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SUMMARY 

 

This dissertation focuses on the material transport system design problem (MTSDP), 

integrating decisions of technology selection and flow network design.  This research is 

motivated by the design of material transport systems (MTS) in manufacturing plants.  

The objective is to design a MTS with minimum lifetime costs, subject to service 

requirements, flow network restrictions, and limited resources.  We characterize the 

MTSDP from the perspectives of task requirements, transport technology, and space 

utilization.  A classification is proposed for transport technologies such that instances in 

the same class share the same properties, and a decision framework is proposed to 

emphasize the inter-relationships of three major decisions: task clustering, network 

connecting, and technology selection.  We consider fixed and variable costs, arc 

capacities, and empty travel in our formulations. 

We propose two solution approaches for the MTSDP.  The first is the compact 

formulation (CF) approach where the three major decisions are handled by a mixed 

integer non-linear programming (MINLP) formulation.  Relaxation techniques are 

applied to linearize the model.  The solution of the resulting linear formulation (MILP) 

provides a lower bound to that of MINLP.  A tightened formulation reduces the 

computational time by a factor of 3.85.  The experiment also shows that when control 

system costs are significant, designs with multiple-task clusters are more economical than 

those restricted to single-task clusters. 

The other approach is clustering/set partition (CSP), where the three decisions are 

decomposed and solved sequentially.  In an example MTS design problem, three methods 
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are compared:  CSP, a GREEDY approach from the literature, and enumeration.  CSP 

finds the optimal solution, while GREEDY results in 31% greater costs.  A similar 

comparison with another example is made for the CF and CSP approaches.  

We apply the CSP approach in a case problem, using data from an auto parts 

manufacturer.  We include flow path crossing constraints and perform experiments to 

determine solution quality over a range of small problem sizes.  The largest difference 

from optimality is 3.34%, and the average is 0.98%.  More importantly, based on these 

experiments, it seems there is no evidence that the difference percentage grows with an 

increase in the number of tasks. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Material Transport System 

This research addresses the problem of material transport system (MTS) design for 

general manufacturing facilities. The word material refers to a set of discrete parts. A 

discrete part can be a work-in-process or finished good. Transport technology refers to 

technologies that are used to move material from one location to another location within a 

manufacturing facility. The typical examples of transport technology in a manufacturing 

facility are industrial vehicles, conveyors, and cranes. Material transport system can be 

seen as a set of transport technologies serving transport requests within a manufacturing 

facility. The word task refers to a measure of steady-state material flow by unit load. It is 

defined by origin, destination and other material attributes. 

In this research, we use three terminologies to describe the space requirements of 

task and technology. Layout graph is a graphical description of where all technologies 

can be located and operated. Working network is derived from layout graph. It is defined 

by a technology or technology class and all feasible tasks of that technology. Flow 

network is defined by a technology subsystem and the selected tasks. The nodes and arcs 

of a flow network are  subsets of those in the corresponding working network. 

This research is motivated by the design of material transport systems in 

manufacturing plants. Because of the flexibility of technologies, there is often more than 

one technical solution for each transport request. In addition, material transport 
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technologies exhibit considerable fixed cost. As a result, it is often better to select fewer 

transport technologies and assign several transport requests to one technology to achieve 

economy of scale. 

1.2 Issues Related to MTS Design 

MTS design in a manufacturing facility is an extremely complex job. The MTS design is 

part of facility planning and it relates to other planning decisions. Moreover, the 

decisions made in the MTS design affect the operational planning of transport functions. 

The interactions between decisions within the planning of MTS also complicate the MTS 

design processes. 

1.2.1 Inter-dependencies in the Design Decisions of MTS 

A classical facility layout process is illustrated in Figure 1-1. Blocks represent a space 

partition of the facility. Let us denote each block as a workstation. A workstation is 

formed by a set of machines and their required space. One way to generate blocks is 

through the analysis of space requirements based on manufacturing and engineering data, 

as described in Francis, McGinnis et al. (1992). The material flow is a measurement of 

flow intensity between workstations. The relative locations of blocks could be decided by 

the intensity of material flow between blocks. This would result in the block layout, a 

scaled graphical representation of the facility. Note that the input and output points of a 

workstation can be decided by the intra-workstation layout and/or the material flow 

intensity. The block layout here contains the input and output points of a workstation. 

Combining the block layoutwith technology flow, a measure of material flow by 
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technology units, gives the detailed layout design of the facility. The dashed arrows 

indicate the possible feedback to each step of design process. 

1.2.2 Intra-dependencies in the Design Decisions of MTS 

Within the domain of MTS planning, decisions need to be made ranging from long-term 

investments to daily operations. In Figure 1-2, these decisions are listed based on a green 

field design. For the applications of re-design, some of the decisions might be specified in 

advance. 

 

 
 

Figure 1-1: Inter-dependencies in MTS Design and Facility Layout 
 

The third decision in the planning of MTS is the operation of each flow network, 

which consists of routing and control decisions. The operation planning can be changed 
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from one production batch to another. The operation planning involves some short-term 

planning issues like dispatching. From the perspective of decision time span, the network 

operation is a mid/short term decision. 

The selection and sizing of transport technology depend on the intensity of the 

transport operation and, therefore, the flow network design. The flow network design also 

depends on the behavior of the selected technology. Moreover, the flow network design 

restricts the variety of specific operations. The routing/dispatching policies also 

contribute to the complexities of flow network design, technology sizing and, therefore, 

technology selection. Therefore, the design decisions of MTS planning range from long-

term strategic planning to daily operational control. 

Flow Network Design

Technology Selection

MTS Design

Network Operation
(Routing & Control)

Planning Decisions of MTS

Decision Time Span

M
id/ Short
Term

Long Term

 
Figure 1-2: Intra-dependencies in MTS Design 
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1.3 Scope of the Thesis 

This research focuses on the long-term decision making in the planning of MTS design. 

We first state the material transport system design problem (MTSDP) informally as 

follows: 

Given a set of tasks, a set of technologies, and the layout graph of a 

manufacturing facility, the MTSDP is to assign tasks to technologies, such that a set of 

subsystems optimizes the objective, subject to a set of constraints. 

The questions that the MTSDP intends to answer are as follows: 

• Which task(s) should be assigned to which transport technology? 

• What are the flow networks of selected technologies to serve their designated 

task(s)? 

• How should the selected technologies and their flow networks be accommodated 

in the manufacturing facility? 

1.3.1 Tasks 

Throughout this thesis, we refer each transport request as a task that can be described by 

a set of attributes. Some specific attributes are part number, and input and output 

locations. Two tasks are considered to be identical if these attributes are the same. Thus, 

different requests of the same part number from the same input point to the same output 

point are combined into one task with aggregate requirements. 

The required attributes can be derived from manufacturing engineering and plant 

data. The details of data extraction and prototyping techniques can be found in Sharp, 

Ram et al. (2000) and Everette (2000). 
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1.3.2 Technologies 

The term technology type is used to denote the specific type of material transport 

technology. For example, counterbalanced forklift truck and narrow-aisle lift truck are 

two different technology types. For the detailed descriptions of commonly used 

technology types in manufacturing, the reader can refer to the tutorial web pages prepared 

by the College Industry Council of Material Handling Education. 

The term technology instance (technology in short) is used to distinguish 

equipment belonging to the same technology type but with different specifications. For 

example, a counterbalanced forklift truck with load capacity of 3000 lbs and one with 

load capacity of 6000 lbs are two different technology instances. 

1.3.3 Layout Graph 

The layout graph is defined by a finite set of nodes and edges. The nodes represent the 

input/output points of a workstation, the intersections of workstation boundaries, and the 

column positions of a facility. The edges represent the boundaries of workstations in the 

facility. Note that the column positions are not restricted to boundaries of workstations. 

The layout graph provides an underlying structure for flow network construction of 

material transport technologies. 

1.3.4 Task-resource Combinations  

The material transport system requires different types of resource to satisfy the transport 

requests. The major resource types considered in the design of the MTS system are: 

material transport technology, space, and capital. Tasks are the driving force for the 
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formation of a resource combination. Each tasks-resource combination forms a 

subsystem to serve a specific set of tasks. 

1.3.5 Constraints 

There are various types of constraints on the construction of a material transport system, 

which can be organized as follows: 

• Compatibility 

Compatibility indicates whether a technology is physically capable of serving a 

specific task or not. To answer this question, extensive comparisons between the 

task attributes and technology specifications need to be made. Detailed 

descriptions of task attributes and technology specifications are discussed in 

Section 3.1. 

• Network restrictions 

Network restrictions are used to characterize the transport behaviors of 

technologies and impose requirements on each technology on one of the layout 

graph variants so that the technology can form its own network to serve the 

designated tasks. Network restrictions are different in terms of technology. 

However, these constraints can be classified into three major categories, 

connectivity, capacity, and directionality constraints. The detailed descriptions of 

these three types of constraints for each technology are discussed in Section 3.3. 

• Availability 

Availability constraints concern the limited nature of different types of resource. 

The major availability constraints on MTS design problem are: 
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� Capital budget – The MTS design involves long-term capital investments. It is 

usually the case that there is a capital budget imposed by the management. 

� Space (Width) – There is a restriction on the width of the space used by the 

selected technologies. 

� Space (Conflict) – For some technology types, their installations might 

exclude other types in the same space, e.g., overhead conveyors and crane 

technologies. 

� Technology – The technology or its size might be (partially) pre-specified by 

the management. This typically happens in applications of redesigning the 

MTS. 

• Assignment 

The assignment constraints make sure that each task is served by exactly one 

technology. 

1.3.6 Objective 

The objective is used to measure the goodness of a MTS design. The objective 

considered in this research is lifetime cost minimization. The major cost categories 

considered are investment costs and operating expenses. 

1.4 Goals of the Research 

The goals of this thesis are two-fold. First, we aim to provide an integrated decision 

framework for material transport system design. In the literature, the researchers tend to 

treat the design decisions of MTSDP as stand-alone problems; the consequences of this 

separation will be pointed out later. Moreover, considering the role of MTS design in 
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manufacturing facility layout planning, we need to make sure that the proposed decision 

framework characterizes the space requirements of technology flow. 

The second goal of this thesis is to contribute some modeling and algorithmic 

accomplishments based on the proposed framework. The MTSDP is a combinatorial 

problem. Therefore, some specific problems within the MTSDP can be modeled and 

solved by combinatorial optimization techniques. 

To explore the MTS design problem we make the following assumptions.  

• The layout graph of a facility is given, as indicated in Section 1.3.3. 

• The input and output points of a workstation have enough capacity so that 

starving and blocking do not occur at these points. 

• The set of technology instances is finite and the information for each technology 

is known. 

• All material is transported by unit load. The size and volume of a unit load depend 

on the technology. 

• The information for each of a finite set of tasks is known: origin, destination, 

attributes of material to be transported, and quantity to be transported. 
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CHAPTER 2 

REVIEW OF BACKGROUND LITERATURE 

 

MTS design is one of the most important aspects of manufacturing facility design. From 

the perspective of MTS design, the fundamental questions that need to be answered are 

what transport technologies are going to be used in a manufacturing facility and how will 

they be used. Previous literature usually separate the MTS design problem into the 

technology selection problem and the flow network design problem. For ease of 

discussions, the review of literature is organized following this division. 

2.1 Background of Technology Selection 

Technology selection is the one of the earliest decisions that needs to be made for the 

design of intra-facility transport system. The technology selection problem studied in the 

literature can be informally stated as follows: 

Given a finite set of technologies and their specifications, a finite set of tasks and 

their attributes, and the design criteria, the technology selection problem is to best match 

the tasks and technologies such that each task is served by exactly one technology. 

The solution approaches used for the technology selection problem are quite 

diverse. They range from simple check sheets to decision science, expert systems, and 

sophisticated mathematical programming models. The literature survey is organized 

based on the solution approach. 
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2.1.1 Check Sheets 

Apple (1972) proposed a 9-step sequential procedure for facilitating the technology 

selection process. This procedure is one of the earliest and the most influential works to 

deal with this complex and difficult problem. The proposed procedure is basically a 

matching process between task attributes and technology specifications. Several 

principles, guidelines, criteria, and evaluation sheets are developed for matching 

qualitative factors in different level of details. Having narrowed the selection to a few 

technologies, the author suggests a careful evaluation of the cost associated with each 

alternative, and a check of compatibility between technology types under consideration 

with other technologies in use, or to be used. Then, the selection of the specific 

technology type can be made based on the preceding analyses. 

In order to evaluate the cost of each alternative and help the decision makers get 

started in selecting the appropriate technology, Kulwiec (1980) provides operating 

characteristics, application notes, cost factors, and approximate prices for basic 

technology types. A user interactive selection procedure for automated guided vehicle 

(AGV) was proposed by Shelton and Jones (1987). The first step of this procedure is to 

get the specifications of the AGV based on the requirements of a specific manufacturing 

plant. The second step is to choose a set of specifications against which technologies will 

be evaluated using a weighting procedure. A list of attributes for the selection of AGV 

systems is proposed, and an illustrative example is given to demonstrate the procedure. 

Chu (1995) proposed a two stages computer-assisted system for selecting material 

handling technology. The first stage identifies the candidate technology list through the 

use of subjective ratings on technology specifications in terms of their relevance to tasks, 
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and the calculation of a normalized score of accumulated rating for each technology type 

under consideration. The candidate technology list is built by accepting technologies 

whose normalized score exceeds a pre-specified minimum acceptance level. Then, the 

evaluation of candidate technology is conducted by economic analyses. The proposed 

criteria include present value, return on investment, and payback period method. 

2.1.2 Expert Systems 

An expert system consists of computerized routines that are intended to mimic the 

reasoning process of a human expert. This solution approach is produced by the coded 

domain knowledge and heuristics. Expert systems used for selecting material transport 

technology consist of four major components: a knowledge base, a user interface, an 

inference engine, and a performance evaluation approach. 

A knowledge base is constructed for storing the specifications of technologies, 

which are usually compiled from material handling related literatures, such as Apple 

(1972), Apple (1977), Tompkins, White et al. (1996), . . . etc. This domain knowledge is 

represented by a set of rules, such as IF-THEN statements. The user interface is designed 

to glean the task attributes from the user in an interactive manner. The inference engine 

serves as a logical matching mechanism between task attributes and technology 

specifications. This matching mechanism generates queries adaptively, based on users’ 

answers of previous queries. After multiple alternatives survive at the end of this 

reasoning process, a performance evaluation approach is applied to make a selection 

based on the pre-specified criteria. 

Fisher, Farber et al. (1988) proposed an expert system (MATHES) that selects the 

appropriate types of material handling technology for intra-facility moves of unitized 
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material. A set of user-assigned weights associated with each selected technology type is 

used to evaluate the appropriateness of technologies for tasks. In their example, the 

authors also consider the acquisition cost of technology in order to make the selection not 

only technically feasible but also economically efficient. 

Malmborg and Agee (1987) presented a prototype expert system for industrial 

truck type selection. The authors define an industrial truck type as a collection of 

attributes that specify truck types in sufficient detail such that one or more commercial 

models could be associated with it. They use the task attributes to specify an ideal 

technology. Then, the selection of technology simply becomes a comparison of the ideal 

technology with commercially available technologies. Based on a similar idea and 

procedure, Luxhoj and Hellman (1992) developed a prototype expert system for AGV 

selection. 

Gabbert and Brown (1988) and Gabbert and Brown (1989) constructed a 

prototype expert system for selecting and configuring the technologies that store and 

transport materials in the facility. The proposed model, MAHDE, aims at generating 

acceptable material handling systems based on preferential and operational knowledge. 

Operational knowledge is constituted by a set of rules and used for generating acceptable 

selections. Preferential knowledge reflects the acceptability measures of selections. This 

knowledge is obtained by decision analysis techniques, and it is used for searching the 

most preferable selections or generating improvements from current selections. An 

example is given to illustrate the proposed procedure. 

Bookbinder and Gervais (1992) developed an expert system for their four-step 

approach of selecting the best-fit material handling technology. The first step involves 
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selecting the basic technology type. Technologies whose basic type meets the initial rules 

are retrieved in the second step. The compatibility of these technologies is compared with 

task attributes. The list of candidate technologies is further narrowed in step three by 

eliminating those whose specifications do not meet physical restriction imposed both by 

tasks and facility requirements. A multi-attribute decision-making (MADM) approach is 

applied to calculate the closeness of each candidate technology to the ideal technology 

derived from task requirements. In case there is no ideal technology, the MADM will 

recommend the technology whose performance is closest to the ideal. 

Matson and Mellichamp (1992) gave a detailed description of constructing a 

knowledge base for selecting and configuring material transport technologies. The 

authors also developed an expert system (EXCITE) suitable for the technology selection 

of discrete parts transportation in a manufacturing facility. For tasks with multiple 

technology alternatives, EXCITE applies a weighted evaluation technique to select the 

most preferable technology based on pre-specified criteria. 

ICMESE, Park (1996), is built for selecting handling technologies that are 

suitable for transport, storage, and warehousing of materials in a manufacturing facility. 

Except for the common components used for the expert system, ICMESE also possesses 

the ability to select the most favorable commercial model by a MADM method, and 

evaluate its performance by a simulator. The output of ICMESE is a set of specific 

commercial models, ranked by priority, and performance measures of these commercial 

models. 

Chan, Ip et al. (2001), proposed a method to develop a material handling 

equipment selection advisor (MHESA). This expert system contains an analytic hierarchy 
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process (AHP) model to evaluate the performance of feasible commercial models and 

recommend the one with the highest ranking. 

2.1.3 Mathematical Programming 

Another line of research focuses on the economic efficiency of technologies. Webster and 

Reed Jr. (1971) proposed a binary integer programming formulation and an algorithmic 

procedure for the selecting the material transport technology. The objective of their 

procedure is to minimize the sum of investment cost, operating cost, and changing unit 

load cost, where the possible unit load changes are pre-specified. The authors proposed a 

heuristic algorithm to solve this problem. This algorithm first assigns individual tasks to 

technologies based on partial costs. The improvement of initial assignments is first done 

by interchanging the assignments of task and technologies to increase utilization levels. 

The second technique is to reduce the number of different technology types in order to 

reduce total fixed costs. The largest example reported in this article contains 10 

technologies and 300 tasks. 

Hassan and Hogg (1985) pointed out that the algorithmic approach proposed by 

Webster and Reed might be computationally expensive. Therefore, they presented a 

construction heuristic to obtain feasible solutions quickly for a similar problem but 

without changing of a unit load. The authors developed a technology-centered algorithm: 

for each technology considered, the algorithm first calculates the cost required for serving 

all compatible tasks. A cost allocation scheme is used to determine an index value, or 

average cost per task, for all tasks that are unassigned. The assignment then proceeds 

greedily by using these average costs per task. Once the utilization rate of a technology 

reaches a target value, the index values for the remaining unassigned tasks are 
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recalculated, and the process continues with the next efficient technology until all tasks 

are assigned. The proposed algorithm is compared with Webster and Reed’s on the same 

examples. The published results show that the solution qualities of the two algorithms are 

similar. However, the algorithm proposed by Hassan and Hogg (1985) might require less 

computational effort. Heragu (1997) reported a mixed integer programming formulation, 

which is similar with the formulation of Hassan and Hogg (1985), except for the 

consideration of the underlying layout. A small example is given and solved by 

commercial solver. 

Kouvelis and Lee (1990) modeled the problem of material transport technology 

selection and specification in a different manner, similar to Jones (1971). Each 

workstation is treated as a node and the compatible technologies of a task are modeled as 

arcs connecting nodes. The resulting formulation becomes a parametric, minimum 

convex-cost multi-commodity flow problem on a multigraph. The computational 

experiments are done using a MINOS subroutine to obtain exact solutions and the 

heuristic described by Steenbrink (1974) to obtain approximations. The reported 

deviation from the optimal solution for the heuristic is less than 5% for 15 randomly 

generated examples. 

2.1.4 Hybrid Approach 

Combining expert systems and mathematical programming, Fisher and Maimon (1988) 

proposed a two-phase decision model for specifying and selecting robotic technologies. 

The first phase prescribes the specifications of technologies by analyzing the 

requirements of a given set of tasks. The second phase selects the appropriate and 
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available technologies based on the descriptions specified in the first phase. An example 

is presented for illustrating the proposed solution framework. 

Welgama and Gibson (1995) combined expert systems and optimization for 

automating the selection of material transport systems. A knowledge base is employed 

for analyzing the compatibilities of tasks and technologies. After this initial screening 

process, the compatible task-technology combinations are entered into an integer 

programming model that is an extension of Hassan and Hogg (1985). Besides investment 

cost and operating cost, the authors also include the cost of space, which is considered as 

a homogeneous resource. The first phase of the optimization is to find the minimum cost 

technology for each task without considering utilization; in the second phase the 

algorithm seeks to maximize the utilization of selected technologies by combining tasks. 

An example involving 16 technologies and 112 tasks was solved to demonstrate the 

approach. 

2.1.5 Discussion 

To facilitate our discussion on the surveyed literature, the modeling and solution 

characteristics of some selected works are summarized in Table 2-1, respectively. Each 

column of Table 2-1 records the considered characteristic of the proposed models and 

solution approaches in the selected literature. The interpretation of each characteristic is 

summarized as follows: 

• Origin-destination (O-D) Definition: According to Sinriech (1995), there are three 

types of origin-destination definition. The first one is the centroid-to-centroid (C 

to C). The second type is the output-to-input points, and the last one is the aisle-

network obtained from the layout. The output-to-input points and aisle-network 
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O-D definition are suitable for certain technologies; however, the centroid-to-

centroid distance measure is less representative of actual travel distances. 

• Distance Metric: This characteristic indicates the distance metric used. The 

commonly used distance metrics in the technology selection literature are 

Euclidean, Rectilinear, and Chybechev metrics. The aisle-network distance can be 

considered as another distance metric. 

• Empty Travel: The empty travel column records whether the approach considers 

empty flows explicitly or not. 

• Conflict Resolution: This column describes the method of allocating limited 

resources in each model. 

• Objectives: The objectives column summarizes the criteria used for selecting 

technologies. 

• Solution types: This column indicates if the selection is restricted to single 

technology single task solutions (one-to-one) or allows single technology-multiple 

tasks solutions (one-to-many). 

