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Summary

The objective is to study the fractal geometry of concentration iso-surfaces of a
non-buoyant, high Schmidt. number (Sc ~ 1000), passive scalar field produced by an
iso-kinetic point source in the inertial layer of a fully developed turbulent boundary
layer of an open channel flow. The data consists of a sequence of instantaneous
planar concentration images (collected via PLIF), for four distances from the source.
The measurements resolve the Batchelor length scale in both dimensions of the laser
plane and are slightly under-resolved in the perpendicular direction. The evolving
iso-surfaces are defined by a threshold concentration level and the boundary-outline
method is used to extract the iso-surfaces from each image. A box-counting algorithm
is applied to determine the coverage count for the extracted iso-surfaces.

The fractal dimension and other fractal measures are found to depend oﬁ the scale.
In the inertial-convective range, the fractal measures clearly depend on the concentra-
tion threshold level that defines the iso-s_urfaces. For instance, the fractal dimension
decreases as the threshold level incréases: With ihcféaéing distance:ffom the source,

the fractal dimension decreases for iso-surfaces defined by higher thresholds and in-

- creases for iso-surfaces defined by lower thresholds. Overall, the fractal measures
suggest that few, sparse dye ﬁlam.ents of high concentration and with steep gradi-
ents are distorted by the turbulent motions.' As tliey evolve doWnStream, the peaks
become less steep and the dye filaments break up into several dispersed, smoother
objects. This indicates an overall homogenization of the concentration field.

In the viscous-convective range, the fractal dimension is observed to be essentially
independent of both the concentration threshold and the distance from the source.
A polynomial curve is fitted to obtain an analytical relation for the universal fractal
dimension as function of scale. Other fractal measures can be derived analytically

based on the fitted curve. For instance, the coverage length underestimate measures

xii



the degree to which the iso-surface area is underestimated when the measurements
of the turbulent concentration field are under-resolved. The result is expected to be

valuable in the development of subgrid-scale models, for example.
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CHAPTER 1

Introduction

Examples of turbulent mixing processes include stirring in a cup of coffee to dis-
solve cream and sugar, releasing smoke from a cigarette into the ambient air, and in-
jecting fuel and air into the cylinders of a car engine. Each example involves interfaces
between mixed and unmixed fluid regions denoted by different species concentration,
temperature, or density levels. Defining interfaces in a continuously varying concen-
tration field, for example, is often challenging. Once interfaces are defined, however,
they are typically characterized as convoluted, folded, and wrinkled surfaces.

The geometry of these fluid interfaces is of practical importance in a number .
of natural and engineered shear flow environments. First, in non-reactive mixing
processes, the molecular flux according to Fick’s law occurs across concentration
gradients at interfaces. Estimating the resulting mixing rate is necessary, for example,
for predicting the release of pollutarits into the atmosphere through a stack or the
discharge of waste water into a stream. Second, in reactive. mixing, the reaction
rate depends on the size and shape of the interface, which may be an defined by
an iso-surface of the stoichiometric species concentration. Examples are combustion
chambers in vehicles or power plants, and reactors in chemical engineering processes.
Third, electromagnetic and acoustic wave prdpagation in fluids are influenced by
interfacial structure. vAs the wave speed commonly changes across interfaces, passing
waves are subject to refraction and reflection. This effect is encountered in aero-optic
and aero-acoustic applications, for example in earth-based astronomy, and for noise

control of an aircraft.



Classical turbulence theory (Kolmogorov, 1941) and the theory of turbulent mix-
ing of a passive scalar, such as species concentratiqn or slight perturbations of temper-
ature or density (Obukhov, 1949; Cdfrsih, 1951; Batchelor, 1959), focus on descrip-
tions of} spectral space instead of physical space. However, the fact that self-similarity
and power-law behavior are observed in spectral space (at least to some extent for
small scales) raises hope for ﬁhding universal behavior in physical space as well. The
theory of fractal geometry (Mandelbrot, 1982) provides a number of powerful mea-
sures to describe complex objects in physical space. Quantifying the structure of
fluid interfaces by means of fractal geometry serves several purposes. The physical
space measures, as opposed to spectral space, allow for a direct prediction of mixing
- efficiency and reaction rate. In addition, the physical space measures enable us‘ to
identify the relevant parameters for the design and control of turbulent mixing and
- reaction processes (such as Reynolds number, mean scalar gradient, or flow geome-
try). A discovery of universal characteristics of fluid interfaces in physical space could
form a basis for a turbulence theory based on universality:of physical characteristics.
More practically, the universal characteristics could be used to develop subgrid-scale
models for numerical simulations of turbulent mixing prdcesses.

- The present study focuses on concentration iso-surfaces (i.e. surfaces defined
by iso-contours of the concentration of a passive scalar), created by iso-kinetically
releasing dye into the inertial layer of a fully developed turbulent boundary layer
of an open channel flow. For example, this arrangement serves as model for waste
water discharge into a stream. Fractal geometry measures will be utilized to quantify
the compléx iso-surface structure and to thereby characterize the mixing process
downstream of the source. Chapter 2 consists of a general review of turbulence and
turbulent mixing. In the same chapter, we introduce the concepts of fractal geometry,
and define the most importarit measures to des.cribe the iso-surface geometry. In
Chapter 3, the experiment setup is brieﬂy summarized. The primary focus of this
chapter is the numerical method to extract iso-surfaces and calcuiate fractal measures.
In addition, the performance of the algorithm is extensively tested and evaluated

by evaluating theoretical fractal objects. The experimental results are presented in



Chapter 4. We give a detailed description of the turbulent mixing process based on a
combination of classical statistics of the concentration field, qualitative: examination
of concentration iso-surface images, and fractal measures of the concentration iso-
surface geometry. Finally, theoretical and practical implications of the results are

discussed and-interpreted, and an outlook is provided.:



 CHAPTER2
BaCi{groun'd

2.1 Turbulence theory and classical description

2.1.1 Characteristics of turbulence

In 1883, Osborne Reynolds conducted experiments on water flow through smooth,
straight pipes. By injecting a thin stream of dye into the flow he was able to distin-
gﬁish two drastically different flow types occurring in the pipe. At low flow rates, the
dye stream followed a smooth, well-defined, and easily predictable path. This type of
flow is called laminar, as the fluid moves smoothly, without macroscopic mixing mo-
tions across velocity gradients. At a higher flow rate, however, a transition to another
flow type was observed. The formerly smooth dye stream became irregular, fluctuat-
ing, and unpredictable, and exhibited strong macroscopic mixing motions that spread

the dye quickly over the cross-section of the pipe. Such a flow is called turbulent.

Reynolds found that the transition from laminar to turbulent flow occurred at a fixed
value of a parameter that is now called Reynolds number, Re = Vd/v, where V is
the velocity averaged over the cross-section, d is the diameter of the pipe, and v is
the kinematic viscosity of the fluid.

Most flows occurring in nature and engineering applications are turbulent. Exam-
ples include the boundary layer of the earth’s atmosphere, major oceanic currents like
the Gulf Stream, boundary layers over aircrafts, cars, or submarines, and mixing and
combusting flows in reactors. While it is not trivial to define turbulence precisely, a

number of characteristics must be present for a flow to be turbulent:

o Irregularity: Turbulent flows appear irregular and chaotic. It is impossible to



- give a detailed prediction of the devélopment of the motions in the future based

on present flow conditions. .

Diffusivity: Turbulent flows exhibit 's—trong rhacroscopic motions of fluid ele-
ments, which cause rapid mixing and increase the rates of momentum, heat,

and mass transfer.

Nonlinearity: Turbulent flows require a nonlinear amplification of small pertur-

bations to reach' a chaotic state.

Three-dimensional vorticity: Tlﬁbulent flows are characterized by ﬁigh leveis of
fluctuating vorticity. Vorticity manifests itself in identifiable structures within
~ the flow, called eddies, that coexist at a vast range of scales. Kinetic energy of
. the fluctuations is transferred among scales by means of the nonlinear, three-

. _diﬁlensional mechanism of vortex tilting and stretching.

Dissipation: Turbulent flows are always dissipative. The vortex tilting. and
stretching mechanism transfers kinetic energy and vorticity to increasingly smaller
scales. Finally, velocity gradients become so large that the kinetic energy is dis-
sipated to heat by viscosity. Thus, to sustain turbulence a-constant energy

supply is needed to balance the viscous losses:

Unless stated otherwise, the following brief introduction to turbulence theory and

characteristics of turbulent flows is based on three introductory turbulence books,

namely Tennekes and Lumley (1972), PAop‘e“(2OOO), and Kundu (1990).. _

2.1.2 Detefr‘r‘linisti{c‘ equations and random solutions

The mixing of a passive scalar in a turbulent flow, such as the dye in Réynolds’

water pipe, can be described in terms of the velocity U;(z;,t), pressure P(z;,t), and

concentration C(z;,t) fields. The system is governed by conservation of mass, the



Navier-Stokes equations, and the scalar evolution equation.: If we assume incom-

pressible flow and neglect body forces, these equations are

CoU; o
=0 e
DU,-: 18P SOy e
Dt B _;(%i + V@:vjaa:j ’ (2.2)
DC 8°C
Dt = "Bs0m; N

where v is the kinematic viscosity of the fluid, and « is the molecular diffusivity of
the scalar quantity. Theequ_ations are{constrained‘bylthe ‘eppropfiete: initial and
boundary conditions for inflow, outflow, and fluid barriers. An interesting question
is how this deterministic. set of equations of motion, Eqs. 2.1 - 2.3, connects with
the obvious random nature of turbulent flows. A combination of two observations
addresses this question. First, in any ﬂow,there are perturbations in the initial and
boundary conditions. Second, turbulent flows exhibit an extreme sen51t1v1ty to such
perturbations | | R ‘

In fact, ‘much s‘inlplelr'mechanicalssystems can display chaotic behavior. Bublath *
(1992) gave the demonstretive example of a steel pendulum swinging over two mag-
nets that are arranged symmeti'ically about the péndulum’s equilibrium position.
Depending on the initial deflection of the ‘pendulum, it will come to rest exactly
above one of the magnets, due to the magnetic force. However, unless the starting
location of the pendulum is trivial (i.e. the equilibrium position, or a location directly
above one of the two magnets), it, is impossible to predict the magnet over which the
pendulum will come to rest. It turns out that even infinitesimal changes in the initial
conditions (i.e. ‘the starting location: oi the.pendulum)_or the boundary conditions
(such as air friction or v1brations) change the outcome of the experlment For the
dye in Reynolds water pipe, and for turbulent flows in general this 1mp11es that it is
1mposs1ble to predlct mstantaneous velomtles or concentrations at particular points

in space and time because we never know the initial and boundary conditions ezactly.



2.1.3 ~ Statistical description of turbulence
| As explained ikn the previoﬁs section, the randorhnesé of turbulence makes a deter-
ministic approach impossible. Instead, one has to consider the instantaneous turbu-
lent flow conditions, such as velocity, pressure, temperature, etc. as random variables
~ and must employ statistical methods to make quantitative statements about the flow.
As the emphasis of the present study lies on turbulent concentration fields, we will
use the instantaneous dye concentratiori, c , to demonstrate the properties of random
variables. | |
For an injected dye, such as Reynolds’ pipe flow experiment, there is a range of
possible conéenﬁrations, bounded by the injection concentration as the upper limit and
the pure ambient water as the lower limit. We call this range the sample space, and
introdiice an independent 1sarn’ble space vafiable, ¢, which can take all possible values.
For other random variables, however, the sample space may have other bounds or may
even be unbounded. Therefore, in the following we will consider the most general
case of an unbounded sample space. The probability, P, that the instantaneous
concentratlon at a pomt in space and tlme C(z;,t ),'lieé within fhé sﬁbintervéibfg the

sample space, C, < C < Cb, can be derlved from
PG, cC<GY = [ f(é)dé, - - (2.4)
v G, N\

where f (C’) is the pfdbabilityi deﬁsity function (PDF) of the concentration distribution
at that partlcular spatlal locatlon In other words, the PDF f (C) is'the probablhty
per unit distance in the sample space Tt is non-negatwe ie. f(C) >0, and satisfies
the normalization condition [°_ f (C dC = 1. The PDF f(C) fully characterizes the
random variable C.

'-Rey'nolds recognized that for turbulent flows it is converient to Ade‘compose the
instantaneous flow variables into the sum of the mean and a fluctuation. If we assume
that ’théi’d)"re was injected through a nozzle located ‘at the centeriine of the p1pe,
the instantaneous concentration, C, consists of a mean cOncentration,' which varies
symmetrically about the pipe’s centerline, and a random concentration fluctuation

‘that, despite its unpredictability, also exhibits a distinct spatial structure. We use

7



upper-case letters for the instantaneous variables. The mean is indicated by angled
brackets, and the fluctuation is indicated by lower-case letters. Using that notation,

the decomposition of the instantaneous concentration can be expressed as
C={(C)+ec. (2.5)

If the PDF f(C) of the random variable C is known, one can reédily calculate the

statistics of this variable. The mean is defined by

(C)= / Cf(C)dC. (2.6)
The variance is defined to be the mean-square fluctuation,
w(0)= (@)= [ (©-@prsenc, e

and the square-root of the variance is the standard deviation,

sdev(C) = /var(C) = (c*)'/?, (2.8)

which is also frequently called the root mean square (rms) concentration, ¢

In turbulence, however, the PDF of a random variable is generally unknown. The
higher-order moments of turbulent flow variables exhibit significant deviations from
the distributions that are known in the field of sﬁatistics, such as the normal (or
Gaussian) distribution. As a result, the mean of a random flow variable is usually
calculated as the ensemble average over several realizations. Suppose that a collection
of a total of n,,., experiments, conducted under the same conditions, yields concen-

tration time records C™(t), for 1 < n < Mype,. The ensemble average of C(t) is then

given by
cWy === "), (2.9

which may still be a function of time. For a temporally stationary process, the

ensemble average can be replaced by a time mean, as given by
v L o
(C()) = lim — / C(t)dt = const. (2.10)
. to—00 to 0 .
By definition, the mean of a fluctuation is zero, i.e. {c) = 0.

8



2.1.4 Velocity field and energy cascade

To understand the process of turbulent mixing, it is necessary to take a closer
look at the characteristics‘o'f both the velocity and passive scalar concentration fields,
which in fact exhibit a number of similarities. The more general velocity field is
discussed in this section because its characteristics appear in every turbulent flow,
independent of the presencé of a passive scaiar. 'Often, the mean veloéity is the focus
of the analysis. The evdlution equation fof the mean velocity is found by performing
the Reynolds-average (analogous to the time average in Eq. 2.10) of the continuity
and Navier-Stokes equations (Egs. 2.1 and 2.2). This procedure yields the Reynolds-

averaged equations of motion:

o(U:) _ | |

el 0, (2.11)
D(U;) = 10(P) Uy  O(uzuy)

Dt - p 6.’13,' +V8:cj3xj 8:1:]- ) (212)

The tensor (u;u;) is called Reynolds stress tensor and plays an important role be-
cause it is the only term that distinguishes the momentum equations of the mean
velocity field and the instantaneous velocity field. The term represents the transport
of momentum due to turbulent velocity fluctuations.

The distribution of kinetic energy is an important characteristic of turbulence. As
already explained, the instantaneous velocity field can be decomposed into the sum
of a mean velocity field and a fluctuating velocity field. Similarly, the total kinetic
energy contained in the instantaneous velocity field can be decomposed into mean

kinetic energy and turbulent kinetic energy, according to
1

3¢
Multiplying the Reynolds-averaged Navier-Stokes equations, Eq. 2.12, by the mean

1 2 — 1 2 2
SR = SN+ 50, (213)

velocity vector, (U;), and then summing over i, we get the mean kinetic energy equa-

tion

Dt \ 2 ox;

—2v(Si;)(Sij) + (Uz'uj)a(%?: (2.14)

> (500) = o (-2 4 a5 - (s (09)



where S;; is the mean strain rate, defined as -

The substanﬁial derivative on the left side of Eq. 2.14 is the rate of change of mean
kinetic energy. The first three terms. on the right are transport terms, which essentially
redistribute the mean kinetic energy within the mean velocity field, without changing
the total amount. The fourth term on the right represents viscous dissipation directly
from the mean flow, i.e. the generation of heat. Because the mean velocity gradients
are mild, direct viscous dissipation is usually very small for the mean flow and _cah
be neglected. The fifth term also represents a loss of mean kinetic energy, but to
the fluctuating velocity field. rI.‘his ternis reappears as a source term in the turbulent
kinetic energy equation.- | } | |

The turbulent kinetic ‘energy eqhatid_ﬁ is.obtained by subtracting the Reynolds-
averaged Navier-Stokes equations (Eq. 2.12) frbm the instantaneous Navier-Stokes
| equations (Eq 2.2), multiplying by the fluctuating velocity vector, u;, and then

Reynolds-averaging. Hence, the turbulent kinetic energy equation is

5 (500) = —g5 (5t + 5udu) — 20(uss))
b—<uiuj)6(§a(;j;).—2l)<Sij3ij.), | . }v(2'.16).

where s;; is the strain rate of the fluctuating field, given by

1 [ by : .
55 =5 <3u + Buj)' _ (2.17)

6_:z:j 611)5

The substantial derivative on the left sidevvof Eq. 2.16 is the rate of change of turbulent
kinetic energy. Again, the first three terms on the right are transport terms, and
only redistribute without generating or dissipating the turbulent kinetic energy. The
fourth term is called turbulence shear production. This term cdrresponds to the
transfer of :kinetic energy from the mean flow to the ﬂucﬁuating flow and appears
with opposi"cé sign in the mea’n.ikirietic Jenérgy equation as discussed above. The fifth

term is the viscous dissipation of turbulent kinetic energy. Unlike its equivalent in
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the mean kinetic energy equation, this term is not negligible, but rather represents a
vital feature of turbulence. It is called the dissipation rate and is denoted by e.

