN 
C FROM NEAR FIELD CN A CYLINDER. 

     

C 
REAL KR 
COMPLEX ERNI(6444).E2i64.64) 
DIMENSION EIB(16.68) 
DIMENSION A(E4),8(64) 
DIMENSION IBUF(512) 
COMMON 9UF(6000) 
DATA PI/3.141592654/ 
M=64 
N=64 
KR=12. 
NR=60 
NIB=5/2 
oem.4o. 
nza+1../(2.+COS(30. 4TI/180.1) 
DEL=45./0. 
PMI=0. 
M2=1 
DC 2 I=1.E4 
DC 2 J=1.E4 
EPNI(I.J)=CMPLX(0..0.) 

2 	E2(I.J1=CMPLX10..0.1 
DC 4 J=1.64 
IF(PMI.GE.172.5.ANC.FNI.LE.187.5) 

4.EZ(M2,J)=CMPLXICOS(IPP/180.)*PI/15.0).0.) 
4 	pH/raPH/..DEL 

CALL FFT(EZ.N.N. ■ 1. ■ 1) 
CALL FFTIEZ.M.N.1.1) 
CALL KOREK(EPHI.ELPM.N.KR.021 
CALL FFT(SPNI.M.N.1....1) 
CALL FFT(EZ.M.N.1.•11 
CALL OB(EZ.M.N.1) 
CALL OB(EPHI.M.N.-1) 
CALL FCL02(E20.N) 
CALL FOLOZ(EPHI.M.N) 
CALL BNORMIEZ.M.N.C9M1 
CALL BNORMIEPH/O.N.DBM) 
CALL PLTIERMI.E2.M.N.E2B.NRIPIEUF.NI8) 

40 	STOP 
END 

C 414 	 

 

• 

    

     

SUBROUTINE KOREK(EPHI.E2.M.N.KB.DEL2F) 
REAL KR 
CCMPLEX EPHI(M.N).E2IM.N).HANK,C2,C3./ 
COMMON MANK(4001.C11256)42(256),C3(256) 
2=CMPLX(0..1.) 
M2=M/2 
CALL KOEF(1.DELZF.KR.M.N) 
DO 10 J=1.N 
EPHI(1.J)=(C1(J)*E7(1,J)EPN/(1411+C2(J) 

10 	E2(1,J)=Z=EZ(1.J)=C3(J) 
DC 20 I=2.M2 

CALL KOEF(I,CELZFO02 ,0M041 
DO 20 J=104 
EPHI(I,J)=(CIAJ1 6 E2(Lej)EPNI(I.J1In2(j) 
EPHIIIi..11) 2 11•C1IWEZ(I1.0•EPHI(I1f4))*C2(J) 
E2II,J1=2 41TZ(I.J) 41T3(.1) 

20 

	

	EZ(Ii.J)aZ*E2(I144)n3(J1 
I1=M2+1 
CALL KOEFII1.DELZF.KR,M.N) 

     

       

       



119 

+2.17136671675....4140625,.25/ 
DATA IC(1,2),1=1,51/177.C15765666S6167,•10.3199366596679607. 
*1.07373046675,•.2576125,625/ 

DATA (0t1,1),1=1,51/93.9005105998914929,•6.5521650565937495. 
+.636281249999999999..260416666566666667,45/ 

DATA (011,2),1=1.5)/40.6320t59912109374,•3.16131591796676, 
+.49453125,....21075,.5/ 
l=2 4. 1 
Lisl+2 
DC 20 I=1,600 

20 	9J(I)=0. 
X=2 
CX=2./2 
XXX=1./X 
XX=XXX•XXX 
T=SORTIPI2+X) 
OC 5 J=1,2 
A=J-•1.25 
P=C(1.J) 
DC 3 1=2,5 	 • 

3 	P=1•XX.CII,J1 
9T=(A•PAXX.1.)/T 
14 =0(/,J) 
DC 4 1=2.5 

4 	P=P'XX40(I,J) 
PHI=XfA•P.XXX'.(A+.751 4. PI2 
DJ(J)=0T•COS(PHII 

5 	DT(J1=0T=SIN(PNI) 
9T(2)=mDY(1) 
BY  
TT=0. 
DC 6 1=601.1,2 
TT=TT+1. 
BT(I)=CX•TT•PY(I ■ 2)•9T(I4) 
IFILEGVAR(BT(I)).NE.0160 10 10 

6 	CCNTINUE 
R=A9S(BY(L1)) 
1./ 21.1+2 
DO 6 1=11,600.2 
TT=IT+1. 
NT(I)=CX•TT•eT(I...2)=0T(I4) 
IF(LEGVARIBT(I1).NE.01G0 TO 1C 
IF(1.E-9•A8S(BY(I1).GE.R)G0 TC 9 

8 	CCNTINUE 
GC TO 11 

9 	MsI 
GC TO 15 

10 	N=I•2 
GO TO 12 

11 	N=600 
12 	R=1.E•9•ABS(OT(N)) 

NF2=M+2 
00 13 IK=201,2 

IF(1185(9YCII/eLE.R)G0 TO 14 
13 	CCNTINUE 
14 	L2 I-2 

LimI 
15 	8J(M-11m0. 

