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SUMMARY

Historically, robotic perception algorithms have been developed with a focus onego-

centric, single-agentsystems. However, such systems are susceptible to single points of

failure. For instance, a single sensor failure or adverse environmental condition can ren-

der an isolated robot “blind”. On the other hand, robots inmulti-agentsystems have the

opportunity to overcome potentially dangerous blind spots, via communication and col-

laboration with their peers. In this thesis, we address thesecommunication-criticalsettings

with Collaborative Perception and Planning for Multi-View and Multi-Robot Systems.

In Collaborative Perception (CP), a robot must improve its local performance by leveraging

complementary visual information unevenly distributed across several robotic teammates.

First, we exploreinstantaneousCP [1, 2, 3, 4], where robots are allowed to share visual

information captured ata single instant in time. For this setting, we develop several learned

communication and spatial registration schemes. We demonstrate improved egocentric

semantic segmentation accuracy for a swarm of obstruction-prone aerial quadrotors.

Second, we exploreshort-termCP [5, 6, 7], where robots can share representations

built from short sequences of observations. We develop two separate methods for ef-

�ciently collaborating onmapsand costmaps. As compared to single-agent and multi-

agent baselines, our distributed multi-agent SLAM algorithm shows reduced bandwidth

and memory consumption for a mapping task, and our multi-agent trajectory evaluation

method shows reduced collision rates for a connected self-driving vehicle task.

Third, we explorelong-term, large-scaleCP [8, 9], where robots must leverage com-

plementary information captured by large numbers of teammates over long periods of time.

Speci�cally, we address the setting of production-scale urban farming, where specialized

husbandry robots image the same plant at different stages of its lifecycle. We demonstrate

state-of-the-art performance in multi-robot instance correspondence and multi-view yield

estimation.
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CHAPTER 1

INTRODUCTION

1.1 Human Perspective

Back in my mid-teens, my father taught me how to drive a car. Sometimes, his lessons

would include discussions of imaginary driving scenarios. One hypothetical scenario stuck

with me—imagine the following: you must drive your car down a suburban neighborhood

road, one that's �anked by dense rows of parked cars. In the vast majority of cases, this

journey is monotonously easy: just keep cruising straight ahead. However, a good driver

must be prepared for the rare case: at any moment, a playful child might dash into the road

from between two parked cars. This rare event can have deadly consequences.

Part of what makes this situation so unnerving is that it can happen to any driver, re-

gardless of experience or focus. Humans are imperfect, egocentric agents. We are not

omniscient: we perceive the world through a limited set of limited-range senses, centered

around ourselves. Through no fault of our own, we have blind spots.

However, each of us is able to overcome these limitations; we can (and do!) increase

our perceptive range far beyond our own bodies and senses. In many cases, we do so via

collaboration with others. Just think, in the above example of the suburban road, what if a

pedestrian bystander notices the situation and �ails his arms to warn us of the unseen child?

Intuitively, many challenging situations become easier (and safer) with collaboration.

1.2 Robot Perspective

Anecdotally, the same challenges that humans face (as egocentric, myopic beings), so do

machines [10, 11]. Since the publication of this document, there have been numerous col-

lisions and several fatalities attributed to self-driving cars [12]. Most of these autonomous
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agents have operated with an egocentric mindset—each agent is equipped with a suite of

sensors centered on the frame of the agent. This egocentric paradigm is commonplace in

mobile robotics, especially since sensor packages are expensive and dif�cult to maintain

at scale. Despite its prevalence, egocentric sensing has several pitfalls. As with human

senses, information from these robotic sensors suffers from a variety of degradations, in-

cluding imperfect environmental conditions (rain, bright sunlight), broken hardware, sensor

range limitations, and line-of-sight occlusions. Any of these sensor degradations can lead

to dangerous robotic planning decisions.

However, what if robotic agents could talk to each other? What if they could collaborate

and coordinate? In this proposal, we explore severallearning-basedmethods for robotic

collaboration, especially as they relate to processing and communicatingvisually-rich in-

formation duringcommunication-criticalscenarios. We demonstrate that our methods en-

able teams of connected robots to overcome sensor degradations and situational adversity.

1.3 Traits of Effective Collaboration

Effective collaboration schemes should beperformant , resilient, ef�cient , scalable, and

opportunistic. Throughout this document, we report metrics that assess those traits:

1. Performant: Since collaborating agents have access to a broader footprint of data,

they should have improved performance compared to isolated agents. In this work,

we evaluate performance on both perception and planning tasks. For these tasks, we

report common metrics such as pixel accuracy and collision rates.

2. Resilient: Since collaborating agents have access to complementary views of the

same scene, they should be resilient to single points of failure. Improved resiliency

might include overcoming a degraded camera sensor by accessing complementary

data from collaborators. In this work, we assess resiliency by evaluating performance

in adverse situations, as caused by sensor corruptions and perceptual obstructions.
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3. Ef�cient: Since collaborating agents have access to distributed resources such as

computation and physical mobility, they should see improved task and computational

ef�ciency. In this work, we address communication bandwidth ef�ciency, computa-

tional ef�ciency, and time ef�ciency.

4. Scalable: Methods should scale with the number of collaborators. Added agents

should improve the previously described metrics, albeit with diminishing returns.

5. Opportunistic: Collaborating agents should be opportunistic. Each collaborator

should be able to engage or disengage the insights of other collaborators when those

insights are bene�cial or detrimental, respectively.

1.4 Thesis Overview

In this thesis document, I describe my investigation intoCollaborative Perception and

Planning for Multi-View and Multi-Robot Systems. I introduce three distinct areas of

this topic, includingInstantaneous Collaborative Perception(Part I), Short-Term Col-

laborative Perception and Planning(Part II), andLong-Term, Large-Scale Collaborative

Perception(Part III). Using the dimensions described in section 1.3, my collaborators and I

show how different types of collaboration may be applied across multiple settings towards

several tasks. I summarize my peer-reviewed contributions in tables 1.1 to 1.3 at the end of

this chapter.

1.4.1 De�nition: Collaborative Perception

Collaborative Perception (CP) refers to theextraction, communication, alignment, andfu-

sionof distributed visual inferences. Given multiple views from other agents,CP methods

combine these observations with an egocentric view to improve performance on a task.
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1.4.2 ThesisStatement

Multi-agent systems can augment single-agent methods withcollaborative perception,

improving performance incommunication-critical tasks and settings.

1.4.3 CollaborationTasks

For this thesis, I consider the role of collaboration in two fundamental robotic tasks—

perceiving and planning. Incollaborative perception, multiple robotic sensors or agents

share local insights to improve local1 or global2 scene understanding. Incollaborative

planning, multiple robotic agents collaborate to improve how they plan for future action,

such as with collision-free trajectory planning. Unlike most prior work, my collaborators

and I directly investigatecommunication-critical scenarios—situations where there is a

large performance gap between isolated and collaborative algorithms.

1.4.4 CollaborationMethods

There are many ways to collaborate information. The work presented in this thesis primar-

ily focuses on distilling and exchanginghigh-dimensional, image-structuredinformation—

such as high-resolution images from camera sensors—to aid in some downstream task.

Currently, deep neural networks achieve state-of-the-art performance on image-based tasks

[13, 14, 15, 16, 17], but these methods are primarily designed forsingle-agentsystems.

I seek to extend these learning-based techniques tomulti-agentsystems. However, these

techniques are double-edged swords: on the one hand, they produce rich intermediate rep-

resentations that can be shared for several downstream tasks across several agents. On the

other hand, these rich representations are inherently expensive to communicate. In this doc-

ument, I propose several different mechanisms foref�ciently leveraging the insights from

multiple views and multiple robots, for both egocentric and global tasks.

1Local scene understandingrefers to inferences that asingleagent cares about, such as a local semantic
segmentation mask.

2Global scene understandingrefers to inferences thatall agents care about, such as a map.
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1.4.5 ThesisParts

In Part I , I addressInstantaneous Collaborative Perception. This topic relates to iden-

tifying and exchangingimmediatelyuseful information for perception tasks. For instance,

if a rock cracks the camera lens of a fast-moving self-driving vehicle and the crack ob-

scures the image pixels that correspond to a pedestrian, then that vehicle should useim-

mediatecollaboration (with unobstructed partners) to “see past” the degradation. Across

several separate investigations [1, 2, 3, 4], we demonstrate that instantaneous collaboration

mitigates the adverse effects of sudden input degradations, especially for aerial quadrotor

swarms. On the task of obstruction-prone semantic segmentation, our method achieves an

absolute11%IoU improvement over baselines, at a fraction of the communication cost.

In Part II , I addressShort-Term Collaborative Perception and Planning. Unlike the

previous section, which focuses on single frame inference, this section focuses on sharing

representations aggregated overmultiple timesteps. For the task of motion planning for

self-driving vehicles, I show that our collaborative multi-agent trajectory exchange mecha-

nism [5, 6] reduces overall collision rate, by up to57%with eight agents compared to the

single-agent version, while consuming an order of magnitude less bandwidth than compet-

ing methods. For the task of multi-robot mapping, I demonstrate a distributed method for

multi-robot SLAM [7] that is both time-ef�cient and bandwidth-ef�cient.

In Part III , I addressLong-Term, Large-Scale Collaborative Perception. Speci�-

cally, I tackle yield forecasting for production-scale robotic farming. This setting poses an

extreme challenge for collaborative perception, in terms of multi-robot scale, task duration,

and image matching dif�culty. I describe a method for corresponding unique objects be-

tween numerous heterogeneous robots, despite the drastic appearance changes that occur

over long time horizons. On a high-volume matching task with 100 robots, I show that our

transmission policy yields a retrieval accuracy of 64.7%, a 12.5x reduction in bandwidth,

and a 20.5x speedup over a centralized baseline. This accuracy allows us to analyze the

growth patterns of over700; 000individual seeds for yield forecasting.
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Table 1.1:Types of Collaborative Perception (CP) included in this thesis.

