[EFFECT OF COAXIAL NOZZLE WEAR ON CATCHMENT EFFICIENCY IN DIRECT ENERGY DEPOSITION BUILT COMPONENTS]

Approved by:

Dr. Katherine Fu, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Christopher Saldana, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Thomas Kurfess
Chief Manufacturing Officer
Oak Ridge National Laboratory

Date Approved: [April 22, 2021]
To my God and Creator, my source of constant inspiration and the original Engineer.
ACKNOWLEDGEMENTS

I would like to thank my thesis advisors Dr. Katherine Fu and Dr. Christopher Saldana for their invaluable support and guidance at each stage of this process. I would like to thank Dr. Thomas Kurfess for my occupational introduction to the field of hybrid manufacturing. This work was funded by the Department of Energy under award DE-EE-0008303. Additionally, I would like to thank the students of the EPICS Fellowship Program for their unwavering help, friendship, and encouragement. Lastly, I am deeply indebted to my parents, who are responsible for instilling in me a lifelong passion for learning.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF TABLES vii

LIST OF FIGURES viii

LIST OF SYMBOLS AND ABBREVIATIONS x

SUMMARY xiii

CHAPTER 1. Introduction 1
1.1 Motivation 1
1.2 Problem Statement 3
1.3 Thesis Organization 3

CHAPTER 2. Background 4
2.1 Hybrid Manufacturing 4
2.2 Laser Based, Powder Fed DED 5
2.3 Anatomy of a Coaxial Nozzle and Powder Stream 10
 2.3.1 Geometry 10
 2.3.2 Performance 13
2.4 Powder Stream Numerical Simulation 15
2.5 Powder Stream Monitoring 18

CHAPTER 3. Experimental Methods 22
3.1 Equipment 22
3.2 Light Sheet Imaging 25
3.3 Characterizing and Fabricating Nozzle Wear 28
3.4 CFD Simulation 30
3.5 Deposition Experiment 33
3.6 Catchment Efficiency Calculation 34

CHAPTER 4. Results 36

CHAPTER 5. Discussion 49

CHAPTER 6. Conclusions 52
6.1 Conclusions 52
6.2 Original Contributions 53
6.3 Limitations 54
6.4 Future Work 54

APPENDIX A. Tabulated Powder Stream Angle Data 56
LIST OF TABLES

Table 1 Light Sheet Imaging Machine Operating Parameters.
Table 2 Inlet/Outlet Boundary Conditions.
Table 3 Physical Properties and Constants.
Table 4 Rosin-Rammler Parameters.
Table 5 Machine Operating Parameters during Deposition.
Table 6 Catchment Efficiency Calculated from Single Bead Deposition Build Volume.

27Error! Bookmark not defined.
32
33
33
34
47
LIST OF FIGURES

Figure 1 Diagram of the Hybrid Manufacturing Process [4]. 4

Figure 2 Laser DED Powder Delivery Methods in a.) Off-Axis, b.) Pseudo Coaxial, and c.) Coaxial Configurations. 7

Figure 3 Beam Profile as a Function of Irradiance in a laser based DED system. 9

Figure 4 Diagram of Powder Stream Geometry, including the powder stream distribution pre-consolidation (inset) [19]. 11

Figure 5 a.) Top View and b.) Camera View of an Axial Light Sheet Imaging Setup. 20

Figure 6 Annotated image of the VC500AM hybrid machine tool subsystems and their locations. 23

Figure 7 Adjustable spindle clamped camera mount. 24

Figure 8 An in-process setup for light sheet imaging. 25

Figure 9 Linear relationship between powder feeder duty cycle and pixel luminosity. 26

Figure 10 Observed geometric irregularities (center and right) in contrast to an unworn mid coaxial nozzle (left). 28

Figure 11 Examples of interior nozzle wear. 29

Figure 12 Drawing of original (left) and fabricated (right) nozzle. 30

Figure 13 Flow field geometry and locations of important boundary conditions. 32

Figure 14 Powder streams produced by a new nozzle (top), and those produced by melted (center) and abraded (bottom) nozzles. 37

Figure 15 Comparison of unworn nozzle flow from original (left) and replicant (right) nozzles. 39

Figure 16 Powder stream angles of convergence and divergence with wear, using nozzles retired from production. Error bars indicate the mean uncertainty of the angle’s tangent, calculated using linear regression. 40
Figure 17 Powder stream angles of convergence and divergence with wear, using nozzles with manufactured wear. Error bars indicate the mean uncertainty of the angle’s tangent, calculated using linear regression. 41

Figure 18 Retired nozzle powder consolidation plane size and location at ± σ interval. 42

Figure 19 Retired nozzle powder consolidation plane size and location at ± 2σ interval. 42

Figure 20 Manufactured nozzle powder consolidation plane size and location (at ± 2σ interval). 43

Figure 21 Traverse profiles of experimental and CFD simulated powder flows at deposition height 2.75 mm. Profiles are listed in order of increasing wear, a.) control nozzle without wear, b.) -0.25 mm wear, c.)-0.5 mm wear, d.) -0.75 mm wear, e.) -1.0 mm wear. 44

Figure 22 Comparison of catchment efficiency calculation methods. 47
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Additive Manufacturing</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>DED</td>
<td>Directed Energy Deposition</td>
</tr>
<tr>
<td>DPM</td>
<td>Discrete Phase Model</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>SS</td>
<td>Stainless Steel</td>
</tr>
<tr>
<td>A</td>
<td>Projected Area</td>
</tr>
<tr>
<td>α</td>
<td>Powder Stream Convergence Angle</td>
</tr>
<tr>
<td>C</td>
<td>Powder Concentration</td>
</tr>
<tr>
<td>C^*</td>
<td>Maximum Powder Concentration</td>
</tr>
<tr>
<td>C_D</td>
<td>Drag Coefficient</td>
</tr>
<tr>
<td>C_μ</td>
<td>A variable function of mean strain and rotation rates</td>
</tr>
<tr>
<td>C_1</td>
<td>Constant</td>
</tr>
<tr>
<td>C_2</td>
<td>Constant</td>
</tr>
<tr>
<td>$C_{1\varepsilon}$</td>
<td>Constant</td>
</tr>
<tr>
<td>$C_{3\varepsilon}$</td>
<td>Constant</td>
</tr>
<tr>
<td>D</td>
<td>Powder Stream Diameter</td>
</tr>
<tr>
<td>D'</td>
<td>Initial Powder Stream Diameter</td>
</tr>
<tr>
<td>D_g</td>
<td>Powder Stream Diameter determined by Gaussian distribution</td>
</tr>
<tr>
<td>d</td>
<td>Laser Beam Diameter</td>
</tr>
<tr>
<td>d'</td>
<td>Initial Laser Beam Diameter</td>
</tr>
<tr>
<td>d_g</td>
<td>Laser Beam Diameter determined by Gaussian distribution</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>d_p</td>
<td>Powder diameter (CFD)</td>
</tr>
<tr>
<td>∇</td>
<td>Del operator</td>
</tr>
<tr>
<td>ε</td>
<td>Dissipation rate</td>
</tr>
<tr>
<td>\vec{F}</td>
<td>External body force</td>
</tr>
<tr>
<td>$f(\delta, \phi)$</td>
<td>Dimensionless function</td>
</tr>
<tr>
<td>G_k</td>
<td>Generation of turbulence kinetic energy due to mean velocity gradients</td>
</tr>
<tr>
<td>G_b</td>
<td>Generation of turbulence kinetic energy due to buoyancy</td>
</tr>
<tr>
<td>\vec{g}</td>
<td>Gravitational body force</td>
</tr>
<tr>
<td>η</td>
<td>Catchment efficiency, effectiveness factor (CFD)</td>
</tr>
<tr>
<td>I</td>
<td>Unit tensor</td>
</tr>
<tr>
<td>K</td>
<td>Wave number</td>
</tr>
<tr>
<td>k</td>
<td>Turbulence kinetic energy</td>
</tr>
<tr>
<td>L</td>
<td>Average luminance</td>
</tr>
<tr>
<td>λ</td>
<td>Wavelength</td>
</tr>
<tr>
<td>m'</td>
<td>Mass flow rate</td>
</tr>
<tr>
<td>\dot{m}_p</td>
<td>Particle mass flow rate</td>
</tr>
<tr>
<td>μ</td>
<td>Mean, Molecular viscosity (CFD)</td>
</tr>
<tr>
<td>μ_t</td>
<td>Turbulent viscosity</td>
</tr>
<tr>
<td>n</td>
<td>Number of particles per unit volume</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity</td>
</tr>
<tr>
<td>p</td>
<td>Static pressure</td>
</tr>
<tr>
<td>ϕ</td>
<td>Laser beam divergence angle</td>
</tr>
<tr>
<td>Q</td>
<td>Volumetric flow rate</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
</tbody>
</table>
r Radius, radial distance

r_i Inner annular radius

r_o Outer annular radius

ρ Density

ρ_p Powder density

S Standoff distance

S, S_{ij} Modulus of the strain rate tensor

S_k User defined source term

S_m Added mass of dispersed solid phase

S_c User defined source term

σ Standard deviation

σ_k ϵ turbulent Prandtl number

σ_k k turbulent Prandtl number

t Time

Δt Timestep

τ Stress tensor

θ Powder stream convergence angle

U Free-stream velocity

\vec{u} Velocity vector

u_p Powder velocity

\vec{u}^T Effect of volume dilation

V Volume element

Y_m Contribution of fluctuating dilation in compressible turbulence to overall dissipation rate
SUMMARY

