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Executive Summary
A critical review of the theory of hygrothermal buc_ng of thin plates is presented. The

preparation of this report is an extension of our previous report on bUCklingdue to applied

thrusts [1]. We are investigating the buckling behavior of thinplates because we believe

that this science base is directly applicable to our study of cockle in paper. Most of the

reviewed literature pertains to buckling arising from thermal stresses. In terms of

mathematics, swelling due to moisturechanges enters the fon_ulafion exactly m the same

form as thermal expansion. Therefore, we can apply this directly to o_ focus of study on

cockle in paper.

We present the equations governing the buckling of thin thermoelastic plates. Analyses of

buckling for both rectangular and circular plates are reviewed. Both the case of small and

large deflections are discussed. Theeffects of imperfections, thickness variations, and

inelastic behavior are presented.

A common technique employed to obtain a solution, Berger's approximation, is _scussed.

For some cockle problems these may be a viable technique to implement.

In reviewing this literature on thermal buckling, we found several analyses that contained

errors. These questionable results are discussed in the text, and create an opportunity for

some original work of interest to the scien '_c community. We are now in the process of

formulating the governing equations for our cockle model. This model _ make use of

the knowledge we gained in reviewing the literature reported here'm.



I. GENERALIZED VON KARMAN EQUATIONS FOR ELASTIC

ISOTROPIC AND ORTHOTROPIC PLATES SUBJECT TO HY-

GROEXPANSIVE OR THERMAL STRESS DISTRIBUTIONS

We begin our study of hygroexpansive and thermal buckling and bending of thin plates by

deriving the generalized von Karman equations for elastic isotropic and orthotropic plates;

the pertinent results will be presented in both rectilinear and polar coordinates for, respec-

tively, rectangular plates and plates with a circular geometry. Further on in this report

(i.e., in Chapter VII) the equations governing the bending and buckling behavior of thin

plates either exhibiting viscoelastic (creep) behavior or undergoing plastic deformations will

be presented.

A) Rectilinear Coordinates

We consider an isotropic thin plate of constant thickness h which occupies the domain f_

in the x, y plane ([1], Fig. II.11); as in [1] we employ the Kirchoff hypothesis, i.e., sections

x -const., y =const. of the undeformed plate remain plane after deformation and also

maintain their angle with respect to the deformed middle surface of the plate. In terms of

the displacement components u, v, w of the middle surface of the plate we have the following

generalization of equations (II.34) of [1]which applies when either hygroexpansive or thermal

strains (or both) must be taken into account'

_xx -- CHT

_yy- %y- e_T (I.1)

%y - 2_y - 2e_y



where %x, %y, %y are given by (II.34) of [1], i.e.,

1 2__w
6xx = tl,x -Jr- _ W,x ,xx

1

I 2
eyy ---- V,y q- _W y -- 5W,yy

with h <_C _<h the (normal) distance from the middle surface of the plate, and

eHr - _SH + aST (1.2)

In (I.2), _ is the (assumed constant) coefficient of hygroscopic expansion, a the thermal

expansion coefficient, 5H the change in moisture content and 5T the change in temperature.

For a static problem we have, in general

I 5H - H(x, y, z) - Ho
(1.3)

- T(z,y,z) - To

with Ho, To, respectively, reference moisture and temperature levels. In writing down (I.1),

(1.2) we have already assumed isotropy, i.e. (eHr)=_ - (e_T)yy; for the case of rectilinear

orthotropy we will have to introduce coefficients al,/3/, i - 1, 2. We also note that for a purely

hygroscopic problem 5T- 0 while for an entirely thermal problem 5H- 0.

Remarks: To simplify the presentation, and because almost all of the literature, to date,

has dealt solely with problems of thermal buckling and bending, as opposed to hygroscopic

buckling and bending (or a combination of both mechanisms) we will often write eHr -- eT =

aST or the natural generalization with respect to orthotropic response. However, in almost

all the cases that will be discussed in this report aST (in the isotropic case, for example)

will be interchangeable with/35H.



For rectilinear isotropic response, the constitutive relations are given by [2]-

1

_ = _(_- __)
1

_y_ = _ (_ - __)

2(1+_)
%Y = E c%

or, in view of (I.1)

' 1

_ - _._- _(_ - __)
1

exy- (1 +vE )a_y

with v the Poisson's ratio and E the Young's modulus. Alternatively, by solving (I.4) for

the stress components, we have

E E
-- (C[xx _ ] -- ' CHTO'xx 1- _,2 v%y, 1- _,

E E
-- ( + ve_) - 'eHr (I.5)O'yy 1 - v2`% 1 - v

E

Crxy = 1 Jr- y ' exy - 2Gexy

where G is the shear modulus of the plate. With, e.g., est - c_ST - eT, (I.4) says that

as a consequence of a change in the heat content of the plate strains exx, exy, and eyy are

caused by thermal expansion of the material comprising the plate as well as by stresses that

may arise from applied loads or other sources. As in [1], the averaged stresses over the plate





where

E . fh/2
N_r = 1 - v J-h/2 eHrdz (I.10)

For the purely thermal situation in which erH = er = c_/kT(x, y, z)

N_r- N r- c_E [h/2
-- I - _,J-h/2 ST(x, y, z)dz (I.11a)

while in the entirely hygroscopic case with ezH -eH

NHr N H /rE [h/2- = 5H(x,y,z)dz (I.11b)
1 - v J-h/2

Equations (I.9) may be found, e.g., in §9.4 of [3], with NHr -- N z.

In an analogous fashion, we may compute that, by virtue of (I.6b), (1.5), and (I.8), the

bending moments are given by

Mx = -K(w= + vwyy)-

My = -K(wyy + vw,_)- MHz (1.12)

Mxy = -(1 - zl)Kw,xy

Eh 2
where K = is the usual plate stiffness for the isotropic case while the hygrothermal12(1-
moment MHz is given by

E [h/2
MHz = 1 -- v J-h/2 eHrzdz (1.13)

For eHT _ CT

MHz- M r- aE [h/2
- I - v, J-h/2 ST(x, y, z)zdz (1.14)

while for esr = es,

MHz- M s- 3E .Ih/2
-- 1 - _, .l-h/2 5H(x, y, z)zdz (1.15)

The relations (1.12), with MHz -- M r may also be found, e.g., in §9.4 of [3].



Remarks: In certain situations it may be the case that the coefficients c_ and/or /3 are

field-dependent, i.e., c_- c_(ST),/3-/f(SH). In such case one would have, e.g.,

NZ E [hi2= a(ST), dTdz

I - v J-n/2 (I.16)

Mr E= _ a(6T) · 5Tzdz
1 - v J-h/2

with analogous expressions for N H, M H.

The equilibrium equations which apply in the present situation (see Figs. II.8, II.9 of

[1]) are precisely the same relations which hold in the absence of hygrothermal strains, i.e.,

(II.42), (II.43), and (II.aa) of [1]; we write these (in the absence of an initial deflection and

a distributednormalloading)intheform

Nx,x + Nxy,y - 0 (I.17a)

Nxy,x -_- Ny,y -0

Q_,x + Qy_,y+ N_w,x_ + Nyw,uy + 2N_yW,_y- 0 (I.17b)

I Mxy,x+ My,y - Qyz -- 0 (Mxy - Myx) (I.17c)

Eliminating Qy_ and Q= from among the equations in (I.17b, c) we obtain

Mx,xx+ 2Mxy,xy+ My,yy+ NxW,xx+ 2NxyW,xy+ Nyw,yy - 0 (1.18)

Substituting for the moments Mx, My, and Mxy in (I.18) then yields

KA2w - Nxw,xx + 2NxyW,xy+ NyW,yy - /_MHT (1.19)

02 O2

where/X - cgx_+_--_,2is the two-dimensional Laplacian while/X 2 is the biharmonic operator.vy

Modifications (which will be discussed later in this report) must be made to (1.19) if im-

perfection buckling is considered, i.e., it the plate possesses an initial prebuckling deflection



w0 -- w0(z, y) or is subject to a transverse normal loading. As in [1] we may introduce the

Airy stress function (I)(x,y) by

Nx - _yy, Ny - _,x_, Nxy - -_,xy (1.20)

in which case equations (I.17a) are satisfied identically while (I.19) becomes

KA2w - (I>,yyW,xx- 2_,xyW,xy'4- (I),xxW,yy -- AMHT (1.21)

From the compatibility equation

02 02 020 02w)2 02w02wo °-2 %=( (I.22)
Oy2exx -]- _x 2eyy OxO----_ OxOy Ox2 0y 2 '

where o o oexx, eyy, exy are the middle surface strains, as given by (I.7) and the constitutive rela-

tions (I.9), we easily obtain the second of the two generalized yon Karman equations which

apply in the case of hygrothermal buckling, i.e.,

O2w 02w O2w

/k2¢I,- Eh{(oxOy) 2 (I.23

As in [1] we may introduce the nonlinear (bracket) differential operator by

If, g] -- f, yyg,xx-- 2f, xyg,xy+ f,xxg,yy

and write (I.23) in the form

1

A2(I) - -_Eh[w, w]- (1 - v)ANsT (1.24)

With/XM_v -/XNuT -- 0, the system (I.21), (1.24) reduces to the standard system of yon

Karman equations which apply in the case of linear, isotropic, elastic response in rectilinear

Cartesian coordinates in the absence of both an initial prebuckling deflection and an applied

transverse normal loading.

For the case in which the thin plate exhibits linear elastic behavior, but possesses recti-

linear orthotropic symmetry, the generalized Yon Karman equations governing hygrothermal



buckling may be derived as follows: for a constant thickness orthotropic think plate, in which

the x and y axes coincide with the principle directions, the constitutive equations have the

form

(71111 C21 C22 0 6yy-- e}r (1.25)

cr_y 0 0 c66 ?xy

where the hygrothermal strains have the form

! e_z = _15H + a_ST (I.26)
[ e_.tT = _25H + 626T

with 61, 62 the coefficients of linear thermal expansion along the z and y axes, respectively,

and fit, _2 the coefficients of hygroscopic expansion. For now, we shall assume that the a_ and

fi are constant, i - 1, 2. In (1.25) the elastic constants are given by the following expressions

in which E_, E2, v12, z/21, and Gl2, respectively, are the Young's moduli, Poisson's ratios, and

shear modulus associated with the principal directions:

r

Cll -- E1/(1 -/2121,'21 )

- / (1-

c2_- E_vt2 / (1 - _'t2v2_) (1.27)

022 -- E2 / (1 - l'121221)

C66 -- Gl2

Also, ELY12-- E2_21 so that cm- c21. As in [1], the constants Dij - cijha/12 are the

associated rigidities (i.e., stiffness ratios) of the orthotropic plate. Employing (1.27) we have

for the bending rigidities about the x and y axes, respectively,

Dl_ - Elh3 E2h3- and D22 = (I.286)
12(1 - v'12v'21) 12(1- _12_21)

while
h3

D66 = Gl2 (I.28b)
12





Remarks: In the special case of rectilinear isotropic elastic response (I.30), (I.31) reduce as

follows: we set E1 = E2 - E, th2 = t_2x= t_, and Gx2 - G. Also

e_T- e_T- /35H + c_ST- est

as c_i = c_2 = _,/_i =/32 =/3. Then

E fh/2

E fh/2 (1.32)

and it is clear that (1.30) reduces to (1.9) with NHT -- N}_ + N}2r - N}_ + N_r2 given by

(I.lO).

From (I.39) we have, immediately, that

o _( 1 )Nxy (I.33a)exY 2G12h

while the linear algebraic system

o o i +ciiexx + C12Cyy --

o o 1
c2iexx+ c22eyy-- _(Ny + J_r_T)

wit h

yields

o _ i {( E2 )(N_ + N)_r)- ( E2v2i )(Ny + ]_r/_/T)} (I.33b)e= - Icijlh 1 -- /212/221 1 -- /212/221

0 __ 1 {( E1 )(Ny q- _r2T) -- ( E1/2i2 )(Nx + ]_r_/T)} (I.33C)euY-- Icijlh ' 1-/212/221 1 -/212/221

with
Ei E2v2i

1 - vi2zx2i1 --vi2v2i

[Cij[ -- EiFi2 E2 '

1-v12_21 1-v12Y21

11



i.e.

[cij] ExE2/(1 - vx2L,2x) (I.34)

Employing (1.34) in (I.33b,c) and recalling (I.33a) we easily find that the inverted constitutive

relations assume the form

0 _ 1

o 1

er, _ {(-Nv + N_rT) - _x2(Nx + s'9_T)} (I.35)
o Nxy

To compute the bending moments Mx, My, and M_y we employ the constitutive relations

(I.29) in (I.6b) so as find

h3

h3

h3

ij
where the hygrothermal moments MHr are given by

nl2

nl2___/_
(I.36)

bi2M_ - _ _-_/_&_(_,y,_)z_

fbi2M}5- _ _-_/,4,_(_,y,z)zd_
- ha/12 the bending moments may be written in the formEmploying the rigidities D_j c_j ,

Mu = -(D2_w= + D22w,yy) - (M_r_ + M}2T) (1.37)

M_y = -2D66w,_y

12



Equations (I.36), (I.37) generalize the relations (II.67a, b, c) of [1] and reduce to the latter

expressions for the bending moments when ai - _i -0, i - l, 2.

For the orthotropic case, the equilibrium equations (I.17a), (I.18) still apply with the

averaged stresses given by (I.30), (I.31) and the bending moments by (I.36), (I.37). As in

the (rectilinear) isotropic case, we introduce the Airy function · which is defined by (I.20)

and the pair of equations (I.17a) is satisfied identically. Substituting into (I.18), from (I.20)

and (I.37), we next find that (I.18)implies that

Dllw,xx_x + {Dx2 + 4D66 + D21)W,xxyy+ D22w,yyyy- [_, w]- {(gT/}r),x_ + (gY/_rT),yy) (1.38)

where
'

M]_T = M}z_ + M}z2 (1.39)

With a_ -/_ - 0, i - 1, 2, (I.38) reduces to the first of the yon Karman equations for the

non-hygrothermal case, e.g., (11.65)of Il].
.?