• Solution Techniques: This column summarizes the methods used for solving the 

selection problem in each model. 
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Table 2-1: Modeling and Solution Characteristics of Selected Literature on Transport Technology Selection 

 

Literature O-D
Definition 

 Distance 
Metric 

Empty 
Travel 

Conflict 
Resolution 

Objectives Solution Type Solution Techniques 

Malmborg (1990) C to C Euclidean No N/A Cost and Compatibility One to One Certainty Factor Calculus 
Shelton and Jones (1987) N/A N/A No N/A Multi-Objective 

(Unspecified) 
One to One User Ranking 

Gabbert and Brown (1989) N/A N/A No N/A Multi-Objective 
(Unspecified) 

One to One ES & Multiple Attributes 
Utility Theory  

Bookbinder and Gervais 
(1992) 

N/A    N/A No N/A Cost, Distance…etc. One to One ES & MADM 

Matson and Mellichamp 
(1992) 

C to C Euclidean No Subjective Cost, Flexibility, 
Maintenance 

One to One ES & User Ranking 

Chu (1995) N/A N/A No Subjective Cost and Compatibility One to One ES, User Ranking & 
Economic Analysis 

Park (1996) N/A N/A No Subjective Cost, Technical & 
Strategic criteria 

One to One ES, MADM & Simulation 

Chan, Ip et al. (2001) N/A N/A No  Subjective Cost, Performance,
Technical & Strategic 
criteria  

One to One ES & AHP 

Webster and Reed Jr. 
(1971) 

C to C Euclidean No Subjective Cost (investment, 
operation, changing unit 
load) 

One to Many Heuristic Algorithm 

Hassan and Hogg (1985) C to C Euclidean/ 
Rectilinear 

No Subjective Cost (investment & 
operation) 

One to Many Heuristic Algorithm 

Kouvelis and Lee (1990) C to C Euclidean    No N/A Cost (investment,
operation, reliability & 
WIP) 

One to Many Commercial Solver & 
Heuristic Algorithm 

Welgama and Gibson 
(1995) 

N/A     Euclidean No N/A Cost (investment,
operation & space) 

One to Many Heuristic Algorithm 

 



 

2.2 Background of Flow Network Design 

Flow network design has significant influence on the characterization of technology flow 

within the facility, cost approximation of the selected technology, and the response time 

of carriers to transportation requests. The flow network design problem studied in the 

literature can be informally stated as follows: 

Given 1) the underlying network and associated parameters, 2) specification of 

the technology under consideration, and 3) a set of tasks. Decide A) Arcs to be included 

in the resulting network, B) the orientation of each selected arc, and C) the flow on each 

selected arc, such that the sum of costs is minimized. 

The following literature reviews are summarized according to the focus area in 

flow network design.  

2.2.1 Flow Network Design for Carrier Requirements 

In this section, we review techniques other than simulation used in the early design phase 

for estimating the number of carriers required. For some technology types, specifically 

carrier-based technology, the empty travel accounts for a significant part of the operation 

time. This portion of operation time is not as certain as loaded travel, because the empty 

travel is also affected by short-term operational decisions. To accurately capture the 

empty travel using simulation, the technology must first be chosen; the network must be 

designed; and the control policy on the designed network must be specified. In the stage 

of technology selection and flow network design, the large number of alternatives simply 

makes detailed simulation impractical. Therefore, a simple (in terms of information 
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required) analytical technique is needed to incorporate the effect of empty travel in the 

early design phase. 

Several researchers recognized this need and presented their approximations. 

Maxwell and Muckstadt (1982) first proposed an approximation based on the idea of the 

netflow at each workstation. The netflow at a workstation is the difference between the 

incoming flow and outgoing flow. This netflow is then treated as supply or demand of 

empty travel and modeled as the well-known transportation assignment problem. 

Intuitively, an empty carrier supply will tend to be assigned to the nearest empty carrier 

demand by the nature of transportation problem. This problem ignores the timing of 

supply and demand. Therefore, people in related research areas usually refer to this 

technique (M & M in short) as the best-case approximation. 

Contrary to the idea of the best-case approximation, Malmborg (1990) developed 

a technique to obtain the “worst-case” approximation of empty travel. Given the supply 

and demand of netflow at each workstation, an empty carrier will be assigned to a farthest 

workstation that demands empty carriers. The author claimed that the actual empty travel 

distance is a weighted average of the best- and worst-cases. In order to obtain an 

approximation between the best- and worst-cases, Rajotia, Shanker et al. (1998) modified 

the transportation problem in Maxwell and Muckstadt by imposing upper bounds on flow 

at the nearest workstation. 

Beisteiner and Moldaschi (1983) proposed two simple equations for empty travel 

approximation. The first one (BM I in short) also applies the idea of netflow and takes the 

product of average loaded travel distance and netflow as the approximation of empty 

flow. The second one (BM II in short) simply takes the total loaded travel distance as the 
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approximation of the empty travel distance. These two techniques implicitly assume that 

the loaded travel is a good indicator of the empty travel. 

In the same conference as Beisteiner and Moldaschi, Kuhn (1983) utilized the 

idea of factoring to approximate the empty travel. The possibility of an empty travel 

assignment is approximated as the proportion of a workstation’s loaded travel 

requirement to the total loaded travel requirement. Therefore, the destination of empty 

travel of a carrier is not restricted to the nearest request as proposed by Maxwell and 

Muckstadt, nor the farthest request as proposed by Malmborg. 

Besides loaded and empty travel, the carriers might experience waiting and 

blocking because of unsynchronized supply/demand, and heavy traffics. Due to the 

interactions among the variables involved, there seems to be no quantitative method to 

approximate this portion of time. However, there do exist some factors obtained from 

empirical studies to approximate the carrier waiting or blocking time. Kulwiec (1982) 

and Kulwiec (1984) used 0.2 to 0.4 and 0.15 to approximate empty travel time and 

waiting/blocking time, respectively. Koff (1987) proposed a facility-dependent (0.1 to 

0.15 of total loaded travel time) empirical factor (KB in short) to approximate both idle 

waiting and blocking time. 

Given the selected technology and its network, Egbelu (1987) conducted 

simulation comparisons for some of the aforementioned (BM II, Koff, BM I, Kuhn) 

techniques under different dispatching policies and load size (load per shift) for AGV 

system. In a specific aisle network, the results show that the four techniques generally 

under-estimate the carrier requirement. The results also show that the KB technique is 

      22



inadequate in almost all experimental settings, while Kuhn’s technique matches the 

vehicle requirements provided by simulation for several dispatching rules. 

To account for shop floor dynamics, Bakkalbasi (1990) applied queuing theory to 

estimate the performance of some dispatching rules. The author assumed that the 

transportation requests at each workstation follow a Poisson distribution; the service 

times for each request are general distributed with finite first and second moments. The 

system is approximated by an M/G/c queue, where c stands for the number of carriers. 

The delay caused by congestion is approximated by a carrier delay factor. The author 

evaluated oldest-load-first (OLF), closest-load-first (CLF), closest-load with time priority 

(CLTP), and further-load-first (FLF) dispatching. The author obtained the following 

relation for empty travel time under different dispatching rules: CLF, CLTP, OLF, FLF 

(non-decreasingly ordered). The author also points out that elaborate dispatching rules are 

not likely to improve system performance significantly, and flow network design might 

be the way to enhance system performance. 

In a multiple, re-circulating loop, unidirectional AGV network, Rajotia, Shanker 

et al. (1998) presented simulation comparisons for techniques dealing with load 

sensitivity, and criticality of material handling resource. According to the simulation 

studies under various load sizes and the criticality ratio proposed by Kim and Tanchoco 

(1993), the authors concluded that Kuhn, BM II, Kulweic, and RSB provide the carrier 

requirements approximately the same as results obtained by their simulation experiments. 

Regarding the inclusion of empty carrier flow in network design, Sun and 

Tchernev (1996) gave a comparative study on a unidirectional aisle network system. 

Adding Maxwell and Muckstadts’ empty flow approximation to their formulation, the 
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authors compared the results by solving (1) loaded travel only, then obtaining the optimal 

empty flows, (2) loaded travel with pre-assigned empty travel by shortest path, and (3) 

loaded travel with simultaneous empty travel. The computational results of two examples 

show that the network obtained by the third scenario is the only method producing 

optimal solutions. The first scenario gives longer travel distance because it ignores empty 

travel in the network design phase. Note that the empty flow approximation of Maxwell 

and Muckstadt is distance dependent. The pre-assigned empty travel is based upon 

shortest distances given by the underlying network, not the designed network. Therefore, 

these results are reasonable for the use of Maxwell and Muckstadts’ approximation. In a 

reported instance with a network of 31 edges; the resulting networks of scenario 1 and 2 

have 11 edges different from the resulting networks of scenario 3. 

Sinriech and Tanchoco (1992) employed a multi-criterion optimization model to 

determine the carrier size of an AGV system while explicitly considering the cost and 

throughput requirement. The proposed procedure is basically a trade-off analysis of 

throughput requirements and fixed costs of the AGV system by iteratively adjusting the 

weights associated with these two objectives. The authors argued that the throughput is a 

concave function of carrier size. In order to employ standard approaches, constraint 

linearizations are performed and approachable throughputs of carrier sizes are tabulated. 

The obtained carrier size can only be treated as a lower bound because routing issues are 

not considered. 

Given the network of a specific vehicle-based technology and assumptions of the 

steady state task requirements, Herrmann, Ioannou et al. (1999) minimize the acquisition 

and operating costs of a vehicle-based technology. The authors proposed a linear integer 
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program model and employed two sets of binary variables to represent the status of 

transport technology and the linkage of tasks. By these variables, the authors decide the 

number of required carriers, the assignment of tasks to carriers, and the time required by 

a carrier to traverse its route. Due to the complexity of this problem (NP-Hard by 

referring to vehicle routing problem), they proposed two heuristics and made worst-case 

analyses. The first approximation algorithm, with time complexity  where n 

denotes the number of tasks, is a greedy method. The tasks are first matched by 

minimizing travel time. According to this travel time, assign these tasks to a carrier using 

a nearest neighbor approach until capacity is reached. The second approximation 

algorithm, with time complexity O(n

2( )O n

3), first solves the matching of the transformed 

problem, and then solves the bin-packing problem by a first-fit-decreasing heuristic. 

According to the reported computational results for randomly generated instances, the 

first heuristic has better performance with the number of carriers used, and the second 

heuristic outperforms the first one in terms of variable cost. The accuracy of both 

heuristics is improved as the number of tasks increases. 

A recent work, Vis (2002), studied the problem of determining the minimum 

number of vehicles required to transport all tasks within time windows. The author 

considered a general manufacturing facility with fixed shop floor storage capacity for 

each workstation. The release time of each job is defined as the point in time at which the 

job is processed and released to storage. The processed jobs in storage must be 

transported before the saturation of the storage space. The time window associated with 

each task is the time period between its release time and latest pickup time. In order to 

determine the required carrier size, the author proposed a network representation by 
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dicretising the time windows and creating multiple copies of nodes. The arcs in the 

resulting network represent the feasibility of servicing two tasks by one carrier. In this 

network, a path represents a feasible schedule of tasks to be transported by one carrier. A 

search algorithm is employed to enumerate all possible paths. Then, a set partitioning 

formulation is modeled and solved to obtain the minimum number of paths (carriers). 

2.2.2 Flow Network Design on Aisle Network 

Aisle network design accounts for the majority of the literature in the domain of flow 

network design. The major users of aisle networks are vehicle-based technologies. The 

distance is measured from the output to the input points along a given aisle network. Two 

constituents of the cost structure are fixed cost associated with the inclusion of arcs, and 

the variable cost that varies with the flow intensity. If we treat each task as a distinct 

commodity, the resulting problem can be modeled as a variation of the fixed charge 

network design problem (See Magnanti and Wong (1984), and Minoux (1989)). 

Several researchers have studied the flow network design problem given the 

included arcs in an underlying network (Flow Network Design Problem given A). 

Gaskins and Tanchoco (1987) proposed a binary integer programming formulation for 

this problem. Vekataramanan and Wilson (1991) proposed an improvement by imposing 

connectivity constraints with a compact formulation and a specialized branch-and-bound 

procedure. Kouvelis, Gutierrez et al. (1992) provided five heuristics, including simulated 

annealing algorithms, for this problem. The computational results indicate that composite 

heuristics yield solution quality comparable to that obtained by simulated annealing 

algorithms. 
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Bakkalbasi (1990) studied flow network design on aisle network. A variant of a 

node arc formulation for the fixed charged capacitated multi-commodity network design 

problem is proposed for the flow network design problem for AGV systems. Due to the 

inherent problem complexity, the author developed three heuristics based on relaxations 

for obtaining feasible solutions. The basic idea of the GRID heuristic is to construct a 

convex hull based on the geometric dispersion of tasks. The connectivity restriction is 

satisfied by re-orienting the arcs. The PATH GENERATION heuristic relaxes the flow 

capacity and ignores the path building cost. The weight associated with each commodity 

is obtained by solving the all pairs shortest path problem, and then greedily assigning the 

commodities based on weighted distance. The last heuristic for path flow network 

construction, ARC DELETION, starts with the underlying network. Based on the idea 

that a busier section should be on a shorter path, this heuristic proceeds by deleting arcs 

in a greedy sense. All three heuristic are able to generate feasible flow path networks. For 

further refinement, the author proposed standard network improvement procedures based 

on arc additions, deletions, and re-orientation. 

Sharp and Liu (1990) considered the construction of shortcuts between stations 

and the allocation of spurs at each input/output point in a fixed-path, closed loop material 

transport system with congestion of carriers. The congestion at each station is modeled by 

nonlinear cost curves, which are functions of the number of carriers moving past a 

station, including carrier costs and construction costs of the spur. These cost functions are 

developed from queuing theory and the results are validated by simulation studies. In 

order to alleviate the congestion caused by loading/unloading operation and to reduce 

travel distances, the design decisions are building spurs/shortcuts or not. A piecewise 
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linearization technique is used to approximate the nonlinear cost functions and a linear 

mixed integer programming formulation is constructed to serve as a selection tool. Two 

examples are tested for the proposed procedure. The results show that considering carrier 

congestion in the flow network configuration yields a better and more accurate design, 

before proceeding to simulation. 

Herrmann and Ioannou (1996) consider the design of a flow network in a discrete 

parts manufacturing facility. The authors formulate the MTS network design on an aisle 

network similar to the model proposed by Bakkalbasi but without the directionality 

constraints. Two efficient heuristics are proposed to determine near-optimal solutions to 

the NP-hard problem. The basic idea of the first one, called fixed-charged adjustment 

heuristics (FCAH), is to iteratively adjust the arc fixed costs and selectively include arcs 

until a feasible network is obtained (based on LP relaxation). The second one called state 

space search heuristics (SSH) ranks binary variables with respect to their distance to 0.5 

by solving the LP relaxation. Arc inclusion and exclusion is based on their closeness to 1 

or 0. The heuristic then proceeds with the fixed arcs to solve the LP relaxation. For small 

instances, the authors compared the FCAH and SSH with optimal solutions obtained by 

commercial optimization software. Instances with up to 30 arcs are solved, and the two 

heuristics yield solutions that deviate from optimum by 3.2, and 3.6 percent, respectively. 

For larger instances, the authors compared the FCAH, and SSH with the lower bound 

provided by dual ascent and LP relaxation. Instances with up to 60 arcs are solved, and 

the two heuristics yield solutions that deviate from optimum by 7.9 to 10.3 and 8.2 to 

10.4 percent, respectively. 
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2.2.3 Variations of Flow Network Design on Aisle Network 

Aside from the requirements-driven network design models mentioned above, one line of 

research studies the performance of a specific material transport technology, the AGV 

system to be exact, in some specialized network topologies. The reported specialized 

topologies are shown in Figure 2-1. Figure 2-1(a) is a topology on an aisle network that is 

typical in the survey of the previous section, Figure 2-1(b) presents a loop topology, 

Figure 2-1(c) depicts a tandem loop topology, and Figure 2-1(d) gives a topology based 

on segmented flow technology. 
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Figure 2-1: Variations of Aisle Network Design 

 

Given a block layout, the optimal single loop network design is first proposed by 

Tanchoco and Sinriech (1992). Sinriech and Tanchoco (1993) proposed a mathematical 

programming formulation and developed an efficient solution approach for this problem. 
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Asef-Vaziri, Dessouky et al. (2001) proposed an alternative formulation and solution 

procedure for the same problem as Tanchoco and Sinriech (1992). The authors focus on 

developing a better formulation in terms of LP relaxation, analyzing the mathematical 

properties, and developing a branch-and-bound solution approach. The proposed 

computational methods are tested on two sets of instances by standard commercial 

software. The authors also show the computational efficiency of the proposed method by 

comparing it with other approaches. 

Asef-Vaziri, Laporte et al. (2000) and Asef-Vaziri and Laporte (2002) studied the 

problem for constructing a shortest loop such that at least one of the boundaries of each 

workstation is included in this loop. This research is focused on the formulation and 

solution approach of the proposed shortest loop problem (SLDP) for the design of 

material transport system in factories. The authors modeled the problem as a binary 

integer program, where the objective is to minimize the loop distance. The design issues 

are to determine which nodes and edges should be included to form a loop in the 

underlying block layout. A compact formulation is proposed, and the authors exploit the 

problem structure to take the advantage of properties of the block layout. Three 

simplification procedures are developed to reduce the number of constraints so that small 

or moderate-size (up to 40 workstations) instances can be solved by standard commercial 

software without decomposition or relaxation. For a detailed review on loop topology in 

flow network design, the interested reader can refer to Asef-Vaziri and Laporte (2002). 

The tandem topology is invented based on the divide-and-conquer principle. The 

tandem topology partitions workstations into several single-vehicle, non-overlapping 

zones. Additional interface stations are required to connect zones and transfer the cross-
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zone traffic. Bozer and Srinivasan (1991), and Bozer and Srinivasan (1992) invented this 

topology and proposed a partitioning heuristic to configure the tandem topology. The 

proposed heuristic consists of three phases. The first phase is to generate subsets of 

workstations by a geometric heuristic of the traveling salesman problem. Each generated 

subset defines a zone. The second stage is to check the throughput feasibility of each 

zone by a closed form. The third stage is to apply a variation of a set-partition model with 

a load-balancing objective to choose a configuration from the feasible zones. The authors 

present a comparative study between the proposed and conventional topologies. 

Simulation results show that the tandem topology outperforms the conventional topology 

in terms of throughput. However, Sinriech (1995) points out that the physical aisle 

structures used in this comparative study are not identical. 

To reduce the sensitivity of tandem topology to vehicle failure, Ventura (2002) 

studied the tandem system with multiple vehicles. Intuitively, workstations with short 

distances and large flow volume between them should be assigned to the same zone such 

that both intra-loop travel and inter-loop travel can be reduced. This argument is used to 

develop a heuristic clustering algorithm for partitioning the workstations. Sinriech and 

Tanchoco (1995) proposed the segmented flow topology, constructed by non-overlapping 

single carrier segments. This method can be applied to divided loops, as in Sinriech, 

Tanchoco et al. (1996) or a tree topology divided into segments, as in Sinriech and 

Tanchoco (1995). At both ends of each segment, transfer buffers serve as input and 

output for the carrier segment. 

      31



2.2.4 Flow Network Design on Other Working Networks 

Compared to the MTS network design research on aisle networks, research on other types 

of working networks is rare. Proth and Souilah (1992) provided a fast branch-and bound 

algorithm for finding the shortest path between two workstations. This method may serve 

as a tool to construct some working networks, e.g., conveyor networks. Montreuil and 

Ratliff (1989) applied the cut-tree algorithm to create a minimum weight spanning tree. 

The nodes and edges of the resulting tree represent the output or input points, and flow 

path segments, respectively. The weight associated with each edge indicates the flows 

assigned to each edge. The flow network with minimum material transport cost is 

determined by adjusting the lengths of edges so that the cumulative product of flows and 

edge length is minimized. This method is topology specific: it only works for a spanning 

tree structure. Some technology classes might be suitable for this topology, e.g., manual-

driven vehicles or floor-level conveyors. 

Chhajed, Montreuil et al. (1992) studied the flow network design problem with 

shortest rectilinear distance. The major applications of the proposed problem are for flow 

network designs that are not restricted to an aisle network; this situation is denoted as free 

flow. Given a directed network and a set of tasks, the problem is to find the minimum 

distance design by selecting arcs from the given network and deciding their flows. The 

authors formulated this problem as a mixed integer program. Lagrangian relaxation of the 

formulation decomposes the problem into separable shortest path problems. A heuristic is 

also given to cope with large instances. 
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2.2.5 Discussion 

From the surveyed literature on flow network design, we summarize the results as 

follows:  

• As shown earlier in this sub-section, there are three articles, Egbelu (1987), 

Bakkalbasi (1990), and Rajotia, Shanker et al. (1998), that study the performance 

of techniques other than simulation used in the early design stage for estimating 

the number of carriers required. Since the flows of loaded carriers are 

comparatively certain, they focus on the empty travel. Although the approaches 

used by these researchers are different, the conclusions regarding the performance 

of approximation techniques are quite consistent. The results of all approximation 

techniques are between the theoretical lower bound Maxwell and Muckstadt 

(1983) and upper bound Malmborg (1990). The factoring technique proposed by 

Kuhn (1983), named OLF in Bakkalbasi (1989), appears to be the most 

reasonable method to approximate the empty carrier travel in the early design 

phase. Kuhn’s method is a distance-independent approximation; it implicitly 

assumes centralized control of carriers and a first-come-first-serve dispatching 

rule. The results of Kuhn’s approximation provide a steady-state approximation. 

Some flow network design literature modifies the loaded from/to matrix based on 

Kuhn’s idea so that the matrix accounts for both loaded and empty travel. 

• For the articles on flow network design on an aisle network, there is a range of 

approaches from orienting arcs only to selecting and orienting arcs. One line of 

research is dedicated to exact solution approaches using implicit enumeration 

schemes, branch-an-bound. See Kaspi and Tanchoco (1990), and Kim and 
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Tanchoco (1993) for examples. The other line of research is devoted to 

developing efficient heuristics. See Bakkalbasi (1989), and Herrmann et al. 

(1995) for examples. Table 2-2 summarizes the modeling and solution 

characteristics of selected literature, respectively. 