Part Type of Collaboration Thesis Chapters

I Instantaneous CP: Identifying Helpful Communication Partners
Identifying and Aligning Informative Communication Content

II Short-Term CP: Planning Trajectories with Partners
Building Maps with Partners

III Long-Term, Large-Scale CP: Production-Scale Robotic Farming

1.5 Contributions

My collaborators and I devise methods for three different types of collaborative perception,

as highlighted in table 1.1. Throughout this thesis, I show how differentcollaboration types

enhance performance across numeroussettingsandtasks.

First, we show thatinstantaneous collaborationcan improveegocentric semantic seg-

mentation accuracyfor aswarmof aerialquadrotors:

• We developed and released one of the �rst photorealistic, multi-agent collaborative

perception datasets [1]. Our methods [1, 2, 3, 4] introduced a novel learnable hand-

shake communication mechanism toidentifycommunication partners andalign com-

munication content. We demonstrated improved performance over key baselines,

resiliency to obstructions and other degradations, and ef�ciency for bandwidth and

compute.

Second, we show thatshort-term collaborationcan improvemapping andcollision rates

for connectedgroundvehicles:

• For the task ofmulti-robot mapping , we developed a distributed RBPF SLAM algo-

rithm [7] that compactly communicates SLAM information asparticles, rather than

full observation sequences.
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• For the task ofmulti-robot planning , we highlighted a dangerous bias in existing

collaborative perception datasets. This natural bias downweights the importance of

rare, but dangerous, planning situations. In response, we developed a lightweight

simulation wrapper [5] to assess (and augment) the communication-criticality of self-

driving scenarios. To address these critical scenarios, we developed a multi-agent tra-

jectory exchange mechanism [5, 6]. Our method allows multi-agent systems to ben-

e�t from costmap-based planning by performing distributed motion forecasting and

distributed validation of trajectory samples. This collaboration allows for individual

agents to avoid poor planning decisions that result from perceptual shortcomings,

while maintaining low bandwidth consumption and computational overhead.

Third, we show thatlong-term, large-scale collaborationcan improveyield forecasting

for aproduction-scaleroboticfarm:

• Our method allowed for vast quantities of heterogeneous robots (N > 100) to �nd

(and align) unique instances of an object that changes signi�cantly over time, such

as a tray of growing plants over its 30 day lifecycle. We leveraged the decentralized

processing of thousands of robots to compute alignment and age-invariant descriptors

for instance matching. We demonstrate state-of-the-art scalability and retrieval accu-

racy for a challenging image matching task, enabling an unprecedented multi-view

analysis of robotic seeding policies.

With the evidence described in the proceeding chapters, I argue for the thesis statement:

• Multi-agent systems can augment single-agent methods withcollaborative percep-

tion, improving performance incommunication-critical tasks and settings.

Ultimately, I hope that our foundational work in collaborative perception will help others

transition single-agent systems to robust and ef�cient multi-agent capabilities. I summarize

our peer-reviewed contributions to this �eld in tables 1.2 and 1.3.

7



Table 1.2:Summary of publications and active submissionsy.

First
Part Paper Abbr. Paper Title Citation Author

I Who2com: Collaborative Perception
via Learnable Handshake Communication

[1]

When2com: Multi-Agent Perception
via Communication Graph Grouping

[2]

MAIN : Enhancing Multi-Robot Perception
via Learned Data Association

[3] X

MASH: Overcoming Obstructions via Bandwidth-Limited
Multi-Agent Spatial Handshaking

[4] X

II WNT: We Need to Talk: Identifying and Overcoming
Communication-Critical Scenarios for Connected SDVs

[5] X

MATE : Communication-Critical Planning
via Multi-Agent Trajectory Exchange

[6] X

RBPF-SLAM: Multi-Robot Distributed RBPF SLAM
via Particle Exchange

[7]

III UNO: Uncertainty-Aware Noisy-Or Multimodal
Fusion for Unanticipated Input Degradation

[8]

N-QR: Natural Quick Response Codes
for Multi-Robot Instance Correspondence

[9]† X

Table 1.3:Summary of publication settings.

Attributes
Part Citation 1st Author Conference Input Output Transform Nview Setting

I Who2com [1] ICRA'20 RGB + D SemSeg RGT (t) 6 UAV

When2com [2] CVPR'20 RGB + D SemSeg RGT (t) 6 UAV

MAIN [3] X ICRA-WS'21 RGB SemSeg R(t) 6 UAV

MASH [4] X IROS'21 RGB SemSeg R(t) 6 UAV

II WNT [5] X ICRA-WS'23 f BEV 3sg Traj RGT (t) < 15 SDV

MATE [6] X ICRA'23 f BEV 3sg Traj RGT (t) < 15 SDV

RBPF-SLAM [7] US Patent'22 f Lidar 10mg Map RGT (t) 2 UGV

III UNO [8] ICRA'20 RGB + D SemSeg I 2 UAV
N-QR [9] X Submitted f RGB 30dg CropYield R 100 Ag
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CHAPTER 2

LITERATURE SURVEY

In this chapter, I discuss the related works for three types of collaborative perception:In-

stantaneous Collaborative Perception(section 2.1),Short-Term Collaborative Percep-

tion and Planning (section 2.2), andLong-Term, Large-Scale Collaborative Perception

(section 2.3). I highlight prior work in the beginning of each section, and towards the end

of each section, I discuss how our contributions stand apart.

2.1 Instantaneous Collaborative Perception

A key capability for collaboration is identifying who to communicate with and what infor-

mation to exchange, even if just for a single snapshot in time. In this section, I highlight

the related work forimmediate collaborative perception, especially relating to egocentric

semantic segmentation. Unlike the normal semantic segmentation setting, this modi�ed

setting allows each agentbandwidth-limitedaccess to other observers in the scene. The

task is madecommunication-criticalby introducing image-space corruptions and world-

space obstructions.

To address this challenge, my collaborators and I �rst identify helpful communication

partners, as explored by our learnable handshake communication mechanism [1, 2]. Next,

we extend this mechanism to accommodate unknown visual transformations between col-

laborators [3, 4]. These algorithms combine ideas from several domains of prior work,

includingsemantic segmentation, image correspondence, communication, inpainting,

multi-view fusion, andmulti-agent communication. Here, I highlight the learning-based

approaches from each supporting domain.
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2.1.1 Datasetsfor CollaborativePerception

Collaborative perception methods determine how to combine an egocentric view with views

from other agents in order to improve performance on a task (e.g. semantic segmentation).

Such methods require large amounts of vision data to train and test. During the original

publication of our works, we were confronted with a challenge: there was no easy way to

test a modern, data-hungry computer vision algorithm in a multi-robot swarm setting. To

effectively test collaborative perception, we required the following:

• An interesting environment consisting of several dynamic object classes, especially

ones which occlude each other through normal motion (i.e. cars and pedestrians).

• The ability to spawn multiple robots, each with rich sensor information, including:

– RGB image observations (ideally high-resolution and photorealistic)

– Dense annotations (for semantic segmentation)

– Depth maps and global pose data (for image warping between agents)

• The ability to control robots such that they intermittently look at a overlapping parts

of the scene.

Most open-source datasets were restricted to single agent vision [18, 19]; and among the

few multi-agent datasets that existed, most provided non-photorealistic image data [20,

21]. In response to these requirements, we created theAirSim-MAP dataset [1] using

the AirSim simulator [22]. Our dataset consists of color and depth images captured from

multiple, moving vantage points in a shared, dynamic scene. Additionally, we augmented

this dataset to be communication-critical, where we incentivize collaboration by either (1)

corrupting the inputs of individual agents with 2d image-space noise (as inWhen2Com

andMAIN ) or (2) inserting realistic, adversarial 3d obstructions (such as trees and wildlife)

into the shared scene (as inMASH). We are happy to report that our dataset has enabled
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several follow-up works [2, 3, 4, 23] to explore the collaborative perception task. Further

details are discussed in section 3.1.

2.1.2 SemanticSegmentation

One common perception task for robotic systems issemantic segmentation. Semantic

segmentation refers to the process of inferring a class label for every pixel in an image.

This standard computer vision task stems from a long line of developments in the �eld of

deep learning for visual inference [13, 14, 24, 15, 25]. In chapters 3 and 4, we usemulti-

agentsemantic segmentation as the supervisory task for collaboration—namely, each agent

should produce the most accurate semantic segmentation mask, especially when given a

bandwidth-limited ability to communicate with teammates.

In prior methods, deep-learned semantic segmentation networks use a learned encoder

and decoder, as withSegnet[16] andU-net [17]. The encoder transforms and spatially

downsamples an input into a dense feature representation, and the decoder progressively

upsamples that representation to the original spatial dimensions.Segnetpreserves �ne

details by using unpooling indices whereasU-net uses skip connections with earlier feature

embeddings.

In our work, we leverage these same semantic segmentation networks, although with

some slight modi�cations. In order to communicate and fuse data, our methods extract and

transmit the middle layers of the described encoder-decoder structure. These modi�cations

allow us to tackle the novel task ofmulti-robotsemantic segmentation.

2.1.3 ImageCorrespondence

Multi-robot systems need an effective way to correspond data between each other, espe-

cially when that data consists of rich visual inputs like color images. Prior work inimage

correspondenceaddresses how to correspond visual features between pairs of images,

which is especially useful for multi-view and multi-robot settings. In chapter 4, we corre-
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spond individual pixels between pairs of communicating aerial quadrotors. In chapter 7,

we correspond images of unique trays of plants between pairs of agricultural husbandry

robots.

To perform this correspondence, the learning-based approaches of prior works typically

use learned feature extraction and comparison modules. These approaches range from

sparse matching via learned interest points [26, 27] to dense matching with patches [28]

and cost volumes [29].

Dense matching techniques are particularly relevant to our work in chapter 4, which

seeks to correspond pixels between pairs of independent agents. Speci�cally, we extend the

cost volume decoder ofDGC [29] into a cost volumeautoencoder, which can be trained to

perform uncertainty-aware warping and in�lling. However, unlike prior work, we address

a novel deployment setting—a bandwidth-limited deployment of multiple robots—where

we must consider the additional constraint of scalable computation and communication.

