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SUMMARY

This thesis focuses on the application of AI in semiconductor fabrication, including

two different stages of research projects, one is the ALD process and the other is the device

characterization process.

The first project developed a foundation model framework for time series analysis in

atomic layer deposition (ALD) processes, specifically targeting high-K dielectrics such as

HfO2 and ZrO2. This framework utilizes advanced machine learning techniques to analyze

high-dimensional, heterogeneous data streams. By integrating time-series sensor data with

multimodal datasets, including engineering logs and recipes, this project aims to predict

material properties, improve process efficiency. The current progress is in the stage of data

collection and processing.

The second project demonstrated a practical implementation through an automated

semiconductor characterization system for ferroelectric devices. This work focuses on

leakage detection and the validation for HZO thin flims from their electrical measurements,

which transforms the traditional, manual, and time-consuming process of analyzing po-

larization voltage (P-V) loops into an automated machine learning pipeline. This study

proposes an improved convolutional neural network architecture used for analyzing charge

response data over time for devices and performs well on the metrics from the resulted

confusion matrix, achieving more efficient device validation.

These projects both lay the foundation for AI driven semiconductor process optimiza-

tion and provide practical experience for the effectiveness of deep learning in semiconduc-

tor fabrication.

x



CHAPTER 1

FOUNDATION MODEL FOR TIME SERIES ANALYSIS IN ALD PROCESS

1.1 The Problem

The purpose of this proposed study is to develop an artificial intelligence framework for

predicting and optimizing material properties during atomic layer deposition (ALD) pro-

cesses, with a focus on high-K dielectrics such as HfO2 and ZrO2.

The challenges currently faced by ALD technology include inconsistent material depo-

sition, high energy consumption, and large greenhouse gas emissions.

This study attempts to address the key challenge by utilizing machine learning tech-

niques, particularly foundation models, to analyze the high-dimensional, heterogeneous

data streams generated during ALD processes. The ultimate goal is to find the correlations

from high-dimensional process data and post-deposition film quality, which could help

tasks including predicting material properties, improving process efficiency, and achieving

sustainable manufacturing.

This study focuses on integrating time-series data (such as pressure sensor logs, spectral

data) and multimodal datasets (such as engineering logs, recipes) into a unified framework.

The proposed solution will adopt advanced pre-trained foundation models to enhance their

ability to perform ALD domain-specific tasks, such as film quality prediction. The general

goal of this project is consistent with the development of sustainable ALD processes.

1.2 Origin and History of the Problem

This research is part of Khan Lab’s Life Cycle Sustainability Analysis (LCSA) of Atomic

Layer Deposition (ALD) project, led by Principal Investigator Asif Khan.

Atomic layer deposition (ALD) is crucial in semiconductor manufacturing, providing
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atomic level precision for devices such as nanosheet FET and ferroelectric RAM. However,

changes in process parameters, such as chamber pressure and precursor pulses, can affect

the quality of the deposition and device performance. The recent analysis of pressure sensor

data for HfZrO2 recipe (November 2023 to May 2024) shows that the pressure peak contin-

ues to rise during later operation, indicating possible machine problems. These deviations

may lead to suboptimal deposition, resulting in higher defect rates and reduced reliability.

Also, the impact of ALD process on the environment is significant, reducing energy con-

sumption and waste in ALD processes helps achieve industry goals of sustainability and

net zero emissions.

One goal of the LCSA project is to address these challenges by creating an AI driven au-

tomated experimentation (AI/AE) platform that integrates multimodal physical processes,

metrology, and simulation data, as shown in Figure Figure 1.1. The platform aims to co-

optimize power, performance, area, and cost (PPAC) indicators while reducing the environ-

mental footprint of ALD processes.

Figure 1.1: Flow Diagram

The advancement of artificial intelligence, especially the advancement of multimodal

foundation models (FMs), provides an opportunity to address this issue. These models

integrate various data streams for analysis and can be fine-tuned for specific tasks by pre-
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training on large and diverse datasets. These models use multimodal data such as text,

images, and time series to provide comprehensive insights. For example, LLaVA-Gemma

[1] demonstrated that the small FMs such as Gemma-2B and Gemma-7B can be efficiently

adapted to multimodal situations by balancing computational efficiency and model accu-

racy.

For our project, we thought we could also use Foundation Models (FMs) to process

data streams such as time series sensor data, optical measurements, and logs to perform

predictive analysis and process optimization for ALD. Inspired by Samsung’s multi-modal

fundation model(MMFM) framework for advanced equipment data analytics in Semicon-

ductor Manufacturing [2], this study focuses on developing tailored AI driven solutions

for ALD process. By incorporating AI and data-driven models, we can predict material

properties and optimize the ALD process, which directly contributes to the development of

lifecycle sustainability frameworks and next-generation semiconductor technologies.

1.3 Related Work

The latest advances in the intersection of artificial intelligence (AI) and atomic layer de-

position (ALD) provide promising methods for improving prediction accuracy, optimizing

processes, and enhancing the sustainability of semiconductor manufacturing.

Adeleke et al. [3]conducted a comprehensive review on the application of machine

learning (ML) techniques to ALD, emphasizing the integration of ML with traditional sim-

ulation methods to improve quality control and material discovery. Their work provided

insights into how ML can facilitate better understanding and control of ALD processes.

A specific study by Yoon et al. [4] demonstrated the effectiveness of extreme gradient

boosting (XGBoost) algorithms in predicting results for platinum nano-film coatings pro-

duced by ALD, demonstrating high prediction accuracy and rapid inference capabilities.