• The specialized topologies introduced in Section 2.2.3 are preferable under 

specific conditions. They are created primarily because of a concern for 

operational issues. The motivation for creating these topologies can be treated as a 

bottom-up approach from the perspective of MTS planning: proposing a topology 

because of its control efficiency. These specialized topologies can be used as 

patterns for configuring the flow network after MTS design. In this research, we 

emphasize providing a structured way for obtaining the desired material transport 

system based on requirements, not the other way around. 

• The major users of an aisle network are vehicle-based technologies and some 

overhead conveyors. Regarding other technology classes with transport behavior 

not consistent with aisle network, there is a need for more research. Based on a 

survey by MHIA, Figure 2-2 shows the product shipments of four types of 

material transport technologies from 1997 to 2002. The material transport 

technologies considered in this research are covered in the first three categories: 

industrial trucks and tractors; hoists, cranes and monorails; conveyors and 

conveying equipment. Although the users of product shipments (e.g., 

manufacturing, warehousing, construction...etc.) are not available in this survey, 

we can observe that there is no single category that dominates over the past six 

years. Unfortunately, the percentage of research on flow network design does not 
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seem to reflect this fact, and the majority of research is focused upon technologies 

on aisle network, e.g., AGV system. 

 
Figure 2-2: Product Shipments of Material Transport Technology (Source: MHIA) 
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Table 2-2: Modeling/Solution Characteristics of Selected Literature on Flow Network Design on Aisle Network 
 

Network Restrictions Decision Variables Reference 
Connectivity Capacity  

  
Directionality

Empty 
Travel Arc 

Inclusion 
Arc 
Orientation 

Arc Flow 
Objectives Solution Techniques

Gaskins and 
Tanchoco (1987) 

I/O Weak 
Connectivity 

No     Yes No Given Unknown Unknown Operation cost Commercial
Optimizer 

Gaskins and 
Tanchoco (1989) 

I/O Strong 
Connectivity 

Yes       No Kuhn Given Unknown Unknown Operation cost Commercial
Optimizer 

Vekataramanan 
and Wilson (1991) 

SCC No Yes M & M Given Unknown Unknown Operation cost Branch & Bound 

Kaspi and 
Tanchoco (1990) 

I/O Weak 
Connectivity 

No Yes No Given Unknown Unknown Operation cost Branch & Bound 

Kouvelis, 
Gutierrez et al. 
(1992) 

I/O Strong 
Connectivity 

No Yes Kuhn Given Unknown Unknown Operation cost Heuristics (Greedy, 
Simulation Annealing, 
Composite heuristic) 

Sinriech and 
Tanchoco (1991) 

I/O Strong 
Connectivity 

No Yes Kuhn Given Unknown Unknown Operation cost Branch & Bound, 
Heuristic 

Kaspi, Kesselman 
et al. (2002) 

I/O Strong 
Connectivity 

No Yes M & M Given Unknown Unknown Operation cost Branch & Bound 

Kim and Tanchoco 
(1993) 

I/O Strong 
Connectivity 

No     Yes Kuhn Unknown Unknown Unknown Fixed &
Operation Cost 

Branch & Bound, 
Heuristic 

Sun and Tchernev 
(1996) 

I/O Strong 
Connectivity 

No Yes M & M Unknown Unknown Unknown Fixed & 
Operation Cost 

Branch & Bound, 
Heuristic 

Herrmann (1995) I/O Weak 
Connectivity 

Yes     No No Unknown Unknown Unknown Fixed &
Operation Cost 

  Heuristics 

Bakkalbasi (1990) I/O Strong 
Connectivity 

Yes     Yes Kuhn Unknown Unknown Unknown Fixed &
Operation Cost 

  Heuristics 

 

36 



 

37 

2.3 Background of Some Representative Solution Approaches 

Webster (1969) presented a pioneering work on the economic material transport 

technology selection problem. The problem formulation and algorithms are briefly 

discussed in Section 2.2.2. We focus on the implications behind the proposed algorithms 

because of their impact in the literature. The main assumption of this work is that 

increasing utilization of selected technologies may lead to an economical selection. A 

task is initially assigned to a technology based on minimum cost based on the greedy 

principle. Versatile technologies, technologies that can serve more than one task, are then 

used to aggregate tasks based on a heuristic cost allocation scheme. If we treat the travel 

distance available per period of a unit of technology as a bin and each task (loaded travel 

only) as a weighted object (this abstraction might be the reason of the Bin-Packing 

formulation proposed by Hassan and Hogg (1985)), the maximum utilization of bins then 

becomes a surrogate objective of minimum number of bins used, and therefore, a 

minimum cost selection. However, there is a question of validity of this abstraction, the 

accumulated weights of objects (loaded travel), to represent the cost of serving tasks by a 

technology within a facility without the knowledge of the associate flow network designs. 

Noble and Tanchoco (1993) proposed a concurrent design and economic 

justification procedure for the material handling system design. The authors advocate the 

advantages of considering economic trade-offs during the alternatives generation phase. 

The solution framework for their concurrent design procedure is like a classical branch-

and-bound procedure in combinatorial optimization. Denote design alternatives as nodes 

in the branch and bound tree. Nodes at the same depth represent alternatives at the same 

level of detail. The alternatives generation, a branching scheme, is a composite of ranking 

processes with subjectively assigned weights from literature (expert systems) and the 



construction heuristic proposed by Hassan and Hogg (1985). A set of automatically 

generated models, capacity analyses, queuing networks, and simulation models are used 

to extend the non-dominated design alternatives to greater detail. Throughout the 

development of alternatives, a marginal analysis procedure (bounding scheme) is used to 

evaluate the economic performance of each alternative. An example based on the 

prototype implementation of the design procedure is reported. 

Kouvelis (1988) proposed a two-level solution approach for the MTS design 

problem. The first level is for selecting and specifying the technologies, and the second 

level focuses on the topology designs of the selected technologies. The decision 

framework is a hierarchical process: the problems in the first level are solved and their 

solutions are treated as inputs to the second level. In order to separate the interaction 

between the technology selection and flow network design problem, the author uses an 

“activity network” (centroid-to-centroid measure) to represent the layout design. The first 

level problem Kouvelis and Lee (1990) is summarized in earlier work. For the second 

level, after the technologies are chosen, the networks of some technologies are then 

designed. Concave cost network design problems are introduced and their implications 

for the MTS network design are briefly discussed. Therefore, this solution approach still 

treats the MTS design problem as two separate problems, technology selection and flow 

network design problem. 

2.4 Concluding Remarks 

This background review is not meant to be a criticism of the surveyed literature; they 

were written for their own purposes. Because they help present a complete picture of the 

work that should be done in MTS design, some of them will be used extensively for the 
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development of the proposed solution approaches. To summarize this background 

literature review, we propose two research topics within the subject of MTS design. 

• Multi-technology flow network design 

One of common assumptions in the flow network design literature is that there is 

single technology compatible with all tasks. Manufacturing is a set of processes that 

change the states of materials and transform the materials to final products. For the cases 

that a single technology is not able to meet the transport requirements and/or a single 

technology design is simply not economical, there is lacking a methodology to construct 

a multi-technology flow network that satisfies both task and system requirements. 

• Integrated solution approaches for MTS design in general manufacturing 

applications 

As shown in this review, the literature tends to separate the MTS design problem 

into two independent design decisions, technology selection and flow network design. In 

order to make each problem well defined, some simplifications and assumptions are 

made, e.g., centroid-to-centroid origin-destination distance technology selection, and a 

single technology compatible with all tasks in a manufacturing application for flow 

network designs. The drawbacks and limitations of this separation and the associated 

simplifications will be pointed out later. Whether from the perspective of facility layout 

planning or MTS planning, the separation into two stand-alone problems cannot suit the 

needs for general manufacturing applications. Therefore, integrated solution approaches 

for the MTS designs that recognize the differences between technologies and consider the 

system requirements are required. 
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CHAPTER 3 

THE CHARACTERISTICS OF THE MTSDP 

 

In this chapter, we further discuss the Material Transport System Design Problem 

(MTSDP) by illustrating important characteristics of it. This chapter is organized as 

follows: We briefly discuss the capabilities of transport technologies, and some typical 

task attributes and technology specifications are introduced in Section 3.1. In Section 3.2, 

we discuss the importance and the behavior of empty travel in the early design phase for 

some technology types. In Section 3.3, we propose a set of classification criteria for 

transport technologies commonly used in manufacturing environments and present 

technology classes for the MTSDP. Based on these characteristics and the interactions of 

decisions involved in the problem, we propose a general decision framework for the 

MTSDP in Section 3.4. 

3.1 Task Attributes and Technology Specifications 

One of the decisions in the MTSDP is the assignment of tasks to technologies. Although 

the latest transport technologies are designed to be as versatile as possible, some 

mechanical limitations of technologies still need to be respected. The task attributes and 

technology specifications primarily emphasize the mechanical abilities of the technology 

instances to perform the tasks.  

Table 3-1 gives an example of individual task attributes and Table 3-2 gives some 

examples of technology specifications. Each row in Table 3-1 and Table 3-2 represents 

an attributes/specifications of a task/technology instance. These attributes/specifications 
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are usually specified by a numerical value(s) (e.g., 500 lb.), a qualitative scale value (e.g., 

on a scale of 1 to 10), or a logic value (yes/no). 

Table 3-1: Examples of Task Attributes (Sharp, Ram et al. (2000)) 
Task Attributes Description 
Pickup point The coordinates (3D) of pickup point 
Delivery point The coordinates (3D) of delivery point 
Quantity Parts to be transported per time period 
Weight The weight per part 
Size (per part) The dimensions (3D) per part 
Fragility Whether the part is fragile 
Suspended load Whether the part is suspendable 
Unusual shape Whether the shape of part is unusual 

 

Table 3-2: Examples of Technology Specifications (Sharp, Ram et al. (2000)) 
Technology Specifications Description 
Load weight  The load capacity of the technology instance 
Load size The load size of the technology instance 
Lift height The lift height of the technology instance 
Suspend load Whether the technology instance can handle suspended load 
Unusual shape load Whether the technology instance can handle unusual shape load 

 

3.2 Technology Flows and Empty Travel 

The technology flow (flow in short) is a measure of material flow by transport unit. It is 

obtained from unitizing the material flow into discrete flow units for a specific 

technology. For example, if the capacity of a forklift truck is 8 units, then a transport 

request with 40 parts can be unitized into 5 movements of forklift truck. Then, the flow of 

this transport request with the forklift truck is 5.  

From the perspective of the MTSDP, the network activity includes not only the 5 

movements of forklift truck from the origin to the destination of the transport request, but 

also the deadhead travel for these 5 movements to perform this service. Empty travel 

connects a pair of loaded travel for some transport technologies; say loaded travel 1 and 

2. The non-productive activity travels from the destination of 1 to the origin of 2 to 

become available for the next loaded travel. 
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In Section 2.2.1, we discuss the literature of empty travel at the early design 

phase. We adopt the empty travel representation by Kuhn (1983) in this research. In 

general, Kuhn’s representation takes the factored loaded travel as an approximation for 

the empty travel. For example, consider a material transport system (or sub-system) with 

two transport requests, 1 and 2. The flow requirements for these two requests are denoted 

as F1 and F2, and the origins and destinations of these two requests are denoted as o(1), 

o(2) and d(1), d(2), respectively. The network activity of this system (or sub-system) 

according to Kuhn’s empty travel representation is provided in Figure 3-1. The solid line 

indicates the loaded travel from the origins to the destinations. The dashed lines denote 

the empty travel from d(1) to o(1), d(1) to o(2), d(2) to o(1), d(2) to o(2), with factored 

flows. Note that we have six tasks in this system (or sub-system) instead of two if the 

employed technology requires empty travel. 

o(1) d(1)

F1*(F2/(F1+F2))

F1*(F1/(F1+F2))

F2*(F1/(F1+F2))

d(2) o(2)

F2*(F2/(F1+F2))

F1

F2
 

Figure 3-1: Example of Kuhn’s Empty Travel Presentation 
 

3.3 Technology Classes 

In the domain of material transport system design, the transport technology plays a 

central role when a designer specifies various types of resources to satisfy the transport 

requirements. One of the challenges for the designers is the versatility of technologies. 
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Although each type of technology is built for its own purpose, the flexibility of 

technologies results in a significant overlap in terms of their functionality. From the 

perspective of design, we aim to derive a simpler structure for the transport technologies 

such that instances in the same class share the same properties. In order to do so, the 

following criteria associated with each technology type are considered below. 

3.3.1 Network Level 

The network level denotes the vertical level of space within the facility at which a 

specific technology is installed. The levels of space can be classified as: 

• Floor level: The floor level is denoted for technologies that are implemented on 

the ground, such as forklift trucks and automated guided vehicles (AGVs). 

• Overhead level: The overhead level is denoted for technologies that are 

implemented above the ground and do not consume space at floor level, e.g., 

overhead tow-line conveyor is classified as a floor level technology because it 

consumes not only overhead space but also floor-level space. 

3.3.2 Working Network 

The term working network is used for describing the potential flow paths of a specific 

technology class. Working networks are defined by tasks, a layout graph, technology 

specifications, building specifications, intra-workstation layout, …etc. The layout graph 

is defined as a two-dimensional graphical representation of the manufacturing facility. 

The layout graph is constituted by a finite set of nodes and a finite set of edges. The 

nodes denote the input and output points of workstations, intersections, and building 

column positions. The edges denote the potential aisle segments connecting adjacent 

input, output and intersection nodes. Figure 3-2(a) gives an example of a layout graph. 
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The rectangular boxes represent the intersections; the circles represent the input or/and 

output points of a workstation, and the diamonds represent the columns. An illustrative 

example of nine tasks is given in Figure 3-2(b). Each thick arrow depicts the origin (tail), 

and destination (head) of a task. 
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Figure 3-2: An Example of a Layout Graph and Tasks 
 

Now, we are ready to introduce four major types of working networks, derived 

from the layout graph, for the transport technologies usually used in manufacturing.  

(1) Aisle Network: The aisle network is mostly used by vehicle-based technologies, 

such as forklift trucks and automated guided vehicles. For each technology e that 

follows the aisle network, define a working network consisting of the following: 

• The set of input and output nodes that are the origins and destinations of 

compatible tasks for technology e (I/O nodes); 

• The set of nodes that are either intersection nodes or input and output nodes of 

incompatible tasks for technology e (Intersection nodes); 

• A pair of arcs (i, j) and (j, i) are defined on each edge connecting node i and j 

in the layout graph, and 

• The distance and technology-dependent flow capacity is defined on each arc. 
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Figure 3-3 gives the aisle network of the illustrative example, given that 

the tasks that are compatible with technology e are {t1, t4, t5, t6, t7, t9}. Note that 

the output point of workstation A, and input and output points of workstation B 

also belong to intersection nodes, represented as rectangular boxes in Figure 

3-3(a); the compatible tasks of technology e, as shown in Figure 3-3(b), are not 

associated with them. From the perspective of technology e, only those nodes  

with pickup or delivery activities belong to I/O nodes, represented as circles in 

Figure 3-3(a) and (b). 
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Figure 3-3: An Example of an Aisle Network: (a) Working Network, (b) Compatible Tasks 

 

(2) Conveyor Network: Various types of floor-supported conveyors are the 

representative technologies that use a conveyor network. Floor-supported 

conveyors do not need to follow the contour of potential aisles. However, the 

intra-workstation layout might restrict their installation. Moreover, floor-

supported conveyors conflict with other technologies, such as vehicle-based 

technologies, once they cross the potential aisles. For each technology e that 

follows the conveyor network, define a working network consisting of the 

following: 
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• The set of input and output nodes that are the origins and destinations of 

compatible tasks for technology e (I/O nodes); 

• A pair of arcs (i, j) and (j, i) is induced from each edge connecting each pair of 

node i and j in I/O nodes, and 

• The distance and technology-dependent flow capacity is defined on each arc. 

Figure 3-4 gives the conveyor network of the illustrative example, given 

that the compatible tasks for technology e are {t2, t3, t7, t8, t9}. Note that the 

point-to-point line connection is just a logical representation. Figure 3-4(a) 

depicts the working network of technology e, and Figure 3-4(b) highlights the 

compatible tasks. Note that the conveyor network presented here does not take 

potential conflicts into consideration. To avoid undesirable conflicts with other 

technologies, a transformation is provided in CHAPTER 6 with application. 
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Figure 3-4: An Example of a Conveyor Network: (a) Working Network, (b) Compatible Tasks 

 

(3) Overhead Network: The overhead network is dedicated to overhead conveyors. 

Their installation need not follow the contour of potential aisles, but the intra-

workstation layout might restrict their installation. Furthermore, the installation of 

such technologies requires various types of vertical supports. Assume a set of 

edges that are suitable for the installation of overhead technology e. Note that the 
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graph formed by the input/output points and edge set is not necessarily simple. 

Multiple edges sharing the same endpoints are allowed. 

For each technology e that follows the overhead network, define a 

working network consisting of following:  

• The set of input and output nodes that are the origins and destinations of 

compatible tasks for technology e (I/O nodes); 

• A pair of arcs (i, j) and (j, i) are defined on each edge connecting each pair of 

node i and j in the given edge set, and 

• The distance and technology-dependent flow capacity is defined on each arc. 

Figure 3-5 gives the overhead network of the illustrative example, given 

that the compatible tasks of overhead technology e are {t1, t2, t3, t5, t6}. Note 

that the point-to-point line connection is just a logical representation and the 

double arrows lines are used for clarity. Figure 3-5(a) depicts the working 

network, and Figure 3-5(b) highlights the compatible tasks of technology e.  

IA

I

OA IOB

IC

IODIOF

(a)

IA

I

OA IOB

IC

IODIOF

t2

t3

t6

t5

t1

(b)  
 

Figure 3-5: An Example of an Overhead Network: (a) Working Network, (b) Compatible Tasks 
 

(4) Column Network: The column network is formed by connecting the columns of 

the facility with the result being a grid. The representative technology type that 

follows a column network is the bridge crane. The columns are used either as 
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supports for the tracks, or as restrictions on the movement of the hoist. For each 

technology e that follows the column network, define a working network 

consisting of the following: 

• The set of input and output nodes that are the origins and destinations of 

compatible tasks for technology e (I/O nodes); 

• The set of nodes that are column nodes in the layout graph, and 

• A set of undirected orthogonal edges connecting pairs of columns. 

Figure 3-6 gives the column network of the illustrative example, given that 

the compatible tasks are {t1, t7, t8}. Figure 3-6(a) depicts the working network 

and Figure 3-6(b) highlights the compatible tasks of technology e. 
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Figure 3-6: An Example of a Column Network: (a) Working Network, (b) Compatible Tasks 
 

Note that the examples of working networks are just for illustrative purposes. 

Some modifications may be required for specific applications.  

3.3.3 Empty Travel 

Empty travel accounts for significant travel time in all technology classes except 

conveyor technologies. For ease of later reference, we call the technologies that require 

empty travel as carrier-based technologies. 
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3.3.4 Network Restrictions 

Network restrictions are the constraints imposed on a technology to traverse its working 

network and service the designated tasks. There are three types of such restrictions: 

• Connectivity: For a specific technology instance to serve its role the input and 

output points associated with origins and destinations of the designated tasks must 

be connected in a specific way on the resulting network. Here we introduce two 

specific connectivity requirements, I/O Strong Connectivity, and I/O Weak 

Connectivity, in the MTS design domain. 

� I/O Strong Connectivity: The associated input/output points must be 

connected in a subgraph induced from a working network such that there is a 

directed path from every origin point to any destination and from every 

destination point to any origin. 

� I/O Weak Connectivity: The associated input/output points must be connected 

in a subgraph induced from a working network such that there is a directed 

path from every origin to its destination. 

• Capacity: On a working network of a technology, there is a capacity restriction 

imposed on each arc. For the bridge crane technology, there is a capacity 

restriction on each rectangle. 

• Directionality: For some technology classes, there is a restriction on including 

both arcs that are induced from the same edge. 

3.3.5 Cost Structure 

The cost structure associated with the use of a tasks-resource combination consists of 

network connection costs and installation costs. The fixed cost of network connection is 

used to model the costs that are independent of flow intensity. The typical fixed costs 
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considered in network connection are the cost of space consumption and cost of guide 

path. We refer to the fixed portion of network connection cost as network construction 

cost. The variable cost of network connection is used to model costs that vary with flow 

intensity and travel distance. The typical variable costs of network connection are the 

carrier requirements, direct labor, and power consumption. We refer to the cost 

proportional with the flow intensity as network operating cost. 

For those cost elements that are not directly related to network construction and 

operating, it is not unusual for the costs, representing system design and control system, 

but no moving hardware, to exceed $100,000. Further, the moving hardware often can 

accommodate additional tasks with little increase in fixed costs and variable costs of 

network connection. We refer to this part of cost as control system cost. For the detailed 

cost modeling of each technology class, please refer to Appendix A. 

3.3.6 Technology Classes and their Properties 

According to the above criteria, we can categorize the transport technologies into six 

categories, as shown at Table 3-3. The technologies defined in category EV are 

implemented at floor level along selected arcs of the aisle network. Due to the empty 

travel requirement, the arcs included must satisfy I/O strong connectivity. The flow on 

each included arc must respect the arc capacity. The technology subclass EVM are mainly 

for manual-driven vehicle-based technologies. There is one more restriction on the 

technologies in the subclass EVA: at most one of the arcs can be included for a pair of arcs 

that share the same endpoints. The representative technology in this class is the 

automated guided vehicle. 

The technologies defined in class EC are implemented on the floor level, and they 

traverse selected arcs of the conveyor network to serve the designated tasks. Since there 
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is no requirement of empty travel, the associated origins and destinations of the 

designated tasks only need to be connected such that there is a directed path from every 

task origin to its destination. The flow on each included arc must respect the arc capacity. 

The representative technology in EC is the roller conveyor. 

Two subclasses EOT and EOP denote technologies that are implemented at the 

overhead level. Travel is along selected arcs of the overhead network to serve the 

designated tasks. The flow on each included arc must respect the arc capacity. These two 

subclasses, EOT and EOP are different in terms of their connectivity restrictions. For the 

technologies in EOP, I/O strong connectivity must be kept. For the technologies defined in 

EOT, the associated origins and destinations of the designated tasks must be in a closed 

trail since overhead trolleys are not allowed to split. The representative technology types 

for category EOP are power-and-free conveyors and monorails, and the representative 

technology type for category EOT is trolley conveyor. 

