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use the COM vibration waveforms as a template for modi-
fying the surface vibration waveforms to provide health-
related outputs. A systematic approach for elucidating the
relationship between surface vibrations of the body in the
head-to-foot direction from the wearable sensor, and the
movements of the whole body as measured by the calibrat-
ing sensor is disclosed. Additionally, a methodology for
converting the wearable acceleration signals to BCG signals
such that the same analysis and interpretation tools can be
used for both measurements is presented. High-resolution
measurements of the surface accelerations of the body
related to the heartbeat with a low weight accelerometer will
minimally load the measurement in the transverse direction.
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NONINVASIVE SYSTEMS AND METHODS
FOR MONITORING HEALTH
CHARACTERISTICS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 62/041,353 filed 25 Aug. 2014 the entire
contents and substance of which is hereby incorporated by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to noninvasive
systems and methods for monitoring health characteristics,
and more specifically to noninvasive systems and methods
for monitoring heart health characteristics with a wearable
ballistocardiogram (BCG).

2. Description of Related Art

Cardiovascular disease (CVD) represents one of the big-
gest challenges facing society today and in the coming
decades. In 2013, CVD accounted for one in four deaths in
the US, and afflicted more than 1 in 3 people; by 2030, the
American Heart Association (AHA) projects that 40.5% of
Americans will suffer with CVD and the projected medical
costs will exceed $800 billion. 47% of sudden cardiac deaths
occur outside of the hospital. At the same time, in the
coming years, there is a projected shortage in the number of
healthcare providers both in the US and worldwide. The
combination of increasing numbers of patients with CVD,
increasing medical costs related to CVD, and decreasing
number of providers can only be addressed by dramatic
changes in the way that care is delivered.

Continuous heart monitoring has the potential to not only
reduce costs associated with invasive and minimally inva-
sive testing but also to improve the quality of life for many
who are struggling with CVD and to provide the capability
of early detection and preventative care.

Home monitoring of cardiovascular health represents a
viable alternative to the current model of proactive CVD
management. Actionable solutions for physiological moni-
toring at home that capture the complexity required for
titrating care could greatly reduce healthcare costs, improve
the effectiveness of the therapy by better addressing the
changing needs of the patients, and empower the patients
against their diseases by enabling them with information
regarding their physiological state. Successful home moni-
toring technologies must be unobtrusive, inexpensive, accu-
rate, and robust, and importantly must provide sufficiently
comprehensive information about the person’s health such
that therapies can be adjusted based on valid physiological
relationships.

In terms of monitoring CVD at home, such a comprehen-
sive assessment would require information regarding both
the electrical and mechanical aspects of cardiovascular
function. However, conventional technologies for unobtru-
sively assessing the mechanical aspects are greatly limited,
and in general not amenable for home use. Ballistocardiog-
raphy (BCG), the measurement of the mechanical forces of
the body in reaction to cardiac ejection of blood, has shown
promise in recent studies for offering a possible solution to
this technological need.

The BCG phenomenon was first discovered in the 1800s
following J. W. Gordon’s paper in 1877 explaining how the
needle on a weighing scale fluctuates with the rhythm of the
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heart. Gordon speculated that the cause was ejection of
blood into the aorta, comparing the recoil to “a ball pro-
pelled from a gun.” Studies with human subjects in the
mid-20th century led to the discovery that the BCG can be
used to detect heart malfunctions.

In an attempt to simplify the instrumentation required for
measuring such vibrations of the body in response to the
heartbeat, researchers developed another similar technique
named seismocardiography (SCG), a measure of local accel-
eration of the chest wall resulting from the heartbeat. In
contrast to BCG, which required elaborate stationary tables
and beds, SCG could be measured by simply placing a small
accelerometer on the chest of a supine subject. However, as
the subsequent revolution in solid-state electronics led to
significant progress in electrical heart monitoring tech-
niques, and imaging technologies (ultrasound and magnetic
resonance imaging, MRI) became widely prevalent in clini-
cal practice, BCG research reached a nadir in the late 1980s.

Over the past two decades, developments in the semicon-
ductor process have led to extremely low-cost and low-
power microelectromechanical systems (MEMS) sensors
and microprocessors. These developments promise the abil-
ity to more precisely measure and process BCG and SCG
signals with relatively small and low-cost equipment in
ways that have never before been possible. Simultaneously,
the need for inexpensive medical equipment capable of
measuring large quantities of physiological parameters out-
side of clinical settings—such as in the home—is imminent.
Interest in BCG is thus returning, and the volume of pub-
lications has been trending upward.

BCG and SCG measurements have been demonstrated
using stationary objects, for example, beds, chairs, and
modified home weighing scales. BCG stationary systems
provide measurements that correlate strongly to changes in
cardiac output, contractility, and beat-by-beat left ventricu-
lar function—all three of these representing central aspects
of mechanical function.

While these platforms are relatively well understood, they
do not offer mobility, nor the ability to monitor cardiac
function continuously throughout the day. Continuous mea-
surement of BCG signals using a wearable device greatly
enhances the capabilities of techniques for assessing cardio-
vascular health at home. If BCG signals were continuously
obtained throughout the day and night, then specific
responses of cardiac output and contractility to perturbations
such as ambient temperature, posture, activity, and sleep
could be gathered, and a more comprehensive picture of the
person’s cardiovascular health could be obtained.

Accordingly, researchers have developed wearable sys-
tems based on miniature accelerometers in attempts to
measure BCG signals continuously. However, since the
morphology and timing of the signals from wearable sys-
tems are significantly different from BCG signals measured
using the weighing scale or other historical techniques such
as the Starr Table, the analysis and interpretation techniques
developed for BCG signals cannot directly be applied to
these wearable acceleration measurements.

Simply put, wearable accelerometers produce signals that
are fundamentally different from both the conventional BCG
and SCG: while the BCG represents movements of the
whole body, and the SCG represents accelerations of the
chest wall, the wearable BCG represents accelerations of the
surface of the skin at an arbitrary location on the body. Thus,
simply interpreting the wearable BCG signal as a displace-
ment BCG yields incorrect cardiac assessments.

For example, while the time interval between the elec-
trocardiogram (ECG) R-wave peak and the BCG J-wave
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peak—the R-J interval—has been found to be typically 250
ms for a healthy adult measured with the well understood
and studied static-charge-sensitive bed apparatus, and
ranged from 203-290 ms for 92 healthy subjects participat-
ing in a study with the well understood weighing scale
system, for the accelerometer-based wearable system, the
R-J interval was found to be between 150-180 ms. These
differences are profound and evidence that interpreting the
wearable BCG signal as a displacement BCG yields incor-
rect cardiac assessments.

In another study, an accelerometer-based BCG system
produced an R-J interval of 133 ms, evidencing even further
discrepancies with the known 203-290 ms from well studied
systems.

Cardiac timing measurements such as the R-J interval are
clinically important for a number of reasons. Calcium ions
regulate contractility and relaxation of the heart, and recy-
cling of these ions controls the timing of cardiac events.
Regulation of calcium ions is thus critically important in
mechanical dysfunction and arrhythmia. Since cardiac tim-
ing exhibits millisecond precision, it is a good measure of
myocardial cellular health, and irregularities in timing mea-
surements are generally the first indication of problems in
cardiac performance.

It is thus an intention of the present invention to investi-
gate how surface vibrations (for example, from a wearable
system) compare to whole body vibrations (for example,
from stationary BCG/SCG systems), and confirm that the
same analysis techniques and human subject findings cannot
be applied to both of these signals. This analysis begins with
an investigation into the significant differences in signal
morphology between wearable and stationary BCG mea-
surements, thus providing insights into the differences in
wearable measurements depending on a number of factors,
including location on the body where they are taken. The
present invention ultimately examines methodologies for
converting the wearable acceleration signals to BCG signals
such that, indeed, similar if not the same analysis and
interpretation tools can be used for both measurements.

BRIEF SUMMARY OF THE INVENTION

Briefly described, in a preferred form, the present inven-
tion comprises systems and methods for measuring a central,
mechanical, cardiovascular event—the ejection of blood
from the heart into the aorta—ifrom a distal location, for
example, the wrist, in such a way that continuous/long-term
recordings, for example throughout the day, can be obtained.
The present technical advances provide all of the informa-
tion that conventional approaches provide (i.e. heart rate),
and additional provide information on the mechanical forces
of the heart, which is described herein to be related to
clinically relevant parameters of health (e.g. cardiac output).
Furthermore, the measurement can be paired together with
one or more cardiovascular measurements (such as optical
sensing of blood flow to the wrist) and calculate pulse transit
time that has been shown to be inversely correlated to blood
pressure.

The present invention builds upon key findings to present
a system and method for providing BCG data from a user
comprising a wearable sensor configured to receive cardio-
genic surface vibration waveforms, a calibrating sensor
configured to receive cardiogenic center-of-mass (COM)
vibration waveforms, and a processor configured to use the
COM vibration waveforms as a template for modifying the
surface vibration waveforms to provide health-related out-
puts.
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While the BCG is fundamentally a measure of the hemo-
dynamics, wearable BCG measurements can also include
other phenomena, such as the heart sounds and the move-
ment of the heart itself. The present invention provides a
better understanding and quantifying of the relationship
between cardiogenic forces measured from the calibrating
sensor (the whole body) compared to locally interrogated
representations from the wearable sensor.

Key findings leading to many of the innovative technical
contributions of the present invention include:

that acceleration waveforms in the head-to-foot direction

measured on the user’s body by the wearable sensor
more closely resemble the second derivative of the
BCG measured by the calibrating sensor (for example,
a weighing scale), not the BCG signal itself measured
by the calibrating sensor;

that acceleration signals in the head-to-foot direction

measured from the chest on the user’s body by the
wearable sensor cannot always be directly transformed
into displacement BCG signals using double integra-
tion in time; and

for a small population of users, the position of the

wearable sensor on the user’s body providing the
closest match to the second derivative of the BCG was
user-dependent.

The present invention further comprises a systematic
approach for elucidating the relationship between surface
vibrations of the body in the head-to-foot direction from the
wearable sensor, and the movements of the whole body as
measured by the calibrating sensor. Additionally, a method-
ology for converting the wearable acceleration signals to
BCG signals such that the same analysis and interpretation
tools can be used for both measurements is presented. The
present invention provides the first high-resolution (low
electronic noise) measurements of the surface accelerations
of the body related to the heartbeat with a low weight
accelerometer that will minimally load the measurement in
the transverse direction.

The present invention further comprises enabling wear-
able, and thus continuous, recording of BCG signals that
greatly expand the capabilities of the technique; however,
BCG signals measured using wearable devices are morpho-
logically dissimilar to measurements from “fixed” instru-
ments, precluding the analysis and interpretation techniques
from one domain to be applied to the other. In particular, the
time intervals between the ECG and BCG—namely, the R-J
interval, a surrogate for measuring contractility changes—
are significantly different for the accelerometer compared to
a “fixed” BCG measurement. The present invention pro-
vides for quantitatively normalizing wearable BCG mea-
surement to “fixed” measurements with a systematic experi-
mental approach. With these methods, the same analysis and
interpretation techniques developed over the past decade for
“fixed” BCG measurement can be successfully translated to
wearable measurements.

