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ABSTRACT

This document summarizes the basic relevant theory of probe corrected
near-field measurements on a cylinder. It presents the basic theory of
cylindrical wave solutions to the time harmonic wave equation and the
application of these solutions to cylindrical near-field measurement
systems. An application of the theory to the determination of correct
focus of plénar aperture parabolic reflector antennas is given. The
technique is based on calculating the feed position of the reflector by
statistically compari;g the measured or calculated aperture phase dis-
tribution to the theoretical phase distribution. The theoretical phase
distribution is obtained by wavefrcht image techniques.

Several numerical simulations of the theory are presented. The
programs written for these simulations are listed in the Appendix.

The numerical examples include both far-field pattern calculations and

defocused reflector feed position calculations.
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GLOSSARY OF SYMBOLS

del operator of vector analysis
angular freguency

permeability

permittivity

free-gspace wavenumber

carat symbol used over coordinate
variable to indicate a unit vector

directed along that coordinate

arrow symbol used over variables
to indicate vector guantities

-rectangular coordinates of a point
cylindrical coordinates of a point
spherical coordinates of a point

general position vector in any coordi-
nate system

scalar solution to the time harmonic
wave equation or aperture phase function

wavenumber in cylindrical wave
expansions

Yx2-h2 and sz-n » respectively

any one of four cylindrical Bessel

1unctlon§ (1-1 2 3, ?) Zl = Jn Z2 Yn'

independent vector solutions to the
time harmonic wave eguation
electric and magnetic field intensities

magnetic vector potential




a (h), b_(h),
n n
n n

n

->
J

e

cylindrical wave amplitude functions

intrinsic impedance of medium
cgrrent density

closed surface or summation symbol
determinant

integration contour in the complex
plane

V-1 in complex variable theory
integer subscripts and superscripts
free space wavelength

plane wave spectrum function
vector wavenumber with components

kx' ky, kz

focal length of parabola
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CHAPTER I

INTRODUCTION

Near-field techniques have been shown to be a potentially powerful
methdd for the determination of the far-field patterns of antennas.
Although the planar measurement surface has received the most attention,
experimental and theoretical work have been performed in cylindrical and
spherical systems also. The advantages of near-field techniques for far-
field pattern determination are many. They include time and cost effec-
tiveness, accuracy thaf is comparable to or better than that for the far-
field range, and none of the size limitations for large antennas that are
associated with conventional far-field ranges. There are disadvantages.
to near-field techniques. These inciude the requirement for a more
complicated and expensive measurement system, the requirement for a
more extensive procedure to calibrate the near-field probes as compared
to far-field probes, the patterns are not obtained in real time, and
computer software plays an important role in calculating the patterns.

There has been little or no work done on the application of near-
field techniques to antenna diagnostics other than far-field pattern
determination. The techniques are applicable, however, to antenna diag-
nostics such as the determination and location of defective elements in
phased array antennas, on site tests of aircraft radar antennas by means
of portable near-field probe positioners, and the determination of
correct focus for iarge reflector'antennas. Part of this report is

addressed to the latter abplication"




This report concerns near-field techniques in cylindrical coordinates.
It is organized into four major parts plus relevant appendices. Chapter
II presents a review of solutions to the time harmonic wave equation
is cylindrical coordinates. Solutions are developed for both scalar
and vector waves. The approximations which are valid in the far-field
region of a source are then developed. In Chapter III, the basic theory
of probe corrected near-field measurements on a cylinder is developed.
It is shown that the response of a probe which requires no correction is
that of the short dipole. Finally spatial sampling of near fields on a
cylinder is discussed. Chgpter IV presents a technique for the determina-
tion of correct focus of planar aperture parabolic reflector antennas
from near-field measuéements on a cylinder. The technique involves both
cylindrical wave and plane wave modal expansions of the near field radiated
5y the antenna. Finally, Chapter V presents the basic numerical
considerations that are required to’implement the theory. In addition,
numerical simulations of the theory are presented. All computer programs

used in the simulations are included in the Appendix.




CHAPTER II

CYLINDRICAL WAVE EXPANSIONS

2.1 Introduction

The cylindrical wave expansion is the most general solution to the
Helmholtz wave equation in the cylindrical coordinate system. This
chapter presents a mathematical development of the cylindrical wave
expansion for a region of space containing no free-charge density such
as the region external to a radiating antenna. Both the scalar and vector
cylindrical wave expansions are presented. The scalar wave expansion is
the simplest and is presented first.. The scalar expansion is useful as
a representation of the acoustic pressure field in cylindrical coordinates.
- It can also be used to represent any’rectangular component of the electro-
magnetic field vectors in a simple medium. The vector cylindrical wave
expansion is the most general solution to the vector Helmholtz wave
equation in cylindrical coordinates. Thus it can be used to represent
the total vector field of any one of the electromagnetic field vectors.
The chapter is concluded with a development of the far-field approximations
to both the scalar and vector cylindrical wave expansions.

2.2 The Scalar Cylindrical

Wave Expansion

N

Although modal expansions of time varying scalar fields are not

of interest in most electromagnetic field problems, solutions to the
scalar wave equation are much simpler to obtain. Thus the scalar case

makes an appropriate introduction to the vector case. In addition,




the technique used in the following section to generate the vector cylin-
drical wave expansion first requires the solution to the scalar wave
equation in cylindrical coordinates.
In a linear, homogeneous, isotropic medium, i.e., a simple medium,

, . , . > > 2 >

which contains no sources the electromagnetic field vectors E, H, D, and B
[ 3 -) L] ] 1]

and the magnetic vector potential A all satisfy the same differential
jwt

equation. For time variation of the form e , this equation is

F22+x¥e=0 (2-1)

where E denotes any o;e of these field vectors and k = w/ig . This
equation is commonly referred to as the vector Helmholtz wave equation.
Because it is a vector equation, it can be replaced by a system of three
simultaneous scalar equations to obtain a solution. Unfortunately,

this is impractical in most cases, for the equations are coupled and
difficult to solve simultaneously. There is one exception, however.

If E is written in its rectangular form E = ;Cx + ;CY + ;Cz, three
independent equations are obtained and in this case

VZC. + kZC. =0 (2-2)
i i

where the subscript i can be either x, y, or z.

Although the Ci in Equatiomn (2-2) are rectangular components of
the vector E, there is no restriction on the coordinate system in which the
differential equation is solved. Let Ci be expressed in cylindrical

coordinates as a function of r, ¢, and z as defined in Figure 1. 1In




Y

Figure 1. Coordinate System Definitions.




addition, let Ci be replaced by the scalar function y(r,$,2) in order
to eliminate notational difficulties casued by the subscript. 1In

cylindrical coordinates, Equation (2-2) then becomes

2 2
1l o ) 1l 9 9 2
;a—r[r%] +—zaT>‘§+—‘zk+k¢=° (2-3)
r 9z

The normal procedure for obtaining a solution to a partial
differential equation such as Equation (2-3) is to use the method of
separation of variables in which § is written as a product of three

functions of the form
Y(r,$,2) = ¢1(r)¢2(¢)¢3(z) (2-4)

Substitution of this into Equation (2-3) then yields an equation

which can be separated into three independent ordin;ry differential equa-
tions that can be solved by standard techniques. However, the resulting
product scelution for Y must be summed over a set of mode indices to form
the total solution. By varying the amplitude of each mode in the sum,
the solution can be made to represent any function which satisfies
Equation (2-3).

Substitution of Equation (2-4) into Equation (2-3) and division by

Y yields

+ k" =0 (2-5)




To separate this into three ordinary differential eguations, let

2
dvy
19Y%
—wz_d 5 = P (2-6)
2
avy
L3 (2-7)
¢3 d22

dy 2
L 48 [ _1| _p__ ;2 2 _ -
rwl ar {r dr} r2 h +k =20 (2-8)

Multiplication of this equation by rzwl yields the familiar Bessel equation

day
d 1 | 2 2 2 2‘ B _
roo [r —T—] + (k -h")r" - p wl =0 (2-9)

The solutions for wz and w3 are the familiar complex exponential.
That for wl is any one of the four cylindrical Bessel functions. These

.solutions will be written

i

¥ =2, (An), i=1,2,3,4 (2-10)
b, = Pt | (2-11)
vy = e 0% (2-12)

where h and p are yet to be specified from boundary conditions. The
choice of the algebraic sign in the exponent of the solutions for wz and
w3 is arbitrary. These have been chosen to agree with the convention

used in [1] and [2]. The functions Z; (Ar) are the four cylindrical




Bessel functions

2zl (Ar) = 3 (Ar) (2-13)
P P
z° (Ar) = ¥ (Ar) (2-14)
P P
Z3 (Ax) = H(l)(Ar)
2 2 _

= 3 () + 3 YO (2-15)
2% ) = 8% ()
P P

=J (Ar) - § Y_(AT) (2-16)

P P

where A must satisfy the relation
A =k -h (2-17)

The function Jp(Ar) is the Bessel function of the first kind, Yp(Ar) is

the Bessel function of the second kind, H(;)(Ar) is the Hankel function

(2)

of the first kind, and H p

(Ar) is the Hankel function of the second
kind.

In the present case, a solution for ¢ is sought which represents
waves in free space propagating ocutward from some finite size source
located at or near the origin of the coordinate system. This is a
sufficient and necessary constraint on the solution to specify the para-
meter p and the Bessel function which appears in the solution. Because
the solution must be periodic in ¢ in order to be single valued, it follows
that p must be an integer. This will be denoted by n. The proper choice

of the Bessel function can be made by examining their large argument

asymptotic expansions. These are




Jn(Ar) ~ ., —— cos |Ar - ———'n] (2-18)

sin |Ar - (2-19)

r.- ’ 3 ' o
'Y (ar) ~ o e i ( 2-20)
n m d

[ - . 2n+l
H(rzl)(Ar) ~\1—2— e ? [Ar "7 "] _ (2-21)

(

Of these four functions, it can be seen that only H i)(Ar), i.e.,
the Hankel function of the second kind, represents waves diverging
from the origin. Thi;;follows because its phase wvaries as efjAr.
Thus the product solution for Yy becomes

v(r,9,z) = H(i) (Ar) ejn¢e-jhz (2-22)

This solution for § is called a mode because it is not only a
function of position but also of the two mode parameters n and h. To
construct a total solution, a linear combination of all modes must
be formed. Because n is an integer, the linear combination in n must
be a summation similar to a Fourier series. The linear combination in h
must be an integral over some contour in the complex plane. This is
similar to the representation of a time function by the inverse Laplace
transform. In the present case, a finite power constraint on the total
field requires that the integral

T

ff Pp* pdedz (2-23)

m




be finite. This is a sufficient condition for the integral in h to be
over real values only of h. Thus the field expansion is mathematically
compiete in the sense that it is in the form of a Fourier integral
representation [3].

The total solution for V¥ is formed by multiplying each mode by
an amplitude function and combining all elementary mode solutions

into a modal expansion. This is given by

8

w(rl¢lz) =

IIM

f _(h) H )(Ar)

¢t

B L A L (2-24)
whgre cn(h) is the complex amplitude of each mode in the solution.
The mode amplitude is a function of'the mode parameters n and h.
Examiﬁation of Equation (2-24) shows that if r is a constant, the solu-
tion is in the form of a Fourier series in ¢ and a Fourier integral in h.
This suggests a convenient procedure for determining the mode amplitude
function cn(h) if ¢ is known on a given cylinder. Let r, be the radius

of that cylinder. It follows from Fourier inversion of Equation (2-24)

that cn(h) is given by

c (h) = (2) f f w(rl,¢,z)e_3n¢e3hzd¢dz (2-25)
: 47 H (Ar ) 2

m

Thus it is possible to solve for Y{(r,¢,z) at any point in space
external to a given cylinder on which ¢y is known by first evaluating
Equation (2-25) and then Equation (2-24). Equation (2-25) is a straight-

forward two-dimensional Fourier integral with well known techniques for

10




" numerical solutions. However, Equation (2-24) is not so simple.
Fortunately, it is the far-field approximation to y that is of interest
in most applications. This approximation will be developed in Section 2.4
for the vector field solution to the wave equation.

The mode solution of Equation (2-24) can be used to represent
any one of the three rectangular components of the electroﬁaghetic
field vectors. A total vector solution can then be written as the
vector sum of the x, y, and z components. Each component in the vector
sum would have a different amplitude function Ci(h), where i can be either
X, Y, or z. Although these amplitude functions are different for each
component, they are ;6t independent, for the total solution must satisfy
Maxwell's equations. Thus a tedious procedure would be required to obtain
a vector modal expansion which must then be converted from three rectan-
gular components to three cylindrical components. Fortunately, this

procedure can be circumvented by use of the method described in the

"following section.

2.3 Vector Cylindrical Waves

In a series of interesting papers published in 1935 through 1937,
Hansen [4] described a useful technique for generating a complete set
of vector solutions to the Helmholtz equation. The technique requires
only that the scalar wave equation be solved by the conventional technique
described in the preceding section. The vector solution is then obtained
from appropriate operations on the scalar solution. The technique has
been used extensively in spherical coordinates, but the literature shows

little or no application to other coordinate systems. However, it is

11

IIIIIIIIIIIIIIIIIIIIIIlIIIIIIIIIIIIIIIIIlIIIIIIIIlIIIIIIIIIIIllIllllllllllllllllllllllli




12

applicable to any coordinate system in which the scalar wave equation
can be solved by the method of separation of variables. It leads to
rapid solutions to the vector wave equation in the more familiar rec-
tangular, cylindrical, and spherical coordinate systems. Its applica-
tion to cylindrical systems will be described in this section. A useful
reference to this technique is Section 7.1 of [5].

The scalar function { of Equation (2-22) is a solution to the scalar
Helmholtz equation in the cylindrical coordinate system. Let ; be any
constant unit vector (i.e., the direction and magnitude of ; must, in
general, be a constant, although in spherical systems, a solution can

be obtained with a = r). Three independent vector solutions to Equation

(2-1) can then be formed as follows:

it =wlt (2-26)
M = vxap® - (2-27)
- %-Vxﬁi (2-28)

where the superscript i has been jintroduced to.indicate which of the
four cylindrical Bessel functions is used in the product solution for V.
It follows that these three vectors do indeed satisfy Equation (2-1) by

direct substitutioﬁ. This is shbwn as follows:

v (vy) + k2w

<
t
+
P
t
]

v [vzup + kzw]

=0 (2-29)




VM+ kM= Vz(anw) + kZanw
= an[Vzw + kzwl

=0 (2-30)

<
=z
+
w
=z
n
<

9' N
[% vXﬁ} + KVxM

- % Vx[Vz_r/*l‘ + kM
=0 (2-31)
These follow directly frém the useful identities
vz(v¢) é’V(v2¢) . (2-32)
v (vxd) = vx(vZ8) (2-33)

The vectors E} ﬁ, and N are fﬁnctions of the coordinates r,¢, and
z and of the cylindrical wa;e parameters n and h. Any general solution
for a vector field must be written as a linear combination of the three
vectors for all values of n and h similar to the general scalar solution
of Equation (2-24). It is convenient at this point to write a general
solution for the vector magnetic potential functionii(r,¢,z). The
corresponding solutioné for the magnétic field intensities can then be

obtained from the familiar relations

VXA (2-34)

o=+
"

(2-35)

t14
l.
B
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The vector K satisfies Equation (2-1) as do both E and ﬁ. The reason
for first writing the solution for % is that this is the most direct
approach to show that the vector f cannot appear in the general solution
for E or ﬁ.

The most general solution for K is obtained in a way similar to
the way that the most general solution for the scalar y was written in
Equation (2-24). However, in this case, three complex amplitude functions
must be introduced becauée there are three independent vector functions

. . >, .
in the solution. The solution for A will be written as

Jw nh

n=-w

X(r,¢,z),= X J [én(hfﬂj' (ri¢,2z) + bn(h)§;h(r,¢,z)

> i \ _
+ cn(h)Lnh (r,¢,z£]dh (2-36)

where an(h), bn(h), and cn(h) are scalar ;mplitude functions of the
three vectors. The superscript i, that indicates which of tﬁe four
Bessel functions is used in the field expansion, must be chosen to
satisfy the boundary conditions of the region in which the expansion is
made. The factor g%-has been added to simplify the resulting exprgssion
for the electric field intensity E:

In the present case, a‘solut;on is desired for the region of
space external to some cylinder enclosing all sources. Thus the choice
i = 4 must be made in Egquation (2-36) as has been discussed in the
preceding section. Solutions for the electric and magnetic field inten-

sities follow from Equations (2-34) and (2-35) and the useful relations

14




-
VxL = O (2-37)

UxN (2-38)

w |~

These solutions are

E=1J f En(h)ﬁ’rfh + bn(h)fq’:;[ dh | (2-39)
* _ -k b >4 >4 _
= o nz_m I I}m(n)unh + bn(h)Mnh] dh (2-40)

where the coordinate dependence has been omitted for simplicity. The
-> >

absence of the vector L in the solution results from the fact that H
. . + - + » 3 .
is obtained as the curl of A and the curl of L is identically zero.

The constant unit vector a in Equation (2-27) can be chosen

->

arbitrarily. However, it is convenient to choose this so that M has no

z component. The choice a = z does this. For this case, the solution

-> -
for M and N yields

-+ i ejn¢e-jhz

> i

_ 2-41
Mnh mnh ( )
*i _ =i _jn$_-jhz 2-4
Nnh n,e e ( 2)

where
At apdrgi : 32 (2-43
mon =T 2, (D) —dé—oy -43)
i
. 3Z : 2

*i _ “jh ""n ‘nh i ~ A i _
n, =Y 50t ¢kr Zn(Ar) + 2z Zn(Ar) (2-44)



With the introduction of these solutions into Equation (2-39),

the solution for the electric field intensity becomes

nh

= == 00

[--]
o ) .
E= ] ¢ I I:a et + b (h)_r:‘l:[ e 24, (2-45)
n nh n

It can be seen from this that E is written as the sum of two solutions.
Because the ; vector contains no z component, this part of the Solution
is tranverse electric to the z direction, or (TE)z' Similarly, it

follows that the ; vector is transverse magnetic to the z direction, or
(™) . :
On any cylinder for which r is a constant, each scalar component
of Equation (2-45) is in ﬁhe form of a Fourier series in ¢ and a Fourier
transform integral in z. Thus it follows that the inverse relationship

® 7

>4 >4 1 = sin¢ _jhz -
an(h)mnh + bn(h)nnh = 4“2 J I E(rl,¢,z)e e d¢dz (2-46)

-0 -1

must exist, where r, is the radius of the cylinder. Examination of this
3 . . +

shows that it is sufficient to know only two vector components of E on

the cylinder in order to determine both an(h) and bn(h) for any given n

or h. Normally, it is the tangential components E, and Ez that are used

¢

to do this. When Equation (2-46) is separated into its scalar components

and solved for an(h) and bn(h) as functions of E, and Ez' the result is

¢

-I¢ (n,h) , ’nhIz(n,h)

a%lEi‘i’ (hr ] * Azrl% E{‘fl’ (hz, ]

an(h) = (2-48)
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Iz(n,h)
bn(h) =3 (2~49)
L q@ e
k n 1
where the functions I¢(n,h) and Iz(n,h) are given by
© 7
I (nh) = =55 IJE (r_,¢.z)e IP%INZq44, (2-50)
¢ ar ¢ 1 -
-0l _‘n’
©
I (n,h) = % J fE (r.,$,2) e IP9IPZq44, (2-51)
z 4Tr2 z 1
-0 -]

Both of these integrals are Fourier transform integrals which can be
solved numerically wigh the efficient fast Fourier transform (FFT)
algorithm.