9.104-31m1.E-37 
141=M-5 
TT*M/2-.1 
NF1=011+1 
00'16 1Km/011,2 



INCR=(..11)+NEL 
SC =0.0 
CO =1.0 
DO 17 II=1.NEL2 
J1=II+INCR 
J2=J1+NEL2 
IP(IOPT)12.14.14 

12 	DC 13 L=1,M 
T1=A(L.J1/ 
T2=A(L.J21*CMPIX(COISO*ISP) 
All.J11=T14.72 

13 	A(L.J2)=T1 ■T2 
GC TO 16 

14 	00 15 1.010N 
T1=A(J/IlL) 
72=A(J2.1.)•CMPLX(CC.SO*ISI1 
A(J1.L)=71442 

15 	A(.12.L)=T1•T2 
16 	SN=SO•CI+CO•SI 

CS=CO•CISO*SI 
CC=CS 
SC=SN 

17 	CONTINUE 
IF(ISN.GE.0)G0 TO 19 
00 18 K=1.M 
DC 18 L=1.N 

18 	AIX.L)=A4K.L)trM 
19 	RETURN 

END 
C 	 * • 

SUBROUTINE 08(E.M.N.ICPT) 
COMPLEX E(M.N) 
PIDEG=180./3.14159265 
R=1.E.•20 
DC 1 I=1.14 
DC 1 J=1.N 
7=REAL(E(I.J)1•2+AIMAG(E(I.J)1 4"2 
IP(Z.GT.R)R=Z 
IP(Z.GE.1.E•20) E1I.J3 ,ECMFLX(2.PICEG•ATANNAIMAG(E(I.J)). 
+REAL(EII.J)))) 
IP(2.1.7.1.E...20)E(I,J)=CPFLX(0.90.) 
IF(IOPT.GE.01 RNORM=R 
R=RNORM•1.E ■ 20 
DO 2 I=10 
DC 2 J=1.14 
Z=REAL(E(I.J)1 
IP(2.LE.R1 E(I.J)=CMPLX( ■ 200.00.1 

2 	IF(Z.GT.R) E(I.J)=CMPLX(111.•ALCG10(2/RNORM).AIMAG(E(I.J1)1 
RETURN 
END 

C 

 

44141•0411 
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SUBROUTINE FOLDZ(E.M.N) 
COMPLEX EITEMP 
DIMENSION E1M.N) 
M1=14,2 
DC 10 1=1011 
Il=141+I 
DC 10 J2/0 
TEMF=E(/..J1 
E(I.J1=E(I11.1) 

10 	E1I1.J)=TEMP 
RETURN 
END 

cm** * 	 4.44.44.1.1.******** ****** 	***** sem 
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GC TO 4 
3 	CALL PLTT(XPAGE,YPAGE./FEN) 

IFENz2 
NI0CI*J1zYPAGE 
GC TO 7 

5 	IF(I*E0.1) IPEN=3 
IF(IPEN.E0.3)GC TO 6 
X1N=LASTX•NICII.J/•LAST•XPAGELASTX•YPAGECIPAGE• LASTY 
X10=MIO(I+J)•LASTN ■YPAGE*LASTY 
X1=X1N/X10 
Ylz(X1•(NID(I*J)•LASTNI*LASTN•XPAGE•LASTX•NID(I*J)1/(XPAGE 

+-LASTX) 
CALL PLTTIX10. 1,21 
IFEN=3 

6 	CALL PLTT(XPAGE,YPAGE,IPEK) 
7 	CONTINUE 

00 A Iz1vNIJ 
8 

DC 16 01,IMAX 
IzIMAX•X*1 

DC 16 J=1,JNAX 
AJ=J-1. 
LASTX=XPAGE 
XFAGEz(AJeAD•XS/ZE/CIPI+FJ) 
LASTY=YPAGE 
YFAGEz(AJ•RI/RJ...AI•RJ/RI*PJ)•TSIZE/(RJ+RI)+NEIGHT• 

+E II,J) 
LASTN=LASTNN 
LAS7NNzNIO(I4J) 
IF(TPAGE...NID(I*J)113,14,9 

9 	IF(J.NE.11 GO TO 10 
CALL PLTT(XPAGEITPAGE.3) 
/PENz2 
GC TO 12 

10 	/F(IPEN.E0.2)GC TO 11 
X1N=LASTX*YPAGELASTY*XPACE•LASTX*NIO(I.J/*XPAGE* 

+NIDII+J•.1) 
XIO=YPAGE ■LASTY•MID(I+J)*H/OII*J■ 1/ 
X1gX/N/X/0 
Y1z(X1*(TPAGE..LASTT)+LASTY 4 XPAGE•LASTX•YPAGEMXPAGE• 

.LASTX) 
CALL PLTTIX1•1 9 3) 
IPEN=2 

11 	CALL PLTTIXPAGEOPAGE•IFEN1 
12 	NID(I+J)=. TPAGE 

GC TO 16 
13 	IFENz3 

GO TO 15 
14 	IF(J*E0.1) IPEN=3 
15 	CALL PLTT(XPAGEOPAGE*IFEN) 
16 	CONTINUE 

CALL PLTTIXSIZE+4160z1se•31 
RETURN 
END 

c ************** **mews*** 	  
SUBROUTINE PLTTIXONIPN1 
XLST=XN 
TISTztYN 
ILSTzIN 
XNzX 
YN=T 

IF(IPN.E0s2sANDe/LST*E0.3)G0 TO 2 
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APPENDIX F 