Further, systolic time intervals (STI) are non-invasive
measures of cardiac function. Due to the fact that STI can be
measured noninvasively outside the clinic, STI are a prom-
ising method for long-term monitoring of patients with
CVD. In particular, the pre-ejection period (PEP) has been
measured successfully from body vibrations of the beating
heart, BCG, using a weighing scale. Similar measurements
can be made with on-body accelerometers, however these
wearable BCG signals are typically more challenging to
interpret than whole-body BCG.

In another exemplary embodiment of the present inven-
tion, a small pilot study with four subjects was used to
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investigate whether a body sensor network of four acceler-
ometers positioned on the wrist, arm, sternum, and head
could improve beat-by-beat PEP prediction beyond that of
each sensor alone. Linear models were fitted from the R-J
and R-I intervals of the four BCG signals to PEP measured
with impedance cardiography from five minute recordings
after isometric lower-body exercise. Specifically, it was
found that (i) the root mean square error (RMSE) of PEP
estimation from the wearable BCG sensors can be reduced
by using double integration, (ii) the standard deviation of
PEP estimates from R-I intervals was smaller than from R-J
intervals, and (iii) linear models combining both R-J and R-I
measurements from all sensors resulted in the best average
correlation (r*=0.96+0.01) and lowest average RMSE
(2.5£0.8 ms) from 5x2-fold cross validation.

The present invention is capable of removing conven-
tional issues with wearable sensors, minimizing if not elimi-
nating concerns like the non-repeatability of a user placing
the wearable sensor in the exact same location on the body
time and again, or in the same orientation, or other normal
user day-to-day issues when removing and then placing once
again, a wearable sensor upon the body (like a watch, or
patch, or other item that will likely have a different orien-
tation, location, or other changed condition each time it is
worn).

In another exemplary embodiment, the present invention
comprises innovative measurement systems for measure-
ment of surface vibrations. An accelerometer-based surface
vibration measurement can be made from various locations
including the wrist, sternum, lower back and behind the ear.
An accelerometer-based measurement can be made inside
the body by a pacemaker. Optical methods of surface
vibration measurements are disclosed. The present invention
further comprises measurement of surface vibrations from a
handheld device, mechanical methods, inertial sensors and
RF measurement.

In another exemplary embodiment, the present invention
comprises measurement systems for measurement of COM
vibration waveform measurement techniques. For example,
beds with local cells, instrumented mattresses or pillows, or
with charge sensitive films capable of measuring the move-
ment of whole body in response to the heartbeat are dis-
closes. Chairs with piezoelectric film, load cells or other
sensors can be used to measure the COM BCG. Further,
shoes with integrated sensors (pressure sensors) can be used
to measure COM BCG.

In another exemplary embodiment, the present invention
comprises various algorithms for performing the modifica-
tion of the surface vibration signal using system identifica-
tion techniques such as adaptive filters and non-linear meth-
ods. Health metrics can include changes in the contractile
properties of the heart using variations in the time interval
between R-wave and J-wave.

In another exemplary embodiment, the present invention
further modifies inventive double integration filtering by
training the filter using systolic time intervals extracted from
an impedance cardiogram.

In another exemplary embodiment, the invention does not
require estimating whole-body BCG in order to provide its
beneficial results. Accuracy can be improved by going
directly from local surface vibration measurements to car-
diac timing. The present invention enables the combination
of measurements from sensors placed on more than one
location on the body.

15

20

40

45

55

60

6

These and other objects, features and advantages of the
present invention will become more apparent upon reading
the following specification in conjunction with the accom-
panying drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
publication with color drawings will be provided by the
Office Upon request and payment of the necessary fee.

FIG. 1is a block diagram of measurement setup according
to an exemplary embodiment of the present invention,
showing three main accelerometer placement locations ana-
lyzed.

FIG. 2 is a graph of a representative ECG, head-to-foot
acceleration (ACC), second-derivative of the ballistocardio-
gram (d*(BCG)/dt®), and BCG measurements from one
subject. For this recording, the accelerometer was placed on
the subject’s sternum. The time delays from the ECG
R-wave to the main peak of the acceleration and second-
derivative BCG signals were identical, at 149 ms, while the
time delay from the ECG R-wave to the BCG J-wave peak
(R-J interval) was 228 ms, consistent with physiological
expectations.

FIG. 3 is a block diagram of signal processing methods
for estimating the normalized residual according to an
exemplary embodiment of the present invention.

FIG. 4 is a block diagram of signal processing methods
for estimating the R-J interval according to an exemplary
embodiment of the present invention.

FIG. 5 is a graph of the double-integrated acceleration and
BCG signals using the signal processing methods of FIGS.
3-4.

FIG. 6 are ensemble averaged ECG and BCG (top), and
tri-axial acceleration waveforms for one subject with the
accelerometer placed at the following positions: the ster-
num, point of maximal impulse (PMI), lower back (COM),
and ear. All signals are shown on the same x-axis (time), the
ECG and BCG scale bars are shown for their respective
amplitudes, and the 10 mg amplitude scale bar applies to all
acceleration signals.

FIG. 7 is TABLE I, showing the normalized residual and
correlation coeflicient values for all subjects for the posi-
tions investigated in FIG. 6.

FIG. 8 presents three graphs, being Bland Altman plots
showing agreement between ECG R-wave to BCG J-wave
intervals derived from the weighing scale BCG signal
(“gold” standard) compared to corresponding R-J intervals
derived from the acceleration and double-integrated accel-
eration waveforms measured at the sternum, PMI, and lower
back. For each location, the confidence intervals (95%) are
also plotted for each estimate, and the biasxconfidence
interval is shown. The best agreement was found in the
lower back measurement, after taking the double integral of
the head-to-foot acceleration waveform. Using the accelera-
tion waveform itself always resulted in poorer bias and
confidence interval for R-J interval estimation.

FIG. 9 is a block diagram modeling the relationship
between a wearable BCG and the weighing scale ballisto-
cardiogram (WS BCQG). Ejection of blood into the aorta
causes local and whole-body displacement perturbations at
the surface of the skin and the feet via two different
mathematical systems.

FIGS. 10(a) and (b) are block diagrams showing exem-
plary signal processing systems according to the present
invention. The calibrated configuration is shown in 10(a),
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where the system is first trained on the individual, and 10(6)
shows the uncalibrated configuration, where the system is
pre-trained on a population of subjects.

FIG. 11 presents a series of contour plots of 2-D error
traces for the causal and non-causal BCG reconstructions
from the wearable BCG at the sternum, PMI, and lower
back. The plots were generated on the same grey scale so
that comparisons can be made more easily between them.
The causal filters resulted in very large errors while the
non-causal filters performed well with an average error
across the three error metrics of about 12% at the optimal
filter length and number samples before the R-peak (Nzz).

FIG. 12 is TABLE II, showing the error metrics for all
subjects of FIG. 7, TABLE 1.

FIG. 13 presents a series of waveforms showing the
reconstruction process of a recording with a wearable sensor
placed at the lower back. The calibrated WS BCG recon-
struction is visibly superior to the uncalibrated one.

FIG. 14 is a Bland-Altman plot comparing the calibrated
(stars) and uncalibrated (x’s) methods for I-J amplitude. The
calibrated reconstructions had a much smaller standard
deviation than the uncalibrated counterparts.

FIG. 15 is a Bland-Altman plot comparing the calibrated
(stars) and uncalibrated (x’s) methods for R-I amplitude.
The calibrated reconstructions had a much smaller standard
deviation than the uncalibrated counterparts.

FIG. 16 is a Bland-Altman plot comparing the calibrated
(stars) and uncalibrated (x’s) methods for R-J amplitude.
The calibrated reconstructions had a much smaller standard
deviation than the uncalibrated counterparts.

FIG. 17 presents average finite impulse responses of H
and their frequency characteristics from each wearable loca-
tion on the body for all subjects (solid) are shown with the
corresponding  sample-by-sample standard deviations
(dashed). The morphology of the H impulse responses were
most consistent between subjects when the wearable accel-
erometer was worn at the lower back. The impulse responses
also are clearly non-causal: significant energy exists in the
impulse responses for negative and positive time, and there-
fore, every sample of BCGy;,s depends on both past and
future samples of BCGy 5, -

FIG. 18 presents error metrics for reconstructing the WS
BCG from the wearable BCG measured at the wrist. The
algorithm was trained on the first day, and that calibration
was used for each subsequent day. The R-J interval recon-
struction provided the lowest error of the three key features.

FIG. 19 shows a wearable BCG body sensor network. A
subject performed a two minute wall sit to modulate PEP
followed by a five minute recording during exercise recov-
ery during which PEP returned to normal. Moving window
ensemble averaging was employed to increase signal-to-
noise ratio (SNR) ratio, and double-integration was per-
formed to approximate sensor displacement.

FIG. 20 is a graph of R-J and R-I intervals extracted from
the BCG with peak detection, the ICG B-point was deter-
mined using an algorithm, and R-B was the PEP ground
truth.

FIG. 21 is a graph illustrating the relationship between
PEP and R-J interval for one wearable BCG sensor on one
subject. Double integration improved the correlation.

FIG. 22 shows BCG amplitude decreased and PEP, R-J,
and R-I intervals increased during exercise recovery.

FIG. 23 shows a conventional method for estimating BCG
parameters does not correct for differences between sensor
types, e.g. displacement vs. acceleration sensors.
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FIG. 24 illustrates an exemplary method according to the
present invention that approximates the double integral of
the accelerometer waveform to estimate the sensor’s dis-
placement.

FIG. 25 illustrates that the optimal moving average length
varies with sensor location and subject.

FIG. 26 illustrates increasing the number of accelerom-
eters in the BCG body sensor network, increasing the
number of features from one to two, and applying the
inventive double-integration filter all reduced the RMSE
average and standard deviation during cross validation.
Trials without integration are shown in lighter shade.

DETAIL DESCRIPTION OF THE INVENTION

To facilitate an understanding of the principles and fea-
tures of the various embodiments of the invention, various
illustrative embodiments are explained below. Although
exemplary embodiments of the invention are explained in
detail, it is to be understood that other embodiments are
contemplated. Accordingly, it is not intended that the inven-
tion is limited in its scope to the details of construction and
arrangement of components set forth in the following
description or illustrated in the drawings. The invention is
capable of other embodiments and of being practiced or
carried out in various ways. Also, in describing the exem-
plary embodiments, specific terminology will be resorted to
for the sake of clarity.

It must also be noted that, as used in the specification and
the appended claims, the singular forms “a,” “an” and “the”
include plural references unless the context clearly dictates
otherwise. For example, reference to a component is
intended also to include composition of a plurality of
components. References to a composition containing “a”
constituent is intended to include other constituents in
addition to the one named.

Also, in describing the exemplary embodiments, termi-
nology will be resorted to for the sake of clarity. It is
intended that each term contemplates its broadest meaning
as understood by those skilled in the art and includes all
technical equivalents which operate in a similar manner to
accomplish a similar purpose.