In order to use the above egquations, it is necessary to know

the exact tangential fields on the c¢ylinder of radius r If these

1°
fields are measured, it follows that the measuring probe must be ideal
or the measured data must be corrected for its directional response
characteristics. A method for doing this will be described in the
following chapter. Once an(h) and bn(h) have been determined, Equation
(2-45) can be used to evaluate the electric field intensity at any point

external to the cylinder of radius r The far-field approximation to

1

Equation (2-45) is developed in the next section.

2.4 The Far-Field Approximation to
the Cylindrical Wave Expansion

In the previous section, a general expression for the electric
field intensity external to a closed surface containing all sources was
developed. In general, the evaluation of this expression is a formi-

dable task. However, a considerable simplification results if the field

17
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is to be evaluated in the far-field region of the source. In this sec-
tion, the far-field approximation t¢ the cylindrical wave expansion
given by Equation (2-45) is developed. First, the Hankel functions

which appear in the cylindrical wave vectors ;;; and 3;; are replaced

by their large argument asymptotic expansions. The integral in Equation
(2-45) is then evaluated by the method of steepest descent. The far
field is then shown to be a spherical transverse electromagnetic field.

. . 4 4 .
For large r, the cylindrical wave wvectors Enh and ;nh which are

defined in Equations (2-43) and (2-44), can be simplified considerably

if the Hankel function H(i)(Ar) and its partial derivative with respect

to r are replaced by their large argument asymptotic expansions. The

large argument asymptotic expansion for H(i)(Ar)(gas been given in Equa-
3H

tion (2-21). The corresponding expansion for Brn can be obtained by

taking the partial derivative of this equation with respect to r to

yield
(2) ‘
i WM ST WS L L
or N Trx (2-52)
. . -3/2
where the term involving r has been neglected for large r. The
. . . . + 4 >4
resulting expressions for the cylindrical wave vectors mnh and nnm are
+4  * n=lg /20 -jAr
my = ~#3 ar © (2-53)
.n+k .
s P, | 20 _-JjAr
nh = (rh-zA) X 7 © (2-54)

Substitution of these expressions into the equation for the

-5
general solution for E yields
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> kB [2 Y .n in¢ ¢ 5 .
E=ji/2 ] s {w 1%[¢3a_(h) (2-55)

=1 )

~ -

1 Cn
- & (zh=zl)b_(n)]e Jhr =3hz gy

where A = Yk%-hZ? . ‘This equation will be transformed into one more
suitable for application of the method of steepest descent by making

the change in variables
h = ksino (2-56)

and by converting the far-field point to spherical coordinates with the

transformations

r = RsinB {2-57)
/'
z = Rcosb (2-58)
The result is
1/2.3/2 2 ot jng .7
T .n_jn . . : _
E=37%% 7Rsind X Je f [¢]an(k51n6) (2-59)
n=-—o o
" - 3/2 e-ijsin(a+e)da

- (rsina-zcosa)bn(ksina)]cos a

where C is the contour illustrated in Figure 2.
The integral in the above expression is -evaluated in Appendix A
using the method of steepest descent. The resulting expression for the

electric field intensity is shown to be




Im(a)
A

-7/2

Y

n/2

- Re(a)

Figure 2. The Contour of Integration C
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>  =2ksin® -jkR ¢ jng
_ =2ksin =-J © .n jn¢ 7
E=——""—e¢ e [¢a (kcosb
R L3 #a, ecost) (2-60)
+ j(rcose-zsine)bn(kdose)]
Because 6 = rcos® - zsinf, this equation can be separated into the
spherical components
ER =0 : (2-61)
. . .kR @ .
Eg = 312%55E9 e ) X jnbn(kcose)eJn¢ (2-62)
< n=—on
2 lu ‘kR @ x
g, = —2ksin = 7J ) j"a (kcosg) e?™ (2-63)
¢ R peeo D
Thus the far-field electric field intensity is transverse to the radial
direction, as would be expected.

Comparison of Equations (2-39) and (2-40) reveals that the far-
field magnetic field intensity can be obtained from the solution for the
electric field intensity by simply interchanging the amplitude weighting
functions an(h) and bn(h) and by including the multiplicative factor
~k/jwu. The resulting expressions are

Hp =0 (2-64)
E
= - i -
HB n (2-65)
Eg

H =— (2-66)




where n = Yu/e . Thus the far-field magnetic field intensity is also
transverse to the radijial direction and is related to the solution for E

by the vector equation

Because both E and ﬁ have no radial components and are mutually perpen-
dicular, the far field comprises a spherical transverse electromagnetic
field.

Examination of the foregoing solutions shows that the far field
is determined only bfithose values of an(h) and bn(h) for which
-k £ h £ k because Ikcosel £ k. Thus it can be concluded that the part
the near field for which |h| > Kk represents evanescent waves in the
vicinity of the antenna. These waves represent reactive energy storage
which in no way influences the far-field structure except to the extent
that they are neceésary to support a particular current distribution on
the antenna. In Section 3.6 a spait:ial sampling criterion is discussed
for the near field on the surface of a cylinder enclosing an antenna.
In that section, it will be assumed that the reactive energy stored out-
side the cylinder is negligible. This assumption will be shown to be

true for any antenna which is not a high-Q or supergain structure.

(2—-67)

of
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CHAPTER III

ANTENNA PATTERN DETERMINATION

FROM NEAR-FIELD MEASUREMENTS

ON A CYLINDER

.

3.1 Introduction

In the preceding chapter, a method has been described which allows
one to determine the far-field pattern of an antenna if the tangential
components of the near field electric field intensity are known over a
cylinder enclosing the antenna. The method reguires that the exact near
field be known and does not account for the directional response effects
of a measuring probe. In this chapter, the problem will be reformulated
so that these effects can be correcﬁéd for. It will be shown that the
cylindrical wave harmonics for the field radiated by an antenna can be
determined independently of the measuring probe provided the cylindrical
wave harmonics for the field radiated by the probe when it is used as
a tr;nsmitter are known. The basic assumption is that the probe is a
reciprocal measuring device so that its transmitting and receiviné
characteristics aré the same.

3.2 Lorentz Reciprocity

Applied to the Coupling
Between Two Antennas

Because it can be used to deduce a number of fundamental properties,
the Lorentz reciprocity theorem is one of the most useful theorems
in applied electromagnetics. This theorem is the key to the derivation

of the probe correction of near-field measurements and can be applied
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to any coordinate system.

Because of its basic role in the derivations

of this chapter, this section will be devoted to a tutorial review of

the development of this theorem.

Figure 3 shows a closed surface I containing two current’ source

-
distributions Jl and

-5
Similarly, define E2

>
J,.

> e
Let E. and H

5 1 | be the fields radiated by 3

1°

> -
and H. as the fields radiated by J

5 5 Because each

set of fields must independently satisfy Maxwell's equations, it follows

that

-

2>
VXE

VxH

To obtain the

SouH

JuuH

= 3-1
jws'ﬁl + '51 (3-1)
. ->
B (3-2
el + 3 w2
Jwe 2 2

] > > -+ >
Lorentz theorem, the relation V-(Ele2 - EZle)

is first expanded and then Equations (3-1) and (3-2) are substituted for

each curl term in the expansion.

The result is

(3-3)

By integrating this over the volume V and applying the divergence theorem

to the left side of the equation, the Lorentz theorem is obtained.

It is




Figure 3.

Illustration for the Lorentz
Reciprocity Theorem.
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= f('é g -F F)av (3-4)
v

In a source free region, the right hand side of Equation (3-4) is
+ + . . 13
Zero because Jl = J2 = 0. In the present case, it is desired to apply
the theorem to the region external to I which contains no sources, i.e.,
the sources are inside I. It follows that if I contains all sources
and the spherical surface at infinity I contains I, then the volume
integral on the right side of Equation (3-4) is the same for the region

inside i, as it is for the region inside I. Subtraction of the two

equations for the two different regions yields

->
xXH

- - [ @, - 2 R e (3-5)
Z

To obtain the desired result, it is necessary to use the fact
that the fields over an infinite sphere‘produced by any finite source
near the origin are in the form of a sphegical TEM wave for which E and
ﬁ have the relation given by Equation (2-67). Substitution of this for

-> ->
both Hy and H, in the integrand of Equation (3-5) yields




27

1R R - Baxud) )
R N e A 22XV
1 > > - > "> > > ° > >
= -jEl'Ez)R - (El-R)E2 - (E2'E1)R + (E2'R)E;]
=0 : (3-6)

where the fact that El'R = §2-R = 0 on Em has been used. Thus it follows

that if there are no sources external to Z, the Lorentz theorem reduces

" | ’
3( (E,xH, - E,xli,)+n da = 0 (3-7)
! |

This is the form of the theorem which will be applied in the following

section.

3.3 Probe Correction of
Near-Field Measurements
on a Cylinder

In this section, a method will be presented to obtain the cylin-
drical wave amplitude functions for the field radiated by an antenna
from probe corrected near—fiéld measurements over the surface of a cylinder
containing the antenna. The method has as its basis-the Lorentz reciprocity
theorem which was summarized in the preceding section. It will be shown
that the sblution for the cylindrical wave amplitude functions requires
the knowledge of the cylindrical wave amplitude functions for the field

radiated by the measuring probe when it is used as a transmitter. A
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method for obtaining this information is discussed in Chapter V.

In Figure 4, let Za be a cylinder of radius ra that contains an
arbitrary test antenna connected to signal generator A. Denote the field
radiated by the test antenna by Ea(?) and ﬁa(?). Let this field be
incident on a probe antenna whose reference origin 0' is located at the
point (ro, ¢o,zo). Let the probe be connected via a waveguide or trans-
mission line feeder to generator B. Denote the field radiated by the
probe Qhen generator B is activated by 55(?') and ﬁb(¥'), where ;' is
measured with respect to 0'. Let the field scattered by the test antenna
when generator B is activated be denoted by Eas(;) and ﬁas(;) and the
field scattered by th; probe when generator A is activated by §£s(?')
and ﬁgs(;'). In the following analysis, it will be‘assumed that there are
no multiply scattered fields between the test antenna and the probe so that
the total scattered field is given by these terms.

It is desired to solve for the signal induced across the terminals
of generator é when only generator A is activated. If generator B is
then replaced by a linear detector having an input impedance egqual to
the output impedance of generator B, it will be shown that the cylindrical
wave amélitudes for the field radiated by the test antenna can be calculated
from the detector output voltage if its amplitude and phase are known as
functions of ¢o and z, over the cylinder of radius r, It will be assumed
that the cylindrical wave amplitudes for the field radiated by the probe
when generator B is activated are known. Without loss of generality, it will
be assumed that both generators A and B are matched to their respective

line feeders. Otherwise the theory holds with only slight modifications.




Figure 4. Geometry for the Probe Correction Derivation.
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In Figure 4, let V be the volume bounded by the surfaces Zl, Zb, and

+ L, is the closed surface lying

Z_., where Zl is the cylinder of radius ryr Iy

just outside the probe antenna and shield enclosing generator B which

cuts the feeder for the probe at S and Z, is the sphere of infinite

bl
radius. Because V contains no sources, it follows from the Lorentz

reciprocity theorem that

0

|
—
o)
+
t
X
—
s
+
T
N
o
i

> -> - >

§ ((E +E ) x {(H +H
a bs as
Zl+2b+z°° (3-8)

where all multiply scattered terms have been neglected. The integrand
of this expression vanishes identically over L, as shown in the preceding

section. The integrand also vanishes over L . except for the area S

b b

because the tangential components of E vanish at the surface of a good
-> > ‘
conductor. Also, EbS = 0 and Hbs = 0 over Sb by virtue of their defini-

tion. Thus it follows that Equation (3-8) reduces to

as

)
ot
UF+

|
o +

> ~ > <> > ~
E xHa) e (-x) da + § (EaXH - EanHa) + (-r) da
z

1 1
(3-9)
+§ (B, xH -BExh ) » (-r) da+] (ExH -ExH) + (-x') da=0
S a b b a
5 p

where the terms involving products of the scattered fields have been

X > > 2> > >

neglected and where it has been assumed that E, + E = E and H = H
- b as b as b

over sb. These assumptions are valid if the scattered fields over El

and Sb are small compared to the incident fields. Without them, the -

desired solution to Equation (3-8) would be impossible.
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Let the four integrals in Equation (3-9) be denoted by I_, Iz, I

1 3’

and I4, respectively. It can be shown [6] that the integral I, is propor-

4
tional to the negative of the open circuit received voltage of the probe
antenna. From network theory, it is known that the received voltage

into any load impedance is proportional to this open-circuit voltage for

a fixed frequency. Thus the integral over S, will be replaced by

b
-Kv(ro, ¢o,zo), where K is a constant which can change with frequency
and v(ro, ¢o' zo) is the received voltage by the probe which is a
function of probé position (ro, ¢o' zo).

To evaluate thg integral for Il in Equation (3-9), the cylindrical

wave expansions of the fields over I. will be written initially in the

1

forms

> >4 > ., > > _
B =a () M, @ +b I & (3-10)
> ;ﬂi_ >4 > >4 > _
R () = 5o [bn(h)uml(r) + an(h)Nnh(r)] (3-11)
E (r') = MEE ra i@ (3-12)
() = o tmM | () + 4 (N ()
B = % [dm(n)ﬁrfn(}“') + cm(n)—ﬁ;n(;')] (3-13)

After Il is evaluated for these fields, the result must be summed in m
and n and integrated in n and h to obtain the final value of the integral.
With the vector addition theorems developed in Appendix B, the origin

-+ >
for Eb and Hb is first changed from 0' to 0. The result is
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o j&¢_ Jjnz
* > _ L _(2) o o > 1 = > 1 _
Eb(r) = Z-m( 1) Hm+£(kro) e e [cm(n) M-ln(r) + dm(n)N-zn(r)] (3-14)
© k¢ Inz
> + _ =k vk (2) o o
H_(r) = Sow EZ_W( ) H L (r e e
(3-15)
> 1 > > 1 > ]
x {dm(n)M_zn(r) + Cm(”)N—zn(r)
where A = /kz-nz . Substitution of these expressions and those for Ea

and ﬁa into the integrand for I1 gives
o je¢ dnz e =
_ k L.(2) o (o)
I = S ZZ_@} DR () e e i ;L [an(h)dm(n) +

>4 >1 >4 > 1 .
+ bn(h) cm(n)] [Mnth-2n+ L N—ln] + [an(h)cm(n) + b_(h)d (n)

>4 > 1 ~
X + X - 3—
M N-Zn N M-ln] rr d¢dz (3-16)

> >
where the vectors M and N are functions of the coordinates (r,¢,z).
From the orthogonality properties of the cylindrical wave vectors

developed in Appendix C, it follows that the terms involving the

1 o >4 > 1 " , .
XMLQn. r and N X N « r have zero contribution to

oducts M o :
products oh -

nh

Equation (3-16). The remaining terms can be evaluated with the aid of

Equation (C-3). Thus I. becomes

1
ke, @ ik Inz
_ 1 _1y X o o
T Z_m (-1) H;fi‘*ro’ e ‘e [an(h)cm(n) +b_(h) dm(n)]
(3-17)
4n?p> : (2) (2)°
X 6n26(n+h) (J_n(Arl) H (Arl) - J_n(Arl) H (Arl)]




33

where dnzis the Kronecker delta and §(n+h) is the Dirac delta function.

This expression can be simplified with the aid of the identity

' (2) i 2)° _ 32607 3-18
J-n(Arl) Hn (Arl) J_n(Arl) Hn (Arl) “Arl ( )

Thus Il reduces to

jn¢_ jnz

2
=Brh 4Dy e %% “stneh) [an(h)cm(n) +b_(md (| (3-19)

1 Wi n+m

which is independent of r When this expression is summed over all m

1°

and n and integrated in n and h, the result is

oo Jn¢o ) oo

- 8r 2 e (2)
Il - wH nz_me _J.[o A [an (h) mz_wcm( h) Hm'-m (Aro)
o =jhz
(2) [z,
+b_(h) mz-wdm(_h) B L (Aro)] e dh (3-20)

>

> >
Because multiple scattering is neglected, Ea' Ha' E_, and Eas satisfy

g

as

the homogeneous wave equation outside of Za. Thus by the Lorentz

reciprocity theorem it follows that I. is identically zero. Similarly,

2

13 is also zero. Thus it follows that Equation (3-9) reduces to

o jnd. ) ©
_ 1 o 2 (2)
v(ro.¢o,zo) =— z e f A [an(h) z cm(-h) Hn+m (Aro)
41 k ns-x -0 =—c0
. ® -jhz ~
(2) (o} _
+b (h) ] d_(=h) Hn+m(Aro)]e dh (3-21)

mn==—c




where v(ro,¢o,zo) has been normalized by choosing the constant of propor-
tionality defined in the preceding to be 32ﬂ3k2/wu.

Examination of this equation reveals that v(ro,¢o,zo) is in the
form of a Fourier series in ¢o and a Fourier integral in zo. Thus the

equation has an inverse which is given by

@©

(2) (2)

(Ar)) + b (h) ] d (-h) H

an(h) mz_mcm(_h) Hn+m Moo n+m(Aro)
(3-22)
2 = q -jn¢d jhz
_k . o) o)
= 2 {m {ﬂ vir_.$,.2.) e e a¢ dz

This is the desired result. It relatgs the cylindrical wave amplitude
functions an(h) and bn(h) of an arbitrary test antenna to the two-
dimensional Fourier transform of the output voltage of a probe antenna
when the measurement surface is a cylinder of radius r,- If the cylin-
drical wave amplitude functions for the probe antenna are known, it

- follows that Equation (3-22) can be solved for an(h) and bn(h) provided
two independent measurements of v(ro,¢o,zo) are made.

Let v'(ro,¢o,zo) represent the voltage output of the probe antenna
when it is rotated 90° about its longitudinal axis. An equation identical
to Equation (3-22) can be wiitten which realtes an(h) and bn(h) to
v'(ro,¢o,zo) with the exception that cm(—h) and dm(-h) must be replaceq
by the amplitude functions for the rotated probe. If these are denoted
.by cé(—h) and dé(—h), then this equation and Eguation (3-22) can be solved
simultaneously for an(h) and bn(h) to obtaig

2
I S v g (2)
an(h) 3 In(h) l dm (-h) Hn+m(Aro)
A An(h) Mz==00

(3-23)

- I'(h _ (2)
n ) mé_mdm (-h) H;n+m (Aro)J

34




2 =)
-k ' (2)
b (h) = = [In(h) L cp(-h) H U (Ar )
(h) m=—c
n
v 2
+ In(h) Z ﬁ;('h) Hé+; (Aro)J (3-24)
where
© -jn¢ jhz
- . [o] [}
I_(h) L {W vir .4 ,2) e e d¢_ dz_ (3-25)
© T —jn¢o jhzo
I'(h) = {m [ﬂv'(ro,%,zo)e e ap_dz, (3-26)
(3 (2) e (2)
A = - (o
n(h) Z_mcm( h) Hn+m(Aro)] m§_wdm( h)Hn'l'm(ArO)J
5 a2 't (2) (3-27)
mz_wcm( h)Hn+m(Aro)] [ Z_mdm(-h)l—lm_m(l\ro)]

It is assumed that the probe respondé predominantly to one polarization
component so that a solution for an(h) and bn(h) exists, i.e., An(h)
must not be 2zero.