Similarly, Arunachalam et al. [5] applied ML methods to predict film thickness from

in-situ spectroscopic ellipsometry data during ZnO ALD processes. Their findings em-

3



phasize the ability of ML, particularly k-nearest neighbor algorithms, to accurately predict

deposition outcomes using real-time monitoring data.

Samsung’s development of multi-modal large language models (LLMs) for autonomous

semiconductor fabrication further demonstrates the utility of integrating multimodal data

streams. Their approach combines sensor data, knowledge graphs, and LLMs to enhance

equipment control, defect detection, and process optimization [2].

In semiconductor defect analysis, Jiang et al. [6] introduced FabGPT, a customized

multimodal model customized for querying wafer defect knowledge. This system signifi-

cantly enhances the efficiency and accuracy of defect diagnostics in integrated circuit fab-

rication.

Moreover, Dogan et al. [7] explores Bayesian machine learning methods to minimize

defects in ALD coatings, specifically in Al2O3 passivation layers for metallic copper cor-

rosion protection. This method optimizes ALD parameters to achieve defect-free, high-

quality deposition results.

These related studies collectively emphasize the significant potential of using artificial

intelligence and machine learning to improve ALD processes, with the goal of enhancing

predictive capabilities, improving operational efficiency, and promoting the sustainability

of advanced semiconductor manufacturing.

1.4 The Proposed Research

1.4.1 Research Objective

The primary objective is to develop a Multi-Modal Time Series Foundation Model for ALD

processes. This model will:

1. Process Multimodal Data Streams

2. Predict Material Properties

3. Enable Sustainability

4



1.4.2 Proposed Methodology

Data Collection and Preprocessing

• Collect multimodal datasets from ALD processes, including sensor outputs, chamber

logs, and optical spectra and apply naming techniques.

• Apply domain-adapted preprocessing techniques such as noise filtering, reversible

instance normalization, and temporal alignment.

Model Development

• Use models like SOFTS[8] and MOMENT[9] for pre-training on diverse time-series

datasets.

• Use dense embeddings, masked representation learning, and knowledge graphs to

integrate datasets.

• Incorporate physics-informed embeddings to capture domain-specific features.

Evaluation Metrics

• Use Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for material

property predictions.

• Calculate F1-scores for anomaly detection.

• Benchmark the model against some state-of-the-art techniques, including transformer-

based and non-transformer models[10].

Sustainability Integration

Collaborate with the larger project’s lifecycle sustainability framework to ensure that pro-

cess optimizations is aligned with environmental goals.
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1.4.3 Challenges

The main challenges are:

1. High-dimensional data: The ALD process generates complex high-dimensional data

streams from sensors, logs, which may need dense embeddings.

2. Date alignment: Integrating different data types requires advanced alignment tech-

niques.

3. Tasks generalization: Developing a single foundational model that can adapt to mul-

tiple tasks is challenging.

1.5 Current Progress and Project Development

1.5.1 Data Collection and Infrastructure Setup

As a first step toward building a foundation model for ALD process optimization, we have

focused on data curation and infrastructure development. The primary equipment used in

this study is the Veeco Fiji G2 Atomic Layer Deposition (ALD) System, which supports

plasma-enhanced ALD processes critical for fabricating high-K dielectric films such as

HfO2 and ZrO2.

The Veeco system continuously generates high-resolution time-series logs from its

built-in sensors. These include data on precursor pulse timing, chamber pressure evolu-

tion, RF plasma activation, and substrate heating cycles, among others. However, these

logs are initially stored in proprietary raw formats, which are difficult to access and inter-

pret directly for modeling purposes.

To enable data-driven analysis, our cleanroom engineer has manually parsed these raw

logs, extracting relevant sensor channels and metadata. The structured data is then uploaded

to a dedicated cloud-based database bucket, where it is stored along with standardized
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metadata tags such as: toolname, recipename, category, subcategory, manufacturer, model,

serial, and hash.

1.5.2 Challenges with Manual Parsing and Motivation for Automation

A key bottleneck in the early stages is manually parsing raw ALD logs, which is time-

consuming and prone to errors, especially considering the large amount of historical data

collected in many experimental runs. The process of converting raw logs into structured

data suitable for consumption by artificial intelligence models took several months, during

which inconsistencies in file formats, missing metadata, and inconsistent timestamps had

to be manually resolved. And we have to consider the tags in advance for future use.

Recognizing the inefficiency, we are now actively working towards automating the data

ingestion and parsing pipeline. Our goal is to develop a robust system that continuously

extracts, parses, tags, and uploads new Veeco process logs to the database with minimal

human intervention. This automation will not only accelerate the speed of data collection,

but also improve the consistency and repeatability of data, which is a key requirement for

basic models training and downstream tasks.

1.5.3 Data Access and Streaming Interface

In order to simplify the process of storing and analyzing structured data, we have started

implementing a Node RED based interface that allows us to pull relevant time series data

from cloud database buckets and stream it to our AI backend.

This setting allows automatic extraction of data slices by recipe name, process type, or

time window, and supports batch training and real-time inference workflows. We pull the

necessary data from the database for our model use.
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1.5.4 Exploration of Foundation Models

As the project progresses towards building a prediction framework for film property us-

ing time-series sensor data from ALD processes, one of the key challenges is to choose a

suitable model architecture that can be well generalized to multivariate, high-dimensional

temporal data. To address this issue, we conducted extensive research on recent time se-

ries baseline models and identified MOMENT (Multi Task Open Model for Time Series

Embedding and Normalization) as a highly promising candidate.