LOW PASS FILTER SUBROUTINE 
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SU3ROJTINc FTL(P.m.N.DrLI.THETA , AA MmA) 
COMPLEX P(M.N),CONV(12A) 
CI'IENSION R(65).( 65) 
DATA PI/3.1415926 54/ 
PID=PI/I6n. 
mAXm=1+INT(M*DELI*5IN(THETA*PID)) 
MAXN=l+INT(N*DELI*SIN(THETA*PIO)) 
CALL FFT(P,M.N.-10-1) 
CALL FFT(P.M.N.-1 ► 1) 
CALL FOLD(P.M.N) 
Y1=M/2+1 
N1=N/2+1 
DO 1 I=1.m 
DO 1 J=1.N 
Z=SORT((FLOAT(I-M 1 )/FLnAT( MAXM )) ** 2+ ( FLOAT ( J-N 1) /FLOAT(MAYN))**2)  

1 IF(Z.3T.1.) P(I.j)r-cMPIX ( 0.• 0 .) 
CALL POLD(P.m.N) 
CALL FFT(P,M04.1.-1) 
CALL FFT(P.M.N.1,1) 
Z=1./(2.*SIN(GAMOspID)*DELI )  
N1=M/2-2 
N2=N1+1 
N3=N2+1 
!!4=N3+1 
N5=N4+1 
CALL KARR(R•K.Z.N 2 .L) 
DO 5 J=1.N 
DO 4 I=1.m 
CONV(I)=P(I•J) 

4 P(I.J)=CMPLX(D..0.) 
DC 5'I=1.L 
I1=K(I) 
P(N4-I.J)=CONV(N3-I1)*(1• -R(I))+cONV ( N2-II ) *R ( I )  

5 P(N3+I.J)=CONV(N4+11)*(1• -R ( I) ) +cONV ( N5+I 1) *R ( I )  

N1=N/2-2 
N2=N1+1 
N3=N2+1 
N4=N3+1 
N5=N4+1 
CALL KARR(R.K.Z.N2.L) 
DO 6 I=1.1 
DO 7 J=1.N 
CONV(J)=P(I•J) 

7 P(I,J)=CmPLx(n.to.) 
7.:,0 6 J.7.1.L. 
I1=K(J) 
P1I,N4-J)=CONV(N3-I1)*(1• -R(J))+cONV(N2-II ) *R ( J )  

6 P(I,N3+J)=CONV(N4+11)*(1• -R ( J))+rONV(N5+ 1 1 )41R ( J )  
RETURA 
END 
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APPENDIX G 

COMPUTER PROGRAMS FOR THE 

APERTURE FIELD CALCULATIONS 
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PROGRAM APERT(INPLT,OUTPVIOAPES=INPUTOAFE6=OUTPUT) 
C 

REAL KR 
COMPLEX EPNI(32,32).EZ(32•32) 
DIMENSION EZ0(36#36) 
OIMENSI3N A(321,8(32) 
DIMENSION IBUF(S12) 
COMMON BUF(3000) 
DATA PI/36141592654/ 
NIB=S12 
M=32 
N=32 
OBM=40. 
NRR36 
KF=12. 
02=•S 
022=7./314 
DY=2••SIN(22•5 4"PI/100•1•XF/(2••PI*31•1 • 
DC 2 1=10,24 
DC 2 J=1,32 
EPHI(I,J)=CMPLX(0•0•) 
E2(I,J1=CMPLX(0e.0•1 
PHI=(.1..46•1*20PI/32. 
IP(J.GE•14•DR.J.LE•115)E2(1.J) 
•RCEXP(CMPLX(0.1•12.•COS(PM/))) 

2 	CONTINUE 
CALL PCLOZ(EZIPM•N) 
CALL FPTIZZ,M,1:1•11..11 
CALL FFT(EZOIN,1,1) 
CALL KOREK(EPM/•2,MeN,KF,07) 
CALL CMPNIEZIM.N.OY.02) 
CALL CMPN(EPMI,MoN4YOZ) 
CALL SIMULIEPM/•2,MeNgDY,021 
CALL APERTY(EPPI,M,N,DYI 
CALL APERTY(EZ,M,N•DY) 
CALL FOLOY(E204,N) 
CALL FOLOYIEPHI,M,N) 
CALL APERTZ(EPOI,M,N,072, 
CALL APERTZ(EZ,M,NIO22) 
CALL OBIEZ.M,N•1) 
CALL FOLOZ(EZ,M,N) 
CALL oe(EPHI.N.N,-t) 
CALL FOLOZIEPNIA,N) 
CALL BNORM(E20104,0800 
CALL BNORMCEPHI.M.N.DBM, 
CALL PNORM(E201 ,N) 
CALL PNORM(EPNI.M,N) 
CALL PLOTSC/BUP(1),512,940/ 
CALL PLT(EZOgNIEZE,NR•IEVP.N/9) 
CALL PLTIEPMI.M•N,EZB,NR,IBUF,NIB/ 
CALL PLOT10.0,0•099991 
STOP 
END 

c4ss444is444 ************** 44444 ************** 
SUBROUTINE KOREK(EPHIvE2•404KR•DELZP) 
REAL KR 
COMPLEX EPHI(MoNitE2(M,N),MANK,C211C3 ,02 
COMMON NANK(400).C1(256)421256/43(266) 
Z=CMPLX(O•ol.) 
M2=M/2 
CALL KOEP(1,0ELZFaRgM,N) 
DO 10 J=1IN 
EPN/(1,J1R(C11J)*E211,J/...EPMI(144))*C2(J) 

10 	£2(1,J)=VIEZ(1.J1 4C3(J) 
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SU9ROUTINE HANWEL(2,L) 
C THIS PROGRAM IS WRITTEN FOR 2 GREATER THAN OR 
C EQUAL TO 8. FOR SMALLER ARGUMENTS, ACCURACY DECREASES. 