The last technology class EB is dedicated for overhead cranes. Cranes are installed 

at the overhead level of a building, and they serve the designated tasks within a restricted 

area. The associated origins and destinations of the designated tasks must be connected 

such that I/O strong connectivity is obtained. Moreover, these origins and destinations 

must be contained in a rectangle. Two parallel sides of this rectangle refer to the tracks 

used for supporting the crane. The capacity restriction is used for ensuring the technology 

can serve the transport requirements in a specific period of time. The representative 

technology in EB is the bridge cranes. 

Note that: 

• For technology instances within the same class, their network characteristics are 

the same but different in terms of specifications, i.e., a counter-balanced forklift 
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truck and a platform lift truck both belong to category EVM. They share the same 

network characteristics, but they differ in terms of load sizes, speeds,  etc.  

• The classes are used for general classification of instances of transport 

technology. The applications are not unnecessarily restricted in this manner. For 

example, a designer may wish to evaluate a specific AGV used in a unidirectional 

network or in a bidirectional network. He only needs to specify another AGV with 

the same specifications in category EVM, and adjust the affected characteristics, 

i.e., control cost, accordingly.  

• The proposed classifications of transport technologies are intended to represent 

the majority of transport technology instances commonly used in manufacturing. 

There is no claim to be comprehensive. 

 

Table 3-3: Technology Classes and their Properties 
Technology class Level Working network Empty 

travel 
Network restrictions 

     Connectivity Capacity Direc-
tionality 

Automated (A) Floor level Aisle network Yes I/O Strong Carriers Yes Vehicle 
(V) Manual (M) Floor level Aisle network Yes I/O Strong Carriers No 
Conveyor (C) Floor level Conveyor network No I/O Weak Carriers Yes 

Trolley (T) Overhead Overhead network Yes Closed trail Carriers Yes Over- 
head (O) P&F (P) Overhead Overhead network Yes I/O Strong Carriers Yes 
Bridge crane (B) Overhead Column network Yes Rectangle within 

columns 
Travel 
distance 

No 

 

3.4 Decisions and A Solution Framework of MTSDP 

In CHAPTER 1, we briefly mentioned that the MTSDP consists of two classic design 

problems, the technology selection problem and the flow network design problem, in the 

planning of material transport system. In this section, we propose a decision framework 
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of the MTSDP by presenting its decisions and the inter-relationships among these 

decisions. 

If we see the MTSDP as an integrated problem, there are four major decisions 

involved: 

(1) Compatibility of tasks and technologies, 

(2) Task grouping,  

(3) Flow network design, and 

(4) Task group and technology assignment. 

Compatibility of task and technology is introduced in Section 3.1. Task grouping 

means the aggregation of tasks into a task cluster. Note that a single task is allowed to be 

a task cluster. Flow network design is to provide a resulting network for a given 

technology and a given task cluster. Task group and technology assignment is to assign 

technologies to task clusters so that each task is serviced by one technology. 

Except for decision (1), the other three decisions are clearly inter-related. 

Decision (1) provides the essential information for all three other decisions. Task groups 

provided by decision (2) are the input information for decisions (3) and (4). The flow 

network designs by decision (3) provide the cost information and space utilization for 

decision (4). Note that the cost information provided by flow network design could also 

be used for modifying the task clusters in decision (2). Last, task group and technology 

assignment could affect the decision (2) and (3) by considering the committed tasks and 

resources. 

The required information and the inter-relationships of the four decisions of the 

MTSDP are provided in Figure 3-7. The dashed arrows indicate static information 

coming from outside of the MTSDP, and the solid arrows indicate the inter-relationship 
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among decisions. Since the impact of compatibility of tasks and technologies is relatively 

straightforward, we treat decision (1) as another input of the MTSDP from this point on. 

Some methodologies in the literature (see Section 2.1 for details) can be applied to 

resolve the compatibilities of tasks and technologies. Note that each of the remaining 

decisions (shaded ovals in Figure 3-7) is not a simple problem. The focus of our research 

is to develop solution approaches for the intertwined decisions.  
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Specifications
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Availability
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Task Group and
Technology Assignment Flow Network Design

 
Figure 3-7: Decisions and Their Relationships of the MTSDP 
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CHAPTER 4 

A COMPACT FORMULATION APPROACH TO THE MTSDP 

 

In this chapter, we focus on compact formulations of the material transport system design 

problem (MTSDP). The objective of the MTSDP is to minimize the lifetime cost of the 

system, including network operating cost, network construction cost and control system 

cost. The cost model of each cost element will be introduced in Section 4.1. The 

constraints of MTSDP are discussed in Section 4.2. A Mixed Integer Nonlinear 

Programming (MINLP) formulation is presented in Section 4.3. Due to the difficulties of 

solving large nonlinear models, relaxation techniques are applied to linearize the 

nonlinear model. The resulting Mixed Integer Linear Programming (MILP) formulation 

can be solved by some powerful commercial solvers e.g., ILOG CPLEX, and it provides 

a lower bound to the optimal solution of the original problem. Although the compact 

MTSDP formulation can be solved by commercial solvers, the long solution time limits 

its applicability. To reduce solution time, we propose a tightening technique for the MILP 

formulation. The linear approximation and tightening technique for the MILP are 

discussed in Section 4.4. The effects of the tightened formulation and the impact of 

control system cost are illustrated by an example in Section 4.5. Section 4.6 concludes 

this chapter with some discussions.  

4.1 Objective Function 

The objective of this research is to provide a material transport system with minimum 

lifetime cost. The cost model, which accounts for the cost components of the entire life 
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cycle of the system, can be divided into three major components: control system cost, 

network construction cost, and network operating cost.  

4.1.1 Control System Cost 

This cost component is used for modeling the control system cost of some technology 

types, e.g., AGVs, powered conveyor…etc. A fixed cost, , is incurred when the 

control device is purchased. The incremental cost, associated with the complexity of 

control system, is assumed to increase proportionally with the number of tasks serviced; 

it is modeled by cost element, . The control system cost is modeled as follows: 
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Note that the variable  represents a seed variable to indicate if task k is chosen 

as the center of task-technology combination ke. 

kkex

4.1.2 Network Construction Cost 

The network construction cost relates to the fixed portion of material transport systems, 

e.g., frame structure for overhead technologies, guide path for AGV systems, or support 

and bed for floor conveyor technologies…etc. The network construction cost of arc (i, j) 

of technology e is denoted as  and realized if arc (i, j) of technology e is included in 

the resulting design. Here the  decision variable is a {0,1} variable indicating the 

selection of arc (i, j) of technology e. The detailed models of network construction costs 

for major technology classes are provided in Appendix A. Generally, the network 

construction cost is modeled as follows: 
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4.1.3 Network Operating Cost 

The costs that are associated with network activity are modeled as network operating 

cost, e.g., purchase price per unit of technology, operating labor cost, power 

consumption, and maintenance cost. These are costs that vary proportionally with 

intensity of flow. The unit flow operating cost of arc (i, j) of technology e is modeled as 

; it increases with the sum of loaded flow and empty flow of technology e on arc (i, j). 

The continuous variable 

v
ijeC

ijtkef  represents loaded flow of task t in tasktechnology 

combination ke on arc (i, j). Another continuous variable 
ijtwke

f  represents empty flows 

between task t and w in tasktechnology combination ke on arc (i, j). The detailed models 

of network operating costs for the major technology classes are provided in Appendix A. 

In general, the network operation cost is modeled as follows: 
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The cost model of MTSDP is provided in (4-4). The cost components on the right 

hand side of (4-4) denote the control system cost, network construction cost, and network 

operating cost, respectively. Note that cost elements should be properly amortized 

according to the planning horizon of each application.  
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4.2 Constraints 

The minimum-cost objective of the MTSDP is restricted by constraints of transportation 

requests fulfillment, spatial restrictions of the facility, and topology constraints of 

technology classes. In addition, the technology flow on its working network must respect 

flow conservation and arc capacity constraints. Empty travel representation also imposes 

additional flow requirements on some nodes of the corresponding working networks. The 

rest of this subsection will provide detailed discussion on each constraint. 

4.2.1 Membership Constraints 

Membership constraints are used to ensure that the transportation requirements are 

satisfied. Each task must be assigned to exactly one task-technology combination. We 

employ variable xtke, which equals 1 if task t is assigned to task-technology combination 

ke, and equals 0, otherwise. For every task t, constraint (4-5) ensures that the summation 

of all task-technology combinations must equal 1. The number of constraints (4-5) is the 

cardinality of set T(e), |T(e)|, where T(e) stands for the set of compatible tasks for 

technology e. 

)(any for           ,1 
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eTtx
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 (4-5) 

Besides (4-5), we also need to make sure that task k is assigned to combination ke 

if there are other tasks assigned to combination ke. This can be ensured by constraints (4-

6). The number of constraints (4-6) equals ∑ ∈−× )|:1)(||)((| EeeTeT ,  

EekteTktxx kketke ∈≠∈≤− any for  }, :)(,{any for      ,0  

 (4-6) 
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4.2.2 Flow Balance Constraints for Loaded Travel 

Flow balance constraints are used to ensure that the resulting loaded flow is conserved at 

every node. The loaded flow variable ijtkef  measures the amount of loaded flow of task t, 

cluster k, technology e on arc (i, j). On each node )(eNi ∈  of the working network for 

technology e, the flow out minus flow in must equal to Fte (-Fte) if node i is the origin 

(destination) node of task t and task t is assigned to combination ke; otherwise, the flow 

out must equal the flow in. Constraints (4-7) ensure the conservation of loaded flow; the 

number of constraints is ∑ ∈×× ) |:)(||)(||)((| EeeTeTeN , where N(e) and A(e) stand for 

the node set and arc set of the working network of technology e, respectively, and o(t) 

and d(t) stand for the origin and destination of task t. 
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4.2.3 Flow Balance Constraints for Empty Travel 

As discussed in the literature review in Section 2.2.1, the impact of empty travel on a 

material transport system is threefold: operating time, network design, and carrier 

requirements. In this research, we adopt Kuhn’s empty travel representation to model the 

empty travel of carrier-based technologies. Kuhn’s representation assumes that the empty 

travel requirement at a task is a proportion of a task’s loaded travel requirement.  

Flow balance constraints here are used to ensure that the resulting empty flow is 

conserved at every node of the considered working network. If a cluster only consists of a 

single task, say task t, the empty travel is simply Fte units of supply at destination d(t) and 
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Fte units of demand at origin o(t). If cluster k consists of more than one task, say tasks t 

and w, the empty flows can be considered from a supply viewpoint as follows.  
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F
+
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FF

F
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) of them must flow to o(w). 

The empty flow variable, 
ijtwke

f , is employed to measure the amount of empty 

flow of task t, task w, cluster k on arc (i, j) of technology e. To ensure the empty flow 

follows Kuhn’s representation, we have flow balance constraints on two levels: aggregate 

level and detail level. 

At the aggregate level, the empty flow balance constraints ensure that the flow in 

(flow out) of empty carriers equals the flow out (flow in) of loaded carriers over a pre-

defined time period. At each node )(eNi ∈  of the working network for technology e, the 

sum of flow out on all tasks w minus the sum of flow in on all tasks w must equal Fte (-

Fte) if node i is the destination (origin) node of task t, and task t and w are assigned to 

combination ke; otherwise, the flow out must equal the flow in. Constraints (4-8) ensure 

the conservation of empty flow at the aggregate level; the number of constraints is 
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 (4-8) 

Although constraint (4-8) ensures the supply and demand of empty flow on 

related nodes, there is no guarantee that we will have empty flows according to Kuhn’s 

representation. Therefore, we need to further specify the supply and demand of empty 

flow. 

For technology e and cluster k, the total loaded flow is . If tasks 

t and w are the same task, Kuhn’s empty flow ratio can be obtained by 

∑ ∈ ))( :( eTsFx seske

tke tex F divided by 

total loaded flow; otherwise, we need to make sure if tasks t and w are both in the same 

combination ke, and have empty flow ratio of tke wke wex x F  divided by total loaded flow. 

At this level of detail, the sum of flow out minus flow in must equal the product 

Fte(-Fte) and Kuhn’s ratio, if node i is the destination (origin) node of task t and task t is 

assigned to combination ke; otherwise, the flow out must be equal to flow in. Constraints 

(4-9-1) and (4-9-2) ensure the conservation of empty flow at the detailed level; the 

number of constraints is ∑ ∈××× ) |:)(||)(||)(||)((| EeeTeTeTeN . 
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4.2.4 Arc Capacity Constraints 

Arc capacity constraints are used to avoid congestion of flow on an arc. A fixed capacity 

is enforced once an arc of a working network is included, and the sum of loaded and 

empty flow on an arc cannot exceed the capacity. Constraint (4-10) not only ensures the 

capacity is respected, but also forces the arc inclusion if there is flow on it.  is denoted 

as the arc capacity of technology e on arc (i, j). The number of constraints (4-10) is 
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4.2.5 Network Topology Constraints 

Network topology constraints are used to model the physical network configuration of a 

technology. Two major topology requirements for commonly used transport technologies 

in manufacturing are introduced as follows: 

• Directionality Constraints 

Directionality constraints ensure that there is no bi-directional travel on an edge of 

the working network. Constraint (4-11) allows at most one of two opposite-directed arcs 
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induced from the same edge to be included in the resulting network. The number of 

constraints is ∑ . ∈ }){ |:)((| OTOPCVA EEEEeeA UUU
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• Degree Zero Constraints 

Degree zero constraints ensure that the out degree equals the in degree of a node. 

Constraint (4-12) forces the number of tails (of arcs) to be equal to the number of heads 

(of arcs) incident at a node. The number of constraints (4-12) is |A(e)|, where . OTEe∈

.     where                                                  
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4.3 Compact MINLP Formulation 

Based on the objective function and constraints provided in Sections 4.1 and 4.2, an 

compact formulation is presented in Section 4.3.1. The validity of the proposed 

formulation is investigated in Section 4.3.2, and the size of the proposed formulation is 

analyzed in Section 4.3.3. 

4.3.1 Formulation 

The proposed compact model is formulated as a mixed integer nonlinear program as 

shown in Figure 4-1. This formulation is to minimize the lifetime cost of the material 

transport system as shown in (4-4) subject to constraints (4-5) to (4-12). Note that the 

constraints (4-9-1) and (4-9-2) that ensure that the empty travel follows Kuhn’s 

presentation are not linear because of the presence of divisions of linear functions 
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illustrative purpose. The denominator might be undefined in constraints (4-9-1) and (4-9-

2) if none of the tasks is assigned to task-technology combination ke. 

4.3.2 Validity of the Proposed Formulation 

This section addresses the validity of the proposed formulation for the MTSDP. Note that 

feasible solutions of a valid formulation must be feasible solutions of the original 

problem. In other words, we need to show that a solution that satisfies constraints (4-5) ~ 

(4-12) is a feasible solution of the material transport design. As discussed earlier, a 

feasible material transport system design must satisfy the following requirements: 

 Requirement 1: Each task must be handled by exactly one technology. 

 Requirement 2: Transport demand is satisfied by loaded travel. 

 Requirement 3: Empty travel follows Kuhn’s representation. 

 Requirement 4: Spatial restrictions of the facility are satisfied. 

 Requirement 5: Arc capacity of flow is respected. 

 Requirement 6: Network restrictions for each technology class are satisfied. 

It is straightforward to see that the proposed formulation satisfies Requirement 1, 

2, 4, and 5. Constraints (4-5) and (4-6) satisfy Requirement 1 by requiring that each task 

be serviced by exactly one task-resource combination. Requirement 2 is ensured by 

constraints (4-7). Requirement 4 is satisfied by the ways to prepare the working 

networks, and Requirement 5 is satisfied by constraints (4-10). 
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Requirement 3 concerns empty travel within a technology-tasks combination (or 

sub-system). As addressed earlier, tasks are grouped following constraints (4-5) and 

(4-6). Constraints (4-7) reflect the given transport requirements. Constraints (4-8), (4-9-

1), and (4-9-2) ensure that the empty flow follows Kuhn’s empty travel representation for 

each task cluster. 

Recall the network restrictions introduced in Section 3.3.4: I/O strong 

connectivity requires a directed path from every origin to any destination and from every 

destination to any origin. Given a tasks cluster T’ and a technology, constraints (4-7) and 

(4-10) ensure that there is a directed path from the origin to the destination of any task in 

T’. Moreover, constraints (4-8), (4-9-1), (4-9-2) and (4-10) ensure that there is a directed 

path from the destination of any task in T’ to the origin of all tasks in T’. Therefore, there 

must be a directed path from every destination to any origin of tasks in T’. This argument 

results in an observation: 

Observation 1. Constraints (4-7), (4-8), (4-9-1), (4-9-2), and (4-10) guarantee I/O Strong 

Connectivity. 

Another connectivity requirement introduced in Section 2.4.4 is closed trail. 

Closed trail is a directed cycle with node repetitions allowed and, thus, a less-restricted 

case of the well-known Hamiltonian Cycle Problem. Appling the same argument used in 

Observation 1, constraints (4-7), (4-8), (4-9-1), (4-9-2) and (4-10) guarantee the I/O 

strong connectivity and sub-tour free sub-graph. However, a sub-graph with imbalance of 

node degree cannot be excluded by these constraints. Therefore, constraints (4-11) are 

brought in to prevent a bi-directional network and constraints (4-12) are used to maintain 

a degree-balanced network. This argument leads to the observation: 
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Observation 2. Constraints (4-7), (4-8), (4-9-1), (4-9-2), (4-10), (4-11), and (4-12) 

guarantee a closed trail. 

Requirement 6 concerns the network restrictions of each technology class (for 

details, see Section 2.4.4). For technology class EVM (manually driven vehicle), which 

allows bi-directional travel, constraints (4-7), (4-8), (4-9-1), (4-9-2), and (4-10) ensure 

I/O strong connectivity and capacity restrictions. For technology class EC (floor-

supported conveyor), which has no empty travel, constraints (4-7) and (4-10) ensure the 

connectivity and capacity restrictions. For technology classes EVA and EOP (automated 

guided vehicle and overhead power-and-free conveyor), constraints (4-7), (4-8), (4-9-1), 

(4-9-2), (4-10), and (4-11) ensure the I/O strong connectivity, directionality, and capacity 

restrictions. For technology class EOT (overhead trolley conveyor), constraints (4-7), (4-

8), (4-9-1), (4-9-2), (4-10), (4-11) and (4-12) ensure the closed trail connectivity, 

directionality, and capacity restrictions. 

4.3.3 Size of the MINLP Formulation 

If a MTS design problem has |T| tasks, |E| candidate technologies and the working 

network of each technology has |N| nodes, the total number of constraints of the proposed 

MINLP formulation are |E|(|T|2-|T|+|N|(3|T|2+|T|3+|N|))+|T|, and the total number of 

variables are |E|(|T|2+|N|2(1+|T|2+|T|3)), where |E|(|T|2+|N|2) of them are binary variables. 

Note that these numbers only serve as upper bounds of actual problem size. The 

exact sizes of problems depend upon the compatibility of tasks and technologies, and the 

sparseness of the working networks. A MTS design problem with 9 tasks, 4 candidate 

technologies, and 25 nodes on each working network of technology yields an upper 

bound of approximately 99 × 103 constraints, and 2× 106 variables, where 2.8× 103 of them 

are binary variables. 
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4.4 Relaxations of the MINLP Formulation 

This section addresses relaxations of the compact formulation proposed in Section 4.3. 

The proposed formulation is not only large in terms of size, but also nonlinear in some 

constraints, which prevents us from taking advantage of powerful commercial solvers. 

Therefore, we apply some linear relaxation techniques from the literature to approximate 

constraints (4-9-1) and (4-9-2). Section 4.4.1 and 4.4.2 introduces these linear 

approximations, respectively. Section 4.4.3 discusses the solution quality of this relaxed 

formulation. A tighter formulation in terms of LP relaxation is proposed in Section 4.4.4. 

Section 4.4.5 summaries the extra number of variables and constraints required by the 

linear relaxations.  

4.4.1 Relaxation of Constraint (4-9-1) 

As described in Sections 4.2.3 and 4.3.1, constraints (4-9-1) and (4-9-2) are nonlinear for 

Kuhn’s empty travel representation. Constraint (4-9-1) models empty flow where task t 

and task w are the same task. Let the numerator itwketkete gxF =  and the denominator 

( )
itwkeskese geTsxF =∑ ∈ )(: . Kuhn’s empty travel ratio, 

itwkeitwkeitwke ggg = , results in a 

product of linear functions.  

Denote gggggg
ULULUL   and  , , , , ,  as the lower and upper bounds of itwkeg , 

itwke
g , 

and  respectively. Recall that  is binary integer variable. The numerator is 

bounded by 

itwkeg tkex

g
L  = 0  ≤ itwkeg  ≤   = teF

g
U , the denominator is bounded by gL  = 0 ≤  

itwke
g  

  = ≤ ( )∑ ∈ )(: eTsFse gU , and the ratio of empty flow is bounded as  = 0 ≤   gL itwkeg ≤  1 = 

. Constraint (4-9-1) can be re-written as follows: gU
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 (4-9-1a) 

According to a recent work, Hwang and Al-Khayyal (2004), the ratio of empty 

flow, a product of linear functions, can be approximated by a set of linear inequalities. 