Remarks- Various special cases of (I.38) may be written down by, e.g., taking the/3_ - 0

in (I.26), assuming the a_ are constants, and taking specific forms for ST(x, y,z). Such

considerations will be relegated to the discussion, later on in this report, of (mostly thermal)

bending and buckling analyses which have appeared in the literature.

The second generalized von Karman equation for hygrothermal bending and bucking,

for the case of rectilinear orthotropic symmetry, follows as in the isotropic case from the

compatability equation (I.22), i.e.,

02 02 02 o

+ _e;y - 2 e_--------ly= -l[w w] (1.40)¢°x
Oy 2 OxOy 2 '

In the present situation the middle surface strains exx°,exyO,and eyy°are given by (I.35); intro-

13



ducing the Airy function into (I.35), we now write this system in the form

i i _
e°x = hEi (_'yy - _'21_'xx ) + hE1

o 1 1 (N_r- L'12N]_r) (I.41)
eyy = hE2 (_,:x - _'12q),yy) + hE2

1

%Y - 2hGx2 _,xy

and then substitute into (I.40) so as to obtain

1 1 2_12
1 (I) yyyy-[- ( )(I),xxyy

El h h Gx2 E2

1
· ,_ l[w w] (1.42)

+ E2h - 2 '

1 i (N_T --_i2]VzT),xx
Si/_(]_r_/T- I/2ij_r_T)'yy S2h

Equation (I.42) reduces to (11.69) of [1] for the non-hygrothermal case when c_i - /_i -

0, i - 1,2, in which case N_/T = N_/T -- 0. Various special cases of (I.42) will appear

later on in this chapter when we consider specific (mostly, thermal buckling and bending)

problems that have appeared in the literature. For a thin linear elastic plate, which exhibits

rectilinear orthotropic symmetry, the complete system of generalized yon Karman equations,

incorporating hygrothermal expansion and contraction, consists of (I.38) and (1.42); these

equations hold in the absence of initial deflections and a transverse (normal) loading. Systems

of equations which are similar to (but less general than) (I.38), (I.42) for the case of thermal

buckling and bending of thin, linearly elastic, rectilinearly orthotropic plates have appeared

in several places in the literature, e.g., [4], [5], and [6], as well as in §7.2 and §9.2 of [3].

B) Polar Coordinates

In this subsection we will present versions of the generalized yon Karman equations in polar

coordinates for thin linearly elastic thin plates exhibiting isotropic response as well as cylin-

14



drically orthotropic response. We will also indicate how the generalized (hygrothermal) form

of yon Karman's equations may be obtained, in polar coordinates, for thin linearly elastic

plates exhibiting rectilinear orthotropic symmetry.

In a cylindrical coordinate system (r, 0, z), with the polar coordinates (r, 0) describing

the middle surface of the plate, the expression in (I.2) for the hygrothermal strain remains,

essentially, invariant except that §H and §T are now functions of (r, 0, z), i.e.,

e_r -/35H(r, O,z) + aST(r, O,z) (1.43)

In lieu of (I.1) we have

err = err -- e_tr

eeo - eeo- e_T (1.44)

,.,.,

%o -- %0

where e_, eo0, and %o are given in terms of the displacement components u_, uo in the middle

surface of the plate and the out of plane displacement w - w(r, O)by the relations in (II.71)

of [1], i.e.,

Ou_ 1 Ow 02w
Or 2

u_ l Ouo 1 Ow)2 low 1 02weoo= f _ ( - C(-y; _ )r r O0 _ O-U r r2 002

Ouo uo 1 Our. I _w Ow 1 02
- +-(-SF_ +-( _)(_-)- 2C( w 1 aw,%o - Or r r r tOrO0 r2 00)

o e_0, 7°o are obtained from these relations by simply setting _- 0.Middle surface strains e_,

The stress components ar,., croo,and crromust satisfy the equilibrium equations delineated,

e.g., in (II.72a, b) of [1]; they are related to the stress components in rectangular Cartesian

15



coordinates by the equations in (11.73) of [1], i.e.,

O'rr -- axx cos2 0 + cyuysin2 0 + 2axy sin 0 cos 0

ers0 -- Cruxsin2 0 + cruycos20 -- 2Crxysin 0 cos 0

cr_o -- (cruy-- axx) sin 0 cos 0 + cr_y(cos2 0 -- sin2 0)

Assuming that the thin plate exhibits linearly elastic response, we have in lieu of (1.4), the

constitutive relations 1

_- _ - _(_- _00)

1 (I.45)'
_00- _ = _(_00- __)

e,0 - (1 + v)a_0E

whose inverted form is
E E

/fei) o)'_ +Crrr

E E , (I.46)

E

The averaged stresses and bending moments in polar coordinates are defined in the obvious

way as the natural counterparts of (I.6a, b), i.e.

_ fh/2
Nr -- J-h/2 cr_dz

(_.)
h/2

Mr - J-h/2 a_¢zdz

So that, by virtue of (I.46)

, Eh

Eh (ego+ ve°_,)- N_r (1.47)No = l_v2

N_o - 2Ghe°o

16



E fh/2
where N_T = I -- y J-h/2 eHTdz'

It is easily shown that the polar coordinate equivalent of the equilibrium equations (I.17a),

i.e.,
1 1

N,,_ + -N_oo + -(N, - No) - 0

r ' r (I.48)1 2
N,o,,+ - No,o+ - N_o- 0

9° T

is satisfied by introducing the Airy (stress) function _- _(r, 0) defined by

1 1
Nr = -_,r + _

r _¥ ,00

No - _,_ (I.49)

1 1

N_o = r__,o - 7_'_°

For the isotropic situation under consideration, the generalized yon Karman equations (in

polar coordinates) can now be derived by simply employing the polar coordinate equivalent

forms of the equilibrium equation (I.18) and the compatability equation (I.22); specifically, in

the polar coordinate equivalent form of (I.27) one would substitute, from (I.47) and (I.49),

0, e_0, and o in terms of radial and angular derivativesfor the middle surface strains err %O

of _(r, 0), while in the polar coordinate equivalent form of (I.18) we would substitute for

radial and angular derivatives of the bending moments Mr, Mo, and M_o the equivalent

expressions in terms of derivatives of w - w(r, 0). A more direct way to obtain the generalized

von Karman system, in Polar coordinates, for linear isotropic response, is to note that the

differential operators present in the system (I.21), (I.24) are invariant with respect to linear

transformations of the coordinate system; in particular we have, in lieu of (I.21), (I.24), the

system

(I.so)
= -5

17



where

NiT = 1-y J-h/2 (I.51)

E ih/2 e;trZdZ
MHr = 1-v J-h/2

while A2w is given by (II.75a) of [1], i.e.,

2 1

/_2W -- W,rrrr mt- --TW,rrr -- _-_ W,rr

2 I 2

-{-_W,rrO 0 mt- _¥W,r - _¥W,rO0

1 4

+ _w,oooo+ _w,oo,

with an analogous expression for A2_, while

1
l_+ · o)

1

1 1 1 1

-- W,rO - ( -- (I),rO - _¥ (I),0 )

1 1
__ __ --W,rO)= NrW,rr 2]Vro(_¥w,o r

+No(1 1- + 7_w,oo)TW, r

1

[w,w] -- 2{W,rr(SW,r+ 7W,o0)

1 1 2
--W,r 0 -- _W,o ) )-(r

and
1

/XMbT(_,o) - (MbT),_+ -(Mb_),_
9"

(1.52)1

+7 (Mf_),oo
with an analogous expression for/XN}r(r, 0). If 5H,o - 5To - 0 so that

e_r(r ,z) --/3(SH(r, z) + c_(ST(r,z), (1.53)

18



and we consider only radial symmetric deformations of the plate, then the generalized yon

Karman system for the case of linearly elastic, isotropic response reduces to the pair of

equations

W I' _K[w""+. 1,]
(I 54_)r r 1 ,, '= N_" + N0,_ {M_+ -M_).

T

where ' d 1 _),, a_. _/r* E [h/2= _-7'N_- - No- _ _.r(_) - _kr(_._)_dz.r 1 -- U J-hi2

and

2_(_,,, 1 <_,, 1I L(i),,,,+r _ + G,]Eh r r 2
(I.54b)

__ I ,!= _!_,_,, (_- _'){Ar_;_.+ -Ar_}
r Eh r

Both the systems (I.50) and (I.54a, b) neglect the effects of initial (prebuckling) deflections

and an applied transverse loading; special cases of these systems, which have appeared in

the literature in connection with problems associated with the thermal bucking of isotropic,

linearly elastic circular plates will be analyzed later in this report.

For a linearly elastic, orthotropic body exhibiting cylindrical orthotropy there exist three

planes of elastic symmetry; one of these is normal to the plane of anisotropy, the second

passes through that axis, and the third is orthogonal to the first two. For a thin plate the

first plane of elastic symmetry, for a cylindrically orthotropic material, is chosen parallel to

the middle plane of the plate; with this convention, the constitutive equations generalize

those in (I.45) for an isotropic plate (in polar coordinates) and assume the form

1 uo

e,._-e_rr = E-_O¥_ EoCrOO

z,,_. 1 (I.55)

1
-- -- (Tr8

%'o G_o

19



where the radial and angular hygrothermal strains e_T and eOT are defined, respectively, by

_r = _s(_, 0,z)+ _r(_, 0,z)
(I.56)

with c_r, c_0 the coefficients of thermal expansion in the radial and angular directions, re-

spectively, and fit,/3o the coefficients of hygroexpansion in the radial and angular directions,

respectively. Also, in (I.55), E_ and Es are the Young's moduli for tension (or compression)

in the radial and tangential directions, respectively, while pr and p0 are the corresponding

principal Poisson's ratios and Gro is the shear modulus which characterizes the change of

angle between the radial and angular directions. XYe note that for a cylindrically (or polar)

orthotropic body we have E,._'s - Eo_',. so that the constitutive equations (1.55) may be

rewritten in the form
1

r

e,._ - E,.(o',.,.- _'_o'oo)+ e_r
1

(o'oo- _oO¥_)+ eOT (I.57)
Coo -- Eo

1
---- --O'rO

%0 Gro

For the (degenerate) case of isotropic symmetry, Er - Eo - E, _ - _o - _, c_ - ao - a,

and 3,- - 3o - 3 in which case e_r - e°r - e_r , as given by (I.43), and the constitutive

relations (I.57) redue to those in (I.45) as G_o - G for isotropy. The strains e_, e00, and
1

e_0 - _%0 are still given by the relations following (I.44) or, in terms of the middle surface

strains, by
f,

O

err ---- err -- _W,rr

1 1

, _00- _g0-C(7_,,+ ?sw,00) (I.5s)
1 1

__ o __ --W,rO -- -- O)%0 %0 2('( r r2 w,
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and

Dfc - Dr_o + 2Dro (I.64)

We also have

M_ -D_[w,_r+ _o(1
1

= -rw,_+ 7_w,oo)-M_r

1 1

MO = -Do[lyrW,rr mt-(;W,r -{- _W,o0)] - ]Wf_T (I.65)

M_o = -2f>_0(w),_0
T

with

1 - v_vo J-h/2 1 - v_vo J-h/2 e"zzdz°u
M_iz

(1.66)

Eo [h/2M[
--T 1 -- lYrY0 J-h/2 1- YrlYO J-h/2

The expressions in (1.61), for the averaged stresses, and (1.65), for the bending moments,

generalize, for the case of cylindrical (polar) orthotropic behavior, the corresponding relations

(11.93) and (11.94)in [1] for the non-hygrothermal case.

The first of the generalized von Karman equations for a plate possessing cylindrically

orthotropic symmetry is obtained by substituting the expressions in (1.65), (1.66), for the

bending moments, into the polar coordinate equivalent form of (1.18), namely,

1 1
1(rM_),_+ Mo,co Mo,_r _ r

1
+-M,o,_o + Y,w,_ (1.67)

9°

1 1 W),rO-- 0+Yo(;w,_+ 7_w,oo)+ 2N,0(r

where the stress resultants Nv, No, and N_o are, again, given by (1.49) in terms of the Airy

stress function _(r, 0). Equation (1.67)is identical with (I1.106) of [1]. Carrying out the
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process indicated, above, we obtain

1 1

D_w,_ + 2D_s_w,_eo + Do_w,oooo

I 1 1

+2D_-w,_r - 2D_s_w,_oo - Do_w,_ (I.68)

I 1

+2(Do + D_o)_w,oo+ Do_w,_

1
i_,_+ · )tv

1 1

+2(i _ i i i- o- )(-w,_o-Tw,o)T 2 ' 7 (I)'rO 7'

I 1 1
+-(tMOn),,,+ (__),00--(:__),_r _ r

In order to obtain the polar coordinate equivalent form of the compatibility relation (I.40),

without transforming this relation directly, we proceed as follows: with respect to the lin-

earized strains
g

err --- Ur, r

1 1
e_o = -u_ +-uo,o (I.69)

/' T

1 1
')/r_O -- 7_O,r -{- -- Ur,O -- -- 7gO

T T

it is easy to check that

(.v t ]
£ --(T2C_O ),r 'Jr- T £ -- 0 (I.70&),_,_O,O,,r--*r_,O0 ,r *_r,r

Moreover, in view of (1.59),

o _ 1 )2e_ = e_+_(w,_
1

e_o - e_o + _(w,o) 2 (I.70b)

1
7°0 = 7_o+ -W_W,o

T '
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Thus, strain compatibility, i.e. (I.?0a), when written in terms of the middle surface strains,

requires that
o o 2 o o

1 1 ,] (I.71)= [_(TW,Wo),o],_-[_(w,_),_
1 1

--k'(_(w,0)'],,,r+_(_(wl,)'_),r
Expanding the right-hand side of (I.71), and simplifying, we obtain

(_%°o,o),, - _°,,oo- (_'eOoo,,-),,-+ re%,_

(I.72)
= Wr_(_w_+w,o0)-(w,,o--w,o)'

7'

If we invert the relations in (I.47) we find that

1

*% = Evb{(:vt+ :V;,_)- _r(:Vo+ N%)}
I

7-

q ego = Eob {(No + NOr)- vo(Nr + N/_r) } (1.73)
1

Groh

Computing, in succession, therefore, the expressions on the left-hand side of the compatibility

relation (I.72), we now obtain, through the use of (I.73)

1

(r?°°'°)'_ = G_oh{N_o,o+ rN_o,_o} (I.74a)

1

_%,oo= E,h{(Nr,O0+ Ni-T,oo)- _,,(Xo,oo+ Noz-zr,oo)} (I.74b)

T 2

(_o,,),, = zoh{No+ :V%),,r--_'o(:V,+N;,_),,,}
(I.74c)

2r
+ {(No+N°T).,- _'O(_r+ :V;,,.).,}Eoh

24



and

re°_'_ = Erh {(N_ + N_z),_ - L,_(No+ N°T),_} (I.74d)

Finally, by substituting (I.74a, b, c, d) into (I.72), and simplifying, we obtain

1

1

+ 2Groh (N_o,o - rNro,_o)

1 [(_(No._- _ONr._)+2_(N0._-_ON_.r)]
+ Eob

= W,_r(rw,_+ w,oo) - (w,_o- lw,o)2 (I.75)
7'

h[(x;_ - _.N%).oo+_(x;_...- _rX%..)]