DIMENSION 8J(600),PY(601) 
DIMENSION 0J(2),DY(2) 
DIMENSION C(5,2)00(5,2) 
COMMON 8J 
EQUIVALENCE 118.111/98Y(1)/ 

C 
DATA PI2,1.5707963267946S662/ 
OATAICII.111I=1,51/427.547175664246626, ■ 23.3947962766065937. 

41.17136571675,•.4140625,.25/ 
DATA (C(I,2),I=1,5)/177.01576E66696167,•10.3199366596679667, 

+1,07373046675,•,2576125,,28/ 
DATA I0(I,1),IsLe51/93.9E0510E996914929, ■ 6.5521650565937499, 

+.636261249999999999,••260416666666666667,95/ 
DATA (D(I.2),I=1,5)/40.63201599/2109374,•3816/31591796675, 

4.494531254 ■ 621675,•5/ 
L=2•L 
L 1=L+2 
DC 20 1=1,600 

20 	9J(I)=0. 
GC TO 2 
WRITE(6,112 
RCRMAT(iN .4142 = 	 AN INCORRECT ARGUMENT IN 
rSU9ROUTINE HANKEL•,11 

STOP 
2 	X=2 

CX=24/2 
XXX=1,/X 
XX=100(•XXX 
T=SORTOI2•X) 
DC 5 J=1.2 
A=J ■ 1.25 
P=C(1,J) 
00 3 I=2,5 

3 	Ps1,•XX.C(I,J1 
9T=(A•P•XX4.14)/T 
P=0(1,J) 
00 4 1=2,5 

4 	P=P•XX43(I.J1 
PHIzX4A•F"XXX ■ lA4. .751•PI2 
oJ(J).e.r•cos(PHI) 

5 	0Y(J)=8T•SINIPHI1 
RY(2)= ■ DY(1) 
8Y(41=•DY(2) 
TT=0. 
DO 6 1=691.1,2 
TT=TT4A. 
BY(I)=CX•TT•8Y(Im2) ■8Y(I=41 
IF(LEGVAR(BY(I)).NE.0)GO TO 10 

6 	CONTINUE 
R=A8S(8YIL//) 
L1=1.1.41.2 
DC 6 1=1.1,600,2 
TT=TT+1. 
8Y(I)=CX•TTY8V(I=.2) ■ 8Y(I=4) 
IF(LEGVAIRMYCl/).NE.0/60 TO 10 

7 	IFli.E•9•A8S(8V(I)1.GE.R)G0 TO 9 
6 	CONTINUE 

GC TO 11 
9 	Ms/ 

GO TO 15 
10 	M= I-2 



GC TO 11 
9 	DC 10 L=1.N 

T1=A1I2.L) 
8(I2.L)=AII1.0 

10 	8II1,LI=T1 
11 	CONTINUE 

DC 17 I=1.IEXP 
NEL=2• 10 I 
NEL2=NEL/2 	r 
NSET=mm/NEL 
SI=SIN(DI2/NEL) 
CI=COSIPI2/NEL1 
DC 17 J=1.NSET 
INCR=(J-1) ,PNEL 
SO =0.0 
CC =1.0 
DC 17 11=104E12 
Ji=II+INCR 
J2=J1.NZL2 
Ir(IOPT)12,14.14 

12 	DC 13 L=104 
T1=AILIJil 
T2=A(L.J2) , CMPLXICO.SC 4► ISt1 
A(L.J1)=11+T2 

13 	8(L.J21=Ti—T2 
GC TO 16 - 

14 DO 15 L=1.N 
T1=ACJI.LI 
T2=81.12.L)ICMPLXICC.SO*ISIni 
8(J1.1.1=11.+T2 

15 	A(J2.0=T1—T2 
16 	SN=SO•CI*CO•SI 

CS=CO•CI—SO•SI 
CC=CS 
SO=SN 

17 	CCNTINUE 
IF(ISN.GE.0)G0 TO 19 
DC 18 K=10,1 
DO 18 1.=1.N 

18 	AIK.L)=A(KeL)/Vm 
19 	RETURN 

END 
C 

SUBROUTINE DECE,N.NOOPT1 
CCMPLEX E(Moh) 
PICIEGs180./3.1.41592E5 
RxisEw20 
DC 1 Iml,M 
OC 1 JigloN 
Z=REALIEll,J)1 4P4P2414IKAGIECI,J)1•2 
IF12.GT.RiR=7 
IF(2.GE.1.E•20) E(I,J1NOPFLX(20ICEVPATAN2lAINAGIE(I401110 