MOMENT is a family of open-source foundation models developed by Auton Lab at

Carnegie Mellon University [9], the MOMENT architecture is shown in . It is specifically

designed to support various time-series tasks, including forecasting, classification, anomaly

detection, and representation learning. This general-purpose architecture is closely related

to our goals, which involve predicting the characteristics of deposited thin films (such as di-

electric quality, growth rate stability) based on the process sensor features recorded during

ALD runs.

Figure 1.2: MOMENT MODEL Architecture

The MOMENT architecture is shown in Figure 1.2. The MOMENT-1 architecture
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provides pre-trained pipelines for different tasks, with three variants: small, basic, and

large. The main functions of MOMENT include:

• The zero-shot and few-shot capabilities reduce the need for large labeled training

datasets.

• Fine tuning support for specific tasks using distributed data.

• The encoder backbone network based on transformers has achieved attention-based

modeling of long-distance dependencies across time.

• Supports multiple time-series inputs, which is suitable for processing sensor streams

such as pressure, temperature, and more.

MOMENT can be accessed programmatically using the momentfm Python package.

For our example, if we want a classification pipeline for binary film quality prediction,

our initialization requires minimal configuration of that in Figure 1.3 and Figure 1.4. MO-

MENT can be accessed via the pre-trained model available on Hugging Face [11].

Figure 1.3: MOMENT Classification [11]

Given the structured sensor data provided by the Veeco Fiji G2 ALD system, includ-

ing pressure and precursor pulse profiles, MOMENT provides a good starting point for

9



Figure 1.4: MOMENT forecasting [11]

analyzing trends related to thin film performance results. Especially, reconstructing and

predicting pipelines is expected to learn representations of chamber pressure cycling and

precursor dynamics, which are essential for the nucleation and growth efficiency of thin

films in each cycle.

In addition, MOMENT’s support for embedding extraction enables unsupervised rep-

resentation learning across multiple ALD runs, laying the foundation for downstream tasks

such as anomaly detection or virtual metric prediction.

1.6 Current progress and future work

Although the modeling phase is still in its early stages, but right now we have successfully:

• Set up the MOMENT framework locally, install the required packages, and prepare

a sample pipeline using publicly available datasets to validate its core functionality.

• Explored the embedding extraction function of MOMENT to analyze whether the

clustering of sensor traces from different recipes is consistent with known material

outcomes.

We are currently preparing to map standardized Veeco logs (now included in our database)
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to MOMENT input format. This includes data formatting, channel alignment, and zero

padding necessary for multi-channel input support.

In the next phase, we plan to:

1. Extend the MOMENT pipelines to support multi-channel, multi-resolution ALD

data, including high-frequency chamber pressure logs and low-frequency metrology

results (e.g., probe station data measurements).

2. Fine-tune MOMENT using paired Veeco process data and quality labels obtained

from post deposition measurements.

3. Compare the performance of MOMENT against baseline models such as SOFTS

and traditional CNN/RNN architectures on metrics including RMSE, F1-score, and

zero-shot generalization.
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CHAPTER 2

AUTOMATED SEMICONDUCTOR CHARACTERIZATION

2.1 Motivation

With the increasing complexity and scale of modern semiconductor devices, especially in

emerging ferroelectric-based technologies such as HfZrOx-based capacitors and FeFETs,

the characterization process has become a critical bottleneck for technology development

and process-device co-optimization. The traditional E-test workflow suffers from several

fundamental limitations:

• Manual Intervention: Traditional characterization relies on expert-driven planning,

execution, and validation, which introduces subjective variability and error.

• Time Constraints: The complete device characterization requires thousands of mea-

surements under multiple test conditions, which makes comprehensive testing very

time-consuming.

• Data Quality Assurance: Due to equipment limitations, probe misalignment, or

device defects, measurement artifacts often contaminate datasets, it is necessary to

conduct strict validation before extracting parameters.

• Scaling Challenges: Manual approaches cannot efficiently scale to characterize

thousands of devices across multiple wafers.

These limitations significantly impede the rapid development cycle required for next-

generation semiconductor technologies, particularly for emerging ferroelectric devices, the

characterization is crucial for understanding reliability mechanisms and optimizing the fab-

rication process.
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2.2 System Overview and Agentic Framework

To address these challenges, we propose an end-to-end automated characterization frame-

work based on a modular, agent-based architecture. This framework combines advanced

machine learning techniques with domain-specific electrical characterization expertise to

create a self optimizing system for semiconductor device analysis.

Our framework integrates a hierarchy of autonomous agents designed to manage the

entire semiconductor characterization pipeline (Figure 2.1). Each agent utilizes domain

specific tools, statistical analysis, and AI-driven reasoning. Agents share memory and

interfaces with backend simulators (e.g. GinestraTM) and front-end probe stations through

code generation and data parsing.

Figure 2.1: Overview of the proposed automated agentic framework for semiconductor
characterization.

The workflow include:

• Experiment Planning Agent – Designs test conditions (voltages, frequencies) based

on device specs.

• Execution Agent – Interfaces with measurement equipment through automated C++

code generation, manages probe station alignment, and executes the planned experi-

ments.
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• Validation Agent – Classifies measured device data as Good, Leaky, Short, or No

Contact.