Laser based Direct Energy Deposition (DED) systems using metallic powder feedstock are recognized as a promising manufacturing method for their ability to shorten production cycles and create complex part geometries. Components are built by generating a melt pool with a high-power laser beam while material is coaxially injected and left to solidify. An impediment to large scale use of DED lies in poor powder catchment efficiency, the condition in which a portion of injected powder escapes the melt pool resulting in a ratio of decreased printed material mass to mass of supplied feedstock. The wear state of a coaxial nozzle on a DED system within a hybrid manufacturing machine tool has been observed to decrease catchment efficiency over time. This study investigates this effect by adapting flow visualization techniques to an in-situ process monitoring format, the implementation of a Computational Fluid Dynamics (CFD) simulation, and deposition testing. Nozzle geometric defects due to wear are identified and categorized, and the impact of nozzle tip wear, resulting in axial tip reduction, on powder catchment efficiency is proven by multiple calculation methods. A linear correlation between catchment efficiency and powder stream diameter is identified, causing a 15-20% loss in efficiency sustained over incremental nozzle tip reduction up to -1 mm. These results provide a foundation for further study of wear effects and process improvement measures for powder fed DED systems.
CHAPTER 1. INTRODUCTION

1.1 Motivation

The largest obstacles to industry wide adoption of additive manufacturing (AM) include the inability to produce homogenous finished surfaces, the presence of internal defects due to the deposition process, and the dimensional inaccuracy of as-built parts [1]. In powder-fed laser Directed Energy Deposition (DED) systems, specifically coaxially fed systems, the extent to which these disadvantages manifest relies heavily on a machine’s powder catchment efficiency. Defined in the optical design space as the ratio between the diameters of the deposition laser spot size and the powder stream, it is beneficial to optimize the dimensions of the impacting powder stream, as altering the laser spot size will ultimately change the geometry of the deposited bead. It is a common strategy to control powder stream geometry through various deposition process parameters, however due to the constant subjection to heat and impacting powder, the middle nozzle tip in a coaxial AM head will wear down over time, creating an annular flow exit of increasing area. The resulting distortion to the powder flow eventually creates enough loss in catchment to warrant a replacement. As this nozzle is a costly consumable component, there is an incentive to use a wearing nozzle to its full capacity, in other words, until the loss in wasted stock powder and deposition quality is more expensive than replacing the nozzle.

A wealth of research demonstrates both experimental and numerical powder flow measurement and visualization methods, however the research subject is usually coaxial nozzle design validation. One such example is an earlier coaxial nozzle designed for laser cladding by Lin et al., which achieved 40% powder catchment efficiency through use of a
mathematical model, light sheet imaging, a scanning powder sensor, and a two dimensional axisymmetric fluent model [2]. Likewise, Takemura et al. iteratively designed a coaxial nozzle using a CFD simulation, the light sheet method, and deposition tests, demonstrating a catchment efficiency improvement from 50.2% to 66% in experimental results [3]. There exists a gap in the current understanding of coaxial nozzle wear and performance throughout its lifecycle. By applying these methods demonstrated in coaxial nozzle design and analyzing the extent to which nozzle wear effects catchment efficiency, the point at which nozzle replacement is necessary can be identified. Furthermore, by adapting the experimental techniques used to determine this effect to an in-process monitoring format, it is possible to establish relationships between consumable wear and machine work hours so that the economic and print quality consequences of timely replacement of this consumable can be optimized through predictive maintenance.

The presented study of this wear is conducted within a hybrid machine tool with 5 axis milling capabilities. Advances in AM, specifically since incorporation into hybrid manufacturing machine tools, often bear similarity to established methods of subtractive manufacturing (SM). This can be seen in the recent industry push for in-situ process monitoring and closed loop feedback control, elements that have been implemented widely in milling and machining applications. An additional example is the development of individualized specialty AM processing heads for specific cladding processes that are able to be easily swapped in and out of a host AM or hybrid unit, not unlike tool changing capabilities exhibited by CNC machining cells [4]. Likewise, the motivation of this study is to optimize AM performance by accounting for wear in replaceable components, not unlike accounting for tool wear in the production of machined parts.
1.2 Problem Statement

The middle coaxial nozzle in a standard powder fed laser DED head assembly is a regularly replaced consumable. Its state of wear has been observed to affect print quality over time as the nozzle tip deteriorates, yet no knowledge on quantifying this effect currently exists. The objective of this research is to establish the relationship between middle coaxial nozzle wear and print quality by measuring the nozzle’s catchment efficiency. By adapting the experimental methods used into an in-situ monitoring format, this effect can be routinely monitored and accounted for in process parameters.

1.3 Thesis Organization

This document is organized as follows: Chapter 2 provides background information on critical systems and concepts, Chapter 3 details the employed experimental methods, Chapter 4 contains the results of this study, Chapter 5 discusses the results and potential applications of this research, and Chapter 6 details all conclusions, limitations, contributions, and recommendations for future work. This thesis is closed with a list of cited references and an Appendix containing tabulated data for relevant figures.
CHAPTER 2. BACKGROUND

This review focuses on the use of blown powder laser Directed Energy Deposition (DED) within a Computer Numerical Controlled (CNC) hybrid machine tool with brief introductions to other relevant techniques, tools, and types of feedstock.

2.1 Hybrid Manufacturing

Hybrid manufacturing involves the merging of AM and SM processes to create multitasking technology with the goal of increased productivity without compromising surface finish, among other benefits. As post process machining is already a part of AM production workflow, the AM unit within a hybrid manufacturing machine tool can deposit material in a near-net shape while using SM to accomplish whatever specific dimensional tolerances are required (Figure 1). This is accomplished without the use of multiple machines, eliminating the need for multiple setups and part refixturings.

Figure 1: Diagram of the Hybrid Manufacturing Process [4].
Available hybrid systems depend on DED as the AM component, with a supplying heat source in the form of a plasma transfer arc, laser, or electron beam. Laser based DED is often prioritized because of relatively minor changes needed to adapt the machine tool for its use, and its developmental origins in laser cladding, which is an established production method in several industries [4, 5]. Feedstock in DED systems are available in the form of metal wire or powder [6]. Metal wire has a high rate of catchment efficiency, defined in this case as the ratio of deposited mass to supplied mass. Often approaching 100%, wire fed hybrid machines can typically deposit material at a much greater rate as well. Wire is available in a limited range of size and materials, and final parts lack resolution, typically resulting in longer post machining cycles. Metal powder has a much greater range of material availability but suffers poor rates of material catchment. The escaped powder poses a health and environmental hazard if not properly disposed of, as well as an economic loss [5].

2.2 Laser Based, Powder Fed DED

Laser based DED is an AM process in which a high-powered laser melts feedstock to form a deposited bead, fed by a controlled stream of stock. This process creates a metallurgical bond between layers that is fused to the deposition surface, which is either the substrate or previously deposited layers. Powder DED is utilized for small to medium sized parts that require minimal post processing due to the material deposition rates available, and the achievable surface finish. Feedstock material is typically supplied via a gravitational feeder and inert carrier gas through the processing head, depositing powder coaxially or off axis into the melt pool [5, 6].
The earliest powder fed DED systems evolved from laser cladding and coating systems already available a decade prior and were primarily used in 2D applications such as coatings and hardfacing [8]. Consisting of a laser beam normal to the substrate and a single powder supply nozzle tilted off-axis, these elements had to be carefully calibrated to achieve convergence at the substrate surface. This strict geometric alignment tolerance limited vertical substrate height, and deposition was heavily influenced by scan direction and AM head inclination, limiting performance capabilities when making omnidirectional or complex movements [6 - 8].

Off-axis powder supply systems matured to include multiple powder feeders in a radially symmetric arrangement such that the multiple powder streams converge at the laser induced melt pool in a pseudo-coaxial configuration. This overcomes the observed disadvantage in off-axis powder supply nozzles of not being able to tilt the deposition head without compromising the integrity of the powder stream, allowing for multi-axis deposition. In some configurations, this nozzle geometry exceeds true coaxial nozzle efficiency in powder delivery, but like the off-axis powder supply nozzle, requires careful calibration [8, 9].

Deposition heads equipped with coaxial nozzle assemblies deliver powder annularly, with the exiting powder descending in a cone shaped multi-phase flow to intersect with a centered laser beam. The resulting deposition process has enhanced symmetry independent of travel direction or orientation [3]. These nozzles are typically composed of three individual nesting nozzles: the inner nozzle channeling the laser heating element and a jet of inert shield gas to protect laser components from particulate matter, the mid coaxial nozzle which provides the outer wall boundary for the powder and carrier
gas flow, and the outer nozzle which also jettisons shield gas to prevent the deposition from oxidizing [2]. Although it is the newest of the three described powder delivery methods, coaxial laser cladding and deposition has been in existence for over two decades [11 - 12].

In any of these powder fed DED systems, disruption in the material mass flow rate has the potential to cause a corresponding surface irregularity in the deposited bead, making continuous uniform powder supply vital to high quality deposition. A contributing factor is the reliability of the powder feed system, which is the machine subassembly responsible for pneumatically delivering a measured supply of powder. Although other methods exist, disc powder feeders are frequently used for their accuracy. This accuracy is dependent on proper calibration, as they dispense powder by volume rather than mass. Other machine related factors contributing to homogenous mass flow rate include steady gas flow rates for powder delivery and preventing compaction in the powder containment unit (often accomplished with a hopper) or in any feed piping [7].