•REALIE(I,J))/) 
1 	IF(Z.L.T.1.E201E(I.JIIRCNFLX(0.,80 

IFICIOPT.GE.01 RNORM=R 
RERNORN•q.E■20 
DC 2 /a104 
DO 2 JgioN 
ZsREALtEtIsJI) 
IF(Z.LE.R) E(III.1111CMPLXI•200..0.1 

2 	IF(2.G.T.R) ElIeJ)=CMPLX(10•4LOG10(Z/RNORM),AINAGIEtI,J/il 
RETURN 
END 
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C 



RETURN 
40 	DC 50 J=1.14 
50 	A (I.J)=CMPLX(0.90• 

RETURN 
END 

C 

 

** • 
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SUBROUTINE SIMULIEFMI.EZ.M,N,DV.02) 
COMPLEX EPHI(M,N).EZIMA),ZEPO 
ZERO=CMPLX(0.100 
N2=N/2 
M2=M/2 
MV=INT(FLCAT(M)+02•1.E•20) 
IP(MM.GT.M2)MM=M2 
EZ(1,1)=•EZ(1,1) 
00 10 J=2 ,042 
J1=N-J+2 
CP=SORT(1.•(FLOAT(J•111/F1CATIN2))"2) 
EZ(/,J)=•EZ(1,J)/CP 

10 	E2(1.J11=•EZ(1441)/CP 
J1=N2+1 
E2(i,J11=ZERO 
00 20 I=2.MM 
I1=M•I+2 
CT=FLOAT(I•i)/(M*02) 
ST=SOPTA1.•CT+ 0 2) 
EZII.1)=•EZ(I,1) 
EPNIIII1)=EPNI(I.1)/ST 
NN=/NT(FLOAT(N2)*ST•1.E•201 
IF(NN.GT.N2)NN=N2 
DC 20 J=2,NN 
SP=FLOAT(J•111/(N2•ST1 
CP=SORT(1.•SP"2) 
J1=N•J+2 
EZ(I.J1=•EZ(I,J)/CP 
EZ(I.J11=•EZ(I.J1)/CP 
EZ(IlsJi=•EZ(Il.J)/CP 
EZ(Illp.111=•E2(I1,J1)/CP 
EPNI(I,J)=IEPHIII.J)•EZ(I.J)•CT*SPI/ST 
EPNI(IgJ1)=(EPVI(/,J11+EZ(I.J1)*CT'SP)/ST 
EPNI(I1.J)=(EPNI(I11,J1+E2(I1ipJ)*CT+SP)/ST 

20 	EPHIII1,J11=lEIPMI(111J11•EZ(Il$J1)•CT 4SPI/ST 
I1=MM+1 
I2=M•MM+1 
J1=NN+1 
J2=N•NN+1 
IF(I1.E.T.M2)G0 TO 40 
00 30 1=11.12 
DO 30 J=1,04 
EPNI(I.J)=ZERO 

30 	EZ(I,J)=ZERO 
40 	IF(J1.CT.N2)RETURN 

DC 50 J=J1.J2 	' 
DC 50 I=1,14 
EPHI(I.J)=ZERO 

50 	EZ(I.J)=ZERO 
RETURN 
END 

C 	*********** *sass*** 	  
SUBROUTINE APERTZ(A0N04,02) 
COMPLEX A(N,N)11ARS.AIS.2 
COMMON AR(128)11AI(128) 
REAL KZ 
DATA PI/3.141.5E2654f 
Z=CMPLX(0..10 

• • 111  • • 
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A(I,J+1)=ARSSZmAIS 

10 	A(I.N..'J.1)mCCNJG(ARS...Z•AIS) 
KYmN2e0Y2 
AFSIEFS(AR,N,KY) 
A/S=FS(AI.NO(YI 
AlItN24.1)=ARS+Z*A/S 

20 	CCNTINUE 
RETURN 
END 

cs. *************** 410441.011.411 ********** 40111 ,04141, 41 04,4 ***** fil, 04.4401■4110 

COMPLEX FUNCTION FS(804,FPI) 
DIMENSION 8(N) 
COMPLEX Z 
FS=CMPLX(0st0t) 
ZuCEXP(CMPLX(0.,P8/)) 
N2wN/2 
DC 10 I=1042 

10 	FSmFS+Z+B(N2 ■ I411 
DC 20 I7-1.N2 

20 	FS0FS+24.8(N-I+1) 
FScFS*CEXP(CMPLX(0.,NE*FPIll 
RETURN 
END 

     

C 

         

         

SUBROUTINE PLT(EZA.MtNtEZEI,NR,IBUF0NIB) 
C 

CCMPLEX EZA(M,N) 
DIMENSION EZB(NR,NR) 
DIMENSION IBUF(NIE) 
MtImNR...2 
DC 10 Ia3,MN 
DC 10 J=3,MN 

10 	EZB(I.J)mREALIEZA(I...2.J...2)) 
CALL PLOTMX(15.0) 
NE/GHTm1.0 
XSIZE=4. 
YSIZE=2. 
CALL PLOT3D(EZE.NR,NR.XSIZE,YSIZE,$EIGHT.IBUF,NIB) 
CALL PLOT(5.014.0te3) 
DC 20 I 2 8,MN 
DC 20 Ji3IMN 

20 	EZB(I.J)=AIMAG(EZA(I'.214-211 
CALL PLOT30(E2BORINR,XSIZE•ISIZEtMEIGHT•IBUVINI8) 
CALL PLOT(8.0.0.0,*3) 
RETURN 
END 

      

C 

        

        

SUBROUTINE BNORM(E,MoNtOEKAX) 
CCMPLEX E(MtN) 
DO 10 Iw1,04 
DO 10 J=104 
XIIREAL(E(I,J))/DBMAX+1. 
IF(XeLT.0.)Xs0. 