Following the variables used in this research, these inequalities are summarized in Table 

4-1. Inequalities (1), (2), (3) and (4) are used for specifying the lower and upper bounds 

of itwkeg , 
itwke

g , and . Inequalities (5), (6) and (7) are used for setting the relationships 

between the numerator and the denominator of the empty flow ratio. 

itwkeg

Table 4-1: Linear Inequalities of the Approximation on Kuhn’s Empty Travel Ratio 
(1) 

teitwke Fg ≤  

(2) 10 ≤≤ itwkeg  

(3) ( )∑ ∈≤≤ )(:0 eTsFg seitwke
 

(4) 0≥itwkeg  

(5) ( )( ) ( )∑ ∈−+∑ ∈≥ )(:)(: eTsFgeTsFgg seitwkeseitwkeitwke  

(6) ( )( )∑ ∈≤ )(: eTsFgg seitwkeitwke  

(7) 
itwkeitwke gg ≤  

 

Applying linear approximations on the compact formulation, nonlinear constraint 

(4-9-1) can be approximated by linear constraints (4-9-1a) ~ (4-9-1i) and three more 

positive continuous variables. 

tketeitwke xFg =  (4-9-1b) 

(∑ )∈= )(: eTsxFg skeseitwke
 (4-9-1c) 

teitwke Fg ≤≤0  (4-9-1d) 

10 ≤≤ itwkeg  (4-9-1e) 
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(∑ )∈≤≤ )(:0 eTsFg seitwke
 (4-9-1f) 

( )( ) ( )∑ ∈−+∑ ∈≥ )(:)(: eTsFgeTsFgg seitwkeseitwkeitwke  (4-9-1g) 

( )(∑ ∈≤ )(: eTsFgg seitwkeitwke )  (4-9-1h) 

itwkeitwke gg ≤  (4-9-1i) 

4.4.2 Relaxation of Constraint (4-9-2) 

Constraint (4-9-2) models empty flows between task t and another task w. For a pair of 

tasks to be connected by empty flows, they must be assigned to the same transport 

technology and grouped in the same task cluster. In other words, the empty flow between 

task t and another task w will be triggered only if their clustering variables  and  

are equal to 1 for the same task-technology combination . 

tkex wkex

ke

On the right hand side of constraint (4-9-2), there are quadratic terms  in 

the numerator of the empty flow ratio. Since the clustering variables are 0-1 variables, we 

can obtain an equivalent linear description, see Plastria (2002) for details, by introducing 

a new variable , where 

wketkexx

twkeĝ }1 ,0{ˆ ∈twkeg  and three constraints (4-9-2j), (4-9-2k), and (4-9-

2w). 

0ˆ ≤+− twketke gx  (4-9-2j) 

0ˆ ≤+− twkewke gx  (4-9-2k) 

1ˆ ≤−+ twkewketke gxx  (4-9-2w) 

Let the numerator itwketwkete ggF =ˆ  and the denominator ( )
itwkeskese geTsxF =∑ ∈ )(: . 

The ratio of the empty flow approximation, 
itwkeitwkeitwke ggg = , results in a product of 

linear functions. By performing a similar linear approximation as introduced in Section 

4.4.1, nonlinear constraints (4-9-2) can be approximated by linear constraints (4-9-2a) ~ 
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(4-9-2w). Notice that in (4-9-2b) wtketeitwke gFg ˆ=  and constraints (4-9-2c) ~ (4-9-2i) are 

identical with (4-9-1c) ~ (4-9-1i). 

4.4.3 About the Linear Approximation of MINLP Formulation 

In sections 4.4.1 and 4.4.2, we apply linear approximation techniques from the literature 

to make the compact formulation a linear model. The linearization of quadratic 0-1 

variables introduced in Section 4.4.2 is an equivalent description. However, the 

linearization of the empty flow ratio introduced in Section 4.4.1 is an approximation to 

the original formulation. To illustrate the approximation of the empty flow ratio, let us 

revisit constraints (4-9-1g), (4-9-1h), and (4-9-1i).  

Constraint (4-9-1i) forces the denominator of the empty flow ratio to be greater 

than or equal to the numerator. Its implication in this application is that the sum of total 

empty flow of a specific technology-task cluster combination must be greater than or 

equal to the empty flow of any single task within the cluster. 

To illustrate the implications of (4-9-1g) and (4-9-1h), we view these two 

inequalities from the perspective of the empty flow ratio, . Constraints (4-9-1h) 

enforce 

itwkeg

(( ))∑ ∈≥ )(: eTsFgg seitwkeitwke . Compared to the original denominator of the empty 

flow ratio, constraints (4-9-1h) assume that every task is included in a specific 

technology-task cluster combination ( 1=skex , )(eTs ∈∀ ). Therefore, the ratio that satisfies 

constraint (4-9-1h) provides a lower bound of the true empty flow ratio. 

Constraints (4-9-1g) ensure that the empty travel ratio by Kuhn’s representation 

1))))(:((())))(:((( +∑ ∈−∑ ∈≤ eTsFgeTsFgg seitwkeseitwkeitwke . According to constraints 

(4-9-1f) and (4-9-1i), 
itwke

g is lower and upper bounded by itwkeg  and )))(:((∑ ∈ eTsFse . 

Taking the boundary conditions of 
itwke

g  as extreme conditions for the empty flow ratio, 
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we can get  if 1≤itwkeg itwkeitwke
gg = , and 

itwkeitwkeitwke ggg ≤  if )))(:((∑ ∈= eTsFg seitwke
. In 

other words, the empty flow ratio that satisfies constraint (4-9-1g) will be somewhere 

between 
itwkeitwke gg  and 1. Therefore, constraint (4-9-1g) provides an upper bound of the 

true empty flow ratio. 

In essence, the linear approximation technique introduced in section 4.4.1 

replaces the nonlinear empty travel ratio by a set of linear inequalities. The equalities of 

constraints (4-9-1) and (4-9-2) are relaxed by a pair of lower/upper bounding inequalities. 

In terms of the compact formulation, this approximation provides the true empty flow 

ratio only when )))(:((∑ ∈= eTsFg seitwke
, that is, all tasks are included in a specific 

technology-task cluster. Since our objective function is to minimize cost, the solutions of 

this approximation will lead to a minimum cost solution within the bounds provided by 

constraints (4-9-1g), (4-9-1h), and (4-9-1i). In general, the objective value with this linear 

relaxation will be an underestimate of the original MINLP formulation since the empty 

flow ratio does not exactly follow Kuhn’s empty travel representation. 

From the perspective of solutions, the linear approximation still maintains the 

network topology requirements since there is empty flow out at a destination node and 

empty flow in at an origin node if the task is included in the technology-task cluster. 

Therefore, observations 1 and 2 still hold in this linear formulation. However, the task 

clusters and network designs might be different from those obtained by solving the 

problem with exact empty flow ratios. 

4.4.4 Tightening Constraints  

In the integrated formulation, constraints (4-10) ensure that the arc of a working network 

e is included in the resulting design if there is flow on arc (i, j), and the sum of all flows 
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on an arc (i, j) does not exceeds its capacity, Uije. Let P = {Constraints (4-10) and 

0≥ijtkef , 0≥
ijtwke

f , }, and P10 ≤≤ ijey a = {Constraints (4-10a) and 0≥ijtkef , 0≥
ijtwke

f , 

}. 10 ≤≤ ijey

• (Constraint (4-10)) 

.any for  ),(),(any for                                                       

    ,

EeeA ji

yUff ijeije
Tt Tw Tk ijtwkeTt Tk

ijtke

∈∈

≤∑ ∑ ∑+∑ ∑
∈ ∈ ∈∈ ∈  

• (Constraint (4-10a)) 

.any for  ),(),(any for                                                            

 ))(:(   where,)2,(Min

EeeA ji

eTtFDyDUff teeijeeije
Tt Tw Tk ijtwkeTt Tk

ijtke

∈∈

∑ ∈=≤∑ ∑ ∑+∑ ∑
∈ ∈ ∈∈ ∈  

 

Observation 3. Pa is stronger than P 

First of all, we need to show that both P and Pa are valid formulation for MTSDP. 

The validity of constraint (4-10) is shown in Section 4.3.2. The difference of constraints 

(4-10) and (4-10a) is the treatment of arc capacity. Regardless of the arc capacity, the 

heaviest possible flow of loaded and empty travel on arc (i, j) for a working network of 

technology e is the sum of flows of the tasks that can be handled by technology e, 

represented by De. This value can be used to bound the arc flows. The sum of empty 

flows of tasks in the cluster cannot exceed De, so the value 2De enters the right hand side 

of constraints (4-10a). Thus, constraint (4-10a) is also a valid formulation for MTSDP. 

Secondly, we need to show that any feasible solution ( y ,f ,f ) for Pa is also a 

feasible solution for P. If , Peije DU 2≥ a and P are the same. Any feasible solution for Pa is 

also a feasible solution for P. On the other hand, if eije DU 2< , since the sum of loaded and 

empty travel is at most 2De, any feasible solution for Pa is also a feasible solution for P. 
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As for the strong part, we will show it by an example that is feasible in P but not 

in Pa. Without losing generality, let two tasks, t1 and t2, have demand F1e=1 and F2e=1, 

respectively. The capacity on arc (i, j) of the working network for technology e is Uije= 5. 

P and Pa can be written as follows: 

ijeijeijeijeije

ijeijeijeije

ijeijeijeije

yffff

ffff

ffff

5       

       

   )P(

222221212211

122121112111

22211211

≤+++

++++

++++

 

ijeijeijeijeije

ijeijeijeije

ijeijeijeije

yffff

ffff

ffff

4       

       

   )P(

222221212211

122121112111

22211211a

≤+++

++++

++++

 

Consider a solution (1,0,0,1,1,0,0,0,0,0,0,1,1/5) that is feasible in P but not 

feasible in Pa. Therefore, formulation Pa is stronger than P. 

4.4.5 Size of MILP Formulation of MTSDP 

The size of the original nonlinear formulation is given in Section 4.3.3. In order to make 

the proposed formulation a linear model, we need to add more variables and constraints. 

If a MTS design problem has |T| tasks, |E| candidate technologies and the working 

network of each technology has |N| nodes, |T|3|E|(1+3|N|) extra continuous variables and 

2|E||T|2(11|T|-3)) more constraints are needed for the linear approximation. A MTS design 

problem with 9 tasks, 4 candidate technologies, and 25 nodes on each working network 

of technology yields an upper bound of approximately 162 × 103 constraints, and 2 × 106 

variables, where 5.74× 103 of them are binary variables. The increases in numbers are 

62.2%, 10.9%, and 103.3% over the MINLP formulation. 
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4.5 Computational Experiments 

In this section, we demonstrate the performances of the proposed formulations and 

mathematical models of the MTSDP (CF approach in short). The first experiment is to 

validate the tight constraint proposed in Section 4.4. A comparison of the MILP 

formulation (original formulation in short) and the MILP formulation with tight capacity 

constraint (tight formulation in short) is presented by an example. The second experiment 

is to demonstrate task clustering with different control cost scenarios. 

In this example, there are nine tasks with origins and destinations shown in Figure 

4-2, e.g., task 1 originates at the facility inbound point and ends at the input point of 

workstation A. For these nine tasks, we consider four technologies to serve their needs: 

technology one, denoted e1, is counter-balance lift truck; technology two, e2, is unit-load 

AGV; technology three, e3, is overhead power-and-free conveyor; technology four, e4, is 

overhead trolley conveyor. The compatibility of tasks and technologies, and the hourly 

demands of tasks (in unit loads) are given in Table 4-2, e.g., the absence of an entry for t2 

and e1 means that technology one is incapable of handling task 2. The entry for t1 and e1 

indicates that there are 60 unit loads of e1 per hour, if task one is handled by technology 

one. 

The speed, hourly network operating cost, and network construction cost of flow 

network design of four example technologies are summarized in Table 4-3. The network 

operating cost includes carrier purchase, driver wage, power, and maintenance cost; the 

network construction cost includes guide path/support, space, maintenance and 

connection. The cost structure varies with the technology; both network operating cost 

and network construction cost are amortized over five years, assuming that the factory 

operates 300 days per year and 7 hours per day.  
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The computational experiments presented in this section were performed on a Sun 

workstation 220R with 2*360MHz UltraSparc II CPU's and 2GB RAM. We solved all 

optimization models of MTSDP by using the MIP solver of ILOG CPLEX 8.1. 
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Figure 4-2: Nine Tasks of the Illustrative Example 

 

Table 4-2: Compatibility of Tasks and Technology and Their Hourly Demands (unit-loads) 
 e1 e2 e3 e4 
t1 60 30 120 120 
t2   90 90 
t3   90 90 
t4 50 25   
t5  25 100 100 
t6  45 180 180 
t7 60 60   
t8 60  120 120 
t9 60 30   

 

Table 4-3: Speed and Hourly Costs of Example Technologies 
 e1 e2 e3 e4 
Speed 7 mph or 

11.27 km/hr 
3 mph or 4.83 
km/hr 

3 mph or 4.83 
km/hr 

3 mph or 4.83 
km/hr 

Network operating cost $6.4286 $5.4762 $0.0698 $0.0198 
Network construction cost $0.5500 $4.4633 $1.6667 $2.1333 
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4.5.1 The Impact of Tight Formulation 

The purpose of this experiment is to show the impact of the tight flow capacity constraint 

in Section 4.4.4. The only difference between the original and the tight formulations is 

that we replace constraint (4-10) by (4-10a) in the tight formulation. Note that the cost of 

the control systems is not included in this comparison. We summarize solution values and 

some computational statistics in Table 4-4. 

Table 4-4: Computational Results of Original and Tight Formulations 
Formulation Original 

Formulation 
Tight 

Formulation 
Result Optimal Optimal 
Solution Value $122,261 $122,261 

Upper Bound $134,648 $123,762 
Lower Bound $106,619 $101,115 

Initial 
Solution 

Gap 20.82% 18.30% 
Cover Cuts 122 139 
Flow Cuts 802 902 
Flow Path Cuts 1 0 

Cuts Applied 
(by CPLEX) 

Gomory Fractional Cuts 3 5 
Clock Time 1,476,380 sec. 

(410 hrs) 
383,166 sec. 

(106 hrs) 
Largest Tree Size (Mega Bytes) 540 176 
Number of Nodes 86,500 30,100 

 

Table 4-4 shows both formulations have the same optimal solution. The gap of 

initial solution provided by the tight formulation is smaller than the gap of the original 

formulation. Solving the example problem with the tight formulation requires only 26% 

of the time compared to the original formulation. The number of nodes required of the 

tight formulation in the branch and bound tree is also significantly less than the 

requirement of the original formulation. The details of convergence of tight and original 

formulation are shown in Figure 4-3. 
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Figure 4-3: Convergence of Original and Tight Formulation 

 

The optimal MTS design of both formulations is presented in Figure 4-4. A more 

detailed interpretation of this optimal design will be given in the next section. 
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Figure 4-4: MTS Design by the CF Approach 
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4.5.2 The Impact of Control System Cost on System Selection 

The second part of the experiments is to study the impact of control system cost on the 

task clustering of MTS design. In this research, we model the control system cost of 

transport (sub)systems by two elements, fixed cost and incremental cost. A fixed cost is 

incurred once a technology is chosen and an incremental cost is charged according to the 

number of tasks included. Since the cost of a control system is relatively independent of 

geographical location, travel distances and flow intensities of transport tasks, a high 

control system cost should prevent single-task clusters and lead to more task aggregation.  

To demonstrate this effect, we prepared four cost scenarios for control systems as 

shown in Table 4-5. Scenario 0 ignores the cost of the control system. Scenario 1 has a 

relatively low cost, scenario 2 has a moderate cost, and scenario 3 has a high cost for 

each example technology. Note that the fixed and incremental costs of the control system 

are amortized over five years and expressed on a daily basis to be consistent with other 

cost elements. 

Table 4-5: Four Cost Scenarios for Control Systems 
Control Cost Scenarios  

Scenario 0 Scenario 1 Scenario 2 Scenario 3 
Fixed $0 $13.33 $133.3 $1333 Technology 

e1 Incremental $0 $6.67 $66.7 $667 
Fixed $0 $66.67 $666.7 $6667 Technology 

e2 Incremental $0 $13.33 $133.3 $1333 
Fixed $0 $66.67 $666.7 $6667 Technology 

e3 Incremental $0 $13.33 $133.3 $1333 
Fixed $0 $33.33 $333.3 $3333 Technology 

e4 Incremental $0 $13.33 $133.3 $1333 
 

The optimal MTS designs of these four scenarios are presented in Figure 4-5, 

Figure 4-6, Figure 4-7, and Figure 4-7, respectively. As shown in Figure 4-5, the optimal 

MTS design of scenario 0 contains six sub-systems. Task 7 is serviced by counter-

balance lift truck and its flow network is shown by black solid arrows. Task 4 is serviced 
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by unit-load AGV and its flow network is shown by orange solid arrows. Task 9 is 

serviced by unit-load AGV and its flow network is shown by red solid arrows. Task 5 is 

serviced by overhead trolley conveyor and its flow network is shown by pink solid 

arrows. Tasks 6 and 8 are serviced by overhead trolley conveyor and their flow network 

is shown by green solid arrows. Tasks 1, 2 and 3 are serviced by overhead trolley 

conveyor, and their flow network is shown by blue solid arrows. 

In scenario 0, we have two task clusters with multiple tasks. A multiple-task 

cluster shares the transport carriers with other tasks in the cluster. In this scenario, 

carriers of overhead trolley conveyor might be called to service task 8 after task 6 is done 

or vice versa. As shown in Figure 4-6, the MTS design of scenario 1 is exactly the same 

as the design of Scenario 0. Figure 4-6 shows the optimal MTS design of scenario 2. 

Notice that task 5, instead of being a single-task cluster, is included in task cluster with 

tasks 1, 2 and 3, and their flow network is shown by blue solid arrows. In Figure 4-7, we 

can see that the number of task clusters is further reduced to 4 by combining tasks 4 and 9 

into the same cluster. Tasks 4 and 9 are serviced by unit-load AGV through the flow 

network represented in red solid arrows. 

The task clustering of the four cost scenarios of control systems is summarized in 

Table 4-6. The total number of task clusters is reduced from six to four with the 

increasing costs of control system. From this experiment we can learn that single-task 

solutions might not be economical, especially when the costs of control system are 

significant. 
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Figure 4-5: MTS Design by the CF Approach with Control Cost Scenario 1 
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Figure 4-6: MTS Design by the CF Approach with Control Cost Scenario 2 
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Figure 4-7: MTS Design by the CF Approach with Control Cost Scenario 3 
 

Table 4-6: Summary of Task Clustering of Four Control Cost Scenarios 
Control Cost Scenarios  
Scenario 0 Scenario 1 Scenario 2 Scenario 3 

Cluster 1 {t7} {t7} {t7} {t7} 
Cluster 2 {t4} {t4} {t4} {t4, t9} 
Cluster 3 {t9} {t9} {t9} {t6, t8} 
Cluster 4 {t5} {t5} {t6, t8} {t1, t2, t3, t5} 
Cluster 5 {t6, t8} {t6, t8} {t1, t2, t3, t5} {} 

Task 
Clusters 

Cluster 6 {t1, t2, t3} {t1, t2, t3} {} {} 
 

4.6 Concluding Remarks 

In this chapter, we introduce a compact formulation of MTSDP by modeling it as a 

Mixed Integer Nonlinear Programming problem. The validity of this formulation is 

verified by the requirements of MTS designs. Some linearization techniques are applied 

to make the proposed model a linear one. The linear approximation generally 

underestimates empty flow by violating empty travel ratio of Kuhn’s representation but 

 82



the desired solution requirements can still be guaranteed by exploring the problem 

structure and properties of empty travel technique.  

The number of variables and constraints of the proposed formulation grows fast 

with some characteristics of the problems. Therefore, a tighter formulation is proposed to 

reduce solution time. By the experiments with an illustrative example provided in Section 

4.5, we show that 

• The proposed formulation provides solutions that answer the questions of MTSDP 

(except for the violation of empty travel ratio in linear approximation), 

• The tight formulation reduces the solution time, e.g., the solution time of the tight 

formulation is 3.85 times faster than the solution time of the original formulation, 

and 

• With the presence of significant cost of control system, the designs with multiple-

task cluster are more economical than the designs restricted to only single-task 

clusters. 

Although the solution time is being significantly reduced by the tight formulation, 

the expected solution time of the compact formulation approach with industrial problem 

sizes is still considerably long. Therefore, there is a need to develop a different approach 

that shortens the solution time without sacrificing the integrated concerns of MTSDP. 

Such approach will be introduced in the next chapter. 
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CHAPTER 5 

A CLUSTERING/ SET PARTITION APPROACH TO THE MTSDP 

 

In this chapter we propose a clustering/set partition (CSP) approach for the integrated 

MTS design problem. This approach consists of three phases, given the compatibilities 

between individual tasks and technologies. The first phase, clustering, is to associate task 

clusters with compatible technologies. A set of task clusters then passes to the second 

phase. Connecting tasks within cluster by viable technology flow networks leads to 

feasible tasks-resource combinations. The last phase of this approach chooses an 

economical subset of combinations that satisfy the assignment and availability 

requirements. 

Figure 5-1 demonstrates this solution framework. The gray-line boxes represent 

the information types and the dashed lines indicate information flows. The bold-line 

boxes and bold lines represent the decision components and their sequences. Essentially, 

this three-phase approach deals with the decomposed optimization problem of material 

transport system (MTS) design. This three-phase approach provides an alternative to the 

compact formulation approach proposed in CHAPTER 4. 

This chapter is organized as follows: We briefly introduce the concepts, attributes 

and methodologies used for clustering tasks in section 5.1. In section 5.2, the technology 

dependent requirements of the decomposed MTSDP at the connecting phase will be 

introduced. Clustering and flow network design methods used to construct feasible tasks-

resource combinations will also be discussed in detail. When the validity of technology 

dependent requirements is ensured, we will illustrate the system selection with global 
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requirements in section 5.3. In section 5.4, we demonstrate the results of computational 

experiments and the comparisons of integrated MTSDP approaches and traditional 

approaches in literature. Section 5.5 summarizes this chapter.  

 Network
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Figure 5-1: The Proposed Clustering/Set Partition Approach for MTSDP 
 

5.1 Task Clustering 

Consider a MTS design as a set of material transport subsystems. Each subsystem that 

can be seen as a tasks-resource combination, consists of three elements: tasks, 

technology, and the flow network. If we could enumerate all possible combinations, the 

MTSDP simply becomes a selection problem subject to some system requirements. 

Given the compatibilities between individual tasks and technologies, the purpose 

of clustering and connecting is to construct feasible tasks-resource combinations. Each 

row of the compatibility matrix represents the compatibility between a specific 

technology e and task t ⊆ T. Denote the set of compatible tasks for technology e as 
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T(e) ⊆ T. The problem of constructing feasible tasks-resource combinations can be stated 

as: Given a set of tasks T(e) and the corresponding working network of technology e, find 

a set of task clusters T(k)’s, where T(k) ⊆ T(e), such that the flow network for elements 

belonging to T(k) satisfies the relevant network restrictions. 