Equations (3-23) through (3-27) form the basis of the method fof
the determination of the cylindrical wave functions for the field
radiated by an arbitrary antenna from measurements made with a probe
on a cylinder containing the antenna. By using these egquations to
determine the cylindrical wave amplitude functions an(h) and bn(h),
the far field of the antenna can Le determined from Equations (2-62)
and (2-63). Because the far field is determined from only those values
of an(h) and bn(h) for which -k £ h € k, it folléws that the cylindrical
wave amplitude funétions for the probe need be known only for arguments

inside this interval. In the next chapter, a method will be developed
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for calculating the aperture field distribution for antenna A from these
cylindrical wave amplitude functions under the assumption that antenna A

has a planar aperture.

3.4 Probe Correction
in the Quasi Near Field

A simplification in the probe correction can be obtained if the
radius of the cylinder on which the near-field measurements are made
is large enough to make certain approximations. These approximations make
it possible to eliminate the Hankel functions from the probe correction
equations to obtain a\solution which involves the probe far-field
functions themselves and not the cylindrical wave amplitudes in the probe
far-field expansions. The simplification is based on a large argument
approximation to the probe correction equations that involves an integral
definition of the Hankel functions. This solution is presented in this
section.

The basic probe correction equations have been given in Equations

(3-23) through (3-27). The terms in these equations which involve the

probe response are of the form

(2)

Loyp(=h) Hoon

m

(Ar ) (3-28)
o]

where ym(h) is any one of the four cylindrical wave amplitude functions
in the probe field expansion and r, is the radius of the measurement
cylinder. BAas discussed in Section 2.4, the wavenumber h is related to
the elevation anglg in the probe far-field pattern by the relation h =

k cos®, and A is given by A = vk2-h? = k sinf .
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The first step in expressing Equation (3-28) in terms of the probe
far-field pattern rather than in terms of thé Ym(-h) is to replace the
Hankel function by its integral definition. This is [5]

3% +3j
o-Jpm/2

H(;)(p) = f eIpcosd+ipd s, (3-29)

._TI, joo
2-—3

Before substitution of this into Equation (3-28), it is convenient to
change the variable of integration by replacing ¢ with the variable ¢ + 7.
This transforms the integral definition into one with symmetrical integra-

tion limits. The result is

lT-Q-jw
f e-jocos¢+jp¢

nFa

J
H(2)

o () = e dé (3-30)

>-3®

When Equation (3-30) is substituted into Equation (3-28), the
substitution -h = kcos(n-6) is made, and the order of summation and

integration in the resulting expression is reversed, the equation becomes

(2)

I v (-h) B L (Ar )
m
T .
= e?nw/2 I [?jmym[kcos(n-e)]ejmf]
. m
1 1]
2']

" e—Jkr051n9cos¢+jn¢d¢ (3-31)
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This integral can be broken into three parts: one over the path from

—% - jo t0 —% + j0, one over the path from —% to +~g—, and one over the
path from % + 30 to %— + j<. For kro sufficiently large, the first and
third integrals are small because the exponent of the complex exponential
contains a real and negative part over the respective paths for these
integrals that is proportional to kro. Thus these two terms will be
neglected.

Comparison of the bracketed term in Equation (3-31) to the far-
field expressions in Equations (2-62) and 2-63) reveals that this term
can be written in terms of the probe far field expressions. For example,
if ym'= Cpr the brack;ted term is EP (r-9,9)/sinb, whére the superscript

¢

p implies "probe". If Yo = dm, the bracketed term is Eg (m-9,9)/jsind.
The former choice will be made for illustration in the following.

Equation (3-31) then becomes

2 . . n¢
jn I P (n-0 ) e jkr051n9 cos¢= krosine dé ' (3-32)
¢ 14
r
2

The desired result is obtained from this equation by making
a stationary phase approximation to the integrdi under the assumption

of large kro. This is done in Appendix D to obtain

.

.n
J 2n P
sind J krosinecoscl)n E(b ( e'¢n)

-jkr _sinfcosé jn¢_ .
o n n_in/4 (3-33)

X e e
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where

A similar expression is obtained for Yo = bm by making the substitution

Il N, o

3 Ee (n-6,¢) for EF (r-6,¢) in this equation.

¢
penote the part of Equation (3-33) that does not involve the probe
response by Kp(ro,0,¢n). The quasi near-field approximation to the coupling

equation of Equation (3-22) then becomes

. P _ _ P _
Kp(ro,e ,¢n) En(h)Eq: (r-0, ¢n) an(h)Ee (v-86, ¢n)j[
®
= k_z [ J -ing_ 3hz
A2 23 'v(ro,¢oyzo) e e d¢odzo (3-35)

where as usual h = kcos® and A = k sin®, and ¢n is given by Equation (3-34).
This equation can be solved for an(h) and bn(h) provided two independent
measurements of v(r ,$ ,z ) are made.
o'"o' "o
Let v'(ro,¢o,zo) represent the voltage output of the probe when it
is rotated 90° about its longitudinal axis. Similar to the procedure |

described in the previous section, a second coupling equation can be

written with the exception that Ei and Eg must be replaced by the fields
v [ ]
of the rotated probe. If these are denoted by Eg and Eg , then this

equation and Equation (3-35) can be solved simulaneously for an(h) and bn(h)

to obtain
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an(h) = 2
K (r ,6,¢ )sin“®6
p o n
pl p [}
-E_. (1-6,¢ )I (h)+E. (7-6,¢_)I_(h)
x S 6 ~ n n g' n np (3-36)
Ee(w-e,¢n)E¢ (w-e,¢n)—Ee (w-6,¢n)E¢(w-6,¢n)
b_(h) = 1 -
Kp(ro,8,¢n)51n 0
P I - !
5 ]E¢ (m e,¢n)1n(h) ]E¢(ﬂ e,¢n)1n(h) (3-37)
P, _ p' . _ P (e P e
. Ee('" el¢n)E¢ (m el¢n) Ee (w el¢n)E¢(“ eld)n)

where In(h) and I;(h) have been defined in Equations (3-25) and (3-26).
Some insight into the probe correction process can be gained by
examiﬁation of these results. For exémple, let the probe be vertically
polarized so that Eg = 0. When the probe is rotated 900, it follows
that EE = 0. Aalso, for kr_ large, Equation (3-34) shows that ¢_ = O.

Thus, under these conditions, Equations (3~36) and (3-37) reduce to

Il(h)
a_(h) = 1 5 L (3-38)
K _sin“e EF (n-0,0)
o ¢
I_(h)
b_(h) = 1 L (3-39)

Kpsin26 Eg(w-9,¢)

Aside from the factor Kp, it can be seen from these that the cylindrical

wave amplitude functions corresponding to a particular elevation angle




6 (or wavenumber h = kcosB) are obtained from tﬁe probe response at

an elevation angle of w-8. This could have been predicted from the
geometry of the measurement system because, for example, if the eleva-
tion angle of the probe with respect to the antenna is 6, the ele?ation
of the antenna with respect to the probe is 7-8.

Although the approximations made in this section are useful for
gaining an insight into the probe correction, it can be seen by comparing
Equations (3-36) and (3-37) to the exact solutions in Equations (3-23)
and (3-24) that, with the exception of the Hankel functions in the exact
sclution, there is ligtle difference in the computational requirements
between the two solutions. Because the Hankel functions can be evaluated
numerically by means of very efficient recursion relations, the exact
solution can be implemented almost as efficiently as the approximate
solution. In particular, if the summations in the exact solutions
that involve the probe functions are evaluated in advance and stored
in a computer file, there is no advantage to be gained with the approximate
solution.

3.5 The Response of an
Ideal Probe

Because the solution of Equations (3-23) through (3-27) for the
cylindrical wave amplitude functions for the field radiated by an arbitrary
antenna require a knowledge of the cylindrical wave amplitude functions
for the measuring probe response, the question of the response of an ideal
measuring probe arises. If the probe is idgal, it requires no correction
and Equations (2-48) and (2-49) can be used to determine the cylindrical
wave amplitude functions for the test antenna. It will be shown in thié

section that the ideal probe response is that of a short dipole.
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To obtain the desired results, it will be assumed that the
probe response is desired to be directly proportional to the z comﬁonent
of the electric field on the cylinder. From Equations (2-41) through
-
(2-44), it is seen that only the vector N in the field expansion for the ~
test antenna has a z.component. Therefore, the solution for Ez
cah be written
[~+]
© AZ
n .
E (r,6,2) = ] & J b (h)
n k
n:-oo
When this is compared to Equation (3-21), it can be seen that if
v(r,¢,2) is to be directly proportional to Ez, the cylindrical wave
amplitude functions for the probe must be given by
cm(h) =0 for all m (3-41)
dm(h) =0 m# O (3-42)
do(h) = constant . (3-43)

//4
The constant in the latter equation will be normalized to the value
k in order to simplify the following.
Thus, if the probe is used as a transmitter, its radiated field

'follows from Equations (2;39) through (2-44) to be
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- >4
E(r(¢.2) = kNoh(r,¢,z)dh
~ oy b _a
= -r f jhAH“cz,) (Ar) e M Zan
+z [ A2Ho (Ar) e M2an (3-44)
Because the integration does not involve either r or z, this equation can
be rewritten in the form
2 2
e I .2 3
E(r,¢,Z?- {; vyl z(k + 322{]
x IH(? (hr) e IP2an (3-45)
2 2.2 . . . . . . .
where A" = kK'-h”. The value of the integral in this equation is given in
[7]. It is
e-ij
j2 R (3-46)
2 2 2 . . . s
where R =r + 2z and R is the spherical distance from the origin

to the field point. To obtain the desired results, Equation (3-46)
is first substituted into Equation (3j45) and the required differentiation

is performed. Next, the cylindrical coordinates r and z are changed to

the spherical coordinates R and 6 with the transformations r Rsinf and

~

Finally, the cylindrical unit vectors r and z are changed to

~

Zz = Rcosb.

~

spherical coordinates with the transformations r

~

Rsinf + BcosB and

~

Rcos8 - Bsinf.

z = After a lengthy and tedius procedure, the result is
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E(R,e,¢) = 3j 2 k3 e_:]kR I:R cos B
r -
x 322 + 2 s| - @sine
| (kR) (KR)
(1 ' 1
O Pt 3] (3-47)
. (kR) (kR) .

This is the field radiated by a short dipolé.

3.6 vSpatial Sampling on the Cylinder

Because the measurement of the near field of any antenna over
some surface enclosingithe antenna potentially requires the accumulation
of a large amount of data, the problem of determining an optimum spatial
sampling rate is one of great practical importance. Sampling rates
which are too high result in the acquisition of more data than are nec-
cessary to characterize a given near field, while rates that are too
low result in data which may be meaningless. In this section, the deter-
mination of a reasonable sampling rate on a cylinder enclosing the antenna
is discussed. Specifically, high-Q antennas, such'as supergain anteﬁnas,
will be excluded from the discussion because no a priori upper bound on

the requiredvsampling'rate for such antennas can be specified. The

. exclusion of this class of antennas is not restrictive in most cases

because they are rarely if ever encountered in practice.

To establish a sampling criterion for the near field on a cylinder
enclosing an antenna, the variation of the field with the coordinates on
the cylinder can be studied by examination of the cylindrical wave expan-
sions developed in~Section 3.3. It was shown that each component of the

field on a cylinder can be written in the form of a Fourier series in the
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azimuth angle ¢ and a Fourier integral in the axial distance z. Thus
it follows that the results of the sampling theory of fourier transform
analysis can be used to establish a sample spacing criterion on the cylinder
if upper bounds on the angular harmonic n and the wavenumber h can be
determined. An examination of the antenna guality factor, or Q, is one
means of establishing these bounds.

The Q of an antenna is an importanf parameter which can be related
to the effect of the antenna size on gain, bandwidth, and efficiency.
A high Q means that a large amount of reactive energy is stored in the
near field of the antenna. This implies large currents on the antenna
structure, high ohmic losses, a narrow bandwidth, and extreme frequency
sensitivity. Although it is difficult in general to relate the antenna
Q to the degree to which it is a supergain structure, it has been shown
that a supergain antenna is necessariiy a high-Q antenna [8]. Thus the
exclusion of high-Q antennas from the discussion will also exclude supergain
antennas.

The Q of an antenna which has been tuned to resonance by the

addition of a reactive element is defined as [9]

= 2wmax{Wm lwe}

S : /(3-48)

Q

where W and W° are the time average magnetic and electric energies
stored in the near field of the antenna and P is the total power radiated
by the antenna. If the Q of a single cylindrical wave with mode indices

n and h is defined ‘as




2emax{w " ,wE}
Q . nh’ nh (3_49)
nh P
nh

-

it follows from Equation (3-48) that the Q of an antenna which radiates

a spectrum of cylindrical waves is given by the linear combination

-] -] *

2
=§m_l;|cnh| Pnhthdh
Q= "o = (3-50)
r 2
LT legl By

where Cn is the complex amplitude of the cylindrical wave with mode

h
indices n and h. This equation is simply a weighted average of the

over all n and h, where the weighting factors are |C

Q |2 P
nh nh nh’

Collin and Rothschild [9] have evaluated Pn and th for a

h
single cylindrical wave radiated by én ideal, loss-free antenna of radius
a. The term "ideal, loss-free'antenna of radius a" was originally
defined by Chu [10] as one having no energy stofage for R < a, where R

is the spherical radial distance from the center of the smallest sphere
of radius a completely enclosing the antenna. In the present case, it is
interpreted as an antenna for which there is no energy storage for r < a,
where 2 is the radius of the smallest cylinder completely enclosing the
antenna. The Q for this ideal antenna must be less than or equal to

that for any other loss-free antenna fitting into the cylinder r = a,
because any field for r < a can only add to the energy storage.

The expressions for Pn and th for (TE)z and (TM)z cylindrical

h

waves are identical and are given by [9]
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_ 2(x%-n? (3-51)

nh wi

+ I:(n2+l-ﬂ2a2 ) (J2+y2 )]
nn

Qn *

wk2 (MAa

s(k-n?) LT (3-52)

: 2
- [(n+1)J -Aad . - ; -A 2
I n+L] - [(nTl)Yn IaYn+l]

2 2
where h < k and the argument of the Bessel functions is Aa = (k -h) a.

2k = 0 and i defi .
For_hr ' Pn an th is undefined

h
Collin and Rothschild [9] have shown that the quantity (l-(h/k)z)th=

1

Twe Pnhth increases very rapidly when n becomes larger than Aa. Because

this term aside from the factor 5&2 , appears in the numerator of the
general expression for Q in Equation (3-50), it follows that Q can become
lafge if Cnh is not small for n > Aa. Because A € k for real h, it.follows
that the highest significant angular harmonic in the cylindrical wave
expansion of the fields of an antenna which is not a high-Q structure is
N = ka. If a is taken to be the radius of the smallest sphere cdmpletely
enclosing the antenna, this result agrees with the conclusions reached by
Chu [10] and Harrington [8] in studying the physical limitations of antennas
using spherical wave expansions. In general, however, the radius of the
smallest cylinder completely enclosing an antenna is less than or equal to the
radius of the smallest sphere, the two being equal if the antenna is oriented
so that its longest dimension is perpendicular to the axis of the cylinder.

A sample spacing criterion for the azimuth angle ¢ on a cylinder

enclosing an antenna can be obtained by applying the Nyquist sampling
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criterion of Fourier transform theory to the above result. If N is the
maximum angular harmonic in the cylindrical wave eXpansion of a given
field, then it follows that the maximum angular separation between

4

adjacent samples is

L = = . (3-53)

Z |3

In this case N must be chosen as the smallest integer greater than ka,
where a is the radius of the smallest cylinder completely enclosing the
antenna.

The above limit on N has been Verified by Ludwig [11] for a par-
ticular antenna. He has shown that over 99.9 pér cent of the total
power radiated by a circular aperture horn is contained in spherical
waves with angular harmonics |n| < ka, where a is the radius of the
smallest sphere containing the aperture., Because a is a function of the
location of the origin of the sphere with respect to the center of the
aperture, he was able to demonstrate the variation of the maximum
significant angular harmonic with the radius of the sphere by varying
the position of the origin. Because both cylindrical wave and spherical
wave expansions are in the form of a Fourier sefies in the azimuth angle ¢,
it follows that his results are directly applicable to cylindrical waﬁe
exXpansions for this particular antenna for which the radius of the smallest
cylinder completely enclosing the antenna is the same as the radius of the

smallest sphere.
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A z-sample spacing criterion follows in a similar manner. Collin

and Rothschild [9] have shown that the term Pnhth in Equation (3-50)
>
increases rapidly for |n| = (k -hz) a. Thus it follows that |cnh| must
2
2
be small for h2 >k - 25-. This implies that the highest significant
a

wavenumber in the cylindrical wave expansion of the field of an antenna
which is not a high-Q structure is |h| < k. It follows that the maximum
z-sample spacing on the cylinder -is given Ly the Nyquist spacing

Az = (3-54)

=

/
|
N>

It is interesting to compare the two sample spacing criteria
which have been developed. If the measurement cylinder is the smallest
cylinder completely enclosing the aﬁtenna, then it follows that the arc
length on the cylinder separating adjacent sample points when sampling

in the azimuth direction is

As = aA$ (3-55)

F B

>

This is the same as the z-sample spacing with the exception that As > Az




when sampling on a cylinder of radius greater than a.

Although the sample spacing criteria defined by Equation (3-53)
and (3-54) are useful, they are in no way absolute, for it is impossible
to predict a priori an exact cutoff harmonic for n and an exact cutoff
wavenumber for h in the cylindrical wave expansion of the fields radi-
ated by a given antenna. In practice, more conservative sample spacings
have been used. For example, Collin and Zucker [6] state that the
maximum order angular harmonic in the cylindrical wave expansion of the
field radiated by an aperture on a cylinder is approximately 2ka, where
a is the radius of the cylinder. This would lead to a sample spacing in
the ¢ direction of one-half that specified by Equation (3-53). Joy and
Paris [12] have obtained excellent results in the calculation of the far-
field patterns of reflector antennas using a sample spacing of A/3 on a
plane located in front of the antenné; This spécing effectively allows
for a 50 per cent error in the A/2 criterion. In the actual measurement
of the near field of an antenna, therefore, the sample spacings speqi-
fied by Equations (3-53) and (3-54) should be used as guidelines in
determining the sample spacing between meﬁsurement points. In most
instances, the sample spacings chosen can be easily verified experi-

mentally on the near-field antenna range.
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CHAPTER IV

THE DETERMINATION OF ANTENNA
FOCUS FROM NEAR-FIELD

MEASUREMENTS ON A CYLINDER

4.1 Introduction

The verification of proper far-field focus for large ground-based
reflector antennas is impractical with conventional techniques once
the antenna has been installed in the field. However, because it is
not impractical to perform near-field measurements on the antenna with
portable near-field probe positioners, near-field techniques may prove to
be a powerful method for on-site diagnostics such as determining antenna
focus. '

This chapter presents a study of the application of cylindrical
wave technigques to the determination of focus for planar aperture reflector
antennas. A method is developed for the calculation of the reflectof
aperture fields from the near-field on a cylinder enclosing the antenna.
The method involves calculation of the cylindrical wave amplitudes for the
field radiated by the antenna, a transformation éf the cylindrical wave
amplitudes into a plane wave spectrum, and finally the calculation of the
aperture fields from the plane wave spectrum.