Ranges may be expressed herein as from “about™ or
“approximately” or “substantially” one particular value and/
or to “about” or “approximately” or “substantially” another
particular value. When such a range is expressed, other
exemplary embodiments include from the one particular
value and/or to the other particular value.

Similarly, as used herein, “substantially free” of some-
thing, or “substantially pure”, and like characterizations, can
include both being “at least substantially free” of something,
or “at least substantially pure”, and being “completely free”
of something, or “completely pure”.

By “comprising” or “containing” or “including” is meant
that at least the named compound, element, particle, or
method step is present in the composition or article or
method, but does not exclude the presence of other com-
pounds, materials, particles, method steps, even if the other
such compounds, material, particles, method steps have the
same function as what is named.

It is also to be understood that the mention of one or more
method steps does not preclude the presence of additional
method steps or intervening method steps between those
steps expressly identified. Similarly, it is also to be under-
stood that the mention of one or more components in a
composition does not preclude the presence of additional
components than those expressly identified.
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The materials described as making up the various ele-
ments of the invention are intended to be illustrative and not
restrictive. Many suitable materials that would perform the
same or a similar function as the materials described herein
are intended to be embraced within the scope of the inven-
tion. Such other materials not described herein can include,
but are not limited to, for example, materials that are
developed after the time of the development of the inven-
tion.

In some instances, a computing device may be referred to
as a mobile device, mobile computing device, a mobile
station (MS), terminal, cellular phone, cellular handset,
personal digital assistant (PDA), smart phone, wireless
phone, organizer, handheld computer, desktop computer,
laptop computer, tablet computer, set-top box, television,
appliance, game device, medical device, display device, or
some other like terminology. In other instances, a computing
device may be a processor, controller, or a central processing
unit (CPU). In yet other instances, a computing device may
be a set of hardware components.

Various aspects described herein may be implemented
using standard programming or engineering techniques to
produce software, firmware, hardware, or any combination
thereof to control a computing device to implement the
disclosed subject matter. A computer-readable medium may
include, for example: a magnetic storage device such as a
hard disk, a floppy disk or a magnetic strip; an optical
storage device such as a compact disk (CD) or digital
versatile disk (DVD); a smart card; and a flash memory
device such as a card, stick or key drive, or embedded
component. Additionally, it should be appreciated that a
carrier wave may be employed to carry computer-readable
electronic data including those used in transmitting and
receiving electronic data such as electronic mail (e-mail) or
in accessing a computer network such as the Internet or a
local area network (LAN). Of course, a person of ordinary
skill in the art will recognize many modifications may be
made to this configuration without departing from the scope
or spirit of the claimed subject matter.

Various systems, methods, and computer-readable medi-
ums may be utilized for gamifying real-time network com-
munications between users and will now be described with
reference to the accompanying figures.

It will be understood by those of skill in the art that the
present invention may incorporate various types computing
device architectures. They may be embodied in a computing
device (for example, a dedicated server computer or a
mobile computing device). It will be understood that the
computing device architecture is provided for example pur-
poses only and does not limit the scope of the various
embodiments of the present disclosed systems, methods, and
computer-readable mediums.

The computing device architecture can include a CPU,
where computer instructions are processed; a display inter-
face that acts as a communication interface and provides
functions for rendering video, graphics, images, and texts on
the display. According to certain some embodiments of the
disclosed technology, the display interface may be directly
connected to a local display, such as a touch-screen display
associated with a mobile computing device. In another
example embodiment, the display interface may be config-
ured for providing data, images, and other information for an
external/remote display that is not necessarily physically
connected to the mobile computing device. For example, a
desktop monitor may be utilized for mirroring graphics and
other information that is presented on a mobile computing
device. According to certain some embodiments, the display
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interface may wirelessly communicate, for example, via a
Wi-Fi channel or other available network connection inter-
face to the external/remote display.

In an example embodiment, the network connection inter-
face may be configured as a communication interface and
may provide functions for rendering video, graphics,
images, text, other information, or any combination thereof
on the display. In one example, a communication interface
may include a serial port, a parallel port, a general purpose
input and output (GPIO) port, a game port, a universal serial
bus (USB), a micro-USB port, a high definition multimedia
(HDMI) port, a video port, an audio port, a Bluetooth port,
a near-field communication (NFC) port, another like com-
munication interface, or any combination thereof.

The computing device architecture may include a key-
board interface that provides a communication interface to a
keyboard. The computing device architecture may be con-
figured to use an input device via one or more of input/
output interfaces (for example, the keyboard interface, the
display interface, the presence sensitive display interface,
network connection interface, camera interface, sound inter-
face, etc.) to allow a user to capture information into the
computing device architecture. The input device may
include a mouse, a trackball, a directional pad, a track pad,
a touch-verified track pad, a presence-sensitive track pad, a
presence-sensitive display, a scroll wheel, a digital camera,
a digital video camera, a web camera, a microphone, a
sensor, a smartcard, and the like. Additionally, the input
device may be integrated with the computing device archi-
tecture or may be a separate device. For example, the input
device may be an accelerometer, a magnetometer, a digital
camera, a microphone, and an optical sensor.

Example embodiments of the computing device architec-
ture may include an antenna interface that provides a com-
munication interface to an antenna; a network connection
interface that provides a communication interface to a
network. According to certain embodiments, a camera inter-
face is provided that acts as a communication interface and
provides functions for capturing digital images from a
camera or other image/video capture device. According to
certain embodiments, a sound interface is provided as a
communication interface for converting sound into electrical
signals using a microphone and for converting electrical
signals into sound using a speaker. According to example
embodiments, a random access memory (RAM) is provided,
where computer instructions and data may be stored in a
volatile memory device for processing by the CPU.

According to an example embodiment, the computing
device architecture includes a read-only memory (ROM)
where invariant low-level system code or data for basic
system functions such as basic input and output (I/O),
startup, or reception of keystrokes from a keyboard are
stored in a non-volatile memory device. According to an
example embodiment, the computing device architecture
includes a storage medium or other suitable type of memory
(e.g., RAM, ROM, programmable read-only memory
(PROM), erasable programmable read-only memory
(EPROM), electrically erasable programmable read-only
memory (EEPROM), magnetic disks, optical disks, floppy
disks, hard disks, removable cartridges, flash drives), where
the files include an operating system, application programs
(including, for example, a web browser application, a widget
or gadget engine, and or other applications, as necessary)
and data files are stored.

According to an example embodiment, the computing
device architecture includes a power source that provides an
appropriate alternating current (AC) or direct current (DC)
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to power components. According to an example embodi-
ment, the computing device architecture includes a tele-
phony subsystem that allows the device to transmit and
receive sound over a telephone network. The constituent
devices and the CPU communicate with each other over a
bus.

According to an example embodiment, the CPU has
appropriate structure to be a computer processor. In one
arrangement, the CPU may include more than one process-
ing unit. The RAM interfaces with the computer bus to
provide quick RAM storage to the CPU during the execution
of software programs such as the operating system applica-
tion programs, and device drivers. More specifically, the
CPU loads computer-executable process steps from the
storage medium or other media into a field of the RAM in
order to execute software programs. Data may be stored in
the RAM, where the data may be accessed by the computer
CPU during execution. In one example configuration, the
device architecture includes at least 125 MB of RAM, and
256 MB of flash memory.

The storage medium itself may include a number of
physical drive units, such as a redundant array of indepen-
dent disks (RAID), a floppy disk drive, a flash memory, a
USB flash drive, an external hard disk drive, thumb drive,
pen drive, key drive, a High-Density Digital Versatile Disc
(HD-DVD) optical disc drive, an internal hard disk drive, a
Blu-Ray optical disc drive, or a Holographic Digital Data
Storage (HDDS) optical disc drive, an external mini-dual
in-line memory module (DIMM) synchronous dynamic ran-
dom access memory (SDRAM), or an external micro-
DIMM SDRAM. Such computer readable storage media
allow a computing device to access computer-executable
process steps, application programs and the like, stored on
removable and non-removable memory media, to off-load
data from the device or to upload data onto the device. A
computer program product, such as one utilizing a commu-
nication system may be tangibly embodied in storage
medium, which may comprise a machine-readable storage
medium.

According to one example embodiment, the term com-
puting device, as used herein, may be a CPU, or conceptu-
alized as a CPU (for example, the CPU). In this example
embodiment, the computing device may be coupled, con-
nected, or in communication with one or more peripheral
devices, such as display, camera, speaker, or microphone.

In some embodiments of the disclosed technology, the
computing device may include any number of hardware or
software applications that are executed to facilitate any of
the operations. In some embodiments, one or more /O
interfaces may facilitate communication between the com-
puting device and one or more input/output devices. For
example, a universal serial bus port, a serial port, a disk
drive, a CD-ROM drive, or one or more user interface
devices, such as a display, keyboard, keypad, mouse, control
panel, touch screen display, microphone, etc., may facilitate
user interaction with the computing device. The one or more
1/0O interfaces may be utilized to receive or collect data
and/or user instructions from a wide variety of input devices.
Received data may be processed by one or more computer
processors as desired in various embodiments of the dis-
closed technology and/or stored in one or more memory
devices.

One or more network interfaces may facilitate connection
of the computing device inputs and outputs to one or more
suitable networks or connections; for example, the connec-
tions that facilitate communication with any number of
sensors associated with the system. The one or more net-
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work interfaces may further facilitate connection to one or
more suitable networks; for example, a local area network,
a wide area network, the Internet, a cellular network, a
radio-frequency network, a Bluetooth-enabled network, a
Wi-Fi-enabled network, a satellite-based network, any wired
network, any wireless network, etc., for communication with
external devices or systems.

In an exemplary embodiment, the present invention com-
prises a system for providing BCG data from a user com-
prising a wearable sensor configured to receive, from a user,
cardiogenic surface vibration waveforms, a calibrating sen-
sor configured to receive, from the user, cardiogenic center-
of-mass (COM) vibration waveforms, and a processor con-
figured to use the COM vibration waveforms as a template
for modifying the surface vibration waveforms to provide at
least one health-related output.

As discussed, the present invention minimizes if not
eliminates human error or simply human action in the
periodic removing and replacing a wearable sensor upon the
body. For example, a wristwatch might be worn each day,
but it cannot have the same tightness, or same orientation, or
same location about the wrist/arm each time it is worn. Nor
can a wearable sensor in the form of a patch. Even if location
can be nearly the same, the rotational orientation of the patch
might be difficult for a user to reproduce each time it is
placed on the body, even if the patch has indicia to help the
user repeatably align the orientation time and again. The
present invention overcomes such issues with its innovative
approach to calibration.

A health-related output can comprise a condition of the
user’s heart. A health-related output can comprise systolic
time interval measurements. A health-related output can
comprise cardiac output or changes in cardiac output.

The wearable sensor can be a wearable wrist sensor. The
wearable sensor can comprises an elastic band, such as on
the arm or chest. The wearable sensor can comprise an
adhesive patch placed on the skin.

The calibrating sensor can comprise a weighing scale
configured to measure BCG signals. The calibrating sensor
can comprise a chair configured to measure BCG signals.
The calibrating sensor can be built into a bed to measure
BCG signals.