• Parameter Extraction Agent – Fits physical models to validated data and extracts

device parameters to construct a digital twin.

My research focuses primarily on the Validation part, which can check the leaky films

from their e-test mesurements. From the results from the validation, we keep the non-

leaky ones and later we will do preisach and NLS, build the digital twin and also do the

characterization and modeling of Ferroelectric polarization switching. So it’s a critical

quality gate to ensure that only valid measurement data proceeds to downstream modeling

and analysis. To achieve the goal, we need to build a machine learning model to implement

the logic.

2.3 Background and Problem Definition

Traditionally, leakage identification in ferroelectric devices is carried out using polarization-

voltage(P-V) loop [12]. A typical P-V loop displays the charge response under sweeping

gate voltage, and experts analyze hysteresis, saturation from that. Abnormal shapes, such

as severe distorted or open loops, may indicate excessive leakage or shorts. However, this

method is usually manual, which is time-consuming and prone to errors when expanding

to a large number of devices. Thus, this work aims to develop a machine learning based

testing validation agent that classifies devices as leaky, good, or other issues from raw

measurement data to reduces human labor and ensures scalable validation for downstream

tasks.

The validation task can be formally defined as follows: Given a set of time-series

electrical measurements from semiconductor device characterization (typically time-series

measurements of current, or charge, we can also get I − V , Q − V , or It − V curves),

automatically determine whether the signal represents valid device behavior.
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As shown in Figure 2.2, the validation pipeline for semiconductor ferroelectric device

characterization is illustrated.

Figure 2.2: Validation Pipeline

In the full problem scope, this is a multi-class classification task with categories:

• Good: Valid measurement showing expected device characteristics

• Leaky: Measurement exhibiting gate leakage or partial dielectric breakdown

• Shorted: Complete device failure with direct electrical path

• No Contact: Measurement artifact due to probe misalignment or contact failure

For initial development and proof-of-concept validation, we constrain the problem to

binary classification:

• Non-Leaky: Valid measurement suitable for parameter extraction

• Leaky: Invalid measurement showing gate leakage requiring rejection

This simplification allows us to design and validate core models and pipelines before

scaling to full multi-class classification.

The input data consists of raw electrical measurement time-series, where each exper-

iment produces traces of current, voltage, and charge values sampled over time. As evi-

dent in Figure 2.3, leaky devices typically exhibit distinct morphological characteristics in

their measurement traces, including reduced saturation, increased asymmetry, and current
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Figure 2.3: Synthetic data: red curves represent non-leaky devices, blue curves represent
leaky behavior.

flow during supposed non-conduction phases. These patterns, while visually identifiable

to domain experts through polarization-voltage hysteresis loop, present an opportunity for

automated detection using pattern recognition techniques that can extract relevant features

from time-series data sequence.

2.4 Related Work

The trend of using machine learning (ML) technology in semiconductor device fabrica-

tion and characterization is increasing, especially in automating data analysis, process op-

timization, and reducing the manpower required to identify anomalies. Previous studies

have demonstrated both unsupervised and supervised methods, as well as deep learning
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techniques for data analysis, quality control, and process optimization in fabrication sys-

tems.

2.4.1 Deep Learning for Time Series Classification

In deep learning literature, time series classification has already been solved through vari-

ous methods. Convolutional neural networks (CNNs) are a remarkable approach in time se-

ries analysis. Wang et al. [13] demonstrated that FCN can achieve performance comparable

to or better than recursive architectures, while also having higher computational efficiency.

Recurrent neural networks (RNNs) and their variants, such as LSTM and GRU, have also

been used for sequential data because they can capture temporal dependencies [14]. How-

ever, these architectures are often plagued by computational complexity and training diffi-

culties.

2.4.2 Neural Networks for Semiconductor Testing

In the field of ferroelectric device analysis, unsupervised clustering techniques have been

successfully applied to distinguish characteristic behaviors in electrical measurements with-

out the need for labeled data. For example, Hiranaga et al. [15] applied k-means and Gaus-

sian Mixture Model (GMM) clustering to the nanoscale C-V hysteresis loop of doped HfO2

thin films. Their method revealed distinguishable ”butterfly” loops corresponding to normal

ferroelectric switches, rather than asymmetric loops implying domain pinning or built-in

field effects. Neumayer et al. [16] further extended unsupervised ML to the classification

of polarization switching behavior by converting hysteresis loops into 2D representations

and applying linear classifiers.

If we have labeled examples, we can employ supervised machine learning method,

which has also been applied in validation and fault diagnosis tasks. For instance, Liu et

al.[17] combined high-speed piezoresponse force microscopy (HSPFM) with a Bayesian-

optimized support vector machine (SVM) to classify dynamic domain growth in ferroelec-
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tric materials, effectively distinguishing switching and stable regions. Similarly, Xu[18]

proposed a graph neural network-based approach for fault detection in digital integrated

circuits, which can identify defects such as leakage and misalignment by analyzing electri-

cal signal variations. Compared with traditional test methods, these methods have higher

accuracy and robustness.

2.4.3 Time-Series Characterization

Given that E-test data typically takes the form of sequential time voltage or time current

measurements, deep learning models designed for time series analysis, such as recurrent

neural networks (RNNs) and long short-term memory (LSTM) networks, can be applied

here. Agar et al. [19] developed an autoencoder based on LSTM for processing piezoelec-

tric response spectral data and revealing subtle switching features such as elastic hardening

or charged domain wall nucleation that traditional statistical methods cannot distinguish.