1 No r
Eoh[_( ._.rr--_o:V;,_,_,)

+2r(N o N r

To rewrite (1.75) in terms of the Airy function _(r, 0), we substitute for Nv, No, and NrO

in (1.75) from (1.49), multiply the resulting equation through by -h/r 2, and simplify; there
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results:

Eo G_o Er )r5_'''_°°

1 1 2 1i>,,.,.,'+Z 7__,oooo+ _ 7
1 2Ur 1 1 1(

)7_,_oo _,__G_o E_ E_ r2

+(21 - v_ 1 1 1 1E--Y-+ _o)7 _'°°+ _7 _,_
I 1 (I.76)

1 1

-(_-_,_0- 7 _,°)_]

1 1 1 NO
+_[7(N;_ - _y°_),00+ -(N;_,__- _ _,_)]

1 2 0 0
(:%r,r_-_o.%r,.)+-(:V_,_0-_0-%r,r)]

Therefore, the generalized von Karman equations governing the bending and buckling of

(hygrothermal) cylindrically orthotropic, linearly elastic plates consist of (1.68) and (I.76);

in the absence of hygrothermal strains these equations reduce to (11.98), (11.99) of [1]. In

(11.68), (1.75) M_T, MoT are given by (I.66) and N_r , N°r by (1.62) where e_r , e°r are

defined by (1.56). For a radially symmetric problem all derivatives with respect to 0 in both

(1.68) and (I.76) would be deleted.

In [1] we commented on the difficulty involved in writing down the von Karman equations

which govern the load buckling of a circular (or annular) rectilinearly orthotropic elastic

plate; we noted that the structure of the von Karman equations is greatly complicated by

the inherent mismatch between the type of elastic symmetry which is built into the form of

the constitutive relations and the geometry of the region undergoing buckling. Before we

close out this section, we will outline the procedure that must be followed in order to deduce

the generalized von Karman equations for bending and buckling of circular (or annular)

rectilinearly orthotropic, thin, elastic plates.
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The starting points for a derivation of the generalized yon Karman equations as-

sociated with a rectilinearly orthotropic elastic plate in polar coordinates are the equilib-

rium equation (1.67) and the compatibility equation (1.72). In (I.67), the averaged stresses

N_, No,/V_0, may still be expressed, a priori, in terms of the Airy function _(r, 0) by (1.49).

The moments must be expressed in terms of polar coordinates; this means that given

Crxx, cryy,Crxy (as defined by (I.29))) appropriate expressions for crT,-,ct00, and cr_0 must be

computed through the use of the transformations preceding (1.45). In order to effectively

use the transformation from (Crxx,_yy, _xy) to (cr_, ct00, cr_0), the former set of stress compo-

nents must be expressed entirely in terms of polar coordinates. As has been noted in Ill,

the components of the middle surface strain tensors in polar and rectilinear coordinates are

related by

o o o _ sin 0 cos O'y°ye_ -- cos 20%x + sin 20.¢yy

e_0 = sin 20e% + cos 2 O- e;y - sin 0 cos Oqx°y (I.77)

7°s -- sin 20(eyy - e°x) + cos 2_. 7%

Inverting the relations in (I.77) we readily obtain

1

Z)(O)e°_ - (cos 2 0 cos 20 + _ sin 2 20)e°_

I (I.78a)
-(sin 2 _ cos 2_ + _ sin 2 20)e_0

1

+_ sin 20 cos 2_?°o

o 1
Z)(O)eyy -- (sin 2 Ocos 20 - _ sin 2 20)e°r

1

-(cos 2 0 cos 20 - _ sin 2 20)e_o (I.78b)

1
sin 2/¢cos 20.9,°02
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and

0 0 0

D(O)%y - sin 20(%_ - e_o) + cos 20.%o (I.78c)

where D(O) -cos 2 20; we also note that

1
W,x- w,_cos 0 - -w,0 sin 0 (1.79)r

1
Wy - w,_sin 0 + -wo cos 0 (I.80)r

so that

w_ cos2 0 w,_ + sin2 O( 1 1
-- ' --r2 w,O0 + - W,r )

r (I.81a)1 1

+ sin 20(7w,o - rW,ro)
1 1

· -W,r + )Wyy - sin2 0 w_ + cos20(r _w,oo
(I.81b)1 1

+ sin 20(r w,,o - _¥w,o)
and

w xy sin2 O( 1 1-- -- '0 -- --WOr)
, r2 ?dj, r

1 1
COS 2

O,r(-w,_o - 77w,o) (I.81c)
+

1 1

+ sin0 cos O(w,_ rW_ r2 00)

To proceed, we note, e.g., that for fixed but arbitrary 0, cr_ is a linear function of a_, Cryy,

and a_y, i.e.,

rrrr-- COS2 O' Crxx+ sin2 O ' O'yy '+' sin 20 . axy (1.82)

while, by (1.29) and (1.7), we may write

O

Crxx -- cllexx -- _C11W,xx -- C11e_T

(I.83a)

o _ --+-C12gyy W,yy 2

O

O'yy -- C21gxx -- _C21W,xx C21e}tT
(I.83b)

o _ --[-C22gyy
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and

_ (I.S3c)

where the cij are defined by the relations (1.27).

The expressions for %_°,%yo,and %yoin (I.78a, b, c) and for w,_, w,_y and w,_y in (I.18a

b, c)are now substituted into (I.83a, b, c) in order to compute a_, ayy, and cr_y in polar

coordinates, after which these expressions are substituted into (I.82) and the analogous

relations with respect to croo and rrro. The (resultant) forms of rrna,aoo, and cr_0 are then

employed so as to compute Mr, Mo, and M_o which, subsequently, are used in the equilibrium
..

equation (1.67) in order to produce the first of the generalized von Karman equations for

hygrothermal bending and buckling. Complete details will be presented in a future report.

In order to derive the second generalized von Karman equation, in polar coordinates, for

circular or annular plates exhibiting rectilinear orthotropic response, one uses the compatibil-

ity relation (1,72) as a starting point. The stress components cr_, croo, and a_o are expressed

o o and the hvgrothermal strains c}tr andin terms of the middle surface strains %_, e_0, and cro,
....

_2 and th e resulting equations are then integrated over the thickness of the plate, andHT_

inverted, so as to yield equations analogous to (!.73) for the cylindrically orthotropic case;

the relevant second generalized von Karman equation results from the substitution of the

forms of e_°, e_0, and e_0°in (1.72), the introduction of the Airy. stress function _(r, 0), and

subsequent simplification. Alternatively, the relevant forms of the generalized von Karman

equations for this case may be obtained by directly transforming (I.38) and (1.42) into their

polar coordinate equivalent forms.

II. BOUNDARY CONDITIONS

The discussion of boundary conditions for thin elastic plates undergong hygrothermal

expansion or contraction parallels that for edge loaded plates in [1]; the important difference

is that the expressions for the (resultant) forces and moments along the edge of a plate
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strains. As in [1], if the thin plate occupies a region f2 in the x, y plane with a smooth (or

piecewise smooth) boundary chf_, we let n denote the unit normal to the boundary, at any

arbitrary point on the boundary, while i denotes the unit tangent vector to the boundary

c_f z f,n whileat that point. The normal derivative of a function f on c_f_ is denoted by On
af

the tangential derivative is given by _s' s being a measure of arc length along the boundary.

. Thus, e.g., if f_ is a disk centered at (0, O) ofradius R > 0 and f - f(r, O) is defined on ft and
c_f (?f 1

is of class C _(_), with first derivatives continuous up to c?f_, then _nn - f,r while Ds = r f'_'

r As has been previously noted in [1], the three most prevalent types of boundary conditions in

the buckling literature are those which correspond to clamped edges, simply supported edges,

and free edges; regardless of whether we are considering plates with isotropic or orthotropic

symmetry (either cylindrical or rectilinear), the basic forms assumed by these various sets

of boundary conditions are still the same as those delineated in (II.113a, b, c) of [1], i.e.,
Ow

(i) c_f_ is clamped: w- 0 and Chh -0, on c3_

(ii) c_f2 is simply supported' w - 0 and Mn - 0, on c3f2

cgMtn
(iii) cg_isfree: Mn-0andQ_+ Os =0, onrgf2

where M_ is the bending moment on Og2 in the direction normal to c9_2,Mtn is the twisting

moment on c9_2,with respect to the tangential and normal directions on cgQ, and Q_ is the

shearing force associated with the direction normal to OQ.

For the work to be considered in this report only rectangular and circular (or annular)

domains f2 will be considered. If Of2 is clamped, therefore, or if, as in the case of a rectangular

plate, one or more edges are clamped, the pertinent boundary conditions will be exactly the

same as for the non-hygrothermal case, i.e., for a rectangle of width a and length b, exhibiting

isotropic response, the clamped boundary conditions are expressed by (II.114a, b) of [1]. For

a circular plate (or annular plate) exhibiting isotropic response the relevant conditions are

those in (II.123) of [1]. Conditions (II.114a, b) of [1] apply equally well to a rectangular plate

exhibiting rectilinear orthotropic response when all the edges are clamped while (II.123) of
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[1] still applies for circular (or annular) plates with clamped edge(s) when the plate exhibits

cylindrically orthotropic behavior.

We now consider thin elastic plates, subject to hygrothermal expansion or contraction,

which have one or more edges simply supported. For a rectangular plate of width a and

length b the condition Mn - 0 on a_ becomes

M_-0, x - O,x - a; O _< y <_ b (II.l)

My-O, y-O,y-b; Oix<a

Thus, by virtue of (I.12),

K(w,_ + _Wyy) + M_r - O,
(II.2a)

x-O,x=a;O_< yi b

and

K(w,yy -+-_W,xx) -]- MHT -- 0
(n.2b)

y- 0, y- b;0 _< x <_ a,

where

E /h/2
MiT = 1-- z/J-n/2eHTzdz (II.a)

_Hr = _S(x, y,z)+ c_T(z,y,z)

For the same rectangular elastic plate, now assumed to exhibit rectilinear orthotropic sym-

metry, the conditions in (II.1) take, as a direct consequence of (1.37) and (1.39), the following

form'

(DllW,xx + D12w,yy) + -/_tT -- 0,

(II.4a)

x-O,x-a;O<y<b

(D21w,xx + D22w,yy) + M2 T - 0,
(II.4b)

y- 0, y- b;0 < x < a
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where Dij - cijh*/12, the constitutive constants cij are given by (I.27) and

_ _ /hi2

(II.s_)
/hi2

+cl2 J-h/2 e2r(z' y' z)zdz

hi2

(I.5b)

hi2
-]-C22 J-h/2 g_T(X' y' z)zdz

with, as per (I.26),

_ = _H(_, y,_)+_SZ(_,y,z)

For an annular elastic plate with (circular) boundaries at r - -Ri,i- 1, 2, R_ - a, R2 -

b > a, exhibiting isotropic material symmetry, the condition Mn - 0 on Of2 translates into

1 1

Mr -- K[w,rr -'[- Y(_W,o0-Jr- --W,r)]

r (II.6)u

+M_r - O,r - Ri, i - 1, 2.

where

E fh/2 e_r zdz

MHz = 1 -- lYJ-h/2 (11.7)

_ = _sH(_,o,_)+ _sr(_,0,z)

On the other hand, for a circular (Or annular) plate with edge(s) at r - R_,i- 1, 2, which

exhibits cylindrically orthotropic symmetry, we have as the expression of Mn - 0 on Of2 the

condition
1 1
-w,_+ w,oo)]+ Xl_r - 0,Dr[w,rr + l/O(r _-_ (II.8)

r - Ri, i - 1, 2
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where, by virtue of (I.66) and (I.56),

_rEo fn/2' Er fh/2 Ig_'tTdZ -[- eOHTZdZ
MHr = 1- v_voJ-h/2 1 - v_vo J-n/2

e_r -- _SH(r, 0, z) + _Sr(r, 0, z)

, ,% - _05H(_,o,z)+ _o_r(r,o,z)

and D_ - E_h3/12(1 - _'_vo).
OMtn

Along any edge of a thin plate which is free, we must have Mn - 0 as well as Q_ + _ =
Os

0. Conditions equivalent to Mn - 0 along a portion of 0_2 (or all of Of2) for various cases of

interest have been elucidated above. For rectangular plates of width a and length b, it has
OM.,

been shown in [1] that the condition Q_ -4- O----J-= 0 on Of2 is equivalent to the following
relations

My.y+ 2M_y._- O.
(II.ma)

y- O,y- b;O < x <_a

Mx,x + 2Myx,y - O,
(II.mb)

x-O,x- a; O_<y_< b

If the rectangular plate exhibits isotropic response then the bending moments Mx, My, and

Mxy are given by (1.12) inwhich case (II.9a,b) become

X[w,_+ (2- _)_,=_]+ M._._- 0
(II.10a)

y- O,y- b;O _<x _<a

and

X[w,=_+ (2- _)__] + M._._- 0
(II.10b)

x- O,x- a; O_<y _<b

E fbi2
with MHr = 1 - L,J-h/2 e_rzdz and eHr -/_SH + aST.