An equally vital subsystem is the laser. In coaxial AM heads, the beam is aligned with the center axis of the three nested nozzles, with its focus set near the nozzle exit to
ensure the converging powder stream only interacts with a diverging beam. The desired spot size diameter (the transverse dimension of beam) can then be located at a certain distance offset from the nozzle exit, which in turn is used as the standoff distance between the substrate and AM head [2]. Different distributions of laser beam intensity have been studied such as Gaussian, top-hat or uniform, however the Gaussian model has been the most popular in estimating energy densities in powder fed DED systems [13]. Approximated as a stigmatic beam with irradiance I diametrically varied according to a normal Gaussian distribution, its transverse profile is given by following equation:

$$I \left(\frac{r}{w} \right) = I_o e^{-2 \left(\frac{r}{w} \right)^2} \quad (1)$$

In this expression, r is the radius of the beam, while I_o is the beam’s peak irradiance. The variable w is presented as a radial scale parameter equal to the transverse distance from the beam axis and the point at which irradiance falls to 13.5% ($1/e^2$) of peak value and is used as the definition of the edge of the beam. This corresponds to two standard deviations (2σ) past mean value in a normal Gaussian distribution, observable in Figure 3.
Peak irradiance can be found by integrating Equation (1) over the transverse plane and equating it to total laser power P. It is worth noting that the resulting Equation (2) can be quickly used to calculate average irradiance as well, which is equal to one half the value for peak irradiance [14].

\[
I_o = \frac{2P}{\pi w^2}
\]

(2)
2.3 Anatomy of a Coaxial Nozzle and Powder Stream

2.3.1 Geometry

Early analytical models of coaxial powder streams approximated powder flow as a cylinder of constant width. This was improved upon by Lin, identifying three critical powder flow regions: a converging annular stream immediately past the nozzle exit, the plane of convergence in which the powder is most focused, and an expanding stream post-convergence bearing a circular cross-sectional profile with a near Gaussian distribution. It was also confirmed experimentally that a post-convergence powder stream concentration had a Gaussian distribution, and that inner and shield gas flows affect the powder stream spraying angle[1, 14, 15].

This analytical model was further expanded by Pinkerton and Lin to account for the inclination angle of the tapered annular stream and to directly associate gas flow rates and coaxial nozzle geometry. The same three powder stream regions were identified, and separate coordinate systems were used above and below the plane of powder consolidation [16–18]. A diagram of this model in the axial plane is provided in Figure 4.
The concentrations of both the annular stream and converged stream regions were assumed to have a Gaussian profile, and the corresponding expression for the powder concentration profile was integrated about the central axis. The two different coordinate systems are used to describe powder flow geometry above and below the plane of
convergence. The coordinate system \((r', z')\) describes the orientation of the unmerged annular powder stream with the origin set at the nozzle outlet annulus, and the coordinate system \((r, z)\) describes the orientation of the merged powder stream. In regard to the second coordinate system, \(z\) corresponds to the central axis of the nozzle assembly and the origin is placed at the intersection of the central axis and the nozzle exit plane. Serving as a link between these coordinate systems, the point location of this plane is denoted as \(z_p'\) and \(z_p\) in Equation (3) and Equation (4). In addition, the \(r'\) and \(z'\) coordinate transformation is described in Equation (5) and Equation (6), respectively.

\[
z_p' = \frac{(r_i + r_o)}{2\sin\theta} \tag{3}
\]

\[
z_p = \frac{(r_i + r_o)}{2\tan\theta} \tag{4}
\]

\[
n' = z\sin\theta + r\cos\theta - \frac{1}{2}(r_i + r_o)\cos\theta \tag{5}
\]

\[
z' = z\cos\theta + r\sin\theta \tag{6}
\]

In these equations, \(r_i\) and \(r_o\) represent the inner and outer annular radius of the mid coaxial nozzle, and \(\theta\) denotes the powder stream angle of convergence. Setting stream width limits at \(1/e^2\), which defines the stream edge at \(2\sigma\), the powder flow concentration \(C\) between the nozzle exit and before any occurrence of merging powder streams \((0 \leq z' \leq z_{p'})\) is defined in Equation (7). Mass flow rate is represented as \(m'\), and \(Q\) indicates volumetric flow rate.
\[
C(r') = \frac{2m'}{Q\sqrt{\pi} \text{erf}[1]} e^{-2(r_i + r_o - 2r - 2ztan\theta)^2} (r_o - r_i)^2
\] (7)

The concentration immediately before the plane of convergence exhibits the convergence of two streams as described in the following equation, taking note that \(r \rightarrow 0 \) as \(z \) approaches the central axis. After that, Equation (4) is substituted in as \(z \) to evaluate concentration at the plane of convergence in Equation (8).

\[
C(r, z) = \frac{4m'}{Q\sqrt{\pi} \text{erf}[1]} e^{-8r'^2} \frac{(r_o - r_i)^2 \cos^2\theta}{(r_o - r_i)^2}
\] (8)

For the fully merged and expanding powder flow, \(z > z_P \) and the equation for powder flow concentration further reduces into Equation (9) and Equation (10) for stream diameter \(D \), and maximum concentration \(C^* \) which occurs along the central axis at \(r = 0 \).

\[
D = \frac{2(r_o - r_i)ztan\theta}{(r_i + r_o)}
\] (9)

\[
C^*(0, z) = \frac{2(r_i + r_o)m'}{Q\sqrt{\pi} \text{erf}[1]ztan\theta}
\] (10)

2.3.2 Performance

Nozzle performance is of critical interest, as an efficient process design is a required commercial need. The catchment efficiency is one of the primary factors used to assess the success of the cladding process [15]. Defined as the ratio of powder trapped in the deposited clad to powder delivered, catchment efficiency can be approximated by an area ratio of the laser generated melt pool and the plane of impacting powder. This is due to the high
probability of successful catchment if one or both impacting solids (substrate or powder) has melted and liquified. From a review of powder stream geometry, it can be seen that the most advantageous placement of substrate, and by extension the melt pool, would occur after the plane of convergence in which flow stream diameter is governed by Equation (8) and peak concentrations of both powder and laser energy density occur along the central axis. Furthermore, the location of this plane is related to the convergent powder spraying angle, which is in turn controlled by the flow velocities of the inner, carrier, and shield gas jets [2]. Two expressions are presented as viable means of estimating powder catchment efficiency. Equation (11) is a purely geometric expression of catchment efficiency using a ratio of powder stream diameter D and laser diameter d approximated from initial dimensions of the nozzle and laser, D' and d' respectively, as well as the laser angle of divergence φ and powder stream angle of divergence α. The second expression of powder catchment efficiency is shown in Equation (12) and utilizes the property of Gaussian distribution displayed by the powder stream in calculating the diametric ratio between the Gaussian distributed laser diameter d_g and the full Gaussian distributed powder stream diameter D_g. Both are shown below:

\[
\eta = \frac{d}{D} = \frac{(d' + Stan\varphi)}{(D' + Stan\alpha)}
\]

(11)

\[
\eta = \frac{d_g}{D_g} = \frac{erf\left(\frac{d}{\sqrt{2}}\right)}{erf\left(\frac{D}{\sqrt{2}}\right)}
\]

(12)

Either expression indicates that either a decrease in powder stream diameter or an increase in laser beam diameter is an efficient way to improve powder catchment [15].
2.4 Powder Stream Numerical Simulation

While appropriate for approximation and process parameter development, the practical limits of analytical models necessitate numerical simulations, which typically employ computational fluid dynamics (CFD) [13, 20-24]. Due to the variety of available models and techniques for simulating complex fluid flows, this brief overview is comprised of the topics most pivotal to the construction of the numerical model used in this study. The Navier Stokes system of differential equations establishes the mathematical basis for this numerical model, with the fluid carrier gas and solid powder particle injection modeled as a coupled two-phase turbulent flow. While all gas flows are modeled continuously, a discrete phase model (DPM) is used to represent the injected powder particles. Since the experimental conditions that the simulation is intended to represent do not require the use of laser power, the gas flow is assumed to be isothermal and the thermal energy contributions of any gas-powder interactions are assumed to be negligible. As such, the general form of the governing equation for mass conservation is presented as Equation (13).

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = S_m
\]

(13)

The term \(S_m \) is added to account for the mass of the dispersed powder solid phase, while \(\rho, t, \) and \(\vec{u} \) refer to the gas density, time, and three-dimensional velocity vector, respectively. In similar fashion, momentum conservation and the stress tensor \(\tau \) are described by Equation (14) and Equation (15) respectively.
\begin{equation}
\frac{\partial (\rho \vec{u})}{\partial t} + \nabla \cdot (\rho \vec{u} \vec{u}) = -\nabla p + \nabla \cdot (\tau) + \rho \ddot{g} + \vec{F} \tag{14}
\end{equation}

\begin{equation}
\tau = \mu \left[(\nabla \vec{u} + \nabla \vec{u}^T) - \frac{2}{3} \nabla \cdot \vec{u} \right] \tag{15}
\end{equation}

Regarding the stress tensor equation, \(I \) is unit tensor, \(\mu \) is molecular viscosity, \(p \) is static pressure, and the general effect of volume dilation is described by \(\vec{u}^T \). All external forces, including forces generated by way of interaction with the DPM, are represented by \(\vec{F} \) and separately calculated in Equation (16).

\begin{equation}
\vec{F} = \sum \frac{3\mu C_D Re}{4 \rho_p d_p^2} (u_p - u) \dot{m}_p \Delta t \tag{16}
\end{equation}

Terms \(\rho_p, u_p, \) and \(\dot{m}_p \) denote density, velocity, and mass flow rate values specific to the DPM phase and the timestep is specified by \(\Delta t \). The variable \(d_p \) represents powder particle diameter, which is presented as a Rosin–Rammler distribution across a specified range. The DPM is also used to compute powder particle trajectories using Equation (18) and Equation (19). Supplementary to these equations is the definition of drag coefficient \(C_d \) for spherical particles as seen in Equation (17) [25].