2.1.4 OpticalFlow, VisualOdometry,andVisualSLAM

Several other domains of prior work address more robot-focused applications ofimage

correspondence, such asoptical �ow , visual odometry, andvisual SLAM. Typically

in these works, a robot translates through a scene, and it performs image correspondence

betweenconsecutive single-agent image captures. In chapter 4, our setting also includes

robots that move through a scene. However, these robots communicate with each other and

do not buffer consecutive captures. Regardless, we present these related works to highlight

a recurring theme across image correspondence: cost-volumes.

Speci�cally, optical �ow andvisual odometry enforce additional constraints on the

image correspondence setting. Most notably, they often assume that images are captured

sequentially and with small relative displacement. These assumptions are typically baked

into the architectures of optical �ow models [30, 31, 32] and visual odometry models [33,

34]. More recent work [35] has addressed larger displacement settings, though at the ex-
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pense of added architectural and computational complexity. Several of these architectures

use variations on cost-volumes in order to perform the dense matching required for down-

stream tasks.

As discussed earlier, our work in chapter 4 leverages a cost-volume to performing

dense visual correspondence. However, instead of corresponding features betweencon-

secutive, single-agentimages, we correspond features acrosssynchronized, multi-agent

images, which results in more signi�cant visual differences.

Another body of tangential prior work isvisual SLAM. These methods correspond

image features across observations but also create a spatial representation (i.e. a map)

of these features. This spatial representation allows for the features to be more reliably

corresponded and referenced for localization estimates. A notable learning-based example

of visual SLAM is EMPNet [36] which uses a dense depth map to reproject image patches

(and associated learned feature embeddings) into a 3D map. Subsequent 3D reprojections

are then corresponded via weighted point cloud alignment to build the map and to produce

localization estimates.

Though inspired by the learned correspondence of visual SLAM, our work in chapter 4

addresses a different problem setting. Rather than building an accurate map from a continu-

ous sequence of observations collected over time, we instead focus on how to best leverage

currently available sensor information for an immediate prediction task, especially from

several independent and disparate viewpoints.

In later sections, we look beyond theimage-basedcorrespondence module ofvisual

SLAM . In chapter 6, we introduce a novel method forlidar-basedmulti-agentSLAM . We

provide a more complete discussion of the related works for SLAM in subsection 2.2.7.

2.1.5 Inpainting

Sometimes, robots face degradations that obstruct their �eld of view.Inpainting methods

attempt to replace missing or corrupted regions of an image based on surrounding image
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context [37]. A few of our works address the same task of overcoming image occlusions

and degradations, especially when performing obstruction-prone semantic segmentation.

In chapter 4, we present a multi-robot approach for performinginformedinpainting—rather

than hallucinating missing regions, we �nd those regions in the �elds of view of teammates.

One prior work is the blind inpainting convolutional neural network [38], which over-

comes image corruption by learning from a dataset that contains corrupted images and their

non-corrupted counterparts. The work of Purkaitet al. [39] employs a similar method to

in�ll the occluded semantic masks of foreground and background objects. However, un-

like inpainting works which “hallucinate” plausible replacements for occlusions, our work

leverages the perspectives of multiple agents to “see past” those occlusions.

2.1.6 Fusion

Multi-robot systems need to intelligently combine multiple streams of data.Fusion meth-

ods combine features from multiplealignedobservations to improve the performance of

some downstream task. Most prior work in fusion addressesmulti-modal, egocentricfu-

sion, where complementary observations are captured from roughly the same perspective,

albeit from different sensor modalities. In chapter 4, we use fusion to combine semantic

segmentation logits from multiple robots in order to improve semantic segmentation accu-

racy. In chapter 5, we fuse distributed costmap samples from multiple self-driving vehicles

to reduce collision rates. In chapter 7, we fuse agricultural metrics between husbandry

robots to improve yield forecasts.

In the realm of deep-learned fusion, several prior works explore the impact of fusing

information at different representation layers of a convolutional neural network, as demon-

strated by various early, middle, and late fusion schemes [40, 41]. For instance,UNO [8]

performs late fusion with an uncertainty-aware, noisy-or fusion mechanism. This mecha-

nism is able to handle unanticipated input degradations for an aerial vehicle. It overcomes

image noise (i.e. salt and pepper noise) and environmental noise (i.e. fog) by fusing parallel
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but heterogeneous input streams (i.e. color and depth images).

2.1.7 Multi-View Fusion

Sometimes, multi-robot systems need to combine visual information from multiple vantage

points, which follows a similar objective as prior work inmulti-view fusion. These meth-

ods combine multipleunalignedobservations into a shared representation that can then

be decoded for some task. Typically, prior work in this area considers perspectives that

are static and unchanging over time. For instance, the Multi-View Convolutional Neural

Network (MVCNN ) [42] classi�es 3D objects by combining the features of multiple static

views into a single representation with a view-pooling operation. Non-learned multi-view

fusion, as with multi-view inpainting [43, 44], uses 3D reconstruction techniques or depth

data to warp image data between viewpoints and perform exemplar-based in�lling.

On the other hand, our work performsmulti-agentfusion, where observations are cap-

tured from non-egocentric perspectives that change over time. Unlikemulti-modaland

multi-viewfusion, our method must perform alignment inreal-timeprior to fusion. Com-

pared tomulti-viewfusion, our task does not involve building a shared representation, but

instead focuses on improving egocentric performance for every individual.

After alignment, our methods follow the pattern of late fusion, especially since this type

of fusion operates with the most compact inferences. In chapter 4, our method uses late

fusion to combine semantic segmentation logits. In chapter 5, our method uses late fusion

to combine the cost values sampled from costmaps. For both forms of fusion, we leverage

an uncertainty-aware fusion mechanism, similar toUNO [8], which allows multiple robots

to combine their observations based on the con�dences of those observations.

2.1.8 LearnableCommunication

Typically, multi-robot systems consist of physically separated agents that must use com-

munication (as enabled by antenna-based transmitters and receivers) to send and receive
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data. Based on the speci�cations of this physical layer communication, teams of agents are

often only afforded a limited communication budget, measured in terms of bandwidth. In

section 3.2, we presentWho2com[1] andWhen2com[2]. This set of algorithmic contri-

butions relates tolearnable communication, which involves the exchange of information

across multiple observers via learned, compact features.

Prior work, such asCommNet [20] andTarMac [45], assume full connectivity be-

tween communication agents and hence consume an unnecessary amount of communi-

cation bandwidth. On the other hand, ourWho2Com [1] and When2Com [2] methods

(chapter 3) use a learned handshake communication protocol to pass complementary infor-

mation between degraded and non-degraded agents.

2.1.9 AttentionMechanism

To perform learnable communication, our approaches in chapters 3 and 4 leverage the

generalizedattention mechanism[46, 47]. In our case, “attention” translates into a com-

municability score. Speci�cally, each agent broadcasts a learnedqueryvector to the others.

The other agents compare thisqueryagainst an internalkeyvector to produce a matching

score. Then, this matching score is used to forward and fusefeaturevectors from con-

tributing agents for eventual decoding into the �nal task output. The matching score may

be used to identify and prune weak communication partners, thus saving valuable band-

width. Our subsequent work extends this one-dimensional handshaking mechanism into a

two-dimensionalspatialhandshaking mechanism. This extension allows the network to ef-

�ciently identify patches of an image for bandwidth-limited exchange across agents. Please

refer to chapters 3 and 4 for more details.
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2.2 Short-Term Collaborative Perception and Planning

Another important capability for collaborative perception is leveraging inferences that are

built up over time. Unlike section 2.1, which presented areactivesolution for collaboration,

this section allows for a moreproactiveandstatefulsolution—robots are able to buffer

multiple observations from the past, compute representations for current and future states,

and communicate those representations. In other words, the previous section focused on

instantaneous collaboration(via communication of single frame inferences); this section

addressesshort-term collaboration(via communication of representations created from

multiple sequential frames). Within this setting, we investigate two common short-term

collaborative tasks—motion planning andmapping.

For collaborative motion planning, a robot must improve its individual planning ca-

pabilities (i.e. reduce collision rates) by leveraging sequences of egocentric observations

from other teammates. Speci�cally, we consider the task ofcollision-free trajectory plan-

ning for connected self-driving vehicles. In this task, vehicles must safely navigate through

contentious driving situations despite each agent having imperfect observability. As further

discussed in chapter 5, we present aMulti-Agent Trajectory Exchange mechanism [6, 5],

which builds on prior work inmotion forecasting, costmap-based trajectory planning,

anduncertainty-aware fusion. These components combine to improve resilience in dan-

gerous scenarios for self-driving.

Forcollaborative mapping, a team of robots must generate a consistent global map by

combining egocentric sequences of observations. As will be discussed in chapter 6, we in-

troduce a distributed Rao-Blackwellized Particle Filter (RBPF) Simultaneous Localization

and Mapping (SLAM) algorithm [7] that ef�ciently exchanges the particles from a particle

�lter, to more quickly build a shared map during robot rendezvous. This algorithm builds

on prior work in the domain ofSLAM andparticle �ltering .
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2.2.1 Motion Forecasting

Robots sometimes need to predict how scenes will unfold, given a sequence of input obser-

vations. Motion forecasting methods [48, 49, 50] predict the future movements of other

actors in the same scene as the primary robot. In chapter 5, we consider the challenge of

motion forecasting and planning during self-driving car scenarios with multiple collaborat-

ing vehicles. To maneuver safely through this scene, we �rst perform a distributed form

of motion forecasting, where each individual self-driving vehicle predicts how its local

scene will unfold. These distributed representations can then be aggregated for multi-robot

planning.