For the case in which the rectangular plate exhibits rectilinear orthotropic symmetry,
0M_

(II.ma,b) still represent the conditions equivalent to Qn + Os = 0 along all four edges but,
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now, the bending moments Mx, My, and Mxv are given by (I.37). An easy computation then

shows that in lieu of (II.10a, b) for the isotropic case we have

D21w,_y + D22w,yyy+ 4D66w,_xy+ M2 - 0HT, y
(II.11_)

y - O,b;O __x __a

and

PllW,xxx + Pl2w,xyy + 4D66w,xyy+ M 1 - 0HT, x

x- O,a;O __y __b

where f'/_T, fir_T are defined by (1.36) and (1.39) with e_r, e_r as given by (1.26).

In order to elucidate the free edge boundary conditions which apply with respect to thin

elastic plates with a circular geometry, we note that (see [3], §2.2 ) in the orthogonal (s, n)

coordinate system introduced along the boundary c3f_of a domain f_ in the x, y plane

aM_ oM_ (II_2)Q_- On + O--;-

Thus, along a free edge we must have Mn- 0 as well as

OM,_ OM_,_+2_ =o (II._3)
On Os

Along the edge at r - R of a circular plate, the condition (11.13) assumes the form

2
Mr,,. + - M_o,o- 0 (II. 14)r

For an annular plate with edges at r - /?4,i - 1,2(R1 - a, R2 - b > a), which exhibits

isotropic material symmetry, the condition corresponding to (II.14) becomes

1 1
K( (w,rr ut- --W,r -f- W,O0)

7' _-_ ,r (II._s)
1 1

-]-(1 -- l,/)(_-_W,OOr -- _¥W,o0)} q- _/JHT, r -- O, T -- _i, i-- 1, 2
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where M_T(r , O) is given by (I1.7). For the same annular plate, this time exhibiting cylin-

drically orthotropic behavior, we have as a consequence of (I.65)

1 1

+ vo(r 7
4 w

+-brO(--),,oo + M_T,, -- 0, (11.16)7' V

r = Ri, i = 1, 2

where Dr - E_ha/12(1 - _0), 15_0- C_oha/12, and M_r is given by (1.56) and (1.66). Of

course, for both the isotropic and cylindrically orthotropic cases we must have Mr - 0 along

r - Ri, i - 1, 2, with Mr given by (II.6) in the isotropic case and by (1.65) in the cylindrically

orthotropic case. If R_ = a = 0 the annular case reduces to the case of a disk (circular plate

of radius R2 = b).

III. THE VON KARMAN EQUATIONS FOR THERMAL BEND-
ING AND BUCKLING OF PLATES

Although the primary motivating factor behind the preparation of this report was (and

remains) to prepare a foundation and background material for a study of the hygroexpansive

buckling (and curl) of paper, it is a fact that almost all of the literature on hygrothermal

bending and buckling of plates has focused on purely thermal problems; in order to survey

some of that literature, therefore, we shall now specialize some of the equations and boundary

conditions specified in §II for the mixed hygrothermal situation to the thermal case only. We

shall also look at the reductions that occur in the thermal buckling and bending equations

when special forms of the temperature distribution in the plate are considered or when

we restrict ourselves to the small deflection case or ignore middle surface forces (acting in

the plane of the plate); at this point we shall also append to the first of the relevant von

Karman equations, in each case, a distributed force t - t(x, y) normal to the middle surface

of the plate. In all the cases to be considered in this section an equivalent hygroexpansive
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(or hygrocontractive) problem results by replacing the thermal expansion coefficients by

hygroscopic coefficients and the plate temperature distribution by an equivalent distribution

of moisture in the plate.

We begin by specializing the equations and boundary conditions derived in rectilinear

coordinates so as to cover the specific case of thermal bending and buckling. Thus, in (1.2),

/3 - 0 so that

where it is assumed that the thermal expansion coefficient c_ is constant. For isotropic

response the constitutive relations (1.9) then reduce to

Eh
= o )_N rN_ 1 - _2(e%+ Veyy

En o N_ (III2)Ny = l- _(% + _o)_

Nxy = 2Ghe°y

0 . . .where e°x, e°y, eyyare the middle surface strains as defined by (I 7) and N r is given by (I lla)

The bending moments are given as

Mx = -K(w,x_ + _w,yy)- Mr

M_ = -X(w_ + _w,_)- M_ (III.3)

M_y = -(1 - y)Kw,_y

with the thermal moment M T given by (I.14).

The generalized von Karman equations for the hygrothermal case now reduce to (see

(1.21), (1.24))'

KA2w -- (I>,yyW,xx- 2_xyW,xy+ _,xxW,yy- A] tlr + t (III.4a)

and
1

A2_ - -_Eh[ w, wi- (1 - y)/XN :r (III.4b)
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where t - t(x,y) is the applied transverse force. In considering small deflection theory

one ignores the bracket operator on the right-hand side of (III.4b), in which case the Airy

function, as given by (I.20), satisfies

/X2_--(1- u)ANr(small deflection theory) ( III.4b )

In a purely (thermal) bending problem the middle surface forces as given by (1.20) do not

come into play in which case the system (III.4a, b) reduces to

KA2w--AM T + t (thermal bending). ( III.4a )

In many places in the literature a temperature distribution of the form

ST(x, y, z) - To(x, y) + zT1(x, y) (III.5)

has been considered; for this specific type of distribution it is easy to see that, as a direct

consequence of (I.11a) and (1.14),

1- ' (hi6)
MT _ c_E h3- 1- v)

For such a temperature distribution, within the context of the small deflection equations,

it will generally be the case that one is dealing with a thermal bending problem when

AN T - /XTo - 0 and a thermal buckling problem when /XM T - /XT1 -- 0. The boundary

conditions associated with the thermal bending and buckling of, say, a rectangular plate of

width a and length b exhibiting isotropic material symmetry are as follows:

(i) If all the edges are clamped then the conditions coincide with (II.114a, b) of [1].
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(ii) If all the edges are simply supported then w - 0 along each edge and, in addition,

ti' (W,x x 'q- 12W,yy) -Jr-M T - 0

x- O,a;O < y < b

(uI.7)
K (wyy + vw,=) + M r - 0

y- O,b;O < x < a

(iii) If the edges are all free then the conditions in (III.7) hold as well as

x[_ _ + (2- _)__] + M_- 0

y- O,b;O < x < a
(III.S)

_:[_,_ + (2 - _)_ _] + M _ - 0_X

x - 0, a;0 <_y _<b

In (111.7), (111.8), M T is given by (I.14). Of course, cases where, e.g., one pair of (parallel)

edges is simply supported while the other pair of edges is free can be considered by combining

the conditions in (i)-(iii), above.

For a plate exhibiting rectilinearly orthotropic material symmetry the thermal strains

assume the form (see (1.26))'

with the coefficients of linear thermal expansion along the x and y axes, ai and a2, respec-

tively, taken to be constants. The constitutive relations in this situation are given as follows

(wl_ere ex_°,exyO,eyy°are, once again, the middle surface strains)'

O

N_ = {1-vi2v2i 1-vi2v2i

N_ = {i -/212/221 i -- /212ZX2i

Nxy = (2Gi2h)e°y
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where (see (I.31))'

· N_. - . ST(x, y, z)dz

1 - _i2_2i J-h/2 (III.11)

1 - _i2_2i J-h/2

The expressions for the bending moments, in the thermal bending/buckling problem for a

rectilinearly orthotropic elastic plate, assume the form (see (I.37))'

M_ = -(Diiw,_ + Dx2w,yy) - M_

My = -(D2iw,xx + D22w,yy) - g?I} (111.12)

Mxy = -2D66w,xy

where

hi2_} - (_ii_i+ _i_) _-_/__?(_,y,z)_
(III.13)

h/2

and the cij are given by (I.27). The relevant von Karman equations for thermal bend-

ing/buckling become (see (1.38), (1.42))'

DllW,_ + {D12 + 4D66 + D21}W,xxyy

(III.i4_)
+D22w,yyyy [(I), W] l_/i[1 ~ 1-- -- r, xx -- MT, yy + t

and
1 1 2/212

I (i),yyyy_] - ( )(i),xxyy
Eib h Gi2 E2

i _,_=_= i[ww]
+ E2h 2 '

(III.14b)
1

Sih (.Z_l'_-- _2iJ_rT2),yy

1 (_r2_ Yi2_ri),xx
E2h
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As for the boundary data in this case, with respect, e.g., to a rectangular plate of width a

and length ), we have the following:

(i) If all four edges are clamped then conditions (III.114a, b) of [1] still apply.

(ii) If the four edges are simply supported, then w - 0 along each edge and, in addition,

+ D 2w,,y)+ - 0,

x- 0, a;0 __y __b
(III.15)

+ + - O,

y- 0, b;0 __x __a

where M_,, M_, are given by (III.13).

(iii) If all four edges are free, then the conditions in (III.15) apply as well as

D21w,xxy + D22W,yyy + 4D66w,xxy + j_2 -- 0,T,y

y 0, b;0 __x __a
(III.lC)

DllW,xxx -Jr- D12w,xyy -+-4D66w,xyy - _1 - 0T,x

x- 0, a;0 __y __b
k

The same comments apply as in the isotropic case with regard to different types of boundary

data holding along pairs of parallel edges of the plate; in a small deflection situation, the

1 [w, w] would be deleted from the right-hand side of (III.14b) while for'bracket' term-_

purely thermal buckling equation (III.14b) would be deleted in its entirety and (III. 14a)

would be employed with (I)- 0.

When the temperature difference 5T varies linearly through the thickness of the plate, as

in (III.5), the thermal stress resultants/9_, i- 1, 2 and the thermal moments 37/_,i- 1, 2,
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as given by (III.11) and (III.13), respectively, reduce to

1 - ul2u21
(III.17a)

_ _ (S__, + S,_2)hro(_ ' y)
1 -- /]12//21

and

12 T_(x, y) (III.17b)

For a circular (or annular) plate exhibiting isotropic material symmetry, the thermal strain

(see (1.43)))is given by

e_, - c_ST(r,8, z) (III.18)

For the isotropic case, the constitutive relations (I.47) reduce to

' Eh
__ 0 *

N_ - 1- _ (_o+_%o)- Nr

Eh o · (111.19)

N_o- 2Ghe°o

where the e%, %0o,e_0 are the middle surface strains as given by (11.71) of [1] with C - 0,

while

Ec_ fn/2
N_. = I - v J-h/2 ST(r, O,z)dz (111.20)

The bending moments for the isotropic case in polar coordinates are given by (see [3], §4)'

, 1 1
-_,, + w,oo)]- M_,Mr = -K[w,rr + V(r 7

1 1
-w_ + woo)]-- M_ (III21)

M O -- --K[MW,rr "}-(T _

1

M_o= -(1 - _)K(w_o-Tm,o)
where

Ea
fh/2 ST(r, O,z)zdz (111.22)

M_. = 1 - v a-h/2
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The yon Karman system for this case now assumes the form

(Ill.23)

iEh[w,w]- (i - _)/xN¢

where [_, w] and [w, w], as well as A2w, are given by the expressions directly following (1.51)
02 1 0 1 02

and A - 0r 2 +-r _ -t r2 002 ; for the small deflection case one again deletes the 'bracket'

[w, wi in the second equation in (Ill.23). Thermal bending alone for the circular (or annular)

isotropic plate is governed by the first of the two equations in (Ill.23) with · - 0.

For a temperature distribution varying linearly through the thickness of the plate we

have, in lieu of (Ill.5),

_r(_,0,_)- ro(_,0)+ _r_(_,0) (iii.24)

In this special case (111.20) and (Ili.22) become, respectively,

N_ = __--z-7 (III2s)
Eah a

We now delineate the boundary conditions that are associated with the system (111.23), or

a specialization thereof, for the case of an annular plate with edges at r - Ri, i - 1, 2, Rx -

a, R2 = b > a.
Ow

(i) If both edges are clamped then w - 0 and _ - 0, along r - Ri, i - 1, 2.