A phenomenological description of the turbulence cascade was given by Richardson
(1922).:'The mechanism of turbulence ,production- withdraws energy from the mean
flow and generates eddies of the size [, which is usually slightly smaller than: the
characteristic width of the mean shear flow, e.g.. the diameter of Reynolds’ pipe.
These large eddies contain the bulk of the turbulent kinetic energy. Due to a high
Reynolds number (based on their characteristic sizes, /, and characteristic velocities,
which may be estimated as the rms fluctuating velocity, u); the large-scale eddies
become unstable and break down into smaller eddies. The somewhat smaller eddies
ultimately become unstable themselves and break down into even: smaller eddies.
The turbulent kinetic energy therefore cascades from large to small eddies in a series
of small steps. This breakdown process is called vortex tilting and stretching and
results from the nonlinear terms in the equations of motion. The process is essentially
inviscid, which means that virtually no turbulent kinetic energy is dissipated during
the cascade to smaller scales. The incessant stretching generates continuously longer
and thinner vortex filaments, with ever increasing velocity gradients. Eventually, the

_characteristic Reynolds number of the eddies becomes small enough that the steep
velocity gradients are rapidly smeared o’ut"(i.e. dissipated) by molecular viscosity. ::

Viscous dissipation occurs at the smdllest scales of the velocity field. However, the
rate of dissipation is determined by the first process in the sequence, i.e. the break-
down of the largest eddies. The kineticenel"gy contained in the largest eddies is of the
order of 4’2, and their characteristic turnover frequency is u'/l. Observations reveal
that these eddies usually break down after one or two turnovers. The rate at which
they transfer turbulent kinetic energy to the next smaller scales, and cOnsequently

the dissipation rate, must then be of the order of
L€~ —, | , (2.18)

Kolmogorov (1941) argued that the size of the smallest eddies only depends on the

d13$1pat10n rate, e, and the kmematlc v1sc051ty, . Dlmensmnal reasoning ylelds an
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estimate for the length scale of the smallest eddies of

nz(f)m’ S   "- (2'.'19)

€

which is called the Kdlmogbrov’length Scale, and marks the lower limit of the range of
scales in the ‘velocity field. Furthermore, Kolmogorov suggested that the anisotropy
of the largeét eddies, which is imposed by"the boundary conditions of the mean ﬂbw, _
is lost during the cascade towards smaller eddies. Therefore,. at scales, ), ‘signiﬁcaﬁtly :
smaller than the largest scales of the flow (ie. A < l), the eddies become universal
and isotropic. This range of scales is called the universal equilibrium range, and
extends down to the smallest scales. For high Reynolds numbers, the largest and the
smallest scales are separated by a large range. In the middle of the 'range; i.e. for
I > A\ > 5, viscosity does not play a role and therefore the statistics at these scales
are only a function of the scale, A, and the dissipation rate, e. This range is commonly
referred to as inertial subrange. ‘
'Kolmogorov considered the energy cascade in spectral space‘rathér than in physi-
cal space. Each length sca.le ), in physmal space is related to a wavenumber, =1/),
in spectral space. From dimensional reasoning, ‘the energy spectrum, E(k) in the in-

ertial subrange (e 1<k < 1) is glven by the power-law

Bk oc 55 S (2.20)
This power-law has been verified expérimentaliy, and éfnphasizés the self-similar char-
acter of the eddies in spectral space. |

2.1.5 Scalar ﬁeld and turbulent mixing

Passwe scalars in general are ‘quantities that do not lnterfere with the dynamlcs
of a flow. The concentration of the dye in Reynolds’ pipe flow experiment is one
example of a passive scalar. Other examples for passive scalar quantities are 'small
temperature or density fluctuations, or the concentration of any passive conserved

solute, e.g. salinity_in the ocean.
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Kolmogorov’s phenomenological theory for the velocity field was adapted to tur-
bulent passive scalar fields by Obukhov (1949), Corrsin (1951), and Batchelor (1959).
In analogy to the total kinetic energy of the velocity field (Eq. 2.13), the quantity

(C?) can be decomposed into a mean and a fluctuation, according to
(C*) = (C)? + (). (2.21)

The scalar variance, (c?), can be interpreted physically as a measure for the deficiency
of entropy of the fluid relative to the state in which the concentration is uniform, with
the same mean value. The two main transport mechanisms for the concentration
field are advection by the fluid motion and molecular diffusion. Advection essentially -
consists of the irregular stirring action of turbulence. The stirring distorts initially
smooth filaments of dye, convoluting them at ever finer scales, and thereby increasing
the mégnitude of the concentration gradients.

This process represents a cascade of scalar variance, analogous to the cascade of
kinetic energy explained in the previoué section. The characteristic scales in the scalar
variance cascade depend on the ratio of the diffusivities of momentum and the scalar,
ie. the Schmidt number, Sc = v/k. A rough estimate for the scale at which scalar
fluctuations are dissipated by molecular diffusion (which can be obtained in analogy

to the Kolmogorov scale) is called the Batchelor scale,

VK2 1/4
8 = (T) = nSc~1/2, (2.22)

The rate at which the scalar variance is dissipated at the Batchelor scale is given by
x = 2k{(8c/dz;)?), and corresponds to the dissipation rate, ¢, for the velocity field.
For the case of a dye mixing in water, the Schmidt number is rather high (roughly
around 1000), and the scalar field extends to much smaller scales than the velocity
field. |

The scalar variance cascade, for high Reynolds numbers, can be subdivided into
four distinct scale rarigesQ Equivalent to the velocity field, the bulk of the turbulent
scalar variance.is contained in the largest scales of the flow, i.e. at A = . In the

inertial-convective range, [ > X\ > n, the statistics of the scalar quantity only depend
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on the rates of dissipation of turbulent kinetic energy, €, and turbulent scalar variance,
X. Again from dimensional reasoning, the scalar spectrum, I'(k), in the inertial-

convective range (i.e. % <Kkk %) is given by the power-law -
(k) oc xe /3K, (2.23)

Beyond the Kolmogorov scale, there is a range, 7 > A > npg, where the statistics
of the scalar quantity are a function of x alone, called viscous-convective range. For

% Lk KL %, the scalar spectrum takes the form
I'(k) o< xk™. - (2.29)

The power-law behavior of the scalar spectrum implies that the concentration field
exhibits self-similar properties in spectral space, in analogy with the velocity field.
Finally, in the viscous-diffusive range (A = 7np), the molecular diffusion dominates
the scalar statistics.

The molecular flux per unit area that ultimately smears out the gradients of the
scalar quantity is governed by Fick’s law, |

- oc
qg; = —K,ﬁ. ' (225)

The total molecular flux and rate of homogenization therefore closely depend on the

surface area across which the molecular flux is occurring. Turbulent stirring effectively

increases the surface area of an initially smooth dye ﬁ.lament. The total diffusive flux
is therefore énhanced by the increased surface area between concentration filaments
and unmixed fluid.

For a quantitative description of the surface aréa characteristics of turbulence, it is
- necessary to define fluid interfaces precisely. An easy and effective way to characterize
interfaces in a scalar field is to set a threshold on the scalar quantity. For the example

of a concentration field, one can define concentration iso-surfaces according to
C(z;,t) = Cy, = const. (2.26)

By varying the threshold, the concentration iso-surfaces can be adapted to represent

for example the interface between mixed fluid and pure ambient fluid or a particular
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species' concentration that may be of interest in a chemical reaction. Iso-surfaces
in a thrée-dimensional turbulent: scalar field are generally two-dimensional surfaces,
evolving in space and time, with varying degrees of convolutedness at scales between
the integral scale, [, and the Batchelor scale, 7p. _
The Reynolds number is known to ha,vesigniﬁcant impact on the characteristic
properties of the mixing process. Not only does it trigger the transition from laminar
to turbulent flow (see Sec.' 2.1.1), it ‘also controls changes in flow properties within
the turbulent regime. By reviewing a variety of flow types, such as shear layers, jets,
pipe flows, and boundary layers, Dimotakis (2000) identified a universal change in a
number of turbulent mixing characteristics to occur at Rem;, ~ 10°. ‘For Re < Renin,
one usually observes a signiﬁcant Reynolds number dependence of many riifferent
m1x1ng parameters, while for Re > Remin, the Reynolds nurnber dependence is rnuch
weaker. Most consplcuously, there is a qualitative change in the appearance of the
scalar field. A rather distinct transition takes place towards a more well-mixed state,
with lower scalar gradients and a larger fraction of the flow field being occupied
by fluid ‘with intermediate concentration. The occurrence of this mixing transition,
and the transition Reynolds number seem to be 1ndependent of the particular flow

geometry. However the sharpness of the tran81t10n does vary for different flow types

2.1.6 Turbulent boundary layers

The information in the previous sections regards turbulent flows in general. The
flow geometry for the present study is a turbulent boundary layer over a flat, smooth
wall. The mean and fluctuating velocity fields in a turbulent boundary layer have
distinct characteristics, some of them being significantly different from -other flow
geometries such as turbulent jets. Therefore, it is necessary to discuss this particular
flow type in more detail.

A turbulent boundary layer can be subdivided into an inner region, which is
dominated by the viscous effects of the Wall, and an outer region, where direct effects
of viscosity are negligible. The universal characteristics of the mean velocity. profile

are revealed by use of the proper length and velocity soales. The characteristic length
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scale in the inner. region is the viscous SCéle,-
b = v/, o | - .21
where the wall friction velocity is deﬁned by |
wevRl . em

where T, is the wall shear stress, and p is the density of the fluid." The viscous length
scale pfoperly normalizes the distance from the wall, which is IiOrmall'y referred to as

wall units,
ZFEyu . - N (2:29)

In the outer region, the characteristic length scale is the boundary layer thickness, d,
whviéh also normalizes the distance from the wall.

‘Across the inner and outer region"of a turbulent bouhdary layer, ‘\:/a'ri'ou"s layers
can bé identified in terms of mean velocity profiles. Starting at the wall and going
outwards, we have the viscous sublayer, the buffer layer, the loga'rit‘hmi»c' layer (which
is also called inertial layer), and the defect layer. The location of the Viscbus sublayer,
expressed in wall unii;s, is 'given by y'*; < 5. The Reynolds shearbstreés‘ is negligible
compared to the viscous stress due to the proximity of the wall. Therefore, the flow in
the viscous sublayer can be considered to be laminar, and the transport of momentum
and scalar quantities perpendicular to the wall is rather small. Because the viscous
sublayer is very thin, the shear stress across the viscous sublayer is constant and
equal to the wall shear stress. Using that assumption,:the mean velocity in the

viscous sublayer is given by

+= 0 _ e |  (230)

The buffer layer, located at 5 < yt < 30,.is the transition region between the
viscosity-dominated and the turbulence-dominated parts of the boundary layer. The
shear production and turbulence intensity peak in the buffer layer, causing strong

fluctuating velocity and scalar fields and rapid mixing. The mean velocity profile
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- is characterized by an asymptotic transition from the viscous sublayer profile to the
profile of the logarithmic layer. | )
In the logarithmic layer, extending from y*t > 30 to y/6 < 0.2, the mean veloéify
profile follows the logarithmic law.
ut = %ln yt + By, (2.31)

with the von Karman constant k = 0.41 and B; =~ 5.2. Obviously, the logarithmic
layer crosses the .boundary between inner and outer regions, and the logarithmic
law can ,be expressed equally well by a velocity defect law compared to the free
stream velocity outside the boundary layer, Up, and in terms of length scales that are

normalized by the boundary layer thickness, §, i.e.

U-U) 1.y . S
B it +In %+ By, (2.32)

where By ~ 0.7. L : ( e
For y/6 > 0.2, called the defeqt layer, the mean velocity deviates slightly from the

logafithmic law, according to

| U_O_;_T(ﬂ - .’1; {»_m (5%) +10 .[2 ~ 2sin? (g%)]} - (2.33)

The wake strength parameter, II, is flow dependent, but its exact value is controversial

in the basic turbulence literature.

2.1.7 The concentration field of a continuous point source .

This section describes the characteristics of the concentration field, i.e. of a plume
arising from an iso-kinetic, continuous point source in a turbulent boundary layer (see
e.g. Roberts and Webster, 2002). A coordinate system is defined by the streamwise
coordinate z, and the \}ertical coordinate z, with the origin at the plume soufée
- location.

Consider the case of a uniform concentration of dye released continuously from a
point source. While the mean flow advects the dye downstréam, turbulence produced

in the boundary layer mixes and spreads the plume. Larger turbulent eddies transport
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dye filaments away from the centerline, and smaller eddies distort the dye filaments;
resulting in high concentration gradients on which molecular diffusion acts. Thereby,
the vertical location of the source within the boundary layer is of importance because
it determines the mean velocity, the turbulence intensity, and the size of the largest
eddies. The instantaneous concentration field created by the different transport mech-
anisms is ;:haracterized by a high degree of inhérhbgeneity and intermittency, both in
space and time (e.g. Webster et al., 2003). Large areas of low concentration-(close to
zero) are sporadically interrupted by local filaments of high conéent'ration. The peak
concentrations are separated by steep gradients and are typically much higher than
the mean concentrations. In addition, the peak concentrations can be encountered
even far off the icenterline of the plume. The'magnitude of the instahtaneous peaks
drops dramatically with streamwise distance from the source, and the concentra‘tiq_n |
field appears more homogenous. However, even far downstream, the concent;afidﬂ
field remains unpredictable.

For a uniform flow, a theoretical model for the mean concentration field of a
continuous point source release can be formed if the eddy diffu‘sion coefficient, kr, is
assumed to be constant. In this model, the eddy diffusion coefficient is assumed to be
equal in the vertical and tré’nsverée directions, and i‘ndepervld‘en‘t of z. In reality,i nT is
likely to change with location and direction within the field. In addition, diffusion in

the streamwise direction is neglected, due to relatively small concentration gradients
in this direction. Thus, the model is only valid far away from the source, for z >
2k/{(U). Under these assumptions, the:mean concentration field can be derived from
the scalar evolution equation, Eq. 2.3, to be |

(C(z,y,2)) = Maouree exp (—M> , (2:34)

ATk dkrx

where Tsource is the mass ﬂdwzrate of the passive scalar from kthe source, and (U ) is

the uniform flow velocity. Strictly,_ Eq. 2.34 only holds for unboundedv flows, where

the effects of walls and free surfaces on the plume are negligible. . '
From the model, we can observe several characteristics of the mean concentration

field. The mean concentration is maximal at the centerline. Off the centerline, the
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mean concentration is symmetrical and follows a Gaussian profile. With increasing
streamwise distance from the source, the mean concentration on the centerline at-
tenuates in proportion with z~! and the f:ross-stream Gaussian profile :spreads-out.
The cross-stream extent of the mean concentration field can be quantified, for exam-
ple, in terms-of the locations at which the mean concentration is one percent of the
centerline concentration. Using that definition, the cross-stream extent of the con-
centration field spreads in proportion ‘with z7!/2. Thus, the plume"s‘crOSS-s‘ectional
area increases in proportion with z.- . -

The fluctuating concentration field can be described in terms of the standard devi-
ation of the concentration fluctuations (Webster et al., 2003). However, compared to
the mean concentration field, it is more difficult to predict theoretically. Qualitatively,
the standard deviation behaves similar. to thé mean:concentration. .On the center-
line, the fluctuations decay faster with -z than the mean, indicating that the plume is
becoming homogenous faster than it is diluting. In the cross-stream directions, the
fluctuations decrease with distance from the centerline. However, the profiles of the
standard deviation become flatter with increasing z, i.e. the fluctuations spread in

the cross-stream directions.
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2.2 Fractal geometry

2.2.1 Conceptual introduction

- Iso-surfaces in a turbulent passive scalar field are folded and wrinkled at a wide
range of scales. Since the work of Richardson (1961) on the length of coastlines and
borderlines, it is known that the geometrical description of complex and convoluted
objects is not a trivial task. To understand the underlying problem, consider a classi-
cal example given by Mandelbrot (1967), and in more detail (1982): How long is the
coast of Britain? Measuring the length of an object always necessitates the arbitrary
definition of a reference length, which we call a yardstick. The length of the object, L,
is then measured by counting the number of yardsticks, N, that are required to cover
the object, and multiplying that number by the reference length, A, of the yardstick,

i.e.
L = AN. (2.35)

For a straight line, the result does not depend on the defined size of the yardstick,
which means if we re-define the yardstick to half of its original size, we simply néed
twice as many yardsticks to cover the straight line. For other Euclidean objects such
as a circle, the measured length changes with yardstick size if the yardstick and object
have approximately the same size, but the length quickly tends towards a constant
value as the yardstick gets smaller. For a complex object such as Britain’s coastline,
however, different yardstick sizes never yield the same result. In fact, as we decrease
the size of the yardstick, the length of the coastline grows without bound. The reason
for that surprising phenomenon lies in the large hierarchy of scales that are contained
in a coastline. A yardstick of the order of kilometers only resolves the largest bays
and peninsulas, whereas if we downsize the yardstick, ever-smaller coastal structures
are taken into aécount: river mouths, tiny spits of land, and finally rocks, stones,
and sand. This effect leads to the conclusion that for coastlines, the length alone (i.e.

without the corresponding yardstick size) is an arbitrary, and thus a useless measure.
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12.2.2 Levels of geometrical complexity

Problems similar to-those observed in the measurement of coastline lengths are
encountered in many scientific fields that involve the geometrical description of com-
plex and convoluted objects. Catrakis (2000) provides an example list including lung
tissue, ﬁopographic surfaces, solar granulation, and galaxy distribution in the uni-
verse. These and other examples indicate that classical Euclidean geometry may be
an insufficient tool for many applications. In order to retain the connection to the
length scaling in our coastline example, the discussion will be restricted initially to
convoluted curves that are embeddgd in a plane. Complex structures of different
dimensionality will be discussed subsequentiy. |

Euclidean objects, such as a circle, have structure at a single, large scale only. As
already mentioned, the unique length of such simplé objects is readily determined by
means of a yardstick of arbitrary, but significantly smaller size than the object itself.

More complex objects have structure at a large range of scales, and thérefo_re it
is difficult to assign a unique length to them. In this case, we need to look for a
more general measure that contains information about the length-scaling behavior at
various yardstick sizes. Richardson (1961) found that the length of coastlines, L, can

be represented by a power-law function of the yardstick size, A, as expressed in
L(A) = AN(\) oc AP, (2.36)

In other words, his'iog-log plots of coastline length versus yardstick size consisted of
straight lines, over a large range of scales, with the exponent, D, being the negative
slope of the lines. Mandelbrot (1967) realized that this exponent represents a conve-
nient measure for a complete description of the length-scaling behavior of a complex
object. As D is generally a non-integer, he coiried the name “fractal dimension”. The
fact that Richardson (1961) found the fractal dimension of coastlines to be a constant
indicates that the coastline is self-similar, i.e. exhibits the same structural compleidty
over a wide range of scales. |

It may be anticipated, and confirmed in nature, that such ezactly self-similar ob-

jects are exceptions, and in general, objects can have different geometrical complexity
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at differgnt‘ scales. For the coastline, this means that larger bays and peninsulas may
look quife smooth while smaller bays and peninsulas are very rugged, or vice versa. In
that case, a simple power-law is no longer sufficient to describe the length-scaling be-
havior. In particular, the fractal dimension is not a constant, but a function of scalg,
ie. D = D()\), and therefore L()) = AN()) ¢k A\1=PX_ Instead, the 1ength-séaling

is given by the more general, non-power-law expression =
| o < d) |
L(A\) = AN(X) « Aexp D(/\)—:\— . (2.37)
A : : .
From the considerations above, Catrakis (2000) suggested a three-level hierarchy
of complexity:
o Level 1: ‘cdmplexity only at é single scale ) E'uclidean‘geometry.
e Level 2: complexity is the same at all scales - power-law geometry.

e Level 3: complexity varies with scale - scalé-dependent geométfy.

2.2.3 Embedding difnensiori and topological dimension |

The fractal dimension is generally a non-integer and is always bounded bvetween

the topological dimension, d;, and the embedding dimension, d, of the object, i.e.
d<D<d. (2.38)

In fact, Mandelbrot (1982) defined fractals ‘as geometrical sets that have a fractal
dimension larger than the topological dimension. The topological dimension, d;, is
defined as the number of independent variables that are required to describe the
neighborhood of any of an object’s points. Thus, we have a topological dimension
of 0 for points, 1 for curves (e.g. circles), and 2 surfaces (e.g. hollow spheres).
Obviously, d; is always integer-valued. The embedding dimension, d, of a set is the
smallest integer for which the set can be embedded in d-dimensional space (i.e. RY)
without intersecting itself. For example, the embedding dimension is 1 for a set of

points, arranged on a straight line, 2 fpr a circle, and 3 for a hollow sphere.
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Figure 2.1: Generator for the ‘éontiguous D= 1.6131 Koch curve.
2.2.4 Deterministic self-similar fractals vs. natural objects

Ideal models are often useful in understanding thé essential features of a theory.
In the case of fractal geometry (or more precisely: Level 2 complexity, as initially con-
sidered by Mandelbrot, 1982), such idealizations are deterministic self-similar fractals
(Sreenivasan, 1991). R _

Detefministic self-similar fractals are created by perfaririiiig th‘e‘s.ame prescribed
operation (called the “generator”) repeatedly on a starting object (called the “initia-
tor”), which may be rather simple. For these theoretical objects, it is important to
realize that “the same prescribed operation” means “exactly the sa.me’i’, and that “re-
peatedly” shall imply “ad inﬁnitum’j’.r Among the most cc_)mmonly,‘ known ‘e)zcamples
ar.e the Koch curves and the Cantor dust (see e.g. Mandeibrot, 19.82,'f01; a detailed
description). In particular, let us study the contiguous quadric Koch curVé with a
fractal dimension of D = log;;18/log;y6 =~ 1.6131 (in the following, we will give
approximate values of fractal dimensions wii_ih an accuracy of 5 digits, and drop the
approximate sign). The generator is shown in Fig. 2.1. A square is used as the
initiator, which is the zeroth step of the self-similar cascade. Dui‘ing the first step;
all four straight line segments of the initiator squafé are replaced by the generator,
such that the start and end‘points of the generator (indicated by larger circles in Fig.
2.1) are placed at the start and end points of each replaced straight' line segmént.
During the second step, all straight line segments of the first step are replaced by
the generator, and so on. Obviously, the generator has to be downsized from sﬁep to
step. For the particulai' geﬁerator'in Fig. 2.1, all line segments of the ‘previous step

are subdivided into b = 6 fractions of length 7 = 1/b = 1/6, hence creating a grid for
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the M = 18 new lines of the generator. If the lines of the initiator have unity length,
the generator of the p” step of the cascade has a length of r=P. The fractal dimension
of such Level 2 complex curves is entirely determined by their generator, and can be

calculated from

_ log,o M
log;o(1/7) .