By forecasting the motions of others, downstream planners can more effectively and

safely evaluate potential motion plans. As one example, MotionNet [41] uses a spatial-

temporal pyramid network to transform a sequence of lidar observations into a Bird's

Eye View (BEV) map of motion forecasts. Our work similarly leverages a convolutional

neural network to transform a sequence of BEV occupancy observations into a sequence

of BEV occupancy forecasts. However, our work differs in that we speci�cally address

settings where single-agent motion forecasting falls short of providing accurate predic-

tions, due to shortcomings like limited sensor range and occlusions. These situations are

communication-criticaland require multi-robot collaboration for the best single-agent per-

formance.

2.2.2 TrajectoryPlanning

Robots sometimes need to generate plans for future action.Trajectory planning methods

focus on generating movement actions for a �xed time horizon. In chapter 5, we perform

trajectory planning with a costmap-based trajectory sampler. Our method effectively com-

bines motion forecasts from multiple agents into a uni�ed temporal costmap, allowing it to

overcome egocentric shortcomings. This collaboration helps prevent dangerous planning

decisions during costmap sampling and trajectory selection.
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Regarding prior work, one set of work [51, 52, 53, 54, 55] addresses how a motion

planning policy may be learned from data, either by interacting with an environment (rein-

forcement learning) or by observing an expert's interactions with an environment (inverse

reinforcement learning). The work of Sadatet al. [52] shows how a neural motion policy

may be learned by observing expert driving demonstrations. Their system takes a map

and lidar sequence as inputs, and it uses a learned encoder to produce a set of occupancy

predictions (e.g. pedestrian, car, bike) for future timesteps. Next, it uses a learned cost

function to score a set of sampled trajectories against these occupancy predictions, and

the minimum cost trajectory is selected for execution. Other, more human-centric, works

consider the interplay between multiple human agents in a shared scene. For instance, the

works of Kollmitz et al. [53, 54] leverage physical interaction and inverse reinforcement

learning to adapt the planning behavior of a robot near human actors. However, while the

robots in these works explicitly consider the motion of other actors, they do not leverage

communication to improve their capabilities. Unlike this body of work, our work—and

the works ofCollaborative Perception and Planning—explore the use of communication

during planning.

2.2.3 CollaborativePerception

Robots sometimes need to communicate with their peers in order to overcome local degra-

dations and enhance perception performance.Collaborative Perceptionmethods address

how to exchange information between communication enabled agents to improve perfor-

mance on vision-related tasks. In chapters 3 to 7, we follow the paradigms of collaborative

perception, where multiple robots communicate the inferences from rich visual informa-

tion to overcome local perceptual limitations. Each of our methods leverages the inferences

from teammates to improve task performance, while being resilient, ef�cient, and scalable.

Several works were published in parallel to the publications supplied by this thesis, and

we had the distinct pleasure of interacting with these other researchers during conferences
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and workshops. The �eld of collaborative perception has truly blossomed since our very

�rst contributions. We highlight those works most relevant to the multi-agent planning task

at hand.

One set of prior work uses learned communication [56, 57] and ground truth image

warping data to exchange and align data for multi-view image classi�cation and semantic

segmentation. A similar set of prior work removes the dependence on ground truth warping

data via a learnedtransformationof spatial feature maps [58, 59].

For instance,Disconet[58] uses a convolutional network to compress top-down 2D li-

dar rasters into an intermediate feature representation. The spatial cells inside these feature

maps are then synchronized across multiple agents using a spatial collaboration graph. The

update rule of this collaboration graph is guided by an omniscient teacher model which

performs knowledge distillation on the decoders of the updated feature maps.

2.2.4 CollaborativePerceptionandPlanning

To generate safe plans for future actions, robots can leverage the observations of their

peers.Collaborative perception and planningmethods use communication architectures

to address the joint planning and perception task. In chapter 5, we leverage multi-robot

insights to help with planning decisions, especially for collision-free trajectory planning

for self-driving cars.

In prior work, several methods use collaboration to aid in collision-free trajectory plan-

ning. Coopernaut[57] uses a learned encoder module to compress point cloud information

into a relatively compact 2D representation. The 2D representations from multiple allocen-

tric agents are then transmitted, spatially transformed, and aggregated into the perspective

of a single egocentric agent. Finally, a learned control module executes a control policy

based on the aggregated information. However, these works only implicitly consider the

role of uncertainty when aggregating multi-agent information. This need is further re�ected

in the work of Zhouet al.[60], where they argue for methods which can be robust to failures
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and attacks and sensitive to environmental uncertainty.

In response to these prior works, our approach in chapter 5 explicitly considers un-

certainty during multi-agent fusion. Our BEV motion forecasts include both occupancy

predictions and con�dences, and we leverage such con�dence when combining trajectory

scores from multiple agents.

Other prior work addresses uncertainty during planning. Sharmaet al. [61] propose a

risk-aware approach to planning, given uncertain perceptions from a partner agent. Similar

to this work, our method considers uncertainty during planning. However, unlike this prior

work, we perform multi-agent planning on non-static scenes.

2.2.5 Deep-LearnedUncertainty

Not all output predictions are created equal, and sometimes the inferences from one re-

liable robot should be trusted over less reliable ones.Deep-learned uncertaintymeth-

ods [62, 63, 64, 8] extend the capabilities of deep-learning to include estimates of data

uncertainty (aleatoric uncertainty) and model uncertainty (epistemic uncertainty), instead

of simply producing one-hot outputs. In chapters 4 and 5, we leverage epistemic uncer-

tainty to describe regions of perceptual uncertainty. This description allows us to perform

uncertainty-aware fusion across several robots, especially when each robot has varying de-

grees of con�dence about parts of its observations.

Panet al. [63] argue that the softmax con�dences produced by classi�cation networks

roughly correlate with the empirical accuracy, as evaluated across a diverse set of common

classi�cation tasks. Converse to con�dence, several works [64, 63, 65] apply Shannon

Entropy [66] as a measure ofuncertainty, and demonstrate its application to tasks such as

domain adaptation, active learning, and crowd counting. Moreover, other works [65, 67,

8] leverage entropy as a spatial map, especially for semantic segmentation tasks. Wanget

al. [68] uses an entropy-weighted average for image fusion. Our works build upon these

approaches, especially when fusing observations and inferences from multiple contributors.
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2.2.6 Datasetsfor ConnectedSelf-DrivingVehicle

Beyond extending the methodology of prior work, our work also advances the setting of

collaborative perception and planning. In section 5.1, we present the Collaborative Bird's

Eye View Simulator (CoBEV-Sim) dataset [6] and a wrapper for �nding communication-

critical scenarios [5].

Several prior works add their own specialized datasets [69, 70] to the corpus of existing

open-source datasets [71, 72, 73, 74, 75] and closed-source datasets [56, 76, 77, 78, 79].

V2X-Sim [69] primarily focuses on the challenge of collaborative perception, though it

only offers relatively simple planning scenarios. For our work, we evaluate our algorithm

on a dataset split ofAutoCastSim [70]. This dataset speci�cally targets challenging self-

driving situations, such as red light infringements and left turns across traf�c.

However, these scenarios lack diversity and have a limited number of agents available

for useful communication. To address these limitations, our work extends the capabilities

of these datasets with the novelCoBEV-Sim, a simulator which creates a higher volume of

diverse, communication-critical scenarios.

2.2.7 Simultaneous Localization and Mapping (SLAM)

Oftentimes, robots need to determine where they are in the world with respect to a �xed

map.Simultaneous Localization and Mapping (SLAM)refers to a class of algorithms [80,

81, 82, 83] that process a sequence of observations and odometry readings (e.g. from a li-

dar sensor and wheel encoder) into a simultaneous estimate for both a map of the world

and a location estimate within that map.

One implementation of SLAM is with theparticle �lter [84, 80], which uses a set

of weighted particles to represent the probability of different system state hypotheses (i.e.

each particle maintains a combined pose and map). The weights of these particles are

updated based on measurement observations given the particle state; the particles are re-

sampled based on these weights; and the remaining particles are propagated forward in
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time using a motion model. In the context of SLAM, each particle maintains its own pose

and map estimate.

The Rao-Blackwellized Particle Filter (RBPF) [85] is an extension of the particle

�lter that factorizes the state into two parts: a part that is easy to estimate (the conditioning

variable) and a part that is dif�cult to estimate (the hidden variable). In the context of RBPF

SLAM, the system state (a pose and map) is factorized into a pose which is estimated by a

particle �lter and map landmarks which are estimated by a Kalman �lter. The FastSLAM

algorithms [86, 81] follow this RBPF factorization, and these algorithms are widely used

in open source robotics toolkits [83].

These works were primarily developed for single-agent systems. However, our work-

extends these approaches to a multi-robot setting. In chapter 6, we present a method [7] for

performing distributed multi-robot SLAM that uses a Rao-Blackwellized Particle Filter.

2.2.8 Multi-RobotSLAM

Sometimes, teams of robots can collaborate to improve the time that it takes to generate a

complete map of their environment. To this end,multi-robot SLAM algorithms [87, 88,

89] leverage multiple independent observers to produce localization and map estimates. For

instance, the Kimera-Multi algorithm [87] performs pose graph optimization [90] on indi-

vidual robots to simultaneously estimate a trajectory and scene mesh from visual-inertial

observations. Then, during rendezvous, these robots perform distributed place recognition,

which allows each to better optimize itslocal trajectory and mesh. On the other hand, our

approach allows for aglobalmap to be constructed after a rendezvous, instead of improved

local maps.

In chapter 6, we present a method for distributed SLAM via particle �ltering [7]. In a

similar vein, the work of Carlone et. al [91] applies a RBPF SLAM algorithm to the task of

distributed multi-robot mapping. In their work, two robots perform SLAM in isolation until

they rendezvous; once they rendezvous, they measure their relative poses and exchange
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their entire sequence of past observations.