These networks are able to capture the temporal dependencies and subtle deviations in

waveform morphology, making them pretty suitable for classifying leaky and non-leaky

device behavior from raw electronic test outputs, which is our case.
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CHAPTER 3

METHODOLOGY FOR E-TEST DATA VALIDATION

3.1 Synthetic Dataset Generation

Due to the limited amount of E-test data measured in the early development stage, we gen-

erated a synthetic dataset to help model development and benchmark baseline classification

performance. The synthetic dataset is generated using a Preisach model for ferroelectricity.

Specifically, we use the Preisach model of ferroelectricity to simulate device behavior under

controlled parameter perturbations, such as trap density, residual polarization, and electric

field confinement, through Monte Carlo simulations using GinestraTM. The synthetic

data is used to train the model.

3.2 Dataset Preprocessing and feature selection

The synthetic dataset used in this project comprises approximately 30,000 CSV files, each

corresponding to a unique semiconductor device under electrical test. Each file follows

the naming convention dev# label.csv, where # denotes the device index and label

indicates the binary classification target: 0 for non-leaky devices and 1 for leaky devices.

Each file contains 1,002 rows and four columns representing time-series measurements:

time (t), voltage (v), charge (q), and current (i).

Figure 3.1 shows the class distribution of the dataset. The leaky and non-leaky devices

are nearly balanced, with 15,405 leaky samples (51.35%) and 14,595 non-leaky samples

(48.65%). The distribution of label in our sample is very even.

Initial exploratory analysis showed that the q (charge) signal provides the most dis-

criminative power for distinguishing leaky from non-leaky devices. As illustrated in Fig-

ure 3.2, leaky devices exhibit reduced saturation, increased asymmetry, and distortion in
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Figure 3.1: Distribution of leaky vs.
non-leaky device samples in the synthetic
dataset.

Figure 3.2: Synthetic charge-voltage
curves. Red: non-leaky; Blue: leaky.

the charge-voltage response, whereas non-leaky devices follow a more symmetric and sat-

urated polarization curve.

As shown in Figure 3.3, to prepare the data for model training and evaluation, we design

a preprocessing pipeline consisting of three main steps:

• Data Splitting: We apply a stratified split at the device level to ensure that all mea-

surements from a given device are assigned to a single subset. This avoids data leak-

age across the training, validation, and testing splits. The dataset is partitioned into

70% training, 15% validation, and 15% testing sets. And the category distribution of

each one is relatively even.

• Normalization: We use MinMaxScaler normalization method to the column of

the charge (q) measurements. The scaling parameters (min and max values) are

computed exclusively from the training set and subsequently applied to the validation

and testing sets as a global fitting to avoid information leakage. The normalization

helps the model converge faster and improves performance by ensuring all features

are on a similar scale. The scaler could be saved for future use.
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Figure 3.3: Overview of the data preprocessing pipeline: raw CSVs are split into
train/valid/test subsets, normalized, and reduced to selected features for model input.

• Feature Selection: Based on domain knowledge of the polarization dynamics of the

FeFFTs [20], we select the charge (q) response to applied voltage as the primary in-

put feature. The Charge (q) capture polarization transfer and leakage process, so we

focus on the charge fluctuations. Since our sequence length is consistent, each data

file contains 1002 data points, we only use charge as our model input to dig insights

from the charge dynamics, and finally achieve the goal of distinguishing between

leaky and non-leaky devices from their electrical measurement data sequence. Each

device is thus represented by a one-dimensional vector of length 1002, corresponding

to the sampled charge values over time.

3.3 Model Selection

To detect the leakage of the semiconductor devices, we adopted the 1D Convolutional

Neural Network (CNN) architecture originally developed by the GATECH-EIC Lab [21]
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for the 2022 TinyML contest [22]. Their model was designed for binary classification of

Intracardiac Electroencephalography(IEGM) signals based on 1D temporal patterns.

Table 3.1: Comparison between IEGM Classification and Leakage Validation

Aspect IEGM Classification Leakage Detection

Signal Type 1D time-series cardiac signals 1D time-series measurements
Classification

Task
Binary (VA vs. non-VA

arrhythmias)
Binary (leaky vs. non-leaky

devices)
Signal Length 1,250 samples 1,002 samples
Pattern Char-

acteristics
Temporal morphological
variations in waveform

Morphological distortions in
charge response curves

Key Features
Waveform differences between

normal and abnormal heart
rhythms

Asymmetry, reduced saturation,
and distortion in charge curves

As shown in Table 3.1, both applications involve analyzing time series data with subtle

morphological differences that indicate different states, the TinyML problem analyzes the

cardiac abnormalities in IEGM and our case is trying to find the leakage in semiconduc-

tor devices. In addition, the structure of our datasets consisting of univariate time series

signals with significant pattern differences is relatively similar, so this architecture became

the natural choice for our preliminary research. The 1D-CNN is well-suited for our case

of distinguishing leaky from non-leaky semiconductor devices based on charge response

sequences from electrical measurements.

3.4 Baseline Architecture

To establish a strong baseline for the validation task, we adapt the neural network architec-

ture originally developed by the GATECH-EIC Lab for the 2022 TinyML contest above.