‘Fig. 2.2 shows the.initiator and the first three steps of the self-similar :cascade of

e (2.39)

this Koch curve. As can be seen, the range of scales at which the curve is convoluted
consecutively expands during each step towards increasingly srnell scales. ‘Aftere very
large number of cascade steps, the area enclose(i by thecurve goes to a finite value,
whereas the length of the curve tends towards infinity. In this sense, the Koch curve
could be viewed as-the plane transect of a concentration iso-surface of\ an initiallx
smooth bloh ‘of dye that is injected into a turbulent ﬂow ﬁeld. ’I‘.’:'he'tur‘b.nlvent, eddies
contort the shape of the blob, signiﬁcantly .increasing the _size of the snrface across
which molecular mixing takes place. Alternatively, the KOch curve' conl(i represent
the coastline of an island, with a large variety of differently-sized bays and pen.insules,
and a coastline length that increases infinitely with decreasing yardstlck size.

. In either case, however, the Koch curve appears too regular and symmetrlcal to be
a real dye filament or geographical island. In other words, the application of ezactly
the same generator during the .whole cascade represents the key difference to most
natural objects. In fact, a precisely repeated scale similarity seems unlikely in turbu-
- lent flows (Frederlksen et al., 1996) and complex. phenomena in nature are expected
to exhibit statistical self-similarity instead (Catrakis, 2000). For the coasthne, thls
implies that the exact shape may vary among single bays and penlnsulas of the same
size as well as between differently-sized ones. Asi a results, the fractal dimension of
statistical self-similar curves may fluctuate in. a random .mvanner, in contrast to every
- (arbitrarily small) fraction of a deterministic ‘self-similar fractal curve, which showé
the same length-scaling behavior and thus the same fractal dlmensmn It is there-

fore necessary to consider. sufficiently. long coasthnes or, equlvalently, a suﬁic1ently
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(a) Step0. " © (b)Stepl.

“(c) Step 2. S - (d)-Step3. i

Figure‘ 2.2: Initiator (a) and first ﬁhree stebs (b) - (d) of the self-similar cascade for
the contiguous D = 1.6131 Koch curve. " ° o : , .
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large number of individual concentration iso-surfaces, and to perform an ensemble-

averaging to extract statistically converged fractal measures.

2.2.5 The fractal dimension in theory and practice

‘ While Eq. 2.39 gives the fractal dimension of a few particular objects, we need
to define the fractal dimension in a more general way that is applicable to a large
variety of objects. As described by Mandelbrot (1982), let us consider some object in
R3, with unknown dimensionality and level of complexity. Similar to the calculation
of the length by means of the yardstick in the coastline example, one can quantify the
volume, for éxample, of the object by complétely covering it with spheres, counting
the number of spheres, and multiplying that number by the volume of the gpheres.
Because the dimensionality of the object is unknown, we introduce generalized spheres
of dimension d, which, for integer values of d, can be spheres, circles, or yardsticks.

The generalized volume of such spheres of radius A is given by the Hausdorff measure,

h(A) = v(d)), (2.40)
whére the function
1\d
v(d) = %ﬁ:gj (2.41)

represents the generalized volume of a d-dimensional unity sphere, and I' is the
Gamma function. For Euclidean spheres, this function yields v(3) = 3, v(2) = =,
~v(1) = 2. '

Mdre generally, d can have non-integer values to cover objects of higher complexity.
All of the définitions retain their validity for that generalization. The genéralized d-
dimensional volume of the object can be expressed by the sum over all of the spheres
that are used to cover the object, i.e. > h(A). We want to consider the most economic
coverage of the object, and therefore we allow the spheres to have different radii A,
which are smaller or equal to the considered radius A. The most economic coverage
is realized by taking the infimum of the sum, i.e. infy_<x Y h(\p). For the sum to

resolve all of the details of the object, the considered radius must be arbitrarily small,
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and therefore the generalized d-dimensional volume of the object is finally given by

the expression
i 8, 3 KO e

which is called the d-measure -of the objeét.- This measure has a positive and finite
value only if the number d € R is chosen to match the real dimensionality, D, of
the considered object. If d < D, the d-measure goes to infinity, and for d > D, it
goes to zero. Thus, D is a critical dimension and is called the Hausdorff-Besicovitch
dimension. Mandelbrot (1982) named this dimension the “fractal dimension”.

In practice, the numerical calculation of the Hausdorff-Besicovitch dimension
would be quite cumbersome, to say the least. The largest difficulty results from
the requirement of the most economic coverage by means of spheres of arbitrary size.
In fact, all numerical methods applied in practice utilize spheres or other Euclidean
objects of constant size. Most of these methods are based on the four strategies out-
lined in Mandelbrot (1982), for evaluating the length of coastlines. A comprehensive
(though rather obsolete in terms of computational efficiency) summary of Mandel-
brot’s four strategies and the available numerical methods based on them, is given
by Allen et al. (1995). They classify the numerous approaches into vector-based and
matrix-based methods, which we will summarize for the case of fractal curves embed-
ded in a plane. Vector-based methods, on the one hand, require a contour-following
algorithm to step along the curve using distinct sﬁep sizes, analogous to a caliper. The
number of required steps can be related to the length-scaling behavior of the curve
and the fractal dimension, as shpwn in Sec. 2.2.2. There are several approaches of
varying accuracy and computational efficiency, e.g. the EXACT, FAST, and HYBRID
algorithms. Matrix-based methods, on the other hand, rely on the matrix or pixel
structure in which digital data is usually represented. They essentially subdivide the
whole field into equally—sized .elernents and count the number of elemeﬁts that cover
the curve. Again, this number can be related to length-scaling behavior and fractal
dimension. Examples are the box-counting, distance-mapping, and erosion-dilatation

logic algorithms.
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‘Allen et al. (1995) identified the matrix-based methods to be less accurate than the
vector-based methods. However, the former methods exhibit significant advantages
compared to the latter ones: First, they do not require a complex contour-following
algorithm. Second, because they inherently consider the entire image field; i;héy
are more adept in dealing- with objects that consist of detached elements,, such .as
coastlines with smaller islands in front of the coast (this issue is of great importance
below in this section). Third, some of them employ subdividing.grids that are based
on the underlying pixel grid of a digital image, which further simplifies the algorithm.

The algorithm most applicable for our application is.the box-counting algorithm,
also called mosaic-amalgamation. It .is by far the'most commonly applied algorithm
to determine fractal dimensions. Briefly, the algorithm subdivides the image field in-
cluding the fractal object into boxes of consecutively smaller size. For each particular
box size, A, the number of boxes, N()), that include parts of the fractal object is
counted (more details are given in Sec. 3.2.5). The fractal dimension, which for Level

3 complex objects can be a function of scale, is then obtained :from -

o cdlogg N

This dimension is also called the box-counting dimension, or coverage dimension. Al-‘
though we consider it to be the fractal dimension, we must keep in mind that numer-
ous simplifications were made in its definition cornpared to the Hausdorff-Besicovitch
dimension. For example, boxes are used instead of isotropic spheres. Also, the boxes
have constant size, and their size does not go to zero. As we will see, this may lead
to slight deviations from the original Hausdorff-Besicovitch fractal dimension, even
for deterministic self-similar fractal objects. -

An important difference between the Hausdorff-Besicovitch dimension and the
box-counting dimension becomes obvious when we consider objects that coﬁsist of
numerous detached sub-objects. For the coastline example, we can think of islands |
in front of the coast and lakes in the hinterland. For concentration iso-surfaces, this
corresponds to the presence of several individual filaments of dye within the concen-

~ tration field. Because this property of an object, called “dispersion” by Mandelbrot
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(a) Partially dlspersed - (b) Fully dlspersed

Flgure 2.3 Alternatlve generators for the D = 1. 6131 Koch curve. (a) Smaller de—
tached sub-islazids form in front of the coast of the main island. (b) Smaller detached
sub-islands and sub-lakes form in front and in the hinterland of the coastline, respec-
tively.

(1982), is an essential feature of the concentration iso-surface fields considered in the
present study, it is important to take'a closer look at this issue.” With a slight modi-
fication of the generator from Sec. 2.2.4 (Fig. 2.1), the Koch curve develops islands
and lakes that are detached from the main coastline. An example for such a modified
generator is shown in Fig. 2.3(a). .The characteristic parameters of this generator are
the same as in Fig. 2.1, i.e. b= 6, r= 1/6, and M = 18. However, only Mg = 12
line segments of the generator form the .coastline (thus called coastline-generator),
while M — M¢ = 6 line segment:,s create a detached sub-island in front of the coast
(island-generator). The resulting fractal, for which the initiator and the first three
levels of the self-similar cascade are shown in Fig. 2.4, now exhibits two different di-
mensions. If we take the cumulative coastline, i.e. the curves of all objects together,
the resulting dimension is D = log,y M/ log,o(1/7) ~ 1.6131, which is of course equal
to the dimension of the fractal in Fig. 2.2. ‘The dimension of the coastline for éach
individual island, however; is D¢ = log10 Mg/ logo(1/7) = 1.3869, implying generally
in RY that

4<Dc<D. (244

An even more disperse generator is shown in Fig. 2.3(b) with the corresponding
first three steps of the self-similar cascade shown in Fig. 2.5. Again, we have b =
6, r = 1/6, and M = 18, so that the cumulative fractal dimension, D, remains

unchanged. However, the coastline-generator is characterized by Mg = 6= b, and
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(a) Step 0.

o o o o
o

(c) Step 2.

(d) Step 3.

Figure 2.4: Initiator (a) and first threeIStéps (b) - (d) of the self-similar cascade for
the partially dispersed D = 1.6131 Koch curve (generator from Fig. 2.3(a)). The
complexity of the curve arises from both its dispersion and convolution. o



the individual coastline dimension takes the smallest possible value, i.e. Dg =1 = d;.
Here, the coéstline of each individual island is an Euclidean object, although the
cumulative fractal dimension is larger than the topological dimension. This is a
very important finding, as it implies that the fractal dimension, depending on its
particular definition, considers both the convolution and dispersion. According to
Mandelbrot (1982), D¢ corresponds to the Hausdorff-Besicovitch dimension, while D
is associated with the box-counting dimension. Thus, for the general case of D¢ > d;,
the Hausdorfl-Besicovitch dimension measures only the convolution of an object, while
the box-counting dimension measures a combination of convolution and dispersioh.
In turbulent mixing processes, we are interested in the scaling behavior of the
total, i.e. cumulative, iso-surface area of all filaments of dye within the concentra-
tion field. In this respect, the box-counting dimension is more meaningful than the
Hausdorft-Besicovitch dimension. In addition, the box-counting dimension is the eas-

ier algorithm to employ, thus it will be utilized in the present study.

2.2.6 Dimensional classification of concentration iso-surfaces

In contrast to the theoretically infinite range of scales of deterministic self-similar
fractals, turbulent mixing exhibits a finite range of scales. As ’aiready explained in
Sec. 2.1.5, the scales in a turbulent concentration field extend from the integral scale,
I, to the Bachelor scale, ng. Concentration iso-surfaces in turbuleﬁt ﬂows are always
three-dimensional (with an additional evolution in time). More prefcisely, they have
an embedding dimension of d = 3. The iso-surfaces are dimensionally analogous to
hollow spheres (although generally more convoluted), thus they have a topological
dimension of d; = 2. From the bounding condition, Eq. 2.38, and for scales smaller
than the largest iso—sﬁrfaces, the fractal dimension of the cor‘lcervlyﬁr:ation iso-surfaces is
expected to be within 2 < D 5 3. Outside the scaling range the conéentration field,
the embedding dimension does ‘riotscha,‘nge because the dye distribution remains three-
dimensional at scales at which no new structural convolution and complexity arises.
The topological dimension does change, however. When observed at scales larger than

the largest dye filaments, the concentration field looks like a cloud of points, and thus
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Figure 2.5: Initiator (a) and first three steps (b) - (d) of the self-similar cascade
for the fully dispersed D = 1.6131 Koch curve (generator from Fig.. 2.3(b)). : The
curve exhibits smooth Euclidean coastlines, and the complexity arises solely from its
dispersion. ' '
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the topological and fractal dimensions could be as low as zero, implying for arbitrary
scales 0 < D < 3. At scales smaller than the smallest convolution scale, the iso-
surfaces' appear smooth, like Euclidean objects, and therefore the fractal dimension
tends towards the topological dimension, i.e. D — d;.

A proper resolution of the 4-D space-time evolution of concentration iso-surfaces,
over the vast range of scales at .high Reynolds numbers, requires a highly sophisti-
cated experimental setup and huge amounts of data. For that reason, most of the
investigations to date have been limited to lower-dimensional transects of the 4-D
space-time evolution (cf. Catrakis and Bond,v2000). Most commonly, the experimen-
tal data consists of either singlé-point concentration time records, or time records
of 2-D images of a plane in the flow field. In many cases, lower-dimensional spatial
transects have been upgraded to higher-dimensional ones using the time coordinate
and Taylor’s ffozen flow hypothesis. This hypothesis states that the mean flow simply
advects the turbulent flow structure, without changing its characteristic properties
over short time periods. Miller and Dimotakis (1991) and Frederiksen et al. (1996)
used this hypothesis to obtain line transects of the concentration field from their
single-point concentration time records. In that case, the concentration iso-surfaces
are points (indicating threshold-crossings) on a straight line. Thus, the iso-surfaces
have a topological dimension of d; = 0 and an embedding dimension of d = 1, which
limits their fractal dimension to 0 < D < 1.

Two-dimensional images of the flow field have been used to obtain transects of
varying dimensionality. Sreenivasan et al. (1989) and Catrakis and Dimotakis (1996),
for example, used them to extract line transects of the concentration field, without
using Taylor’s hypothesis. Two-dimensional images are also used to directly extract
planar transects of the concentration field. Here, concentration iso-surfaces are curves
lying in the image plane, i.e. d; =1,d =2, and 1 < D < 2 for scales smaller than
the largest iso-surfaces. Catrakis et al. (2002) used Taylor’s hypothesis to obtain
complete 3-D concentration iso-surfaces from their temporally resolved records of 2-
‘D images of a fixed plane in the flow. Alternatively, Frederiksen et al. (1997) acquired

3-D concentration fields (without employing Taylor’s hypothesis) by scanning a whole
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volume in the flow field and collecting a series of planar images. In both cases, as
discussed above, the iso-surfaces are characterized by d; = 2, d = 3, and 2 < D < 3,
again for scales smaller than the largest iso-surfaces. Remember that the topological
dimension can be as low as zero for scales larger than the largest iso-surfaces. In both
3-D approaches, current experimental limitations becomé obvious; as Catrakis et al.
(2002) “froze” the flow between consecutive images, but not over a whole sequence
of images, and Frederiksen et al. (1997) were not able to resolve the finest scales of
the concentration field.

In the present study, time records of 2-D images are used to extract concentration
iso-surfaces in the form of curves within the image plane, yielding d; = 1, d = 2, and -
1 < D < 2 for scales smaller than the largest iso-surfaces, but more generally (for
all possible scale's) di > 0,d=2,and 0 < D < 2. The images nearly resolve the
Batchelor scale, but do not extend to the full size of the largest scales in the concen-
tration field. In addition, the temporal resolution does not allow for an application
of Taylor’s hypothesis to get 3-D concentration iso-surfaces. For quantitative details
of the experiment setup, including spatial and temporal resolutions, please refer to
Sec. 3.1.

The essential question associated with lower-dimensional transects is: to what
extent can the results be used to predict the fractal measures of the real 3-D con-

centration iso-surfaces? For deterministic fractal objects of Level 2 complexity, there

exists a theorem that connects the fractal (Hausdorff-Besicovitch) dimension of the

object to that of its lower-dimensional transects according to
Dgt1=Dqg+1, - (2.45)

where we use the common notation of indicating the embedding dimension as a sub-
script on the fractal dimension. The relation is known as the “additive law”, and is
discussed by Sreenivasan (1991), for example. It holds only if the intersecting tran-
sect is thinner than the smallest scales of the object, and if the transect dimension is
independent of the orientation of the transect (i.e. if the object is isotropic). Despite

these limitations, it has been applied extensively in the study of lower-dimensional
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transects of turbulent flow interfaces. However, as noted aboire, the \concentration
iso-surfaces may exhibit Level 3 complexity, with statistical self-similarity at only a
finite range of scales. In addition, all practical work involves the box-counting (or cov-
erage) dimension, instead of the Hausdorff-Besicovitch dimension, and an analogous
theorem does not exist (Catrakis, 2000). Substantial deviations from the additive
law have been reported for example by Catrakis and Bond (2000). They found that
the scale-dependent coverage dimension of concentration iso-surfaces in'the similarity
plane of a turbulent round jet, at intermediate scales, is significantly larger for plane

transects than for line transects, suggesting in general that’
 Daa(A) > de()\) +1. (2.46)

This was explained by the higher-dimensional transects.capturing more -iso-'SUrfa’ce
structure because there are more possible directions in which the local iso-surface
varies. As a conclusidn, lower-dimensional transects of three-dimensional concentra-
tion iso-surfaces tend to underestimate the space-filling properties of the iso-surfaces
in general, and the fractal dimension in particular. Thus, the measures derived from

- lower-dimensional transects can be interpreted as a lower bound of the real measures.

2.2.7 Additional fractal measures for iso-surface description

The fraﬁtal dimension cléarly biéys. the ‘most importér;t role in .de'scri‘bingA the
gebmetrical propefties of fractal objécts in géneral and the.concénﬁré'c.ion isb-surfaées
in particular. Besides the ffaétal dimehsion, there exist a number of measures that
provide additional, and more comprehensive insight into the characteristics of iso-
surfaces. The framework of quantifying measures is usually called coverage statistics,
and focuses on the space-filling properties and scale distributions. A valuable overview
of the commonly utilized measures is given by Catrakis and Bond '(2000). Here, we
‘summarize the definitions and applications of the measures that will be émi)plied in
the present study. Although we will analyze 2-D images (i.e. embeddin’g“ ‘dimehsioh
d = 2), the framéwork of measures is presented more generally for an arbitrary d. o

The basis for all measures is the coverage count, which is determined by means
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of the box-counting algorithm, as mentioned in Sec. 2.2.5, and described in detail in
Sec. 3.2.5. In RY it involves the subdivision of the d¢-sized image field, called the
bounding box, in Nyt(\) d-dimensional boxes (i.e. boxes in R3, squares'in R?, and
tiles.in R) of size A%, whichis consecutively reduced in size. Ideally, the box size, A,
takes all values in the interval 0'< A < d,. At each subdivision step, the number of
‘boxes, Ny()\), that cover part of the fractal object is counted. The coverage count is
bounded by 0 < N4(A) < Ngyot(A). From Eq. 2.37, the coverage count is rélated to

the coverage dimension by the non-power law relationship '+ =~ 1

Na(A) = exp { [ D.,(A)Q} (2.47)

which implies that the complex1ty of structures across a w1de range of scales can
contribute to the coverage behavior at ‘any one scale .