Unlike this work, our work ef�ciently exchanges the �nite set ofparticlesof a parti-

cle �lter, instead of the unbounded set of past measurements. According to the Markov

principle [80], each particle is a complete summary of the system state, so replaying the

measurements is inherently redundant. The prior approach does not scale with measure-

ment history, whereas our approach summarizes a (potentially unbounded) measurement

history into a set of particles that succinctly capture the system state.

2.3 Long-Term, Large-Scale Collaborative Perception

In sections 2.1 and 2.2, we addressedinstantaneousandshort-term collaboration. Those

sections described how cooperating teammates can communicate single observations or

sequences of observations to improve performance on various multi-robot tasks, such as

semantic segmentation, collision-free planning, and mapping. However, in this section, we

seek to test the more extreme use cases of collaborative perception.

Speci�cally, we address the extreme setting oflong-term, large-scale collaborative

perception. In this setting, a robot must �nd useful information captured by collaborators,

despite large time gaps between captures and despite numerous potential collaborators with

rarely helpful information content.

The speci�c use case that we address is yield forecasting for production scale robotic

agriculture. To improve upon yield forecasts, a unique tray of plants must be corresponded

between multiple specialized husbandry robots at different points in time, despite the plants

growing and despite image features being ambiguous and misleading. Once instances are

corresponded between robots, the information must be intelligently fused to generate ac-

curate yield estimates. In chapter 7, we describe our methodN-QR [9] which performs

multi-robot instance correspondenceand enablesmulti-view growth analysis.

In the following sections, we highlight the prior work that supports this method. We
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leverage insights fromimage matching, image retrieval, andmultiple instance learning

to guide our method for �nding a speci�c tray of plants in the �elds of view of thousands of

robots. We leveragekeypoint detectionas a preprocessing step to align observations prior

to discrete matching. Finally, after corresponding the same item across numerous robots,

we extend prior work inyield estimation to multi-view capabilities.

2.3.1 ContinuousImageMatching

Sometimes, robots in multi-robot systems can directly �nd and align relevant visual in-

formation captured by their peers.Continuous image matchingmethods seek to match

features or perform dense alignments between two images. We subdivide this topic into

denseandsparse, andlearned-sparsecorrespondence. In chapter 4, we compute dense

alignment betweensynchronousimage captures of moving aerial quadrotors. In chapter 7,

we compute dense object alignment betweenasynchronousimage captures of heteroge-

neous agricultural robots.

Dense image correspondencemethods [92, 93, 94, 95, 96, 97, 98, 99, 3, 4] align

individual pixels between images.Traditional sparse correspondencemethods [92, 93,

94, 95] rely on strong corners and geometrically-consistent features to compute and con�rm

matching keypoints between different images.

However, unlike the settings of these prior works, our setting is sometimes geometri-

cally inconsistentbetween frames (since the plants jostles slightly). This inconsistency in-

terferes with the geometric veri�cation methods such asRANSAC [95] andFLANN [94].

Compounding this dif�culty, our setting has tessellated features. These features are geo-

metrically consistent between frames, but due to ambiguity, they are misleading and un-

suitable for matching.

Learned sparse correspondencemethods [96, 97] use learned feature descriptors, se-

mantics, and relationships to match across broader featureless regions.Dense correspon-

dencemethods [98, 99] compute a dense pixel warping grid between images.Multi-robot
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dense correspondence[3, 4] methods address the added challenge of corresponding across

several agents, often while paying heed to bandwidth and computational constraints.

However, these methods completely fail in our setting (see subsubsection 7.1.3). In

response to these failures, we decompose the instance correspondence problem into two

subproblems: (1) aligning the pair of images to a normalized representation and (2) per-

forming discrete image (block) matching.

2.3.2 KeypointandObjectDetection

Sometimes, robots need to detect and identify key visual features on an object. In our

case, we usekeypoint andobject detectionto identify features that help us perform image

alignment between robots.

Object detectionfocuses on identifying the regions (e.g. rectangular bounding boxes)

of different object classes in an image. In section 7.1, we use object detection to localize

a tray of plants in the broader �eld of view of an agricultural robot. Among the many

approaches toobject detection, methods likeCornerNet [100] detect bounding boxes by

identifying and pairing key points in the image. Drawing inspiration from this concept, our

method detects the corners of the visible edge of objects and constraints the bounding box

by leveraging the consistent geometry of the scene.

Keypoint detectionfocuses on identifying the pixel locations of key points in an image.

In section 7.1, we use keypoint detection to identify the corners and vertices of a tray of

plants. These keypoints are then used to align a common class of object between the views

of several robots. In prior work, manykeypoint detection methods, such asMask R-

CNN [101] and Maoet al. [102], use CNN architectures to generate a heatmap mask from

which keypoints are extracted. We leverage similar techniques to detect keypoints within

our scene, such as seeding tray corners and vertices, which we then use for image warping.
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2.3.3 DiscreteImageMatchingandRetrieval

Sometimes, robots want to �nd similar images captured by their peers, especially since

these images might contain helpful, complementary information. We rely ondiscrete im-

age matchingto perform an image-based lookup of matching image pairs for eventual data

fusion.

Discrete image matchingmethods [103, 104] seek to �nd matches on an image level.

In this section, we highlightmetric learning, which describes some of the fundamental

techniques for determining similarity between pairs of images, as well ascontent based

instance retrieval, which describes how to scale these image matching techniques to large

databases. These prior works are relevant for our large-scale instance correspondence

method in chapter 7. For our method, we warp a set of input images to a uniform rep-

resentation. Next, using this discrete set of warped images, we can then perform image

matching and retrieval, as inspired by prior work.

Metric learning [103] approaches learn image-level descriptors such that metric dis-

tances between similar images are low compared to distances between dissimilar images.

One popular instance of this approach is theSiamese Network[104], which uses a shared

neural network encoder to produce these image-level descriptors. Our work similarly uses

a metric learning objective. However, unlike these prior works, our approach leverages

multiple tiers of patch ensembling to overcome noisy and misleading inputs.

Content Based Instance Retrieval (CBIR)methods [105, 106, 107, 108, 109, 110]

aim to improve accuracy by extracting distinctive features and reducing the impact of image

clutter when ef�ciently querying a large database. While our approach addresses similar

challenges, our dataset presents a higher level of complexity, characterized by minimal

scene variation and a notable degree of visual similarity among instances, distinguishing

it from commonly used datasets such asGLDv2 [106]. Moreover, previous works have

focused on addressing search ef�ciency concerns using methods likedeep hashing[107,

108, 109] and inverted �les [110].
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Similar to prior work, our method performs an image-based lookup into a database

of matching and non-matching images (as captured by our multi-robot system). However,

unlike prior work, our setting has a distinct robotics �air. Our method employs a bandwidth

ef�cient iterative transmission policy with increasing feature sizes to minimize the total

number of packets required for accurate matching.

2.3.4 Multiple InstanceLearning

Due to the dif�culty of our image matching problem, the discrete image matching methods

from the previous section are insuf�cient for performing reliable matching. In response, we

rely on prior discoveries in multiple instance learning.Multiple instance learning looks at

multiple instances to determine an overall classi�cation. Several works [111, 112] consider

multiple image patches of a cancer cell before rendering a �nal verdict, which is especially

useful when individual patches are noisy or misleading.

Similar to this prior work, our method considers ensembles of multiple instances (i.e.

individual image patches). However, unlike prior work, our method does not address clas-

si�cation but instead addresses metric learning. In other words, the ensemble of instances

is used to create a more robust descriptor for image matching, instead of a more accurate

classi�er.

2.3.5 Yield Estimation

The ultimate objective for our agricultural setting is to produce more accurate yield esti-

mates.Yield estimation involves using plant phenotypes or environmental measurements

to predict the �nal harvest mass of a crop. In chapter 7, we explore how to better pre-

dict yield within a hydroponic vertical farming setting, especially when given access to the

visual streams of heterogeneous husbandry robots.

In prior work, Huanget al. [113] estimate yield by using a suite of machine learning

techniques trained on hand-measured phenotypes, such as leaf count and stem diameter.
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Gonget al. [114] use a recurrent neural network trained on environmental factors, such as

temperature, humidity, and radiation. Especially for fruit harvests, a large number of prior

works [115, 116] use learned object detectors to approximate yield bycountingdiscrete

objects, such as the number of fruits on a plant. Another work [117] performs plant recon-

struction. Regarding vertically farmed leafy greens, Zhanget al. [118] use a convolutional

neural network to predict lettuce harvest mass based on overhead images.

Similarly, we evaluate crop yield in our method by calculating leaf area from over-

head camera images, a metric strongly correlated with harvest yield, as demonstrated in

prior studies. However, unlike these prior works, we propose a multi-view, multi-modal

approach to yield estimation, combining environmental measurements with sequences of

images captured at different vertical farming stations (i.e. after seeding and germination).

2.3.6 Multi-RobotYield Estimation

Once we havealignedagricultural images between contributing robots, we must determine

how to fuse that information, especially for improving yield estimation. In section 7.1, we

present Natural Quick Response Codes, or N-QR [9]. Our method performs two critical

tasks:multi-robot instance correspondenceandmulti-view growth analysis.

Compared to prior work, our method must overcome an extreme case of image cor-

respondence. Our setting involves high-volume instance correspondence for ambiguously

similar objects that have morphed (i.e. grown) between image captures. Few prior works

broach the scope and dif�culty of our setting. Our unique setting also inspires a unique so-

lution: we leverage the large-scale distributed compute power of a cluster of robotic agricul-

ture to compute age-invariant features which can distinguish minute intra-class variations.

The relevant prior work for image correspondence is discussed earlier in this section.