The construction of feasible tasks-resource combinations for a technology e on its 

working network is, although simple in concept once specified, difficult in general 

because of the following reasons: a cost function with fixed charge, competition for 

system resources, network restrictions, and the allocation of empty flow. 

Because of the complexity of constructing feasible tasks-resource combinations, 

we further decompose this construction problem into clustering and connecting steps. The 

number of all possible combinations may be so large that we can only generate a subset 

of them. Given a set of compatible tasks T(e), where |T(e)| = a, for a technology e, the 

number of possible combinations for these tasks is ∑ , where  stands 

for the number of combinations of a choose i. For example, if a = 20, 30, and 40, the 

possible combinations are about 1.05
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× 106, 1.07× 109, and 1.1× 1012, respectively. 

Moreover, difficulties come from not only the number of possible combinations, but also 

the lack of a structure to evaluate these combinations from the perspective of system 

requirements. Therefore, restricting the output of the clustering and connecting steps to 

some ”promising” task-resource combinations is our way to deal with this difficulty. 

As mentioned earlier, one of the motivations for grouping transport requests is the 

sharing of the significant fixed costs of a sub-system to achieve economy of scale. 

Because of the importance of travel distance to the cost function, the clustering of tasks 

could be based on origin/destination coordinates to form sets of tasks with minimal 
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empty travel. Another important factor affecting variable cost is the product of travel 

distance and the intensity of flow. Base on these cost-affecting factors we provide three 

clustering criteria as follow, given two tasks t and k, and their coordinates. 

• The proximity of [o(t) and o(k)] and [d(t) and d(k)] 

• The proximity of [d(t) and o(k)] and [d(k) and o(t)] 

• The proximity of weighted distance 

The first two criteria aim at merging and chaining tasks whose origins and 

destinations are close to each other. The third criterion takes the product of travel 

distance and the intensity of flow based on Kuhn’s empty travel representation. The 

pair-wise weighted distance formula is as follows:  
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Note that the distance metric used to evaluate the proximity of two tasks can 

differ with the transport technologies. Since the flow network is not available at this 

phase, Euclidean, Rectilinear, and Chybechev metrics are used to approximate the 

closeness of tasks.  

Given the distances (or similarities) of every pair of tasks, we use agglomerative 

hierarchical clustering procedures (see Anderberg (1973) for details) to generate a set of 

task clusters. The agglomerative hierarchical clustering procedure starts with each task as 

a cluster and with each step combines clusters until there is only one cluster that has all 

the tasks. There are various methods to evaluate the distances between two task clusters. 

In this research, we use following three methods: 
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• Single linkage: Compute the distance of every pair of tasks with one task in each 

cluster. Compute the shortest distance and let this be the distance of the clusters.  

• Average linkage: Compute the distance of every pair of tasks with one task in 

each cluster. Compute the average distance; let this be the distance of the clusters.  

• Complete linkage: Compute the distance of every pair of tasks with one task in 

each cluster. Compute the largest distance; let this be the distance of the clusters.  

In this research, we use clustering analysis of MINITAB 14 based on the 

proposed clustering criteria, and we take the union of the results of three hierarchical 

clustering procedures to form a set of task clusters. 

Note that the separation of the clustering decisions and flow network designs also 

helps us to estimate the empty flow in advance by predetermining the destinations of 

empty flow. As discussed in Section 4.2.3, the elusiveness of empty travel approximation 

in the compact formulation comes from the simultaneous decisions of task clustering and 

flow network designs. If task clustering is given, we can preprocess the empty travel by 

some approximation techniques and treat empty travel as additional flow requirement. 

For example, consider tasks t1 and t2 and apply Kuhn’s empty travel approximation. If t1 

and t2 each forms its own cluster, the empty travel requirements are simply Ft1 from 

destination of t1, d(t1), to origin of task 1, o(t1); and Ft2 from destination of t2, d(t2), to 

origin of task 2, o(t2). On the other hand, if t1 and t2 are together in a cluster {t1, t2}, 

then the empty flows would be compacted as in Section 4.2.3. 

5.2 Network Connecting 

Given a task cluster, the purpose of constructing a network for the tasks in the cluster is 

twofold. The first is to make sure that the technology under consideration can be 

implemented on the resulting network to serve these tasks. The second is to approximate 
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the costs of the tasks-resource combination. To achieve this end, the importance of a 

realistic cost structure cannot be overemphasized. As shown in Appendix A, the network 

related resource units needed for each combination can be translated into cost coefficients 

of the objective function, reflecting both fixed costs and variable costs of network 

operation. 

A feasible tasks-resource combination must satisfy the technology dependent 

requirements introduced in Section 4.3.2, requirements 2, 3, 4, 5 and 6. The connecting 

phase involves flow network design for six different types of working network topology: 

manually driven vehicle, automated guided vehicle, floor-supported conveyor, overhead 

trolley conveyor, overhead power-and-free conveyor, and bridge crane. To construct 

feasible networks for a technology to serve the tasks in a cluster, the following 

constraints apply: 

• Flow capacity constraint on each network segment. Combinations in technology 

class EB (bridge crane) are capacitated in total travel time. Note that the 

aggregation of tasks might result in long queue times or large WIP inventory. 

Some capacity can be reserved to cope with the situation of resource over-

utilization, e.g., set the maximum utilization of a certain resource to 85% of its 

limit. We assume there is no congestion within the capacity limit once the arc 

fixed charge is incurred.   

• Directionality constraints. The network directionality constraints maintain 

unidirectional travel on an arc for some technologies.  The restriction on bi-

directional travel for some technologies arises from operational concerns, e.g., as 

in an AGV system, and also mechanical capability, e.g., floor level and overhead 

conveyors. 
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• Connectivity. The connectivity constraints are intended to provide a connected 

network so that the technology can reach the origins and destinations of the 

designated tasks. As shown in Table 3-3, there are different types of connectivity 

restrictions among technologies. 

In order to further discuss the network connecting step of the proposed approach, 

we formulate the flow network design problem (FNDP in short) as a mixed integer 

program in a general sense (as shown in Figure 5-2). The term “general” applies to the 

required information and subset of constraints. Note that FNDP is a variant of the fixed-

charge, capacitated, multicommodity network design problem (Magnanti and Wong 

(1984), Minoux (1989)).  

Given a set of tasks T including the empty travel approximated by Kuhn’s 

representation, cost data and specifications ( , , Uv
ijC f

ijC ij) of the technology under 

consideration, and a working network G = (N, A), FNDP selects arcs to be included in the 

resulting network, the orientation of each arc, and the flow on each arc, so that the sum of 

the costs is minimized. 
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Figure 5-2: A General Flow Network Design Formulation 
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The objective function minimizes the lifetime costs that are related to network 

construction and operation. The first constraint maintains the flow balance at each node. 

The second constraint keeps the flow on arc (i, j) within its capacity Uij and prohibits 

flow on arcs that are not included in the solution. The third constraint is a general 

representation of the topology constraints associated with a specific technology class. The 

topology constraints for each specific technology class are discussed in the following 

sections. 

5.2.1 Flow Network Design Problems for Technology Class EVM 

The flow network design problems for manually driven vehicle technology e∈EVM, 

FNDP(EVM) in short, are subject to flow capacity and strong connectivity constraints. A 

feasible solution must possess a path from every origin to the destination of any task in 

the cluster. This strong connectivity is guaranteed by Kuhn’s empty travel representation 

and flow balance constraints (Observation 1 in Section 4.3.2). The formulation of 

FNDP(EVM) can be obtained by specifying the constraint set Y = { } and replacing the 

input information as follows: 

• where  ),(kTT = )()( eTkT ⊆

•  V
eGG =

• = (VM), = (VM) v
ijC v

ijC f
ijC f

ijC

•  ijeij UU =

5.2.2 Flow Network Design Problems for Technology Class EVA 

The flow network design problems for automated vehicle technology e∈EVA, FNDP(EVA) 

in short, are subject to flow capacity, strong connectivity and unidirectional constraints. 

Since the strong connectivity is guaranteed by Kuhn’s empty travel representation and 
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flow balance constraints, the formulation of FNDP(EVA) can be obtained by specifying 

the constraint set Y = { 1≤+ jiij yy , for any ∈),( ji A and ji < } and replacing the input 

information as follows: 

• where  ),(kTT = )()( eTkT ⊆

•  V
eGG =

• = (VA), = (VA) v
ijC v

ijC f
ijC f

ijC

•  ijeij UU =

5.2.3 Flow Network Design Problems for Technology Class EC  

The flow network design problems for conveyor technology e∈EC, FNDP(EC) in short, 

are subject to flow capacity, weak connectivity requirements and unidirectional 

constraints. Since we do not consider empty travel in a typical floor-supported conveyor, 

the weak connectivity can be obtained by flow requirements. The formulation of 

FNDP(EC) can be obtained by specifying the constraint set Y = { , for any 

A and } and replacing the input information as follows: 

1≤+ jiij yy

∈),( ji ji <

• where  ),(kTT = )()( eTkT ⊆

•  C
eGG =

• = (C), = (C) v
ijC v

ijC f
ijC f

ijC

•  ijeij UU =

5.2.4 Flow Network Design Problems for Technology Class EOP 

The flow network design problems for overhead power-and-free technology e∈EOP, 

FNDP(EOP) in short, are subject to flow capacity, strong connectivity and unidirectional 
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constraints. Since the strong connectivity is guaranteed by Kuhn’s empty travel 

representation and flow balance constraints, the formulation of FNDP(EOP) can be 

obtained by specifying the constraint set Y = { 1≤+ jiij yy , for any A and ∈),( ji ji < } and 

replacing the input information as follows: 

• where  ),(kTT = )()( eTkT ⊆

•  O
eGG =

• = (OP), = (OP) v
ijC v

ijC f
ijC f

ijC

•  ijeij UU =

5.2.5 Flow Network Design Problems for Technology Class EOT 

The flow network design problems for overhead trolley technology e∈EOT, FNDP(EOT) 

in short, are subject to flow capacity, unidirectional constraints and closed trail. The 

unidirectional constraints and closed trail of FNDP(EOT) can be obtained (Observation 2 

in Section 4.3.2) by specifying the constraint set  

Y = , 
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and replacing the input information as follows: 

• where  ),(kTT = )()( eTkT ⊆
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5.2.6 Flow Network Design Problems for Technology Class EB 

Once the task cluster T(k) is specified, the flow network design problem for technology e 

∈ EB is relatively straightforward:

For each tasks-resource combination, 

1. Check if the capacity constraints are satisfied? 

∑ ==∞ )(),(:),(L( tdjtoijifF ijtt , for any t ∈ T(k)) ≤ Ue 

2. Obtain the minimum number of rectangles that cover all the pickup and delivery 

points and check if the concatenation of these rectangles is a rectangle? 

3. Check if the concatenated rectangle contains no column nodes? 

If the answers to the above three checks are all positive, the combination is 

feasible. Otherwise, it is not a feasible combination for technology e ∈ EB and the tasks-

resource combination must be rejected. The flow network is the concatenated rectangle 

and its related cost of network design can be obtained as shown in Appendix A. 

5.3 System Selection 

The last step of the proposed approach is to form a MTS design from the set of tasks-

resource combinations provided in the task clustering and network connecting steps. The 

MTS design must respect the assignment constraints and availability constraints 

(requirements 1 and 4 in Section 4.3.2). A tasks-resource combination k can be 

represented as quadruple ( ), where ek
e
kk CGke ,,)T(, k denotes the technology employed, 

T(k) records the tasks included,  contains a set of nodes and arcs that form the 

network, and C

e
kG

k is the cost of network construction and operating.  

In general, the system selection problem can be formulated as a binary integer 

program (a variation of the set partition problem). Given a finite set of tasks-resource 
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combinations K, prepare a |T|× |K| task-combination matrix A. An element of the task-

combination matrix  is set to 1 if task t is included in combination k and 0 otherwise. 

The objective of system selection is to minimize the total costs of the chosen tasks-

resource combinations subject to assignment and availability constraints. 

tka

The binary integer programming model of the system selection step of MTSDP 

(as shown in Figure 5-3) can be stated as follows: The objective function minimizes the 

sum of network structure cost, network operations, and fixed and incremental costs of 

control systems. The first constraint ensures that each task is served by exactly one 

technology. Additional constraints deal with availability of resources. Common resource 

availability constraints used in MTSDP are discussed in the subsections below. Note that 

the following modeling variations can also be accommodated in the compact formulation 

approach in CHAPTER 4.  
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Figure 5-3: A General System Selection Formulation 
 

5.3.1 Capital Investment 

The capital investment of a MTS design is limited to B dollars. Denote the capital 

investment of a tasks-resource combination k as . Note that the capital investment of 

a combination can be obtained from the corresponding cost model in Appendix A. Given 

the capital expenditure for each combination; the capital investment constraint of a MTS 

design can be stated as follows:  

kCC
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5.3.2 Path Width Constraints 

The width consumed on flow path segment (i, j) of a MTS design cannot exceed Lij. 

Denote the required space for combination k on arc (i, j) as . The path width constraint 

of a set of arcs A

ijkh

’ can be stated as follows: 

,ij
Kk

kijk Lwh ≤∑
∈

 for any (i, j)∈ A’

5.3.3 Flow Path Crossing Constraints  

There may be a restriction on flow path crossing between two technologies on a segment 

of the aisle network. This type of restriction typically applies at the floor level conveyor 

network and aisle network, due to the sharing of common space. If a floor level conveyor 

crosses the boundary of a workstation, the potential aisle is blocked by the conveyor.  To 

prevent undesirable flow path crossing, the working network of conveyor needs to be 

modified so that the crossing can be specified explicitly. A possible modification to serve 

this purpose is provided through a case problem in CHAPTER 6. 

5.4 Computational Experiments 

In this section, we perform computational experiments on the proposed CSP approach 

and compare the results with those of other approaches.  

The first experiment focuses on the comparison of solutions between the CSP 

approach and one conventional approach in the literature. As discussed in CHAPTER 2, 

previous research treated essential and interrelated elements of material transport system 

design as isolated problems. The comparisons of solutions between the CSP approach 

 96



and the conventional one can help us understand the importance of studying integrated 

MTS design problems and approaches. 

The second experiment studies the computational performance and solutions of 

two proposed approaches for the integrated MTS design problems. The illustrative 

example used for the experiments in Section 5.4.2 is the same as the example in Section 

4.5. The compact formulation (CF in short) approach proposed in CHAPTER 4 provides 

an approximation for MTS design problems. By comparing the optimal solution provided 

by enumeration on a small example, we can evaluate the quality of solution provided by 

the CF and the CSP approaches. 

The computations for the CF approach are done on a Sun workstation 220R with 

2x360MHz UltraSparc II CPU's and 2GB RAM. The computations for the enumeration 

and the CSP approach are done on a PC with 700 MHz Pentium III CPU and 512 MB 

RAM. We solve all optimization problems of the MTSDP by using the MIP solver of 

ILOG CPLEX 8.1. 

5.4.1 The CSP Approach versus Conventional Approach 

In this section, we compare the results of a greedy approach (GREEDY in short) and the 

proposed CSP approach. We briefly introduced the GREEDY approach in Section 2.1.3 

and 2.3. In terms of the material transport system design problem, GREEDY selects 

transport technologies by considering only loaded travel requirements with centroid-to-

centroid origin-destination (O-D) definition and Euclidean distance metric. For better 

illustration of GREEDY, we adopt pickup-to-delivery points O-D definition and calculate 

the loaded travel distances with rectilinear distance metric for vehicle-based technologies 

and Euclidean distance metric for conveyor-based technologies. The hourly-loaded travel 

requirements and specifications/costs of candidate technologies are provided in Table 4-2 
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and Table 4-3. The two-dimensional coordinates, Euclidean and rectilinear distances of 

each task are provided in Table 5-1. By applying GREEDY and considering variable and 

fixed costs of network operation, we summarize the least cost technology selection of 

each task and its corresponding cost in columns 2 and 3 of Table 5-2 

 

Table 5-1: Coordinates and Distances of Tasks 
 Origin Destination 
 x y x y 

Euclidean Rectilinear 

t1 160 70 160 90 20.00 20.00 
t2 120 95 65 120 60.42 80.00 
t3 120 95 35 95 85.00 85.00 
t4 160 70 120 20 64.03 90.00 
t5 120 20 75 40 49.24 65.00 
t6 75 40 35 95 68.01 95.00 
t7 35 40 0 20 40.31 55.00 
t8 0 20 35 0 40.31 55.00 
t9 35 40 35 0 40.00 40.00 

 

We also apply the proposed CSP approach on the same example. Due to the small 

size of this example, we can obtain the optimal solution by enumeration. Except for 

technology e1 that has five eligible tasks, the other technologies, e2, e3 and e4 each have 

six eligible tasks, respectively. There are 220 ( ) 

possible combinations of tasks-technology. By applying Kuhn’s empty travel 

representation, we can get all the loaded and empty travel requirements. Then, we solve 

220 flow network design problems based on the technologies and the corresponding 

working networks. Given 220 tasks-technology combinations and their network costs, we 

can formulate a set-partition problem and solve it to get the optimal MTS design of this 

example. Note that the overhead working networks of power and free conveyor (e3) and 

trolley conveyor (e4) are slightly different in this section. Instead of one bi-directional arc 
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associated with every pair of nodes, we assume there are two bi-directional arcs 

associated with every pair of nodes in the overhead working networks of e3 and e4. 

In order to make a fair comparison, we put the results of the three approaches 

(GREEDY, CSP, Enumeration) on the same basis. Since we have flow network designs 

of all combinations formed by considering empty travel, and following the working 

networks of technologies, we take the technology assignments of GREEDY and match 

them to the corresponding flow network designs. Columns 1, 2, and 3 of Table 5-2 

indicate the tasks, their technology assignments and their costs by GREEDY. Columns 4 

and 5 of Table 5-2, CLUSTER and COST, record the corresponding clusters and costs of 

flow network designs of GREEDY technology assignments: {e4: t1} means task 1 is 

assigned to technology e4. 

The differences between the costs of GREEDY and CLUSTER in Table 5-2 are 

the inclusion of empty travel and the design of working networks. Take task t9, the one 

with the largest difference, for example. As shown in Figure 5-4, the rectilinear distance 

between the origin (node 5) and destination (node 11) is 40 ft. Task t9 requires 30 units 

technology e2 per day. The daily operating cost is $5.48 per foot per unit technology, and 

the amortized daily network construction cost is $4.46 per foot. The total cost for 

technology e2 to service task t9 by GREEDY approach is $6,749.96 per day. By 

introducing the empty travel requirements and the working network of technology e2, the 

network design for technology e2 to service task t9 is shown with black solid arrows in 

Figure 5-4. The total distance of this network design is 220 ft and the total cost for 

technology e2 to service task t9 by the CSP approach is $37,124.80 per day. The cost 

breakdown of the two approaches for this sub-system is provided in Table 5-3 
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Table 5-2: Translation of Solutions from GREEDY to CSP 
1 2 3 4 5 
 GREEDY COST (GREEDY) CLUSTER COST 
t1 e4 $90.29 {e4:t1} $180.37 
t2 e4 $236.77 {e4:t2} $626.45 
t3 e4 $333.12 {e4:t3} $783.06 
t4 e2 $12,723.13 {e2:t4} $45,237.90 
t5 e4 $202.76 {e4:t5} $329.06 
t6 e4 $387.97 {e4:t6} $1,025.51 
t7 e2 $18,316.91 {e2:t7} $73,267.73 
t8 e4 $181.98 {e4:t8} $450.93 
t9 e2 $6,749.96 {e2:t9} $37,124.80 

 

Table 5-3: Cost Breakdown of Sub-system for Task t9 
 GREEDY CSP 
Network Distance 40 ft 220 ft 
Operating Cost of Loaded Travel $6571.43 $18,071.43 
Operating Cost of Empty Travel 0 $18,071.43 
Network Construction Cost $178.53 $981.94 
Total Cost $6,749.96 $37,124.80 
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Figure 5-4: Sub-system Design of Example Problem 
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The solutions of GREEDY, CSP, and enumeration on this example are provided 

in Table 5-4. Column 2 of Table 5-4 summaries the task-technology assignments of 

GREEDY and their corresponding costs in flow network design. Column 3 of Table 5-4 

records the task-technology assignments of CSP and their costs. The optimal task-

technology assignments and their costs by enumerating all possibilities of this MTS 

design problem are summarized in column 3 of Table 5-4. Note that we only record cost 

at the first task for combinations that have multiple tasks. The total cost of GREEDY 

approach of this MTS design problem is $159,025.80. Compared to the optimal solution 

by enumeration, the GREEDY approach yields a solution that is 31.35% greater. In this 

example MTS design problem, the proposed CSP approach finds the optimal solution. 

 

Table 5-4: Comparison of Solutions of GREEDY, CSP and Enumeration 
1 2 3 4 
 CLUSTER/GREEDY CSP Enumeration 
 CLSTR COST CLSTR COST CLSTR COST 
t1 {e4:t1} $180.37 {e4:t1} $180.37 {e4:t1} $180.37 
t2 {e4:t2} $626.45 {e4:t2,t3} $1303.10 {e4:t2,t3} $1303.10 
t3 {e4:t3} $783.06 {e4:t2,t3}  {e4:t2,t3}  
t4 {e2:t4} $45,237.90 {e2:t4} $45,237.90 {e2:t4} $45,237.90 
t5 {e4:t5} $329.06 {e4:t5} $329.06 {e4:t5} $329.06 
t6 {e4:t6} $1,025.51 {e4:t6} $1,025.51 {e4:t6} $1,025.51 
t7 {e2:t7} $73,267.73 {e1:t7} $35,417.80 {e1:t7} $35,417.80 
t8 {e4:t8} $450.93 {e4:t8} $450.93 {e4:t8} $450.93 
t9 {e2:t9} $37,124.80 {e2:t9} $37,124.80 {e2:t9} $37,124.80 
Total Cost $159,025.80 $121,069.47 $121,069.47 
Gap 31.35% 0.00%  

 

The major saving by the CSP approach comes from the different technology 

selection for t7. In GREEDY, the costs of network operation for technologies e1 and e2 

are approximated by rectilinear distance metric and without considerations of empty 

travel and directionality constraints. Note that e2 is AGV, which is considered a typical 

example of a technology traveling on unidirectional arcs. (It is possible to consider bi-

directional AGV; in that case it behaves like e1 but with different costs.) The omission of 
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empty travel and the poor distance approximation make GREEDY choose e2 over e1 and 

pay an extra $37,849.93 for t7. Also note that we have one multiple-task combination in 

the CSP solution: combination {e4:t2,t3} results in $106.41 savings. The diagrammatic 

representation of the CSP solution and enumeration is provided in Figure 5-5. 