\begin{equation}
C_D = a_1 \frac{a_2}{Re} + \frac{a_3}{Re^2} \tag{17}
\end{equation}

In this equation, \(a_1, a_2, \) and \(a_3 \) are constants that apply over several ranges of \(Re \) given by Morsi and Alexander [26].
\[
\frac{d\bar{u}}{dt} = F_D(u - u_p) + \frac{g(\rho - \rho_p)}{\rho_p} + \bar{F}
\]
(18)

\[
F_D = \frac{18\mu \, C_D Re}{\rho_p d_p \, 24}
\]
(19)

Lastly, the relative Reynolds number \(Re\) is obtained through Equation (20).

\[
Re = \frac{\rho d_p |\bar{u}_p - \bar{u}|}{\mu}
\]
(20)

The presence of turbulent flows is approximated with a realizable \(k-\varepsilon\) model which leverages the Boussinesq relationship with the definition of eddy viscosity \(\mu_t\) calculated in Equation (22) in a Reynolds-averaged approach. This results in Equation (21), which relates Reynolds stresses to their corresponding mean velocity gradients.

\[
\overline{u^2} = \frac{2}{3} k - 2 \frac{\mu_t}{\rho} \frac{\partial U}{\partial x}
\]
(21)

\[
\mu_t = \rho C_\mu \frac{k^2}{\epsilon}
\]
(22)

The primary difference between the realizable \(k-\varepsilon\) model and a standard \(k-\varepsilon\) model is that \(C_\mu\) is now a variable function of mean strain and rotation rates, rather than a model constant, and can be seen in detail in [27]. The turbulence kinetic energy, \(k\), and dissipation rate \(\varepsilon\) are then modeled using the transport equations in Equation (23) and (24). Related variable \(S\) is denoted in Equation (25) for the modulus of the strain rate tensor, wherein the
subscripts $i, j = 1, 2, 3$ and represent tensor dimensions. Lastly, the model constant C_1 is expressed in Equation (26) [25]:

\[
\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho k u_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j} \right] + G_k + G_b - \rho \varepsilon - Y_M + S_k \tag{23}
\]

\[
\frac{\partial (\rho \varepsilon)}{\partial t} + \frac{\partial (\rho \varepsilon u_j)}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_\varepsilon} \right) \frac{\partial \varepsilon}{\partial x_j} \right] + \rho C_1 S \varepsilon - \rho C_2 \frac{\varepsilon^2}{k + \sqrt{\nu \varepsilon}} + C_{1\varepsilon} \frac{\varepsilon}{k} C_{3\varepsilon} G_b + S_\varepsilon \tag{24}
\]

\[
S = \sqrt{2S_{ij} S_{ij}}, \quad S_{ij} = \frac{1}{2} \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right) \tag{25}
\]

\[
C_1 = \max \left[0.43, \frac{\eta}{\eta + 5} \right], \quad \eta = \frac{S \sqrt{k}}{\varepsilon} \tag{26}
\]

The term Y_M represents the contribution of fluctuating dilation in compressible turbulence to the overall rate of dissipation, while v is the magnitude of velocity. Generation of turbulence kinetic energy due to mean velocity gradients and buoyancy are described by G_k and G_b respectively. The corresponding Prandtl numbers for k and ε are represented as σ_k and σ_ε. Likewise, S_k and S_ε are user defined source terms corresponding to k and ε. In addition to C_1, which is characterized by effectiveness factor η, C_2, $C_{1\varepsilon}$, and $C_{3\varepsilon}$ are also predefined model constants.

2.5 Powder Stream Monitoring

Improvement in powder DED catchment efficiency depends on the monitoring and control of both laser and powder stream dimensions [6]. While in-process monitoring is well integrated in industrial applications for subtractive processes, such infrastructure remains in its infancy for AM processes [11]. For laser based DED, most in-situ monitoring
methods exist for the purpose of predicting the thermal profile and material quality of the deposition. These include the use of various instruments such as a pyrometer or infrared (IR) camera. Flow visualization methods and image analysis have been consistently used in coaxial powder systems to validate designs, analytical, and numerical models yet have little to no in-process counterpart [28 - 34]. As such there are limited means of accurately monitoring powder stream geometry to institute process control or predictive maintenance timelines [11].

Light sheet imaging is a well-established, popular flow visualization technique and produces a two-dimensional cross section of a laser based DED powder stream. This involves placing a collimated beam behind either a slit mask or cylindrical lens, creating a planar sheet of light that can be positioned either axially or transversely in the powder stream while the deposition laser is not engaged. A digital camera is positioned either normal to the light sheet or at a known location to capture the attenuated light scattered by powder particles. Luminosity in the resulting captured images can be assumed to be directly proportional to mid-stream powder concentrations.
Figure 5: a.) Top View and b.) Camera View of an Axial Light Sheet Imaging Setup.

This relationship is based on single scattering conditions specified by Mie’s theory of the scattering of light by small particles [13]. Considering I_o, the intensity of light impacting a single particle, its reflected intensity I_i, when observed from a comparably large distance r, is described by Equation (27), with Equation (28) specifying the wave number, K, a function of wavelength λ.

$$I_i = \frac{I_o n V f(\delta, \varphi)}{K^2 r^2}$$ \hspace{1cm} (27)

$$K = \frac{2\pi}{\lambda}$$ \hspace{1cm} (28)

The effect of particle orientation and polarization of incident light is accounted for in the dimensionless function $f(\delta, \varphi)$. Number of particles per unit volume is expressed by n, and the volume element of the particle is V. As the emitted light sheet is essentially A, a two-dimensional area projection of the volume element in the viewing direction, the
portion of particle in view and emitting reflective radiation can be defined as the solid angle A/r^2. Including this term gives Equation (29) for average particle stream luminance L, which is directly proportional to the density of reflective particles it contains [19].

$$L = \frac{I_n V f(\delta, \varphi)}{K^2 A} \quad (29)$$

In summary, the concepts discussed were integral to the formulation of testing methods used in this study. It is the intent of the author to demonstrate powder stream behavior of middle coaxial nozzles throughout the part’s lifetime using well established methods of flow visualization and computational analysis. Though consciously adapted from studies focused on process parameter development and nozzle design rather than nozzle wear, the intention to study powder stream behavior as a direct result of geometric or dimensional change remains the same.
CHAPTER 3. EXPERIMENTAL METHODS

To both characterize and begin to quantify the concentration profile of impacting powder from worn mid-coaxial nozzles, a variety of experimental and numerical testing methods were used.

3.1 Equipment

All powder imaging and deposition experiments were performed within the enclosure of the Mazak VC500AM, a multitasking hybrid machine tool based on the VCU, a series of 5-axis CNC mills. In addition to CNC machining capabilities, this system is retrofitted with a powder feed system, laser unit, and a DED head. While the deposition head is located inside the machine enclosure, the powder feeder and deposition laser units are housed externally on the side. The trunnion style spindle column houses the deposition head, laser optics, as well as the powder and gas delivery subsystem, in addition to being responsible for translational movement in three axes. The work holding table is able to be rotated in two axes as well. All motion is controlled with G-code commands interpreted by the machine controller. Movement command of the deposition head is achieved by specification of a secondary “spindle” axis horizontally offset from the original, effectively shifting the trunnion coordinate system in the positive x-direction [35]. The machine enclosure is spacious enough to house and accommodate in-process monitoring systems used to assess machine performance.

The spindle column mounted deposition head is produced by Hybrid Manufacturing Technologies and the nozzle configuration used is most similar to the S3 Sidemount System, model 3935. The deposition head is also capable of independent
movement up and down the secondary, offset z-axis to the spindle, but is still coupled to the XYZ translation of the milling spindle.

Figure 6: Annotated image of the VC500AM hybrid machine tool subsystems and their locations.

An Oerlikon Twin-150 powder feeder is used to regulate flow by specifying a duty cycle percentage through controller commands. Properly calibrated, this multipurpose feeder dispenses a directly proportionate mass amount of powder, which is fed from a 5.0 L hopper through to the deposition head using argon as a carrier gas. A pressure regulator attached to the inlet gas flow ensures that carrier, inner, and shield gas is released at a gauge pressure of 0.3MPa.
As the milling spindle is not in use during AM operations, a spindle clamped digital camera mount was constructed to record close up image data of powder flow and depositions. Given the spacious machine enclosure, appropriate work offsets and relatively low thermal dispersion of powder fed DED systems, the camera is able to capture images of the nozzle and melt pool area in a configuration normal to the YZ plane facing the deposition head without incurring damage due to heat or collisions. A Basler acA800-200gc area scan camera was used for image collection, with image acquisition settings controlled by its accompanying software on a desktop computer. A self-leveling Class 2 line laser was positioned normal to the XZ plane facing the deposition head and bisecting the middle of the outflowing powder stream. This was achieved through the construction of a modified security camera wall mount bracketed to the spindle column.

Figure 7: Adjustable spindle clamped camera mount.
3.2 Light Sheet Imaging

Figure 8: An in-process setup for light sheet imaging.

The equipment configuration seen in Figure 8 used to image the powder was housed inside the VC500AM machining enclosure, which limited ambient light from affecting captured data. In addition, a datum image was collected before beginning any trial and was subtracted from experimental images as a part of image processing. Lastly, to justify omission of multiple scattering effects, luminosity values were collected from a 20 by 20-pixel test region of powder streams produced by different powder feeder duty cycles ranging from 10-90% in 5% increments. Pixel luminosity is quantified by its gray value, ranging from 0-255 for an 8-bit image. The resulting linear trend indicates a direct proportionality between powder concentration and powder luminance [13, 35].
Figure 9: Linear relationship between powder feeder duty cycle and pixel luminosity.