Given the structural similarity between our dataset and the IEGM dataset and the same

binary classification tasks, we employ this architecture with minimal modification. This

decision enables us to quickly test feasibility and establish benchmark performance with-

out introducing unnecessary model complexity in the early stages.
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As illustrated in Figure Figure 3.4, the baseline model is a deep 1D convolutional neural

network composed of the following elements:

Figure 3.4: Baseline Conv1D architecture. C: Number of Channeld, K: Kernel Size

• Five sequential 1D convolutional layers, with filter counts increasing as (3, 5, 10,

20, 20) and kernel sizes of (6, 5, 4, 4, 4). These layers are used to gradually extract

higher-level temporal features from the input charge signal.

• Batch normalization is applied after each convolutional layer to stabilize training

and accelerate convergence.

• ReLU activation functions introduce nonlinearity after each layer to capture com-

plex patterns in the signal.

• Adaptive flattening layer dynamically determines the correct dimensionality be-

tween the convolutional feature extractor and subsequent fully connected layers.

• Two fully connected (dense) layers finalize the classification pipeline: one with

10 neurons and the final output layer with 2 neurons corresponding to the binary

classification labels (0 or 1).

In our case, the model takes as input a 1D signal of length 1002, it corresponds to the

normalized charge response of the devices. And the model outputs a binary label (0 or 1)

indicating whether the charge signal corresponds to a leaky or non-leaky device.

This multi-layer architecture follows the traditional approach of stacking multiple small

convolutional kernels to build a deep feature extractor, it’s similar to the VGG-style net-

works in image processing[23]. Although this method is effective for IEGM signal analysis,
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our case of e-test leakage validation and other similar tasks, it introduces a significant com-

putational complexity with huge parameter count, which may limit deployment on resource

constrained systems used in semiconductor testing environments.

3.5 Improved Architecture

The above baseline architecture has strong performance in binary classification, but it has

multiple stacked layers, which results in approximately over 200000 parameters and intro-

duces unnecessary computational complexity to our task of e-test validation.

From the analysis of the synthetic data, we think we can captured the charge patterns

through simpler architectures. Through studies, we determined that a single convolutional

layer with a larger kernel size (85) and increased stride (32) could achieve comparable

discriminative ability. Rather than using the multi-layer CNN, we simplified the architec-

ture to improve computational efficiency while maintaining classification accuracy. The

improved architecture is shrunk from the multi-layer Conv-1D model which has stacked

Conv layers.

Figure 3.5: Improved Conv1D architecture. The model uses a single large-kernel convolu-
tional layer. C: Number of Channel, K: Kernel Size

As illustrated in Figure 3.5, our optimized model consists of:

• A single 1D convolutional layer with 3 filters, a kernel size of 85, and a stride of 32

• Batch normalization for training stability

• ReLU activation function
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• A flattening operation that converts the convolutional features to a 1D vector

• Two fully connected layers of sizes 20 and 10 neurons respectively, with ReLU acti-

vations

• Dropout layers (30% and 10% rates) for regularization

• A final output layer with 2 neurons corresponding to the binary classes (0 or 1)

The new architecture could significantly reduce the parameter count to below 3000, a

decrease of over 90% compared to the baseline. It reduces the model size compared to the

original 5-layer stack. This simplified architecture significantly reduces the computational

cost while still capturing the essential temporal patterns in the charge response. The large

kernel size and stride in the convolutional layer effectively downsample the signal while

preserving the key features that distinguish leaky from non-leaky device measurements.

3.6 Training and Optimization Strategies

We implemented several training techniques to enhance model performance.

3.6.1 Data Augmentation

Figure 3.6: Comparison of real vs. syn-
thetic charge-time curves for leaky devices.

Figure 3.7: Comparison of real vs. syn-
thetic charge-time curves for non-leaky de-
vices.

We compared the patterns of the real data plots and the synthetic data plots of the

charge-time sequences and checked the differences for both leaky and non-leaky devices.
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As shown in Figure 3.6 and Figure 3.7, there are some variations in amplitude and shape

between the overall curve structure of the synthetic samples and the actual measurement

results. In order to improve generalization ability, we applied various specific transforma-

tions during the training process, this could help model learn patterns and tolerate minor

signal fluctuations:

• FlipSignal: Randomly inverse signal (multiplication by -1) with the probability be-

tween 0.3 and 0.7

• TimeReverse: Randomly reverse the time series to regularize sequence directional-

ity (horizontal flipping)

• AddGaussianNoise: Randomly add small noise to simulate measurement variability

We applied these augmentation techniques dynamically during the training process,

with different random transformations for each epoch. This method effectively increasing

the diversity of the training set.

3.6.2 Stochastic Weight Averaging (SWA):

We use SWA [24] to average multiple model checkpoints during the training process. This

method helps the model converge to a flatter minima and improves generalization ability.

Our implementation tracks the running average of model weights starting, helping to find a

wider range of optimal solutions.

θ
(t)
SWA =

θ
(t−1)
SWA · nmodels + θ(t)

nmodels + 1
(3.1)

where θ
(t)
SWA is the SWA model after t epochs, θ(t) is the current model, and nmodels is

the number of models included in the average so far. Our SWA starts from epoch 10, where

we collect models every 5 epochs and include it in the average.
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3.6.3 Optimization Algorithm

We used the Adam optimizer [25] for parameter optimization during model training. It

combines the advantages of momentum based methods with adaptive learning rates. In our

implementation, it is configured with an initial learning rate of 2× 10−4 and weight decay

of 1× 10−4 for L2 regularization.

optimizer = Adam(θ, η = 2× 10−4,weight decay = 1× 10−4) (3.2)

The measurement data may exhibit different gradient amplitudes on different features,

Adam’s adaptive learning rate behavior helps the model converge more effectively.