10 	E(ItJ)=CMPLX(X,AIMAG(E(I14))) 
RETURN 
END 

       

	 saw** ***** este*** ********* moos* 
SUBROUTINE PNORM(E0MoNtDEMAX) 
COMPLEX E(M,N) 
DO 10 ImltM 
DO 10 Jm1,14 
Xm(AIMAG(E(I.J))+1110.)/360. 

10 	E(I.J1sCNPLX(REALIE(IeJ11141 
RETURN 

      

      

          

          



CALL PLTT(XPAGE,TPAGE,31 
IPEN=2 
GO TO . 12 

10 	IF(IPEN.E0.2)G0 TO 11 
X1N=LASTX•YPAGE•LASTY+XPAGE•LASTX+NIDII.J/ 4. XPAGE+ 

44/0(I+J•.1) 
X1D=YPAGE•LASTY.6MID(I 4J)+MIDCI.J•11 
X1=XiN/X/0 
Y1=1X1 40 ( 11PAGELASTYI.LASTY 40 XPAGE■LASTX40 YPAGE)/(XPAGE 
OLASTX) 
CALL PLTTIX1,Y1.31 
IFEN=2 

11 	CALL PLTT(XPAGE,YPAGE,IFEN) 
12 	MIO(I+J)=YPAGE 

GO TO 16 
13 	IPEN=3 

GC TO 15 
14 	IF(J.E0.1) IFEN=3 
15 	CALL PLTT(XPAGEOPAGEIIFEN/ 
16 	CONTINUE 

CALL PLTTIXSIZE•46, ■ 1......31 
RETURN 
END 

SUBROUTINE PLTTIX,Y9IPNI 
XLST=XN 
YLST=YN 
ILST=IN 
IN=X 
YN=Y 
IN=IPN 
IF(IPN.E0.2.ANC.ILST.Ea.31G0 TO 2 
IF(IPN.E0.3)RETURN 
CALL PLOT(X,Y,IPN/ 
X1=X 
RETURN 

2 	CALL PLOTIX1.YLST,3) 
CALL PLOTIXLSTOLST,31 
CALL PLOT(X.Y.2) 
Kim% 
RETURN 
END 

C 

C 

C 

  

*4 ***** OAF ***** 4011444•1/A 

 

SUBROUTINE PCLOY(E.MtN) 

COMPLEX E.TEMP 
DIMENSION E1M,N, 

N1=N/2 
DC 10 J=1,N1 
J1 ■Ni+J 
DC 10 I=1,14 
TEMP=EII,J/ 
ElI,J)=E(I.J1) 
E(I.J1)=TEMP 

RETURN 
END 

10 
C 
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PROGRAM APRT3(INPUT.OUTPLT.TAPE5=INPUT.TAPEE=OUIPUT) 
C 
C TEST CF PHASE FUNCTION. 
C AX.RX,CX EQUAL 1. OP 0. DEPENDING WHETHER THE ERRORS ON X.T. 
C OR Z ARE WANTED OR NOT. 
C 

CCMPLEX AXY(5000) 
C 

DIMENSION X(E510(65) 
DIMENSION HXL(E5),MXF(651 
DIMENSION NSI(E5).NSF(651 
DIMENSION PM/(5000).PN0(5000) 
DIMENSION XNC(50000) 
DIMENSION EPNI(69.69),I2LF(512) 
DIMENSION APA(65,65) 

C 
CCPMON/A1/RE.DXY.XSI 

C 
DATA NR.NXP,WP.NO,NID/65.69.5000.50000.512/ 
DATA PI/3.14155264/ 

C 
PEAD(5. 4 )AX.PX.CXINER 
READ(5•)NI,DS.HEIGHT 

C 
A=AX+PI/4. 
B=OX*PI/4. 
C=CX•PI/4. 
RE=20.•PI 
PC=.375•2.+RE 

C 
NFITE(6,101 
NRITE(6,15)A034 
NRITE(6,20)RE,NI 

C 
CALL OSIO(NI.X.Y.MXL.tiXR,I•SI.1, SF.NR.NXY.N1) 
WRITE(6,25) 
WRITE(6.30) 
NFmNSF(KSI) 
CALL APHI(X.Y.MXL.MXR.NSI.NSF.NXY.PHIgA.B.C.N1.NP. 

+OXY.KSI.AXY,PC) 
C 

NXP'NXY+4 
IF(NER.GE.1)G0 TO 5 
CALL PLT(HEIGHT.PMI.EPHIOXL.MXR,ASI.NSF.NXYgNP,IBUF.NIQ. 