In order to use the aperture fields to determine correct focus of
the reflector, it is necessary to know the reflector geometry. In this
chapter, a parabolic reflector geometry is assumed. A technique is des-

cribed for calculating the position of the feed from the known aperture
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fields. Computer simulations of the techniques described in this chapter
are presented in the following chapter.
4.2 Transformation of Antenna

Near-Fields from a Cylinder
to a Plane

Figure 5 shows a planar apertﬁre antenna, such as a parabolic
reflector, located inside a measurement cylinder sﬁch that the antenna
aperture is located in the plane defined by x = 0. A method is developed
in this section by which the aperture fields of the antenna can be cal-
culated from the near-fields on the measurement cylinder. The method
takes into consideratién only the radiating fields of the antenna, i.e.,
the reactive or evanescént fields are neglected. This is a valid assump-
tion for most reflector antennas because they are wide bandwidth, low-Q
radiators which have very little reactive near-field power. 1If this were
not the case, the geometrical optics techniques used in thei£ design
would not be valid.

The radiation from a planar aperture antenna is most conveniently
formulated as a modal expansion in rectangular coordinates. Such an
expansion is called a plane wave spectrum expansion. It can be shown
that this is the most general solution to the wave equation in rectangular

coordinates. The solution for the electric field intensity in a region

containing no free charge density is given by [13]

where

'12=xk+yk +zk o : (4-2)
X Y fr/

“ R -»>
) =f I 2 (%) e'Jk'rdkydk (4-1)
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Figure 5.
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Illustration of a Planar Aperture Antenna
Inside a Measurement Cylinder.
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+ ~ ~ ~
r==xx+yy+zz (4-3)
++ ~ - A
= + —_
A(k) =xA +y Ay +zh, ‘ (4-4)
> >
The vector function A(k) is called the plane wave spectrum function.
Its argument i is called the vector wavenumber.
Although both K and E have three components, only two are in-
dependent. These will be chosen to be the y and z components.
It then follows from the condition V-E = 0 that Ax is given by
kA + kA
=_ XY zZz -
A, ” (4-5)
x - -

"

2> 2>
Also, it follows from the wave equation VE + K E = 0 that kx is given by

k. =\/k2-k2-k2 , k2k2 < k°
x y 'z vz

(4-6)

= - JK2tK2k2 , K2+Kk2-2 K7
J
Vy 'z Yy 2 .

The latter choice for the algebraic sign of kx is necessary for a bounded
solution as x + «®. The imaginary values of kx afe associated with evanescent
or reactive power storage in the near-field of the antenna.

It is desired to use Equation (4-1) to calculate the aperture
field at x = 0 from the known fields on a‘cylinder around the antenna.
To do this, the plane wave spectrum function Z(X) must be related to the
fields on the cylinder. One way to do this is to use the cylimdrical

wave expansion to calculate the antenna far-field from the near-field on




the cylinder. Then, by equating this to the far field expression for

-5 >
Equation (4-1), the plane wave spectrum function A(k) can be determined.

»> 2 2 2
However, the technique cannot be used to determine A for ky + kz 2 k

because evanescent waves do not appear in the far-field expressions.
As has been discussed, this is not a disadvantage with the reflector
antennas concerned by this report. .
The far-field expression for Equation (4-1) is obtained by

evaluating the double integral by the method of stationary phase.

The result is [13]

+> jZNLe-ij ~
E = R ¢ AY sind + A, cosf sing

- 8 Azcos¢jl (4-7)

where Ay and Az are functions of the wavenumbers at the stationary phase

point of the integral. These are

kx = k sinficos¢ (4-8)
ky = k sinfsing o (4-9)
k, = k cos® (4-10)

When Equation (4-7) is equated to the far-field expressions developed
from the cylindrical wave expansions given in Equations (2-60) through

(2-63), the following relations are obtained:
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Aysine + A_cosBsing = sin® ) jnan(kcose)e

T - 00

Ing (4-11)

o

Azcos¢ = -jsind 2 jnbn(kcose)e

T -t

Iné (4-12)
where the constant factor jm has been absorbed into both Ay and Az
to simplify the equations.

For a given or measured electric field intensity distribution on
the measurement cylinder; it is a straightforward érocess to calculate
the cylindrical wave amplitude functions and evaluate the right side of
Equations (4-11) and (4-12L These two equations can then be solved
simultaneously for Ay ;nd Az as a function of the arguments given by
Equations (4-8) through (4-10). oOver the plane x = 0, it then follows
from Equation (4~1) that the tangential aperture fields Ey and Ez are
given by

-k y -jk_z

‘ y z _
J J Ay(kx,ky,kz)e e dkydkz (4-13)

D

Ey(o,y,z)

—jkyy —jkzz
f f Az(kx.ky,kz)e e dkydkz . (4-14)
D

Ez(o,y,z)
where D is the domain of integration defined by the condition k§+k§'£ k2.
This is the condition for only radiating waves to be included in the fbrmula-
tion.

The numerical implementaticn of the techniques described in tﬁis

section will be presented in the next chapter.
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4.3 cCalculation of Antenna
Focus from Aperture Phase

Distributions

Reflector antennas are usually designed by the familiar ray
tracing techniques of geometrical optics. The antenna feed is assumed
to be a point source radiator, and thé aperture field distribution
is calculated by tracing rays from this source to the reflector surface
and then into the aperture. At the reflector surface, Snell's first
law is used to determine the direction of the reflected rays. By tracing
rays to each point in the aperture, the aperture phase distribution can be
calculated as the phase delay experienced by each ray as it propagates
from the feed to the aperture.

Parabolic reflector antennas are normally designéd so that the
aperture phase distribution is a constant. This is the condition that
the reflector be focused for optimum gain in the far-field or at infinity.
If the feed is not properly positioned, the antenna focus will be degraded,
and the gain will decrease. In addition, the direction in which the antenna
is focused can change. Therefore, correct focus is an operational considera-
tion for reflector antenna installations.

This section is devoted to the problem of determining the feed
position of a parabolic reflector antenna if it; aperture phase di#tr%buf
tion is known. Thus this is the inverse pflfhe design problem in which

the aperture phase distribution is to be determined from the feed position.

The technique is general in that it can be applied to any reflector geometry

if the correct aperture phase distribution is known for that geometry.
However, the specific derivations in this section will be for the parabolic

reflector focused at infinity. The technique is based on a method described

-
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by Kelleher [14] for calculating the phase distribution over the aperture
of a reflector antenna.

Let the phase distribﬁtion over an aperture located in the plane
defined by the relation x = 0 be denoted by Y(y,z). If the reflector
which illuminates the aperture is illuminated by a feed which can be
considered to be a point source, then Keheller has shown that the phase dis-

tribution function over the aperture is given approximately by

Yly,z) = k;'(a(y,z) - V(y,z)) . (4-15)
where k = 27/A is the free-space wavenumber, a(y,z) is the vector equation
of the image wavefront of the point source feed behind thé reflector,
and $(y,z) is the vector equation of some reference equiphase plane.

To obtain the function a(y,z), consider the geometry shown in
Figure 6. Let ﬁ(y,z) be the vector equation describing the reflector
surface and ;(y,z) the vector unit normal to the reflector. For a point
source feed located at the point Q in the figure, the ray reflected

from the reflector at P appears to originate from behind the reflector

at Q'. The vector from the origin to this image source can be written

i
1]

o5 + 0

30 +n Ex (R-0Q) + ;-Féj (4-16)

Because the angle of incidence at P must equal the angle of reflection,

it follows that
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Figure 6. Geometry for the Derivation of the Image
Wavefront Equation.




neB3' = ne (2-30) (4-17)

Therefore, Equation (4-16) simplifies to
U = 00 + 2n[R (R-00] (4-18)

The equation for a parabolic reflector with vertex cutting the

X axis at the point x = X, is

f(x,y.2) = 4p(x—xo) - y2 - z2 = 0 (4-19)

- -+
where p is the focal length of the reflector. Thus it follows that R

and n for the parabolic reflector are given by

41px0+y2+z2
X ———4p +yy+2zz (4-20.)

~ ~

Wi
I

>

VE

- Tl

=}
|

~

- X2p - yy-—-z2
2

(4-21)

V;pz + y2 + z

For a focused reflector, the feed is located at the point x = X, + p
and y = z = 0. Let the feed be defccused from this point by an amount
a in the x direction, b in the y direction, and c in the z direction.

—
The vector 09 for the defocused reflector is
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6l

A~ ~ A~

05 = xla+x + p) + yb + zc ' (4-22)

. >,
Substitution of these into the equation for U yields

=12
]

;(a+xo+p(l—2B)) + ;r(b+bB) + ;(c+Bz) (4-23)

where

B=14+ 2 2pa - yb - zcC

24
P > (4 )
4p +y + z

It is convenient to choose the reference plane G(y,z) so that
Y(y,z) = 0 where a=b =c = 0. This will be true if V= x(xo-p). Thus

Equation (4-15) becomes

Y(y,2z) k[a + 2p(1-B)]

k|a - 4p 21’; - L’; = z‘;] (4-25) -
4p +y + z_l

This is the desired relation. It gives the apefture phase as a function
of aperture coordinates and the position of the reflector feed. It
is valid for defocus distances which are émall compared to the dimensions
of the reflector. It is the subject of the balance of this section to
determine a, b, and ¢ given the measured distribution for ¢ (y,2).

Let the function Y (y,z) be specified at a discrete set of points
in the reflector aperture denoted by (yi,zj), where 1 €< i £Mand 1< j <N,

and M and N are positive integers. If ¢ is known exactly (i.e., with no



measurement error), it follows that Equation (4-25) can be solved for a,

b, and c from the known values of Y at only three points. However, in

the presence of measurement error, a statistical approach for obtaining .
a, b, and ¢ will‘yield the least uncertainty or error. The method whiéh
will be described in the following is based on the minimum mean squared
error criterior of statistical estimation theory.

It is convenient to rewrite Equation (4-25) in the form

Q.. + . + v,. = V.. B 4-26
ij @ BiJ b Yi5 © wlj ( )

where

. (4-27)
ij
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Y5 28
B.. =k : (4-28)
1J '42 + y? + z%
1 J
4pzj
= 4-29
YisT kT2 2 2 ~ (4=29)
4 + y. + 2,
i
= 4-
wij (Yi'zj) (4-30)

Let"\ﬁij represent the measured value of the phase at the point (yi,zj)
in the presence of noise. The square of the rms error between the measured

and calculated values of y can then be written
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i3 ij ij
= z z (az..a + B..b+ vy,.c - a )2
i3 ij ij ij ij (4-31) ,

This equation represents the sum 8f the squared errors at each measurement
point in the aperture. Because éach term in the sum is positive, it
follows that the minimum value of 52 is zero and that the only way this
can be achieved is to have zero error between aij and wij_at every point
in the aperture.

For a measureq\phase distribution mij' it is desired to_find the
values of a, b, and ¢ which minimize 82 in Equation (4-31). This solution
represents the best estimate of the reflector feed coordinates in the
minimum mean squared errof sense. The solution is obtained by setting
egual to zero the partial derivatives of 82 with respect to each of'the

parameters a, b, and c. The three simultaneous equations which are obtained

can then be solved for a, b, and ¢. These equations are
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362 2
A= B.. + .
db a Z Z zaijBlj b Z Z 2Bij
i3 ij
+cy Y 28..v,. -1 ) 2B..V..
i3 ij i3 i3 ij*ij
=0 (4-33)
382
Bc - @ E L 20575 + 2 L1 28447y,
-] i3
vel Tl -1 T2 ¥
L ij ijrij .
i3 i3
=0 : i (4-34)
For convenience of notation, these three eguations will be
written in the form
Aa + Blb +Cje =D, (4-35)
A,a + B,b + C,c = D, (4-36)
Aja + B3b + c3c }= ‘D3 (4-37)
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where the coefficients of a, b, and ¢ are defined in Equations (4-32) through

(4-34). Simultaneous solution for the defocused feed coordinates yields

1
Aa =3 [%1(B2C3 - B3C2)

: " - : - -38
Dy(B3C) = B)C3) * D3(BiCy B2C1):[ (4-38)

b= % I}l(Azcz = By
+ D2€?1C3 - A3C1) + D3(A1C2 -.AZC;{] (4-39)
c=i|}([c - a.C,)
T g 372 .
+ D,(a,C, - AC,) + D3(a;B, - AzBli] | (4-40)

when A is the determinant of the system of equations which is given by

A= - . -
Al(B2C3 B3C2) + A2(B3C B.C.)

+ - ) 4-4

1!\_,‘(131c2 Bzcl) (4-41)
In the following chapter, a computer solution for a, b, and ¢

is described that is based on these equations. The solution uses simulated

phase data that is obtained by calculating the phase function for a de-

focused aperture from Equation (4-25) and adding random noise to the data

to simulate measurement noise.

17 %173 .
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CHAPTER V

NUMERICAL CONSIDERATIONS

5.1 Introduction

The ‘application of near-field measurement techniques can require
detailed and tedious numerical methods. This chapter is devoted to a
discussion of the major numerical considerations that are involved in
the application of cyiindrical wave techniques to near-field measurements.
In order to correct for the probe response,'it is necéssg;y to know the
cylindrical wave amplitudes for the field radiated by the probe when used
as a transmitter. The following section describes how these can be
" obtained from the measured probe far-field. Next, the'pechniques for
calculating antenna far fields from near fields on a cylinder are
discussed. Finally, a numerical solution is presented for calculating
the feed position of a parabolic reflector antenna from the near field
on a cylinder around the antenna. In each case, numerical examples are
presented which have been performed with simulated near field data.

The computer programs which have been used in the examples are presented
in the appendix.

5.2 Determination of the Probe
Correction Coefficients

To evaluate Equations (3-23) and (3-24) for the amplitude functions
in the cylindrical wave expansion of the far field radiated by the test

antenna, it is necessary to know the amplitude functions in the expansion




of the field radiated by the probe. Because it is necessary to know these
functions only for wavenumbers such that |h| £ k, it is possible to obtain
them from a knowledge of the far field radiated by the probe when it is
connected to a signal source. In this section, a numerical procedure

is described for obtaining the necessary probe information from the
measured far field of thé probe.

To calibrate the probe, it is first necessary to measure both
polarization components of its far field when it is used as a transmitter
over the surface of a sphere with the probe at the center. It is pre-~
ferable, but not necessary, for the phase center of the probe to be
1ocat%d at the center\of this sphere. If this is true, the number of
cylindrical wave harmonics that are necessary to represent the field
radiatéd by the probe will be a minimum. In any subsequent near-field
measurements with the probe, the raaius of the measurement cylinder is
taken to be cylindrical radius out to that point on the probe which was
aligned with the center of the sphere when the probe far fleld was
measured. The measurement of the probe far field is most conveniently
performed with a gantry positioner such as that shown in figure 7. In
this figure, rotation in the elevation angle 6 is provided by-the gantry
while rotation in the azimuth angle ¢ is provided by the base positioner.

Because it is necessary to resolve the measured probe data into
Fourier series in the azimuth angle ¢, some upper limit on thé maxiﬁum
angular harmonic for the probe must be established. This can be done
by using the criterion established by Harrington [8] that the maximum.
angular harmonic is N = ka, where in this case a is the radius.of the

smallest sphere completely enclosing the probe or its aperture. As an
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example, the aperture of an open-ended WR-90 waveguide can be enclosed by
a sphere of radius 1.4 cm. At an operating frequency of 9.375 GHz,
it follows that N =2 (2 x 7 x 9,375 x 109/3 X 1010) x 1.4 = 2.75."

Thus the choice N

3 would be made for this probe.
Let the probe antenna coordinates be defined as shown in Figure 8.

The far-field electric field intensity radiated by the probe can be expressed

as

N

Eg(8,4) = jsin® ) jndn(kcosﬂ)ejn¢ (5-1)
n=-N
3 n inég

E,(0,4) = sind I i'c_(kcose)e’ , (5-2)
=-N

where cn(h) and dn(h), with h = kcos®, are the amplitude functions for
the éylindrical wave vectorsAﬁ-and ﬁ} respectively, in the expansion

of the field radiated by the probe. If the probe is rotated 90° in the
right~-hand sense about the x-axis, the far-field electric field intensity

radiated by the rotated probe can be expressed as

N

Eé(6,¢) = jsind ) iPa’ (keose) 31 ‘ (5-3)
n
n==N
' : N n_* jn -
E, (6,¢) = sind z j'e (kcos8) e’ ¢ (5-4)

1 1
where cn(h) and dn(h) are defined similarly. In order to correct for
the effects of the probe in calculating the cylindrical wave amplitude

functions for the test antenna, it is necessary to know cn(h), dn(h),

t t
cn(h)’ and dn(h) with the argument h = -kcos® = kcos(n-0), where 6 is the




70

Z
4
6 /)
. :
1/ |
} b
|
\ T -~y
N )
\\'
. S| b
AN ;
LR}
¢ ‘ t

X

Figure 8. Coordinate System Definitions for the
Measuring Probe. .




Helevation angle for the far field‘of the test antenna. That is, the

elevation angle for the probe is in the direction opposite from that
of the test antenna.

Because Equations (5-1) through (5-4) are in the form of a
Fourier series in ¢, the amplitude functions for a particular value
of 8 can be obtained by numerically evaluating the Fourier inversion
integral from the measured fields. For gxample, the solution for
dn(kcose) is

m .
dn(kcose) N f E (6,¢)e_3n¢d¢ (5=5)

+
213" Lsing -m -

]
This equation requires knowledge of the probe pattérn over a full 360o
azimuth angle. However, in use, thg/pfobe is always pointéd to the center
of the cylinder. Thus, a better fit of the fields over the front
hemisphere of the probe can be obtained if only this portion of its
field is used to evaluate dn(kcose)m

Let the probe fields be specified over the azimuth interval
defined by —¢1 < ¢ < ¢1. It is straightforward to show that Equation (5-1)

approximates the measured Ee(6,¢) over this interval with a minimum

mean square error if the dn(kcose) satisfy the system of 2N+1 equations

N sin(m—n)¢]
} a_(kcos8) :
n
n=-N

¢ s -
& [lr:e(e,we Mg - (5-6)

(m-n)¢, 25" sind <9,

where the integef m is varied from -N to +N to generate the 2N+l equations.

The dn(kcosB) for the probe can be cbtained by solving this system of
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equations with a technigue such as the Gauss-Jordan method for solving
simultaneous equations. The integral on the right of Equation (5-6)
is most conveniently evaluated from measured data by the trapezoidal

rule for numerical integration [15].