Powder flow from all tested coaxial nozzles were imaged cold to establish basic shape and wear influence independent of thermal gradients. Experiments were conducted using a parameter set used in past low risk deposition processes on the VC500AM as described in Table 1. Powder mass flow rate, the last listed item in Table 1, was obtained by discharging powder into a tared cup of water for two minutes and measuring the difference in mass. This preliminary test was repeated for 10 trials. The scattered laser light from powder particles was recorded, then processed with a MATLAB script that converted all images to grayscale, averaged ten collected frames together, subtracted the gray values of the datum image, and applied a Gaussian low pass filter for smoothness.
Table 1 – Light Sheet Imaging Machine Operating Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Operating Value (Unit)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Gas Flow Rate</td>
<td>2 (L/min)</td>
<td>Gas flow to preserve laser lens quality</td>
</tr>
<tr>
<td>Carrier Gas Flow</td>
<td>6 (L/min)</td>
<td>Gas flow delivering powder</td>
</tr>
<tr>
<td>Shield Gas Flow</td>
<td>6 (L/min)</td>
<td>Gas flow protecting melt pool area</td>
</tr>
<tr>
<td>Powder Feeder Duty Cycle</td>
<td>35 (%)</td>
<td>Signal corresponding to a volumetric measurement of powder</td>
</tr>
<tr>
<td>Powder Mass Flow Rate</td>
<td>2.535 ± 3.670E-2 (g/min)</td>
<td>Corresponding mass flow rate of powder at 35% DC</td>
</tr>
</tbody>
</table>

Qualitative analysis was performed with nozzles previously used in production to observe powder stream behavior, determine possible impacts wear geometry had on powder flow, and identify key regions of interest discussed in literature: a converging region, the plane of stream convergence at which the powder stream diameter is smallest, and a diverging powder stream [34]. To isolate and observe the specific effects of coaxial nozzle tip wear, a set of coaxial nozzles were machined with identical inner profiles to the manufacturer sourced coaxial nozzles and fabricated wear surfaces. Pixel luminance values collected from these nozzles were used as a comparison data set to study the distribution of calculated powder concentration values obtained by CFD simulation at several standoff distances, including the standoff distance later used for deposition. All collected images to be used in powder stream geometry analysis were cropped to a region of interest equivalent to 5mm standoff distance from the tip of a new nozzle. All reported standoff distances indicate the axial distance from a new nozzle tip, regardless of the nozzle wear state being tested, as this dimension is shared with the outer nozzle tip as well. The tip of the outer nozzle (and a new, unworn mid-coaxial nozzle) is considered the actual exit plane of the AM head, even though powder stream expansion is possible before this point due to mid-coaxial nozzle wear.
3.3 Characterizing and Fabricating Nozzle Wear

Nozzle wear characterization began with examination and powder flow imaging of mid coaxial nozzles retired from machine use at various states of wear and comparing them to the appearance and performance of a manufacturer supplied nozzle never used in deposition. Two geometric irregularities related to tip wear were a jagged, uneven nozzle tip and a smooth region extending from the tip edge to the nozzle outer contour. The collected images of powder flow geometry for each nozzle were analyzed to determine the presence of powder stream convergence and divergence at ± 2σ and ± σ intervals (95.4% and 68.2% of injected powder respectively). The presence of a completely divergent stream was noted as an example of critical performance failure.

Figure 10: Observed geometric irregularities (center and right) in contrast to an unworn mid coaxial nozzle (left).

In an effort to isolate other sources of wear inducing erratic powder flow geometry, a series of mid-coaxial nozzles were designed with final dimensions varying in tip deterioration. Initial attempts to manufacture these nozzles with fabricated wear geometry involved resurfacing the tips of retired mid coaxial nozzles, but additional eroded regions
were discovered on the nozzle’s inner taper. Observable in Figure 11, these regions altered the radial symmetry of the interior contour as well.

![Figure 11: Examples of interior nozzle wear](image)

As a result, replicant nozzles were manufactured to isolate the effects of nozzle tip deterioration resulting in an axial tip reduction. The dimensions and material of the mid coaxial nozzle were obtained by reverse engineering, and the replicant nozzles fabricated out of 360 machinable brass using an Okuma Genos L250 2 axis CNC lathe. The internal taper of the resulting replicant nozzles was within ±0.05° that of the original nozzle, while on the external profile, a few superficial features were omitted for toolpath planning purposes. Five trials were manufactured: one control case that did not have any recreated tip wear, and four trials with tip wear in the amounts of -0.25 mm, -0.50 mm, -0.75 mm, and -1 mm. As in the initial mid-coaxial nozzle characterization, powder flow similarity of the replicant nozzle to the original nozzle was assessed by comparing the control (unworn) trials of each using the same light sheet image collection and analysis used in the assessment of experimental nozzle geometries.
Figure 12: Drawing of original (left) and fabricated (right) nozzle.

3.4 CFD Simulation

Powder and gas flow through the coaxial AM head assembly was completed using ANSYS Workbench 2020 R1. Flow field geometry was reverse engineered and recreated using a polyhedral mesh and an assumption of symmetrical flow, resulting in quicker computation times that allow for timely changes when modeling future process parameter settings. Separate simulations were run for each instance of manufactured nozzle wear, each with its fluid flow geometry reflecting the wear state dimensions.

A pressure-based solver was used to establish a steady state model, with inlet velocity values approximated from the operating parameters in Table 1 using volumetric flow ratios. Turbulent flow was computed with a two-phase realizable $k - \varepsilon$ model, wherein argon gas was continuously modeled, AISI 316L Stainless Steel (SS) powder particles were
represented by a discrete phase model (DPM), and both phases were free to interact with each other.

Argon gas was released from three concentric velocity inlet faces (inner, carrier, and shield), while a Rosin-Rammler distribution of powder particles were released normal to the planar surface of the carrier velocity inlet. Powder diameters used as Rosin-Rammler parameters were obtained from a powder size distribution study used in past work and conducted on the same AISI 316L SS powder, which was procured from Carpenter Additive [37]. The particle mass flow rate, 2.1961E-5 kg/s, was approximated from the mass flow rate of the powder feeder at 35% DC. Turbulent particle dispersion was governed by a discrete random walk model and spherical drag law (17). Boundary conditions, constant values and other parameters are listed in Tables 2-4. The geometry of the resultant simulated powder flow was ascertained by particle tracking and probing for traverse profiles of particle mass concentration (reported in units of $\text{kg} \cdot \text{m}^3$) at various standoff distances including the deposition standoff of 2.75 mm.
Figure 13: Flow field geometry and locations of important boundary conditions.

Table 2 – Inlet/Outlet Boundary Conditions.

<table>
<thead>
<tr>
<th>Boundary Plane</th>
<th>Boundary Condition</th>
<th>Velocity (m/s)</th>
<th>Gage Pressure (Pa)</th>
<th>DPM BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Gas Inlet</td>
<td>Velocity Inlet</td>
<td>6.7591</td>
<td>3E5</td>
<td>escape</td>
</tr>
<tr>
<td>Inner Gas Inlet</td>
<td>Velocity Inlet</td>
<td>4.9602E-1</td>
<td>3E5</td>
<td>escape</td>
</tr>
<tr>
<td>Shield Gas Inlet</td>
<td>Velocity Inlet</td>
<td>4.9855</td>
<td>3E5</td>
<td>escape</td>
</tr>
<tr>
<td>Plane of Symmetry</td>
<td>Symmetrical</td>
<td>-</td>
<td>-</td>
<td>reflect</td>
</tr>
<tr>
<td>Nozzle Walls</td>
<td>No Slip, Enhanced Wall Treatment</td>
<td>-</td>
<td>-</td>
<td>reflect</td>
</tr>
<tr>
<td>Far Field Region</td>
<td>No Slip, Enhanced Wall Treatment</td>
<td>-</td>
<td>-</td>
<td>escape</td>
</tr>
<tr>
<td>Gas Flow Outlet</td>
<td>Pressure Outlet</td>
<td>-</td>
<td>0</td>
<td>escape</td>
</tr>
</tbody>
</table>
Table 3 – Physical Properties and Constants.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Value (Unit)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_s)</td>
<td>8000 (kg/m(^3))</td>
<td>Density of 316SS</td>
</tr>
<tr>
<td>(\rho_a)</td>
<td>1.225 (kg/m(^3))</td>
<td>Density of argon gas</td>
</tr>
<tr>
<td>g</td>
<td>9.81 (m/s(^2))</td>
<td>Gravitational constant</td>
</tr>
<tr>
<td>(\mu_t)</td>
<td>1.789E-5 (kg/m \cdot s)</td>
<td>Viscosity</td>
</tr>
<tr>
<td>(\mu_t)</td>
<td>1</td>
<td>Turbulent viscosity</td>
</tr>
<tr>
<td>(C_2)</td>
<td>1.9</td>
<td>Constant used in the (\varepsilon) transport equation</td>
</tr>
<tr>
<td>(\sigma_k)</td>
<td>1</td>
<td>Turbulent kinetic energy Prandtl Number</td>
</tr>
<tr>
<td>(\sigma_\varepsilon)</td>
<td>1.2</td>
<td>Turbulent dissipation rate Prandtl Number</td>
</tr>
<tr>
<td>k</td>
<td>.8</td>
<td>Turbulent kinetic energy</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>.8</td>
<td>Turbulent dissipation rate</td>
</tr>
</tbody>
</table>