The dimensionless coverage fraction, Fy()\), measures the degrée to which ‘the
object fills space, and is defined as '

Fu(3) = N]ji(tll) () M. )

such that 0 < Fy(\) < 1.

For d = 2 embedding space, a coverage length, Ly()), as seen at yardstick size
X, is frequently used in the literature to quantify the surface-generation property of
turbulent mixing. In d = 3 embedding space, this measure, L3()), corresponds to the
surface area of the COncentration iso-surfaces, as seen at tile size )\2.‘ Forl_a general

embedding space, the generalized coveragelength is given by .-
Ld()\) /\d°Nd()\) S '('2.‘49)

Obv10usly, structures of all scales larger or equal to A contrlbute to the coverage
length of the object. At the smallest scales of the scalar field (1 e. for A — 7p), this
measure tends towards the total generahzed coverage length as the scalar interface
cannot exhibit finer convolutions. Hence, the total generahzed coverage length can

be expressed as
v B -

Laor = La(r — np). ’ (2.50)
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‘For a statistical description or modeling of the object structure, it is useful to khow
the distribution of the scales involved in the structure. For d = 1 embedding space,
a natural scale exists in the form of the distance between points of the object (i.e.
locations of ‘the threshold-level crossings).. However, this scale does not-generalize
naturally to higher-dimensional embedding spaces R%. Therefore, the largest-empty-
box (LEB) scale, A, is defined as the size of the largest d-dimensional box, randomly
located in the bounding box, that contains a randomly located point, but no part
of the object. In other words, the LEB-scale is twice the distance from a randomly

located point to the closest iso-surface structure BeSIdes evaluating a large number of

random points, the LEB-scale PDF f (/\), can be denved from the coverage fractlon

fah) = dlg;’\) - | ‘(251)
The LEB scale can also be interpreted,’as a measure of the distance from a random
location within the bounding box:to the nearest part of the object. It has been shown
explicitly by Catrakis and Dimotakis (1996) that the LEB-scale PDF is related to the

coverage dimension by the d-dimensional scale dlstrlbutlon transform pair

‘ _ o, AN

D = d- s e
' ' 5b: . S Y .ot . .
a0 = Vd‘+%()\)exp{ [d-Dd(A)]%\’l}. (259)

In order to quantify. the interfacial -area-volume behavior in d.= 3 embedding
space, Catrakis et al. (2002) proposed an area-volume ratio, 23(A), in terms of a
box-counting measure of the interfacial area, Lg(\) = A2N3()), normalized by the
volume of the bounding box, 63 This measure can be generalized to other embed-
ding dimensions by replacing the measures for area and volume by the appropriate
measures for the particular dimensionality, e.g. to get the length-area ratio for our

d = 2 embedding space. In general, Q4()) is given by

! d; de R
0. = %"‘,ﬁ) - (£) mao. (254
aa) = TS _piy-d (@)
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where agq is the logarithmic derivative of the generalized area-volume ratio, and is
related to the fractal dimension. 4()\) increases with decreasing scale, A, tending
towards the total area-volume ratio of the iso-surface, 2445, as A approaches the
smallest scales of the iso-surfaces. Its behavior therefore corresponds to the behavior
of the coverage count (cf. Eq. 2.47 and related discussion), and one might suspect
that Q4()), at a given scale, ), is also sensitive to and influenced by all interfacial
features above that scale.

This sensitivity raises an issue regarding the scale-local, as opposed to the scale-
cumulative area-volume behavior. Thus, Catrakis et al. (2002) also introduced an
area-volume density parameter, g3(\), for d = 3 embedding space, as the scale-local
contribution from the interfacial features in the differential scale range to the area-
volume ratio. This scale-local quantity can be seen as the first-order term in a Taylor
series for the area-volume ratio, i.e. in generalized form Q4(A) = Qa(A+dA)+ga(A)dA.

Thus, the generalized area-volume density, gs(}), is given by

()
9N = ——-—-——;i ) (2.56)
— _dlogmgd()\)
() = ~—grel, | (2.57)

where oy () is the logarithmic derivative of the scale-local area-volume density, anal-
ogous to the definition of ag(A). If ay(A) = const., then a4 can be interpreted as an
area-volume density exponent with power-law scaling according to g4(\) oc A=%. In
the more general case of a scale-dependent ay, and for scales where ay(A) > 0, it can
be considered as a scale-local dimension. '

By ‘invertihg Eq. 2.54 and using Eq. 2.56, Catrakis et al. (2002) showed explicitly
for the d = 3 case that both the coverage dimension, D3()), and the area-volume ratio,
Q23()), are scale-cumulative functions of the area-volume density, coupling iso-surface

information from all scales larger or equal to A:

Q(\) = 1+ /A * gs(A)dA, (2.58)
; Aga(A) '
Ds()) = 2+1+f;"'ga(§\)d7\' (2.59)
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These scale-cumulative measures are affected by contributions from the large scales
of the flow. The large scales of the flow do not show self-similar properties in spectral
space, and it may be anticipated that this is the case in physical space as well. The
coverage dimension, D4(A), has been employed extensively to evaluate self-similarity
in turbulent passive scalar mixing (e.g. Sreenivasan, 1991; Frederiksen et al., 1996;
Catrakis and Dimotakis, 1996; Villerrﬁaux and Innocenti, 1999). Equations 2.58 and
2.59 imply, however, that considering the coverage dimension alone is not sufficient
to detect scale-local self-similarity. In other words, the large-scale influences included
in the coverage dimension could mask self-similarity present at smaller scales. In |
conttast, the area-volume density and exponent enable a scale-local examination of
the interfacial area-volume contributions and are expected to be particularly useful

for determining the presence of self-similarity.

2.2.8 Fractal dimension of iso-surfaces in the literature

* The fractal geometry of interfaces in turbulent flows has been investigated extenQ
sively since the fundamental suggestions of Mandelbrot (1975). Most of the work
has focused on the fractal dimension as the significant measure, and turbulent round
jets are the predominant flow type addressed in the literature. A common feature of
virtually all experimental results is the difficulty in achieving a high Reynolds number
while resolving the whole range of turbulent scales.

Sreenivasan and Meneveau (1986), Sreenivasan et al. (1989), and Sreenivasan
(1991) examined concentration iso-surfaces for a variety of turbulent flows, namely a
boundary layer, a round jet, a plane wake, and a plane mixing layer. Using 1-D and
2-D trénSects and 3-D data in conjunction with the additive law, they consistently
found a constant fractal dimension of D3 = 2.35.4 0.05, i.e. a power-law scaling
of the iso-surfaces (Level 2 complexity). The results were reported to be Reynolds
‘number independent, but the Reynolds number ranges of the particular flows were
not stated explicitly. However, Sreenivasan (1991) reported a lack of a power-law
range for thresholds near the mean concentration, indicating a fractal dimension that

varies with scale.
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-Miller and Dimotakis (1991) conducted experiments near the ‘.centérlir'le of round
jets, at Reynolds numbers between 1,000 and 24,000. They performed fractal analysis
on line transects from single-point concentration time series and plane transects from
time series of concentration profiles (streak images). At least at the smaller Reynolds
numbers, the measurements resolved the smallest scales of the c()hcentratiOn field:
The concentfation iso-surfaces did not exhibit scale similarity. ‘In contrast, the frac-
tal.dimen_sion-was found to be a function of scale, between the topological and ‘the
embedding dimension. In addition, they reported a significant dependence on the
threshold concentration level and the Reynolds number.

Frederiksen et al. (1996, 1997) obtained 4-D space-time concentration data for &
turbulent round jet at Reynolds numbers between 2,900 and 5,000. At these relatively
low Reynolds numbers, they were ‘able to resolve the smallest concentration scales in
the flow. The power-law behavior was investigated by comparing to a deterministic
fractal set (Cantor dust) and-a stochastic fractal set:(fractal Brownian motion), both
of known dimension. The 1-D concentration iso-surfaces adhered to the power law less
closely than the Cantor dust, but approx1mately as closely as the fractal Brownlan
motion. It was concluded that line transects exhibited a power—law scaling in the
viscous-convective range, with a constant fractal dimension of D, = 0.48. However, no
power-law behavior was found at scales above the Kolmogorov scale. The discrepancy
between the findings of Miller and Dimotakis (1991) and Frederiksen et al. (1996) was
explained By the faét that kFr'e.deriks_eI‘l ét. al. (1996) exactly determined t_he:locat‘ion
and width of the thréshold crossings from the surroundings of the ‘li‘ne tran‘sje’cts,
For plane transects and the complete 3-D iso-surfaces, hdwever, erdetiksen.et al;
(1997) did not find a constant fractal dimension. This was attributed to non-fractal
inclusions within the concentration field, .whit:h increasingly mask powef—law behavior
for higher-dimensional transects. As a consequence, Frederlksen et al. (1997) found
that the additive law did not hold. |

A round jet was also considered by Catrakis and Dimotakis (1996) and Catrakis
(2000), for Reynolds numbers between 4,500 and 18,000. They focused on concen;

tration iso-surfaces in the outer region of the jet, for which they could resolve the
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cbmp‘lete-ran‘ge of scales ermEthe diameter: of the jet to the Batchelor scale. Plane
transects as well as line transects were utilized. The fractal dimension -was a:smooth
function of scale, from D = d; at the smallest scales, to-D = d at the largest scales.
Besides, the fractal dimension depended on the concentration threshold level and
Reynolds-number. Comparisons between the line and plane transects revealed de-
viations from the additive law. Another important aspect of this study was the
‘connection of the fractal dimension to a scale distribution PDF. It was shown that
the small-scale structure of the concentration iso-surfaces may be reasonably modeled
by a Poisson or log—r_lormal’ scale PDF.: -

~Another examination of a turbulent round jet was performed by Villermaux and
Innocenti (1999), for Reynolds numbers between 6,000 and 12,000. In these exper-
iments, -only scales larger than the Kolmogorov scale were resolved. - The. goal was
to establish a general and comp'rehensi\ié rélation between the fractal dimension and
various parameters such as length scale; Reynolds number, concentration threshold,
and time. In that analytic relation, the fractal dimension was scale and concentration
threshpld level dependent, while being independent of the Reynolds number.

Most recently, Catrakis et al. (2002) raised new hope for finding physical-space
scale similarity in turbulence. With their. scale-local measures (cf. ‘Sec. 2.2.7), as
opposed to the scale-cumulative fractal dimension, a power-law scaling was detected
for the 3-D concentration iso-surfaces in the outer region of a round jet at Re =
20,000. The corresponding fractal dimension was D = 2.3, which is close to the
value originally reported by e.g. Sreenivasan and Meneveau (1986). They concluded
that scale dependence in the cumulative'iso-surface structure may be consistent with
scale-local self-similarity and argued that the large-scale structure in turbulent flows

may mask the self-similarity at smaller scales.
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. CHAPTER 3
Method

3.1 _E_xpe_rime}nt setup

The flow facility, experiments, and imaging technique are described in detail in
Dasi and Webster (2003), and are summarized here for completeness. The flow fa-
cility consisted of a 1.07 m wide, 24.4 m long tilting flume. The fully developed,
uniform depth (H=100mm) open channel flow (flow rate 0.0107 m3/s) produced an
equilibrium turbulent boundary layer on the flume bed. In Sec. 2.1.7, a coordi-
nate system was defined by the longitudinal coordinate z, and the vertical coordi-
nate z, with the origin at the plume source location. The flow Reynolds number is
Re = ((U)L)/v = 10,000, i.e. within the range in which the mixing transition occurs
(compare Sec.-2.1.5). - L

A fluctuating passive scalar field was generated by an iso-kinetic release of the
laser fluorescent dye Rhodamine 6G (Sc = v/k = 1000, where v = 1 x 1076 m?/s and
k =1x10~° m?/s) through a nozzle, with a source flow rate of Viource = 1.733 x 108
m?/s. The nozzle was located at the centerline of the flume, 50 mm above the flume
bed, and had a nozzle diameter of 4.7 mm. A streamlined fairing on the downstream
side of the nozzle minimized the wake perturbation introduced to the flow. The source
concentration is adjusted to fit the dynamical range of the measurement system.

The length scales of the flow vary from the integral scale, which is approximately
half of the water depth, i.e. [ = 50 mm, to the Kolmogorov scale. The length scales
of the passive scalar field vary from the plume width to the Batchelor scale. To
estimate the scales, an order of magnitude estimate of the dissipation rate was made

from Eq. 2.18, where the rms fluctuating velocity, u’, was determined from Particle
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Table 3.1: Important flow and plume parameters.

Re - 10,000
(U)  [mm/s] | 100
u mm/s 10
¢ [mm?/s 20
l [mm] 50
n - [pm] | 700

1B pm] 20

—

Tracking Velocimetry (PTV) measurements for the boundary layer. The flow and
plume parameters are summafiied in Tab. 3.1,

We employed the planar laser-induced fluorescence (PLIF) technique to measure
a sequence of the passive scalar fields (images collected by L. P. Dasi).. Measurements
were performed in a vertical plane parallel to the flow direction (i:e. the z — 2 pla,ne)
at the centerline of the flume. The laser sheet was created by sweeping an Argon-ion
beam' (514 nm, 5W, Coherent Innova 90) with a scanning mirror attached to a gal-
vanometer (Cambridge Technology galvanometer controlled by LabView). One scan
through the full image region occurs in 8 ms, thus the concentration field is nearly
frozen by the measurement technique. The laser beam passed through a beam ex-
pander and a convex lens with a 2 m focal length, giving a 1/e? diameter of 80 pm
at the measurement location., The laser light caused the dye to fluoresce, and an
8-bit digital CCD camera (Kodak model Megaplus ES1.0 with a 200 mm' Nikon Mi-
croNikkor lens, Fstop = 4, Gain =1, and UV and Hot Mirror, and Orange 21 ﬁlt_ers)
captured the emitted light over a 20x20 mm region that was located symmetrically
about the nozzle centerline. The incident laser light was blocked by an optical filter
and does not illuminate the camera sensor. The camera’s, CCD chip had 1008x1018
pixels, which gives an image resolution of approximately 20 pm. per. pixel: .Thus,
‘the measurements resolved the Batchelor length scale in both dimensions of the laser
plane and were slightly under-resolved in the perpendicular direction. A total:of 6000
consecutive images were captured at a rate of 10 Hz and stored on a hard drive array
in real time (Video Savant software).. The center 512x512 pixels of each image (i.e.

corresponding to an effective image size of -approx. 10x10 mm) were.used to:extract
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fractal measures based on a binary image size algorithm.

3.2 Numerical method

3.2.1 Image calibration

The light intensity level of the digitally acquired raw images is directly propor-
tional to the concentration of the passive scalar dye. Therefore, a calibration can be
performed to convert the raw intensity images into concentration fields. The calibra-
tion data was collected by imaging uniform concentration solutions of various levels.
A Plexiglas box, temporarily placed in the measurement region, was consecutively
filled with solutions of C! = 19.51 ug/L, C? = 38.83 ug/L, and C® = 57.96 ug/L.
A hundred images of each solution were taken to determine the corresponding light
intensity levels. In addition, 100 images were taken of clean water in the measurement
region without the Plexiglas box to yield the light intensity levels that corresponded
to C% = 0 ug/L. For each concentration level, the 100 images were ensemble-averaged
to get the mean light intensities for each pixel, i.e. (I°), (I'), (I?), and (I3). Based
on these data, a linear calibration equation was determined for each pixel by means
of a least squares regression. To prevent negative concentration values, the zero-
concentration data is not involved in the least squares regression but was considered
as a fixed point of the equation. Calibrating each pixel separately eliminates errors
due to non-uniformities in pixel sensitivity and laser sheet illumination.

Since the nozzle concentration varied for measurements at different downstream
distances it was convenient to normalize the pixel concentrations, C, by the particular
source concentration, Cseurce, t0 get normalized pixel concentrations, C*, between zero
and unity. The linear calibration equation for a pixel at the image location (3, j) is
given by
Al ; + B,-,,-.

. CSO‘UT‘CC

Cii(Liz) = (3.1)
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Figure 3.1: Raw intensity image. Contour level corresponds to pixel intensity I.

The two parameters in this equation are

et Ol (I = (1))
Yaan (I8 — (I8))?

Bij = —Ai(I;). . (3.3)

Ay = (3.2)

Fig. 3.1 sbhows a typical raw light intensity image and Fig. 3.2 ‘repr‘esents the

corresponding calibrated concentration image.

3.2.2 Choice of concentration threshold

To extract iso-surfaces from the calibrated concentration images, one has to set
a proper threshold for the passive-scalar concentration. The choice of a particu-
lar threshold level seems somewhat arbitrary. The essential question, of course, is
whether the calculated fractal measures depend on the threshold choice. The litera-
ture contains several approaches to justify the choice of a particular threshold value,
with contradictory findings concerning threshold-dependence. Sreenivasan (1991)

corhpared fractal dimensions for a range of concentration thresholds and found them
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Figure 3.2: Concentration image. Contour level corresponds to C*.

to be threshold-independent within approximately 0.25 < Cu/(C) < 2 However, the
size of the range of geometric scales that exhibited a constant fractal dimension was
found to depend on the threshold. As already mentioned in Sec. 2.2.8, the self-similar
scaling range (Level 2 complexity) almost vanished for thresholds near the mean con-

centration. Frederiksen et al. (1996) also reported power-law behavior with a fractal

dimension independent of the concentration threshold for 0.2 < Cy,/{(C) < 4.0. They
eventually used the mean concentration as the threshold because it produced the
~ largest number of threshold crossings.  Catrakis and Dimotakis (1996) used charac-
teristic points in the concentration PDF, such as local peaks and minima, for their
concentration thresholds As their images corresponded to cross- sectlons of a jet flow,
they argued that higher concentration thresholds extract iso- surfaces near the cen-
terline of the jet, whereas lower thresholds correspond to lso-surfaces in the outer
regions of the jet. For their data, the scale—dependen_t fractal dimension changed with
concentration threshold, being largest at intermediate concentrations. Catrakis et al.

(2002) followed this work, and considered only very low concentration thresholds to
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extract the boundary between mixed fluid and pure _axhbient fluid. A much more de-
tailed discussion on the influence of the concentration thresholﬁ was g'iven,by Miller
and Dimotakis (1991). They investigated the behavior of the scale-dependent fractal
dimension in the range 0.2 < Cy;,/{(C) < 1.7. By means of 3-D plots of dimension
versus geometric scale and threshold, they showed significant changes in‘ the shape
of the dimension plots across the threshold range. Finally, Villermauxvandb Innocenti
(1999) established an analytic relation for the fractal dimension, which exhibits an
exponential dependency on the concentration threshold.