Solutions for cn(kcose), dn(kcose), and cn(kcose) can be obtained

for the probe in the same way. However, for the case of the rotated

]
probe functions, it is possible to solve for Ee(6,¢) and E¢(6,¢) from

the measured Ee(e,¢) and E, (6,¢), thus making it unnecessary to perform

¢

measurements on the far field of the rotated probe. The necessary

transformations are

. E,(E,C)cosé sind - E, (E,L) cos¢
£ (8,4) = — —2 (5-7)
Yl - sin“@sin<¢
\ Ee(g,;)cose + %Q(E,C)cose sing
E4(9,¢) = v (5-8)

Y1 - sin®8 sin¢

where

Y1l - sin“® sin®¢

tanf = (5-9)
-sin® sing .
cosb ) _
tant = -6 cosé ' ‘5 10)

In using these equations, Ee(E,;) and E,(£,r) can be obtained by numerical

¢

interpolation between the measured values.




The amplitude functions for the probe enter into the solutions
for an(h) and bn(h) given by Equations (3-23) and (3-24) in the form
of summations over the angular harmonics of the probe. The coefficients

in the summations are the Hankel functions Héf;

(Aro) where A = /IE:;E
and m is the angular harmonic of the probe. In the calculation of the
cylindrical wave functions for the test antenna, it is necessary to
evaluate an(h) and bn(h) at h = kcosf. Thus the argument of the Hankel
function is Aro = krosine.

5.3 Method of Far-Field
Pattern Calculation

In Section 2.4, it was shown that the far-field electric field
intensity over the surface of a sphere surrounding an antenna can be
written in the form

@

jsind ] 3'b_(kcose) e’ (5-11)

n=-c

Ee(9.¢)

sinf ). jnan(kcose)ejn¢ (5-12)

=00

E¢(9,¢)
These equations are in the form of a Fourier series summation in the
azimuth angle ¢ where the Fourier coefficients are functions of the
elevation angle 6. A mathematical solution for an(h) and bn(h), where

h = kcosf, has been presented in Equationé (3-23) and (3-24) a;-é function

of the measured response of a probe antenna when the probe is gséa to
measure the near fields of the antenna over some cylinder enclosing it.
The numerical implementation of this solution to obtain the far field

summations of Equations (5-11) and (5-12) is given in this section.
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The numerical solution can be broken down into the flow
diagram given in Figure 9. The calculations in that part of the diagram
concerned with evaluating the cylindrical wave functions for the field
radiated by the probe when it is used as a transmitter have been described
in the preceding section and will not be covered here. The basic
numerical tool in the calculations is the fast Fourier transform (FFT)
algorithm which is used to evaluate the Fourier integrals and perform
the Fourier series summations.

Aside from the factors involving the cylindrical wave amplitude
functions of the probe v;rhen it is used as a transmitter, it was shown
in Section 3.3 that the solution for an(h) and bn(h) requires the evalua-

tion of the integrals

@0 ™ . ) -jn(bo jhzo
= 5-1
In(h) ;L :L;v(ro,¢o,zo)e e d odzo ( 3)
. © T -jn¢ Jjhz
o o
= d 5-14
I_(h) _{., { v (_rd sz )e e %‘f‘zo (5-14)

where v(ro,¢o,zo) and v'(ro,¢o,zo) represent the output voltage of the
probe on the measurement cylinder of radius ro. The primed fumction is
used to denote the probe output after it is rotated 90o about;%ts 10ngi-
tudinal axié. .

Let the measurement cylinder be divided into a lattite of points
with coordinates (ro,nA¢,mAz) where 0 < n < N-1, 0 £ m < M-1, aﬁd M and
N are positive integers. To exactly evaluate Equations (5-13) and (5-14)
from the output voltages of the probe at these points, two conditions

must be satisfied. First, v and v' must be zero when 2z < 0 or z > (M-1)Az.

74




T P L

Obtain Probe Far-Field
E,(8",4") and
E¢(6',¢')

!

Enter Near-Field Data
v(ro,¢o,zo) and

V' (T, 0,52,)

Compute and Store
Probe Cylindrical Wave
Coefficients
(Solve Eq. (5-6), etc.)

"Low Pass Filter'" in z
and Resample with the
Spacing Given by
Az = A/ZCOSBC

Enter Probe Coefficients
cn(mAh), dn(mAh),

cn(mAh), and dn‘mAh)

L

Two-Dimensional FFT to
Solve for In(mAh)

and Ié(mAh) Given by

Equations (5-13) and (5-14)

>~

Solve Equations (3-23)
and (3-24) for
an(mAh) and

bn(mAh)

Evaluate Hankel
(2)
Functions Hn+m(Aro)

in Equations (3-23)
through (3-27)

One-Dimensional FFT
to Sum Equations
(5-11) and (5-12)

I

Output Far-Field
E¢(6m.¢n) and
Eg (8,00

Figure 9. Flow-Diagram for the Far Field Evaluation.
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Second, v and v' must have no angular harmonic n greater than w/A¢
and must be wavenumber limited in h to a maximum wavenumber less than or
equal to 7/8z. The first condition cannot be met with any radiating
structure. However, if the test antenna is aligned in the cylinder so
that it does not radiate appreciably in the #z direction, it can be met
approximately if M is chosen large enough. The second condition can
be met if the test antenna is not a high-Q structure and the sample inter-
vals A¢ and Az are chosen in accordance with the sampling criteria
discussed in Section 3.5. 1If thgse}conditions are mét, ﬁhe integrals
for In(h) and I;(h) can be evaluated most efficiently wigh a two-dimen-
sional Fast Fourier Transform (or FFT) algorithm [16].

The FFT is an algorithm in which the computations are performed
"in place,” i.e., the two-dimensional input data arrays v(ro,nA¢ ,mAZ)
and v'(ro,nA¢,mAz) are replaced by tﬁé output arrays IniMAh) and I;(mAh)
after the calculations are completed. As described by Cochran [16] the

output values of the integers m and n are

M M
-3 <m s 5 = 1 . (5-15)
and Ah is given by
2% ' R
= LT 5-17
Ah MAz . - ¢ )

Because the far~field expressions for Ee(6,¢) and E,(0,¢) are evaluated for

¢

h = kcos®, the values of 6 corresponding to h = mAh are given by
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g = cos“l [—] {5-18)
m _

Because it is impossible to measure the near field over a complete
cylinder enclosing an antenna, the present method for determining the
cylindrical wave functions for the test antenna is most suitable when
applied to antennas which radiate predominantly in the angular region about
6 = g- defined by Bc <@ <m- Bc. In order for all em‘defined by Equation

(5-18) to lie in this interval, it follows that Az must satisfy
Az = Sose ’ (5-19)

However, for Bc # 0, this condition violates the z-sample spacing cri-
terion discussed in Section 3.5. One solution to this problem is to
choose =z smaller than that specified by Equation (5-l9f and to ignore
the calculations for 6 = Bc and 6 > T - ec. This is not a very effi-
cient solution because it reduces the resolution of the ‘calculated fields
for Bc <@g <Tm- Bc. The decrease in resolution can be overcome by
augmenting the near-field data arrays with zeros thereby increasing M.

Although this is an acceptable solution, it is inefficient.for it

increases computer storage requirements, increases computation time, and

does not make full use of the FFT computations.
An alternate solution to the above problem is to first ¥smooth"’
or "low-pass filter" the near-field data in such a way thét it>can be
resampled by numerical interpolation with' the sample spacing specified
by Equation (5;191. The "smoothing" operation can be accomplished ef-

ficiently with the FFT algorithm. First, the near-field data arrays

-
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are transformed in z so that on output the wavenumber spacing is that
specified by Equation (5~17). Second, all elements in the transformed

arrays are set equal to zero for all m such that

|m| > MAz cosec . (5-20)

A
Finally, the data arrays are inverse transformed to create the "smoothed"
arrays. This operation is equivalent to that of filtering the data with

an ideal "low-pass filter" with a cutoff wavenumber given by
p =28 cos@ (5-21) -

After the "smoothing" operation, the near-field data arrays are
wavenumber limited in z such that the Nyquist sample spaciﬁg is that
given by Equation (5-19). Thus the arrays can be resampled ih z using
numerical interpolation with the sample spacing specified by Equation
(5-19) . In order to preserve "in place" calculations, the interpolated
arrays can directly replace the original arrays during the computationss
Because the interpolation process will extract fewer than M samples in z,
it is necessary to set equal to zero some of the elements of the original
arrays after the interpolation. It can be shown that these zeroe;. will
not affect the accuracy of the subsequent FFT operations. Instgad, the
resolution will be improved én output since all M values -of em
will lie in the interval eé <97~ ec.

After the evaluation of In(mAh) and I;(mAh), the cylindrical wave

amplitude functions an(mAh) and bn(mAh) can be solved for using Equations

-
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(3-23) and (3-24). The evaluation of the coefficients in these equations
which are determined by the probe was discussed in the preceding section.
Because gn(mAh) and bn(mAh) are both linear combinations of In(mAh)

and IA(mAh), the computations can again be performed "in place."” \Thus

on output, thé original data arrays will contain the set of cylindrical
wave amplitude functions from which the far field of the test antenna can
be evaluated.

The calculation of the far-field electric field intensity radi-
ated by the test antenna c;n be achieved by performing the summations
indicated by Equations (5-1) and (5-2). Again, this can be done most
efficiently with the FFT algorithm. However, each an(mAh) and bn(mAh)
must be multiplied by the factors jnsinem and jn+lsin9m, respectively,
before the FFT can be used to perform the summations. Because the calcu-
lations are performed "in place”" the output arrays will be the far-field

components Ee(em,¢n) and E (Sm,¢n) where

¢

¢ ===, 0<n £ N-1 ' (5-22)

cosS
o = (M/2)

The complete calculations are summarized in the flow-diagram of Figure 9.

(5-23)

MIZ
5
A
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1
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The computer program listed in Appendix E has been written to

. .
’

perform far-field calculations from the near field on a cylinder. The
program implements the solution for an(h) and bn(h) given in Equations
(2-48) and (2-49). It is easily modified to implement the probe correc-

tion theory with the change of only two subroutines. These subroutines




are KOREK and KOEF. An example run of this program will be described
in the following which illustrates the program operation. The example
calculations are for the far field radiated by a thin half wavelength
circumferential slot on a Eyiiﬂder-with a wavenumber radius product of
kr = 12. This calculation was first published by Bailin [17] in 1955.
Because his calculations were not performed on the computer, he did not
present a complete two-dimensional pattern bﬁt only selected cuts.

The first step in the program is to initialize all constants and
form the near field data arrays. In this example, both the ¢ and z com-
ponents of E.on the cylinder are set up as 64 x 64 complex arrays labeled
EPHI (64,64) and EZ (64,64), KR = 12 is the cylinder wavenumber radius
product, NR is an integer input to the plot routines which is 4 greater
than the array dimension 64, NIB is the dimension of the plotter buffer
IBUF, and DBM is the maximum number of decibels beléw 0 dB for which the
plots are made. DZ is the specified z sample spacing on the cylinder
which is calculated as Az/A from Equation (5-19) with eé = 30°. No z
filtering was used in this example because the slot on the cylinder
represents an impulse field along the z direction and the éample spacing
off the slot is meaningless.

The program first sets E = EZ = 0 on the cylinder.’ Next, it

b

computes Ez over the slot according to the formula

E, = cos(m$/2¢ ) . A (5-24)
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where 2¢° = 15o which makes the slot width one-half a wavelength for kr = 12.

The FFT operations in the program require careful choice of the origin in’




the data arrays. The top half of the arrays are the near fields on the

bottom of the cylinder, and vice versa. That is, the data is folded

in the z direction. This is accomplished by forming the slot field

in the first row of the EZ array. The first row in the arrays corresponds
to the center of the cylinder.

The program first performs a two-dimensional Fourier transform to
evaluate Equations (5-13) and (5-14). Because the E¢ array contains all
zeroes, the initial FFT operation on it has been ommitted. The first FFT
call forward transforms the Ez array by the rows, i.e., in the ¢ coordinate.
The second FFT call reverse transforms the Ez array by the columns, i.e.,
in the z coordinate. After the two FPT operations the first M/2 rows
contain the transform values for 0 £ h < hc' the last M/2 rows contain
the transform values for -hc < h < 0, where hc is defined by Equation (5—?1).
The first N/2 columns contain the transform values for 0 < n < N/2-1, the
last N/2 columns contain the transform values for -N/2 < n < -1.

Next the program evaluates an(h) and bn(h) according to the solu-
tions given by Equation (2-48) and (2-49). This is performed by sub-
routines KOREK whichAcalls on subroutine KOEF to form the coefficients
of I¢ and Iz in these equations. These coefficients involve Hankel
functions which are evaluated by subroutine HANKEL.

After an(h) and bn(h) are evaluated by subroutine KOREK, the
final step in the far-field calculation is to sum the azimuth Fourier
series according to Equations (5-11) and (5-12). fhe facfors §n+lsin6

and jnsine in these respective equations have been included in anéh)

and bn(h) computed by subroutine KOREK. The azimuth sefies are summed
’




by a final call to the FPFT subroutine for both the E¢ and Ez arrays.
The two FFT transforms are both inverse row transforms.

Before plotting, the output arrays are converted to decibels
and folded in the z direction. The latter step is necessary in order
for the 1 + M/2 row to correspond to a 90o elevation angle. Because the
Ee far field component (now contained in the Ez array) is the predominant
polarization component, subroutine DB is called first for this array with
the last input variable to the subroutine equal to +l1. This normalizes
the peak value of Ee to 0 dB. The second call of DB for the E¢ far
field component uses the last input variable equal to ~1. This normalizes
the peak value of E¢\relative to the peak value of Ee. The final step
in the program is to normalize both output arrays to the range from O to 1
by calls to subroutine BNORM and then to call the three-dimensional
plotting subroutine PLT.

The example output patterns for the slotted cylinder are given
in Figure 10. These patterns agree with the results published by Bailin
for this particular example. Because ec was set equal to 30° in cal-
culating Az/) from Equation (5-19), the patterns in Figure 10 cover
the elevation angles defined by 30o <6< 150°. The azimuth angle range
covers the complete range of -180° < ¢ < 180°.

A subroutine has been written to perform the z coordinate filtering
described for the far field flow diagram of Figure 9. .This subroutine
is listed in Appendix F. 1In this subroutine, the compglex array P(M,N)
is the input near field array, DELL is the z sample sPa;ihé éﬁAwavelength

ratio Az/A in the input data, and THETA is Gc in Equationj(5-23);l The
. ; ;

variable GAMMA is an angle greater than or egual to THETA which can be
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b) Azimuth Component

Figure 10.

Far-Field Pattern Radiated by a Half-Wave Circumferential
Slot on a Conducting Cylinder.
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used to vary the cutoff frequency of the low-pass filter according to the

. 2
equation hc ==L cos (GAMMA) . Normally, GEMMA would be set egual to THETA.

A
However, as an example, if THETA = 450 and GAMMA = 600, the elevation

pattern would be calculated for 45o <8 < 135° but would be egqual to

o o o o . .
zero for 457 < 9 £ 60" and 120" < f < 135 . 1In this way, the far side-
lobes in a pattern can he selectively deleted by varying GAMMA.

5.4 Method of Antenna
Focus Calculation

The flow diagram for calculation of the feed position of a para-
bolic reflector antenna from near-field measurements on a cylinder is
given in Figure 11. ihe flow diagram is identical to that for the far
field pattern calculation of Figure 9 through the block for calculation
of the cylindrical wave amplitude functions.

A coméuter program has been written to calculate the amplitude
and phase of the tangential electric field over the plane defined by x = 0

from the near field on a cylinder enclosing the aperture. This program is
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listed in Appendix G. This program implements the flow diagram of Figure 11

through the block to output the aperture fields Ey and Ez' A separate
program to calculate the feed coordinate positions a, b, and c¢ has
been written which will be described in the following.

The program listing in Appendix G includes an example of the use
of the subroutines to calculate the electric fields over a uniformly
illuminated rectangular aperture in the plaﬁe x = 0 from the near field
on a cylinder around the aperture. 1In the examéle, the aperture was.:

assumed to illuminate a 45° sector on the cylinder. The height of, the

aperture was 7 wavelengths. The fields on the cylinder were assumed
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Figure 11. Flow-Diagram for the Feed Position Evaluation
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to be those which would exist 1f geometrical optics were used to cal=-
culate the phase deiay associated with ray propagation from the aperture'
to the cylinder. The amplitude distribution on the part of the cylinder
illuminated by the aperture was assumed to be a constant.

In the program, the first step is to initialize all constants
and form the near field arrays. In this example, the only non—zerd field
component on the cylinder is Ez. The distribution for Ez is computed as
the phase delay from the aperture to the cylinder over that portion of
the cylinder which is illuminated-by the aperture. KR is the wavenumber
radius product for the cylinder which is taken to be 12 in this-example.
DZ is the ratio of the z sample spacing to wavelength on the cylinder.
It is taken to be 0.5. DZ2 is the ratio of the desired z sample spacing
to the wavelength in the calculated aperture fields. It is taken to be
7/31 in this example in order for all computed samples to lie in the aper-
ture. DY is the desired y-sample spacing to wavelength ratio in the
aperture. It is taken to be the width of the aperture in wavelengths
(i.e., 2 x sin(45°/2) x 2q/KR) divided by the number of computed y

intervals across the aperture (i.e., 32 - 1 = 31).

Through subroutine KOREK, the program operation is identical to

that for the far-field calculation described in the preceding.
After KOREK, the EPHI and EZ arrays, respectively, contain the values

n+lsine bn(kcose), respectively in

of the terms jnsine an(kcose) and j
Equations (4-11) and (4-12). The next step is to perform the azimuth
series summations in these equations. The FFT could be used. However,

it would do this for -180° < ¢ < 180°, and it is desired that the values,

of ¢ be those in front of the aperture only. Subroutine CWPW performs




these summations. It does this only for the values of 6 and ¢ for which
kx is real in Equation (4-8).

After the two calls to subroutine CWPW, the EPHI and EZ arrays,
respectively, contain the values of the right hand side of Equations (4-11)
and (4-12), respectively. The next step is to solve these equations
simultaneously for Ay and Az. This is performed by subroutine SIMUL.
After this subroutine, subroutine APERTY is used to perform the integra-
tion in ky in Equations (4-13) and (4-14) while APERTZ is used to perform
the integration in kz. Although the FFT would be more efficient for this
integration, it does not provide the capability of controlling the sample
spacing in the apertu;e. the FOLDY and FOLDZ subroutines in the program
are necessary in order for the center elements of the arrays EPHI and EZ
to correspond to the center of the zperture.

The final operations in the program are to convert the aperture
fields to amplitude in decibels and phase in degrees. This is accomplished
by subroutine DB. Normalization for the plotting subroutine PLT is
accomplished by subroutines BNORM and PNORM.