Next, given multi-robot instance correspondence, we can then leverage the perspectives

from multiple robots at multiple points in time in order to perform a holistic assessment of

plant health for multi-view growth analysis. Unlike prior research [119], which performs
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multi-view yield estimation by capturing the same plant from different angles, our ap-

proach employs multiple views differently. We gather complementary information from

heterogeneous sensors observing various stages of plant growth, thus enriching our analyt-

ical insights. Our seeding robot has specialized hardware (i.e. a well-lit, high-resolution

camera) to view seeds, whereas our growing robots have necessarily cheaper hardware (i.e.

a low-resolution, �sheye camera) to monitor growth across every acre of our farm.
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Part I

Instantaneous Collaborative Perception
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One key aspect of collaboration is �guring out how to use inferences from multiple,

non-egocentric perspectives. Throughout this part of the thesis, I discuss several meth-

ods for leveragingimmediately useful1 inferences that areintermittently available2 among

collaborators and onlypartially relevant3. In other words,somecollaborators havesome

relevant informationsomeof the time—and we want to determine how to get it.

In chapter 3, we describe one solution for instantaneous collaborative perception—one

that identi�es who has relevant information and determineswhenthey have it. In sec-

tion 3.1, we describe a supporting dataset that we developed for investigating multi-robot

collaboration. In chapter 4, we extend this solution, given the insight that collaborated

information is usually onlypartially relevantandimperfectly aligned. As such, we demon-

strate an approach for identifying, warping, and exchanging the relevant information; fur-

thermore, we apply this approach to a realistic, bandwidth-sensitive setting. As originally

delineated in section 1.3, we discuss how these algorithms areperformant , resilient, ef�-

cient, scalable, andopportunistic.

1One type ofimmediately usefulinference is a shareable inference that can help an egocentric observer
overcome a sudden, unexpected degradation.

2Intermittent availabilityhighlights howsomecollaborators have relevant informationsomeof the time.
3Partially relevantinformation occurs when observations between collaborators are partially overlapping
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CHAPTER 3

IDENTIFYING HELPFUL COMMUNICATION PARTNERS

In this chapter, we �rst present a novel, simulation-based dataset to aid in testing multi-

robot collaborative perception algorithms. We then discuss how to identify (1)who to

communicate with and (2)whento perform communication, as explored in our collaborated

work with Liu et al. [1, 2]:

• Who2com: Collaborative Perception via Learnable Handshake Communica-

tion [1]

• When2com: Multi-agent perception via Communication Graph Grouping [2]

3.1 Dataset: AirSim Multi-Agent Perception

At the time of publication for these initial works, there were no datasets for building and

testing collaborative perception algorithms. On one hand, there were datasets with multi-

ple agents in a shared scene, but these datasets did not include dense image annotations1.

On the other hand, there were datasets with dense image annotations, but these datasets

were largely captured for single-agent algorithms. These two types of datasets existed

separately!

In response to this dataset vacuum, we developed one of the �rst open-access datasets

to combine both computer vision and multi-robot co-presence, which we called the AirSim

Multi-Agent Perception (AirSim-MAP ) dataset. By using a photorealisticAirSim [22]

simulator, we were able to spawn a swarm of aerial quadrotors, maneuver them through

1Dense annotations are required for many modern deep learning vision tasks, such as semantic segmenta-
tion.
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Figure 3.1:AirSim-MAP Dataset.

Figure 3.2:Example images of AirSim-MAP dataset.
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a shared and interesting environment, and capture images with automatic annotation. The

simulator and resulting dataset allowed us to develop algorithms for collaborative percep-

tion at a pace that would have otherwise been impossible with physical multi-robot systems.

Our AirSim-MAP dataset consists of synchronized RGB and semantic segmentation

images captured from 6 moving agents in a simulated photo-realistic urban environment.

The �elds of view of these agents periodically and non-trivially overlap, and their cameras

capture both static and dynamic scene objects. Additionally, to provide an intermediate

training signal, our dataset includes ground truth dense pixel correspondences between

pairs of images, computed from the raw pose and depth provided by the simulator.

Furthermore, we synthesize anobstruction-pronevariant. We post-processed each

snapshot of the baseAirSim-MAP dataset, randomly placing a 3D object into the scene

and rendering this object in the views of each observer. We used the pose and depth infor-

mation from each agent and the pose and depth information of the 3D obstruction model to

perform the insertion rendering.

In summary, our dataset consists of18; 588snapshots across6 non-static robots. The

robots have an average pose difference of8:7m and50� . Sporadic motion and yaw of the

robots creates intermittently and partially overlapping views. A random pair of agents has

an average pixel overlap of37%with a standard deviation of15%. For our experiments,

we select one of the6 agents as thetargetand allow it to communicate with any number of

the5 supportingagents.

Our works in sections 3.2, 4.1 and 4.2—as well as several other works outside of this

thesis—make use of this densely-annotated collaborative perception dataset.

3.2 Who2com and When2com

While signi�cant advances have been made for single-agent perception, many applications

require multiple sensing agents and cross-agent communication due to bene�ts such as
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coverage and robustness. It is therefore critical to develop frameworks which support multi-

agent collaborative perception in a distributed and bandwidth-ef�cient manner.

In this section, we address the collaborative perception problem, where one agent is re-

quired to perform a perception task and can communicate and share information with other

agents on the same task. Speci�cally, we propose a handshake communication frame-

work by learning both to construct communication groups and when to communicate. We

demonstrate the generalizability of our framework on two different perception tasks and

show that it signi�cantly reduces communication bandwidth while maintaining superior

performance.

3.2.1 Background

For the generalizedcollaborative perceptiontask, we consider an environment that consists

of N agents with their own observationsX = f xngn=1 ;:::;N . Among those agents, some

of them are degraded~X = f ~x lgl=1 ;:::;L , and the set of degraded agents is a subset of all

agents~X � X . The goal of this task is for each agent toeffectivelyandef�ciently integrate

information received from other agents, in order to produce an accurate prediction~Y =

f ~yngn=1 ;:::;N for some perception task (i.e. semantic segmentation).

3.2.2 Method

As outlined in Figure 3.4, we implement a two-step procedure to mediate this collaboration.

First, we apply a handshake communication mechanism [1] to determine the similarity be-

tween communication partners, and next, we further prune the less important connections

with an activation function. The �rst step highlights the most promising sources of collab-

oration (i.e.whoto communicate with), and the second step connects or disconnects these

sources based on a threshold (i.e.whento communicate).

Speci�cally, our handshake communication mechanism consists of three major steps:

request, match, andconnect. Each agenti uses a learned encoder to compress its local
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Figure 3.3:Illustration of multi-agent perception. We construct a multi-agent perception
system to improve the agent-wise perception accuracy and reduce the transmission band-
width. Each agent learns to constructcommunication graph groupsand determinewhen to
communication.

observationsx i into a compact query vector� i , a key vector� i , and a feature vectorf i .

Fundamentally, the mechanism works as follows: (1) each agent broadcasts its query to

all other agents; (2) all other agents compare this query against their local key to compute

a communicability score; (3) these communication scores are thresholded; (4) the thresh-

olded scores are used in a weighted sum with the features of each supporting agent; (5)

the fused features are then decoded for an arbitrary downstream task. The thresholding

operation allows for highly ef�cient bandwidth usage by preventing the transmission of

irrelevant feature maps.

Speci�cally, to decide who to communicate with, we use a scaled general attention [47,
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(a) (b)

Figure 3.4: Our (a) multi-agent collaborative perception mechanism with its (b) submodule
for identifying helpful communication partners.

46] to compute the correlation between a requesting agenti and a supporting agentj :

m i;j = �( � i ; � j ) =
� T

i W g� jp
K

; (3.1)

whereW g 2 RQ� K is a learnable parameter to match the size of query and key, andQ and

K are dimension of query and key respectively. Using the resulting similarity matrixM ,

we apply a row-wise softmax function� and activation function� :

�M = � (� (M ); � ); (3.2)

where� (�; � ) is an element-wise function, which zeros out the elements smaller than� .

Once a requesting agent collects the information from its linked supporting agents, the

requesting agenti integrates its local observation and the compressed visual feature maps

from supporters based on the matching scores:

ŷ i = D([f i ; f inf
i ]; � d); f int

i =
NX

j =1
�m i;j 6=0

�m i;j f j ; (3.3)

whereD is a perception task decoder and[�; �] is a channel-wise concatenation operation.
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Table 3.1:Experimental results of When2com.Note that we evaluate these models with
the metric of mean intersection of union (mIoU) and use MBytes per frame (Mbpf) and the
average number of links for measuring bandwidth.

Non-Degraded Image among Com Degraded, Partial Image among Com

Models Bandwidth Noisy Normal Bandwidth Noisy Normal
(Mbpf / # of links) Input Input (Mbpf /# of links) Input Input

AllNorm - 57.85 57.74 - 47.9 48.37

Fully-Connected

CatAll 2.5 / 5 29.07 51.83 2.0 / 4 26.86 45.27
AuxAttend 2.5 / 5 33.69 56.27 2.0 / 4 26.97 51.03

CommNet [20] 2.5 / 5 23.68 52.67 2.0 / 4 26.56 49.07
TarMac [45] 2.5 / 5 51.09 56.74 2.0 / 4 29.78 51.39

Distributed
RandCom 0.5 / 1 21.22 52.74 0.5 / 1 24.13 45.19

Who2com [1] 0.5 / 1 31.96 56.11 0.5 / 1 26.97 50.71
Ours 0.385 / 0.77 56.52 58.04 0.55 / 1.08 30.38 51.26

OccDeg - 30.06 56.31 - 25.2 46.74

3.2.3 Results

We assess the performance of this communication mechanism on theAirSim-MAP dataset,

where we warp the observations of all agents to the perspective of the target agent and per-

form image space corruptions on a random subset of the target and supporting agents. As

shown in Table 3.1, we demonstrate that our handshake communication module signi�-

cantly reduces bandwidth consumption via prune-able connectivity; it improves perception

performance via collaborative fusion; and it overcomes image local degradations via col-

laboration.

3.2.4 Conclusion

In this section, we proposed a general bandwidth-ef�cient, three-way handshake communi-

cation framework for collaborative perception. Our framework learns both how to construct

communication groups and when to communicate. This framework can be generalized to

several down-stream tasks including (but not limited to) multi-agent semantic segmentation

and multi-view 3D shape recognition. We demonstrated superior performance with lower

bandwidth requirements across all compared methods.
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3.3 Chapter Insights

In this chapter, I introduced a dataset and general method for collaborative perception.