The processor can be configured to run an algorithm for
modifying the surface vibration waveforms using a regular-
ized least squares based system identification method using
the COM vibration waveforms as calibration waveforms to
modify the surface vibration waveforms.

The processor can be configured to run an algorithm for
modifying the surface vibration waveforms using adaptive
signal estimation and the calibrating sensor waveform as the
desired response.

These innovative approaches are described in detail
below.

1. Towards Continuous, Non-Invasive Assessment
of Ventricular Function and Hemodynamics:
Wearable Ballistocardiography

In a first exemplary embodiment of the present invention,
a systematic approach for elucidating the relationship
between these surface vibrations of the body in the head-
to-foot direction, and the movements of the whole body as
measured by the BCG-equipped weighing scale is exam-
ined. In another exemplary embodiment of the present
invention, a methodology for mathematically converting the
wearable acceleration signals to BCG signals such that the
same analysis and interpretation tools can be used for both



US 10,806,374 B2

13

measurements is disclosed. In yet another exemplary
embodiment of the present invention, high-resolution (low
electronic noise) measurements of the surface accelerations
of the body related to the heartbeat with a low weight
accelerometer that will minimally load the measurement in
the transverse direction is disclosed.

Methods and Design Approach

Hardware Design and Data Collection

In one study, a protocol was used, reviewed and approved
by the Georgia Institute of Technology (GT) Institutional
Review Board (IRB). All subjects provided written informed
consent before experimentation. Fifteen healthy subjects
were recruited for this study, including ten men and five
women with ages ranging from 22 to 57. Similar to other
studies in the existing literature, each subject served as his
or her own control since relationships between measure-
ments made on the same individuals were examined.

FIG. 1 shows a block diagram of the measurement hard-
ware and setup, and FIG. 2 is a graph of representative
signals measured from one subject. As shown, a custom
circuit was built and implanted in the modified home weigh-
ing scale (BC534, Tanita Corporation, Tokyo, Japan) to
interface to the strain gauge bridge in the scale and measure
the fluctuations in bodyweight caused by the heartbeat—the
head-to-foot BCG signal. An ultra-low noise integrated
bridge amplifier and 24-bit sigma-delta analog-to-digital
converter (AD7191, Analog Devices, Norwood, Mass.) was
used to amplify this differential signal from the strain gauge
bridge, and the digitized output was connected to the input
port of a microcontroller (1284P, Atmel Corporation, San
Jose, Calif.).

The digitized signal, sampled at 120 Hz, was then wire-
lessly transmitted to the computer using Bluetooth and
stored for post-processing and analysis.

The ECG recordings were measured by the BN-EL50
wireless ECG measurement module (BIOPAC Systems,
Inc., Goleta, Calif.) with the Ag/AgCl surface electrodes
configured for a modified Lead II measurement. The ECG
data were transmitted wirelessly from this module to the
data acquisition system (MP150WSW, BIOPAC Systems,
Inc., Goleta, Calif.) where they were sampled at 1 kHz and
stored on the computer.

While the subjects stood on the weighing scale and the
BCG and ECG were recorded, the surface acceleration
signals in the head-to-foot direction were measured using a
small, ultra-low noise accelerometer (356A32, PCB Piezo-
tronics, Depew, N.Y.) attached to various locations on the
torso. This accelerometer was selected based on its low spot
noise (20 pg,,,/VHz at 10 Hz) and total noise (300 pg,,,. for
a bandwidth of 1-10,000 Hz), wide signal bandwidth (0.7-
5000 kHz, +/-1 dB), and its relatively small size (11.4 mm?)
and low weight (5.4 g).

In contrast to micromachined MEMS accelerometers used
in previous studies, the self-noise was several times lower:
the LIS344ALH (ST Microelectronics, Geneva, Switzer-
land) accelerometer used in previous studies represents the
lowest noise MEMS accelerometer available, with a self-
noise of 350 pg, . for a bandwidth of 1-50 Hz compared to
the 60 pg,,,, for the 356A32 used here. Compared to other
instrumentation-grade accelerometers used in previous stud-
ies, the weight of the accelerometer was eight times lower,
as was the volume: the 4381 (Briiel & Kjer, Naeurum,
Denmark) piezoelectric accelerometer used previously
weighs 43 g and is a 20.5 mm (diameter)x23.6 mm (height)
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cylinder compared to the 5.4 g weight and 11.4 mm?
dimensions of the sensor used here.

These choices of accelerometers for previous studies have
been driven by the fact that the analysis was focused
primarily on dorso-ventral components of cardiogenic sur-
face accelerations of the torso, as compared to head-to-foot
components. The dorso-ventral components are larger in
amplitude, and, due to the measurement direction being
perpendicular to the wall of the chest, mechanical loading of
the skin by the sensor would be less of a concern. Since the
present invention focuses on head-to-foot accelerations, and
the subjects are standing upright, the loading of the skin by
a heavy accelerometer would be of great concern, as would
an elevated sensor noise floor compromising the accuracy of
the measurements. Based on these aspects, the waveforms
presented herein are the closest representation of the actual
surface accelerations in the head-to-foot direction, are of
high signal quality as shown in FIG. 2, and are the most
appropriate surface measurements for comparison to BCG
recordings from the weighing scale system.

BCG, ECG, and Accelerometer Signal Processing

The signal processing comprises pre-processing for
reducing electronic noise, baseline wander, and motion
artifacts in the signals, and feature extraction from the BCG
and acceleration signals. The feature extraction operations
are summarized in the block diagrams shown in FIGS. 3-4.

The ECG signal was digitally band-pass filtered (Finite
impulse response, FIR, Pass-band: 15-25 Hz, Kaiser win-
dow) to extract the QRS complexes, then an automatic peak
detection algorithm was employed and checked manually to
find the R-wave timings. The BCG was band-pass filtered
(FIR, Pass-band: 0.8-15 Hz, Kaiser window) to remove
baseline wander and high frequency noise, as was the
acceleration signal (Infinite impulse response, IR, Pass-
band: 1-15 Hz, Butterworth). Using the R-wave peaks as a
fiduciary point, the BCG and acceleration waveforms were
then segmented with a window extending from each R-wave
peak timing, R;, to R,+700 ms. The ensemble averages were
then computed from these segmented heartbeats. The accel-
eration ensemble average was then double-integrated using
a twice-repeated sequence of trapezoidal integration and
low-order polynomial-fitting-based baseline wander estima-
tion and subsequent removal.

For each subject, and each location on the torso, a
normalized residual RMSE was then found from the double-
integrated acceleration signal compared to the BCG, with a
scaling factor first determined based on the ratio of the
maximum absolute value amplitude of the signals; a corre-
lation coefficient was also computed.

The R-J interval was calculated for the weighing-scale
BCG signal by finding the elapsed time between the previ-
ous ECG R-wave peak and the global maximum in the first
400 ms of the BCG ensemble average. The 400 ms window
was chosen based on physiological expectations and previ-
ous values for normal R-J intervals from the existing litera-
ture. The interval between the ECG R-wave and the maxi-
mum peak of the vibration signal was measured for the
head-to-foot accelerometer signal, and the double-integral of
the acceleration, as follows. In initial observations of the
double-integrated acceleration, signals, it was noticed that
simply using the global maximum over the full window
created errors in J-wave peak detection due to the double
integration operation amplifying low frequency noise.

One source of low frequency noise is motion or postural
sway of the subject. It is known that the standing BCG is
more prone to noise from subject motion than stationary
techniques such as bed- and chair-based BCG methods
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where the subject is either supine or seated. Techniques have
been developed to reduce this noise in the standing BCG
using electromyogram (EMG) signals from the feet as a
measure of lower-body muscle contraction and relaxation.
Other sources of noise affecting the measurement include
low-frequency electrical noise. The low frequency parasitic
components from these various sources were shaped by the
double integration.

As a result, an algorithm was designed to find the closest
large peak to the actual BCG J-wave peak rather than the
global maximum. To achieve this, first the indices of all local
maxima were located in the first 400 ms of the acceleration
ensemble average. Then the acceleration ensemble average
was offset with a positive DC bias and multiplied by a
Gaussian window function centered on the true J-wave peak.
This signal was evaluated at the samples corresponding to
the local maxima and the absolute maximum among them
was selected as the best estimate for the J-wave peak.

In this way, the estimated J-wave peak was located with
preference first to peaks that were closest to the true J-wave
peak and then for peaks that were large. (A large peak in the
acceleration signal that was slightly farther from the true
J-wave peak will be selected over a much smaller peak
closer to the true J-wave with the width of the Gaussian
window function determining the balance between peak size
and distance from true J-wave.) Additionally, an analysis of
these error metrics against heart rate was performed, and no
significant correlations were found.

Experiments and Statistical Analysis

For one subject with representative acceleration and BCG
waveform amplitude and morphology tri-axial acceleration
signals were measured from several locations on the torso
and head and plotted them for visual analysis and compari-
son.

For all subjects, the head-to-foot accelerations were mea-
sured at three locations—sternum, PMI, and lower back
(center-of-mass, COM)—simultaneously with the ECG and
BCG. The best location for each subject was determined
based on the lowest normalized residual and the highest
correlation coefficient. The statistical significance (at the
p<0.05 level) of the differences in both normalized residuals
and correlation coefficients for the different locations for all
subjects were assessed using Student’s t-test.

For the R-J intervals, Bland-Altman methods were used to
assess the agreement between the two accelerometer-derived
R-J intervals (one from the acceleration signal itself, and one
from the double-integrated acceleration signal) and the
BCG-derived “gold” standard R-J interval. The bias and
confidence interval for both of these techniques were com-
pared, and determined whether or not a body-worn accel-
erometer combined with ECG could yield an accurate esti-
mate of the R-J interval.

Results and Discussion

Influence of Sensor Placement on Signal Morphology and
Timing: Results from One Subject

The ensemble averaged acceleration waveforms in all
three axes—with x as lateral, y as dorso-ventral, and z as
head-to-foot directions—are shown in FIG. 6 alongside the
simultaneously-acquired ECG and BCG signals for one
subject. Note that the head-to-foot acceleration is greatest at
the PMI, and decreases at the sternum and lower back. For
the dorso-ventral direction, the time delay between the ECG
R-wave and the largest negative peak in the acceleration
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waveform is shortest at the sternum, then the PMI, then
longest at the lower back. The recording from the ear
appears to be the smallest in terms of peak-to-peak accel-
erations, and is delayed in time compared to the sternal
signal.

Statistical Results from All Subjects

TABLE I shown in FIG. 7 shows the normalized residual
and correlation coeflicient values for all subjects for the
three positions. The position with the lowest residual is
denoted by an asterisk (*), and the position with the highest
correlation coefficient by a dagger (7). The PMI was the best
location in terms of lowest residual and highest correlation
coeflicient for only three of the fifteen subjects; the lower
back was the best location in terms of lowest residual for
three of fifteen subjects, but highest correlation coefficient
for six subjects. The sternum was the best location of the
three, with significantly lower normalized residual com-
pared to the PMI and lower back for the overall subject
population (p<0.05). Considering only the results from the
best of three locations for all subjects, the average (+0)
normalized residual and correlation coefficient are 0.83
(x0.22) and 0.83 (x0.07).