Figure 12 shows the output of the aperture field program for tﬁe
example discussed. ~Both the amplitude and phase are relatively constant
over the aperture as would be expected for this example. However, no '
absolute interpretation can be made of the figure because the trﬁe
aperture field for the assumed field on tﬁé cylinder is not known. The
increase in the computed phase at the top of the aperture in this example
has not been explained. It is felt that this row in the graph represents
a scan that is off the aperture because of an oversight in the use of,

the computer programs. Examination of the amplitude function seems;so
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bear this out, for the amplitude of the first row is very small compared
to the second row. The program needs further "debugging" and should be
run with measured data in order to effectively test it. Figure 12 dogs'
not display Ey in the aperture because it was so small (as was expected)
that it could not be interpreted.

The far-field pattern radiated by the assumed near-field distribu-
tion on the cylinder has been computed with the program described in the

preceding section. The elevation component, i.e., E_., of this pattern is

6
shown in Figure 13. This pattern exhibits the expected form of that which
would be radiated from a rectangular aperture. The azimuth component

was so small that it has not been plotted.

A numerical test of the minimum mean-square error solution pre-
sented in Section 4.3 for the feed position coordinates of ; parabolic
reflector has been performed on the .computer. For the test, a parabolic
reflector with an aperture diameter of 20 wavelengths and a focal length
to diameter ratio of 0.375 was assumed. The theoretical phase dist;}ﬁution
over the aperture was calculated from Equation (4-25) for four cases.
These were as follows: a feed defocus of %-in the +x direction, a

feed defocus of %’ in only the +y direction, a feed defocus of %:in

only the +z direction, and a feed defocus of %-in all three directions
simultaneously. The calculated aperture phase functions for these
four cases are displayed in Figures 14 through 17.

To test the minimum mean-square error solutions for the defocused
feed position, the calculated phase distribution of Figure 17 was cor:

rupted with random Gaussian noise in order to simulate a meéasured phase ¢

distribution in the presence of measurement noise. The noise was added
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to the phase distribution in an amount to make the rms signal to noise

ratio be 20 dB. It is felt that this is far worse than that which
would exist in a measurement situation. The noise corrupted phase dis-~
tribution is shown in Figure 18. A computer program was written to
calculate the defocus distances for this distribution by the minimum
mean-square error solutions given in Equations (4-38) through (4-40).

The results were

a=%5o1a (x direction) (5-25)

A direction) (5-26

= 8012 (y direction ~26)

c = A {z direction) (5~27)
8.004 .

These represent very small errors, less than 0.2%. However, the error

in these solutions is a function of the number of data points in the phase
distribution. In this case, that number was approximately 3000. 1In
general, the fewer the number of pcints used, the greater the uncertainty
in the computed values of a, b, and c¢. This follows because the minimum
mean-square error solution represents a statistical average that improves
when the number of data points are increased. The computer program which
was written to generate the data in Figures 14 through 18 and calculate

the defocused feed position is given in Appendix H.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

The basic mathematical theory of probe corrected near—fleld
measurements has been presented in this report. Also, the major numer-
ical considerations in the implementation of this theory have been
discussed. A technique for the application of the theory to the
determination of the correct focus of planar aperture parabolic reflec-
tors has been given. .Although the technique has not been ekperimentally
verified, it has been demonstrated by numerical simulation that the
required calculationé can be performed by the computer. The major
uncertainty is the accuracy of the Kelleher wavefront technique [14] for
calculating the theoretical phase distribution in the aperture of a
defocused parabolic reflector and the effect of systematic (as opposed
to random) errors in the measurement system.

It is felt that a considerable simplification in the implemen-
tation of the theory could result if advantage is taken of the symmetry
of antennas to which it is applied. For example, a parabolic reflector-
with a circular aperture may exhibit circular symmetry in the near field
of its aperture. If the near field in the aperture is known over any
two perpendicular diameter lines, it would then be possible to calculate

the feed position by the minimum mean square error method that has been

developed. This would greatly reduce the number of points in the aperture

at which the phase must be calculated. 1If such a reduction in the amount

of near field data that must be taken could also be achieved, the technique
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becomes much more practical. This might be achieved by taking two scans
on the cylinder, a longitudinal scan in a plane containing the vertical
diameter line of the aperture and an azimuthal scan in a plane containing
the horizontal diameter line of the aperture. Whether such circular
symmetry in the aperture fields could be exploited to obtain a reduction
in the amount of near field data that must be taken .is not known. However,
the circular field symmetry may lead to such a simplification.

The feed position derivations have been based on equating the
far-field approximations derived from cylindrical wave techniques
to the far-field approximations derived from plane wave spectrum techniques.
However, the plane wave spectrum formulation is valid for only one hemisphere
of space, while the chindrical wave formulation is valid for almost full
space, i.e., for a 360o azimuth angle. Thus a problem of theoretical
interest is to examine the mathematics of the cylindrical wave solutions
to determine if they can be reformulated for only one hemisphere of space.
The resulting theory would then be better suited for application to high
gain, narrow beam antennas which radiate predominately in one direction.
wWhether this is possible is not known. If it is, however, it would
eliminate the requirement for measuring the near fields on the cylinder
behind a directive antenna, thus reducing the amount of near field data
which must be recorded in a measurement. ~

Although the theoretical basis for transforming the near fields
on a cylinder into the aperture of an antenna is straightforward, it has
not been verified experimentally. Although such an experimental verifica-
tion is desirable, further numerical simulation may be worthwhile

before an experimental effort is made. Specifically, modal expansion




techniques should be used to first calculate the near field on a cylinder
from an assumed planar aperture field distribution. The techniques
developed in this report could then he used to translate the field on
the cylinder back into the aperture. In this way, some bounds could
be obtained on the errors introduced by neglecting the evanescent part of
the near field in making the transformations from the cylinder to the
aperture, or vice versa. Although it is felt that these errors are of
little significance for large reflector antennas, such a numerical
study should be performed before an experimental verification is
attempted.

To this time, there have beern no error simulation studies made
to detefmine the effects of random and systematic measurement errors on
calculations made from near-field measurements on a cylinder. Error
simulation studies for the planar near field measurement surface have
been performed [20,21]. No such error studies have been made for the
cylindrical surface. This information is necessary if design requirement
data are to be available for the mechanical and electrical design of
cylindrical near-field ranges. Both random and systematic positional
errors should be studied to determine the effects of not only errors in
the probe position but also such errors as would occur if the longitu@inal
axis along which the probe travels is not parallel to the axis of the
cylinder.

Finally, the application of plane wave spectrum techniques
and spherical wave techniques to the focus problem addressed in this report
should be studied.- If the test antenna has two degrees of angular

rotation freedom, spherical wave techniques may be applicable. In this
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case, the near field probe would be held stationary while the test antenna
is rotated in front of it. In cases where it is jimpractical to move

the test antenna, the probe may be rotated by a boom to cover the

near field of the antenna on concentric circles in a plane parallel

to the antenna aperture. In this case, plane wave spectrum techniques

could be used to determine correct focus of the antenna.
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APPENDIX A
EVALUATION OF EQUATION (2-59)
Each scalar component of the integral in Equation (2-59) is of
the form
1=/ f(a)ef8®) g (A-1)

This integral can be evaluated fcr large R using the method of steepest
descent. This method consists of first finding the point a on C at
which g'(a) = 0. The contour C is then deformed into the path S which
passes through a and on which Re[g(a)] < Re[g(ao)] and Imfg(a)] =
Im{g(ao)].v The point @ is called the saddle point of the integral and
S the steepest descent path. If this path exists, the change in vari-

ables
gla) = g(ao) - w2 (A-2)

can be made where w is real and c lies on S. Thus the integral can be

transformed into

’

. 2
- - -Rw” do . -
I1=e¢e ; f(a) e 5 (A-3)

where ¢ is a function of w defined impliczitly by Equation (A-2).
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The method of steepest descent refers to the first term in the

asymptotic expansion about R = «® of the integral in Equation (A-3).

This is shown by Clemmow [18] to be

Rg(a )
=+ [=25 o
I=3 Rg"(ao) e f(ao)

where the ambiguity in sign must be resolved by examining

_d_ci = x -2
dw aza =/ g (o)
¢}

o

at the saddle point. The sign in Equation (A-5) must be chosen
de tangent to S at o = a . The corresponding sign is then used
tion (A-u4).
The function g(a) in the integral to be evaluated is
gla) = -jksin(o+6)
The saddle point is found by setting g'(ao) = 0.

g'(a ) = -jkcos(a +6) = 0
) )

The only solution to this equaticn which lies on C is

(A-4)

(A-5)

to make

in Equa-

(A-6)

(A-7)

(a-8)
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At e s it follows that g(ao) = -jk.

The region of the complex o-plane for which Re[g(a)] < Re[g(ao)]

is defined by the equation
cos(ar+6)sinh a, <0 (A-9)

where o« = et jai. This region is the shaded region in Figure 19. The
steepest descent path must lie in this region to insure convergence of

the integral. On this path Im[g(a)] = Im[g(ao)]. Thus the equation for

the path is

sxn(ar+e)cosh a, = 1 (A-10)

This path is sketched in Figure 19.
To resolve the sign ambiguity in Equation (A-5), da/dw must be
calculated at the saddle point. At this point g"(ao) = jk. Thus, using

Equation (A-5), da/dw is given by

[da/dw]a:a

= - ' (4-11)
o] ]k
= + (1+j) Y1/k

Exanirnation of Figure 19 at o = o shows that
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1o} do
do _ i, _°r (A-12)
adw 1+ jaa ) dw

da_
=1+ 3) 3=
Since a positive increment in w corresponds to moving along S in the
positive direction, it follows from Figure 19 that dar/dw > 0 at every
point on S. Therefore, the positive sign in Equation (A-11) must be

chosen in order for this equation to agree with Equation (A-12). Thus,

for the problem at hand, Equation (A-4) becomes

: ) Rg(a )
‘ = 2 o -
I=+ ‘/‘:’g"(%) e £(a_) (A-13)

With the substitution of the above result into Equation (2-40),

the far-field electric field intensity becomes

Z = ~-2ksing e—]kR

T .m Jners
R 1 i e [¢an(kcose) (A-14)

n=-—-w

+j(ﬁcosa-isin&)bn(kcosa)]

This is the desired expressicn.
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APPENDIX B

VECTOR TRANSLATION THEOREMS FOR

CYLINDRICAL VECTOR WAVE FUNCTIONS

In the derivation of the response of a probe used to measure the
near field of an antemnna on a cyiinder, it is necessary to be able to
translate the reference coordinate of the probe to that of the antenna
being tested. The following is a derivation of the necessary theorems.

Let the coordinates (r0,¢o,zo) Pe the location of the origin of
the coordinate system (¢',4',2') in the coordinate system (r,$,z) as
shown in Figure 20. It is desired to express the cylindrical vector
wave functions ﬁ:h(r‘,¢',z') and ﬁih(r',¢‘,z') as functions of the
coordinates (r,$,z). These vectors have been defined previously in
Section 2. 3.

In the system (r',4',2') the generating function y is given by

~3hz!
e jhz

v(r',¢',2z') = Hiz)(Ar')ejn¢' (B-1)

This can be expressed as a function of (r,$,z) by using Graf's addition

theorem [19] for the Hankel function, which states

(2),, vy - -3m" % (), - Jm@ -4 )
. (Ar') = e mzzm dn+m(nrc)um(hr)e (B-2)

When this is substituted into Equation (B-1), the generating function
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P(r,¢,z)

Figure 20. Coordinate System for the Cyliﬁdrical
Wave Addition.




is transformed into

@« jm¢ th _ =
v = ) H(z)(Aro)e °e ° Jm(Ar)e mé =hz (B-3)
m:-m

n+m

The vectors ﬁgh and ﬁﬁh are obtained by the following operations
on y:
>l -
= 1 -
Mnh V'xzy (B-4)
o SN RN 1
Yan = & 7 Mon (3-5) |

where the primes denote operaticns on the primed coordinates (r',¢',z').
Since the gradient operation is jinvariant to a coordinate transforma-

tion, these become

. ’ jmd th . R
o (2) Imey o|l_ | -jmp _-jhz
M,y = m=§m Hn+m(Aro)e e ¥x sz(Ar)e e (B-6)
- jm¢_  jhz : :
=>4 - - -
Nnh = 2 z Hii;(Aro)e © e 9lyxyx sz(Ar)e Jmé e jhz (B~-7)
o ms-e| '

. e e =1 1 X
With the definitions of Mn and Nn from Section 2.3, these

h h

expressions reduce to

s imé_ jhz
ﬁh(r',qb',‘z') = Y D" H.r(:;(».rok e ° 'ﬁfmh(r,qs,z) (B-8)

= -




- jm¢
ﬁ‘;h(r',tb',z') = § (-0 H(z)(Aro)e

= oo n+m

These are the desired translation theorems.

e
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jhz
o 21
N__ (r,0,2)  (B-9)

They are valid for all
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APPENDIX C

ORTHOGONALITY PROPERTIES OF THE

CYLINDRICAL WAVE VECTORS

There are four orthogonality properties of the cylindrical wave

+ _> . - - - . -
vecters M and N over a cylinder of constant radius which are useful in
the evaluation of the Lorentz reciprocity integral in Section 3.3.-

These properties are developed below.

Property A

® T, .
[ <M - rd¢dz = 0 for allm, n, n, and b (c-1)
/ nh mn
- -7

- ->
This property follows from the fact that the vector M contains
. >3 > s
no z-component. Thus the product Mnh I an has only a z-component which

is zero when scalar-multiplied by the unit vector r.

Property B

[ 1 W R pasan =
Nnh:<Nmn. rd¢dz = 0 for all m, n, n and h (c-2)

-0 -T
The integrand in Equation (C-2) can be simplified as follows:

ﬁi

Wit . ot
nh X l“mn z Nmn (ranh)
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2 2
nh i 3 _mni” i i jmm)e ~j(n+h
- z2(Ar) z3 () N 2! (Ar) Z3 (ar) ] e e~i(nth)z

This is identically zero when integrated with respect to ¢ and z unless
m= -n and n = -h. However, under these conditions, the term in
brackets is identically zero since A = A when n = -h. Thus property B

follows  immediately.

Property C
© 7 ., 2.3 . . ,
3 S L N SRR | - _
_L {“ N x B - Tdgdz — 2 (A2)Z_J(Ar)8(n+h)  form = -n (C-3)
=0 otherwise

The integrand of the above integral can be simplified as follows:

»>3 -)-J . - - _—»1 . , A -b]
nhx mn r nh termn
AA2 i j j(m+n)¢ j(n+h)z
= —?—-Zn(Ar)zm (xr)e e

This is zero when integrated with respect to ¢ unless m = -n. In this
case the integral of the exponential term involving ¢ is 2w, The inte-
_gral of the exponential term involving z results in the factor 2n§(n+h).

Since this is zero for n + h # 0, it follows that the substitution
n =.-h can be made in the rest of the expression. Thus property C fol-

lows immediately.




()

Froperty D
© T, 2,3 .
F1 ] - yno A 'i
M . T = - —
{.’uo {T on ™ Ny * 7d¢d o 2y (Ar)Z

0 otherwise

This property follows immediately

n(Ar)S(n+h) for m=-n

from property C.
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APPENDIX D

STATIONARY PHASE EVALUATION

OF EQUATION (3-32)
Equation (3-32) is of the form

b Jkr_u(¢) s
I=[a(ppe °  a¢ (b-1)

a

It is shown in [3] that fcm‘kro sufficiently large, the asymptotic value

of the integral is given by

f— o m——

. 30k (¢ )+n/4]

I=alg) q e (D-2)
. kr_[u" (o) |

where the.+ or minus sign in the exponent is chosen to correspond to the

sign of u"(¢o). The stationary phase point of the integral is ¢o which

is obtained by equating the first derivative of u(¢) to zero.
1 = _3
U (¢o) 0 | (D-3)

In Equation (3-32), u(¢) is given by

uigp) = -sineE:os ¢ - _ne__ (D-4)

kr sing
o

The derivative of this with respect to ¢ is




R R BB & 5 e e Do
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[ - —_— - _____n -
v () sinb l: sin ¢ ——p :I (D=-5)
o
This is zero for
¢ = sin T |[—2 (D-6)
o) kr _sinb
o
The second derivative of M (¢) is
H" (¢) = sinBcos¢ (D-7)
It follows from Equation (D-6) that u"(¢o) is positive for large kro.'
Thus from Equation (D-1), the value of the integral of interest is °
.n p '
1= sinf E¢ (m - 8, ¢n)
g “*——5;—"—"-' —jkr051n6cos¢n
kr sinfcosé e
o n
jng_ /4
X e e (D~8)

This is the desired result.