All of the results discussed above correspond to a turbulent jet. For our turbu-
lent boundary layer data, there is no distinct concentration gradient within the small
images, and we expect the concentration distribution to be statistically homogenous.
Therefore, it seems reasonable and necessary to consider a wide range of possible
thresholds. The range is bounded on the low end by the fluctuating 1ight inten-
sity noise and the light intensity resolution of the digital camera.. Towards higher
thresholds, the iso-surface structure becomes increasingly sparse. As fewer images
contain iso-surfaces, more and more images are required to get statistically trust-
worthy results. Thus, the maximum number of images puts an upper limit on the
concentration threshold. Fig. 3.3 shows concentration iso-surfaces (more precisely:
boundary—oﬁtline pixels, which will be introduced in the next section) extracted from
the same concentration field (Fig. 3.2), for different concentration thresholds. The
thresholds approximately range from the lower (noise) limit to the higher (sparseness)
limit for that particular concentration image. | e

However, there may be ‘applications in which one distinct concentration thresh-
old is of interest. In the field ‘of combustion, for example, we might focus on the

stoichiometric concentration of fuel in air.

3.2.3 Extraction of concentration iso-surfaces
There aré several approa.chés to defer_fﬁiné the concentration iso-'surfaée's“énd to
represent them numerically. If the images are relatively noise-free, the‘ sirnple proce-

dure of setting a proper threshold on the pixel concentration field marks thé.boundary
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well. More sophisticated approaches involve edge enhancement techniques from the
field of pattern recognition (Sreenivasan, 1991). For matrix-based data such as our
digital images, the easiest and most commonly applied method is an iso-surface repre-
sentation by boundary pixels. In general terms, boundary pixels are defined as those
pixels within an image across which a specified concentration threshold is crossed.
Catrakis and Dimotakis (1996) provided an extensive discussion about problems and
possible improvements of the boundary pixel approach. Fifst, conventional bound-
ary pixels exhibit an inherent asymmetry in their representation of small islands and
lakes. As suggested in Sec. 2.2.4, the terms “island” and “lake” here refer to isolated
regions that are above and below the concentration threshold; respectively. At small
scales, the asymmetry can produce fractal dimension estimates below the topological
dimension of the iso-surface. The problem can be overcome by using the boundary-
outline pixels approach instead of the conventional boundary pixels approach. Con-
ventional boundary pixels are only located on the island side of the coastline, while
boundary-outline pixels cover the complete coastline on both the island and the lake
side.

A closer look at each algorithm indicates the differences. For the conventional
boundary pixels, each pixel is successively examined as a “center pixel”. If the center
pixel has a concentration equal to or above the threshold, its surroundings are exam-

ined. Each center pixel shares its edges with up to four neighboring pixels. If one

of those four neighboring pixels has a concentration below the threshold, the center
pixel is identified as a conventional boundary pixel. For the boundary-outline pixels
approach, each pixel is again considered as the center pixel. The eight neighboring
pixels of the center pixel (including the neighbors at the corners of the center pixel)
are examined for a threshold-crossing between the center pixel and the neighbor pixel.
If a crossing is present, a linear interpolation is applied between the two pixel concen-
trations to estimate the location of the level-crossing on the line connecting the center
pixel and the neighbor pixel. The pixel that is closer to the interpolated level-crossing
location is identified as a boundary-outline pixel. If the level-crossing is located di-

rectly in the middle between the two pixels, both pixels are boundary-outline pixels.
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Figure 3.4: Exemplary 8x8 conventional boundary pixels.

‘To demonstrate the different results produced by these methods, we created a 8x8
pixels sample concentration field with concentration levels between zero and two. For |
a concentration threshold of unity, Fig. 3.4 shows the conventional boundary pixels;
while Fig. 3.5 shows the bouhdary-outline pixels. The asymmetry between the small
island in the upper-left corner and the small lake in the lower-right corner is evident in
Fig. 3.4. Alternatively, the boundary-outline pixel method removes this asymmetry
(Fig. 3.5).

Catrakis and Dimotakis (1996) additionally used splines instead of pixels to nu-
merically represent the iso-surfaces. The spline-representation was necessary because
they adapted the bounding box of the box-counting algorithm to the actual extent of
the iso-surface structure. ‘Therefore, the bounding box varies in size between different
images, and in general does not have a binary size. In this case, non-integer box sizes
are encountered during the subdivision of the box-counting algorithm, and an iso- ‘
surface representation consisting of pixels would require a splitting of the pixels. For
our boundary layer data, however, there is no characteristic extent of the iso-surfaces
within the images, so it does not make sense to adapt the bounding box to particular
images. The splines also allow for an iso-surface resolution below the physical pixel

size. The benefit of this sub-pixel resolution is questionable, because the iso-surfaces
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Figure 3.5: Exemplary 8x8 boundary-outline pixels.

cannot be convoluted at scales that are not resolved by the physical pixels of the
camera. Thus, as expected, Catrakis and Dimotakis (1996) found the fractal dimen-
sion to approach the topological dimension for their sub-pixel scales. For our data, a
sub-pixel resolution does not make sense ‘b,ecause the laser sheet thickness is also of
the order of the pixel size. From the discussion above, it is most reasonable for us to

use boundary-outline pixels at the pixel resolution to represent the iso-surfaces.

3.2.4 Noise considerations

In the course of the present st'udi';,::We encountered various sorts of noise in the
data sets. For example, one prelimina;*y data set exhibited air bubbles and dirt
particles in the images that artificially increased the fractal dimension over the whole
range of scales. A sophisticated filter algorithm was developed to remove the noise
spots without affecting the surrounding real data (for the effect of ﬁhé ﬁlter’,borhpétre
“Figs. 3.6(a) and (b)). The filter was based on the charactefistic shape of thé noise
spots, and on the fact that the spots céuld appear independent of the presence of
éurrbunding lower-concentration dye. Essentially, a filter square, slightly largerl than
the largest noise spots, mpved through the concentrati.on images and 'rerﬁoved all

high-concentration areas that were smaller than the filter sqﬁafe and were completely
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‘surrounded by pure ambient water. But finally, we found that carefully cleaning the
flume sump and operating the flume for long time periods removed the dirt particles
and the dissolved air, respectively.

Another data set was biased by a memory effect of the camera (Dalsa model
01M28, 10 bit), such that pixels in image regions of high light intensity did not
per_form a complete reset between consecutive images and therefore overestimated the
1ight intensity of the following image (see two consecutive images in Fig. 3.6(c) and
(d)). In the affected image regions, this effect corresponded to an artificial downward
shift of ﬁhe concentration threshold for the iso-surface extraction. The problem was
overcome by using another camera (Kodak model Megaplus ES1.0, 8 bit) that did
not have the pixel reset problem. o N .

Other problems arosé from the need to match the dynamicallr.ang‘e of the camera.
In one data set, the calibration point for zero concentration was slightly below the
dynamical range of the camera, which biased the pixel calibration equations. As
a result, the iso-surfaces were artificially. wrinkled and the fractal dimension was
overestimated'at small scales. This effect could:be reduced for example by neglecting
the erroneous calibration point in the'least squares regression.

In the final data set, all noise problems mentioned above were overcome through'
experimental procedures instead of through image processing. For all of the previous
noisy data sets, the resulting fractal measures were similar when performing the
indicated numerical improvements. Therefore, the results reported in this thesis can
be considered as rather robust. o v - | |

One kind of noise was present in the final data set that merits discussion. For
raw light intensity levels close to the lower end> of camera’s dynamical range (which
corresponds to zero due to an offset), the pixel inﬁensities‘ show random fluctuations
around the real value. When using normalized concentration .’phreshplds as indicéted
in Fig. 3.3 (see also Sec. 4.2.1 for a detailed discussion of the normalized concentration
threshold), the lowest raw intensities are encountered for low concentration thresholds
far away from source, and the corfesponding iso-surfaces are most affected by noise.

As can be observed for the iso-surface in the upper part of Fig. 3.3(a), the noise
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creates significant small-scale roughness of the iso-surfaces, which artificially raises
the coverage dimension at small scales. Therefore, it is sensible to only consider
concentration thresholds that correspond to a high signal to noise ratio, which we

have done in Chapter 4.

3.2.5 Box-counting algorithm

The box-counting algorithm is the most commonly applied method to determine
the coverage count, IV, of a fractal object. As we have seen in Sec. 2.2.7, the coverage
count is the basis for all other fractal measures. The box-counting algorithm is applied
to a boundary pixel image and extracts values of the coverage count as a function of
subseqﬁently decreasing length scale, A\. The fesulting set of discrete coverage count
values, N(]), is stored for each image. Statistics of the related fractal measures, such
as the coverage dimension, are calculated from the ensemble of images. ‘

The algorithm starts with a bounding box with a characteristic side length, d,
defining the largest considered length scale. For the data of Catrakis and Dimotakis
(1996), the 2-D images of the jet’s cross-section contained the complete radial extent
of the jet and therefore the bounding box could be adapted to the largest characteristic
scale of the flow by using a rectangle that bounded the iso-surface structure. In our
case, the image size is significantly smaller than the characteristic large scales of the
plume and therefore it is sufficient to use the square image boundary as the bounding
box.

The bounding box is then successively subdivided into an increasing number of
boxes of smaller size, until the boxes reach pixel size. Obviously, it is necessary to
use a binary bounding-box size, as well as binary subdivisions, because otherwise one
would encounter boxes of non-integer pixel size. In our case, the consecutive box sizes
are A = 512, 256, 128, 64, 32, 16, 8, 4, 2, and 1 pixels. For the sample boundary-
outline pixel image shown in Fig. 3.3(b), Fig. 3.7 demonstrates the subdividing grid
for box sizes of A = 256, 128, 64, 32, respectively.

At each subdivision step, we count the number of boxes that contain part of the

iso-surface, which yields the coverage count, N(X), at the particular length scale,
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Figure 3.8: Coverage count for the boundary-outline pixel image from Fig. 3.3, and
the subdividing arrangement depicted in Fig. 3.7.

A, that corresponds to the current box size. For the boundary-outline pixel irhage
from Fig. 3.3(d), and for the particular subdivision arrangement depicted in Fig.
3.7, the resulting coverage count is plotted in Fig. 3.8. As can be seen, the length
scale, A, is normalized by the size of the bounding box, d;, and logarithmic axes are
used to visualize the charaéferistic slope that corresponds fo the negative coverage
dimension. For their 1-D data set aljjd box-counting algorithm, Miller and Dimotakis
(1991) argued that the choice of the starting location for the subdivision is arbitrary.
A single starting location therefore fails to extract all of the information contained
in a record, and cbuld bias fhe box-counting results. They recommend shifting the
starting location up to eight times within the possible range and ensemble-averaging
the resulting coverage counts. This approach easily generalizes to our 2-D images.
The shifting of the starting location is realized by calculating a step size, which is, in
general, an eighth of the current subdividing box size. The step size defines a shifting
grid, on which the subdividing grid is consecutively shifted by all possible multiples

of the step size, in both the horizontal and vertical directions. Thus, for each box
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Figure 3.9: Shifting of the starting location for the box-counting subdivision at A =
128. The two thick squares show exemplary shifts on the dotted shifting grid. The
upper-right shifted box demonstrates the artificial connection between the right and
the left image boundary.

size, A, we shift the grid to up to 8 x 8 = 64 different locations. Figure 3.9 shows
the shifting of a subdividing box at two exemplary locations. - Of course, it does not
make sense to shift the grid for the largest length scale, as the coverage count does
not change during a shift. Also, at the small scales, the size of the subdivision boxes
limits the number of possible shifts. For the smallest scale of one pixel, only one
position within the shifting grid is possible. For the second-smallest subdividing box,
which extends 2 x 2 pixels, there are 2 X 2 = 4 possible shifting grid locations, and
So on. ’ ' '

“As in the 1-D case, some boxes shift past the boundaries of the image. A weighting
scheme may suggest itself for such boxes. Weighting the coverage count of the box

by the fraction of the box that lies within the image did not yield reasonable results;
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when applied to_the deterministic self-similar fractals described in Secj 3.3.2. In
addition, Miller and Dimotakis '(19'91) reported that various weightiiig schemes do
not correct the difficulty associated with tiles extending past the erid of a record.
Alternatively,»we artificially connected the left image boundary to the right one,
and the upper image boundary to the lower one. For example, when a box extends
beyond the right boundary of the image, the fraction outside the image is filled with
an equivalently sized image fraction at the corresponding location of the left boundary
(see the example in Fig. 3.9). ":

When we applied this algorithm to the determmistic fractal sets described in Sec.
3.3.2, the minimum coverage count from the shlft options yielded significantly better
results than the ensemble average. This is explalned by the fact that the theoretical
fractal dimension (i.e. the Hausdorff-lgesico‘\‘(itch dimension, see Sec. 2.2.5) is defined
by the minimum number of bo>tes of arhitrary size that cover a set. In our case, we
use equally-sized boxes, but we extract the minimum number of boxes necessary.

Finally, there is an issue associated with images that contain very little or no
iso-surface structure. When ensemble—arreraging over a number of images, completely
empty i 1mages decrease the coverage count but do not contribute any 1nformat10n for
the coverage dimension. One option is to ‘exclude such images from the ensemble
calculations. As the image size is an arbitrary length scale within the flow, one could
argue that smaller e’mpty-regions within the images should. also be left unconsidered.
One way to do this is to.neglect the coverage count of images _dvor:vn_ to length \scales
where the iso-surface structure occupies rriore than one of the _subdividingboxes. This
corresponds to an adaptation of the bounding box to the largest iso-surface structure
present within a particular image. We have inyestigated the impact of rejecting empty
regions on the different fractal measures. On the one hand, this approach seems to
improve the performance of the algorithm in reproducing the exact fractal dimension
of deterministic fractals. On the other hand, it neglects an essential characteristic
of the flow field, which is the sparseness of the iso-surface structure, i.e. the space
between filaments of dye. We belieile that the real physics of the flow, expressed by

fractal measures like the coverage fraction and the coverage length, are represented
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~ most accurately when the empty regions are included. For example, the total coverage
length at the smallest scales of the concentration field, Ly(A — 7g), corresponds to
the surface area of the dye filaments within the 3-D flow and is therefore directly
relatéd to the molecular mixing flux according to Fick’s law. Neglecting empty regions
within the flow artificially increases the total coverage length (i.e. the total surface
area in the flow field) and therefore leads to an overestimation of the global flux of
molecular mixing. Thus, we will consistently use the full size of our images as the

initial bounding box of the algorithm.

3.2.6 Calculation of fractal measures

From the analytical relations presented in Sec. 2.2.7, we know that the cover-
age count provides the basis for all other fractal measures of interest. The box-
counting algorithm, described in the previous section, determines the coverage count
of each image separately. We are ultimately interested in the fractal measures that
are ensemble-averaged over all images. It is important to realize that the logarithmic
derivatives in the definition of the coverage dimension, for example, do not commute
with the procedure of ensemble-averaging. In other words, one has two options to
calculate an ensemble-averaged coverage dimension, that yield different results. First,
we can first ensemble-average the coverage count and then calculate an average cover-
age dimension as the logarithmic derivative of the ensemble-averaged coverage count.
Second, it is possible to calculate the coverage dimension of each image separately,
by means of the logarithmic derivative, and then ensemble-average the single-image
values to yield a mean coverage dimension.

Let us define the ensemble-averaged coverage count,

1 Nmax

> Np(N), (3.4)

where 1,4, is the total number of images in the record, and the superscript indicates
the number of the image to which the single coverage count corresponds. With this

definition, the non-linearity between the ensemble average and logarithmic derivative,
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for the example of the coverage dimension, can be expressed by

dlogip(Na() , 1 T dlogye NF(N)
d loglo A Nmaz d IOglo A

(3.5)

n=1
The sdme ambiguity ariseé for the calculation of the length-area ratio exponent .and
the length-area density exponént. Ih the literature of fraétai analysis, this issue
has only been addressed by Villermaux and Innocenti (1999). They found both
approaches to yield numerically similar results. Without e){planation, Catrakis and
Dimotakis (1996) performed an ensemble-averaging of the coverage count over a num-
ber of realizations of their 2—D boundary pixel images, and based the other measures,
such as the 'c‘:overage dimension, on that result. Shepherd et al. (1992) also ensemble-
averaged the coverage count over 200 flame images to get an averaged coverage dimen-
sion. On the other hand, Frederiksen et al. (1996) calculated the coverage dimension
from many single image coverage counts and plotted all of them in one figure to
illustrate the variation of the dimension. They extracted a mean dimension out of
the set of single image dimensions. A mixture of both approaches can be found in
Miller and Dimotakis (1991), where the coverage counts were ensemble-averaged, but
single-image coverage dimensions were also shown.

One could argue that the better approach should reproduce the known dimension
of deterministic self-similar fractals (cf. Sec. 2.2.4) with a higher pfecision. We tested
both approachés oh the evaluation image sets that were created from deterministic
self-similar fractals, as described in the following section. Despite the natural oscilla-
tions around the theoreticai value of the fractal dimension, we could identify the first
approach, i.e. the averaging of the coverage count, to be more accurate. Another
disadvantage of the second approach, i.e. the averaging of the single-image fractal
-measures, is that the coverage dimension, for example, is not defined for a completely
empty image. Thereforé, one has to reject such empty images during the process
of ensemble—averaging. For other measures like the coverage length, we have argued
in the previous section that empty images should be retained as an essential feature

of the overall concentration field. Thus, there is an inconsistency associated with
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vthe second approach. -In addition, it is more convenient to ‘perform the ensemble-
averaging over a large number of images only once (i.e. for the coverage count),' and
to base the calculations of the fractal measurés on a signiﬁéantly reduced amouﬁt of
data. We favor the first approach and therefore ensemble-average the coverage count
over all images and base all mean fractal measures on that data.

The analytical relations between the coverage count and the other fractal measures
(cf. Sec. 2.2.7) have to be discret_,ized to be applicable to our discrete coverage .count
data. The box-counting algorithm produces 10 discrete values of the coverage cpunt,
each corresponding to a particular subdivision step. We label 'thg subdivision steps
by the variable s, with 0 < s < Spaz, and Spmez = 9. The initial bounding box
corresponds to s = 0, and the final subdividing grid of unity pixel size corresponds
t0 8 = Smag. Thus, the subdivision box sizes, normalized by the size of the bounding
box, take the values A;/6, = 1/2° = 1/1,1/2,...,1/512. The ensemble average of the

single-image coverage count, Ny, for 0 < s < S144, i therefore given by o

(Va0 /8)) = = > N (/) (36)

Based on the ensemble-averaged coverage count, the ensemble average of the cov-
erage fraction, F,, coverage length, Lo, and length-area ratio, {22, for 0 < s < Smax,

can be calculated from

oy = (3) @owgen, 69
(L2(/\s/5b)> = AS<N2(/\8/5b)>z | o o (38)
@O = SN0/, 69

respeétively.