(ii) If the plate edges at r - Ri, i - 1, 2 are simply supported then w - 0, for r - Ri, i -

1, 2, and, in addition,

K[w,_+ _,(1 1-_,OO+ TW,_)]+ M¢- o (III.26)
for r = Ri, i = 1, 2
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(iii) When the edgesat r - Ri, i - 1, 2 are free we must use (III.26) as well as the condition

{K (W,rr q- -w r -lt.- W,O0)
T ' T¥ ,r

_ _, (III27)
+(1- _)(7 w,oo_- 7 w,oo)j

q-M¢,r -- 0, T -- Ri, i -- 1,2

Our last case in this sequence concerns the thermal bending and/or buckling of thin

elastic circular (or annular) plates exhibiting cylindrically orthotropic behavior. The thermal

strains in the radial and angular directions are given by (see (1.56))

e_, - a_ST(r,0, Z), e°r- c_oST(r,O,z) (111.28)

In lieu of (III.19), (III.20) and (III.21), (111.22) for the isotropic case we now have the

following sets of expressions for the resultant forces and bending moments ·

E,.h _,,.Eoh0 o 7'

Nr - err + %0-- NT
1 -- 1,',-1,'0 1 -- Y,-Z/O

No -- z/oE_h Eob o o (111.29)_ _o + eoo:V_
1 - l,',.1,'o 1 - L/_vo

N_o- 2G_oher°o

with
+

h/2j_, __ I'kEr _r lYr'_ O0_ O]'_ (_r (r , O, z ) d z

1 - VrVO J-h/2 (111.30)

_ [h/2NO (yoE_a_ + Eoc_o) 6T(r, 0 z)dz
1 - _,-_'o J-h/2 '

and
, 1 1

Mr : -Dr[W,rr -]- L'o(;W,r -[- --T2W,O0)] - M_

1 1

-w, + _w,oo)] - M ° (III.31)

MrO= --2b,O('_),rO
T
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with

1 - YrYo ) J-h/2 (111.32) '

- ST(r, 0 z)zdz
1 - YrV'O J-h/2 '

Employing (111.31) in (1.67), and using (1.49), we obtain the first of the yon Karman equations

for thermal bending and/or buckling of a thin, elastic, cylindrically orthotropic plate, i.e.,

1 1

Drw,rrrr q- 2D_o . _w,_oo + Do' _w,oooo

1 1 1

+2D_ ' --W,r_ -- 2D_o_w,_oo- Do_w_7'

+2(Do + D_o) 1 1--r4W,o0+ Do_-_W,r

1
i,,_+ )w_= (7 7_,oo

(Ill.33)
1 1

+_,r_(rW,r + _¥w,oo)

1 1 1 1

+2(7_,o- -_,_o)(-_ w,_o- _w,o)
1

+1(_M¢),_+ (M°) oo7 7_ '

-i (M°),_+ t(_,o)
7°
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while the second of the relevant von Karman equations for this case becomes

1 _r_rr+ ( 1 2_ 1Eo GrO Er )_'r_°°
1 1 2 1

..... (I) rrr+Er r4 _,oooo+ Eo r

1 2zl_1 1 1

(G_o E_)7_'_'_°° Er r2_'_''

+_21- _r( 1 1 1 1
+ _o_o)7_'°°+ Er'r-_'_ (III.34)

1 1 1 1
-_,_+ w,oo)-(-w,_o-- ,o)_]= -h[w_( 7_ r _w

1 1 1 No
-I-Er {_ (N_ - pr N° ) 'o° '+'-(NT'rT' -- Ur T,r ) }

1 No 2 No
"1-_0 ( ( T,r -- lYoYT, rr ) -+- -- ( NTO'roT -- UO T,r ) )

with W_and N° as given by (III.S0).

Remarks- Various combinations of terms on the right-hand side of (111.34) may be simplified

somewhat, e.g.,

r [h/2
NT -- lYr'/_O -- Ero_r J-h/2 (_T(T, O, z)dz

but there appears to be little value in carrying out such an exercise except within the context

of an application to a specific problem.

Among the special cases of the von Karman system (111.33), (111.34) that are of particular

interest are the following:

(i) when the temperature distribution varies linearly through the plate, as in (III.24), the

thermal moments and stress resultants in (111.33) and (II1.34) reduce to the following

expressions:

N¢ - (.Sr_+ _E0_0)hro(_,0)
i -- lYrlY0 (111.35)

N 0 -- ( UO'ErOlr -Jr- EoOLo )hTo (r, 0)
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and
]g3

- +
1 - v_vs (Ill.36)

+ Eoae h 3

M ° -- ( lyO_rOLr )]'_' T 1 (1', 0)1 --%uo

(ii) For small deflections the first term on the right-hand side of (III.34), in square brackets,

is deleted.

(iii) The (purely) thermal bending problem is governed by (III.33) with ·- 0.

(iv) For an axially symmetric problem both (III.33) and (111.34) reduce to (variable coeffi-

cient) ordinary differential equations in the radial variable r; we have w -w(r), ·-

_(r) and T - T(r, z) so that the resultants N_, NT_ and moments M_, MTs are functions

only of r. In (III.33) and (III.34), therefore, derivatives of all quantities, of any order,

with respect to 0 vanish.

The boundary data for an annular elastic plate of inner radius ]{1 - a and outer radius

1{2 - b > a, exhibiting cylindrically orthotropic symmetry, may be specified as follows:
Ow

(i) If both edges are clamped then w - 0 and Or - 0, along r - Ri, i - l, 2.

(ii) If the plate edges are simply supported, then w - 0, for r - Ri, i - 1, 2 and, addition-

ally,
1 1
-w,,.+ )]+ - o

(111.37)

for r - Ri, i -- 1, 2

where M_. is given by the first of the relations in (111.32).

(iii) For free edges at r - R/, i- 1, 2, (111.37) applies and, in addition,

D,.[w,,.,.,. + vo( 1
1

+

4 w (III.38)+ mL - o,T 9°

for r -- Ri, i -- 1, 2
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The usual considerations apply if one edge is, e.g., clamped while the other is simply sup-

ported or if one edge is simply supported while the other is free, etc.; for a circular plate of

radiusR=b, R1 =a=0.

Remarks: All of the problems considered above may be posed in terms of the middle surface

displacements u, v and the out-of-plane deflection w in lieu of w and the Airy function (I); the

idea is most feasible within the context of small deflection theory. For an isotropic rectangular

plate small deflection theory corresponds to the substitution of the expressions for the middle

surface strains exx°,exyO,and eyy°from (I.7) into the constitutive relations (III.2), suppression

of all those terms involving the out-of-plane displacement w, and then substitution of the

resultant expressions for Nx, Ny, and Nxy into the in-plane equilibrium equations (I.17a);

this process leads to the pair of equations

Eh Eh (U,yy + ) - N T

(iii.39)
Eh Eh

which must be solved in conjunction with

K/X2w -- NxW,xx + ]VxyW,xy+ _Nywyy - AM r + t (111.40)

For the small deflection case considered, above, (III.39) and (III.40) are decoupled, just

as (III.4a), (III.4b) are if, in (III.4b), we delete the bracket [w,w]. Thus (III.39) must be

solved, subject to appropriate boundary conditions, for the middle surface displacements u, v

which, in turn, are used to compute Nx, Nxy, and Ny for subsequent substitution in (III.40).

Little use of the displacement formulation of the thermal bending/buckling problem will be

made in this report and we will, therefore, not pursue the issue further with respect to other

geometries or other classes of material symmetry.

Remarks- All of the thermal bending/buckling equations, and corresponding boundary

conditions considered in this section, may be derived from energy principles, i.e., from the
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principle of minimum potential energy in conjunction with elementary techniques in the

calculus of variations; we will illustrate the general idea for an isotropic plate in rectangular

Cartesian coordinates. Energy principles also serve as the basis for various approximate

methods of analysis, including the Rayleigh-Ritz method (for computing critical (buckling)

temperatures and the corresponding (initial) buckling modes) and finite element methods.

In what follows we will consider only the thermal bending problem for the sake of simplifying,

somewhat, the presentation.

The standard descriptions of the principle of minimum potential energy within the context

of structural mechanics is as follows: of all displacement fields which satisfy the prescribed

constraint conditions, the state assumed by the structure is the one which makes the total

potential energy a minimum.

For an elastic plate, the total potential energy ri is the sum of the strain energy U and the

potential of any (conservative) applied forces. For the case of an isotropic, linearly elastic

plate the strain energy U, within the context of small deflection (classical plate) theory

assumes the form

./_./ Eh )2 Ehv - __{ 2(1- _) (_'_+ _'_ + a(1+ _)[(_'_+ _'_)_
K

-q_,_,_]+ i(_,x_ + _,_)_

-N _(_ +_,_)+ M_(_,=+ w,_))_dy,

where .,4 is the area of the middle surface of the plate, while the potential of the transverse

loading t(x, y) is

v - -/_/twdxdy
Therefore for a rectangular plate (0 i x i a, 0 i y i b) which is subject to a temperature

variation 5T(x, y,z) and a transverse loading t(x, y), but no applied edge loads, the total
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potential energy II assumes the form'

/°fo" Eh (u + )2__,2) ,_ 4(1Eh+n- {2(1 _'_+ _)[(_'_+_'_)_
K

-4u,xv,y] + -_-(W,x_+ W,yy)2
(III.4z)

w 2+(1- _)K[ ,_ - _,_,_]

To apply the principle of minimum potential energy we note that a necessary condition for

II to have a minimum is that the first variation 5_ - 0. Using (III.41) to compute 5II,

integrating by parts, and employing (III.2) and (III.3), with e%,e°y,eyy as given by classical
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plate theory, we find that

/o/o_n- {-[i - _ (_'=+_,_)
Eh

+ (_,_+_,_)- );5]_
2(1 /Y)+

Eh 'Eh

-[2(i + v)(U,xy+ v,=) + i - .2 (VUxy+ v_y)- N_]5v

+[K(w,== + 2w=_ + w,_)

+ML+ My%-t]Sw}d_dy
(III.42)

fob + [N_Sv]_+ {[:V_u]o_ o

+[(m,,,+ 2M,,,,)5=]o_-[Mxa(W,)]:}dy

_0 a

_[2MxySw](a,O) (a,o)(o,b)+ [2M_SW](o,o)

In order that (111.42) be satisfied for arbitrary variations 5u, dy, 5w, 5(Wx), and 5(w,y), all

the expressions within the square brackets in (111.42) must vanish identically which leads

to (111.39) and (111.40), with Nx - Nxy - Ny - 0; the resultant system governs the ther-

mal bending, under an arbitrary temperature distribution ST(x, y, z), of a linearly elastic,

isotropic rectangular plate. From (111.42) it is readily deduced that the following (natural)

boundary conditions must be satisfied'
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(i) On the edgesx-0, a, for0<y_<b

¢,

u is prescribed or N_- 0

v is prescribed or N_y- 0
(III.43a)

w is prescribed or M_,_ + 2M_y,y- 0

w_ is prescribed or Mx- 0

(ii) On the edges y- 0, b, for 0 < x < a

u is prescribed or N_y -0

v is prescribed or Ny- 0 (III.43b)

w is prescribed or My,y q- 2Mxy,x - 0

(iii) At the corners (0, 0), (a, 0), (0, b), and (a, b)

w is prescribed or M_y- 0 (III.43c)

Remarks: Some consideration of the calculation of thermal stress distributions will be made

in § IV, while problems of buckling, bending, and postbuckling for rectangular plates and

plates with circular symmetry will be treated at length in §V; however, it is feasible to

present here the simple, but important problem of a thin plate (of arbitrary contour) which

is subjected to a temperature distribution that varies only through the thickness of the plate,

i.e., T- T(z). In this case we clearly have that N T and M T are constants. We will restrict

the discussion to the case of an isotropic, linearly elastic, plate (in rectangular Cartesian

coordinates) which is either free or has clamped edges.

For the case of a free plate, a solution to (III.4b), with [w, w] - 0, which yields zero force

resultants on the boundary is given by (I) - 0. It then follows that Nx - Ny - N_y - 0
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throughout the plate. Inversion of (III.2) yields

1 [N_- _N_+ (1- _)N_]e°_ = Eh

o 1 [Ny- .Nx + (1 - .)N T] (III.44)eyy = Eh

l+y
o = _NxyexY Eh

Integration of (III.44) yields (recall that exx°,e[xyO,and eyy° are the classical plate theory middle

surface strains) the in-plane displacements:

u = (1-')Nr
Eh x+a+cy

v = (1- y)N T (III.45)
Eh y+b-cx

with a, b,c arbitrary constants of integration. In a similar vein, if we take Mx = My = Mxy =

0, throughout the plate, then the boundary conditions for a free edge are automatically

satisfied while (III.4) has as its solution (recall that ri) - 0 and we also take t- 0)

M T

w - -2(1 + y)K (12 + y2) + d + ex + fy (Ill.46)

with d, e, and f constants of integration. The resulting thermal stresses for this case are

easily computed to be (e.g., [3], § 2.4)

1 Nr 12 Mr EaT(z)
Crxx- cryy- _ + _-_ z - 1 - y ' Crxy- 0 (Ill.47)

For the case where the plate has clamped edges, instead of free edges, it again follows that a

simple solution exists. With constant M T, and t- 0, (III.4a) and the boundary conditions

are satisfied by taking w = 0. Then, by virtue of (III.3),

Mx - My - -M T, Mxy - 0 (111.48)

In in-plane edge displacements are prevented then equations (III.39) and the boundary con-

ditions yield u = v = 0 so that, as a consequence of (III.2),

N_- N_- -N T,N_ - 0 (III.49)
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In this situation it is easily computed that

E_T(_) - o (III.50)
(Yxx -- (Tyy : -- 1 -- Y _ (TxY

If, on the other hand, the middle surface of the plate is free of in-plane tractions, then

Nx - Ny - Nxy -0 and

_ _ _ _ ._N__ E_T(_)l- _ ' _x_- 0 (III.S1)

IV. THERMAL BENDING AND BUCKLING OF RECTANGU-

LAR AND CIRCULAR PLATES AND THERMOELASTIC

STRESS DISTRIBUTIONS-SMALL DEFLECTION THEORY

There are many excellent surveys of thermoelastic problems in the mechanics literature

(e.g., Boley and Weiner [7], Nowacki [8], Hetnarski [9], and Kovalenko [10]) to which the

reader may be referred. In this section, we will content ourselves with presenting only a

few thermal stress distribution solutions which have been considered in conjunction with

problems involving the thermal bending and/or buckling of thin plates within the context of

small deflection theory; the associated bending and/or buckling solutions are also presented

and analyzed.

Within the context of small-deflection theory, two distinct types of problems may be

considered' those in which the effect, on the deflections, of loads in the plane of the plate is

neglected, thus leading to a thermal bending problem and those in which the effect of such

loads is taken into account thereby leading to a buckling problem; postbuckling behavior

can not be adequately accounted for in the context of small-deflection theory and, therefore,

descriptions of thermal postbuckling behavior are relegated to §V and § VI.