Finally, following the trend shown in FIG. 6 for one
subject, the peak-to-peak acceleration amplitude was sig-
nificantly (p<<0.01) highest on average for all subjects with
the sensor placed at the PMI (61.3+26.8 mg), then the
sternum (32.6+12.6 mg), then the back (16.3+10.5 mg), and
the minimum location occurred significantly later (p<0.05)
in the cardiac cycle at the lower back (224.0£35.8 ms)
compared to the sternum (176.2+81.1 ms).

R-J Interval Comparisons

FIG. 8 shows three Bland-Altman plots of agreement
between the “gold” standard R-J interval measurement (the
interval between the ECG R-wave and the weighing scale
BCG J-wave) and the acceleration or double-integrated
acceleration waveforms from all three locations on the body.
With the accelerometer located at the sternum or lower back,
the R-J interval derived using the double-integrated accel-
eration signal showed good agreement with the weighing
scale. The best location for R-J interval estimation was
found to be the lower back, with a bias of =3.9 ms and a
confidence interval of +30 ms. Using the acceleration wave-
form itself provided poor agreement with weighing scale R-J
intervals, with both a large bias and wide confidence inter-
val.

DISCUSSION

The results confirm that although a body-mounted accel-
erometer can be used for BCG measurement, the accelera-
tion waveform itself should not be interpreted using standard
BCG nomenclature or feature extraction techniques. Rather,
an ensemble averaging and double integration operation can
be used to transform the acceleration waveform into a COM
BCG signal, from which standard BCG feature extraction
techniques can be applied. Additionally, although accelera-
tions measured at the PMI have the largest amplitude—and
thus the highest electronic SNR—the PMI is the worst
location for both matching the BCG signal morphology and
for extracting the R-J interval feature. This reinforces the
importance of optimizing physiological sensing systems and
approaches based on the physiology and findings from
human subjects studies, rather than using engineering prin-
ciples alone.

The best location for placing the accelerometer for wear-
able BCG measurements is subject-dependent, indicating
that for optimal results an initial calibration step likely is
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needed. For example, a subject could stand on the BCG-
equipped weighing scale while wearing an accelerometer on
the torso, and the transfer function between the measure-
ments could be modeled mathematically. For most measure-
ments, the sternum is the best location for mounting the
sensor, as it produced the lowest average residual (best
morphological match) compared to the COM BCG and
accurate R-J interval feature extraction. For applications
requiring best timing precision in assessing the R-J interval,
the lower back placement should be used: this positions the
accelerometer as closely as possible to the COM of the
person, thus closely mirroring the COM movements which
are measured with the scale.

Finally, these results suggest that in addition to the
hemodynamic components at the origin of these low fre-
quency (<20 Hz) vibration signals of the torso, there are
other components that are localized at the heart: for
example, the movement of the heart itself.

The present invention presents innovative methodologies
that can be used to extract clinically relevant BCG features
based on acceleration measurements from different locations
on the torso, and provides promising evidence for these
methods based on preliminary findings from human subjects
studies. The methodologies potentially can reduce some of
the confusion in the scientific community regarding the
relationship between traditional “fixed” BCG measurements
and wearable BCG measurements, and reiterates the impor-
tance of sensor placement for interpreting results.

While the results appear promising, a few limitations
should be mentioned. Although double integration improved
the accuracy of the R-J interval measurement, and therefore
the measurement of changes in contractility, this method has
not been validated for patients with heart failure or other
cardiac abnormalities. Additionally, the standing BCG
method used herein can exhibit more noise from motion and
postural sway than BCG methods for which the patient is
seated or supine.

II. Identification Techniques for Improved Wearable
Hemodynamics Assessment

As discussed above, simply interpreting the wearable
BCG signal as a displacement BCG yields incorrect cardiac
assessments, specifically of the R-J interval. Thus, in another
exemplary embodiment of the present invention, a frame-
work for reconstructing the WS BCG from the wearable
sensor via a calibration, or training, step is built. Further-
more, it is demonstrated for the first time that WS BCG can
even be measured from the vertical accelerations of the
wrist.

Although the wearable signal differs from these two
widely studied signals, it is related to them via the mechan-
ics of the body. These underlying relationships can be
leveraged to cross domains between different sensor modali-
ties. As will be shown, the relationship between the wearable
BCG and the WS BCG shown in FIG. 9 is detailed, an
improved numerical integrator is developed to estimate the
displacement of a wearable sensor from its acceleration, a
framework to resolve the WS BCG from the wearable BCG
is built, and preliminary validation of this framework with
data from human subjects is provided.

Physical Overview and Hypotheses
Previous Studies

Comparison and refinement of different types of BCG
measurements has been approached in various ways. Elec-
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tric filters were developed to correct the frequency responses
of displacement and velocity BCG beds. More recently,
others noted several differences between 3-D acceleration
BCG measurements from two locations on the spine in the
time and frequency domain. The issue of comparing BCG
displacements, velocities, and accelerations has also been
raised, wherein it was remarked that there is similarity of the
HF BCG (displacement) to the second derivative (accelera-
tion) of the ULF BCG.

In this exemplary embodiment of the present invention, a
framework is developed for converting between different
BCG modalities in order to ease such dependence on the
specific hardware used.

Hypotheses

The WS BCG is a measurement of displacements result-
ing from cardiac ejection of blood into the vasculature. The
WS BCG signal is examined in the vertical, or head-to-foot,
axis when the subject is standing upright. Recently, several
researchers have attempted to measure BCG signals from
wearable devices, most notably a miniature accelerometer
attached to the surface of the skin. Although this approach
may yield continuous BCG recording in naturalistic envi-
ronments, there are several outstanding scientific questions
that must be addressed to properly compare between the two
domains—wearable versus other BCG modalities.

Whole-body displacements most closely match those at
the surface of the skin when the wearable sensor is located
at regions on the body that are well coupled to the rigid
skeletal system. Specifically, as disclosed above, accelera-
tion measurements at these locations closely matched the
second derivative of the WS BCG. In this exemplary
embodiment, the relationship between these two fundamen-
tally different BCG measurements are examined, and an
innovative method to reconstruct the WS BCG from the
wearable signal is developed. To achieve this reconstruction,
the present method relies heavily on the following hypoth-
esis: a first-order approximation of the WS BCG can be
obtained by twice integrating the wearable BCG.

To motivate the need for double integration, it is impor-
tant to first highlight one aspect of the wearable BCG
vis-a-vis the WS BCG. The wearable BCG disclosed herein
is a measure of the acceleration of the sensor’s mass on the
surface of the skin. By contrast, the weighing scale is a
mass-spring-dashpot system of the form shown in Equation
1 where the damping b and mass m terms are nearly zero.

F=kx+by+ma (1)

F=kx 2

This is evident by the scale’s frequency response. As a
result, the displacement term containing the spring constant
k is dominant: Hooke’s Law (Equation 2) governs the
motion of the WS platform, and the WS BCG signal is
directly proportional to the platform’s displacement. The
wearable BCG and WS BCG are related primarily by the
integral operator. When modeling the relationship between
the wearable and WS BCG signals, it is important to first
integrate the wearable acceleration signal twice in order to
obtain an estimate of the sensor’s displacement.

The a priori knowledge about the physical behavior of the
wearable sensor was leveraged to improve this displacement
estimate. Since the accelerometer was physically attached to
the skin and not able to move freely in space, it was assumed
that nearly zero low-frequency energy should exist in the
acceleration, velocity, and displacement. (If low-frequency
components in these signals were allowed to persist, small
errors in the acceleration measurement would accumulate
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into large velocities and displacements via the integral
operators, and would thus, incorrectly signify a slow drift of
the sensor’s position away from the thorax.)

Therefore, numerical integration was performed in series
with high-pass filters as shown in FIGS. 10(a) and (b) to
eliminate spurious low-frequency energy, and the cutoff
frequency of the filters was determined empirically. The
output of this sequence of operations was an estimate of the
wearable sensor’s displacement as a function of time, which
was then used in subsequent steps to estimate the displace-
ment of the weighing scale.

To estimate the WS displacement, the relationship
between the wearable and WS BCG are modeled as a
mathematical system H as shown in FIG. 9. In this model,
the input to H is the wearable sensor’s estimated displace-
ment and the output is the WS BCG. Single-input-single-
output (SISO) mechanical systems, such as the classic
spring-mass-dashpot system, are generally causal as pertur-
bations at the input result in changes at the output only after
they occur. However, since the genesis of energy in
mechanical cardiac signals like the BCG is myocardial
contraction and relaxation inside the thorax, and the resul-
tant ejection of blood into the aorta, it is hypothesized that
wearable BCG signals recorded with an accelerometer on
the surface of the body and WS BCG signals will both be
coupled to the same source, the heart muscles and central
blood movement, via two different unknown mechanical
systems in the body.

In this situation, the outputs of two SISO systems, Hy
and Hy,, are the displacements of the wearable and WS
BCG signals, and these two systems share a common input
originating from the heart. If this hypothesis is accurate, H
will be non-causal because it involves the inverse of a causal
system, Hy, ., in series (cascaded) with Hy.. Because
inverting a causal system in general results in a non-causal
one, the overall series system will also in general be non-
causal.

Consequently, it is posited that an approximation of H can
be obtained via system identification by training a non-
causal linear finite impulse response (FIR) filter H with
simultaneous recordings of the wearable and WS BCG.
Although H is almost certainly an infinite impulse response
(IIR) system due to its mechanical origins in Hjz,z and
H,,., an FIR filter of sufficient length can approximate an
TIR system provided that the latter is stable. As instability
would imply oscillations in the mechanical systems over
time of sustained or increasing magnitude, stability of H is
almost certainly a reasonable assumption. Therefore, if H
can be made long enough to include most of the energy in
the true system, H should provide a good reconstruction of
the WS BCG from the wearable BCG. The methods used to
find H and the error metrics used to quantify its goodness of
fit are explained.

Methods

Hardware and Data Acquisition

The measurement hardware and setup is not unlike that
shown in FIG. 1. Wearable BCG measurements were made
with a high-resolution instrumentation-grade accelerometer
oriented such that the foot-to-head direction was positive. In
the same way as disclosed above, a small, ultra-low noise
accelerometer (356A32, PCB Piezotronics, Depew, N.Y.)
attached to various locations on the torso. This accelerom-
eter was selected based on its low spot noise (20 pg,,, /VHz
at 10 Hz) and total noise (300 pg,,,. for a bandwidth of
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1-10,000 Hz), wide signal bandwidth (0.7-5000 kHz, +/-1
dB), and its relatively small size (11.4 mm?®) and low weight
54 9.

WS BCG recordings in the same axis were measured with
a modified weighing scale that also captured an ECG with
handlebar electrodes. A custom circuit was built and
implanted in the modified home weighing scale (BC534,
Tanita Corporation, Tokyo, Japan) to interface to the strain
gauge bridge in the scale and measure the fluctuations in
bodyweight caused by the heartbeat—the head-to-foot BCG
signal. An ultra-low noise integrated bridge amplifier and
24-bit sigma-delta analog-to-digital converter (AD7191,
Analog Devices, Norwood, Mass.) was used to amplify this
differential signal from the strain gauge bridge, and the
digitized output was connected to the input port of a micro-
controller (1284P, Atmel Corporation, San Jose, Calif.).