To discretize the derivatives, we employ second-order accurate central differ-
ences centered at the half-points  between the consecutive subdivision steps (i.e. “at
As+1/2/6) and based on the data at the two neighboring subdivision steps, Ast1/0b;
and A;/d,. This means that we get one data point less than the total number of
subdivisions. The ensemble averaged of the coverage dimension, Dy, LEB-scale PDF,

f2, length-area ratio exponent, aq, and length-area density, go, for 0 < s < Spaz — 1,
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are calculated from

Ry o logio{Na(Asti/0)) — logyo(Na(As/0b)) -
T <D2(»/\§+1/2/6b)> - R :10810(/\s+1/.5b) —loglo(/\s/&)r ’ (310)
| _ {B(As+1/0)) — (F2(As/Ss)) L
: <f2(As+1/2/6b)> = : (A:H/gb) — (/\:/51)) ’ : 7- v A (3‘11)
(an(erpe/8)) = —Ewl0en/0) —10Blh(L/A)) g 1)

‘ logIO()‘S+1/ ) — loglo(/\s/ 6) ’

_ . (2(As41/00)) — (Q2(As/Sb))
(92(Ast1/2/0)) = (/\s+1 /6b)”_ 0u/5) , " _ - (3.13)

respectively. | |

Finally, the 1ength—area density exbonent, ay, invel{zes the.lo‘gar'i‘thiniic'defrivat;i'\;e
of the length-area density, which itself is a derivative. ‘ThI:.lS.,' the central diffefeneee
of the l.envg'th-areav density exponent are centered at the subdivision steps )\s /6, and
calculated from values of the length-area den51ty, located at the half pomts )\3+1 2/ 61,
For 1 < s < Smaa: 1, we get

 loguolga(Mersye/5) — ogolga(hecsya/de))
(ag(As/bb)) = — loguCrertys /Jb).—loglz(x\s_l,z R (3.14)

3.3 Testlng of algorlthm

3. 3 1 Approach

Before calculating the fractal measures of the passive scalar iso-surfaces in our
turbulent boundary layer it is necessary to vahdate the numerical method. A common
way to test algonthms for fractal analys1s is to evaluate the performance when apphed
" to deterministic self-similar fractal obJects of known theoretical dimension (cf. Sec.
2.2.4). For our concentration field, we expect a range of scales from the integral
scale, I, to the Batchelor scale, 5. As explained in Sec. 3.1, the largest scales in
the flow are of the order of 3400 pixels, i.e. much bigger than our images, and the
smallest scales have a size of the order of one pixel. We created fractal objects with
~ the same range of scales, and extracted a large number of 512x512-pixel-sized images
from these objects. With these images, it is possible to test three different parts of

the numerical method: the box-counting algorithm, the ensemble-averaging over the
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set of images, and the discretization of the logarithmic derivative to calculate the
coverage dimension. ". _ |

The concentration 1so—surfaces in our study can be expected to exh1b1t a range
of fractal dimensions. For a trustworthy evaluatlon, it is therefore necessary to'test
the performance for several fractal objects w1th different dlmensmns ‘Koch curves,
as introduced in Sec 2.24, are qulte s1mple to create with partlcular dlmensmns
A certain degree of dispersion was 1ntroduced because then the created image sets
closely resemble our real data compared to contiguous Koch curves.

Besides the general valldatlon of the numerlcal method the evaluatlon image sets
allow us to 1nvest1gate the 1nﬁuence of several parameters on the algorlthm accuracy,
such as the dimension, the number of shlfts of the startlng location, the adaptatlon
of the bounding box, and the issue of ensemble-averagmg the coverage count versus

the coverage dimension.

3.3.2 Creation of evaluation.‘_im'aﬂge sets

Based on the examples of classical and detached Koch curves with different frac-
tal dimensions‘giVen by Mandelbromt’-(i1982), we developed five different deterministic
fractals with the dimensions D = 1.1046, 1.2553, 1.4466, 1.6131, and 1.7604. In anal-
ogy to the results of Catrakis and Dimotakis (1996) for a jet, for example, we initially
expected the concentration iso-surfaces in our flow to exhibit fractal dimensions be-
tween unity and two, because they are more complex than a straight line, but do not
fill the entire image plane. As discussed theoretically in Sec. 2.2.6, and confirmed
by our results in Chapter 4, this range turned out to hold: only for scales that are
smaller than the largest iso-surfaces. -Nevertheless, we only examined deterministic
self-similar fractals with dimensions above unity. Higher dimensions were not exam-
ined because for the D = 1.7604 case, the elements of the fractal touch each other,
and the extracted images look quite different from the real data.

We represent the fractal objects as an array of straight lines, storing the start and
end point of each line. Similar to the fractals in Sec. 2.2.4, all five fractals are based

on a square as their initiator, consisting of four straight lines with the origin. of the
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* Figure 3.10: Generators for the randomly dispersed Koch curves. .

cqordin‘ateisystem being located at the cehter of the sq‘uvare.“ During each step of the
self-similar cascade, ali straight lihes of the previous step‘ arereplaced by a geherator

To get asymmetric fractal objects with varylng numbers of detached 1slands and lakes,

we randomly pick generators out of a set with the same cumulatlve fractal dimension,

but varying degrees of dispersion (cf. Sec 2.2.5). Each generator is chosen with
the same probability. Due to thls random process, two realizations of obJeets with
the same fractal dimension may appear quite different. Fig. 3.10 shews the shai)es
of the. generators used for the five different fractals.. The range of scales of a fraetal
object cannot be increased continuously, but rather in discrete eteps determined by
the generator. It is therefore not possible to match the cut-offs of the scaling range of

the real plume data both at the Batchelor scale and at the integral scale. However,
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we can match the order of the desired écaling range by selecting the proper level of
the self-similar cascade, i.e. the number of times the generator is applied. |
“In order to apply our code to the fractal objects, it is necessary to create boundary-
outline pixel images from the array of straight lines that represent the fractals. We
first rotate the whole fractal object by a randomly chosen angle, which eliminates
effects of the box-counting algorithm’s directional preference caused by the square
shape of the subdividing boxes. The rotated object is scaled to fit the resolution
requirement at the smallest scale. Then, a sélector square of the size of our images
(i.e. 512x512 pixels) is randomly located within the mﬁch larger extent of the fractal
object. The part of the object lying within the selector square is used to create one
boundary-outline pixel image. Exemplary fractal objects for all five dimensions are
shown in Fig. 3.11, together with a sample selector square. Note that the total
extent of the fractal objects varies by approximately a factor of two to match the
resolution cutoff at the pixel size. An algorithm steps along the line segments of the
fractal object and calculates the locations of boundary-outline pixels. For each fractal
dimension, we create 100 random realizations of the fractal and extract 10 images out
of each realization. To save memory, we only accept images that contain structure.
Despite our previous discussion about accepting blanks in the plume data, this is
possible because completely empty images do not contribute to the ensemble-averaged
coverage dimension, although they contribute to other fractal measures. Thus, a total
of 1000 evaluation images are created for each of the five fractal dimensions. In Figs.
3.12 - 3.16, 12 exemplary images out of these 1000 are plotted for each of the five

dimensions.

3.3.3 Quantitative assessment of algorithm accuracy

Figure 3.17 shows the results of the algorithm for the five evaluation image sets.
For intermediate scales, all plots show a clear plateau matching the theoretical dimen-
sion. However, fluctuations around the correct value are evident along each plateau.
According to Sreenivasan (1991), these fluctuations originate from two sources. First,

the dyadic subdivision factor of the box-counting algorithm (i.e. 1/2) generally
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does not correspond to the intrinsic subdivision factor of a particular Koch curve,
determined by its generator. For example, the intrinsic subdivision factor for our
D =1.1046 Koch curve is 7 = 1/13. Second, the starting location of the subdivision
usually does not match the starting points of straight-line element's,of the Koch curve.
In addition, there are two cutoffs of the plateau, at the largest and smallest scales.
Such errors at the boundaries of the algorithm’s scaling range are reported frequently
in the literature. Miller and Dimotakis (1991) attributed these deviations to a lack
of smaller features in the fractal objects at the smallest scale and to a lack of larger
empty regions at the largest scale. In fact, they showed a plot of the dimension of a
Cantor set, obtained from a box-counting algorithm, which looks very similar to our
plots. Shepherd et al. (1992) reported fluctuations at scales below approximately two
pixels, and Frederiksen et al. (1996) found significant deviations at the largest scales.
Thus, we cannot expect reasonable results for the dimensions at the largest and the
smallest scale. | .

In Tabs. 3.2 and 3.3, the rms deviation and the meah of the dimension are
presented for all five dimensions and for several algorithm parameters are calculated
from the middle 7 data points. The rms value is perhaps a more valuable measure
than the mean dimension because positive and negative deviations do not cancel out,
and larger deviations are heavier penalized. '

The rms deviation, averaged over all dimensions, is smaller than 5 percent. More-
over, the error in the numerically determined dimension, averaged over the 7-point
plateau, is of the order of 1 percent. The errors vary among the different dimensions,
and appear greatest at intermediate dimensions. Overail, the algorithm performs very
well on the evaluation images, and we therefore expect satisfactory performance for
the concentration iso-surfaces.

The tables also contain information about the influence of the parameters of the
algorithm. Adapting the bounding box clearly improves the results, decreasing the
best rms value from 0.0428 to 0.0400 when averaging the coverage count. However, as
we explained in Sec. 3.2.5, we want to reﬁaih empty regions of the concentration field

to get the correct coverage fractions and lengths. Without adaptation of the bounding
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Table 3.2: Root mean square (rms) of the deviation of the numerical results from
the theoretical dimension over the inner 7 points. The last column shows the rms
deviation averaged over all 5 dimensions. : L
D 1.1046 | 1.2553 | 1.4406 | 1.6131 | 1.7604 | mean
. ‘1Shift if - : B B g . i R : Ll
| average N, 0, =512 | 0.0140 {.0.0433 ;|- 0.0705 | :0.0650..|- 0.0543- | 0.0494 :
| average N, adapt &, | 0.0222 | 0.0400 | 0.0677 | 0.0645 | 0.0531 | 0.0495
average D, 0, = 512 | 0.0462 | 0.0542 | 0.0545 | 0.0641 | 0.0482 | 0.0534
average D, adapt ¢, | 0.0182 | 0.0422 | 0.0593 | 0.0635 | 0.0500 | 0.0466 .
4 shifts, min. . N |
| average N, 6, = 512 | 0.0177 | 0.0360 | 0.0595 | 0.0607 | 0.0419 | 0.0432
| average N, adapt 6, [ 0.0134 | 0.0316 | 0.0567 | 0.0600. | 0.0413 | 0.0406:
average D, 0, = 512 | 0.0436 | 0.0502 | 0.0436 | 0.0588 | 0.0350 | 0.0462
average D, adapt &, | 0.0172 | 0.0296 | 0.0476 | 0.0579 | 0.0358 | 0.0376
8 shifts, min ’ ' o S -
‘average N, &, = 512 | 0.0197 | 0.0348 | 0.0586 | 0.0607 | 0.0404 | 0.0428
| average N, adapt d, | 0.0136 | 0.0309 | 0.0557 | 0.0599 | 0.0399 | 0.0400
average D, 6, = 512 | 0.0462 | 0.0525 | 0.0419:| 0.0581 | '0.0338 | 0.0465
average D, adapt &, | 0.0187 | 0.0285 | 0.0460 | 0.0574 | 0.0342 | 0.0370
8 shifts, mean
average N, §, = 512 | 0.0525 | 0.0594 | 0.0807 | 0.0828 | 0.0589 | 0.0669
average NN, adapt d, | 0.0547 | 0.0600 | 0.0807 | 0.0828 | 0.0589 | 0.0674
average D, d, = 512 | 0.0997 | 0.1021 | 0.0771 | 0.0847 | 0.0582 | 0.0844
average D, adapt d, | 0.0939 | 0.1000 | 0.0771 | 0.0845 | 0.0582 | 0.0827

box, ‘ensemble-averaging the single-image .coverage count yields slightly better rms
deviations and much better mean dimensions than ensemble-averaging the single-
image coverage dimensions. Shifting the starting location of the binary subdivision
has a beneficial effect on the results.” However, the improvements diminish as we
go.to more shifts.. Therefore, the significant computational cost of more than eight
shifts is not justified. Finally, we have shown that in the case of shifting the starting
location, it is better to take the minimum of the coverage counts. In fact, taking the
average of all shifts yields worse results than no shifting. Based on these results, we
calculate the ensemble average of the minimum coverage count for eight shifts without
adapting the bounding box when evaluating the plume concentration images. The
row corresponding to this set of procedures is highlighted in Tabs. 3.2 and 3.3 by

bold digits. The results of these calculations are presented in the next chapter.
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Table 3.3: Mean dimension, averaged over the inner 7-point plateau. The last column
shows the absolute deviation from the theoretical dimension, averaged over all 5
dimensions.
D 1.1046 | 1.2553 | 1.4406 | 1.6131 | 1.7604 | mean error
1 shift
average N, 6, = 512 | 1.0997 | 1.2434 | 1.4384 | 1.5871 | 1.7638 0.97 %
average N, adapt 6, | 1.0871 | 1.2347 | 1.4361 | 1.5857 | 1.7632 1.46 %
average D, 0, = 512 | 1.0660 | 1.2040 | 1.4179 | 1.5665 | 1.7479 3.43 %
average D, adapt &, | 1.1007 | 1.2248 | 1.4231 | 1.5709 | 1.7490 1.32%
4 shifts, min
average N, 6, = 512 | 1.1152 | 1.2579 | 1.4445 | 1.5937 | 1.7651 0.82 %
average N, adapt 6, | 1.1026 | 1.2483 | 1.4416 | 1.5916 | 1.7645 0.71 %
average D, 6, = 512 | 1.0789 | 1.2172 | 1.4242 | 1.5743 | 1.7494 2.60 %
average D, adapt 6, | 1.1165 | 1.2432 | 1.4308 | 1.5803 | 1.7506 1.53 %
8 shifts, min
average N, &, = 512 | 1.1172 | 1.2606 | 1.4469 | 1.5953 | 1.7653 | 0.94 %
average N, adapt ¢, | 1.1045 | 1.2507 | 1.4440 | 1.5933 | 1.7647 0.64 %
average D, d, = 512 | 1.0805 | 1.2200 | 1.4267 | 1.5763 | 1.7496 2.42 %
average D, adapt &, | 1.1198 | 1.2472 | 1.4333 | 1.5825 | 1.7508 1.42 %
8 shifts, mean
average N, 6, =512 | 1.0590 | 1.2072 | 1.4181 | 1.5792 | 1.7574 3.06 %
average N, adapt 6, | 1.0573 | 1.2064 | 1.4181 | 1.5790 | 1.7574 3.12 %
average D, 0, = 512 | 1.0171 | 1.1586 | 1.3903 | 1.5553 | 1.7388 6.28 %
average D, adapt &, | 1.0219 | 1.1604 | 1.3903 | 1.5560 | 1.7388 6.13 %
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Figure 3.12: 12 sample images from the set of 1000 evaluation images for D = 1.10486.
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Figure 3.13: 12 sample images from the set of 1000 evaluation images for D = 1.2553.
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Figure 3.14: 12 sample images from the set of 1000 evaluation images for D = 1.4466.
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Figure 3.15: 12 sample images from the set of 1000 evaluation images for D = 1.6131.
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Figure 3.16: 12 sample images from the set of 1000 evaluation images for D = 1.7604.
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Figure 3.17: Box-counting dimensions calculated via the numerical method, for the
five evaluation images sets. The theoretical fractal dimensions are indicated by thick
horizontal lines over the range in which the algorithm accuracy is to be evaluated.
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CHAPTER 4
Results and discussion

4.1 Statistics of the concentration field

Before analyzing the concentration iso-surfaces in terms of fractdl geometry, it
is helpfui to examine the statistical properties of the concentration fields. After
the calibration of the raw images and normalization by the sourée v,concentration,
Csources (seejSec. 3.2.1 for the keXaVct ép‘p'roéch)',‘éach data set (‘:oilils»ists' of Nz = 6000
concentration images, Cf;, with 0 < C* <1,1 < i< 512, and 1 Svj < 512 (see Fig.
3.2 for a sample concentration 1rnage) Note thatA although‘ C* is normalized by the
source concentration, we will refer to this quantity as an absolute concentration, in
contrast to a further normalized concentration defined later is this section. The data
sets were taken at four disf,a,_nces, z, dqwnstregim of the source, namely at z = 250,
500, 1000, and 2000 mm. The images were located symmetrically about the plume
centerline. Thus, it is important to keep in mind that the concentration statistics,
as well as the fractal measures, represent, the conditions in proximity to the plume
centerline. | L o -
" For each pixel (4, j‘) in a data set, ‘the 6000 "ir'hagés correspond to a concentration
time record, which is temporally under-resolved. Exemplary time records, for four
distances from the source, are shown in Fig. 4.1. As expected from the theoretical
discussion in Sec. 2.1.7, the instantaneous concentration fluctuates greatly in time,
exhibiting lbng periods‘ of low concentration, which are interrupted by brief, high peak
concentrations. While this intermittent behavior is qualitatively similar at all four
- downstream locations, the magnitudes of the peaks drop significantly with increasing

distance from the source. For x = 250 mm, the highest peaks are slightly below the
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Figure 4.1: Exemplary normalized single-pixel concentration time series, C*, at four
distances, z, from the source. The normalized instantaneous concentration fluctuates
greatly between consecutive images.. Both the mean concentration and the intensity
of the fluctuations drop rapidly with increasing distance from the source.
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Figure 4.2: PDFs f(C*) of the instantaneous concentration fields for four distances,
z, from the source. With increasing distance from the source, the concentration
distributions shift towards the lower boundary of the normalized concentration range.

source concentration. For £ = 2000 mm, however, the highest peaks reach only about
a tenth of the source concentration. 4

The concentration PDFs f(C*) show the‘ﬂuctuation distributions and further re-
veal the variation with downstream distance. Fig. 4.2 shows the concentration PDF's
that correspond t.o the concentration time records as given in F ig;, 4.1.. The plots
indicate that with increasing distance from the source, the concentration distribution
shifts towards the lowér ehd of the possible concentration‘ range. Thus, the concen-
fration mean and standard deQiatioﬁ decrease and it becomes less _likeiy to encouhter
high conceni;ration peaks. "All four PDFs exhibit a sharp and narrow peak towards
zefo'cdncentration,‘ followed by zli.steep dec'r:ea'se Iand long"'tails‘ towards higher con-
centrations. The described profile reflects a characteristic property of the underlying
concentration field: while the mean concentration is extremely low, the standard

deviation is an order of magnitude higher, and the highest’instantaneous peaks are
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Figure 4.3: Profiles of concentration mean and standard deviation in the streamwise
direction, averaged over 6000 images and the vertical direction (512 pixel columns),
for four distances, z, from the source. Mean values additionally averaged in the
streamwise direction are indicated by the straight lines. The concentration mean and
standard deviation are approximately uniform in the streamwise direction across the
image region.

another order of magnitude higher. These properties represent a major experimen-
tal difficulty because events of very high concentration are extremely rare, but they
affect the mean and standard deviation significantly. Therefore, it is necessary to
consider very long concentration records to statistically capture those rare events. As
the mean concentration is very close to zero, a high resolution of the concentration

measurements is necessary. Simultaneously, the highest peaks require a wide dynam-

ical range of the measurement technique. In that respect, the concentration fields
originating from iso-kinetic sources are experimentally more demanding than fields
that are generated, for example, by:a jet, where the concentration fluctuations are
less intermittent. The spectra of concentration fields typical for our study have been
examined by Dasi and Webster (2003).

To ensure a sufficient number of concentration values in the calculation of the
statistics, we performed not only a time average over the 6000 images, but also a
spatial average over all 512 x 512 pixels of the images. Therefore, the statistics of
each data set are based on over 1.5 billion individual concentration values. Of course,

spatial averaging requires a uniform distribution of the concentration statistics across
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Figure 4.4: Profiles of concentration mean and standard deviation in the vertical
direction, averaged over 6000 images and the streamwise direction (512 pixel rows)
for four distances, z, from the source. Mean values additionally averaged in the
vertical direction are indicated by the straight lines. Except for the z = 250 mm
case, the concentration mean and standard deviation are approximately uniform in
the vertical direction across the image region.

the image 'regions‘. Accbrding fo the sirhple continuous point source rﬁodel from Sec.
2.1.7, we expect the mean énd standard deviation to decrease in the streamwise
directioh with increasing distance from the source, and in the cross-stream directioné
with increasing distance from the plume centerline. It can be expected that the extent
of the individual concentration fields (approx. 10 x 10 mm) is negligible compared to
the considered dimensions in the z direction. However, thé fields are about a tenth
of the water depth, and thus are hot’ﬁegligible in the z direction. We calculated
distributions of mean concentration and standard deviation in both the z and 2
directions by averaging over 6000 images and the direction perpendicular to the profile
direction. The results are shown in Figs. 4.3 and 4.4. As expected, the concentration
is homogenous in streamwise difection and, in particular, does not decrease with
distance from the source. In the cross-stream direction, in.proximity to the source,
there is a noticeable inhomogeneity in the mean concentration and standard deviation
profiles, but the inhomogeneity vanishes with increasing z. One possible explanation
is that the plume is narrowest cldse to the source and thus could .be of size comparable

to the image size. The shape of the inhomogeneous profiles, however, is not symmetric
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Table 4.1: Statistics of the concentration fields and values of the concentration thresh-
olds used to extract iso-surfaces, at four distances, z, from the source.