In addition, our implementation combines the Adam with a cosine annealing sched-

uler [26] that gradually reduces the learning rate from an initial value (2e-4) to a minimum

value (2e-6) following a cosine curve over epochs. This promotes helping the model con-

verge to better minima.

ηt = ηmin +
1 + cos

(
tπ
T

)
2

· (ηmax − ηmin) (3.3)

where ηt is the learning rate at epoch t, T is the total number of epochs, and ηmax and

ηmin are the maximum and minimum learning rates respectively.

3.6.4 Multiple Training Runs:

Considering the randomness of training, We used different random seeds and performed

multiple training runs (usually 3-10 runs). Then we selected the best-performing model

based on the validation Fβ score and also stored the best accuracy model. For our applica-

tion, we prioritizes recall over precision.

3.6.5 Training Procedure

As shown in Algorithm 1, the complete training process follows these steps.
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Algorithm 1 Leakage Classification Training Algorithm
1: for each training run i in 1...N do
2: Initialize model parameters θ randomly with seed si
3: Initialize optimizer with learning rate η0 = 2× 10−4

4: Initialize SWA model after epoch Eswa = 10
5: Initialize best validation metric FBbest = 0
6: for each epoch e in 1...Emax do
7: // Training phase
8: for each batch B in training set do
9: Apply data augmentations to B

10: Compute predictions ŷ = fθ(B)
11: Compute loss L(ŷ, y)
12: Update parameters θ using Adam
13: end for
14: Update learning rate using cosine annealing schedule
15: // Validation phase
16: Compute validation metrics FBval, Accval, CMval

17: if FBval > FBbest then
18: FBbest = FBval

19: Save model parameters θbest = θ
20: end if
21: if e ≥ Eswa and e mod fswa = 0 then
22: Update SWA model with current parameters θ
23: end if
24: end for
25: Perform final evaluation on test set using θbest
26: Update batch normalization for SWA model
27: Evaluate SWA model on test set
28: Save metrics and training curves
29: end for
30: Select best model across all runs
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3.7 Performance Metrics

To evaluate the performance of the Conv1D model in binary leakage classification, we

used a set of standard metrics based on the confusion matrix. These indicators include

accuracy, precision, recall (sensitivity), specificity, F1 score, balanced accuracy (BAC),

and Fβ score emphasizing recall, where β = 2. Each metric is calculated based on the four

basic components of the confusion matrix.

We used a comprehensive set of performance metrics based on the confusion matrix

evaluate our model:

CM =

TP FP

FN TN

 (3.4)

where TP (True Positives) represents the number of correctly identified leaky devices,

TN (True Negatives) represents correctly identified non-leaky devices, FP (False Posi-

tives) indicates non-leaky devices misclassified as leaky, and FN (False Negatives) indi-

cates leaky devices misclassified as non-leaky, as shown in Figure 3.8. The formal defina-

tions of all metrics are summarized in Table 3.2.

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

Figure 3.8: Confusion matrix layout

Here, We choose Fβ Score (with β = 2) as the main metric for model selection. Because

in our case of quality validation, the cost of missing leaky devices(False negatives) is higher
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Table 3.2: Evaluation metrics for leakage binary classification

Symbol Metric Name Definition

ACC Accuracy TP+TN
TP+TN+FP+FN

PPV Precision TP
TP+FP

NPV Negative Predictive Value TN
TN+FN

SEN Recall (Sensitivity) TP
TP+FN

SPE Specificity TN
TN+FP

F1 F1 Score 2 · PPV·SEN
PPV+SEN

FB Fβ Score (β = 2) (1 + β2) · PPV·SEN
β2·PPV+SEN

BAC Balanced Accuracy SEN+SPE
2

compared to missclassifying non-leaky devices (False positives). FB prioritizes recall over

precision, so it is the most important indicator here.
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CHAPTER 4

MODEL EVALUATION AND ANALYSIS

4.1 Experimental Results

All experiments were conducted on identical hardware with the same following training

parameters:

• Batch size: 32

• Optimizer: Adam with initial learning rate of 0.0002

• Learning rate scheduling: Cosine annealing

• Training epochs: 50

• Dataset split: 70% training, 15% validation, 15% testing

4.1.1 Baseline Model Performance

We conducted 3 independent training runs on the baseline architecture to ensure the robust-

ness of the results. The best performing model achieved a testing accuracy of 95.62% and

an F-beta score of 0.9796, demonstrating strong foundational performance.

The total number of trainable parameters are 202499 in one run, the baseline model

shows consistent performance across different runs, with an average training time of 79.3

minutes (4758 seconds) per run (on CPU), which reflects its considerable computational

requirements. The high parameter count results in this computational cost.

4.1.2 Improved Architecture Performance

For our improved architecture, we use Stochastic Weight Averaging (SWA) and data aug-

mentation compared to the baseline (Figure 4.1. To further understand the benefits of our
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Figure 4.1: Comparison between the baseline and improved model architectures. C: num-
ber of Channels, K: Kernel Size

training methodology, we conducted additional experiments with the improved architec-

ture, comparing performance with and without data augmentation and Stochastic Weight

Averaging (SWA).