If the effect of loads in the plane of the plate on deflections is ignored, then for the

simplest case of an isotropic rectangular plate subjected to a transverse loading t- t(x, y),
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and a general three-dimensional temperature variation ST(x, y, z), the pertinent equation is

(III.4a) with (I>- O, i.e.,

K (w,X_x_+ 2W,xwy+ W,yyyy) - t M t T- ,=- M_ (Iv._)

Equation (IV.l) is to hold for 0 < x < a, 0 < y < b. For illustrative purposes, we will assume

that the plate is simply supported on all four edges, in which case w - 0 for x - 0, a, 0 _<

y <_b,w - 0 for y - 0, b, 0 _<x _<a, and the conditions (111.7) apply as well. The analysis

proceeds by expressing the thermal moment and transverse load as double Fourier sine series

of the form
OO OO

M T = _ _ M_sinc_sin_y
_=_oo_=_oo (Iv.2)

t = _ _ tmnSinozmsin/_ny
m=l n=l

mTr ntt

with c% = --,/_= - and
a b

4/o/o(M_,_, tm_) - _-_ (M T, t)sin c_msin/5,_ydxdy

In order to satisfy the boundary conditions we take the deflection to have the form

W -- E E 7mn sin c_msin/3ny (IV.3)
m=l n=l

Thus, in accord with (III.7) it must be assumed that the temperature distribution is such

that M T-0,forx-0,a,0_<y<_bandM r-0fory-0,b,0<_x_<a,asituationthat

we will comment on at length in sections V and VI.

Substituting (IV.2) and (IV.3) into (IV.I) and solving for the coefficients ?_= we have

tr_ + (c_2 + _2)M_,_ (IV.4)
,_ - _:(_%+ _)a
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so that the resultantmoments, as a consequence of (111.3), (IV.2) - (IV.4), become

O0 (DO

2
Mx = _ _ {K (c_m + Z//3n2)'/mn-- Mmn} sin c_msin/3ny

m----1n----1

C_ C_

2 2
My = _ _ {//'(z/a m + 3,_)Tm,_- Mmn}sin am sin 3ny (IV.5)

m=l n--1

C_ (DO

M,,= - E X; - cos cos
m=l n=l

To resolve the in-plane stretching aspect of this problem we note that the displacements

u, v are governed by the differential equations (111.39) with which we may associate two

types of boundary conditions: in the first case it may be assumed that normal components

of displacements along each edge are permitted while tangential components are not while

in the second case the opposite situation would prevail. For the first case alluded to, the

boundary data takes on the form

Eh _ NT
N_ = 1- v 2(u'x + vv y - O,v - O

for x- 0, a;0 _<y _<6
Eh (IV.6)

Ny -- 1- _'2(_'U'x+ V'y) - N T - O,u - O

for y- 0, b;0 _<x _<a

Of course, small deflection theory has been assumed in writing down (IV.6). We now express

the thermal force N T as
(DO (DO

N T - _ _ Nm_ sin am sin 3_y (IV.7)
fa--1n--1

with

/o/oa__4 b N T sin a_ sin 3,_ydxdy
Nm,_- ab

N T being given by (I.11a) for a general variation ST(x, y, z).

55



To satisfy the boundary conditions (IV.6) we seek solutions of (111.39) in the form

OO OO

_=l_=l (IV.8)OO OO

v - _ _b_sinc_cos/3_y
m=l n--1

The expressions in (IV.8) are now substituted into the equations (111.39) with the result that

a_ = Eh(c_2 +/f2) (IV.9)

=
Sh( % +

Employing (IV.7) - (IV.8) in (IV.6) we compute, for the stress resultants

, oo oo Eh (oz_a,_,_+v/3,_b_n)
m=l n=l

-+-Nmn} sin c_msin/Gny

oo oo Eh

Ny = - _ _.{ 1 - _2 (yozma,_,_+ fi,_b_n) (IV.10)m=l n--1

+Nmn } sin c_ sin _y

c_ 0o __1Eh (/3namn+ Oznmbmn)cos OgreCOS_ny
m--1 n--1

If, in lieu of the boundary data (IV.6), one assumes that tangential displacements are al-

lowed along each edge, but that normal displacements are prevented, the relevant boundary

conditionsare 1 Eh

Nxy = _ 1 +-------_(U,y+ v,_) - 0 (IV.11a)
forx-0, a;0_<y_<b, andy-0, b;0_<x_<a

and

u-0, forx-0, a; 0 _<y _<b,v - 0, fory-0, b;0_<x<_a (IV.11b)
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In this case N T may be expressed as

O0 CO

N :r - _ _ N_ cos am cos/5_y (IV.12)
m=O n=O

with

N'"_ -- Cm_fobJi_ NT c°s c_'_c°s /3_ydxdYab

4, m > O,n > 0

Cr_ = 2, m>0, n-0orm-0, n>0

1, m-n-O

while the displacements, chosen so as to identically satisfy the boundary conditions in

(IV.11a, b), have the form

O0 O0

u - Z 5__ si__ cos
,_=l _=0 (IV. 13)

OO OO

- Z Z _ cos_ s__y
m=0 n= 1

The same procedure described above, for the first set of boundary conditions now leads to

_ am/Cra=(1 - _2) b_= /3=/¢m=(1- y2) (IV.14)amn -- _ --Eh(_ +_) Eh(_ +_)

and
oo _ Eh -

m=O n=O

Nm_- }cosoz_cos y

Ny = _]] _ { 1 _'_-z/2(z/ozma_ +/3_b,_) (IV.15)m=O n=O

- N_ }cos_ cos/3_y

oo oo __1Eh (/3_5_ + C_r_bm_)sin a._ sin/3_y
m=l n=l
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The thermoelastic stress distributions, for either of the two bending problems considered

above, may be computed by substitution for Nx, Nxy, Ny, N r, Mx, My, 2V[xy,and M r in the

relations
' 1 12z Ec_

- (N_+ NT)+ (Mx+ MT) _T_=- h _ i-v

12z MT Ec_1 (Ny + N z) + (My + ) _T (IV.16)
O'yy = _ -_ i-

1 12z

_ = _NI_+ 7Mx_
An alternative solution to the flexure problem for the rectangular plate discussed above

has been described in Tauchert [3] and is now described below; we will begin, as in [3], by

assuming that the edges x - 0 and x - a are simply supported, that the plate is symmetric
b b

y < , and that, for now, the boundary conditionswith respect to the x axis, so that 2 - -
1

along y - :k_b are arbitrary. As w - 0 along x - 0 and x - a it follows that W,yy -- 0 along

these edges as well. The conditions of simple support of the plate along x - 0 and x - a

may, therefore, be expressed as

1 MT
w-O,w,== K (Iv.i7)
,for x- O,a;O _( y _( b

We look for a solution of (IV.l) satisfying the non-homogeneous boundary conditions (IV.17)

in the form

w - W(x, y)+ MT(O, y)Ho(x)+ MT(a, y)H_(x) (IV.iS)

with

a 2 x :8)3Ho(x) = 6K{ z--3(-) 2+(- }
a a a (IV.19)

a_ __ (_)_)Ha (x) = 6K {_ a

Using (IV.19) in (IV.18) and substituting the resultant expression for w(x, y) into (IV.l) it

follows that

V 4 w(x, _/) - F(x, !/) (IV.20)
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where
t(x, y) v2M T

F(x, y) - K - K (IV.21)

- V 4 {MT(O, y)Ho(x)+ MT(a, y)Ha(x)}

and
02w

=0, forx-0, a;0<_y_<b (IV.22)
W- 0X 2

We express F in terms of the Fourier series

oo m7r

F(x, y) - _ fro(Y)sin c_x; c_ - (IV.23)
m--1

with

/o'2 F(x y) sin a_xdxf_(Y)- a

and take w in the form
OO

w(x, y) - _ Y_ (y) sin c_x (IV.24)
m--1

so that w automatically satisfies the edge conditions in (IV.22). It is easily shown that w, as

given by (IV.24), satisfies (IV.20) provided the Y_ satisfy the ordinary differential equations

2 I! 4
y(iv) (y) _ 2ozmYm (y) + ozmy m (y) __ fm (Y) (I7.25)

whose general solution has the form

Y,_ - (Am + B_y) cosh a_y + (C_ + D_y) sinh a,_y
(IV.26)

The constants of integration Am, Bm, Cra, and Dm in (IV.26) are to be determined from the

boundary data on the edges y - +lb Suppose e.g., that the edges y - -+-lb-are also simply2' ' 2

supported and that the thermal moment M T is constant-as it would be, say, for 5T - ST(z).

As the support conditions and loading are both symmetric with respect to the x-axis, the
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deformation must also be symmetric and, thus, Bm -Cm - 0 in (IV.26). Substituting Ym

from (IV.26) into (IV.24) and, then, the resultant expression for w into (IV.18) yields

OO

w -- _ (Am cosh c_my+ Dray sinh c_my)sin c_mx
(tv.27)

y)Ho(X)+M (a,

The sum of the last two terms on the right-hand side of (IV.27) may be expressed as a

Fourier series, i.e.,

M (o,y)Ho( )+

MWa2 cc (IV.28)
OZmX(x_(x),)_ _ kmsin2K

a a m=l

where

O, m even
km- 4Mz

a_,_' m odd

in which case

OO

w -- _ (Am cosh oz_y + D_y sinh c_,_y+ k,_)sin c_z (IV.29)
re=l,3,--.

The constants Am and Dm in (IV.29) are to be determined from the boundary conditions

1 Mr

w-0, wyy= K (IV.30)
1

for y- +_b;0 <_x _<a

We write
OO

M T -- _ M._ sin c_._x; mm -- Ko_km (IV.31)
m=l

and substitute (IV.29) into (IV.30); after solving for A,_ and D_ we obtain

4M r' _ 1 (1- cosha_y (IV.32)
w(x,y)-- aK' _ oz-_ 1 )sinc_mx

,_=l,a,..- cosh _ a_b
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for which the corresponding moment resultants are given by

Mx = __ T _ OZmy sin OZmX
cosh

1

a re=l,3,---C_ cosh _ a_b
oo

-4M T(1-_) _ 1 (1- coshc_my-- 1 )sin c_mx (IV.33)
My = a re=l,3,..,c_ cosh xa_b

Z
oo

Mxy 4MT(l-v) _ 1 (sinhc_,_y-- -- 1 ) COS Ozmx

a _=1,3,... c_ cosh _ c_b

1

For the case in which the plate is clamped along the edges at y - 4-_b, and subject to

a constant thermal moment M T, it has been noted in [3] that the deflection, once again,

assumes the form in (IV.29) but, now, With

1 1

A_ = -k_(_c_bcosh _c_b

1

+ sinh _ozmb)/Am
(IV.34)

lo, mb+Sin h 1 1B_ = _ _c_b cosh _c_b

1 1 1

/k_ = _amb + sinh _a_b cosh _ a_b

References for the thermal bending of an isotropic, elastic rectangular plate, under other

combinations of edge conditions, may be found in [3].

Next, we consider the problem of thermal bending of an isotropic annular plate; we assume

that the plate is subjected to a transverse loading t - t(r, O) and a general temperature

variation ST(r, O,z). For this situation, ignoring for now the effect on deflections of loads

in the plane of the plate, the relevant equation is the first partial differential equation in
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(III.23) with ·- O, i.e.,

2 1

_'(W,rrrr -+- --W,rrr -- _'_W,rrI'

2 1 2
-- -- ,r99

+_¥W,rrO0 + _W,r 7' 3 W
(IV.35)1 4

+_w,oooo+ _w,oo)

1 1 )
= 7_-- ( _5_'rr + ---/_'r +T _ J_fT, O0

Eoz fn/2
with M_ = I - y J-n/2 ST(r, O,z)zdz being the thermal moment.

Equation (IV.35) holds for a _< r < b,0 _< 0 < 2_r. The associated clamped, simply

supported, and free edge boundary conditions are given, respectively, by
Ow

(i) w - 0 and Or - 0, at r - a, b if the edges are clamped
1 1

(ii) w - 0 and g[w,rr + lY(_¥w,o0 + --W,r)]r+ M_ -- 0, at r -- a, b if the edges are simply

supported

1 1

(iii) K[w,_ + z/(_-ffw,oo+ -w,_)]r+ M_ - 0 and

1 1 1 1 '

f_[(W,rr-}--I'W,r-{---1.2211,00),r4-(1 -- Y)(_'_W,OOr-- _¥W,O0)]4- M_,r -- O,

at r- a, b if both edges are free.

Also, for isotropic response, the bending moments in polar coordinates are given by (III.21),
Ec_

--fn/2 aT(r, O,z)dz and the stresses may be
the resultant forces by (III.19), with N_ = 1 - y J-n/=
expressed by

_ 12z Ec_
1 (Yr -3- N_.)-{- (Mr -Jr- -/_f_) _5T

12z Ec_
(No+ N_)+ (Mo+ M_) _aT (IV.a6)c_00= _ '-gi- 1 - y

1Nro + 12z _
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The simplest case of thermal bending with respect to an annular plate is that of axisymmetric

bending in which it is assumed that the loading and boundary conditions are independent

of the angular coordinate 0. If, in addition, t - 0 then (IV.35) reduces to

1
V2M_ a < r < b (IV.37)

_4W -- K

E_ fn/2
where w -w(r), M_ = 1 - y J-n/2 ST(r, z)zdz,

d4 2 da 1 d2 1 d

dr4 r dr3 r2 dr2 ra dr

d2 ld ld d
V2 -- + : (r--7--)

dr2 r dr r dr ctr'

The general solution of (IV.37) is easily computed to be

T
w -- C1 + C2r2 + C31nr + C4r21n -

a a

(IV.38)

+ (r-

with the Ci, i - 1,..-,4, arbitrary constants of integration. For the problem at hand a

straightforward computation based on (IV.38) yields the following expressions for the relevant

moments and shear force resultant'

C3
Mr = -K{2(1 + v)C2 - (1 - v)_ 7 + (3 + v)C4

-'_-2(1 mt-y)C41na) 1--/2 jla r *

(IV.39)

MrO - 0

Mr-MO C4
Qr ------ Mr,r+ =-4K--r 4

For the case of a solid plate, in which a - 0, the constants C3 and C4 in (IV.38) must vanish

so that Mr and Q_ remain finite at r - 0; if the solid plate is clamped along its edge at
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r- b, then it follows from (IV.38), and the fact that w- W,r-0 at r- b, that

C_--b2C2= 2K M_,(r)rdr (IV.40)

while if the edge at r- b is simply supported

1 - v _bC_ - -b202 = 2(i + _)_: _ M_(r)rdr (IV.4i)

When (ST),o _ 0 a solution w - w(r, O) must be obtained for (IV.35); for simplicity

we again set t - 0; such problems have, e.g., been considered by Forray and Newman [11]

for the special case in which the thermal gradient is assumed to vary linearly through the

thickness of the plate. Specifically, it is assumed in [11] that the thermal moment MC may

be expressed in the form
OO (X) (X) 0<2)

M_, - _ Z Ak_rk cos mO+ _ Z Bkmrk sin mO (IV.42)
m=0 k=0 m=l k=0

This form for the thermal moment is a consequence of the assumption that

with
--Z

Ti(r, _)z - -_-Td(r, _) (IV.43)

and Td the temperature difference between the upper and lower faces of the plate. Using the

definition of MC we then easily compute that

1+-----f-_c_Td(r,0) (IV.44)MC- hK

while (IV.35)becomes (with t-0)

1 + _, V2 (IV.45)_4 W -- _OZ T dhK

The solution to (IV.45) consists of the sum of the general solution of 4V w9 - 0 and a
l+z_

particular solution of _2Wp -- h-----_-aTa.