The major reason for these improvements is that we consider the MTS design 

problem as an integrated design problem. Approaches that derive from an integrated 

problem have the chance to explore the potential savings from multiple-task 

combinations, better routing of empty transport carriers and sharing of fixed network 

costs. Comparing columns 3 and 5 of Table 5-2, we observe that the underestimate of 

cost in the GREEDY approach is inconsistent and unreliable. The cost of network 

operation is usually used for the approximation of vehicle requirements. The operating 

cost approximated by GREEDY seems to be inadequate for this purpose. 

In this comparison, we do not consider the cost of control systems. However, it is 

not difficult to see that we might achieve more savings by considering the MTS design 

problem as a whole with the presence of control system costs. Especially when the fixed 

cost of control systems is significantly higher than the incremental costs, aggregating 

tasks might be one way to achieve economy of scale. 
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Figure 5-5: MTS Design of Example Problem by the CSP Approach and Enumeration 
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5.4.2 The CSP Approach versus the CF Approach 

In this section, we review the performance and solution quality of two proposed 

approaches for the integrated MTS design problem. In CHAPTER 4, we propose a 

compact MILP formulation (CF in short) to approximate the solutions of MTSDP. 

Although we provide some discussions on the quality of this approximation, the details of 

the CF approach require more investigations.  

The performance and total cost of the example problem by enumeration, CSP and 

CF are summarized in Table 5-5. Compared to the results by enumeration (240 seconds), 

the CSP approach (81.13 seconds) requires only 33.85% of the time spent in computation 

but has a solution cost that is greater by 0.12%. As mentioned in Section 4.4.3, the total 

cost of the CF approach provides an underestimation of empty travel, and inn this case 

the objective value is 0.17% lower than the optimal solution. Column CF (adjusted) 

records the cost of CF task-technology assignments and CSP flow network designs. The 

total cost of CF (adjusted) is 0.13% greater than the optimal solution.  

For solutions provided by the CF approach, there are some differences between 

the original flow network design and the CSP flow network designs based on task-

technology assignments of the CF approach. The diagrammatic representations of 

solutions by the original CF approach and the CF (adjusted) approach are provided in 

Figure 5-6 and Figure 5-7, respectively. In terms of flow network structures, the only 

difference between these two solutions is the design for sub-system {e4: t1,t2,t3}. 

However, the details of network activity cannot be observed without further analysis. The 

single-task technology assignments always follow Kuhn’s empty travel representation in 

the CF solution. Thus, we only need to focus on the two multiple-task technology 

assignments, {e4: t1,t2,t3} and {e4: t6,t8}. 
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Figure 5-6: MTS Design of Example Problem by the CF Approach 
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Figure 5-7: MTS Design of Example Problem by the CF (adjusted) Approach 
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Table 5-5: Performance and Solutions of enumeration, CSP and CF 
1 2 3 4 
 Enumeration CSP CF (Adjusted) 
Total Cost $122,469 $122,621 $122,261 ($122,627) 
Difference from Optimal Solution 0.12% -0.17% (0.13%) 

 

The flow networks of two multiple-task sub-systems by CF and CF (adjusted) are 

provided in Figure 5-8. Figure 5-8 (a) shows the flow network design of sub-system 

{e4:t1,t2,t3} by the CF approach. The thick solid arrows indicate the origins and 

destinations of tasks in this sub-system. The arcs of the flow network are shown by black 

thin arrows along with their distances. Figure 5-8(b) shows the flow network design of 

sub-system {e4:t1,t2,t3} by the CF (adjusted) approach. Figure 5-8(c) and (d) show the 

flow network designs of sub-system {e4:t6,t8} by CF and CF (adjusted), respectively.  

The network activities of sub-system {e4:t1,t2,t3} by the CF approach are 

summarized in Table 5-6. The loaded travel rows record the arcs used by each of three 

tasks and loaded flow quantity on each arc, measured by unit carrier. For example, task t1 

is serviced through arc (0,1) with a flow 120 unit carriers. The empty travel rows record 

the arcs and the flows of nine different empty travels. For example, there are 20.57 empty 

carriers traveling from the destination of t1 to the source of t1 along the flow path (1,2), 

(2,4), (4,3), and (3,0). The total flow on each arc is summarized in the last row of Table 

5-6. The last two columns of Table 5-6 present the empty travel ratio and Kuhn’s empty 

travel ratio given the loaded travel requirements of t1, t2 and t3. The empty travel ratio is 

calculated by the empty travel divided by the loaded travel. Take empty travel from d(t1) 

to o(t1) for example: the empty travel ratio, 0.17, is obtained by 20.5714 divided by 120. 

Similar network activity breakdown for sub-system {e4:t6,t8} by the CF approach is 

shown in Table 5-7  
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Figure 5-8: Sub-Systems {e4:t1,t2,t3} and {e4:t6,t8} of CF and CF (adjusted) 

 

From the differences of empty travel ratios and Kuhn’s empty travel ratios in 

Table 5-6 and Table 5-7, we can confirm the cause of underestimation by the CF 

approach is the violation of Kuhn’s empty travel ratio. Based on the cost information 

provided in Section 4.5, the cost for sub-systems {e4:t1,t2,t3} and {e4:t6,t8} is $2076 

each. Following Kuhn’s empty travel representation, the costs for sub-systems 

{e4:t1,t2,t3} and {e4:t6,t8} are $2258 and $2,260, respectively. 

The task-technology assignments and costs of three solutions for the example 

problem are provided in Table 5-8. The diagrammatic representations of the designs by 

CSP and enumeration are shown in Figure 5-9 and Figure 5-10, respectively. Comparing 

the task-technology assignments and flow network designs of these three approaches, we 
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observe that the linear approximation of the CF approach affects the amount of empty 

travel and, therefore clustering decisions and, flow network designs. 

Table 5-6: Network Activity Breakdown of Sub-system {e4:t1,t2,t3} by CF 
Arc  Task 
(0,1) (1,2) (2,4) (4,3) (3,0) 

t1 120     
t2   90 90  

Loaded 
Travel 

t3   90   

Empty 
Travel 
Ratio 

Kuhn’s 
Empty 
Travel 
Ratio 

t1 t1  20.57 20.57 20.57 20.57 0.17 0.4 
t1 t2  66.86    0.56 0.3 
t1 t3  32.57    0.27 0.3 
t2 t1     66.86 0.74 0.4 
t2 t2 11.57 11.57   11.57 0.13 0.3 
t2 t3 11.57 11.57   11.57 0.13 0.3 
t3 t1    32.57 32.57 0.36 0.4 
t3 t2 11.57 11.57  11.57 11.57 0.13 0.3 

Empty 
Travel 

t3 t3 45.86 45.86  45.86 45.86 0.51 0.3 
Total 200.57 200.57 200.57 200.57 200.57 3 3 

 

Table 5-7: Network Activity Breakdown of Sub-system {e4:t6,t8} by CF 
Arc  Task 
(4,10) (10,11) (11,6) (6,4) 

t6    180 Loaded 
Travel t8  120   

Empty 
Travel 
Ratio 

Kuhn’s 
Empty 
Travel 
Ratio 

t6 t6 80.57 80.57 80.57  0.45 0.6 
t6 t8 99.43    0.55 0.4 
t8 t6   99.43  0.83 0.6 

Empty 
Travel 

t8 t8 20.57  20.57 20.57 0.17 0.4 
Total 200.57 200.57 200.57 200.57 2 2 

 

Table 5-8: Task-Technology Assignments and Costs of Three Solutions 
1 2 3 4 
 CF Enumeration CSP 
 CLUSTER COST CLUSTER COST CLUSTER COST 
t1 {e4:t1,t2,t3} $2,076 {e4:t1,t2} $1,424 {e4:t1} $947 
t2 {e4:t1,t2,t3}  {e4:t1,t2}  {e4:t2,t3,t6,t8} $3,563 
t3 {e4:t1,t2,t3}  {e4:t3,t6,t8} $2,936 {e4:t2,t3,t6,t8}  
t4 {e2:t4} $45,238 {e2:t4} $45,238 {e2:t4} $45,238 
t5 {e4:t5} $329 {e4:t5} $329 {e4:t5} $329 
t6 {e4:t6,t8} $2,076 {e4:t3,t6,t8}  {e4:t2,t3,t6,t8}  
t7 {e1:t7} $35,418 {e1:t7} $35,418 {e1:t7} $35,418 
t8 {e4:t6,t8}  {e4:t3,t6,t8}  {e4:t2,t3,t6,t8}  
t9 {e2:t9} $37,125 {e2:t9} $37,125 {e2:t9} $37,125 
Total Cost $122,261 $122,470 $122,621 
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Figure 5-9: MTS Design of Example Problem by the CSP Approach 
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Figure 5-10: MTS Design of Example Problem by Enumeration 
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5.5 Concluding Remarks 

In this chapter, we proposed another solution approach for the integrated MTS design 

problem in addition to the CF approach presented in CHAPTER 4. This approach, a 

clustering/set partition approach, decomposes the design process into three phases: task 

clustering, network connecting and system selection.  

For task clustering, we identify the important factors to be used for clustering. We 

formulate the flow network design problem in a general sense and specify the detailed 

flow network restrictions for six major transport technology classes. At the last phase, we 

formulate the system selection problem as a variant of the classic set partition problem to 

cope with the assignment and resource availability requirements. 

We also perform some computational experiments with an illustrative example to 

compare the performance and solutions of the CSP approach to the solutions of one 

representative approach in the literature and the CF approach. According to the 

computational results, we observe that 

• Considering the MTS design problem as an integrated problem can make the 

resulting designs more economical and realistic. 

• The objective value provided by the CF approach differs from optimality by a 

small amount in the illustrative example. However, the results of task clustering 

and flow network designs could differ from the optimal solution due to the 

violation of Kuhn’s empty travel representation. 

• The differences in the solution times of CF and CSP result from the treatments of 

empty flow. The solutions obtained by the CSP approach follow Kuhn’s empty 

travel ratio by decomposing the MTSDP and embedding empty flows in the flow 

requirements before solving flow network design problems. On the other hand, 
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the CF approach is formulated to solve the MTSDP within a lower and an upper 

bound on Kuhn’s empty travel ratio. This can cause the CF approach to violate 

Kuhn’s empty travel ratio and spend more time searching for a lower cost solution 

by varying the empty travel distributions. This could be one of the reasons we 

have such a big difference in solution time between the CF and CSP approaches. 
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CHAPTER 6 

CASE PROBLEM: FORD SALINE PLANT 

 

In this chapter we apply one of the proposed approaches, Clustering/Set Partition (CSP) 

approach, for a material transport system design problem at the FORD Saline Plant. The 

Saline Plant is a motor parts manufacturing facility of one of the largest automotive 

companies in the world. A large percentage of the instrument panels and the instrument 

clusters used in FORD cars and trucks are manufactured at the Saline Plant. The purposes 

of this chapter are not only to demonstrate material transport system (MTS) designs in a 

real-world application by the proposed CSP approach but also to show how to compile 

raw data into appropriate format of the proposed approach.  

The CSP approach is based on a decomposition of the material transport system 

design problem (MTSDP) into clustering, connecting, and system selection phases. The 

clustering phase is solved by a set of statistical clustering procedures with some crucial 

factors of transportation requests. The connecting phase leads to variations of flow 

network design problems, and the system selection phase leads to a set partition problem. 

For both the connecting and system selection phases, we solve optimization problems 

with a commercial solver. For details about the CSP approach, please refer to CHAPTER 

5. 

This chapter is organized in four sections in addition to the introduction. Section 

6.1 describes the facility layout, material flow of products, and the production volumes of 

the Saline Plant. To apply the CSP approach on MTSDP of the Saline Plant, we need to 

have information about transportation requests, material transport technologies and their 
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working networks. The compilation of these essential data from source data of the Saline 

Plant are reported in Section 6.2. Computational results and validations of the CSP 

approach for the Saline Plant are discussed in Section 6.3, and Section 6.4 concludes this 

chapter. 

6.1 Information of the Saline Plant 

In this section, we present information for the MTSDP in the Saline Plant. The facility 

layout and related information is provided in Section 6.1.1. The material flow of four 

major products and their production volumes are introduced in Section 6.1.2. The data 

reported in this section is adopted from Material Handling Modernization Program 

(1985). 

6.1.1 Facility Layout 

The total floor space of the Saline Plant is approximately 1,640,000 square feet. The 

warehousing operation for the plant occupies nearly 500,000 square feet or roughly 30% 

of the total plant floor space. The facility layout of the Saline Plant is shown in Figure 

6-1. The rectangular boxes represent the intersections, and the circles represent the input 

or/and output points of a workstation.  

Three warehouses, the east (EWH), west (WWH), and purchased parts warehouse 

(PWH) are used for the storage of parts and materials. The molding processes of 

instrument panel are done at workstations 271, 272, and 273. Workstations 293, 294, and 

295 are dedicated for the foaming processes. The chrome plating and E-cure are done at 

workstations 291 and 286, respectively. Workstations 289 and 292 are in charge of finish 

decorating. The gages and speedometers are assembled at workstation 264, the panel 

processing is done at workstation 262/294, and sonic welding is done at workstation 281. 
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The instrument clusters are assembled at workstation 261, and the service pack is stored 

at workstation 263.  
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Figure 6-1: Facility Layout of the Saline Plant 
 

6.1.2 Production Volume and Product Material Flows  

In this case problem, we consider four major products at the Saline Plant, soft instrument 

panel, hard instrument panel, instrument cluster assembly, and chrome plated grille. The 

quarterly production volume of the Saline Plant is summarized in Table 6-1.  

Table 6-1: Quarterly Production Volume of the Saline Plant 
Product Production Volume 
Soft Instrument Panel 1,524,000 units 
Hard Instrument Panel 1,859,000 units 
Instrument Cluster Assembly 3,901,000 units 
Chrome Plated Grille 2,425,000 units 
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To better understand the material movement at the Saline Plant, the following 

material flow diagrams give flow patterns of the products. Figure 6-2 shows the material 

flow of soft instrument panel. The numbers in the circles are workstation numbers. The 

material flow of hard instrument panel, instrument cluster assembly, and chrome plated 

grille are shown in Figure 6-3, Figure 6-4, and Figure 6-5, respectively. 

 

271

294

272

P
WH

294

286

289

262 E
WH

272

Mold - Medium

Mold - Large

Foam

Mold - Medium

Foam

E-Cure

Decorating

Assembly

Purchased Parts

Finished SIP

 

Figure 6-2: Material Flow of Soft Instrument Panel 
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Figure 6-3: Material Flow of Hard Instrument Panel 
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Figure 6-4: Material Flow of Instrument Cluster Assembly 
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Figure 6-5: Material Flow of Chrome Plated Grille 
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6.2 Data Preparation for the CSP Approach 

In this section, we explain how the raw data of the Saline Plant are compiled into 

appropriate formats of the proposed MTS design approaches. Although we only apply the 

CSP approach on the MTSDP of the Saline Plant, the same data preparation procedures 

can be applied to the other proposed approach. Three types of information are required 

for the design of a general material transport system by the proposed approaches: 

technology, working networks, and transportation tasks. The following subsections 

address each type of information for the Saline Plant. 

6.2.1 Information about Technology Candidates 

After knowing the requirements of the Saline Plant and other related information, we 

proposed four technology candidates for its material transport system. The first one is a 

sit-down counterbalanced lift truck. According to our technology classification 

introduced in Section 3.3.6, it is an instance of manually driven vehicle, and we will refer 

this technology as MDV. The second technology candidate is a unit-load AGV. It is an 

instance of automatic guided vehicle, and we will refer to it as AGV. The third 

technology candidate is a powered roller conveyor. It is an instance of floor support 

conveyor, and we will refer to it as FSC. The fourth technology candidate is a trolley 

conveyor. It is an instance of overhead trolley conveyor, and we will refer to it as OTC. 

The focus of this subsection is to set up the cost information of each technology 

candidate according to the proposed cost models (For details of cost models, please refer 

to Appendix A). In this research, we consider the lifetime cost of material transport 

system by including network operating cost, network construction cost and control 

system cost. The life span of a material transport system is assumed to be five years; the 
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Saline Plant operates 300 days per year and 7 hours per day. Table 6-2 provides the 

operating speed of each technology candidates.  

Table 6-2: Speed Information of Technology Candidates 
 MDV AGV FSC OTC 
Speed 7 mph 3 mph 1 mph 1 mph 

 

The detailed cost items and figures of network operating cost, network 

construction cost and control system cost are provided in Table 6-3, Table 6-4 and Table 

6-5, respectively. Network operating cost is used to measure the costs incurred by 

network activity per linear foot. In Table 6-3: row (1) gives the estimates of unit carrier 

cost for each technology candidate, row (2) gives the amortized unit carriers cost on a 

working day basis, row (3) gives the daily driver wage, row (4) gives the daily power 

consumptions of loaded travel, row (5) gives the daily maintenance expenses, row (6) 

gives the daily power consumptions of empty travel, and row (7) gives the daily total 

network operating cost. 

Table 6-3: Network Operating Cost Information of Technology Candidates 
Row Number Cost Item MDV AGV FSC OTC 
(1) Unit Carrier $30,000 $75,000  $100 
(2) Unit Carrier (daily) $20 $50  $0.07 
(3) Driver (daily) $250    
(4) Power (daily) $25 $25 $0.35 $0.20 
(5) Maintenance (daily) $20 $40  $0.15 
(6) Power Empty (daily)   $0.15  
(7) Total (daily) $315 $115 $0.50 $0.42 

 

The network construction cost relates to the fixed portion of material transport 

network per linear foot. In Table 6-4: row (1) gives the estimates of guide path/ support 

per foot for each technology candidate, row (2) gives the amortized unit guide path/ 

support cost on a working day basis, row (3) gives the daily space cost per foot, row (4) 

gives the daily maintenance expenses per foot, row (5) gives the daily connection cost per 

foot, and row (6) gives the daily total network construction cost per foot. 
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Table 6-4: Network Construction Cost Information of Technology Candidates 
Row Number Cost Item MDV AGV FSC OTC 
(1) Guide Path/Support  $200 $1,000 $200 
(2) Guide Path/Support (daily)  $0.13 $0.67 $0.13 
(3) Space (daily) $0.50 $0.50 $0.50  
(4) Maintenance (daily) $0.05 $0.50 $0.50 $1.50 
(5) Connection (daily)  $3.33  $0.50 
(6) Total (daily) $0.55 $4.46 $1.67 $2.13 

 

As mentioned in Section 4.1, we modeled control system cost into two parts: 

fixed cost and incremental cost associated with the number of tasks handled in a (sub) 

system. In Table 6-5: row (1) gives the estimates of the fixed portion of control system 

for each technology candidate, row (2) gives the amortized fixed cost of control system 

on a working day basis, row (3) gives the estimates of incremental portion of control 

system, and row (4) gives the amortized incremental cost of control system on a working 

day basis. 

Table 6-5: Control System Cost Information of Technology Candidates 
Row Number Cost Item MDV AGV FSC OTC 
(1) Fixed Cost $20,000 $100,000 $10,000 $50,000 
(2) Fixed Cost (daily) $13.33 $66.67 $6.67 $33.33 
(3) Incremental Cost $10,000 $20,000  $20,000 
(4) Incremental Cost (daily) $6.67 $13.33  $13.33 

 

The cost figures provided in Table 6-3, Table 6-4 and Table 6-5 are used as 

essential input information for the proposed approaches based on a set of general and 

technology class dependent cost formulations provided in Appendix A. 

6.2.2 Information about Working Networks 

Another important input information for the proposed MTS design approaches is the 

working network of each technology candidate. According to the layout information 

provided by the Saline Plant, we partitioned the floor plan by grid modules of size 40 ft 

by 60 ft as shown in Figure 6-6. Take WWH for example, it is a 60,000 square feet area 
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with width 200 feet and length 300 feet, represented by (200/40)× (300/60) = 5× 5 = 25 

grid modules. 
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Figure 6-6: Revised Facility Layout of the Saline Plant 

 

The working networks of four technology candidates are prepared by 

aforementioned methods (see Section 3.3.2 for details). The arc distances of each 

working network are approximated based on the revised facility layout of the Saline Plant 

in Figure 6-6. Network operating cost and network construction cost are applied to each 

arc of each working network based on the distance and costs according to the cost 

formulations provided in Appendix A. 

The availability restrictions on space and flow path crossing constraints require us 

to develop the working networks. Among the transport technologies considered in this 

case problem, flow path crossings of conveyor system are common in MTS design. The 
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installation of a floor level conveyor blocks the flow of vehicle-based technologies once 

the aisle path is crossed unless some expensive remedies take place, e.g., elevating 

devices. In order to prevent such designs, we need to characterize these flow path 

crossings in the working networks. A network transformation is provided as follows: 

• Shrinking every edge of workstation boundaries into a node. Note that shrinking 

an edge means deleting an edge and collapsing its two endpoints. 

• Connecting the shrunken edge nodes belonged to the same workstation by a pair 

of opposite directed arcs between every pair of edge nodes. 

• Connecting the origin/destination node of every task to every edge node 

belonging to the origin/destination workstation by a pair of opposite directed arcs 

between every pair of origin/destination node and edge node. 

Figure 6-7 gives an example of conveyor network transformation. In this 

example, there are three workstations and three tasks as shown in Figure 6-7(a). Figure 

6-7(b) demonstrates the shrinking process applied on the example. Shrunken edge nodes 

are represented by black solid circles with white numerals. Figure 6-7(c) shows the 

connecting of pairs of edge nodes within the same workstation with a pair of opposite 

directed arcs (for clarity of illustration, bi-directional single arcs are used). As shown in 

Figure 6-7(d), the connections between the origin/destination node of every task and 

workstation are obtained by connecting a pair of opposite directed arcs (again, bi-

directional single arcs are used) from origin/destination node to the edge nodes of the 

same workstations, respectively. 
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Figure 6-7: Conveyor Network Transformation of an Example 

 

The arc capacity of each working network is determined by the product of ideal 

daily capacity and a utilization factor. The ideal daily capacity is obtained by daily total 

travel distance at operating speed divided by length of unit technology. The length of unit 

technology includes the space of physical equipment and required clearance. The 

utilization factor reflects operational delays, e.g., waiting for pickup or delivery. The 

lengths of unit technology and utilization factors used in this case problem are 

summarized in Table 6-6.  