Firstly, we assessed the performance of our improved architecture without the applica-

tion of data augmentation techniques or Stochastic Weight Averaging. Below shows the

metrics from the best run in this configuration among 5 runs, this configuration achieved

great performance.

• Best validation epoch: 34

• Validation accuracy: 95.13%

• Validation F-beta score: 0.9451

• Test accuracy: 95.82%

• Test F-beta score: 0.9558

• Training time: 2510.55 seconds (Approximately 41.8 minutes)
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Then we conducted five independent training runs randomly with both SWA and data

augmentation (including flip, reversal, and noise addition). The results of these five runs

showed interesting variation in convergence patterns, as shown in Table 4.1:

Table 4.1: Detailed performance metrics across multiple runs of the improved architecture

Run Best Val Val Test Test Test Confusion Matrix Training
ID Epoch Acc (%) FB Acc (%) FB Loss TP FN FP TN CPU Time(s)
0 41 95.29 0.9480 95.51 0.9504 0.1506 2210 125 77 2088 2515.57
1 49 89.47 0.8488 90.04 0.8577 0.2679 1946 389 59 2106 2512.81
2 41 97.36 0.9701 97.67 0.9729 0.1099 2265 70 35 2130 2503.26
3 1 52.22 0.8453 51.89 0.8436 0.6924 2335 0 2165 0 2522.78
4 28 96.76 0.9829 96.76 0.9823 0.1098 2314 21 125 2040 2549.46

The third run (Run ID: 2) achieved the best overall performance with a test accuracy

of 97.67% and an F-beta score of 0.9729. The fourth run (Run ID: 3) performed the worst

with testing loss of 0.6924 and a curious confusion matrix showing the model predicted

all samples as positive (leaky). So it is important to conduct multiple training runs with

different initializations. Despite this outlier run3, runs 0, 2, and 4 all achieved excellent

performance, in particular, run 4 showing strong F-beta scores (0.9823) despite a slightly

lower accuracy than run 2.

The confusion matrix of one of our best model (Run ID: 2, Figure 4.2) provides a

visualization of its classification performance. Among 4,500 test samples:

• 2,265 leaky devices were correctly identified (True Positives)

• Only 70 leaky devices were misclassified as non-leaky (False Negatives)

• Only 35 non-leaky devices were misclassified as leaky (False Positives)

• 2,130 non-leaky devices were correctly classified (True Negatives)

The improved pipeline achieves strong classification performance.
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Figure 4.2: Confusion matrix of the best-performing model (Run ID: 2)

4.2 Analysis and Discussion

From the above experimental results, firstly comparing the improved architecture to the

baseline, we can see that it outperforming the baseline model, at the same time, it requires

approximately 47% less average training time (41.7 minutes versus 79.3 minutes) with less

parameters. The significant improvement in computational efficiency proves the effective-

ness of our architecture improvement.

The best run without data augmentation or SWA achieved a test accuracy of 95.82% and

F-beta score of 0.9558 (best epoch: 34), compared to our best run with data augmentation

and SWA which achieved 97.67% accuracy and 0.9729 F-beta score. This indicates an

improvement of 1.85 percentage points in accuracy and an increase of 0.0171 in F-Beeta

score. Although not significant, it also demonstrates the effectiveness of these techniques

in enhancing model generalization.

These results confirm that our approach combining architecture optimization, data aug-

mentation, and SWA has made substantial improvements over baseline architecture. The
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model achieves strong classification performance across all evaluation metrics, it is able to

detect whether the device is leaky from measurement data, which can effectively increase

efficiency during the characterization.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

This thesis consists of two projects. The first is the foundation model for predicting the

film quality in ALD process, the second is automating semiconductor characterization.

For the first project, the initial stage of this study successfully focused on data collection

and preliminary model selection. We systematically collected various multimodal datasets,

including pressure sensor logs, and engineering process records related to Veeco ALD sys-

tem. At the same time, we evaluated and identified a suitable multimodal foundation model

that can handle high-dimensional data streams for predictive analysis.

For the second project which focus on the validation of the device leakage for the char-

acterization based on the e-test measurement data, We have successfully developed and

validated a deep learning method for detecting semiconductor flim device leakage based

on charge (q) time sequence data.

By comparing the baseline and improved model architectures, we have demonstrated

that deep convolutional neural networks can effectively learn subtle patterns in charge re-

sponse data sequences that indicate potential leakage issues. This model lays a solid foun-

dation for automated semiconductor testing systems with the ability to process 1D signal

data with high precision, and the system can operate efficiently with minimal computational

overhead.

5.2 Future Work

For the ALD prediction project, in the subsequent stages, we plan to use the collected ALD

data to fine tune and validate these selected base models. We will focus on optimizing the
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model architecture, adjusting hyperparameters, and integrating time series and multimodal

data to improve prediction accuracy, which ultimately contributes to improved process ef-

ficiency and sustainability in the ALD process.

For the validation project, our model performs well which helps us get the non-leaky

devices from its e-test measurements. It is promising to extend this project to build the

multi-agent automated characterization system for FeFFTs.

• We can fine-tune our model based on real electrical measurement data in the fabrica-

tion environment to address domain variations and measurement artifacts that do not

exist in the synthetic dataset, and apply them to actual fabrication.

• Our model lay the foundation for the comprehensive digital twin of semiconductor

devices, and these results will contribute to the later Preisach and NLS (Nucleation

Limited Switching) models and characterization modeling.

• We can integrate our model into the whole autonomous testing framework, develop

more agents, and adaptively automate the characterization.
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