My collaborators and I demonstrated that our approach enables targeted communication

between robotsthat have pre-aligned observations. I highlight the following insights:

• Photorealistic multi-robot simulators can be used to test collaborative percep-

tion. We released one of the �rst open-access datasets for collaborative perception.

This dataset consists of multiple robots maneuvering through a shared scene with

intermittently overlapping �elds of view. Our dataset includes RGB images, depth

maps, semantic segmentation masks, and relative poses between agents. We use this

dataset to create the task ofmulti-agent semantic segmentation.

• Collaborative perception datasets can be madecommunication-criticalby ran-

domly degrading robot inputs. Random degradation forces an agent to search for

complementary information available among its supporters.

• Inter-agent communication can belearned. Many historical works in networking

and multi-agent communication use �xed protocols to transmit information between

agents. On the other hand, in our works, we show thatlearnable, task-drivenimage

compression can be an effective form of communication.

• The attention mechanism [46]—typically used in single-agent settings—can be

adapted to a multi-agent setting as alearnable handshake communication mech-

anism. With our handshake communication2, one robot (i.e. therequestingagent)

can improve its inferences by initiating communications with other robots (i.e. the

supportingagents).

2Our handshake communication mechanism usesattention, where each collaborating agent encodes its
local visual observations intoquery, key, andvaluevectors. Thequeryvector from a requesting agent and the
keyvector from a supporting agent are used to �nd matching content between agents. The similarity score
between eachquery-keypair determines (1) whether or not thevaluevector of a supporting agent should be
communicated to the requesting agent and (2) the weight of thevaluevector when averaging the contributions
from multiple supporting agents.
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• This mechanism allows an individual agent to bene�t from multi-agent obser-

vations. For the task of multi-agent semantic segmentation, we demonstrate that this

mechanism outperforms several isolated and communication-enabled baselines.

• This mechanism excels in communication-critical settings.We introduce image

noise to random subsets of agents, making the settingcommunication-critical(i.e.

communication is critical for improved performance). Thanks to thequery-keysim-

ilarity scores, each agent has the capability to �nd complementary, non-degraded

information in supporting agents.

• This mechanism enables collaboration at low communication cost.Learnable en-

coders compress dense visual observations into compactquery, key, andvaluevec-

tors. These vectors can be asymmetrically sized, allowing for the initial “handshake”

between agents to be inexpensive3. The result of this initial “handshake” can then

enable or disable more expensive payload transmissions4.

• This mechanism is opportunistic and selective with communication partners.

Prior methods performed dense communication between all pairs of agents. How-

ever, sometimes relevant information is not uniformly spread across communication

participants but is instead concentrated in only a few agents. Our method enables

targetedcommunication with that select few.

In summary, this initial chapter introduced a general framework for ef�ciently communi-

catingpre-alignedinferences between multiple independent observers.

3The �rst step of our handshake communication computes amatching scorevia query-keyvector simi-
larity.

4The second step of handshake communication involves thresholding thematching score, which deter-
mines if a supporting agent will transmit itsvaluevector.
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CHAPTER 4

IDENTIFYING AND ALIGNING INFORMATIVE INFORMATION CONTENT

In this chapter, we discuss how to identify, warp, and exchangepartially relevant data

among collaborators. Unlike the previous work, we consider (1) how to isolate and ex-

change important subregions of communicable data (instead of all-or-nothing communica-

tion) and (2) how to dynamically align this data to a desired perspective (instead of relying

on ground truth image warping data). These contributions are explored in two of our pub-

lications [3, 4]:

• Enhancing Multi-Robot Perception via Learned Data Association[3]

• Overcoming Obstructions via Bandwidth-Limited Multi-Agent Spatial Hand-

shaking [4]

4.1 Enhancing Multi-Robot Perception via Learned Data Association

In this section, we address the multi-robot collaborative perception problem, speci�cally

in the context of multi-view in�lling for distributed semantic segmentation. This setting

entails several real-world challenges, especially those relating to unregistered multi-agent

image data. Solutions must effectively leverage multiple, non-static, and intermittently-

overlapping RGB perspectives. To this end, we propose the Multi-Agent In�lling Network

(MAIN ): an extensible neural architecture that can be deployed (in a distributed manner)

to each agent in a robotic swarm. Speci�cally, each robot is in charge oflocally encod-

ing and decoding visual information, and an extensible neural mechanism allows for an

uncertainty-aware and context-based exchange of intermediate features. We demonstrate

improved performance on a realistic multi-robot AirSim dataset.
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4.1.1 Background

This section tackles the real-world setting where each robot performs local computations

and inference (e.g. feature extraction and semantic segmentation) but also has the ability

to combine its local observations with information from other robots to improve perfor-

mance. Speci�cally, we focus on the task of distributed, multi-robot semantic segmenta-

tion. Namely, a degraded robot must generate an accurate semantic mask despite missing

information. To achieve this end, each individual robot is allowed to communicate with

its peers, but must perform computationslocally. Unlike other problem settings, there are

several challenges inherent in this task, including occlusions, degradations, and intermittent

partially-overlapping (or non-overlapping) views.

In this section, we address these challenges by combining learning-based methods

across several �elds, including visual odometry [30, 35, 32, 31, 120], SLAM [36], and

multi-view fusion [42]. While each of these methods have been developed for simpler,

more specialized settings, our combined approach advances towards the general swarm

perception challenge. Unlike visual odometry and SLAM, we deal with the problem of

non-sequential and large-displacement inputs, distributed information sharing, as well as

local vision-based inference tasks. Unlike common multi-view methods, we directly per-

form learned data association and alignment to deal with irrelevant views and degradations.

Furthermore, unlike inpainting methods, we generate outputs that accurately represent the

scene, rather than producing “reasonable” hallucinations, as shown in Figure 4.1.

We summarize the contributions within this section as follows:

• We introduce a variant on theMulti-Robot Collaborative Perceptiontask [2, 1] in

which an individual robot must collaborate with supporting robots to overcome par-

tial image occlusion and degradation.

• We propose an end-to-end learn-ableMulti-Agent In�lling Network, MAIN , that

(1) extracts spatial features for pairwise comparison, (2) leverages spatialcontext
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Figure 4.1:Qualitative results of our model on the collaborative perception task. The
primary robot must overcome local image degradation by querying, corresponding, and
exchanging features with the auxiliary robot(s). Our model enables information sharing
for any distributed perception task that uses an intermediate spatial feature map, as with
reconstruction (top) and semantic segmentation (bottom).

and matchinguncertainty to produce a smoothed correspondence volume, and (3)

uses this volume to sample and fuse features from supporting robots. Each of these

components helps the network in�ll missing information and ensures that the �nal

per-agent perception output (such as a semantic mask or reconstructed input) is less

vulnerable to partial input degradation.

• We test our network ondistributedsemantic segmentation for multiple RGB ob-

servers, where each robot can improve its local perception corresponding and sharing

information. We demonstrate superior performance of our model compared against

several baselines in a photo-realistic multi-robot AirSim environment.
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Figure 4.2: Overall architecture for Multi-Agent In�lling Network . We pass each
robot's images through the �rst few layers of a SegNet architecture. We then perform a
dense pairwise comparison between the resulting spatial feature maps (from each agent) to
generate a raw similarity volume, and we use an auto-encoder network to smooth and in�ll
it. With this decoded similarity volume, we sample (or warp) features from the auxiliary
network to supplement the task decoding of the primary network. Note that our method
extends to any number of distributed agents.

4.1.2 Method

Multi-Agent In�lling Network

The multi-robot collaborative perception task entails several real-world challenges, many

of which stem from handling unregistered swarm image data. Namely, we must deal with

multiple, non-static, and intermittently-overlapping RGB perspectives. For the speci�c

task of distributed semantic segmentation, we must enhance the segmentation output of a

primary robot (with a degraded input) by collaborating with several other robots (with non-

degraded inputs). In order to properly handle this scenario, we must design an architecture

that can ef�ciently summarize, correspond, and exchange information in a distributed man-

ner.

As such, we propose a neural architecture that extends a generic convolutional encoder-

decoder structure. Speci�cally, we insert a learned network module a few layers deep into a

backbone convolutional network (at the spatial feature level). This inserted module uses the

intermediate spatial feature maps from each robot to perform data association, smoothing,
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and feature exchange. After features have been associated and exchanged, the remaining

convolutional layers decode this information into the target output (i.e. reconstruction or

segmentation). Our procedure is summarized in Figure 4.2 and further detailed in the

following sections.

SegNet Backbone

We use the SegNet architecture [16] as the backbone for our multi-robot in�lling network.

We simply insert our correspondence module into a single layer of this backbone. Speci�-

cally, the SegNet layers that precede our module serve as a spatial feature encoder, and the

layers that follow it serve as the task-speci�c decoder. This design allows for each robot

to compute its own encoding and decoding in a distributed manner. We use a VGG16 [13]

encoder pretrained on ImageNet [14].

Data Association

The SegNet encoder ingests a raw RGB image of sizeH � W � C and produces a spatial

feature mapf of downsampled sizeHs � Ws � K . Using the intermediate spatial features

from two robots (denoted with the subscriptsA and B), we compute a dense pairwise

distance volume:

DAB [x; y; x0; y0] = d(f A [x; y]; f B [x0; y0]); (4.1)

whered de�nes a distance metric (L2) between two feature vectors of dimensionK . After

computing each entry, we then rearrange this 4D similarity volume into a 3D tensor of size

HA � WA � (HB � WB ), which describes how each spatial feature from RobotA matches

to all spatial features from RobotB . Additionally, we compute a “no-match” score:

DA? [x; y] = d(f A [x; y];~0): (4.2)
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The added score gives the network a mechanism for identifying when the features in ques-

tion are not distinctive enough for pairwise matching, as used in prior work [36]. We

append this “no-match” tensor (HA � WA ) to the back of the 3D similarity tensor, which

gives a �nal volume ofHA � WA � (HB � WB + 1) . Finally, we compute the softmax

distribution across the channel dimension of thenegated3D volume, yielding a normal-

ized distribution of matching scores between patches and of the no-match case. In essence,

the SegNet encoder provides a high-dimensional representation of spatial regions (patches)

within the original image, and the similarity volume computes the visual similarity between

each of these regions.