T [mm] | 250 | 500 | 1000 | 2000 |
Crource [ug/L] | 101.61 | 101.61 | 202.51 | 501.76
(C*) - [0.0139 | 0.0058 | 0.0023 | 0.0010
sdev(C”) | 0.0712 [ 0.0311 | 0.0117 | 0.0032
Chi=(C)+1-sdev(C") - | 0.0851 | 0.0368 | 0.0140 | 0.0042
%, =(C")+2-sdev(C") - | 0.1563 | 0.0679 | 0.0258 | 0.0074
% 3= (C")+3-sdev(C") - | 0.2274 | 0.0990 | 0.0375 | 0.0106
% 5= (C")+5-sdev(C") - | 0.3697 | 0.1611 | 0.0610 | 0.0170
4 =(C)+7-sdev(C") - |0.5120 | 0.2232 | 0.0845 | 0.0235

about the expected plume centerline (i.e. z =150 mm). Thus, it must be concluded
that the turbulent mixing was not symmetric in thé vert;ical direction due to the
variation in the mean and ﬂucfuating IVeIIOCity'_in" the ‘bou_ndary'layer‘. Tn comparlson
to the changes of the mean and standarddeviation among the four data locations,
however, we may consider the statistics to be .approximatelvy uniform across each
image field.

‘The resulting concentration statistics, along with the:corresponding source con-
centrations, are summarized in Tab. 4.1. The mean and standard deviation decrease
rapidly with increasing z. This creates a question of how to compare the iso-surface
geometry at different downstream locations. The challenge of a comparison is to define
concentration thresholds that identify reasonable iso-surfaces at all of the downstream
locations. But, concentrations that are around the mean, and thus very common, at
z = 250 mm, represent very rare peak events at £ = 2000 mm. This effect makes it
impossible to use absolute concentrations for comparisons, and thus calls for a nor-
malization of the concentration field by a quantity that reflects the systematic changes
in the concentration fields with z. Indeed, if we normalize the concentration fluctua-
tions by the standard deviation, according to (C' — (C))/sdev(C), the corresponding
concentration PDFs at all four downstream locations appear similar, as can be seen
in Fig. 4.5. Note that the concentration PDF is far from Gaussian, and deviates
significantly from: ﬁhe concentration PDF of a turbulent jet.as reported for example

by Catrakis and Dimotakis (1996). ‘Because of the similarity of the normalized PDFs

81



10! T T T T ¥ —7 T T

— z=250mm | ]
-~ z =500 mm
+—-+- £ = 1000 mm
100 |
S
3
. —% 10—1 =
=
g
o
S
T 107%F
<3
a
9
107 : L
10-4 ' 1 ) i s 1 ) 1

0 | 2 3 4 5 6 7
(C = (C)){sd_eV(C) :

Figure 4.5: PDF's of the fluctuating concentration fields, normalized by the intensity of
the fluctuations, sdev(C), for four distances, z, from the source. When normalized,
_the PDFs at different distances appear similar. The four different concentration
thresholds used to extract iso-surfaces are indicated by vertical dotted lines.

at various z, it is reasonable to compare iso-surfaces that are defined by equal magni-
tudes of the normalized fluctuations. Thus, we define several concentration thresholds

of varying levels according to |
thn = (C*) +n-sdev(C*). . . (4.1)

For the thresholds utilized in the preéent' study, the correspondirrg ébsolute concen-
tration values are given in Tab. 4.1. In addition, the thresholds are indicated in the
concentration PDF plot of Fig. 4.5. They are chosen to cover a IWide‘range of concen-
trations. For example, in the case of z = 250 mm, the insténtaneous concentrations
fluctuate roughly betweenv zero and thé source concentration. The thresholds, Cin1 -
Cin,, presénted in Tab. 4.1, cover almost half of this range. Furthermore, approxi-
matély 99 Ipercent of all concentration values ’are‘bevlow the highest threshold, C’m;.
Thus, the threshold levels allow us to make quantitativé statements about the iso-

surface ge'ometryb over a wide range of concentration values that might be of interest
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Figure 4.6: Concentration mean, (C*), and standard deviation, sdev(C*), as functions
of distance, z, from the source. Both the mean and standard deviation drop rapidly
with increasing distance from the source. The theoretical (const./z) dependence of
the mean concentration field from a continuous point source is indicated by a dotted
line.

in particular applications.

" The variation of the concentration statistics with distance from the source is visu-
alized in Fig. 4.6. Again we see that close to the source the concentration standard
deviation is much higher than the mean, but decreases more rapidly with z. As
proposed by the continuous point source model, the mean concentration can be rea-
sonably approximated by a (const./z) relation. For the dotted line in Fig. 4.6, the
constant has a value of K = 3.2 mm. From Eq. 2.34, we can thereby derive a very

crude estimate for the eddy diffusivity
Kp ~ Vieurce ~ 4 x 1075 m?/s. (4.2)
4K

This value is more than three orders of magnitude larger than the molecular diffusivity,
and emphasizes the efficiency of the turbulent mixing process. In connection with the

definition of a 99 percent diameter of the plume, §, based on the mean concentration

83



distribution, this result can be used to roughly estimate the cross-stream extent of
the plume to be § ~ 4 cm at £ = 250 mm, § ~ 6 cm at z = 500 mm, § ~ 9 cm at
z = 1000 mm, and § ~ 13 cm at z = 2000 mm. Remember that the theoretical model
corresponds to an unbounded plume and notice that the estimate for the last location
exceeds the water depth. However, the rough estimate at x = 250 mm would explain
the slight inhomogeneity of the mean concentration because the plume is only about
four times as wide as the image field. For the fractal analysis of the concentration
field, such estimates might prove important qualitatively, as we only have a zoomed-in
view of the field, and thus we need to set for example surface area results in relation

to the total extent of the plume.
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4.2 Geometry of iso-surfaces

4.2.1 Qualitative description based on sample images

~ Fractal measures aim to describe and quantify the geometry of concentration iso-

surfaces. In order to be able to understand and interpret the quantitative results
presented later on in this chapter, it is helpful to first develop & qualitative picture
of the iso-surfaces. For that purpose, Figs. 4.7 - 4.10 each show twelve sample
Boundary—pixel images from the data sets at four distances, z, from the source. The
iso-surfaces contained in the images are defined by the concentration'thréshdldC{h;:;‘ =
(C*) + 3 -sdev(C*). It is important to note that the sample images are not chosen to
be representative for the whole data sets. Rather, we simply plotted the first twelve
consecutive images of each data set.

The images clearly reveal the essential features of the iso-surface structure and the
underlying concentration fields. First, the dye filaments appear randomly distributed
in space and move chaotically in time. Second, the dye filaments exhibit a highly
intermittent distribution among large regions of clean fluid. While some images are
deﬁsely covered by iso-surfaces, a significant fraction of the images contains little
or even no iso-surface structure. Third, the iso-surface structure represents the large
range of scales involved in the concentration fields. Dispersed iso-surface objects exist
from overall sizes larger than the image size (brobably of the size of the integral scale)
to sizes of only a few pixéls (of the order of the Batchelor scale). Moreover, convolution
of the iso-surfaces can be observed at a wide range of scales, which may be described
as a combination of large-scale folding and small-scale wrinkling (Catrakis, 2000).
Moreover, it is interesting to observe that some iso-surfaces are highly convoluted
while others have completely smooth shapes.

We have a zoomed-in view and do not resolve the largest scales of the plume. The
concentration iso-surfaces in a turbulent boundary layer therefore appear systemati-
cally different from the iso-surfaces in the cross section of a turbulent jet, which have
been analyzed frequently in the literature, e.g. by Catrakis and Dimotakis (1996).

The current iso-surfaces are much more sparse, and single images contain significantly
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less structure. While different realizations of jet iso-surface images look alike, here
consecutive images may look completely different. It must be concluded that single
images from our data sets only contain a small fraction of the geometrical information
that is contained in the field. Thus, we need to average over a large number of images
- to obtain a complete description. )

When comparing the sample images of the four data sets, one can observe changes
in the iso-surface geometry with_increa‘si‘ng,distance from the source. . Close to the
source, the iso-surfaces appear. more intermittent, i.e. the few images containing
structure are typically followed by many mostly empty images. Farther away from
the source, a higher fraction of the images tends to contain iso-surface structure, but
typically less structure than the “richest” images close to ~th§‘source.' Overall, this
corresponds to a homogenization of the concentration field, from few filaments of very
high concentration to more, and better distributed, filaments of lower concentration.
The shape of the iso-surfaces also changes downstream. Close to the source, they
are typically large, complex, and highly convoluted objects.  Farther downstream, the
structure appears as several smaller filaments, with significantly smoother boundaries.
This evolution is'consistent with the homogenization of the plume and the action of

molecular diffusion, which continues to smear out steep gradients. .,

4.2.2  Quantitative description based on fractal geometry

“This section presents quéntitatiVe analysis of the concentration iso-surfaces in-
'cliiding the fractal dimension and other fractal measures that have been ﬁreseﬁted
analytically in Sec. 2.2.7, and in discretized notation in Sec. 3.2.6. The goal is to
find quantitative support for the qualitative discussion in the previous section.

All fractal measures will be ’presented in figures containing four subplots corre-
spohding to the four distances, z, 1fr‘ombthe source. Each subplot.'shbWs' the:particﬁlar
fractal measure as a function of scalé, A/, (i.e. normalized by the size of the bound-
ing box), for several concentration thresholds, t*h’n' = (C*) +n -sdev(C*). All plots
include the thresholds O’t*h';s, C{‘h,s; and Gy, 7. As explained in Sec. 3.2.4, the signal

to noise ratio for the z = 1000 and 2000 mm cases is rather low, and thus it was
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Figure 4.7: 12 consecutive samples from the set of 6000 boundary-outline images at
z = 250 mm from the source for a concentration threshold of Cjj5-= (C*) +3 -
sdev(C*). The streamwise direction within the images is from left to right. The
images were captured from left to right, and from top to bottom of the page.
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Figure 4.8: 12 consecutive samples from the set of 6000 boundary-outline images at
7 = 500 mm from the source for a concentration threshold of Cjj, 3 = (C*) + 3 -
sdev(C*). The streamwise direction within the images is from left to right. The
images were captured from left to right, and from top to bottom of the page.
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Figure 4.9: 12 consecutive samples from the set of 6000 boundary-outline images at
z = 1000 mm from the source for a concentration threshold of Cp, 5 = (C*) + 3 -
sdev(C*). The streamwise direction within the images is from left to right. The
images were captured from left to right, and from top to bottom of the page.
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Figure 4.10: 12 consecutive samples from the set of 6000 boundary-outline images
at £ = 2000 mm from the source for a concentration threshold of Cy, ; = (C*) +
3 - sdev(C*). The streamwise direction within the images is from left to right. The
images were captured from left to right, and from top to bottom of the page.
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not possible to extract fractal measures below the threshold Cj, 3. For the two cases |
closer to the source, where the signal to noise ratio is better, the' ploté additionally
-contain fractal measures at Cjj, ;.

The coverage count, (Né), ofiginates directly from the box-counting.algorithm,
and thus represents the basis for all other fractal measures (shown in Fig: 4.11).
It represents the number of boxes of size A in the image field that contain part of
the iso-surface structure. -Thé cbverage count decreases with increasing concentration
threshold, indicating that less iso-surface structure is found at larger thresholds. This
is consistent with the results of Miller and Dimotakis (1991) for a jet, who empha-
sized the distinct threshold dependence of fractal measures. At the largest considered
scale (i.e. at size of the bounding box), the coverage count is smaller than unity be-
cause some of the images do not contain any iso-surface structure. This detail differs
from the results of e.g. Catrakis and Dimotakis (1996), where all iinages contained
iso-surface structure. In contrast to the qualitative changes of the iso-surfaces in the
images described in the previous section, changes in (Np) with increasing distance
from the source are hardly observable. In addition, most of the curves look approx-
imately linear in a log-log plot, which leads to an expectation of an approximafely
constant fractal dimension. In fact, it will be necessary to consider more sensitive
measures. |

| The coverage fraction, (F3) (shown in Fig. 4.12), is closely related to the coverage

count and is a measure of the fraction of the image field that is covered by iso-surfaces.
As for the coverage count, the coverage fraction drops for higher concentration thresh-
olds, which is consistent with an increasing sparseness of the iso-surface distribution.
At the largest scales captured by the image field (i.e. at A\/d, = 1), the plots indicate
“that roughly between 40 and 80 percent of the images contain iso-surfaces, depending
on the concentration threshold and the distance from the source. When viewed at
the smallest scales, however, the iso-surfaces (i.e. the boundaries of the dye filaments,
not the filaments as a whole) cover only between a hundredth and a thousandth of
the image area. Therefore, if Oné is interested in the details of the .concentration

field at a distinct concentration threshold (e.g. to track the concentration limit of a
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pollutant or the flame surface in stoichiometric combustion), one is confined to a very
narrow and tiny fraction of the overall concentration field. With increasing distance
from the source, the influence of the concentration threshold on the coverage fraction
seems to grow. However, the trend is not distinct, so we will look for more meaningful
measures to quantify the influence of the downstream distance.

We have already seen that the fractal measures, and thus the geometry of the iso-
surfaces, appear different depending on resolution. The measure that describes this
quality, among other things, is the fractal (.or coverage) dimension, (D,), as shown
in Fig. 4.13. At the smallest scales, the coverage dimension tends to unity, indi-
cating smooth iso-surfaces with a lack of finer convolution, and thereby identifying
the Batchelor scale. With increasing scale, the coverage dimension starts to grow.
Thus, the coverage dimension is found to be scale-dependent (i.e. Level 3 complex),
in agreement with the results of Catrakis and Dimotakis (1996) for a jet. Therefore,
the current data are not in agreemént with simple power-law length scaling (Level
2 complexity) as reported by Sreenivasan and Meneveau (1986)), for example. Most
interestingly, a distinct range of scales exists where the coverage dimension is indepen-
dent of the concentration threshold, over the wide range of concentration thresholds
considered in this study. This unique scale range is identified as the viscous-convective
range of the turbulent concentration field (i.e. 7p € A < 7, cf. Sec. 2.1.5), and is

marked within the plots. (Note that the Batchelor and Kolmogorov scales are only

scale estimates, and that the discrete points of the coverage dimension are based on
values of the cm}erage count at larger and smaller scales, due to finite differencing).
This behavior is also observed when redrawing the plots to examine the changes in
the coverage dimension with respect to distance from the source (Fig. 4.14). The
coverage dimension in the viscous-convective range is not only independent of the
concentration threshold, but also independent of the distance from the source. With
respect to these two parameters, the coverage dimension in the viscous-convective
range can be described as universal.

‘It could be argued, however, that the universality may be an artifact of the par-

ticular normalization of the fluctuating concentration field. This issue leads us back
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Figure 4.15: Coverage dimension, (Do(\/d3)), over a range of distances, z, from the
source, for an absolute concentration threshold of Cyj, = 0.0234 for the instantaneous
concentration field. As before, the coverage dimension in the viscous-convective range
(l.e. —2.7=np/0 < A/, € /6 ~ —1.2) is approximately independent of z.

to the general question of how to compare concentration iso-surfaces at different
downstream locations in the plume. The basic problems associated with an absolute
concentration threshold in connection with the rapid decay of the mean and fluctuat-
irig field with z have already been discusse_d (Sec. .4.1). Nevertheless, we attempted to .
compare the iso-surface geomet}y also at a 8§pstaﬂt absdlute concentration threshold,
namely C}, = 0.0235 (Fig. 4.15). 5Althdﬁéﬁ the threshold level was chosen carefully
to be relevant for each location, for z = 250 mrn this absolute concentration threshold
is outside the previously considered thréShO}d range and is élmo'st as low as the mean
éoncehtratibn (Tab. 4.1). We haVe argiied in Sec. 3.2.4 that iso-‘s'uffacesl Qt sﬁéh
low concentration thresholds may be biased by background noise. As expected, the
coverage dimension for £ = 250 mm deviates slightly from the universal behavior.
The deviation, however, does not look like the typical result of background ndise,

and thus cannot be clearly assigned to either noise or the fact that the threshold is
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below the previously considered range. In any case, for the remaining di‘st%nces from
the source, the universality holds for an absolute concentrai’ci_dn thréia‘s“hoglld. "I‘herefore,.
we are confident that over a wide range of concentration thresholds and: distances
from the source, the described universality of the coverage dimension in the viscous-
convective range is a real and rather robust characteristic of the concentration field.

Let us now consider scales greater than the viscoué—cohvecti?e rdﬁg‘e,- i.e. for A > 7.
In Fig. 4.13, the coverage dimension exhibits distinct threshold dependence up to the
largest scales of thé image field. The coverage dimension is attenuated with increasing
concentration threshold, and clearly tends to zero. Hence, with higher concentration
thresholds, the iso-surfaces get smaller and smaller, and their presence within the
field becomes rarer. This represents a significant difference compared to the results
of e.g. Catrakis and Dimotakis (1996) for a jet, where the topological dimension and
thus the coverage dimension were always eqﬁal to and above uhity, respec:tively. In
addition, the differences in the coverage dimension for adjacent concentration thresh-
olds increases with distance. This implies that during the downstream advection,
[th.e_dyei:filaments chahge from f‘sﬁéep peéké” to “flat hills”, as ’.c;he[y;g»ét:,groded .b-y
turbulent stirring and molecular diffusion. In Fig. 4.14, we observe a moderate but
clear decrease in the coverdge ‘dimension with increasing distance from the source.
As already argued from the sdmple iso-surface images in Sec. '4.2.1, the iso-surfaces
evolve with = such that few large and complex objec'tsi break down into many smaller
and less convoluted ones. Recall that ‘the coverage’ dimension is a measure for both
the convolution and dispersion'of the iso-siirfaces. Hence, it may be conclilded that
the decrease in convolution outweighs the increase in dispérsibn’. Both the decrease in
dimension (and thus in comblexity) and the shift from convoluted to dispers‘ed'objects
are evidence for the progréssiflg ‘homogenization of the concentration field. This is
consistent with the results of Catrakis and Dimotakis (1996), who found enhanced ho-
mogenization of the concentration field (in their case due to higher Reynolds numbers)
' corresponds to a decrease in the fractal dimension. For the absolute concentration
threshold in Fig. 4.15, the = dependence of the coverage dimension is stronger than

for the normalized concentration thresholds, i.e. the covérage dimension drops faster

1]
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with increasing distance from the source. This is explained by the rapid decay of the
instantaneous concentration field. While the selected threshold is of the order of the
mean concentration at £ = 250 mm, and thus identifies vast iso-surface structure,
the same threshold is seven standard deviations above the mean concentration for

= 2000 mm. Thus, it captures only the highest concentration peaks, which we
hdve already identified to be smooth and extremely sparse. At low concentration
thresholds, at which the iso-surfaces exhibit small-scale noise, the coverage dimension
rises with distance. This was confirmed by examining several low concentration, large
distance iso-surface images. 4

The big picture for the fate of concentration iso-surfaces in a turbulent boundary
layer can therefore be drawn as follows: Few, sparse dye filaments of high concentra-
tion and with steep gradients at their boundaries are first significantly distorted by
the turbulent motions (corresponding to a medium coverage dimension, dominated
by convolution, and only moderately dependent on the threshold). As they evolve
downstream, the peaks become less steep and the dye filaments start to break up into
several dispersed, smoother objects. At lower thresholds, they therefore cover a larger
fraction of the field, tend to homogenize it and increase the coverage dimension due
to dispersion. At high thresholds, however, ever fever, very small and smooth peak
iso-surfaces remain, which further homogenizes the field and yields a rapid decrease
in the coverage dimension.