APPENDIX E
COMPUTER PROGRAMS FOR THE

FAR FIELD EVALUATION
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i AR b o erd

PROGRAH FARFLD(INPUT,OUTFUT,TAPES=INPUT, TAPE6=OL1PUT1

C CALCULATES FAR FIELD PATVERN
C FROM NEAR FIELD CN A CYLINDEFR,

c

&0

REAL KR

COMPLEX EPHI (6L 64D EZ1B4,64)
DIMENSION EZB(ES,58)

DIMENSION ALEL),B(EW)

DIMENSION IBUF(512)

CCMMON BUF(6000)

OATA P1/73.,141592654/

M=64

N=6y

KR=12,

NR=68

NIP=512

DEM=LD,

D7Z=41,7(2,*C0S(30.%PI/7180.))
DEL=45.78,

PHI=0,

M2z1

0C 2 I=1,€L

DC 2 J=1,€4

EPHI(I+JI=CHPLX(0.+0,)
EZ(1¢J)=CMPLX (0.0 0,)

DC &4 J=1.64

IF(PHIWGEs172: 5.ANCsPHICLE.187.5) ‘
E2M24JI=CMPLX(COS((PHI=-180.Y*P1/715.00,0.)
PHI=PHI+DEL

CALL FFTIEZyMoNo=1y-1)

CALL FFTU(EZ MeNol1,1)

CALL KOREK(EPHILEZ+MyNKFoD2)

CALL FFT{SPHIsMyNyt,=1)

CALL FFTIEZ,MeNsl1,~1)

CALL DE(EZosMoN21)

CALL DB(EPHI+MaNy~=1)

CALL FCLDZ(EZoMN)

CALL FOLDZ(EPHI M,N)

CALL BRKORMIEZM4N, BN

CALL EBNORMIEPHI M ,N,OBM) :
CALL PLT(EPHI.EZ.NDN.ﬁlﬁoNR.IEUF.NIB)
sSYOP

END

+

CRASIUBI ISRV SLIIIF IV UIISHRIINIEIRTIQILIDITIIIIIRERGISRISNGR
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SUBROUTINE KOREK(EPHIZEZMeNKRL,OELZF}
REAL KFk

CCMPLEX EPHI(M N} EZ(M,N)HANK,C2,C3,2
COMMON HANK(“UU'.Cl(st"C2(256'003(255,
2=CHPLX(D.y1,)

M2=M/2

CALL XOEF(1,DELZF +KR9e MoN)

DC 10 J=1,N
EPHI(le)'(C1(J,'EZ(1oJ,'EPNI(I.J)'.CZ(J,
EZ(1,J)=2%EZ(1,J)°C3 () e

DC 20 I=2,M2

I11=M=T42

CALL XOEF(I .CELZF 2+ KR MaN)

00 20 J=1,N

EPHILI» 1= (CLINPEZIILJI-EPHI (I,J)0%C2(J)
EPHIMI14J12(=CL{JVPET(TI14J)=EPHICTIL,J)DV®C2(J)
EZ(IoJI=Z*EZ (I NN*C3(N)
EZ(IioJ"Z'Ez(IivJ,.cs‘J,

IT1mM2+1

CAaLL KOEF(II.DELZF’KHON'N,
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11
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13
16
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4217138671875 4L14062%4.257

DATA (CUI42)el21,5)/1774C15765666C61€6T79=10, J319938E5966T3687,
+140737304E8754=42578125,4257 i
DATA (D(Ie1)s1%1,50/793,9005106998914929,~6.5521850585937499, |
+,83828124999€999999,~,260L1EEEEEEEH66667 4457
DATA (D(I92)4I%1,5)/40,8320159912109374,=3,16131591796875, ) !
4494531259 =421875,445/
L=2*L | : ’

Lis{e2 ) i
0C 20 I=1,800

8J(I)=0,

X=2

CX=2471

XXX=1,/X

XX=XXX®XXX

T=SQRT (PI2%X)

0C 5 J=142

Az J=1,25

e=2Cli. N )

De 3 1=2,5 .
Pz=PsXX¢C(Ied)

BT=(A*P*XX+1) /T

PzD(1, I}

NC & I=2,5

PapesxX40(I,Jd)

PHI=X+pAPPoXXX=(A¢,T5)*PI2

DJ(JYI=RT*COS(PKI)

DY (JY=BT*SIN(PHI)

3Y(21s=DY (1)

BYI(4)==0Y(2) i
TY=0. !
DC & I=6eL142

TT=TT+4,

BY(IV=CX*TTSRY (I=2)=8BY{I=-4)
IFILEGVARIBY(I))«NE. OGO TO 1C
CCNTINUE |
R=zA8S(BY(L1)) |
Li=l1+2

DC 8 I=L1,800,2

AREAAL D WY

AY(I)=CXSTTSRY (I=2)V=BY (I=4)

IFILEGVARI(BY(I)).NEL.D0IGO YO 1C

IF(1.2=-9%ABS(BY{(I))sGE.R)IGO YC 9

" CONTINUZ

GC 70 11

M=1

6C T0 15

Mz]-2

GG 10 12

Mz800
R=1.E=9*ABS(BY (M))
MF2aMe2

DO 13 IK=24M,2
I=NP2-1X
IF(ABS(BY(I}).LE.RIGO TO 14
CCNTINYE

L=I-2

Li=]

B8J(M=1)=0.
B8J(M=3)=1,E~37
Mi=H=5

TT=M/2-1

MFix=Mli+l

DO 16 IK=1,M1,2




INCR=(J=1)¥NEL
SC =0.0

CO0 =1.0

DO 17 II=1.NEL2
J1=II+INCR
J2=J1+NEL2
"IF(IOPTI12414o1b

12 DC 13 L=1,M
Ti=A(L,J1)
T2=A(L4J2)Y%CMPLXICO,SO*ISM)
AlLoJ11=T1eT2

13 A(LeJ2)=T1-T2
6C TO 16

14 00 15 L=1,N
Ti=4(J1,L)
T22A(J2,LY2*CHPLX(CC+SO*ISM)
AlJL.L)=T1eT2

15 A(J2,L)=T1-T2

16 SN=S0*CI+CO*S]

CS=C0*CI~-S0*SI
CC=CS
SC=5N

17 CONTINUZ
IF(ISN.GEL.O)GO TO 19
00 18 K=1.,4
DC 18 L=1i,N

13 A(KoL)BA{Ko L)/

19 ° RETURN
END

.c."...'l‘...""'.b..l.."“‘.lll.l.."‘l‘.l......l‘...‘l

. SUBROUTINI DE(E MK, ICPT)

COMPLEX E (M,N)

PIDEG=180473.141592€5

R=1,E-20

DC 1 I=1,M

DO 1 J=1.N

Z=REAL(Z(I4JII 282 +ATIMAGIE (I,J))8%2

IF(2.GT.RIR=Z

IF(ZeGEal1eE=20) ECIoJI=CMFLX(2,PICEG®ATANZ(ATMAGIE (I9J))
+REALIE(ILJ))))

1 TF(Z2.LTal,E=20)E(T9J¥=CFFLX(0ev0.)
IF(IOPT.6240) RNORM=K :
R=RNORM®*1,E-20
DO 2 I=1,M
DC 2 J=14N
ZxREAL (E(IJIN
IF(Z,LELRY EXI IV =CHPLX(=2004004)

2 TF(Z226GTeRY E(I,JV=CHMPLX(10.%ALCGLO0CZ/RNORN) +ATHAGIE(TJY¥))
RE TURN
END . .

c.“...'l.l‘l.....ll.......‘.‘.‘l.........".".............0.
SUBROUTINZ FOLODZ(EM4N)

COMPLEX E.TEWMP
DIMENSION E(MyN)
H1zM/2
DC 10 I=1.M1
I1=M1+]
DC 10 J=1,.N

" TEMP=E(TI,J)
E(I.J)=S(]I1.J)

10 E(I1.J)=TENP
RETURN
ENO

c.lil.l..l..lll....".l‘."l..l.ll...‘l......l..ll....'..’...‘
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GC TO &

3 CALL PLYT(XPAGE,YPAGE+IFEN)
IFEN=2

b HID(I+JY=YPAGE
6C TO 7

s IF(IEQe1) IPEN=3

IF(IPEK.EQ.3)GC TO 6
XINZSLASTX®*HIC(I+J)=LASTHOYXPAGE=-LASTX®YPAGE+*XFAGE®L ASTY
X10=HID(I+J)=LASTH=YPAGE+LASTY
X41=XIN/XL0
Y1=(X1® (HID(I+J)=LASTHISLASTH* XPAGE=-LASTX®HIO(I+J) Y/ (XPAGE
4=LASTX) »
CALL PLTT(X1,Y1,2)
IFEN=3
6 CALL PLTT(XPAGE.YPAGE,IPEMN)
T CONTINUZ
00 8 I=zi1,NIJ
i HID(I)==,5
: DC 16 X=1,IMAX
IzIMAX=Ke
Al=I-1.
DC 16 J=1,JHAX
Ad=zJ~-1,
LASTX=XPAGE
XPAGE=(AJ+AII®XASIZEZ (RPI+RJY
LASTY=YPAGE
YFAGE= (AJ*RI/ZRJI=AIO®RI/RI*PIV*YSIZE/(RJ4RIVSHEIGHT
+E(I.d)
LASTH=LASTHNM -
LASTHM=HIO(I+J)
IF(VYPAGE~HID(I+J¥)13+14,4S
9 IF (JeNE.1) GC TO 10
CALL PLTT(XPAGE,YPAGE,3)
IPEN=2
GC T0 12 :
10 IF(IPEN.EQ.2)GC TO 11
XANSLASTX*YPAGE=LASTY*XPACE-LASTX®HID(I+J )+ XPAGE*
“HID(I+J=1)
X10=YPAGE=LASTY=HID(I+J)+HID(I4J~1)
X1sXIN/X1D
Yi=(X12 (YPAGE~-LASTY)4LASTY*XPAGE~LASTX®YPAGE) 7 (XPAGE~
+LASTX)
CALL PLTTIX1,Y1,3)
IPEN=2
11 CALL PLTT(XPAGE,YPAGE,IFEN)
12 HID(I+J)=YPAGE
GC 70 16
13 IFEN=3
GC 70 15
14 IF(JeEQ.1) IPEN=3
15 CALL PLTT(XPAGE.YPAGE+IFEN)
16 CONTINUE
CALL PLTIT(XSIZE4eee=10s~3)
RETURN
END
c...'... XYY ISPYYRYRIYFRPYRSTRYRRTNSRIRY PRSIV R PR RIS SR R 2 4 2 1 2
SUBROUTINE PLTT(X,Y+IPN)
XLST=XN
YLST=YN
ILST=IN
XN=X
YN=Y
IK=IPN
IF(IPN.EQ.2sANDJILSTLEQ,3)G0 YO 2
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APPENDIX F

LOW PASS FILTER SUBROUTINE




SU3ROUTINE FIL(P,MeNeDFLLs THETA,5AMUA)

COMPLEX P(MeN)oCONV(12R)

CIMENSION R(g5)eK(65)

DATA PI/3,14159265U/

PID=PI/18n,

MAXM=1+INT (MxDELI*SIN(THETAXPID))

MAXN=1+INT (NxDELI*SIN(THETAXPID) )

CALL FFT(Py,M,Ny=1¢=1)

CALL FFT(P,M,Ny=1"1)

CALL FOLD(PsM,sN)

M1=M/241

N1SN/2+1

DO 1 I=1»v

50 1 J=1lwN

Z=SoRT((FLOAT(I=M1) /FLNAT (MAXM) ) x 42+ (FLOAT(J=N1)/FLOAT(MAX
1 IF(2.5Tel.) P(Irg)=CMPy X(0,40,)

CALL FOLD(PsMsN)

‘CALL FFT(P,M,N¢l,~1)

CALL FFT(P.M,N»1,1) '

251.7(20%SIN{GAMMA®PID ) «DELT)

N1=M/2=2 '

M2=N1+1

NI=EN2+L

MUESN3+]

HSSNG+1 ~

CALL KARR(R*KeZsN2:¢L)

DO 5 J=l,N

DO I=1,\M

CCNV(I)=P(Iv )
4 P(I,J)=CMPLX(0sr00)

DC 5 I=1.L

11=k(1)

PING=T¢J)=CONVIN3=I1D) 2 1e=R{I))+cONV(N2=I1)R(I)
5 PINZ+T»J)=CONV(NG+T1) %¢1°=R(I))+cONV(NS+I1)*R(T)

M1SN/2=2

M2=N1+1

N3SN2+1

MUSNI+L

MESNG+1

CALL KARR(RrKeZoN2»L)

20 f I=1eY

20 7 J=1.p

CONV(J)SP (T ))
7 PUI,J)=CVPLX(Ner0.)

50 & J=1,L

11=K(J) -

PLI,NG=J)=CONVIN3=I1) % ¢1°=R{J))+20ONV(N2=T1)+R(J)
6 PUI,N3+J)=CONVING+I1) %x¢1e=R{J))+rONVINS+I1)=R(J)

RETURM - ,

END
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APPENDIX G

COMPUTER PRCGRAMS FOR THE

APERTURE FIELD CALCULATIONS




PROGRAM APERTUINPLT+OUTPUTTAFEE=INPUT,TAFEE=0UTPUT)

REAL KR

COMPLEX EPHI(32+32)+£2132,32)
DIMINSION EZR (364 36)
DIMZNSIIN AL32),81(32)
DIMENSION IBUF(C12)

COMMOCN BUF(3000)

OATA P1/3.1415926547 »
NIB=512

M=32

N=32

08K=40.

NR=3§

KRk=12,

D2=,5

D22z7./731.
DY=2,*SIN(22.,5%PI7100,)%KR/7(2.%FI%*31.)
0C 2 I=10+24

0C 2 J=1,32
EPHI(I»JI=2CHPLX(04504)
EZ2(14J1=CHPLXCCes 04)
PHI=(J=16.1%2,%PI/32.
IF(Je0Cal14eDRyJLELIBIEZ (I WD)
+2CEXP(CMPLX (0o v=124%COS(FHIN))
CONTINUZ _

CALL FCLDZIEZeNeN)

CALL FFT(ZZoyMyRNe=14-1)

CALL FFT{ZZ,4MgNs1,1)

CALL XOREK(EPHIEZMeNyKE(D2Z)
CALL CHPHIEZMoN.0Y,02)

CALL CHPR(EPHI +Me NoDY,DZ}
CALL SIMUL(EPHIEZsMeNoDY,D2)
CALL APCRTY(EPHI, M,N,OY)

CALL APZRTY(EZ MyN,DY}

CALL FOLOY(EZ¢MyN)

CALL FOLOY(EPHIMsN)

CALL APZRTZ(EPHIsMeNyDZ2)
CALL APIRTZIEZ sMeN,DZ2}

CALL DPIEZyMeNo1)

CALL FCLOZEZ,M,N)

CALL DB(EPHI M¢Ns=1}

CALL FOLOZIEPHI M,N)

CALL BNORMIEZ M oN,DBMY

CALL BNORMIEPHIMN,DBMY

CALL PNORM(EZoMeN}

CALL PNORMIEPHI M, N)

CALL PLOTS(IBUF(11)+512¢9,00)
CALL PLT(SZ MyNJEZESNRIELFNTIB)
CALL PLYIEPHI M NJEZBsNRsIBUF,N]IB)
CALL PLOT(0,0,0,0,999)

STQOP

END

CRERBIBBERFLFITEFERBANIBBEQURETIPITFUIBLBHREBIFB 3530335800040

10

SUBROUTINE KOREK(EPHIWEZ+MeNsKR,DELZF)
REAL KR

COMPLEX EPHICHMoND) +EZ(MyN) oHANKSC24C342
COMMON HANK(400),C1(2561+C2¢256),C38256)
Z=CHPLX(0eele)

M2=M/2

CALL KQEF(1+0ELZF 4KRy KoN)

DG 18 JU=1.N
EPHIC(1sJ)2(CLCIVSEZ(1,J)-EPHI (1,J)0%C2(N
EZ(1,JV=2Z%EZ(13)%C3 ()
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SUBROUTIND HANKEL (Z.L)

C THIS FROGRAM IS WRITTZN FOR 2 GREATER THAN OR
C EQUAL TO B¢ FOR SMALLER ARGUMENTS, ACCURACY DECREASES.

20

10

DIMEZNSION BJ(800) .BY(20D)
DIMINSION DJ(2),DY(2)
DIMINSION C(5,2)40(5,2}
CCMMON 84

EQUIVALENCE (BJ(1),BY (1))

DATA PI2/1.57079632€7948¢S€62/
OATACC(I1)+I=145)1/742T7S4T1T588L2L46826,-23.394L7982788085937,

. 4217138571875, 04140625, 425/

DATA (ClI142)+151985)73T77.015765€6696167,~10.319938€596679687,
+1,073730uL6875+42,2578125,,25/
DATA (D(I+1)41=145)/793.900510¢9989149294-6,5521850565937499,
4, 83828124999¢999999,=426041EECEEEOELEHEEET 457
DATA (D(1+42)+s121C)740,83201599121093T44=3,1€6134591796875,
4o U945 T12542021875,4457

L=2*L

Li=L+2

DC 20 I=1.+800

3J(I)=0,.

6C 70 2

WRITE(Bs1)2

FCRMAT(LH o4HZ = oE14,8+2IS AN INCORRECT ARGUMENT IN
*SUBRQUTINE HANKEL®¢/)

STOP

X=Z

CX=24/72

XXX=347X

XX=XXX®XXX

T=SOQRT (P12%X)

0C 5 J=1,2

Azj=1.25

PxC(1.J)

DO 3 I=2,%

P=PaXX+ClIJ)

BT=(A%PoXX+14)/7

P=0(1,J)

D0 4 I=2,5

PzPeXX4I(Ie )
PHIsX+AMPAXXX=(A+.T5)*P1C
DJC(JI=RT*COS(PHI)
OY(J)=BT*SIN(PHI)

AY(2)=-DY (1)

BY (L)=-DY (2)

TT=0.

DO & I=6yL142

TT=TT+1.

BY(I)=CX*TTSBY (I=2)~-BY(I~-4)
IF(LEGVAR(BY (I))(NE.O}GO TO 10
CCNTINUE

R=ABS(BY(L1))

Li=g1+2

OC 8 I=L1,800.2

TT=1T+1.

BY(I)=CX*TT®RY (I=2)=BY (I~
IFCLEGVAR(BY(I))NE.,D)GO TO 10
IF(1.E=-9%RABS(BY(I1)).GE+RIGO TO 9
CONTINUE '

GC 70 11

LE D

G0 70 15

M=]-2




GC 70 11
S OC 10 L=1.N
Ti=A(I2.L)
A(I2.L)=A1I1,L)
10 A{Il,L)=T1
11 CONTINUE
DC 17 I=1.IEXP
NEL=2%2]
NELZ2=NELZ2 r
NSET=MM/NEL
SI=SIN(PI2Z2/NEL)
CI=COS(PI2/NEL)
DC 17 J=1.NSET
INCR=(J=1)SNEL
SO0 =0.0
CC =1.0
DC 17 II=1,NELZ2"
J1=T11I+INCR
Je2=JL1eNZL2
IF(IOPT) 12414, 14
12 DC 13 L=1.M
Ti=A({L,J1)
T2=AlLsJ2VSCNPLX(CO,SC*ISHM)
A(L.J1)=T14T2

13 A(L.J2)=T1-T2
GC TO 16

14 DO 15 L=1.N
T1=A(J1.0)

T2=A(J2.,L)*CHPLX(CC,SC*ISH)
A(J1,L)=T14T2

15 AlJ2,L)=T1-T2

16 SK=S0*CI+CO*SI
CS=C0*CI-S0*SI
cc=CS
SC=5N

17 CCNTINUE
IF(ISN.GE.O0)GO TO 19
DC 18 K=14M
DO 18 L=1.N

18 AlKoL)ZAIK LI/ PM

19 RETURN
END

c"""'.'I'.l"“"“.‘..'.l.l..'.“.‘..“..'...““.“‘.
SUBROUTINE DE(EsMe N, I0PT)

CCMPLEX E(Ms M)
PIOCG=180.73.141592¢€5
R=1.E~-20
DC 1 I=1.M
DC 1 J=1,N
ZaREALCE(I4J)V®824ATMAGLE (T4 J))0e2
IF(2.GT.RIR=2
IF(2e6Ea1eE=20) E(I o JIECHFLX(ZJPICEGSATANZ(AIMAGIE (I4M)),
4REAL(E(TI I} D)

1 IF(ZoLTel1E-201ECI o) =CMFLX(0440.)
IF(IOPT.GEeO0) RNORM=R
R=RNORM®*1.E~-20
DC 2 I=1,M
DO 2 J=1,N
Z=REAL(E(IJM)

IF(ZeLEeRY ElIoJ)=CHPLX(=200e+00)

2 IF(ZoGToR) E(I JI=CHMPLX (10, %ALOG10(Z/RNORF) 4AIMAG(E(IVJI))
RE TURN :

END

CHo88855350000303330330303303508030035030803088085853553830080808005

135




L3
€0

CHREBBERISEIIRI3400 8 SRR G VBB JHIIBINRGIUIIININIIBIB NI

10

20

30
40

50

CrIS I8 BCIRIIIESRNBRNINBNIBIIISISITONBISIIIIINNIBITITINDISRORESS

RE TURN

DC 50 J=1,N

Al J)I=CMPLX(0440,.)
RETURN

END

SUBROUTINE SIMULIEFHILEZ 4¥eNeDYD2Z)
COMPLEX EPHI (MoN) ¢EZ(HMN),ZERD
ZERQO=CHPLX (04904}

N2=N/2

M2=Hs2

MV=INT(FLCAT (H)®*DZ~1,£~-20)

IF (MM GT . H2)MM=N2

EZ(1.,1)==E7(1,1)

00 10 J=24N2

J1=N=J¢2
CP=SORT(1,=(FLOAT(J=1)/FLCAT(N2))®22)
EZ(1.4)1==CE2(1,4)7CP
EZ(1,J1)==EZ(1,41)Y7CP

J1=N2+1

£E2(1,41)=2ERQ

00 20 I=2.MM

I1=H=T+2

CT=FLOAT(I=1)7(M*0D2)
ST=SQRTL1.-CT*#2)

EZ(Is1)==EZ(I 1)
EPHICIL1)=EPHI(I,1)/5ST
NN=INT(FLOAT(N2V®ST=1.E=-20)

IF (NN.GT.N2)NNEN2

DG 20 J=2.NN

SFE=FLDAT(J=1)7 (N2°ST)
CP=SORT(1,-SPs#2)

JL1EN=J+2

EZ(I+S)==EZ(1.5)/7CP
C2(I.J1¥==ET(I,J1)Y/CP
E2(I1.J0==E2(11,4)/7CP
E2(I1,J1)==E2(11,41)/CP

EPHI(I »JI=LEPHILI « N =EZ2(T+JI®CTESPY/ST
EPHI(I+J1)S(EPFI(I JLISETZIT 4J1)2CTESPY/ST
EPHI(IL o= (EPHI(ILoJICEZ(IL14JYPCTOSPYI/ST
EPHILILJ ) =(EPHI(I1,J1)~EZ(I1,J1)®CT*SP) /ST
T1sHM+1

I2=MaMMey

J1=NN+1

J2EN=NN+1

IF(I1.CT.M2)G0 TO &0

00 30 I=I1.1I2

00 30 J=1,N

EPHI(IJS)=ZERD

EZ(I,4)=2ERO

IF(J1.6T4N2IRETURN

0C S0 J=J1,42 '

0C 50 I=1eM

EPHI(I+J)=ZERO

EZ2(1.4V=ZERO

RETURN

END

SUBROUTINE APERTZ(AM.N,02)
COMPLEX A(MyN) 4ARSsAIS2
COMMON AR(128) (AT (123)

REAL KZ

DATA PI/3.141562654/
Z=CHPLX(Davls)
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10

20

A(I,J+1)=ARSH+Z*AIS
A(IN=J+1)I=CCNIGLARS=Z*R]S)
Ky=sN22DY2 :
ARS=FS (ARyNKY)
AIS=FSU(AI«Ny XY}
AC(TINZ+1)SARS4Z®AIS
CCNTINUZ

RETURN

END

c......l...l.ll..l'l.....".....l...."."....ll.'.l....ll.