Table 4 – Rosin-Rammler Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. Diameter</td>
<td>6e-8 m</td>
</tr>
<tr>
<td>Max. Diameter</td>
<td>1.2e-7 m</td>
</tr>
<tr>
<td>Mean Diameter</td>
<td>7.5e-8 m</td>
</tr>
<tr>
<td>Spread Parameter</td>
<td>3.5</td>
</tr>
<tr>
<td>Number of Diameters</td>
<td>20</td>
</tr>
</tbody>
</table>

3.5 Deposition Experiment

Five single bead lines were deposited for each test nozzle on 316SS substrate, 12.5 mm in length. Relevant print process parameters were consistent with light sheet imaging parameters, and additional settings associated with the deposition laser and expected build volume can be found in Table 5. The width and length of the samples were measured using a digital microscope, and bead height was measured with calipers.
Table 5 – Machine Operating Parameters during Deposition.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Operating Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Gas Flow Rate</td>
<td>2 (L/min)</td>
<td>Gas flow to preserve laser lens quality</td>
</tr>
<tr>
<td>Carrier Gas Flow Rate</td>
<td>6 (L/min)</td>
<td>Gas flow delivering powder</td>
</tr>
<tr>
<td>Shield Gas Flow Rate</td>
<td>6 (L/min)</td>
<td>Gas flow protecting melt pool area</td>
</tr>
<tr>
<td>Powder Feeder Duty Cycle</td>
<td>35 (%)</td>
<td>Signal corresponding to a volumetric measurement of powder</td>
</tr>
<tr>
<td>Powder Mass Flow Rate</td>
<td>2.535±3.67E-2 (g/min)</td>
<td>Corresponding flow rate of powder feeder at 35% DC Laser energy output</td>
</tr>
<tr>
<td>Laser Power</td>
<td>350 (W)</td>
<td></td>
</tr>
<tr>
<td>Laser Spot Size Diameter</td>
<td>1 (mm)</td>
<td>Diameter of the deposition laser at 1/e² width (or ± 2σ)</td>
</tr>
<tr>
<td>Clad Speed</td>
<td>300 (mm/min)</td>
<td>Traveling speed of the additive head</td>
</tr>
<tr>
<td>Programmed Clad Length</td>
<td>12.5 (mm)</td>
<td>Length specified in machine code commands</td>
</tr>
<tr>
<td>Layer Height (Wall Only)</td>
<td>0.6 (mm)</td>
<td>Incremental height increase</td>
</tr>
<tr>
<td>Programmed Height (Wall Only)</td>
<td>4.8 (mm)</td>
<td>Wall height specified in machine code commands</td>
</tr>
</tbody>
</table>

3.6 Catchment Efficiency Calculation

Catchment efficiency was twice calculated using both the diametric ratio described in Equation (12) and the approximate build volume of each deposition sample. For the first method, the definition of powder stream diameter was set at ± 2σ, as this is also the definition of the deposition laser spot size (equivalent to the 1/e² edge definition) [14]. This was performed using traverse profiles of particle luminance at the deposition standoff height for both experimental and simulated flows, and the spot size diameter of the deposition laser, 1 mm. In the second method, deposited build mass is roughly approximated by multiplying measured build volume by 8000 kg/m³, the density of 316 SS. This is compared to the mass of supplied powder, calculated from clad speed, clad length, and powder feed rate [15].
This concludes the descriptions of experimental methods used in this study. Beginning with descriptions of pertinent equipment used in middle coaxial nozzle testing, methods of data collection both experimental and numerically simulated were listed along with all preliminary method and equipment testing. The fabrication of test samples, and all methods of calculating overall powder catchment efficiency were thoroughly discussed. The results of these experiments will be covered in detail in the next chapter.
CHAPTER 4. RESULTS

Qualitative observations of powder streams from retired mid-coaxial nozzles revealed two possible sources of wear induced flow anomalies. The first of two noticed geometric irregularities related to tip wear was an altered outer contour indicative of the nozzle tip melting and resolidifying, which is more likely to occur during higher power deposition operations. The other type of geometric irregularity was a jagged, uneven nozzle tip indicative of erosion by powder abrasion. Powder streams produced by both geometric irregularities are presented in contrast to a new, off the shelf nozzle in Figure 14.
Figure 14: Powder streams produced by a new nozzle (top), and those produced by melted (center) and abraded (bottom) nozzles.
The mid-coaxial nozzles produced with replicated geometry demonstrated reduced, yet similar performance compared to new, manufacturer supplied nozzles as seen in Figure 15. Basic geometric powder stream properties were measured in both the retired nozzle and those with manufactured tip wear in order to better associate powder stream anomalies with a wear related cause. After identifying the axial distance of the consolidation plane at which powder stream waist was thinnest, a linear regression model was used to calculate the average angle of convergence and divergence in powder flow regions located above and below the consolidation plane, respectively. As retired nozzles did not have a radially symmetric surface of wear, the powder flow boundary on either nozzle side was considered a separate profile, and powder stream angles are reported in order of least to greatest wear. Powder stream angles corresponding to nozzles with manufactured wear are similarly treated, but final angle values are reported with left and right profiles differentiated. All powder stream angles are reported with their corresponding intervals of uncertainty.
Figure 15: Comparison of unworn nozzle flow from original (left) and replicant (right) nozzles.

In Figure 16, a wide array of convergent and divergent powder stream angles occurred. Despite its location above the consolidation plane, the average angle of each imaged powder stream was observed to be divergent from the outer nozzle exit in nearly every case of wear greater than 0 mm at the ± 2σ stream edge definition. As a result, the stream was analyzed at the ± σ edge as well. Powder stream convergence angles at both ± σ and ± 2σ displayed divergent behavior in multiple profiles. For viewing clarity, a convergent data entry was omitted from the figure if a powder flow stream was consistently divergent from the nozzle exit to the end of the region of interest.
Figure 16: Powder stream angles of convergence and divergence with wear, using nozzles retired from production. Error bars indicate the mean uncertainty of the angle’s tangent, calculated using linear regression.

Angle values in Figure 17 demonstrate more of a straightening in powder flow. Even at a wider \(\pm 2\sigma \) interval, convergent flow is observed in all wear states, although both convergent and divergent angles decrease with wear. Regardless, no consistent and viably measurable relationship in angle reduction, convergent or divergent, could be established.
Figure 17: Powder stream angles of convergence and divergence with wear, using nozzles with manufactured wear. Error bars indicate the mean uncertainty of the angle’s tangent, calculated using linear regression.

Critical dimensions of the powder consolidation plane are the standoff distance from the outer nozzle and the powder stream diameter. The retired mid-coaxial nozzles exhibited an increase in powder stream diameter with increasing wear that was constant across $\pm \sigma$ and $\pm 2\sigma$ stream edge definitions, as seen in Figure 18 and Figure 19 respectively. Standoff distance reflected the divergent powder flow angles calculated from the $\pm 2\sigma$ powder stream edge and noted in Figure 16, eventually trending towards 0mm and fully divergent flow. The inner stream edge at $\pm \sigma$ did not experience significant change in standoff distance. A general increase of minimum powder stream diameter with wear was demonstrated in both cases. In Figure 20, one can observe that the consolidation plane dimensions in manufactured nozzles displayed a gradual linear increase in both stream
diameter and standoff distance, furthering the theory that divergent outer powder streams are primarily caused by wear surfaces located on the nozzle interior.

Figure 18: Retired nozzle powder consolidation plane size and location at ± σ interval.

Consolidation Plane Dimensions at ± σ Interval

Consolidation Plane Dimensions at ± 2σ Interval
Figure 19: Retired nozzle powder consolidation plane size and location at ± 2σ interval.

![Consolidation Plane Dimensions Graph](image)

Figure 20: Manufactured nozzle powder consolidation plane size and location (at ± 2σ interval).

Traverse profiles of pixel luminance and CFD simulated powder mass concentration both displayed a rough Gaussian profile centered about the coaxial cladding head center axis, despite deposition standoff distance being 1-1.75 mm above the measured plane of optimal powder stream consolidation. Powder stream characteristics obtained by CFD simulation are limited by the accuracy of initial conditions used, which were estimated from machine operating parameters rather than data acquisition. As a result, CFD simulated powder stream standard deviation ranged from 70-110% greater than experimental data despite trend similarity shared by both sets of data. To compare relative change in luminance and powder concentration in experimental and numerically simulated
data respectively, both sets of data were normalized so their range is between the interval [0,1] and fitted with a first order Gaussian curve. Figure 21 displays the normalized values as a function of their center axis offset, which was not subject to data processing methods such as normalization or scaling.

a.)

b.)
c.

-0.50 mm Wear

Normalized Gray Values

Distance from Center Axis (mm)

Simulated Values
Experimental Values
Curve of Best Fit

-0.75 mm Wear

Normalized Gray Values

Distance from Center Axis (mm)

Simulated Values
Experimental Values
Curve of Best Fit
Figure 21: Traverse profiles of experimental and CFD simulated powder flows at deposition height 2.75 mm. Profiles are listed in order of increasing wear, a.) control nozzle without wear, b.) -0.25 mm wear, c.) -0.5 mm wear, d.) -0.75 mm wear, e.) -1.0 mm wear.

Catchment efficiency of experimental and numerically simulated data sets, along with their respective curves of best fit were calculated using Equation (12) and compared to catchment efficiency ascertained from deposition build volume measurements listed in Table 6. The results were plotted as line graphs to show catchment efficiency loss with increasing wear in Figure 22. Catchment efficiency from build volume was understandably lower than experimental values in all trials, as powder stream imaging does not account for any loss in catchment suffered by the presence of substrate, particularly in particles rebounding out of the melt pool. Curves of best fit had lower catchment than the data sets they represent as data distribution tended to be weighted slightly toward the center axis, or curve midpoint, rather than at its tails. While CFD simulated powder concentration was
observed to be geometrically inconsistent with experimental measurements of powder stream width, corresponding catchment efficiency values fell within a reasonable interval (between deposition and experimental values), due to the weighting caused by the presence of maximum powder concentration about center axis.