The digitized signal, sampled at 120 Hz, was then wire-
lessly transmitted to the computer using Bluetooth and
stored for post-processing and analysis.

The ECG was sampled at 1 KHz and also transmitted via
Bluetooth.

A second ECG waveform was captured simultaneously
with Ag/AgCl gel electrodes to synchronize the wearable
BCG and WS BCG recordings, which were captured with
separate data acquisition units and sample rates. The second
ECG recordings were measured by the BN-EL50 wireless
ECG measurement module (BIOPAC Systems, Inc., Goleta,
Calif.) with the Ag/AgCl surface electrodes configured for a
modified Lead II measurement. The ECG data were trans-
mitted wirelessly from this module to the data acquisition
system (MP150WSW, BIOPAC Systems, Inc.), where they
were sampled at 1 kHz and stored on the computer. The data
acquisition system recorded the wearable BCG simultane-
ously at the same sample rate of 1 kHz.

All signals were recorded by a PC, resampled to a sample
rate of 1 kHz, synchronized via cross correlation of the two
ECG recordings, and analyzed offline. The coupling of the
accelerometer to the skin can influence the system frequency
response for the accelerometer BCG measure. The exact
manner in which this impacts system frequency response is
unknown and can depend on many variables such as body
fat, skin softness, and bone coupling. Thus, a purpose of this
investigation was is to find a method for identification of the
system without such characterization.

Human Subjects

Fifteen healthy subjects with differing anthropometrics
were recruited for this study approved by the GT IRB.
Among these subjects were ten men and five women aged 22
to 57. Body mass ranged from 49 to 104 kg and height
spanned 160 to 196 cm. The subjects were asked to wear
three gel electrodes for measuring the ECG while also
standing on a modified weighing scale to simultaneously
capture the WS BCG. Additionally, subjects were asked to
wear an accelerometer adhesively attached to the skin at
each of three locations on the body: the body of the sternum
halfway between the manubrium and the xiphoid process,
the PMI on the pectorals directly above the heart, and the
lumbar vertebrae at the lower back near the body’s center-
of-mass. The sternal BCG recorded in this study is also
known as the “vertical sternal seismocardiogram.”

The subjects were asked to stand as still as possible on the
scale while wearing the ECG electrodes and the accelerom-
eter, and recordings approximately 1 min in length were
captured with the accelerometer at each of the three loca-
tions resulting in 45 total recordings.

In addition to the fifteen-subject trials, recordings were
also made on one individual over a span of nine consecutive



US 10,806,374 B2

21

days to determine if cardiovascular health could be moni-
tored over time via the wearable BCG. The wearable sensor
was placed at the sternum, PMI, and lower back as before;
however, additional recordings were also taken at the wrist.

For the wrist trials, the wearable sensor was attached to
the body where a person would typically place the face of a
wrist watch. Cross validation was not used. Instead, H was
trained on data from the first day, the WS BCG was
reconstructed from the wearable BCG on each day using H,
and these reconstructions were evaluated using the same
error metrics as before.

Cross Validation and Error Metrics

K-fold cross validation is a technique commonly used to
perform model selection in statistical and machine learning
problems. K-fold cross validation is the process of randomly
partitioning a dataset into k equal-size subsamples and
performing the following procedure k times (folds): one
subsample is used to validate the results of the algorithm
after training the algorithm with the other subsamples. The
k results are then averaged and a single estimation is
produced.

To use this tool on the present dataset, the BCG and ECG
waveforms were split in each of the 45 recordings into
individual heartbeats. Within each recording, five equal-
sized sets of heartbeats were randomly partitioned. The
signal processing steps described in the next section were
performed on each recording five times, each time using four
heartbeat sets to train the model (the training set) and using
the remaining heartbeat set to perform a reconstruction of
the WS BCG from the wearable BCG (the validation set).
K=5 was chosen as a tradeoff between immunity to over-
fitting for large values of K and low SNR of the ensemble
average when using a small number of heartbeats in the
validation set.

Three error metrics were calculated from each fold’s
reconstructed WS BCG. These error metrics were the R-J
interval, R-I interval, and I-J amplitude. These values are
classical BCG measures of different cardiac metrics, and a
good reconstruction of the WS BCG should accurately
reproduce these values. The average of these three values
across all recordings and folds was determined and used as
a composite error score to select each parameter in the
model. 1-D error traces were generated by calculating the
composite error score via cross validation for different
values of one parameter while holding other parameters
constant. Likewise, 2-D error traces were performed by
varying two parameters.

Signal Processing

FIGS. 10(a) and (4) show block diagrams of the signal
processing subsystems. First, band-pass filtering was per-
formed on the BCG signals to eliminate out-of-band noise.
The passband for these filters was 0.8-8.0 Hz. Although the
BCG contains frequency components higher than 8.0 Hz, it
was found that removing them improved the reconstruction.

Next, a preprocessing step was used to increase the SNR
of the two BCG signals. The SNR of repeating events can be
improved by leveraging the uncorrelated nature of the noise
via ensemble averaging. An ensemble average of each signal
was, therefore, produced by calculating the sample-by-
sample mean with respect to fiducial points synchronous to
the cardiac cycle. Similar to previous studies, the R-peak in
the ECG was used as the fiducial point. The minimum R-R
interval for each recording, RR, ., was used as the total
number of samples in the ensemble average including and
following the R-peak.

A smaller N .. were also included in the ensemble
average to increase the total number of samples; the total
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number of samples in the ensemble average was, therefore,
RR, n+Nprz. Since cross validation was used, separate
ensemble averages were constructed for the training and
validation sets.

Finally, an estimate for the accelerometer displacement
was determined via double integration and high-pass filter-
ing. Numerical integration was performed with trapezoidal
integrators, and high-pass filters were implemented with
moving average subtractors. The output of each high-pass
filter was its input subtracted by its moving average, and the
length of the moving average was the same for all the filters.
The optimal length was determined empirically with a 1-D
error trace and found to be 100 samples for a sample rate of
1000 Hz. This resolves to a cutoff frequency of 6.0 Hz
(corresponding to the filter’s—3 dB point) and a maximum
passband ripple of 1.45 dB.

System Identification Via Least-Squares Regression

A training step was used to find the impulse response of
H. For any FIR filter, there are three parameters that must be
optimized with the objective of achieving generalization,
and thereby, avoiding overfitting: (1) causality of the system,
(2) length of the filter, and (3) values for the filter weights.
The following approach was used for optimizing these three
parameters.

First, the WS BCG ensemble average was modified with
a variable delay. A zero delay resulted in the best-fit causal
impulse response, while delays greater than zero produced a
non-causal FIR. Performing cross validation for each case
revealed that causality had a large impact on the reconstruc-
tion accuracy.

Second, the length of the filter was determined using 2-D
error tracing. A sweep of filter lengths from 1 to 800 samples
and Npy from 0 to 400 was performed and the values of
these two parameters corresponding to the minimum com-
posite error score from cross validation were found.

Third, the impulse response of the optimal FIR filter was
found via least-squares regression. In a typical discrete
linear system, an unknown signal x modified by a known
linear transform A produces a known output b as shown in
Equation 3:

Ax=b 3)

To find the best-fit FIR filter of order m to transform one
signal f of length N into another signal d, a linear equation
can be constructed in the same form. In this case, the A
matrix contains samples from the input signal f, b contains
samples from the desired output signal d, and x is a 1-D
vector of FIR coefficients, or taps. This process is broadly
named least-squares filtering.

The explicit form of A, b, and x is shown in Equations 4-6.
As used herein, signal f is the vector of samples from the
wearable BCG displacement ensemble average, d is the
vector of samples from the (possibly delayed) WS BCG
ensemble average, and x contains the adaptive filter coeffi-
cients.

fiml  flm=1] - fl1l )
| SIm+1] flm] fI2]

fINI  fIN=1] - fIN-m+1]

d[m] )
| dim+1]

d[N]
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-continued
hl1] (6)
h2]
X = .
him]

This particular form of A, b, and x is sometimes called the
covariance method because it uses only data that is explicitly
available and does not assume that samples outside of the
available data window are zero. In this context all of the
samples in the ensemble average are used and it was not
assume that samples outside of the ensemble average win-
dow are zero. This results in a matrix equation that is more
computationally expensive to solve but improves the accu-
racy of the solution.

Tikhonov Regularization

The regression was also regularized to reduce overfitting.
Since the data included imperfections from various sources
such as electrical noise, postural sway of the subjects, and
motion artifacts from small movements like head-tilts, a
least squares solution would overfit the training data reduc-
ing the accuracy of the reconstruction. Tikhonov regulariza-
tion was employed to mitigate this effect.

The ordinary least-squares solution X is that which mini-
mizes the square of the L2-norm of the error as shown in
Equation 7. The solution X is shown in Equation 8.

arg, min(|Ax-b|f) @)

*=(474) 14" (8)

Since ordinary least-squares is highly sensitive to noise, X
can be regularized by adding a term to the minimization
expression as shown in Equation 9.

arg, min(|Ax-blP+Tx/?) ©

In this updated loss function, I' is a Tikhonov matrix
whose effect is to give preference to certain solutions. For
this study, the scaled identity matrix in Equation 10 was
chosen.

T=AI (10)

This particular Tikhonov matrix causes the solution vec-
tor X to shrink toward the origin. Small values of A result in
overfitting while large values of A result in underfitting. In
other words, the solution approaches the ordinary least
squares solution as A—=0 and zero as A—>co. The optimal
value of A was 6.7x10~* when displacements were expressed
in meters as determined with a 1-D error trace. (Tikhonov
regularization is also known as ridge regression in statistics,
and this kind of error trace is often called a ridge trace in that
field.) The Tikhonov-regularized solution is shown in Equa-
tion 11.

F=(AT4+3 207 4T 11)

In this case, the solution X is the FIR filter’s vector of
coeflicients and the impulse response of H.
Evaluating Results

The methods described above were evaluated using the
composite error score. 2-D error traces were generated by
sweeping the N . and filter lengths with cross validation on
the entire dataset. The optimal values for these two param-
eters were chosen by finding the minimum average com-
posite score for each of the three locations on the body to
determine if these parameters depended on the wearable
sensor’s location. This process was performed separately for
the causal and non-causal cases to support or refute the
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proposed causality hypothesis. Additionally, the individual
error values were extracted from the cross validation step for
the sternum, PMI, and lower back. Finally, uncalibrated
reconstructions were also made by using the average FIR
filter for each body location across all subjects to reconstruct
the WS BCG for each subject. The error scores for these
uncalibrated reconstructions were used to evaluate whether
it would be possible to achieve accurate results without the
training step.

Results and Discussion

Results for all Subjects

FIG. 11 shows 2-D error traces for causal and non-causal
reconstructions of the WS BCG for each wearable sensor
location on the body. Non-causal filters clearly resulted in a
much better reconstruction than the causal ones, suggesting
that the underlying impulse response of H is indeed non-
causal. There was little difference in the optimal N, and
filter length between the different locations on the body,
although the optimal N, for the lower back was slightly
longer than the other two.