In fact, the general solution to (IV.45) can be shown, as in [11], to have the form
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w - ao + bor2 + cor21nr + dolnr (IV.46)

C1

+(air + blra + -- + dlrlnr) cos 0
7'

+(a[r+ b_r3 + c2 + d_rlnr) sin 0
7'

+ _ anr_ + bnr_+2 + r-_ + rn_2 cosn0
n--2

I I

-t n+2 Cn dn
+ (a_r _ + o_r + -- + ) sin nO

Tn Z'n-2
oo cf)

+ _ qm(r) cos mO+ _ hm(r) sin mO
m--0 m--1

' b_ ..(n- 0 1 ...) arbitrary constants andwith the a_,a_, ,. , ,

Kr TM /(r 2'_- /(Akm, bkm)rk+l-'_dr)dr (IV.47)

For the special case in which we are dealing with a solid plate, so that a - 0, we must set

' - d_ - d_ - 0 so as to avoid singularities at r - 0.Cn -- Cn

Remarks- The last two sums on the right-hand side of (IV.46) constitute the particular
l+v

solution wp of V2Wp- K---_c_Ta;more specifically, if

1 +_______Vc_Td_ I Akmrk cos m/¢ (IV.48a)

hk [ Bkmrk sin mO

then wp(r, O) is given by

- / g_(r) cos mO (IV.48b)(_, 0)Wp

[ h,_(r) sin mO

with g_(r), h_(r) as defined in (IV.47). By carrying out the integrations in (IV.47) and

using the results in (IV.48b) it can be shown that

Akmrk+2cos mO

Wp(r_O)-- (k + 2)2- m2 (IV.49a)
B kmrk+2sin mO

(k + 2)2 - ra2
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when k + 2 - m _ O, and (IV.48a) applies, while for the case in which k + 2 - m - O,

2rs (2m) 2 (IV.49b)

WP(?"O) I {tnt 1 }rmsinraOBkm 2m (2m) 2

-- d_ - d'_-0, we note thatReturning to the case of a solid plate, for which c_ - c_

the constants a_ and b_ must be determined from the boundary conditions. For the case of

Ow(b, O) - 0 the (rather complex) expressions for thea clamped plate, in which w(b, O)- _

deflection, moments, and shears in nondimensional form are given in [11]; these results, for

m = 0, 1, 2, 3 are depicted in Fig. 1.

The problem of bending of a rectangular orthotropic plate (which has two opposite edges

simply supported and the other two clamped) due to different temperature distributions on

the plate surfaces, has been considered by Misra [12]. It is assumed in [12] that the plate

occupies the region
b b h h

_ _ <y< <z<-0<z<a, 2- -2' 2- - 2
h

so that the opposite faces are defined by z - +_. It is also assumed that the two parallel
b

edges at z - 0 and x - a are simply supported while the edges y - +_ are clamped. The

temperature distribution is taken as having the form

5T(x y z) - T_ + T2 + T__z-T2 (IV.50)' ' 2 h

h h b<y<b
so that T(x,y,_)-T_, T(x,y,-_)-T2, for0_< x_< a, d - _ _, whereT_ andT2

are, respectively the constant temperatures at the top and bottom of the plate; thus the

temperature is assumed to remain constant in any plane which is parallel to the x, y plane.

The edge conditions are given by

b b
-- < y < (IV.51a)w--0, Mx-O; onx 0, a, for 2 - -
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and
b

w-0, w,y-O; ony-+_, for0<_x_<a (IV.51b)

where Mx is given by (111.12). Actually, Misra [12] writes the term /f_/} in (111.12)in the

_ fn/2form glf} --/_iMT, with MT 5Tzdz, so that (see (III.13))
J-h/2

/_1 -- CllOZl -+- C120_2 (IV.52)

The superposed bar over the/_ in (IV.52) does not appear in [12] and has been placed there

so as to not confuse this parameter with a hygroscopic coefficient. With the definition of

MT, as given above, and (IV.50) it is easily seen that

MT -- 1__h2(Tx - T2) - k (IV.53)12

which has the Fourier representation

4k _ 1 m_r
MT=-- _ --sin--x, (IV.54)

7l- m=1,3,5,... T/g a

for 0 < x < a. Using (IV.54) in (III.14a), setting t - 0 and · - 0, and replacing D_ +

4D66 + D21 by 2H we obtain, as in [12], the following equation for the bending of the heated,

rectangular, orthotropic plate'

OO

DllW,xxxx q- 2Hw,xxyy q- D22w,yyyy - P _ m sin --xm_r (IV.55)
re=l,3,., a

where

p = 4kz-/_ (IV.56)
a 2

From (IV.54) it follows that MT -- 0 along the edges at x - 0 and x - a. Then, by virtue

of (IV.51a) it follows that both w and W,yymust vanish along x - 0 and x - a. However,

as Mx - 0 along x - 0 and x - a, it would follow from (III.12) that w,_ - 0 along x - 0

and x - a only if MT -- 0 along these edges, which it does not-the Fourier representation
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notwithstanding! Thus, the edge conditions in (IV.51a), which in [12] are now written in

the form

w - O,w,_x - O, onx-O,a
b b (IV.57)

<y<for 2 - -

are open to suspicion as is, of course, the remainder of the solution presented below. A

solution of the homogeneous equation associated with (IV.55) which is compatible with the

edge conditions (IV.57) is now sought in [12] in the form

c_ 77%71'

w-- _ Ym(y) sin--x (IV.58)
re=l,3,., a

Substituting this expansion into the relevant homogeneous partial differential equation we

are led to the following homogeneous fourth order ordinary differential equation for the

functions Y_(y)'

D22Y!_mm 2 tt 4 (IV.59)- 2Hoz_Y_ + Dlloz_Y_ -- 0

mw
where C_m= --. Noting that, because of symmetry, Y_ must be an even function of y, a

a

solution of (IV.59) is sought, in [12], in the form

Y._(y) - A._ cosn pray cos qmy (IV.60)
+Bm sinh p._y sin qmy

where
2

p% = + -
D22 (IV.61)

2 (H v/H 2 D11D22
q_ = C_m - _D22

The A_, B_ are, at this junction, arbitrary functions of m. For a particular integral of

(IV.55) Misra [12]chooses
O0

w - _ Em sin c_x (IV.62)
m=1,3,5...

Substitution of (IV.62)into (IV.55) then yields

mP
Em= (IV.63)

_%D11
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in which case the complete solution of (IV.55) assumes the form

oo rap
-- _ + A._ cos hpmy cos qmY+ Bm sinh Praysin qmY)sin C_mX (IV.64)

m=1,3,5...

The edge conditions (IV.57) are automatically satisfied by (IV.64) while those in (IV.51b)

are satisfied if and only if A,_, B_ are connected by the relations

rap + Am cosh bpm bqm bpm bqmcos + B_ sinh sin = 0 (IV.65a)
_4Dll 2 2 2 2

A_ (Pmtan h bpm bqm bqm bpm-_ - qmtan 2 ) + B,., (Pmtan 2 + qmtanh 2 ) - 0 (IV.65b)

These relations may be solved for Am, Bm (see [12] for the details) which are then substituted

back into (IV.64) so as to yield the deflection at any point of the plate. The expression

obtained for w(x, y) can also be employed in (111.12) so as to compute the thermally induced

moments at any point in the plate, e.g.,

(X>

2
Mx- Dll _ o%{A_coshp_ycosq_y

m=1,3,5,..

+B_ sinh p_y sin qr_Y} sin oz_x

OO

m=1,3,5,...

-2p_q_ sinh p_y sin q_y} (IV.66)

+B_ { (p2 _ q2) sinh p_y sin q._y

+2p_q._ cosh p_y cos q_y }] sin c_x

43_k _ 1
sinOZmX

a ra=l,3,5,... O_ra
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with analogous expressions for My and -3_xy.Finally, the deflection at the center of the plate,
a

i.e., at x- _, y- 0, is computed in [12] to be

mP mTr

w -- l_,a' ( _ + Am)sin 2 (IV.67)m= 5... a Dll

The expressions for the moments, e.g., (IV.66) and the final result (IV.67) for the deflection

at the center of the plate are subject to the criticism (of the relevance of the boundary

conditions (IV.57)) which has been levied above.

An alternative approach to solving problems of thermal deflection for plates that has

been used extensively in the literature is based upon the concept of an influence function

and usually goes under the title of Maysel's method; this approach is actually an extension of

Betti's reciprocal theorem to thermoelastic problems and excellent treatments have appeared

in several places in the literature, e.g., in Nowacki [8] and in Tauchert [3]. In what follows we

will adhere closely to the presentation in [3] and will assume that the plate exhibits isotropic

response; we will also take t - 0, so that in either rectangular or polar coordinates the

relevant partial differential equation is given by

KA2w - -AM l (IV.68)

If the plate occupies the domain A in the x, y plane, when in its undeflected state, and

w*(_, y; x, y) is the Green's function for the operator K/k 2 then it is easily shown (i.e. [3] or

Is])that

w(x, y) -- -//M T(s_, ri) V 2 w* (s_, r/;x, y)d.A(sc, ri) (IV.69)
.a

where, for the sake of convenience, we have initiated the discussion by employing rectangular

coordinates. In (iV.69),
02 02

V2= +
O_2 OV2

The Green's function in (IV.69), w*(_, 77;x, y), represents the deflectionat the point (_c,r/)

of the plate middle surface which would be due to a concentrated unit force applied at the
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point (x, y). Thus, the Maysel relation (IV.69) may be used to compute a thermally induced

deflection w(x, y) whenever w*((, 7/;x, y) can be calculated for a plate of given shape and

assigned support conditions. As an alternative to (IV.69) one may use the form obtained by

employing Green's formula, i.e.,

- f/w* (_,v;_,y)v_M_(_,v)dA(_,v)W(X_ Y)

(Iv.70)

A On On ds

where n, s denote, respectively, the directions that are normal and tangential to the plate

boundary OA. If v2M r -0, such as for the case in which M r is constant, then (IV.70)

reduces to

_(_'Y)- _ a_ _*a_ _ (iv.7_)

and if the plate is simply supported, so that w* -0 along OM, then

fo Ow*w(x, y) - - .4 Mr (_' V) On (_, V;x, y)ds (IV.72)

Ow*

Of course, if v2M T - 0 in _4, and the plate is clamped along &4, then w* = On = 0 along

0.A in which case w - 0 throughout the plate.

As a first example of the influence function method we consider the simply supported

rectangular plate which is depicted in Fig. 2. We assume that the thermal moment is

nonzero within an arbitrary region MT of the plate while M T - 0 in the complement of this

region. It is easily shown that the deflection w*, at an arbitrary point (_, ri) of the same

simply supported plate subject to a concentrated unit force at (x, y) is

w* (_, ri;x, y) - ab-K4_°c _c_ sin c_ sin/3n_7sin c_x sin/_nY (IV.73)_)2+
m=l n=l

m_' nx MZwhere c_m- --,/3_ - provided vanishes along the edges of the plate. Substitutinga b

(IV.73) into (IV.69), and carrying out an elementary computation, we are led to the following
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expression for the deflection'

4 O<) (X) sin OZmX sin

.f./M r ((r/) sin c_( sin 3_yd_dr] (IV 74)w(x, y)- ab-K _ _ (C_2m+ _n2)2 '
m=l n=l .AT

If the thermal moment is constant over the entire plate, say, M r - M, then (IV.74) formally

reduces to
16M oo oo sin a_x sin 3,_Y

_(_'Y)- abX _ 5; (IV.75)__-'_,_,._=_,_,...__(_ + _)

but, once again, such a solution is subject to the criticisms raised earlier as, now, M T does

not vanish along the edges of the plate.

As a second example, we consider the application of Mayset's relation (IV.69) to the

thermal deflection of a solid circular plate of radius b; in this case (IV.69) assumes the

following form in terms of polar coordinates:

w(r, O)- - ['_ [_ M_(p, ¢) V _ w*(p, ¢; N, O)pdpd¢ (IV.76)
JO JO

where
02 1 0 1 02

V2= + + --op_ 7_ p_o¢_
In lieu of (IV.76) we may write, in analogy with (IV.70), that

w(r, O)-- -- w*(p, ¢; r, 6t)V 2 MT(p, ¢)pdpdO
(IV.77)

fo_ (M_(b,¢)°_*(b'_;_'°) 0M_(b'¢))b_- Op - w*(b,O;r,O) Op

Ow*
- * = = 0, for r - b,

If the circular plate is clamped along its edge at r b then w Op
0 < 0 < 2_r, and (IV.77) reduces to

fo2_fo b_(_,0) - - w*(p,¢;_,0)v _M_(p,¢)p_p_¢ (Iv.78)

The appropriate Green's function w* in (IV.78) for the case of a clamped edge is known to
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have the form

b2 { fi r'

r' P + 2 _ 2p'r' cos(0 - _)
p'_+ _- 2p'_-'cos(O- ¢)t_1+ p'_r,_- 2p,r,_os(O- ¢)

with p' - p/b and r' - r/b. Various forms of the Green's function are available for the case

of the simply supported solid circular isotropic plate but, as noted in [3] the expressions tend

to be quite complex.