+APA,NXP) 
GC TO 40 

C 
5 	CALL E03(PHI.AXY.NP.PC.AFOR.CR) 

NC=10•NP 
CALL PPN(PHI,PNO.YWOINP.NC,VXLIMXR.NSIINSF.NXY.KSI.DB) 
CALL E03(PHI,AXYgNP,PC.ARISR.CR) 
CALL PLT(HEIGHT,PHI.EPHIgHXL.MXR.ASI.NSF.NXT.NP.I2UF. 

+N/BIAPAgNXP) 
C 
10 	FCRMAT(i5X,•PHASE ERROR EFFECT•14/) 
15 	FCRMAT(2)(0•VALUE OF A" . .10X11F10.34, 

2X. 40VALUE CF El•.10X,1F10.3/ 
2X.•VALUE OF C•.10X.1F10.3) 

20 	FCRMATI2X.*VALUE OF THE RADIUS CF THE ARERTUFE•,1F10.3/ 
2X,•NUIMEER OF CIVISICNS 	 •1,110) 

25 	FCRMAT(iX•T•,//) 
30 	FCRHAT(15W•VALUES OF THE PHASE FUNCTIONO•) 
C 
40 	STOP, 
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20 	KFmKP*1 
GC TO 10 

25 	KF=NXY 
30 	KP=KP•1 

CALL OST(AD.KMAP.KXY.X.NXY) 
GC TO 50 

NO 	KXY=KP 
C 
50 	RETURN 

END 
****** 40.44 111 4* ***** IPSO *********** 4P4P4P44IPIPIPO 

SUBROUTINE EISTIAD.KM.KP.KXY.X.NXY1 

    

C 
C SELECTS ONE MARK. 
C 

DIMENSION XINXY1 
C 

     

01=AD•X(KM) 
D2=40.•X(KP1 
IF(ABS(01).GE.ABS(02)/G0 TO 10 
KXY=KM 
GC. TO 20 

10 	KXY=KP 
C 
20 	RETURN 

ENO 

SUBROUTINE ANPT(KSIOXL.MXP•NEI.NSF,NX1r) 
C 
C STAPTING AND FINAL POINTS FOR EACH LINE. 

    

C 

     

DIMENSION MXLINXY101XR(INXY) 
DIMENSION NSI(NXY)0NSF(NXV) 

    

C 

     

NI=1 
NF=1 
NSI(1)=1 
NSF(i)=1 
DC 10 KM=2.KSI 
N/A=MXR(KM11..PXL(KM1)+1 
N/B=MXR(KM1..MXL(KM1*1 
NI=NI+NIA 
NF=t4F+NIB 
NSI(KM1=N/ 
NSF(KM/=NF 

10 	CONTINUE 
C 

    

RETURN 
END 

C 	 1 ' 

     

     

SUBROUTINE APH/(X.Y.MXL.FXR.NSIOSFOXY.PHI.A.B. 
+0041.NP.OXY.KSI.AXY.P) 

    

C 
C PHASE FUNCTIONS. 
C 

CCMPLEX AXY(NP1 
C 

     

DIMENSION X(10(1.),Y(NXY) 
DIMENSION MXLINXY/.11XRINXY/ 
DIMENSION NSI(NX1').NSF(NXY) 
DIMENSION PHI(NP) 

    

C 
DO 20 KM=1.KSI 
NI=NSI(KM) 
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4=10 
I=1 
XM=0. 
SIG=1. 
1(1=3 
IF=0 

C 
CALL NRAND(NP.M.I.XM.SIG.IU.XNC.IF) 

C 
DC 2 IX=1.NP 
IC=I00(IX•11 
RNO(IX)=XNO(IO) 

2 	CONTINUE 
C 

00 5 I=1.NF 
RNO(I)=11./MF) 6 PNCIII 

5 	CCNTINUE 
C 

WgITE(6.10) 
WFITE(6.25)D8 
GC TO 49 

C 
WRITE(6.20) 

C 
CALL WRTZ(RNC.WF.10 XL.MXR.KSI.MSF.NXY.KSI) 

C 
10 	FCRMAT(1X.+C•.//) 
20 	FCRMATI10X.•VALUES OF NORMALLY CISTRIBUTED NOISE.'./) 
25 	FCRMAT(5X. 41.RATIO SIGNAL TC NOISE.°.1F10.3.2X. 10 0016 .,/) 
C 
40 	RETURN 

END 
	 4444 	 • 	  

SUBRCUTINE WRTE(Z.NF.MXL.MXR.NSI.NSF.NXY.KSII 
C 
C WRITE STATEMENTS. . 
C 

DIMENSION Z(NP1 
DIMENSION MXL(WXY).MXR(hXY) 
DIMENSION NSI(NXY).NSF(NXY1 

C 
DC 10 KM*1.KSI 
NIA=MXR(KM)•MXL(KM)*I. 
LXz54P(MXLIKM).•11 
NIuNSI(KM) 
NFieNSFIKM) 
WRITE(6.20)LX.NIA.12(I),I=NI.NFI 

10 
	

CCNTINUE 
C 
20 
	

FORMATC=X0sF6.3.///3 
C 

RETURN 
END 
	 • 	  
SUBROUTINE E03(NI/gAYY.NF.PC.AR.BR.CR) 

C 
C COEFFICIENTS FOR THE SYSTEM CF EQUATIONS. 
C 

CCMPLEX AXY(NP) 
C 

DIMENSION PM/INP) 
C 

81 ,g4.*PC 
82281•PC 

C+ 
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T3=0. 
Z3=0. 
C3=0. 