10
20

COMPLEX FUNCTION FS(B.N.FFI)
DIMENSION B(N)

COMPLEX Z

FS=CHPLX(Ds +0s)

TaCZXP (CMPLX (04 4PHIN)

N2=N/2

DC 10 I=1.N2
FS=FS»Z4B(N2=T+1)

DO 20 I=1,.N2
FS=FS*2+8(N=-1+1)
FSEFSeCEXPLCMPLX( 0oy =N2*FHI))
RETURN

END

cl‘lll.""ll.l...l'.....l'.C.ll.‘..'.’.‘....'....QO.I'....l‘.'l

c

10

20

SUBROUTINE PLY(EZAMNoEZBsNRyIBUF4NIB)

CCHPLEX EZA(H,N)

DIMINSION EZB (NR, MR)

DIMENSION IBUF (NIE)

MNENR~2 )

0C 10 I=3,MN

0OC 10 J=3+MN

EZB(I.JISREALIEZA(I=24J=2))

CALL PLOTMX(415.0)

HEIGHT=1,10

XSIZE=k,

¥YSize=2,

CALL PLOT3D(EZENRI\NRoXSIZE YSIZEJHEIGHT+ IBUF 4NIB)
CALL PLOT(5.090s04=3)

0C 20 I=3.MN

0OC 20 J=3.MN

EIBLIJIZAIMAGLEZA(I~2,J=2))

CALL PLOT30(EZBeNRyNRoXSIZE YSIZEZHEIGHT 4 IBUFN1IB)
CALL PLOT(S5:40+0.0,3)

RE TURN

END

c....l"l....l..l........'......'...0."....‘.'...'...‘..‘Il.'

10

SUBROUTINE BNORMCE (Mo Ny DEMAX)
CCMPLEX E (M, N)

00 10 I=1,M

D0 10 J=1,N

XaREAL (E(T.J)) 7D8MAY+1,
IF(XelTe0s)X=0,4
E(IeJ)=CMPLX (X oATNFAGLE(I4JI))
RE TURN

END

c...'......I............'ﬂ......l.l.'....l..‘....‘.........'...

10

SUBROUTINE PNORM(E ¢y NyDEMAX)
COMPLEX E{M4N)

00 10 I=1,M

DO 10 J=i,N

X= (AIMAG(E(1+J)) 4180407360,
E(IvJ)=CHPLX (REAL CECT9d) D oX)
RE TURN
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CALL PLTT(XPAGE,YPAGE,3)
IPEN=2
G0 To-12
10 IF(IPEN.EQ,2)G0 TO 11
. XANZLASTX*YPAGE=LASTY*XPAGE=LASTX®HID(I+J)*+XFAGE®
+HIO0(I+J=-1)
X103YPAGE=LASTY=HID(I4J) +HIC(I4J~1)
X1=X1N/X10
YLz (X1 (YPAGE=LASTY)4LASTYSXPAGE~LASTX*YPAGE) /(XPAGE~
SLASTXY :
CALL PLTT(X1,Y1,3)
IFEN=2
11 CALL PLTT(XPAGE.YPAGE.IFEN)
12 HIO0(I+J)=YPAGE
G0 TO 16
13 IPEN=3
GC T0 15
14 IF(J.EQ.1Y IFEN=3
15 CALL PLTT(XPAGE +vPAGE,IFEN)
16 CONTINUZ
CALL PLTT(XSIZE*hs9=149=3)
RE TURN
END
CDOO‘..' llll'.!.'.l. SBUESSBPELIIB SV FEDISUEJBRIIBIRB38353083000
SUBROUTINZ PLYT(X+Y»IPN) ’
XLST=XN
YLST=YN
ILST=]IN
AN=X
Yh=Y
IN=IPN .
IF(IPN.EQ.2+ANCLILST.EQ.3)60 TO 2
IFUIPNEQs3IRETURN
CALL PLOT(X.Ye1IPN)
Xi=X
RE TURN
2 CALL PLOT(Xi.YLST,3)
CALL PLOT(XLST,YLST.3)
CALL PLOT(XeY2)
X1=X
RE TURN
END
c...l.llllb.l.l..l.Q [IXFXIRY YT R AR YY S A TS SY FE R T T 2L Y 23
SUBROUTINE FCLECYULE N, M)
c
COMPLEX E+TEMP
DIMENSION E(M,N)

N1i=N/2

DC 10 J=1,N1

Ji=Ni+J

0C 10 I=1.M

TEMP=E (1,4 J)

E(I.J)=E(I.J1)
10 E(I.J1)=TENP

R E TURN
END
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O OO0 0

10
18
20

25
30

40
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PROGRAM AFRTI(INPUTSQUTPLT,,TAPESZ=INPUT,TAPEE=0UTPLTY

TEST CF PHASE FUNCTION,
AXgBXoCX EQUAL 1, OF 0. DEPENODIKNG WHETHER THE ERRORS ON X,Y,
DR Z ARZ WANTED OR NOT,

CCHPLEX AXY(S5000)

DIMENSION X (ES ),V (E5)

DIMENSION MXLLES) 4 MXK(E5)
DIMENSION NSI(€S)4NSF(ES)
DIMENSION PHIC(S5000),PNOC(E00D)
DIMENSION XNC(E0000)

DIMENSION EPHI(69,69)4]1ELF(E12)
DIMENSTION APA(65,65)

CCHMMONZAL/RE+DXY,y KS]

DATA NRyNXPosNP{NDOyNIB/65+4€9,5000, 500004512/
DATA PI/3,14159264/

PEAD(S5+2)AX o EX 4CX o NER
READ(S+*)NI 4DBHE IGHT

A=z AY*PI/4L,. -
B=BX*P I/ %,
C2CX*PI/74.
RE=20."P1
PC=.375%2,%RE

MEKITE(B,100
MRITE(6,15)2,48,C
WRITE(6+20)RE. NI

CALL DSIO(NI X eVeMXLeMXRoASTIoPrSFeNRoNXY¢NT)
HRITE(B,25)

WRITE(6,30)

NF=NSF (KST)

CALL APHI(X oY 4MXL ¢MXRyNST o NSFoNXY ,PHIsA9B4CoN1yNP,
+DXYosKSIsAXY4PC)

NXPENXY+Yy

IF(NER.GE.1)G0O YO 5 .

CALL PLY(HEIGHT JPHIJEPHI oMXLoeMXRy hSIoNSFeNXVeNPIBUF,NIB,
+AFAINXP)

6GC TO 40

CALL EQ3(PHIAXY, NPoPCoAR+BRsCR)

NC=10#NP

CALL PPN(PHI PNOs ¥YNOg NPy KCy XL oMXRsNST9NSFy NXYsKSI 08}
CALL EQ3(PHI AXY, NP+PL,AR+BRsCR)

CALL PLT(HEIGHT PHIGEPHI ¢MXLoMXRyASIoNSF¢ NXY4 NP IEBUF,
+NIBJAPAJNXP)

FCRMAT (15X, #PHASE ERROR EFFECT®,//)
FCRMAT(2X+*VALUE OF A®410X,1F10.3/
2Xo®VALUE CF B%410X¢3F10.37

+

+ ZXoPVALUE OF C*410Xe1F10.3)
FCRMAT(2X +®VALUE OF THE RADIUS CF THE APERTUFE® 1F10.,3/
+ 2X+®NUMBER OF LCIVISICNS *,I10Y

FCRMATILX+®C%, /7) :
FCRMATIL1S X, ®*VALUES OF THE PHASE FUNCTION.®,/)

STOP.




20 KP=KP4+1
GC TO 10
25 KF=NXY
30 KvzeKP=1
CALL DSTUADeKMKP o KXY Xy NXY)
GC TO 50
Lo XV=KP
C
50 RETURN
END

CoOs s BB IICINNAIRNIINUNLINITNIIINDIGIISTIINISESININITENIL B340
SUBROUTINE DSTLAD ¢ KMo KP oKXV ¢ X oNXY)

c
C SELECTS ONE MARK,
c
OIMENSION X(NXY)
c
D1=A0-X (KM}
D2=A0-X(KP)
IF(ABSID1).GELABS(D2)V)GO TO 10
KXV=KM
G6C. TO 20
10 KXY=KP
c .
20 QE TURN
END

c“."..'..0‘.""‘.'.“.l‘.‘ﬁ"‘ll"'..l"l'.".'.‘l.'.l'l‘

SUBROUTINE ANPTIKSIoMXULy¥XRJNSIJNSFeNXY)
c
C STARTING AND FINAL POINTS FOR EACH LINE.
Cc

DIMENSION MXL URXY ) ¢HXR (NXY)

DIMENSION NSI(NXY)oNSF (NXY)

NI=1

NF=1
"NSI(11=1

NSF(1)=1

DC 10 KM=2,KSI
NIA=MXRIKM=1)=WXL (KM=1)¢1
NIB=MXRIKM)=MXLIKMI&L
NI=NI+NIA

NF=NF+NIB

NSI(KMI=NI

NSF{KM)=NF

10 CONTINUZ

RETURN
END

c""'l'.‘lb.‘.‘..'.l.‘l.'..ﬂ‘.ll..'..0‘....'0"'....‘..."....

SUBROUTINS APHI(X oYoMXLoFXRINSIoNSFoNXYPHI sAe8B,
0 g NLoNPoOXYoKSILAXY.P)

PHASE FUNCTIONS.

CCMPLEX AXY(NP)

o 000

DIMENSION XINXY)eY (NXY)
_ DIMENSION MXL (NXY) JMXR(NXY)
DIMZNSION NSIUNXY),NSF(NXY)
DIMENSION PHI(NP)

D0 20 KMai, KSI
NI=NSI(KN)
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c

c
10
20
25
c

40

CreT 3355845558300 8030338030001032 2333333880333 3003038300300300303

M=10
I=1
Xv=0,
SI6=1.
Iu=3
IF=0

CALL NRAKDINP#TI4XMsSIGsIUSXNCIP)

0C 2 IX=1.NP
ICz=IeM®(IX=1)
PNO(IX)=XNO(IQ)
CONTINUE

0C 5 I=1.NF -
PNCG(I)=11./7MF)®PNCILI)

CCNTINUZ

WEITELE,10)

WFIT=tE,25)D8

6C TO 49

WRITE(E,20)

CALL WRTZ(PNCINF MXL, MXRoASIo NSFe AXY¥¢KSIY
FCRMAT U1X 4*C®,//)

FCRMAT (10X o®VALUES OF NORMALLY CISTRIBUTEQD NOISE.®,/)
FCRMAT (SX4®*RATIO SIGNAL TC NDISE«®+1F10.3+2Xe*DE*,77)

RE TURN
END

SUBRCUTINE WRTE(Z NP MXL o MXFyNSToASFeNXY4KST)

c
C WRITE STATEMZINTS.

c

10
20

DIMENSION Z(NP)
DIMENSION MXLINXY) JMXRINXY)
OIMENSION NSTI(NXY)gNSFNXY)

0C 10 K™M=1,KSI
NIASHXRIKM) =MXL (KF)o]
LX=6® (MXL (KM)=1)

NI=NSI (KM)

NF=NSF (KM)
WRITE(Be20ILXWNTA, (Z(I),y I=NTy M)
CCNTINUE

FOURMAT (=X 42FB4s3¢/77/)

RE TURN
END

CrossssssassssssssassOolsNlueasnssussssssssosnsssnssrsssns s

c
c
c
c

SUBROUTINE EO3 (PHIWAXY¢NFoPCyAR+BRICR)

c
COEFFICIENTS FOR THE SYSTEH CF EQUATIONS.

CCHPLEX AXY(NP)
DIMENSION PHI(NP)

81=4.*PC
B2=81%PC
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¥3=0.
Z3=0,
c3=0.

RETURN
END
c.o“"“‘&‘l‘..l'.. SBRSIBBUBL ISR BANS SO BRI B BB IS RBIB S SSR B
SUSROUTINE COEF(B14824XAsYAsTXTYoT2Z4ZNM,TP2Z)
Cc
€ CALCULATICKS OF TEFRMS,
Cc
ZNX=BL1®XA
INY=81%YA
SC=XA®824+¥ASS2
INM=SQ=22
INP=S0+B2
TX=ZNX/2IN®
TY=ZINY/ZINP
TZ=IKM/INF
TPZ=1.=2.*B2/INP

RETURN
END

c.“..‘. ...‘.‘.‘."‘...‘..‘.“‘...“..‘..“'...."“..... 88
SUBROUTINE DETUF14F24F3,6G14G2+G3¢H1,H2,H3,D)

C

C DETERVINANT, -

C
A=F1® (522 H3-0G3%H2)
B=F2* (G13H3I-GC3I*H1)
C=F3I%(518M2=-G29H1) N
D= A=8+C '

Cc
RETURN
ENC

Casaasasustsssar s sstasIsrssIBINIsTsBINaIRININITIISSRIRTIIRILISaIISS
SUBROUTINE PLT (HEIGHT yPHI4EPHI o MXL o MXRoNS Iy NSFy NXY NP IBUF,
+NIBAPANXP)
c
C PLCT CF THE PHASE FUNCTION,
c
DIMINSION PHIC(NP) JEPHIUNXF ¢ NXF)
DIMENSION APA{NXY,NXY)
DIMENSION MXL (NXY) sMXRINXY)
DIMENSION NSIUNXY) ¢NSF INXY)
.DIMENSION IBUF (NIB)

OC 20 I=1.NXxy
00 10 J=1.NXY
IF(JeGEMXLUI) sAND JLESFXR(II) GO TO 5
APA(IJ)=0.
G0 1D 10

1] K=J=MXL (I}
APA(I, JISPHI(NSI(I)+K)

10 CONTINUE

20 CONTINUE

N2=NXY 42

DC 22 I=3,N2

DC 22 J=34N2

EPHI(IoJ)=APA(I=2,4~2)
22 CONTINUE

CALL ANORM(EPHIoNXPyNXP)




10

11
12

13
14

15
ie

LASTX=XPAGE

XFAGE= (AJ+AII*XSIZEZ(RI*K U

LASTY=YPAGE :
YFAGE= (AJ*RIZ/RJ~AI®RY/RI*RII®YSIZE/Z/ (RI+RIV+HE IGHT®*E(T,J
LASTH=LASTHM

LASTHM=HIOD(I+J)

IF(YPAGE=HID(I+J) 154542

IF(INE«1)60 TC 3

CALL PLTT(XPAGE,YPAGE,3)

IFPEN=2

GO TO &

CeLL PLTT(XPAGE.YPAGEZ s IPEN)

IFPEN=2 .
HID(I+J)=YPACGE

GC TO 7

IF(I.EQ.1) IPEN=3

IF(IPEN«EQ.3)GC TO &

XIN=LASTX*HIC(I4J)=LASTH* XPAGE=LASTX*YPAGE4 XFAGE*L ASTY
X10=HID(I+J)=LASTH=YPAGE4LASTY

X1=XIN/X1C

Y1=(X1%(HID(TI+J)=LASTH) $LASTH*XPAGE=LASTX*HID(I+J) )/ (XPAGE

+=LASTX)

CALL PLTT(X1,Y1,2)

IFEN=3

CALL PLTT(XPAGE+YPAGE,IPEN)
CCRTINULZ

0C 8 I=1,K1J

HID(I)=-,8

OC 16 K=1,41IMAX

Iz IMAX =K+

AI=I'1.

D0 16 J=1,.JMAX

AJ=J-1.

LASTX=XPAGE
XPAGE=(AJ+AIV®XSIZEZ(RI+RU)
LASTY=YPAGE
YPAGE=(AJPRI/RJ=AI®RI/RI4RJIIPYSIZE/ (RJI*RID+HEIGKT*
+E(IoJ)

LASTH=LASTHM
LASTHM=HIO(I+J)
IF(YPAGE-HID(I#JV)1341&,¢
IFC(JeNEs1) GC TO 10

CALL PLTT(XPAGE,YPAGE.3)
IFEN=2

GC TO 12

IF(IPEN.EG.2)G0 TO {1
XEN=LASTX®YPAGE=LASTY*XPAGE=LASTX®*HIO(I+J)I+XFAGE®
+HI0(I+J=-1)
X10=YPAGE=LASTY=RID(I+J) +LIC(I+J=1)
X1=X{N/X10
Y1=(X1®(YPAGE=LASTY) +[LASTYSXPAGE-LASTX*YPAGE)/(XPAGE~
4LASTX)

CALL PLTT(X1,Y1,:3)

IFEN=2

CALL PLTT(XPAGE+YPAGE+IPEN)
HID(I+J)=YPAGE

G0 TO 1¢&

IPEN=3

GC TO 15

IF(J.EQ.1) IPEN=3

CALL PLTT(XPAGE+YPAGE «IPEN)
CONTINUE

CALL.- PLTTIXSIZE+koss=104=3)




10.

11.

12.

13.
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