Table 6 – Catchment Efficiency Calculated from Single Bead Deposition Build Volume.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Average Volume (mm³)</th>
<th>Calculated Mass (g)</th>
<th>Catchment Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>8.601±0.5361</td>
<td>6.881E-2 ± 4.2886E-3</td>
<td>0.6514 ± 6.451E-2</td>
</tr>
<tr>
<td>-0.25 mm Wear</td>
<td>8.331±0.2483</td>
<td>6.664E-2 ± 1.986E-3</td>
<td>0.6309 ± 4.196E-2</td>
</tr>
<tr>
<td>-0.50 mm Wear</td>
<td>5.608±0.3662</td>
<td>4.487E-2 ± 2.930E-3</td>
<td>0.4248 ± 4.333E-2</td>
</tr>
<tr>
<td>-0.75 mm Wear</td>
<td>4.498±0.3021</td>
<td>3.598E-2 ± 2.417E-3</td>
<td>0.3407 ± 3.538E-2</td>
</tr>
<tr>
<td>-1 mm Wear</td>
<td>4.843±0.5651</td>
<td>3.874E-2 ± 4.521E-3</td>
<td>0.3668 ± 5.626E-2</td>
</tr>
</tbody>
</table>

Figure 22: Comparison of catchment efficiency calculation methods.
In summary, all testing methods displayed a 15-20% reduction in powder catchment sustained in a roughly linear trend up to -1.0 mm of axial tip reduction and were similar in value to catchment efficiencies mentioned in literature for laser based, powder fed DED systems. Discussion of these findings and potential applications are covered in the following chapter.
CHAPTER 5. DISCUSSION

The dimensional characteristics of the consolidation plane measurements for mid-coaxial nozzles with manufactured wear trend similarly to the $\pm \sigma$ consolidation plane measurements, as opposed to the divergent behavior observed at the powder stream outer edge (retired nozzle results). This appears to indicate that the observed interior wear regions impact the edges of the powder stream the most, a region of decreased powder concentration. This behavior is confirmed in manufactured wear nozzle measurements, which indicated a steady linear increase in stream diameter with wear, while standoff distance has no observable linear trend. In catchment efficiency calculations, the rate of increase in stream diameter transitions to a decrease in catchment efficiency. While consolidation plane measurements are not powder catchment ratios, any increase in powder stream diameter can be assumed to cause a decrease in catchment efficiency, as the diameter of the deposition laser remained constant throughout all experiments. In contrast, a concrete relationship between catchment efficiency and standoff distance could not be established without further data collection.

Initial observations of nozzle wear types indicated that the rate of wear differs depending on deposition laser and powder flow process parameters, so monitoring nozzle wear was determined to be more prudent in maintaining constant performance, as opposed to monitoring a nozzle’s overall lifetime from installation to retirement. The current methods of monitoring nozzle wear are usually visual inspection or by using a physical gage. These methods are only possible at the start or the end of a deposition operation, and they do not give insight into powder flow shape. Incorporating light sheet imaging as a method of flow calibration would allow for process parameter adjustment to best optimize
powder flow geometry. In this study, light sheet image equipment was affixed to the spindle column to demonstrate the possibility of checking on nozzle health before, during, and after future deposition cycles. As the experiment design discussed in this study images a cold powder stream, mid cycle checks could be incorporated in machine code and even coordinated with dwell times used as a thermal regulation measure.

Parameters with potential for process improvement must either alter the diameter of powder flow or the diameter of the deposition laser. As the deposition laser diameter could not be altered without incurring significant damage to the AM head assembly, parameter adjustment to improve powder catchment must change powder flow geometry in a significant way. Three parameters that fit this condition are standoff distance, shield gas flow rate, and carrier gas flow rate. While aligning the standoff distance to the consolidation plane of the mid-coaxial nozzle would not directly change powder stream geometry in any way, it would ensure that powder impacts the melt pool at its smallest diameter. Changing the standoff distance introduces a complication if the deposition laser focal distance cannot be easily adjusted to match the standoff distance, as increased laser attenuation could significantly alter the thermal gradient of the stream and melt pool [16, 18, 37]. Changing the carrier or shield gas flow rate throughout the life of the nozzle could also optimize catchment efficiency and may be a more apt method of adjusting parameters to alter powder spot size [15, 28]. Although it would increase material usage, it would not interfere with the laser as when changing standoff distance.

Another potential benefit of powder stream parameter manipulation is the ability to prioritize certain maintenance operations. In this study, deposition height was set at 2.75 mm, the current axial offset distance of the deposition laser focal plane. The manufacturer
supplied machine specifications list laser focal length at 5 mm offset from nozzle end, and while operational, the laser optics within the hybrid manufacturing machine tool need recalibration. In an industrial application, fixing or modifying nozzle geometry to match laser spot size and changing the nozzle offset may be a beneficial short-term fix so that necessary laser recalibration may occur at a time least intrusive to the workflow.

Although the results of the accompanying CFD simulation were geometrically inconsistent with experimental measurements of powder stream width, the catchment efficiency of the CFD simulation was within range of the deposition catchment efficiency, displayed the same Gaussian distribution behavior as the experimental data set, and decreased in catchment efficiency at a roughly linear rate. The low deposition catchment efficiency calculated as a mass ratio is understandable, as imaging free flowing powder does not account for complex multiphase interactions occurring as powder particles collide with melt pool. The CFD simulation can be improved by altering parameters until the traverse powder profiles closely match the experimental results, but this would limit use of the simulation to the tested parameter set, rather than predicting powder stream behavior. Regardless of the necessity for accurate numerical simulation of powder width, the developed simulation is useful in estimating powder catchment at various wear states and standoff distances, as a wider uncertainty interval can be allowed due to the location of high concentration regions of a normal Gaussian distribution. With more accurate parameter values for setting CFD simulation initial conditions, nozzle geometry could be optimized using CFD modeling to fit specific manufacturing applications, much like how custom tooling is produced for specific manufacturing applications in CNC machining centers.
CHAPTER 6. CONCLUSIONS

6.1 Conclusions

This study focused on developing preliminary relationships between nozzle wear and characteristics of the resultant powder stream and deposition. These characteristics were measured using experimental and numerical flow visualization techniques, and also confirmed from a material properties perspective through deposition testing of 316 SS. The principal conclusions of this study are as follows:

1. Nozzle wear regions located on the inner contour likely affect edge regions of the resulting powder stream.
2. Axial reduction in nozzle tip is associated with an increase in powder stream diameter.
3. Standoff distance is likely minorly affected by light to moderate amounts of axial nozzle tip wear.
4. Axial reduction in nozzle tip corresponds to a loss in build volume.
5. Catchment efficiency is negatively affected by increasing amounts of nozzle tip wear.

The first of these conclusions, the impacts of inner nozzle wear regions on powder stream geometry, was obtained by comparing the standoff distance of the consolidation plane in retired nozzles using edge definitions $\pm \sigma$ and $\pm 2\sigma$. The wider edge definition standoff distance trended toward zero with increasing wear and was observed to have a diverging flow at or near the nozzle exit. In contrast, the $\pm \sigma$ edge definition standoff distance followed a similar trend as the standoff distance calculated from nozzles with
manufactured wear. As powder concentration decreases toward the edge of the powder stream, this conclusion likely contributes a small fraction of loss in catchment efficiency but a dominant effect in powder stream edge definition.

The connection between nozzle tip reduction due to wear and the measured build volume losses are associated with loss in catchment efficiency approximated by powder mass ratio. Likewise, nozzle tip reduction contributing to a widening powder stream diameter directly affects catchment efficiency approximated by a laser and powder stream diametric ratio. Both approximations of catchment efficiency decreased with the incremental increase of nozzle tip wear.

6.2 Original Contributions

The contributions of this study lie in the adaptation of experimental methods traditionally applied to the design validation and qualification of middle coaxial nozzles into a procedure of performance monitoring that can be used throughout the lifetime of the nozzle. In doing so, types of wear exhibited by these nozzles were observed and categorized, and foundational relationships were developed between nozzle wear geometry (specifically axial tip reduction), powder stream geometry, and deposition volume. Lastly, the impact of nozzle tip wear on catchment efficiency was quantified by diametric and mass ratio approximations. This conclusion establishes foundational knowledge of a new opportunity for process optimization in powder fed, coaxial DED systems, and the ability to improve one of its most critical drawbacks.
6.3 Limitations

This study’s limitations stem from a variety of factors that could skew the relationships presented. As only five levels of wear were tested, this study would greatly benefit from more data points. In addition, the methods used in the catchment efficiency calculations were intended as approximations of machine performance. Equipment based limitations exist in the weld pool camera resolution, beam diameter of the line laser, and rigidity of mounts used to affix these objects to the spindle column. The most pressing limitation present in the hybrid manufacturing machine tool is an inability to ensure powder mass flow regularity during deposition. It is also worth mentioning that the deposition laser on this machine was in need of recalibration, and that the AM head nozzle geometry was likely originally optimized for a standoff distance of 5 mm. Lastly, deposition catchment could be influenced by the location of the deposited samples on the substrate. The data presented in this study should be carefully interpreted and concrete relationships between wear and component aspects of powder fed DED performance should be refrained from until a larger body of data exists.