The optimal N and filter length (m) in samples were
141 and 558 for an overall error of 0.1194 at the sternum,
145 and 550 for an error of 0.1240 at the PMI, and 162 and
550 for an error of 0.1124 at the lower back. The lower back
was still the best location to wear the sensor, but only
slightly. The raw error metrics from cross-validation testing
for each subject with these values for N, and m are shown
in FIG. 12, TABLE II.

While FIG. 11 shows that the best reconstructions were
from the lower back for short filter lengths, suggesting that
the lower back displacement is probably closest to the WS
BCG and agreeing with the results of the above embodi-
ment, it is interesting to note that when the techniques used
were applied the difference between wearable locations
almost completely disappeared. After an initial training step,
or calibration, reconstructing the WS BCG from the wear-
able BCG was just as accurate from one location on the body
as another. As a result, the wearable device could be placed
on any location on the body by the user themselves, and after
a calibration step with the weighing scale, the WS BCG
could be accurately reconstructed for the remainder of use.

FIG. 13 shows the waveforms of an example reconstruc-
tion from the lower back. The uncalibrated reconstruction in
this example appears qualitatively worse than the calibrated,
or trained, reconstruction. This observation is supported by
the Bland-Altman plots in FIGS. 14-16, which compare the
accuracy of the two methods in measuring I-J amplitude, R-I
interval, and R-J interval of the WS BCG for all subjects.
Specifically, the standard deviation of the uncalibrated mea-
surements is much larger than the calibrated ones. Since the
uncalibrated results are worse in all three metrics, calibration
is clearly needed to obtain the most accurate results. This
suggests that there may be large differences in the true
impulse response H between different locations on the same
subject and between different subjects at the same location.
This is supported by examination of the impulse responses
produced by the system identification technique. The aver-
age impulse responses from each location on the body, as
shown in FIG. 17, revealed high intersubject variability, and
the morphology of the FIR filters between subjects were
most similar at the lower back. This could be part of the
reason why the lower back appears to be the best location to
measure the wearable BCG; further work is needed to gain
a better understanding of H, H;; . ,, and Hy..
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Results for Multiday Trials

The error metrics over all nine days of the multiday trials
appear in FIG. 18. The I-J amplitude error spanned —16.2%
to +8.4%, the R-I interval error was between -13.5% and
-0.9%, and the R-J interval error was between —6.2% and
-0.5%. As these errors were relatively low and did not trend
in any particular direction with time, the wearable BCG is
likely most consistent within the same subject and location
on the body. It may, therefore, be possible to measure cardiac
changes over time with the wearable BCG at one location—
such as with accelerometers embedded in a smart watch—
using one initial calibration with the scale.

DISCUSSION

In this embodiment, for the first time, a method for
estimating the WS BCG with an accelerometer placed on the
surface of the skin and a simultaneously acquired ECG is
presented. Preliminary validation for this new technique was
performed on data from fifteen consenting human subjects.
Whereas it has been shown that the acceleration on the
surface of the skin differs substantially from whole-body
displacement measurements taken with WS BCG platform,
training this algorithm with a WS BCG recording from a
modified weighing scale allowed accurate re-constructions
of the WS BCG from three arbitrary locations on the body
for fifteen subjects at rest. (And from the wrist on one
subject at rest over several days.)

The lowest error was obtained in reconstructions from the
lower back; this was supported by cross validation as well as
examination of the FIR filters revealing that the lower back
filter had the lowest intersubject variability. This technique
could, therefore, enable trending cardiac output and con-
tractility with a wearable device using published BCG
analysis tools via a calibration step.

This is also the first demonstration of central hemody-
namic measurement from the wrist. Because the BCG signal
arises from central hemodynamic forces, the ability to
measure the signal from a distal location, such as the wrist,
potentially has profound applicability to the important prob-
lem of cuffless blood pressure measurement. By pairing
wearable BCG measurement from the wrist with additional
local pulse measurement modalities—such as photoplethys-
mography—further inventive pulse-transit time-based
approaches for blood pressure monitoring in a smart watch
form factor can be made.

Further studies are also needed to validate this technique
for subjects whose cardiovascular systems are modulated or
diseased since this study included only healthy subjects in
quiescence. Freedom to measure the BCG beyond large
appliances and the ability to place the wearable sensor on
arbitrary places on the body would open up many opportu-
nities for heart monitoring throughout the day, and the
present invention serves as a framework for enabling new
BCG modalities and applications.

1. Accelerometer Body Sensor Network Improves
Systolic Time Interval Assessment with Wearable
Ballistocardiography

INTRODUCTION

The three primary STI are PEP, left ventricular ejection
time (LVET), and total electromechanical systole (QS,).
Since cardiac relaxation and contraction are controlled by
intracellular calcium ion recycling, the timing of PEP,
LVET, and QS, are directly related to cardiac cell health.
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Furthermore, the health of the left ventricle, as the pump for
the body’s entire circulation, is particularly important to the
management of CVD, which affects more than 26 million
Americans. During the cardiac cycle, the left ventricle
undergoes diastolic filling and systolic ejection in an alter-
nating fashion. The latter phase, systolic ejection, is pre-
ceded by the PEP, or the delay from ventricular depolariza-
tion to the opening of the aortic valve.

Since PEP (i) is an important metric for heart failure
related to cardiac contractility, (ii) is needed for beat-by-beat
noninvasive cuff-less blood pressure measurement via arte-
rial pulse transit time, and (iii) has been shown to correlate
well (r*=0.86) with the location of the J-wave in the WS
BCG, in another exemplary embodiment of the present
invention, systems and methods to improve PEP estimation
from wearable BCG signals measured with accelerometers
worn on the body using an innovative double-integration
technique (to estimate sensor displacement from accelera-
tion) and linear models fitted from two features extracted
from the BCG signals—namely, the R-J and R-I intervals, or
the intervals from the R-wave of an ECG to the J- and
I-waves of the BCG. A network of four BCG accelerometers
worn on the body and a weighing scale BCG were measured
simultaneously and combined with a beat-by-beat cross-
validation approach to study the impact of double-integra-
tion on PEP accuracy and whether increasing the number of
sensors can improve the linear models from R-J and R-I
intervals to PEP without over-fitting the training data.

Methods

Experiment

Four human subjects volunteered for the pilot study (three
male and one female, 23x1 years, 17711 cm, 72+11 kg,
109+5 mmHg SBP, 74+1 mmHg DBP), which was approved
by the GT IRB. Each subject was asked to perform an
isometric lower-body exercise (i.e., a wall sit) for approxi-
mately two minutes as shown in FIG. 19, and the signals
were recorded for five minutes immediately following the
exercise. This exercise recovery period modulated PEP from
60 to 100 ms as shown in FIG. 21 and FIG. 22.

An ECG configured for a modified Lead II measurement
(BN-EL50 wireless ECG, BIOPAC Systems, Inc., Goleta,
Calif)), an impedance cardiogram (NICO100C wireless
ICG, BIOPAC Systems, Inc.), four instrumentation acceler-
ometers (BCG; 3x356A32, PCB Piezotronics, Depew, N.Y.
and 1x5958-A, Briiel & Kjer, Nacurum, Denmark), and a
custom weighing scale BCG were sampled simultaneously
at f =1000 Hz with a data acquisition unit (MP150, BIOPAC
Systems, Inc.). These accelerometers were chosen for their
low noise properties, and details about the WS BCG plat-
form are discussed above. The three PCB Piezotronics
accelerometers were attached to each subject’s right wrist
and right upper arm with kinesiology tape (Kinesio Tex,
Kinesio, Albuquerque, N. Mex.) and to the forehead with a
headband. The B&K accelerometer was attached to the
sternum with a tight elastic band around the thorax. A single
axis in the foot-to-head direction was recorded from each
wearable sensor.

Signal Conditioning

The signals were processed offline in MATLAB (Math-
Works, Natick, Mass.) using an innovative double-integra-
tion technique and several widely-accepted methods for
analyzing BCG, ICG, and ECG waveforms. First, the signals
were bandpass-filtered using Kaiser-window FIR filters
(ECG: 3-50 Hz, WS BCG: 3-15 Hz, BCG: 3-50 Hz, dZ/dt:
1-50 Hz). Next, each signal, other than the ECG signal, was
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segmented into heartbeats using the ECG R-wave as the
fiducial where 300 ms before the R-wave and 600 ms after
the R-wave were included from each heartbeat. Then, to
improve the SNR of each BCG and the ICG dZ/dt signal
(ICGp), 9-beat moving window ensemble averages (MEA)
were computed where 4 beats before and after each beat
were averaged together with the current beat as shown in
Equations 12 and 13 where i is the index of the current
heartbeat, j is the index of the current sample within the
heartbeat, the j index of the location of the ECG R-wave is
defined as zero, and n is the BCG sensor index.

1 & (12)
BCGupaln. i, 1= 5 ), BCGIn. i+k, ]]
=4

1 & 13)
1CGpy, li ] = 5 ) 1CGpli+k. ]
k=—4

BCG J-Wave and I-Wave Feature Extraction

Features were extracted from each MEA as shown in FIG.
20. The index of the BCG maximum point within 250 ms
after the ECG R-wave was labeled the J-wave and used to
determine the beat-by-beat R-J intervals as shown in Equa-
tion 14. Similarly, the minimum point between the ECG
R-wave and the BCG J-wave was labeled as the I-wave and
used to determine the R-I intervals as shown in Equation 15.

RJ[n, i] = argmax BCGugaln, i, j]
0<j<025/;

(14)

Rln, i] = argmin BCGyg4 [n, i, J]
O<j<Rlp;

(135)

PEP Ground Truth: ICG B-Point Detection

The time interval from the R-wave of the ECG to the
B-point of the impedance cardiogram, or R-B interval, is a
widely-accepted measure of PEP and was thus used as the
PEP ground truth. In this experiment, the ICG dZ/dt signal
(ICGp) was available directly from the BIOPAC analog
hardware and did not have to be computed. The B-point in
each ICG beat was then determined using a slightly modified
version of the second derivative method. Namely, min-
crossings were used to find the intercept points of the dZ/dt
tangent lines instead of zero-crossings as described below.

First, each beat of the moving ensemble averaged ICG,
was differentiated into ICG,, by subtracting adjacent
samples as shown in Equation 16. ICG,,, was then low-pass
filtered (IIR, 2" order, f =10 Hz), and the index I and value
m of the maximum of ICG,, in the first 250 ms past the
ECG R-wave were determined as shown in Equations 17
and 18. Thus, m was the maximum slope achieved in dZ/dt
during this period, and I was the location where this slope
was achieved. Next, the minimum value p of ICG, between
the ECG R-wave and I was found as shown in Equation 19.
Finally, the B-point was determined using the point-slope
formula as in Equation 20.