Uncertainty-Aware and Context-Based Smoothing

Since we compute pairwise matching scores betweensinglespatial feature cells, the result-

ing similarity volume is quite noisy. We therefore pass the raw similarity volume through a

convolutional encoder-decoder architecture, which has access to both matching uncertainty

(from the probability distribution in the channel dimension) and spatial context (from the

preserved spatial arrangement). It outputs a smoothed correspondence volume that can be

used for more reliable indexing and weighting of the contributing feature maps.

Cross Feature Sampling and Fusion

Given a smoothed correspondence volume of sizeHA � WA � (LB � WB + 1) , we take the

ArgMax of this volume across the channel dimension to generate a 2D mapping of each

spatial cell in robotA to the best matched cell in robotB . We use this correspondence map

to sample the spatial features from robotB . After sampling, we now have two (aligned)

spatial feature grids–the original spatial features fromA and the aligned features fromB.

Based on which per-feature similarity score is higher (i.e. the “no-match” score or the

best match score betweenA andB), we use hard selection to forward that feature to the

remainder of the SegNet network, which decodes the spatial features into the target output.
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Table 4.1:Segmentation Results within Occluded Region on Single-RobotSequence
and Multi-Robot CrossDatasets. We compare baselines and ablated variants using mean
accuracy, mean IoU, and per-class IoU (shown in percentages).

SequenceSplit CrossSplit
Mean Mean Class IoU Mean Mean Class IoU

Accuracy IoU Building Bus Car Road Accuracy IoU Building Bus Car Road
Inpainting 37.08 31.17 74.34 0.00 5.52 83.90 32.69 25.91 66.46 5.15 5.77 77.95
InputStack 35.75 29.20 61.40 1.34 2.20 77.44 41.44 33.68 66.59 5.80 7.54 84.02
FeatureStack 37.55 32.95 77.59 2.64 6.17 79.61 32.85 23.62 47.03 8.80 2.566 64.04
ViewPooling 36.09 30.48 74.58 0.00 9.32 73.44 22.57 13.35 33.88 0.00 0.00 42.41
NoSimLoss 30.25 22.69 59.38 0.00 0.00 68.59 - - - - - -
NoSmoothing 34.60 28.70 65.25 0.00 4.49 78.91 - - - - - -
OneHot 48.40 45.04 81.80 23.10 33.51 87.75 - - - - - -
MAIN 52.83 46.34 83.10 30.55 32.08 88.86 51.34 42.77 75.27 22.76 17.07 83.88

Multi-Robot Extension

For brevity, we described our data association and feature sharing procedure for onlytwo

robots. However, our procedure generalizes to themulti-robot case. In this case, each robot

performs local encoding and decoding, but each also transmits its intermediate features

to any number of neighbors. In turn, each neighbor computes the matching scores and

alignment of all incoming feature maps, and each subsequently chooses the best feature for

�nal decoding. The general framework is extensible–each robot can handle any number of

incoming feature maps, potentially improving performance.

4.1.3 Results

Dataset

For our dataset, we use the photo-realistic, multi-robot AirSim [22] simulator to collect

synchronized RGB, depth, semantic segmentation, and pose information from a realistic

city environment with dynamic objects. Within this environment, we control a non-rigid

swarm of 6 drones to various road intersections. En route to these intersections, the drones

rotate at different rates, ensuring that their views are dynamically and non-trivially overlap-

ping. Once the swarm arrives at an intersection, each drone randomly explores the region,

further ensuring interesting frame overlaps. With the collected information (and the in-
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trinsic camera parameters), we then generate the ground truth pixel correspondences for

(A) consecutive frames of each robot and (B) all image pairs between any two robots. This

dense pairwise data is useful during training and for evaluation, but it is unnecessary during

actual deployment. All images are128� 128pixels.

We create two splits from this general AirSim dataset. TheSequencesplit includes

temporally-consecutive pairs of images collectedin sequencefrom each robot, whereas the

Cross split includes temporally-aligned pairs of images collectedacrosspairs of robots.

TheSequencesplit is a simpler test case with less drastic viewpoint shifts, akin to a visual

odometry dataset. TheCross split is the more dif�cultmulti-robot case (N = 6) where

viewpoints are drastically different (and oftentimes, non-overlapping). For both splits, we

simulate occlusion by overlaying a rectangular area of uniformly-distributed noise on the

primary image observation. This speci�c degradation highlights the challenging case where

important scene information is obstructed by a foreground obstruction, such as rain or dirt

on a camera lens.

Training

For our experiments, we train theMAIN network with two ground truth signals: (1) the

perception task signal and (2) the pixel correspondences between all pairs of robots. We

use a cross entropy loss for both the semantic segmentation and correspondence signals.

Additionally, though the network is trained in a dense, centralized manner, it can be de-

ployed in a distributed manner. We emphasize that, during inference, the only inputs to the

network are a single RGB image per robot. Additionally, we train and test several ablated

MAIN variants and SegNet-based baselines.

Baselines

We use several methods as baselines:

• Inpainting performs semantic inpainting based on the primary (degraded) frame
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only. A standard SegNet architecture is trained to generate a non-degraded semantic

segmentation mask from a single degraded input image, as inspired by [38].

• InputStack concatenates the raw RGB images from the primary and auxiliary views

together as input, prior to a standard SegNet architecture. This procedure resembles

that of Deep Homography and Visual Odometry methods [33, 34].

• FeatureStack concatenates the feature encodings from the primary and auxiliary

frames, after the �rst two SegNet convolutional downsampling blocks.

• ViewPooling performs view pooling on the (unwarped) feature encodings from the

primary and auxiliary frames, similar to that of MVCNN [42].

Ablated Variants

We ablate our method in several ways:

• NoSimLossis identical to theMAIN architecture described above, but it does not

have a direct training loss for the similarity volume. We include this model to show

the necessity for ground truth correspondences, which may be obtained through ac-

curate pose and depth information.

• NoSmoothingbypasses the smoothing network and directly uses the ArgMax of the

raw matching scores to sample the auxiliary feature map. We include this model to

highlight the necessity of the context-aware smoothing network.

• OneHot removes valuable information from the raw similarity volume by converting

it into a one-hot volume of best matches (prior to the smoothing network). Since

we hypothesize that the smoothing network uses the full per-pixel distributions to

perform uncertainty-aware smoothing, we include this ablated variant to show what

happens when that distribution information is suppressed.
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Results

We summarize our �ndings on theSequencesandCross datasets in Table 4.1. In both

datasets, we observe that theMAIN architecture signi�cantly outperforms all other models,

especially with respect to segmentation accuracy on several noteworthy dynamic object

classes (e.g. bus, car, and truck). In contrast, the other network variants are unable to

capture these dynamic objects and have a reduced (but not entirely suppressed) ability to

classify static objects.

Speci�cally, theInpainting model produces surprisingly accurate segmentation masks,

despite not having access to the auxiliary view. Its non-zero score likely results from the

strong static scene prior provided by the dataset environment; a standard SegNet network

can use this strong prior to in�ll static portions of the scene. On the other hand, theIn-

putStack, FeatureStack, andViewPooling models have access to the auxiliary view, but

in fact, they suffer from a decrease in performance despite this extra information. Since

these models do not know the (ever-changing) alignment between the primary and auxil-

iary views, the auxiliary information corrupts the segmentation results.

Regarding the ablated variants of theMAIN architecture, we observe that theNoSim-

Loss andNoSmoothingmodels yield poor segmentation results. These poor results mo-

tivate several of our architectural decision, such as including a direct correspondence loss

and an intermediate smoothing network. Additionally, theOneHot model shows that con-

solidating the per-cell matching distributions into a one-hot tensor of best matches causes

a slight drop in performance.

4.1.4 Conclusion

We propose a variant on the multi-robot collaborative perception task where robots must

work together to overcome a localized image degradation. We address this task via a neural

network architecture that usescontext-basedanduncertainty-awaredata association to ex-

change features within a standard segmentation network. We show that our model is able to
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(1) learn embeddings that are suitable for cross-robot matching, (2) generate a dense corre-

spondence volume from these embeddings and perform context-based smoothing, and (3)

use the smoothed correspondence to exchange features that are decoded to satisfy the �nal

task.

4.2 Overcoming Obstructions via Bandwidth-Limited Multi-Agent Spatial Hand-

shaking

In this section, we addressbandwidth-limitedandobstruction-pronecollaborative percep-

tion, speci�cally in the context of multi-agent semantic segmentation. Similar to the previ-

ous section, this setting presents several key challenges, including processing and exchang-

ing unregistered robotic swarm imagery. However, unlike the previous section, we intro-

duce more realistic limitations. In our modi�ed setting, individual agents must collaborate

with bandwidth-limited communication(instead of unlimited communication), and indi-

vidual agents must overcome 3d camera obstructions (instead of 2d image corruptions).

As with the previous section, solutions must effectively leverage multiple non-static and

intermittently-overlapping RGB perspectives. Moreover, in this modi�ed setting, solutions

must also heed bandwidth constraints and overcome unwanted foreground obstructions. As

such, we propose an end-to-end learn-able Multi-Agent Spatial Handshaking (MASH) net-

work to process, compress, and propagate visual information across a robotic swarm. Our

distributed communication module operates directly (and exclusively) on raw image data,

without additional input requirements such as pose, depth, or warping data. We demon-

strate superior performance of our model compared against several baselines in a photo-

realistic multi-robot AirSim environment, especially in the presence of image occlusions.

Our method achieves an absolute11%IoU improvement over baselines.
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