C 
RETURN 
END 

SUBROUTINE COEF(131.82,XA.VA.TX.TT,TZ.ZNM.TPZ) 
C 
C CALCULATICNS OF TERMS. 
C 

ZNI(x131*XA 
INT=B1•TA 
SC=XA•2+YA"2 
ZNM=SO•B2 
ZNP=S0+82 
TX=ZNX/ZNo 
TT=ZNY/INP 
TZ=ZNM/ZNP 
TP2=1.•2032/ZNP 

C 
RETURN 
END 

C 
SUBROUTINE DET(FI.F2,F3.G1.02.G3.H1tH21H3.0) 

C 
C DETERMINANT. • 
C 

AuF1•(G2*H3•G3 ,H2) 
8zF2*(G1*H3...G3 4441) 
C=F3*(61+$42•G2*H1) 
0=A■B+C 

C 
RETURN 
ENC 

	

C  	 • 	  
SUBROUTINE PLT(HEIGHT.PHI g EFHI.VXLIHXRINSI.NSF,NXY.NP.IBUF. 

+NIB.APA.NXP) 
C 
C PLCT CF THE PHASE FUNCTION. 
C 

DIMENSION PHI(NPI,EPHIINXF.NXF) 
DIMENSION APA(NXY.NXY) 
DIMENSION MXL(NXY).HXR(NXY) 
DIMENSION NSI(NXY),NSF(NXY1 
.DIMENSION IBUF(NIB) 

C 
DC 20 I=1.NXT 
00 10 J=10MXT 
IF(J.GE.MXL(I).AND.J.LE.PXR(I)) GO TO 5 
APA(I.J)=0. 
GO TO 10 

5 	K=.1..MXL(I) 
APA(I0.11*PHI(NSI(I)+K1 

10 	CONTINUE 
20 	CONTINUE 
C 

N2aNXT42 
DC 22 Iz3.N2 
DC 22 J=3042 
EPHI(I.A•ARATI■2•J■ 21 

22 	CONTINUE 
C 

CALL ANORM(EPHIOXP.NXP) 
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LOSTX=XPAGE 
XFAGE=(AJ+AI)•XSIZE/CRI+FJ1 
LASTY=YPAGE 
7FAGE=IAJ•RI/RJ•AI•RJ/RI+RJ1•TSI2E/CRJ+RIl+HEIGHT•E(I.J1 
LASTH=LASTHM 
LASTHM=HID(I+J) 
IF(YPAGE..HIDII.J1)5,5.2 

2 	IFII.NE.1)G0 TO 3 
CALL PLTT(XPAGE,YPAGE,3) 
IFEN=2 
GO TO 4 

3 	CALL PLTT(XPAGE,YPAGE.1FEM 
IFEN=2 

4 	HID(I+J)=YPAGE 
GO TO 7 

5 	IF(I.E0.11 IPEN=3 
IF(IPEN.E0.3)GC TO 6 
X1N=LASTX•HIC(I+J)...LASTH•XPAGE...LASTX•YPAGE+XPAGE•LASTY 
X10=MID(I+J).•LASTHYPAGE.LASTY 
X1=X1N/X1C 
Y1=tX1•(HIO(I+J)—LASTH)+LASTH+XPAGE.•LASTP0HID)I+J))/(XPAGE 
.+LASTX) 
CALL PITT)X1,Y112) 
IFEN=3 

6 	CALL PLTT(XPAGE,YPAGEI/PEN1 
7 	CCNTINUZ 

00 8 I=1,NIJ 
8 

DC 16 X=1.IMAX 
I=IMAX+K+1 
AI=I+1. 
DO 16 J=1,JMAX 
AJ=J-1. 
LASTX=XPAGE 
XPAGE=CAJ+AII•XS/ZE/(RI+RJ) 
LAST7=YPAGE 
YFAGE=(AJ•RI/RJ..AI•PJ/PI.RJ)•YSI2E/CRJ+RII+MEIGHT• 
+E (I,J) 
LASTH=LASTHM 
LASTHM=HIC(I+J) 
IF(YPAGE—HID)I.J1)13.1415 

9 	IF(J.NE.1) GC TO 10 
CALL PLTT(XPAGE.7PAGEt3) 
IFEN=2 
GC TO 12 

10 	IFIIPEN.E0.2)G0 TO 11 
X1N=LASTX*YPAGELASTY*XPAGE•LASTX•HIO(I+J)+XFAGE• 

+HIO(I+J-1) 
X10=YPAGE•LAST7+H/DtI+J)+14/C(I+J•11 
X1=X1N/X10 
Y12)X1*(7PAGE...LASTY)+LASTY•XPAGELASTX 4PYPAGE)/(XPAGE 
+LASTX) 
CALL PLTT(X1,71,3) 
IFEN=2 

11 	CALL PLTT(XPAGE.YPAGE,IPEN) 
12 	HID)I+J) ■YPAGE 

GO TO 16 
13 	IPEN=3 

GC TO 15 
14 	IF(J.E0.1) IPEN=3 
15 	CALL PITTIXPAGEOPAGE,IFEN) 
16 	CONTINUE 
C 

CALL.PLTTCXSIZE+44o•14.031 
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