The fractal measure that may be most important in practical applications is the
coverage length, (L,). In our 2-D concentration fields, the coverage length measures
the length (in pixels) of iso-surfaces within the image field, as observed at a particular
scale. The coverage length is the lower-dimensional equivalent of the iso-surface
area in the more general 3-D case. Thus, it is a direct measure for the surface-
area generation of 'turbulence, which can be considered as the key feature of mixing
efficiency. As can be observed in Fig. 4.16, the coverage length decreases continuously
with increasing concentration threshold. The reason for this trend is a combination
of less convolution and increased sparseness of the iso-surfaces at higher thresholds.

In contrast, the coverage length of iso-surfaces in the jet data exhibits a maximum
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Figure 4.16: Coverage length, ‘(Lz), as a function of normalized scale, A/d, for several
concentration thresholds, Cj, ,, = (C*) 4+ m - sdev(C*), at four distances, z, from the
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at intermediate concentration thresholds (Catrakis and Dimotakis, 1996). As already
explained in detail for the coverage dimension, the coverage length increases with x
fdr low concentration thresholds, while it decreases for high thresholds. The coverage
length is a scale-cumulative measure (i.e. the length at a particular scale depends on
the iso-surface geometry at all scales above that scale, cf. Eq. 2.37). In particular,
the coverage length can obviously decrease with decreasing scale, if the coverage
dimenéion is smaller than unity.

As the iso-surfaces must be smooth lines at scales smaller than the Batchelor scale,
the coverage length systematically approaches a constant value, the total coverage
length, (La;u), as the scale approaches np. For our data, the total coverage length
ranges between 250 and 1500 pixels, which corresponds to a length of 4 to 30 mm
within the 10x10 mm image field. If the flow was laminar the dye would follow a
smooth, straight, and nérrow path along the source centerline, which would yield a
iso-surface coverage length of approximately 2 - §, = 1024 pixels (corresponding to
approximately 20 mm), independent of a concentration threshold. Thus, per image
field, the turbulent plume creates iso-surfaces that are at the maximum only about 1.5
times longer than the laminar iso-surface, and even shorter for higher concentration
thresholds. The essential advantage of the turbulent plume, as far as surface length (or
area in 3-D) generation and mixing efficiency are concerned, is therefore its tendency
to’i‘apidly spread in the cross-stream (i.e. vertical and transverse) directions, while
the laminar plume remains confined to the very close surroundings of the centerline.
Hence, the coverage length has to be related to the cross—st'rea,m“ extent of the plume
to assess its effective coverage length. It is very difficult to determine the cross-
stream extent of the plume up to which iso-surfaces appear. In particular, this extent
is not equivalent to the extent of the mean concentration field. Moreover, in the
present study we only have collected iso-surface data along the centeﬂine. Towards
the boundaries of the plume, the iso-surface structure can be expected to become more
sparse, and thus the total coverage length per image field is likely to be smaller than at
the centerline. Nevertheless, a very coarse estimate is possible if we assume the same

scaling of the iso-surfaces as presented for the theoretical mean concentration field in
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Sec. 2.1.7, i.e. a spread of the vertical and transverse extent in proportion to z~/2.

The 2-D extent of the plume in the vertical image plane would thén roughly grow
as ~1/2.. The total coverage length for Cin3 can be observed to be approximately
independent of the distance from the source. The effective:absolute coverage length: of
the plume at £ = 2000 mm would then be almost three times longer than at z = 250
mm, and the iso-surface area of the real 3-D plume would be about eight times larger,
yielding a molecular diffusion flux that is also enhanced by a factor of eight.

At small scales, the curves of the coverage length for different concentration thresh-
olds look very similar and seem to be only shifted.  Thus it may be valuable to

normalize them. For that purpose, we introduce the measure

| (Lz,tot)
(L2(A&))’

which we call the “coverage length underestimate” because it can be interpreted as

(Lanl/8)) = (43)

the underestimate of the total coverage length of an iso-surface when the iso-surface is
viewed at a scale larger than the Batchelor scale. For example, if the coverage length
at a scale ) is half of the total coverage length, the coverage length underestimate at .
that scale is two. The discretization is analogous to (L,) in Eq. 3.8. This measure,
applied to our data sets, is shown in Fig. 4.17.- Most interestingly, this' measure is
universal in the viscous-convective range, in analogy to the fractal dimension. For
scaies larger than the Kolmogorov scale, the underestimate decreases with increasing
concentrétibh threshold and with increasing distance from the source. In both cases,
the reason is thaﬁ the ‘total coverage length is not very large anyway.

Next, let us consider the LEB-scale PDF, (f2), which gives the distribution of LEB-
scales in the iso-surface data (Fig. 4.18). The LEB-scale of a point randomly placed in
the bounding box is the size of the largest square that contains the point but no part of
the iso-surface structure. At large scales the LEB-scale PDF is virtually independent
of the concentration threshold, while towards smaller scales-it decreases more and
more with increasing concentration threshold. Generally, a high LEB-scale: PDF at
small scales means a high probability of finding iso-surface structure in the proximity

of randomly positioned points in the bounding box. More iso-surface structure per
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Figure 4.17: Underestimate, (Loy) = (Lagot)/{(L2) of the total coverage length, as
a function of normalized scale, A/d;, for several concentration thresholds, Cy, . =
(C*) + m - sdev(C*), at four distances, z, from the source. The measure gives the
factor by which the total coverage length is larger than the apparent coverage length
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image field increases the LEB-scale PDF at smaller scales, and a sparse iso-surface
field decreases it. In addition, at small concentration thresholds, the LEB-scale PDF
increases with increasing distance from the source, while for higher thresholds, the
inverse trend can be observed. Again, this is consistent with our conclusions from
the results of other fractal measures, i.e. that the iso-surface structure becomes more
dénse at lower thresholds and more sparse at higher thresholds, when moving away
from the source. The LEB-scale PDF might be of interest in the artificial creatidn of
iso-surfaces for modeling.

The scale-cumulative length-area ratio, (€22) (Fig. 4.19), and its length-area ex-
ponent, {agq) (Fig. 4.20)‘, do not contain new information because they are directly
connected to the coverage length (by a constant factor) and to the coverage dimension
(by a constant summand), respectively (cf. Sec. 2.2.7). They are presented here for
completeness. }

Finally, the scale-local length-area density, (g2}, and its exponent (a,), are shown
in Figs. 4.21, and 4.22, respectively. Many of the plotted curves are not continu-
ous because of the logarithmic derivative in the definition of the length-area density.
Because (€2;) has regions of negative slope, the logarithmic finite difference is not
defined and therefore gapé form in the plots. The length-area density measures the
scale-local contribution of the iso-éurface structure to the scale-dependent length-area
ratio, or equivalently the contri‘bution to the coverage length. The scale-local con-
tributions decrease with increasing concentration threshold, consistent with a lower
scale-cumulative coverage length and with a sparse iso-surface field. Generally, smaller
scales provide higher local contributions to the coverage length, with the maximum
shifting towards the smallest scales for‘inqreasing distance from the source. As ex-
plained in Sec. 2.2.7, Catrakis et al. (2002) have shown that the fractal dimension
itself is a scale-cumulative measure, and therefore is influenced by the scale-local
length-area density of all scales larger than the considered scale.

In contrast, (a,) can be viewed as a scale-local dimension, able to detect scale-
local power-law scaling '(expressed by a constant scale-local dimension). Fig. 4.22 is

not very helpful in this respect, however. The only interesting feature is the hint of
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Figure 4.23: Scale-local length-area density exponent, {ay(A\/8;)), for two threshold
levels, Cy, | and C}j, 5, at the two locations nearest to the source. For scales larger than
the Kolmogorov scale (i.e. A\/8, > 1/, ~ —1.2), and for relatively low concentration
thresholds, the plateau in the profiles indicates a scale-local power law scaling behavior
of the concentration iso-surfaces with a constant scale-local fractal dimension of Dy &
1.5 = const. (indicated by the horizontal line).

a plateau in the curves for low concentration thresholds for the two locations nearest
the source. Evén a very narrow plateau can indicate scale similarity, as was shown
by Catrakis (2000). Oscillations are typical as we have seen in the evaluation of the
theoretical Koch curves in Sec. 3.3.3. Therefore, we combined several (o) curves into
one plot, specifically for the two locations nearest to the source, and for the lowest two
thresholds, C}, ;, and C}, o (Fig. 4.23). Indeed, a narrow but clear plateau is evident
at the lower end of the inertial-convective range of the turbulent concentration field,
with a scale-local fractal dimension of Dy = 1.5 = const.. The existence of a constant
scale-local dimension is consistent with the results for a jet reported by Catrakis
et al. (2002), but the particular value is different. Now that we have identified a
potential scale similarity, we can re-examine the coverage dimension and realize that

this particular scale range corresponds to the rather flat maximum in the coverage
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dimension plots (see Fig. 4.13). The fractal dimension is roughly constant in a
range of approximately half decade of scales. However, the scale similarity only holds
in a narrow range of scales, and for the lowest threshold considered in the present
study. Thus, further investigations towards lower thresholds are necessary to evaluate

practical significance of this Vfinding.

4.3 Discussion and oﬁtlook-

In the previous sections, we have presénted a comprehensive, qualitative and quan-
titative description of concentration iso-surfaces in a high Schmidt number (Sc =
1000) turbulent passive scalar field produced by an iso-kinétic point source in the in-
ertial layer of a fully developed turbulent boundary layer of an open channel flow. We
have identified some similarities but also significant differences to the more frequently
examined turbulent jets.

The most important finding of this study is the universal behavior of the iso-
surface coverage dimension in the viscous-convective range of the turbulent concen-
tration field. For the turbulent boundary layer and the source location specified in
the present study,‘the iso-surface coverage dimension is therefore known over a wide
range of scales, concentration thresholds, and distances from the source. As many
additional fractal measures are related to the coverage dimension, it is possible to
derive quantitative predictions about their behavior in the viscous-convective range.
Most of the fractal measures, however, are scale-cumulative, so that their absolute
values also depend on the coverage dimension of the iso-surfaces above the viscous-
convective range, which was found to be non-universal. In that case, we are restricted
to relative instead of absolute predictions.

In the present study, the coverage dimension is only available in discretized form,
with a rather coarse resolution due to the binary subdivision steps of the box-counting
algorithm. For practical applications, however, one might be interested in a continu-

ous function, especially if the analytical relations presented in Sec. 2.2.7 are used to
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Figure 4.24: Fitting of the coverage dimension in the viscous-convective range, by
means of a 2" order polynomial (thick curve). The thin curves are the measured
coverage dimensions profiles for various Gy and z prev1ously shown in Fig. 4.13.

calculate other fractal measures. For that purpose, we averaged the discretized cover-
age dimension (in the scale-normalized space A/ 6,,) over all concentration thresholds
and distances from the source for example given in Fig. 4.13 and fitted a second

order polynomlal curve. The result can be seen in Flg 4.24, where the polynomlal is

the thick curve and thin curves represent the numerous experlmental results In the
scale-normahzed v1scous-convect1ve range, i.e. for 20/ 10000 < )\/6b < 700/ 10000,

the coverage d1mens1on thus can approxrmated by
(D2(A/8b)) = 0.12 - logio (/) + 0.75 - logyo(A/ &) + 2.2. (4.4)

Obv1ously, the fitted curve deviates from the measured results near the Kolmogorov
scale, but a more exact fit would requlre a hlgher-order polynom1al whlch makes the
approach more cumbersome. We also have to keep in mind that the Kolmogorov scale
is only a scaling estimate and that the viscous-conuective renge theoretically starts

significantly below the Kolmogorov scale. Over the rest of the viscous-convective
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range, the polynomial fits the measured results very closely. In particular, the ex-
pression for (D,) abproaches unity at the Batchelor scale, as can be expected from
theoretical considerations. |

Now, let us use the fitted relation to calculate the coverage length underestimate,
(Lou). An analytical relation can be derived from Egs. 2.37 and 4.3. In the general
notation valid for arbitrary dimensionality _(eompere Sec. 2. 2 7), we obtain

. : d
(Las3/50) = il = () p{ <‘ Gs ))l(l{sal)} 4

An explicit analytical expression is only possible because the covera_ge length under-

estimate, at a particular scale ), solely depends on the coverage dimellsion below A
(as opposedl to miost other fractal measures). For our 2-D case, we carl siibstitute the
approximated analytical expression for the coverage dimension, Eq. 4.4, into Eq. 4.5

and solve the integral to get the simper expression

-‘ exp'{o.'oofs An¥(\/8) +0.16 - In?(A/65)
| +2.2.1n(A/6b)%9.0}. o (e)

In Fig. 4.25, the analytical result of Eq. 4.6 (thick curve):is compared with the
measured results (numerous thin curves) of all concentration thresholds and distances
from the source shown in Fig. 4.17. As can be ob'sefved, the coverage length underes-
timate is weakly sensitive to deviations of the coverage dimension, due to the integl'al
relation. As'a result, the analytical SOIutieﬁ fits‘the experimental results very closely,
over the entire viscous-convective range. It is redrawn in Fig. 4.26 as a function of
absolute length scale, and with higher resolution.

In order to interpret the s1gn1ﬁcance of the presented results, 1t is necessary to
recall the limitations of the present study. Flrst we only collected measurements at .
the plume centerline. It is therefore not known whether the universality of the fractal
dimension holds off the centerline, i.e." in the vertical'and transverse directions. Also,
we do not know the cross-sectional extent of the plume, and we do not resolve the
largest scales of the iso-surfaces. For a complete description of the mixing process,

we need to consider the plume as a whole. Thus, knowledge about cross-sectional
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Figure 4.25: Analytical versus measured underestimated coverage length. The thick
curve is analytically calculated from the fitted curve, and the thin curves are the
measured results for various Gy, and z previously shown in Fig. 4.17.

length-scaling behavior of the concentration iso-surfaces would be crucial. Secopd,
the experiments have been conducted with the source at a fixed vertical location
within the turbulent bounda,ry layer, émd for a fixed Reynolds number. . Thus, we
are unable to comment oﬁ .the sensitivity of the.len-gth-scaling behavior to these
parameters. Strictly, we can only talk about a un.ivers‘al behavior of the $peciﬁc
plume investigated, not of plumes in tufbulent boundary layers in genefa}l. Thiqd aﬁd
most important, our investigation was conﬁned to two dimenéions, whereaé turbulent
mixing prqcésses are inherently thr,ee-dime‘ansional.' As discussed exj;ensiyely in _Seg.
2.2.6, we underestimate the surface generation of turbulence when measuring in' two
dimensions. Thus, we need to know hoi;s) the obtained.resuvlts can be extrépblated
to 3-D concentfation fields. For example, do the iso-surfaces have similar small-scale
.propertles 1n the vertical and in the transverse plane, 1e .are they 1sotrop1c‘? If
we assume, the cited results of Catrakls and Bond (2000) are apphcable to our ﬂow

geometry, it could be argued that the coverage dimension that we found in 2-D,

114



1.8f
L7f -
1.6}

1.5

(L2u)

1.4F-

1.3F--

11

- - 1 1
20 40 60 80 100 200 300 500 700
» A [mm]

Figure 4.26: Anaiytical underestimatéd coverage length as a function of absolute
length scale, between the Batchelor Kolmogorov length scales.

increased by one, is a lower limit to thé’real fractal dimension.

Despite the limitations of the present study, we are confident that the observed
small-scale universality of the scaling behavior of concentration iso-surfaces in a tur-
bulent boundary layer is an important discovery, both theoretically and practically.
From a theoretical point of view, it would be interesting to identify the physical mech- -
anisms that cause thg universality. Universal behavior of scales in spectral space,
although it is known today that this is only an approximation, led to a phenomeho-
logical spectral-space turbulence theory. Further studies in this area of physical-space
scale universality could lay the foundation for a physical-space turbulence theory. .

How can such an interesting result be used in practice? Despite promising the-
oretical progress in the last two decades, the study of fractal geometry of scalar
interfaces in fluid turbulence is still characterized by very few practical applications.

We would like to suggest a possible application here. The coverage length is related
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to the iso-surface area in three dimensions. At a particular concentration (thresh-
old), the total interfacial area determines the molecular flux according to Fick’s law
(Eq. 2.25). Molecular diffusion across high concentration gradients ultimately leads
to a dilution of the plume. In the previous section, we introduced a measure, (Lga),
for the underestimation of the total interfacial area that occurs when viewingthe
concentration field at resolutions larger than the Batchelor scale. In this section, we
additionally derived an analytical relation for (Lz,u) in the 2-D case, based on the
observed small-scale universality of the fractal dimension. This information could be
used to develop a subgrid-scale turbulence model for Large Eddy Simulations (LES).
The problem associated with all numerical simulations of turbulent flows (except for
.Direct Numerical Simulation, DNS), is that the underlying grid does not resolve the
smallest scales in the field. Assume that we simulate a continuous point source in
a turbulent boundary layer with a grid of resolution Ag.iq, Somewhere between the
Kolmogorov scale and the Batchelor scale (i.e. np < Agria <‘ 7). Hence, the velocity
field is fully resolved, but the concentration field is under-resolved. As a consequence,
the molecular flux is underestimated due to an underestimation of the total surface
area between adjacent fluid elements. Now, (Lq,), which is a function of Agi4, but is
independent of the concentration and the distance from the source, gives the factor
of how')vv much larger the surface area is:compared to how it appears at that resol_utiorr

Agrid- Thus, we expect that the underestimated molecular flux between adjacent grid

points, given by. the scalar evolution equatlon in the set of govermng equations of the
numerical mmulatlon, could be corrected in some way based on (Lgy).

Finally, what can be done in the future? This study is only a starting point to the
investigation of the fractal gedmetry df fluid interfaces in turbulent boundary layers.
In fact, the limitations of the study, as summarlzed above, already indicate a line
of approach to further studles Besides a complete three-dimensional analysis of the
concentration field, it would be also interesting to expand the range of concentration
thresholds towards lower concentrations (of interest e.g. in environmental engineering,
where pollutant limits are typically very low), and to expand the range of distances.

Therefore, an improvement of the signal to noise ratio is necessary. The parameters
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Reyholds number and verti(':alwloéﬁtion of the source should be altered to invéStigate
influerices of the mixing transition and the turbulénce intensity, respectively. Finally, -
there is an additional measure for .the description of geometrical structures,. called
“lacunarity”. (for an overview, see for example Plotnick et al., 1996; Allain and Cloitre,
1991;:Smith et al., 1986). This.scale-dépendent -quantifyl measures the degree to which
a spatial pattern deviates from translational invariance. It can be related to the term
of intermittency and thereby completes our framework of fractal measures. Overall,
it may be appreciated that fractal geometry, with its affinity to detailed descriptions
of physical-space properties, has become a powerful tool in-the advance of turbulence

research. .
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