ICGppli. J) = ICGpyy, i j+ 11 = 1CGp,yp, [iv )] (16)

mlil = max_ ICGppli, J]

0<j<0.25 f;
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-continued
I[i] = argmax ICGppli, j] 18
0<j<0.25f;

pli= o<5‘r<lilf»11,i] [CGpyye, [1, ] 4

Pl Gy, I 20)
PEPf) = Bli] = —— e +1[1)

Linear Models

Three linear models were fit from beat-by-beat R-J and
R-I intervals to PEP as shown in FIG. 21 using robust fitting
(bisquare weighting function). PEP was thus modeled as
linear combinations of the R-J interval, R-I interval, or both
with a constant as shown in Equations 21-23. N is the
number of BCG sensors included in the model and PEP,
R-J,,, and R-1,, are vectors of the PEP, R-J, and R-I intervals
from ICG and BCG sensor n, respectively, of one subject’s
exercise recovery.

N 21)
PEP= Z a,RJ, +b,
n=1
N (22)
PEP= Z ayRI, + b,
n=1
(23)

anRJ, + bR, + ¢y,

These models were fit to the R-J and R-I intervals from
one, two, three, and four sensors in succession to determine
the impact of adding information from additional sensors on
the body, and the results were compared to those for the
weighing scale BCG to evaluate performance. R* (adjusted)
correlation coefficients were then determined.
5%2-Fold Cross Validation

Increasing the number of features in a model often has the
unwanted side-effect of over-fitting the training data. To
detect this condition, and to determine the optimal filter
length in a separate run, 5x2-fold cross validation was used.
First, the heartbeats of each subject’s recording were ran-
domly labeled 1 or 2 in equal proportions and split into two
bins. Within each bin, the MEA for each signal was calcu-
lated. Linear models were then fit to features extracted in
one bin, and the RMSE of the PEP predictions for the other
bin was determined. This was repeated five times for each
subject, and the RMSEs from the two folds and five trials
were averaged together for an overall average RMSE.
Estimating Sensor Displacement Via Double Integration

Currently, feature extraction from wearable BCG sensors
(accelerometers) is typically performed as shown in FIG. 23.
Wearable BCG sensors are treated as any other BCG mea-
surement, where the I- J- and K-waves are identified using
peak detection algorithms. This approach produces low-
quality results, and thus a new method was developed as
shown in FIG. 24. In this design, wearable BCG measure-
ments are improved by estimating the sensor’s displacement
(double integral) with an innovative filter consisting of two
integrators in-line with high-pass filters (HPF) in the form of
moving-average subtractors.

The high-pass cutoff frequency and filter characteristics of
moving-average subtraction are determined by a single
scalar—the length of the moving average—which can be
optimized by sampling the search space with cross valida-
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tion. In previous studies, the best length for the entire subject
population was used. In this experiment, the length was
optimized for each BCG using the waveforms of each
individual sensor.

After optimizing the moving average for each sensor by
computing the average RMSE from cross validation for 100
moving average lengths from 10 to 800 samples as shown in
FIG. 25, the optimal moving average length varied greatly
from sensor to sensor. The range of moving average
lengths—in samples—for each body location were 36 to 534
(forehead), 49 to 467 (wrist), 36 to 489 (upper arm), and 10
to 87 (sternum). Furthermore, sensors placed on different
locations on the body on the same subject also had different
optimal lengths. Thus, until a better understanding of the
mechanical coupling of the wearable sensors to the body is
achieved, wearable BCG sensors must be calibrated before
accurate results can be obtained.

Results and Discussion

As a result of cross-validation, it is found that the best
results without over-fitting the training data were achieved
by increasing the number of sensors and including both R-J
and R-I intervals in the model. Specifically, both increasing
the number of sensors and increasing the number of BCG
features from one (R-J interval) to two (R-J and R-I inter-
vals) reduced the average RMSE across all subjects from
6.25 ms to 2.51 ms and reduced the standard deviation of the
RMSE between the four subjects from 3.2 ms to 0.8 ms.

This was better than the RMSE for the weighing scale,
which was 3.5+2 ms from both R-J and R-I intervals and
4.8+3 ms from R-J intervals alone. Surprisingly, the standard
deviation of PEP prediction from the R-J interval was much
larger than from the R-I interval, suggesting that the R-I
interval may provide better results than the standard R-J
method. However, when R-J and R-I timings were combined
in one linear model, the results were better than each
measurement alone and did not over-fit the training data.
This suggests that the R-J and R-I intervals may each bring
additional information to the model that improves the esti-
mate.

Furthermore, as shown in FIG. 26, it was found that using
a single moving average length for the double-integration
filter for all sensors increased the RMSE such that the results
were far worse than the current method without filtering.
However, when the high-pass filters were optimized for each
sensor, both the mean and standard deviation were reduced
significantly, particularly when using multiple sensors. This
further suggests the need for double integration.

The adjusted r* linear correlation between weighing scale
BCG and PEP was 0.84+0.1 for R-J intervals, 0.87+0.9 for
R-I intervals, and 0.89+0.08 for R-J and R-I intervals
together. Likewise, the mean and standard deviation of
adjusted r* combining the four accelerometers in the body
sensor network with optimized double integration was
0.95+0.008 for R-J intervals, 0.95+0.01 for R-I intervals,
and 0.96+0.01 for R-J and R-I intervals together compared
to 0.60+0.4, 0.40+0.4, and 0.68+0.3, respectively, for a
single wearable BCG sensor.

Thus, while a single sensor performed much worse than
the weighing scale BCG, a network of four sensors outper-
formed the weighing scale. Since the moving ensemble
average of nine adjacent beats greatly increased the SNR,
this difference likely is mostly due to additional information
that multiple sensors provide about the movement of the
entire body rather than suppression of motion artifacts.
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Wearable BCG can potentially offer the least obtrusive
solution for continuous STI monitoring in activities of daily
living. A wearable BCG sensing system can be attached to
a subject in a smart watch (wrist), headband (forehead),
chest strap (sternum), or smart phone armband (arm) form
factor with the use of a low noise accelerometer rigidly
attached to the body.

Additionally, using wearable sensors together with a
weighing scale-based BCG may provide the best results
since the wearable can be calibrated by the scale. The
wearable sensors could then provide regular measurements
of STI and other parameters throughout normal activities of
daily living. Further investigation into the influence of
sensor positioning on signal quality and interpretation is
warranted. The ability to measure central cardiac time
intervals from distal locations on the body is an exciting
capability that wearable BCG appears to provide. Measure-
ments of central cardiac events from devices worn on the
periphery could enable a host of new modalities such as
cuff-less blood pressure from pulse-transit time and beat-
by-beat wearable hemodynamics assessment in harsh envi-
ronments such as underwater and space.

Numerous characteristics and advantages have been set
forth in the foregoing description, together with details of
structure and function. While the invention has been dis-
closed in several forms, it will be apparent to those skilled
in the art that many modifications, additions, and deletions,
especially in matters of shape, size, and arrangement of
parts, can be made therein without departing from the spirit
and scope of the invention and its equivalents as set forth in
the following claims. Therefore, other modifications or
embodiments as may be suggested by the teachings herein
are particularly reserved as they fall within the breadth and
scope of the claims here appended.

What is claimed is:

1. A system for providing ballistocardiogram (BCG) data
from a user comprising:

a wearable sensor configured to detect, from the user,

cardiogenic surface vibration waveforms;
a calibrating sensor configured to detect, from the user,
cardiogenic center-of-mass (COM) vibration wave-
forms; and
a processor configured to:
determine a modification factor for the surface vibra-
tion waveforms based on the COM vibration wave-
forms;

generate calculated fixed BCG data based at least in
part on subsequent cardiogenic surface vibration
waveforms and the modification factor, the subse-
quent cardiogenic surface vibration waveforms
being received from the wearable sensor while the
calibrating sensor is not in contact with the user; and

generate at least one health-related output based on the
calculated fixed BCG data.

2. The system of claim 1, wherein the wearable sensor
comprises a wearable wrist sensor.

3. The system of claim 1, wherein the wearable sensor
comprises a wearable chest sensor.

4. The system of claim 1, wherein the wearable sensor
comprises an elastic band fittable for the user’s arm.

5. The system of claim 1, wherein the wearable sensor
comprises an elastic band fittable for the user’s chest.

6. The system of claim 1, wherein the wearable sensor
comprises an adhesive patch.

7. The system of claim 1, wherein the wearable sensor
comprises an adhesive patch configured for adhesive attach-
ment to the user’s skin.
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8. The system of claim 1, wherein the calibrating sensor
comprises a weighing scale configured to measure BCG
signals.

9. The system of claim 1, wherein the calibrating sensor
comprises a chair sensor for chair configured to measure
BCG signals.

10. The system of claim 1, wherein the calibrating sensor
comprises a bed sensor to measure BCG signals.

11. The system of claim 1, wherein the at least one
health-related output comprises a condition of the user’s
heart.

12. The system of claim 1, wherein the at least one
health-related output comprises systolic time interval mea-
surements.

13. The system of claim 1, wherein the at least one
health-related output comprises cardiac output.

14. The system of claim 1, wherein the at least one
health-related output comprises changes in cardiac output.

15. The system of claim 1, wherein the processor is
configured to run an algorithm for modifying the surface
vibration waveforms using a regularized least squares based
system identification method using the COM vibration
waveforms as calibration waveforms to modify the surface
vibration waveforms.

16. The system of claim 1, wherein the processor is
configured to run an algorithm for modifying the surface
vibration waveforms using adaptive signal estimation and
the calibrating sensor waveform as the desired response.

17. The system of claim 1 further comprising:

an electrocardiogram (ECG) sensor configured to receive,

from the user, ECG data;

wherein the processor is configured to estimate a weigh-

ing scale ballistocardiogram (WS BCG) from data from
the wearable sensor, the calibrating sensor, and the
ECG sensor.

18. A system for providing ballistocardiogram (BCG) data

from a user comprising:
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a wearable sensor configured to detect, from the user,
cardiogenic surface vibration waveforms;
a calibrating sensor configured to detect, from the user,
cardiogenic center-of-mass (COM) vibration wave-
forms; and
a processor configured to:
determine a modification factor for the surface vibra-
tion waveforms based on the COM vibration wave-
forms; and

generate calculated fixed BCG data based at least in
part on subsequent cardiogenic surface vibration
waveforms and the modification factor, the subse-
quent cardiogenic surface vibration waveforms
being received from the wearable sensor while the
calibrating sensor is not in contact with the user; and

generate at least one health-related output based on the
calculated fixed BCG data;

wherein the wearable sensor is in a form selected from the
group consisting of a wearable chest sensor, an adhe-
sive patch, and an adhesive patch configured for adhe-
sive attachment to the user’s skin;

wherein the calibrating sensor is in a form of a weighing
scale configured to measure BCG signals; and

wherein the health-related output is selected from the
group consisting of a condition of the user’s heart,
systolic time interval measurements, cardiac output,
and changes in cardiac output.

19. The system of claim 18, wherein the processor is
configured to run an algorithm for modifying the surface
vibration waveforms using a regularized least squares based
system identification method using the COM vibration
waveforms as calibration waveforms to modify the surface
vibration waveforms.

20. The system of claim 18, wherein the processor is
configured to run an algorithm for modifying the surface
vibration waveforms using adaptive signal estimation and
the calibrating sensor waveform as the desired response.
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