6.4 Future Work

The work presented is composed of initial findings that indicate a need for greater understanding in assessing the impact of wear in replaceable AM components on machine performance. In quantifying the effects of coaxial nozzle wear, only one of two identified geometric irregularities was thoroughly investigated, and the effects of wear on interior nozzle surfaces as well as the combined effects of both forms of wear should be studied in depth. Other areas of interest include material properties analysis of the deposited samples
to determine whether a relationship exists between nozzle wear and material defects, such as pores and cracking. Once the effects of coaxial nozzle wear geometry are fully understood, the viability of adjusting relevant process parameters should be studied for potential closed loop control applications and other forms of in-process monitoring and correction. In summary, this study provided a first look into new opportunities for improved performance in powder-fed AM systems and insight into the consequential effects consumables have on deposition quality. There are many openings for further work, and the total comprehension of this topic.

APPENDIX A. TABULATED POWDER STREAM ANGLE DATA

These tables accompany Figures 16 and 17.

A.1 Powder Stream Angles in Retired Nozzles

<table>
<thead>
<tr>
<th>Wear (mm)</th>
<th>θ, $\pm \sigma$ Interval</th>
<th>θ, $\pm 2\sigma$ Interval</th>
<th>α, $\pm \sigma$ Interval</th>
<th>α, $\pm 2\sigma$ Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.9956 ± 0.3793</td>
<td>4.8562 ± 0.1684</td>
<td>7.5310 ± 2.0600</td>
<td>18.8028 ± 0.9550</td>
</tr>
<tr>
<td>0</td>
<td>6.8317 ± 0.2153</td>
<td>9.4392 ± 0.2849</td>
<td>5.2466 ± 1.8240</td>
<td>4.0567 ± 0.5990</td>
</tr>
<tr>
<td>0</td>
<td>15.2142 ± 0.3008</td>
<td>-</td>
<td>11.2617 ± 0.4172</td>
<td>91.7315 ± 0.0556</td>
</tr>
<tr>
<td>0.0556</td>
<td>20.3448 ± 0.0891</td>
<td>-</td>
<td>41.6083 ± 0.1283</td>
<td>51.2774 ± 0.03778</td>
</tr>
<tr>
<td>0.1111</td>
<td>-</td>
<td>81.7384 ± 0.1925</td>
<td>10.7106 ± 0.2215</td>
<td>9.1798 ± 0.3627</td>
</tr>
<tr>
<td>0.1389</td>
<td>7.8887 ± 0.2483</td>
<td>46.7563 ± 0.9456</td>
<td>17.1724 ± 0.4928</td>
<td>9.3917 ± 0.09319</td>
</tr>
<tr>
<td>0.3611</td>
<td>12.4644 ± 0.9673</td>
<td>-</td>
<td>58.1060 ± 0.3981</td>
<td>60.6118 ± 0.05193</td>
</tr>
<tr>
<td>0.8889</td>
<td>-</td>
<td>-</td>
<td>22.5776 ± 1.753</td>
<td>4.1809 ± 1.1860</td>
</tr>
<tr>
<td>1.194</td>
<td>73.4533 ± 0.0512</td>
<td>78.0141 ± 0.0995</td>
<td>13.5166 ± 0.1723</td>
<td>83.8586 ± 0.03289</td>
</tr>
</tbody>
</table>

A.2 Powder Stream Angles in Fabricated Nozzles

<table>
<thead>
<tr>
<th>Wear (mm)</th>
<th>θ, Left Side</th>
<th>α, Left Side</th>
<th>θ, Right Side</th>
<th>α, Right Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15.6274 ± 0.1415</td>
<td>33.1766 ± 0.158</td>
<td>10.7363 ± 0.6926</td>
<td>47.9842 ± 0.1067</td>
</tr>
<tr>
<td>-0.25</td>
<td>8.8061 ± 0.1684</td>
<td>18.3380 ± 1.847</td>
<td>22.8408 ± 0.0471</td>
<td>8.6583 ± 0.3412</td>
</tr>
<tr>
<td>-0.50</td>
<td>9.2061 ± 0.4994</td>
<td>22.57756 ± 1.753</td>
<td>19.6008 ± 0.0431</td>
<td>10.7106 ± 0.2215</td>
</tr>
<tr>
<td>-0.75</td>
<td>7.0803 ± 0.6037</td>
<td>4.1808 ± 1.186</td>
<td>23.5668 ± 0.1014</td>
<td>9.1798 ± 0.3627</td>
</tr>
<tr>
<td>-1.0</td>
<td>6.2061 ± 0.7420</td>
<td>7.9487 ± 0.9492</td>
<td>8.4245 ± 1.0570</td>
<td>13.5165 ± 0.1723</td>
</tr>
</tbody>
</table>
APPENDIX B. TABULATED CONSOLIDATION PLANE DIMENSIONS

These tables accompany Figures 18 through 20.

B.1 Retired Nozzle Consolidation Plane Dimensions at ±σ Interval.

<table>
<thead>
<tr>
<th>Average Wear (mm)</th>
<th>Powder Stream Diameter (mm)</th>
<th>Standoff Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.2778</td>
<td>4.25</td>
</tr>
<tr>
<td>0.0695±0.0491</td>
<td>1.0556</td>
<td>4.5278</td>
</tr>
<tr>
<td>0.0973±0.0295</td>
<td>0.8611</td>
<td>5.4444</td>
</tr>
<tr>
<td>0.2361±0.0884</td>
<td>0.8611</td>
<td>2.75</td>
</tr>
<tr>
<td>1.0417±0.1080</td>
<td>3.9722</td>
<td>3.9722</td>
</tr>
</tbody>
</table>

B.2 Retired Nozzle Consolidation Plane Dimensions at ±2σ Interval.

<table>
<thead>
<tr>
<th>Average Wear (mm)</th>
<th>Powder Stream Diameter (mm)</th>
<th>Standoff Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.6667</td>
<td>4.9167</td>
</tr>
<tr>
<td>0.0695±0.0491</td>
<td>1.6944</td>
<td>4.4444</td>
</tr>
<tr>
<td>0.0973±0.0295</td>
<td>1.5278</td>
<td>2.9167</td>
</tr>
<tr>
<td>0.2361±0.0884</td>
<td>1.1944</td>
<td>2.7778</td>
</tr>
<tr>
<td>1.0417±0.1080</td>
<td>5.0278</td>
<td>0.0278</td>
</tr>
</tbody>
</table>

B.3 Manufactured Nozzle Consolidation Plane Dimensions (at ±2σ Interval).

<table>
<thead>
<tr>
<th>Wear (mm)</th>
<th>Powder Stream Diameter (mm)</th>
<th>Standoff Distance (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.3333</td>
<td>3.8889</td>
</tr>
<tr>
<td>-0.25</td>
<td>1.5000</td>
<td>3.8333</td>
</tr>
<tr>
<td>-0.50</td>
<td>1.7222</td>
<td>3.75</td>
</tr>
<tr>
<td>-0.75</td>
<td>1.8333</td>
<td>3.9444</td>
</tr>
<tr>
<td>-1.0</td>
<td>2.0278</td>
<td>4.5556</td>
</tr>
</tbody>
</table>
APPENDIX C. TABULATED DEPOSITION SAMPLE DIMENSIONS

This table accompanies Table 6.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Mean Width (mm)</th>
<th>Mean Length (mm)</th>
<th>Mean Height (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.0470 ±0.0174</td>
<td>13.0604 ± 0.0635</td>
<td>0.6514 ± 6.451E-2</td>
</tr>
<tr>
<td>-0.25 mm Wear</td>
<td>1.0335 ±0.0095</td>
<td>13.0857 ± 0.0564</td>
<td>0.6309 ± 4.196E-2</td>
</tr>
<tr>
<td>-0.50 mm Wear</td>
<td>0.9298 ±0.0161</td>
<td>13.0276 ± 0.0268</td>
<td>0.4248 ± 4.333E-2</td>
</tr>
<tr>
<td>-0.75 mm Wear</td>
<td>0.8549 ±0.0243</td>
<td>12.9582 ± 0.0381</td>
<td>0.3407 ± 3.538E-2</td>
</tr>
<tr>
<td>-1 mm Wear</td>
<td>0.9002 ±0.0275</td>
<td>13.0264 ±0.0635</td>
<td>0.3668 ± 5.626E-2</td>
</tr>
</tbody>
</table>
APPENDIX D. TABULATED CATCHMENT EFFICIENCY CALCULATION METHODS

This table accompanies Figure 22.

<table>
<thead>
<tr>
<th>Trial</th>
<th>Imaged Catchment Efficiency</th>
<th>Imaged Curve Fitting Catchment Efficiency</th>
<th>CFD Catchment Efficiency</th>
<th>CFD Curve Fitting Catchment Efficiency</th>
<th>Deposition Catchment Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.9628</td>
<td>0.7474</td>
<td>0.6803</td>
<td>0.4948</td>
<td>0.6514±0.0645</td>
</tr>
<tr>
<td>-0.25 mm Wear</td>
<td>0.8812</td>
<td>0.6749</td>
<td>0.5621</td>
<td>0.3935</td>
<td>0.6309±0.0420</td>
</tr>
<tr>
<td>-0.50 mm Wear</td>
<td>0.8409</td>
<td>0.6281</td>
<td>0.5728</td>
<td>0.3988</td>
<td>0.4248±0.0433</td>
</tr>
<tr>
<td>-0.75 mm Wear</td>
<td>0.8582</td>
<td>0.6142</td>
<td>0.4883</td>
<td>0.3207</td>
<td>0.3407±0.0354</td>
</tr>
<tr>
<td>-1 mm Wear</td>
<td>0.8063</td>
<td>0.5549</td>
<td>0.4938</td>
<td>0.3371</td>
<td>0.3668±0.0563</td>
</tr>
</tbody>
</table>
REFERENCES