Before concluding this brief description of thermal bending of plates (and moving on to

describe some problems of thermal buckling, within the context of small deflection theory)

we want to note some approximate methods that have been employed to deal with problems

of thermal flexure of plates; two of the better-known techniques are the Rayleigh-Ritz and

Galerkin procedures. In the Rayleigh-Ritz method the displacement field w is approximated

by functions which contain a finite number of independent coefficients. The functions em-

ployed are chosen so as to satisfy the kinematic boundary conditions but they do not have to

satisfy the static boundary conditions. The unknown coefficients in the assumed solution are

then determined by employing the principle of minimum potential energy. For the problem

of thermal flexure we may, in particular, represent the transverse displacement w(x, y) in

the form
M N

w(x, y) - _ _ c_O_ (x, y) (IV.80)
m=l n=l

It is assumed here that the (_mn(X, y) satisfy the boundary conditions which involve w, w,x,

and w,y. The assumed form of the solution (IV.80) is then substituted into the expression

for the potential energy II which, for a problem of (purely) thermal flexure of a homogeneous

isotropic plate, is given by the following reduced form of (111.41)'

{ri - T(W,xx 21- W,yy) 2

+(1 - v)K(w2y - W,x_W,yy) (IV.S1)

+MZ(w _ + w yy) - tw}dxdy
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Setting 61/- 0, after substituting (IV.80) into (IV.81), yields a system of M+N simultaneous

algebraic equations, i.e.,

OH
= 0; m- 1,2,...,M; n- 1,2,...,N (IV.82)

0Crnrn

which are then employed so as to compute the c_. To illustrate the use of the Rayleigh-Ritz

procedure, we may consider the simple example of a square plate of side length a which is

simply supported along the edges at x_ 0 and x - a, clamped along the edges at y - 0 and

y- a, and subjected to a uniform thermal moment M T. If we use the representation

M N m_rx( 2n_ry)w - _ Z C_r_sin 1 - cos (IV.83)
m=l n=l a a

for the transverse deflection, then we satisfy the kinematic boundary conditions for this

problem but not the static boundary condition Mx - 0 along the edges x - 0 and x - a,

0 _< y _< a. Retaining only the term corresponding to m- 1, n- I in (IV.83)it is

easily verified that the Rayleigh-Ritz method yields an approximation to w(x, y) in which
1

the maximum deflection, which occurs at x - y - _a, is given by O.0191a2MT/K. As

noted in [3], two and three term approximations, using (IV.83), yield maximum deflections

of 0.0144a2MT/K and O.0157a2MTI/k, respectively, while the 'exact' value of the maximum

deflection in this case is given (approximately) by O.0158a2MT/K.

To implement the Galerkin procedure, we work directly with the relevant differential

equation instead of with the associated potential energy; the equation, for the problem of

thermal flexure of an isotropic, homogeneous thin plate is just (III.4a) with · - 0, i.e.,

KA2w + AM T - t- 0 (IV.84)

An approximate solution of the form (IV.80) is again sought, the difference being that the

&mn(X,y) must satisfy all the pertinent boundary conditions. If we substitute (IV.80) into

(IV.84) we will obtain an error (or residual) e(x, y) which is given by

y)- + - (Iv.85)
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and in the Galerkin method it is required that e(x, y) be orthogonal to each of the &mn(x, y),

i.e., that (assume a rectangular plate, 0 _<x _<a, 0 _<y _<b)

m - 1, 2, ..., M (IV.86)

n - 1, 2, ...N

By computing the integrals in (IV.86) we are led to a system of M + N algebraic equations

for the coefficients c_.

Remarks: If one incorporates boundary residuals into the Galerkin procedure it is possible

to relax the constraint that the C)mn(x, y) satisfy the static as well as the kinematic boundary

conditions. The first variation 5II of the total potential energy II is, for purely thermal flexure

problems, given by the following reduced (and modified) form of (111.42)

51-I - (KA2w + AM T - t)Swdxdy (IV.87)

j_ob { _ x=a
+ [(M_,_+2M_,_-_x/_]_=0

- Ow dy
- (Mx- Mx)__ x=o

{ + y=0

x=O,y--b

+[(2u_-_) _]_:_,_:0:0x=0,y=0

Equation (IV.87) includes the possibility of nonzero prescribed edge and corner loads Kx, Ky, Mx,
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gT/y,and l_xy. The variation 5w is, by virtue of (IV.80), computed as

M N

a_- Z E __0_(_,y) (Iv.ss)
m=l n=l

If all of the boundary conditions are of kinematic type, then substitution of (IV.80) and

(IV.88) into (IV.87)yields

/0ila(_:_x_+/xM_- t)¢_ (_,y)_dy- 0
(IV.89)

(m- 1, 2, ... ,M; n - 1, 2,...,N)

which is, ofcourse, equivalent to (IV.85). One also obtains (IV.89) if certain of the boundary

conditions, as noted in [3], are static; however, these static conditions must be satisfied

identically by (IV.80). Suppose we consider, as an example, the case treated earlier in this

section by the Raleigh-Ritz method, i.e., a square plate clamped along two parallel edges

and simply supported along the other two, and subjected to a uniform thermal moment M T.

For this problem, the static boundary condition Mx - 0 is not satisfied, as already noted,

by the assumed form (IV.83) of the solution. The condition (IV.87) leads, in this case to the

following system of equations for the coefficients cm_'

foJl
fO b x=a

dy- 0 (IV.90)+ + tcw.+
(m- 1,2,...,M; n- 1,2,...,N)

It is easily demonstrated that the coefficients cm_ which are determined by solving (IV.90)

are, in fact, identical to those that are obtained by applying the Rayleigh-Ritz procedure.

In all of the work discussed, to this point, in this section not only have we assumed that we

are working within the domain of small deflection theory but also, that the stress resultants

in the plane of the plate were small enough so as to not materially influence the transverse

deformations of the plate; if such is not the case then, e.g., for an isotropic, thin, elastic

plate in rectangular coordinates, the basic equations governing the flexure and buckling of
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the plate are (see (III.4a,b))

KA2w - t- AM T + Nxw,xx + NyW,yy-Jr-2NxyW,xy (IV.91a)

- - (IV.9 b)

where · is given by (I.20), N T by (I.11a), M T by (I.14), and the small deflection assumption

has been enforced in writing down (IV.91b). For a given temperature distribution 5T(x, y,z),

and givenboundary conditions along the edge of the plate, one would first compute AN T

and then solve (IV.91b) for _ - _0(x, y); the airy function _0 is then used to compute the

in-plane, pre-buckling stress resultants N °, N°, N°y, which are substituted into (IV.91a),

along with t and AM T. Finally (IV.91a), together with appropriate support conditions with

respect to w along the edges of the plate, is treated as an eigenvalue-eigenfunction problem

with the first eigenvalue (for a purely thermal problem) corresponding to the (smallest) crit-

ical temperature and the corresponding eigenfunction representing the first buckling mode.

In order to illustrate the procedure delineated above, we will begin our discussion by present-

ing three examples that have been highlighted in Boley and Weiner [7] for isotropic plates

and a rectilinear geometry; we will then proceed to examples involving circular plates as well

as problems for plates with orthotropic material symmetry.

The first case treated in [7] concerns the buckling of plates subjected to heat conduction

(but no transverse loads) with their edges unrestrained in the plane. We are reminded in

[7] of the basic fact that if the ends of a column are free to displace axially, and the column

is free from axial loads, then the column can not buckle no matter what the temperature

distribution may be; this is clearly not the case with plates. Because the plate is assumed

to be free of external tractions in its plane, equilibrium relations of the form

f N_dy - 0 (IV.92)

have to be satisfied in which the integration extends across the entire plate along a line

given by x - const; a relation such as (IV.92) can not hold unless N_ > 0 along part of this
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line while N_ _ 0 along its complement thus leading to the conclusion that for this class of

problems compressive stresses will always occur in the plane of the plate. A very well-known

example of the type referenced above occurs in the often quoted paper of Gossard, Seide,

and Roberts [2] which will be discussed in some detail in §V; although the focus, in §V, with

respect to the discussion of the work in [2], will be on postbuckling behavior, it should be

clear that the buckling problem described, e.g., by the system (III.4a,b), within the context

of small deflection theory is, mathematically isomorphic to the initial buckling problem for

the full non-linear system. Indeed, some specific initial buckling problems for such systems

will be discussed at the end of this section.

A second class of thermal buckling problems, in the realm of small deflection theory,

which is discussed in [7] and which is mathematically similar to the first class of problems,

concerns the buckling of plates which are subjected to heat and loads in their plane with,

once again, their edges unrestrained in the plane of the plate. As an example, we consider

the plate strip of Fig. 3 which is loaded at its ends by a uniformly distributed stress ct0; the

strip, of width b, is reinforced along its edges at y - 0, y - b by longitudinals of area A

which act as a heat sink, thus, causing the temperature to be higher along the center of the

plate than near its edges. For illustration purposes the temperature will be assumed to be

uniform across the thickness of the plate and of the form

5T(x, y) - co - c_ cos (2-_) (17.93)

in the plane of the plate where co, c_ are constants which may be chosen so as to fit empirical

data. We consider a single panel of the strip, as depicted in Fig. 3., which extends from

x - 0 to x - a; it is assumed that this panel is at a large enough distance from the ends

of the strip so that the stresses can be taken to be independent of x. Also, we assume that

w - 0 along the line segments x - 0, x - a, for 0 __ y __ b. As we have already indicated

in the discussion of the procedure for solving (IV.91a,b), the first step in the solution of the

problem at hand consists of determining a stress function · from (IV.91b) and the pertinent
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boundary conditions; these boundary conditions are as follows'

u(O, y)- O, u(a, y)- u0, 0 _<y _<b (IV.94)_(_,0)- o, _(_,b)- _o,o___· <__

where uo and Vo are constants which are chosen so that

/0 /0N_ (0, y)dy - Nx (a, y)dy - bhcro (IV.95)

For the temperature distribution (IV.93), (I.11a) and (IV.91b) yield.

A2_ - -4 aEcx cos b

a solution of which is

troy2 _Eclb 2 2_-y (IV.97)
-_o(x,Y)- 2 47r2 cos b

It is easily computed that corresponding to _o, as given by (IV.97), we have the following

expressions, modulo rigid-body motions, for the stress, strain, and displacement components[

2_ry (IV.98a)
h Crxx -- N x -- (I) ,yy -- h (7'0 -Jr-c_E cl cos -_

1
6xx -- -_ 0'0 -at- OZCO

ycro 2lry (IV.98b)
gyy -- ---_ -_- OfCo -- (1 -Jr- l])aC1 COS b

x

u- (ao + c_Eco)7 (IV 98c)
y (1 + y)c_clb sin 2_ry

v -- (-Veto + aEco) E 2_' b

It is easily seen that (IV.98a,b,c) satisfy all the boundary conditions delineated above

provided
a

uo - (fro+ ozEco)_ b (IV.99)

vo- (-v_o + c_Eco)_
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The next step, for the problem at hand, involves the computation of the transverse

deflection w(x, y) and the corresponding critical combination of the temperature levels and

the applied load. Using the fact that t - 0 in (IV.91a), and that M T - 0 for the temperature

distribution defined by (IV.9b), it is easily seen that the use of (IV.98a) in (IV.91a) reduces

this equation to

h { cos 27fy} (IV.100)A2w- + F- w=

We consider (IV.100) with the conditions relevant for simply supported edges, namely,

I w- W,xx- 0; x- 0, a; 0 _<y _<b (IV.101)w-w,yy-O; y-O,b; O<x<a

and, thus, seek a solution of the form

w(x; y)- _ _ am_ sin sin (IV.102)
m=l n=l a b

By substituting (IV.102) into (IV.100) and then comparing the coefficients of like terms we

are led to the following system of algebraic equations for the coefficients am_'

c_Ec_ c_Ec_
kml + (to a_l + a_3 = 02 2

aEcl
[kin2+ cr0]am2+ 2 am4 - 0 (IV.103)

c_Ecl(am,n+2+ am,n-2) -- 0 (n > 2)[k._ +cr0]a,_ + 2

where

K (__)2{ (na)2} 2 (IV.104)l+

The critical combination of ct0 and c_ is obtained by setting the determinant of the homo-

geneous system (IV.103) equal to zero. As noted in [7] there does not exist any coupling

between coefficients with different values of m or between coefficients with even and odd

values of n. Thus, a single value of m may be employed in the series (IV.102), i.e., the one
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which yields the lowest critical combination of load and temperature levels for the loading

and geometry being considered. Furthermore, as also noted in [7], one may set up two in-

dependent determinants, onewith only odd values of r_ and one with even values only. It

may be shown that the symmetric case, corresponding to the determinant involving only

odd values of r_, corresponds to the lower 'buckling' load; the symmetric determinant has

the form _ECl _Ecl 0"'2 } 2

aEc_ c_Ec_
kin3 mc- dr o ...

2 2
- o (Iv. os)

ozEc_

o 2 (k 5+ ·"

for which two special cases are of interest' If cl - 0 then only the edge stress distribution

cr o acts to buckle the panel and only the diagonal terms in (IV.105) survive. In this case,

the critical value of Crois given by the same expression that has already been noted in [1],

namely,
7c2E h

((7o)crlcl=O = _Ki2(i _ /Y2)(._)2 (IV.106a)

in which r_- 1 (so as to obtain the lowest possible critical stress) and

k - (bra__a+ _mm)a2 (IV 106b)

is computed, for a given aspect ratio a/b, by choosing the integral value of _ for which it

is a minimum; a full discussion may be found in [1]. The more interesting special case of

(IV.105)), from the viewpoint of (purely) thermal buckling, corresponds to taking Cro- 0

in (IV.105) and seeking the smallest root T1 -- Tc_ of the resulting infinite determinant;

approximations to Tc_ may be obtained from (IV.105), with Cro - 0, by retaining only a

finite number of rows and columns of the determinant. By retaining only the element in the
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