Table 6-6: Length of Technology and Utilization Factor of Technology Candidate 
 MDV AGV FSC OTC 
Length of Unit Technology 100 ft 50 ft 15 ft 6 ft 
Utilization Factor 80% 80% 70% 70% 
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6.2.3 Information about Transportation Tasks 

The transportation tasks of this case problem for the Saline Plant are compiled 

from the material flows and production volumes of four major products given in Section 

6.1. We summarize the transportation requests by material, origin, and destination in 

Table 6-7. The transportation requirements, denoted in unit-load carriers, are estimated 

by converting quarterly production volumes into seven-hour time buckets (length of a 

working day). 

Table 6-8, Table 6-9, and Table 6-10 summarize the same information (material, 

from/to workstation, and unit carrier requirements of four technology candidates) of 

transportation tasks of hard instrument panel, instrument cluster assembly, and chrome 

plated grille, respectively.  

After the aggregation of tasks with the same product and the same from/to 

workstations; we obtain Table 6-11. Note that the bold font of an entry for task and 

technology in Table 6-11 indicates that the technology is not able to handle the 

corresponding task because the transportation requirement exceeds arc capacity 

constraints. The arc capacities of four working networks associated with each technology 

candidate are provided in Table 6-12. 

Table 6-7: Task Information of Typical Soft Instrument Panel 
Transportation Requirement (Unit-load Carrier) Task No. Material From To 
MDV AGV FSC OTC 

1 SUBSTRATE PWH 271 678 339 6774 6774 
2 VINYL SKIN PWH 294 678 339 6774 6774 
3 GLV COMPT. PWH 272 81 41 2033 339 
4 GLV COMPT. Dr. PWH 272 22 11 339 85 
5 PARTS PWH 262 136 68 2033 565 
6 SUBSTRATE 271 294 678 339 6774 6774 
7 PARTS 272 286 136 68 2033 565 
8 SUBSTRATE 294 289 678 339 6774 6774 
9 GLV COMPT. Dr. 286 262 22 11 339 85 
10 SUBSTRATE 289 262 678 339 6774 6774 
11 INST. PNL ASS’Y 262 EWH 678 339 6774 6774 
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Table 6-8: Task Information of Typical Hard Instrument Panel 

 

Transportation Requirement (Unit-load Carrier) Task No. Material From To 
MDV AGV FSC OTC 

1 SUBSTRATE PWH 271 1033 517 8263 8263 
2 GLV COMPT. PWH 272 138 69 2479 551 
3 GLV BOX ASS’Y PWH 272 35 18 414 138 
4 HARNESS RETD PWH 273 35 18 414 138 
5 PARTS PWH 262 218 109 2479 919 
6 SUBSTRATE 271 286 1033 517 8263 8263 
7 GLV COMPT. 272 281 138 69 2479 551 
8 GLV BOX ASS’Y 272 281 35 18 414 138 
9 GB REINF 281 286 166 83 2893 689 
10 GB REINF 286 262 166 83 2893 689 
11 SUBSTRATE 286 262 1033 517 8263 8263 
12 HARNESS RETD 273 262 35 18 414 138 
13 INST. PNL ASS’Y 262 EWH 1033 517 8263 8263 

Table 6-9: Task Information of Typical Instrument Cluster Assembly 
Transportation Requirement (Unit-load 
Carrier) 

Task No. Material From To 

MDV AGV FSC OTC 
1 BACK PLATE PWH 272 73 37 867 289 
2 INST CLS LENS PWH 272 25 13 867 97 
3 MASK PWH 272 25 13 867 97 
4 SPEEDO DIAL PWH 273 25 13 434 97 
5 ODOM ROLLS PWH 273 25 13 434 97 
6 BLUE FILTER PWH 273 25 13 434 97 
7 SPEEDO MAG PWH 264 25 13 434 97 
8 SPEEDO FRAME PWH 264 25 13 434 97 
9 SPEEDO CUP PWH 264 25 13 434 97 
10 ODOM PINIONS PWH 264 13 7 434 49 
11 ODOM BRIDGE PWH 264 13 7 434 49 
12 SPEEDO PINTR PWH 264 25 13 434 97 
13 GAGE CU MOLD PWH 264 49 25 867 193 
14 BULB ASS’Y PWH 264 25 13 434 97 
15 VOLTAGE REG PWH 264 49 25 867 193 
16 SPEED ASS’Y 264 261 169 85 867 667 
17 GAGE ASS’Y 264 261 73 37 867 289 
18 BULB ASS’Y 264 261 25 13 434 97 
19 INST CLS LENS 272 281 25 13 867 97 
20 MASK 272 289 25 13 867 97 
21 INST CLS LENS 281 261 25 13 867 97 
22 MASK 289 261 25 13 867 97 
23 SPEEDO DIAL 273 264 25 13 434 97 
24 PRCHSED PARTS PWH 261 121 61 1734 482 
25 BLUE FILTER 273 261 25 13 434 97 
26 INST CLS ASS’Y 261 EWH 362 181 1734 1445 
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Table 6-10: Task Information of Chrome Plated Grille 
Transportation Requirement (Unit-load Carrier) Task No. Material From To 
MDV AGV FSC OTC 

1 BASE GRILLE PWH 272 1348 674 10778 10778 
2 PARTS PWH 262 284 142 3234 1198 
3 BASE GRILLE 272 291 1348 674 10778 10778 
4 BASE GRILLE 291 292 1348 674 10778 10778 
5 BASE GRILLE 292 262 1348 674 10778 10778 
6 GRILLE ASS’Y 262 EWH 1348 674 10778 10778 

 

Table 6-11: Task Information of the Saline Plant 
From To Transportation Requirement (Unit-load Carrier) Task 

No. Name No. Name No. MDV AGV FSC OTC 
1 PWH 23 261 22 121 61 1734 482 
2 PWH 23 262 21 638 319 7746 2682 
3 PWH 23 264 20 249 129 4772 969 
4 PWH 23 271 6 1711 856 15037 15037 
5 PWH 23 272 16 1747 876 18644 12374 
6 PWH 23 273 13 110 57 1716 429 
7 PWH 23 294 12 678 339 6774 6774 
8 261 18 EWH 27 362 181 1734 1445 
9 262 15 EWH 27 3059 1530 25815 25815 
10 264 19 261 22 316 160 3035 1246 
11 271 6 294 21 678 339 6774 6774 
12 271 6 286 1 1033 517 8263 8263 
13 272 16 286 1 136 68 2033 565 
14 272 16 289 11 25 13 867 97 
15 272 16 291 5 1348 674 10778 10778 
16 272 16 281 26 198 100 3760 786 
17 273 13 261 22 25 13 434 97 
18 273 13 262 21 35 18 414 138 
19 273 13 264 20 25 13 434 97 
20 281 25 261 22 25 13 867 97 
21 281 25 286 1 166 83 2893 689 
22 286 1 262 21 1221 611 11495 9037 
23 289 14 262 21 678 339 6774 6774 
24 289 14 261 22 25 13 867 97 
25 291 2 292 7 1348 674 10778 10778 
26 292 3 262 21 1348 674 10778 10778 
27 294 12 289 11 678 339 6774 6774 

 

Table 6-12: Arc Capacities of Working Networks  
 MDV AGV FSC OTC 
Arc Capacity (Unit Technology) 2069 1774 1724 4312 
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6.3 Material Transport System Designs for the Saline Plant 

In this section, we study MTS designs of the proposed CSP approach for the Saline Plant. 

The basic MTS design of the Saline Plant is presented in Section 6.3.1. We show the 

impact of flow path crossing on the MTS design in Section 6.3.2. In general, the 

proposed CSP approach does not guarantee that the resulting MTS design is optimal. In 

Section 6.3.3, we show the quality of the proposed approach by comparing the results of 

the CSP approach and enumeration with smaller instances from MTSDP of the Saline 

Plant. The computations for the enumeration and CSP approaches are done on a PC with 

700 MHz Pentium III CPU and 512 MB RAM. The statistical clustering is done by using 

the clustering analysis of MINITAB 14. We solve all optimization models by using the 

MIP solver of ILOG CPLEX 8.1. 

6.3.1 MTS Design of the Saline Plant 

The MTS design for the Saline Plant is done by the proposed CSP approach. For details 

about this approach, please refer to CHAPTER 5. The CSP approach is a three-phase 

approach based on the decomposition of general MTS design problems. At the task-

clustering phase, we collect 208 task clusters based on the three clustering criteria 

introduced in Section 5.1. These 208 flow network design problems are solved at the 

network-connecting phase. The tasks clusters and their costs then become the input 

information for the system-selection phase.  

The task-technology assignments of the MTS design for the Saline Plant is 

summarized in Table 6-13. There are 18 task clusters chosen to partition 27 tasks. The 

first column of Table 6-13 denotes the task cluster number; the tasks included, 

technology assigned, and the corresponding costs are summarized in the second, third, 

and fourth columns of the table. The total cost of the MTS design at the Saline Plant by 
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the CSP approach is $85,547,663. It took 1048 seconds to solve 208 flow network design 

problems and 0.24 seconds to solve one set partition problem.  

Table 6-13: Task-Technology Assignments of MTS Design for the Saline Plant 
Cluster No. Tasks Included Technology Cost 
105 4 AGV $10,322,680 
106 5 AGV $11,139,780 
110 9 AGV $17,269,180 
112 11 AGV $4,763,970 
134 22, 26 AGV $21,828,393 
136 14, 27 AGV $272,188 
137 12, 25 AGV $11,079,493 
143 7, 23 AGV $8,411,343 
175 19 FSC $4,098 
177 17, 18 FSC $4,015 
178 1 OTC $6,432 
179 2 OTC $46,432 
181 6 OTC $6,463 
182 8 OTC $19,126 
186 16 OTC $11,164 
196 13, 15 OTC $250,708 
199 3, 21 OTC $62,395 
200 10, 20, 24 OTC $49,801 
 

Table 6-13 only shows the MTS design for the Saline Plant from the perspective 

of task-technology assignments. There are some concerns about this design with respect 

to flow network designs. The flow network design of cluster 106 is shown in Figure 6-8. 

The assigned technology for cluster 106 is AGV and there is only one task in this cluster, 

t5. Notice that the flow network of cluster 106 uses an arc from node 52 to node 53. This 

means the aisle between node 52 and node 53 must have the clearance for the AGV 

system.  

The flow network design for another subsystem, cluster 177, is shown in Figure 

6-9. Cluster 177 has two tasks, t17 and t18, and the assigned technology is FSC. As 

shown in Figure 6-9, this cluster requires a floor-support conveyor system that starts at 

node 13, travels through workstation 273, cuts across the aisle between node 52 and node 

53, splits into two branches inside workstation 261, with one branch ending at node 22 
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and the other at node 21. These two flow network designs of clusters 106 and 177 leads 

to the flow path crossing at the aisle between node 52 and node 53.  

Other flow path crossings also exist between the flow network designs of cluster 

175, 112, 134, and 136 at aisles of node 47 and 51; clusters 175, 106, 110, 136, and 143 

at aisles of node 16 and 15; clusters 175, 106 and 136 at aisles of node 50 and 20. The 

MTS design for the Saline Plant by the CSP approach with the flow path crossing 

constraints is presented in the next Section. 
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Figure 6-8: Flow Network Design of Cluster 106 
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Figure 6-9: Flow Network Design of Cluster 177 

 

6.3.2 MTS Design of the Saline Plant with Flow Path Crossing Constraint 

In this section, we present the MTS design with flow path crossing constraints for the 

Saline Plant under the proposed CSP approach. A modeling technique is introduced in 

Section 5.3.3, and its corresponding network transformation is illustrated in Section 6.2.2. 

The same 208 task clusters and their flow network designs from previous section are 

used. According to the flow network designs, we introduced the flow path crossing 

constraints in the system-selection phase. The total cost of the MTS design by the CSP 

approach is $85,548,969. It takes 0.56 seconds to solve this set partition problem.  

The task-technology assignments of MTS design with flow path crossing 

constraints are summarized in Table 6-14. There are 17 task clusters chosen to partition 
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27 tasks. Compared to the assignments without considering flow path crossing 

constraints, the new design replaces the tasks assigned to FSC by assigning these tasks to 

OTC. Clusters 175 and 177 from Table 6-13 no longer exist in the new design. Tasks 17, 

18 and 19, associated with clusters 175 and 177, are assigned to OTC with task 20. In 

Table 6-13, task 20 belongs to the new three-task cluster 204 with tasks 10 and 24. A new 

cluster 193 includes task 10 and 14.  

From the perspective of cost, the difference of MTS designs with and without 

flow path crossing constraints is $1306. This means we can resolve the undesirable flow 

path crossings in Section 6.3.1 with a 0.0015% total cost increase.  

Table 6-14: Task-Technology Assignments of MTS Design with 
Flow Path Crossing Constraints for the Saline Plant 

Cluster No. Tasks Included Technology Cost 
105 4 AGV $10,322,680 
106 5 AGV $11,139,780 
110 9 AGV $17,269,180 
112 11 AGV $4,763,970 
134 22, 26 AGV $21,828,393 
136 14, 27 AGV $272,188 
137 12, 25 AGV $11,079,493 
143 7, 23 AGV $8,411,343 
178 1 OTC $6,432 
179 2 OTC $46,432 
181 6 OTC $6,463 
182 8 OTC $19,126 
186 16 OTC $11,164 
193 10, 24 OTC $46,682 
196 13, 15 OTC $250,708 
199 3, 21 OTC $62,395 
204 17,18,19,20 OTC $12,539 

 

6.3.3 Validation of the CSP Approach in the Saline Plant 

The proposed CSP approach does not guarantee that the MTS design of this approach is 

optimal. In the task-clustering phase, we only select some promising task clusters from 

all possible combinations based on our knowledge of MTS design problems. This does 
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make it possible to solve MTS design problems with reasonable size in a reasonable time. 

However, it does raise questions about the quality of solutions.  

In this section, we present experimental results on validating the proposed 

approach for the MTS design problem at the Saline Plant. We prepare four sets of 

experiments with six, eight, ten, and twelve tasks, respectively. Each set of experiment 

has three instances of MTS design problem whose tasks are selected from the 27 tasks of 

the Saline Plant. Thus, there are a total of 12 instances. The information of technology 

candidates and working networks remain the same as the full-scale MTS design problem 

of the Saline Plant.  

In these 12 instances, the tasks of 6A (instance A of six-task instances), 8A, 10A, 

and 12A are selected by tasks sharing the same origins. The tasks of 6B are selected by 

the tasks sharing the same destinations. The tasks of the remaining instances are selected 

randomly. For each instance, we solved the MTS design problem by both enumeration 

and the CSP approach. The results of these experiments are summarized in Table 6-15. 

For each instance, we record the total cost of both approaches (Enumeration and CSP), 

the cost differences, and the percentage of cost difference to the total cost of design by 

enumeration. For each set of 3 experiments, we compute the average percentage of cost 

difference. For the entire set of 12 experiments, we compute the overall average 

percentage of cost difference.  

The average percentage of cost difference over 12 instances is less than 1%. The 

individual differences averages of 4 experiment sets are presented in Figure 6-10. The 

instance with the largest difference, 3.34%, is 6C, and three instances, 6A, 6B, 8C, have 

the optimal solution by the CSP approach. More importantly, it seems there is no 

evidence that the difference percentage grows with the increasing of number of tasks. 
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Table 6-15: Summary of Validation Experiments 
Six-Task Instances 
Instance  A B C 
Enumeration $90,166 $9,406,550 $31,442,800 
CSP $90,166 $9,406,550 $32,493,900 
Difference $0 $0 $1,051,100 

Average Percentage 
of Cost Difference 
for Six-Task 
Instances 

Percentage 0.00% 0.00% 3.34% 1.11% 
Eight-Task Instances 
Instance  A B C 
Enumeration $41,198,700 $10,255,100 $14,897,400 
CSP $41,584,400 $10,258,700 $14,897,400 
Difference $385,700 $3,600 $0 

Average Percentage 
of Cost Difference 
for Eight-Task 
Instances 

Percentage 0.94% 0.04% 0.00% 0.32% 
Ten-Task Instances 
Instance  A B C 
Enumeration $36,611,900 $30,321,400 $14,961,700 
CSP $37,090,900 $31,326,900 $14,963,000 
Difference $479,000 $1,005,500 $1,300 

Average Percentage 
of Cost Difference 
for Ten-Task 
Instances 

Percentage 1.31% 3.32% 0.01% 1.54% 
Twelve-Task Instances 
Instance  A B C 
Enumeration $58,682,800 $50,986,300 $55,008,900 
CSP $59,569,800 $52,053,000 $55,076,100 
Difference $887,000 $1,066,700 $67,200 

Average Percentage 
of Cost Difference 
for Twelve-Task 
Instances 

Percentage 1.51% 2.09% 0.12% 1.24% 
Average Percentage of Cost Difference for 12 Instances 0.98% 
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Figure 6-10: Differences and Average Differences of Validation Experiments 

 132



6.4 Concluding Remarks 

In this chapter, we apply one of the proposed MTS design approaches, the CSP approach, 

to the MTS design problem of a motor parts manufacturing facility, FORD Saline Plant. 

We demonstrate the data preparation of the proposed approaches, both for the compact 

formulation and the CSP approach. The first MTS design for the Saline Plant has 18 task 

clusters for 27 tasks, for four technology candidates. Three types of technology are 

selected, unit-load AGV, floor-supported conveyor and overhead trolley conveyor. 

However, there are some conflicts at the aisle space between unit-load AGV and floor-

supported conveyor. By adding flow path crossing constraints and by transforming the 

conveyor working network, the second MTS design for the Saline Plant has 17 task 

clusters and two types of technology candidates: unit-load AGV and overhead trolley 

conveyor. These two MTS designs by the CSP approach show that we only need to 

sacrifice 0.0015% of total cost to avoid the undesirable flow path crossings. 

The MTS designs at the Saline Plant are examples of how the proposed CSP 

approach can make a contribution in the area of large-scale MTS design problems. The 

CSP approach is a heuristic approach. Since the existing MTS design of the Saline Plant 

was not available, we validate the CSP approach by comparing the designs of the CSP 

approach and those obtained by enumeration on smaller MTS design instances of the 

Saline Plant. We prepare four sets of experiments with six, eight, ten, and twelve tasks, 

respectively. Each set of experiment has three instances of MTS design problem whose 

tasks are selected from the 27 tasks. The results of 12 MTS design instances show that 

the largest difference by the CSP approach differs from optimality by 3.34%. More 

importantly, it seems there is no evidence that the difference percentage grows with the 

increasing of number of tasks. 
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CHAPTER 7 

CONCLUSION  

 

We conclude this dissertation in Section 7.1, summarize the major contributions to 

research in Section 7.2, and recommend directions for future work in Section 7.3. 

7.1 Conclusion  

This dissertation focuses on the material transport system design problem (MTSDP), 

integrating design problems of technology selection and flow network design. This 

research is motivated by the needs of designing the material transport system in general 

manufacturing plants. The objective of the MTSDP is to determine the material transport 

system (MTS) with minimum lifetime costs subject to service requirements, flow 

network restrictions, and availability of limited resources. In order to further study this 

problem, we characterize the MTSDP from the perspectives of task requirements, 

transport technology, and space utilization. A technology classification is proposed so 

that instances of transport technologies in the same class share the same properties. To 

facilitate the development of solution approaches of the MTSDP, a decision framework is 

proposed to emphasize the inter-relationship of three major decisions of the MTSDP: task 

grouping, flow network design, and task group and technology assignment. 

We propose two solution approaches for the MTSDP. The first one is the compact 

formulation (CF) approach where the three major decisions of the MTSDP are included 

in a mixed integer non-linear programming (MINLP) formulation. Due to the difficulties 

of solving large non-linear models, relaxation techniques are applied to linearize the 

model. The resulting mixed integer linear programming (MILP) formulation can be 
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solved by some powerful commercial solvers e.g., ILOG CPLEX, and its solution value 

provides a lower bound to the optimal value of the original problem.  

Although the compact formulation can be solved by commercial solvers, long 

solution times might limit its applicability. To reduce solution time, we propose a 

tightening technique for the MILP. Computational results show that solving an example 

problem with the tight formulation requires only 26% of the time compared to the 

original formulation. The memory requirement is also less than 33% compared to the 

original formulation. The experimental results also show that with the presence of 

significant control system costs, the designs with multiple-task clusters are more 

economical than designs restricted to single-task clusters. 

The second approach, the clustering/set partition (CSP) approach, decomposes the 

MTS design process into three phases: task clustering, network connecting, and system 

selection. For task clustering, we identify the important factors to be used for clustering. 

We formulate the flow network design problem in a general sense and specify the 

detailed flow network restrictions for six major transport technology classes. In the last 

phase, we formulate the system selection problem as a variant of the classical set partition 

problem to cope with the assignment and resource availability requirements. In general, 

the clustering/set partition approach is a sequential approach for three intertwined design 

decisions, with no guarantee of solution optimality.  

We perform computational experiments with a small example to compare three 

approaches: the clustering/set partition approach, a GREEDY approach from the 

literature, and enumeration. This problem has 9 tasks, 4 technologies, and the largest 

node size of the working networks is 25. For this example MTS design problem, the 

 135



proposed clustering/set partition approach finds the optimal solution, while GREEDY 

yields a solution costing 31.35% more.  

Similar comparison with another example is made for the compact formulation 

and the clustering/set partition approaches. This problem also has 9 tasks, 4 technologies, 

and the largest node size of the working networks is also 25. The solution value provided 

by the compact formulation is lower than the optimal value, which was obtained by 

enumeration. However, the desired empty travel ratios are violated. When the empty 

travel ratios are enforced in the CF solution, the adjusted solution value is 0.13% higher 

than the optimal solution. 

Finally, we apply the clustering/set partition approach, to a real world application 

of the MTSDP. The FORD Saline plant is a parts manufacturing facility of one of the 

largest automotive companies in the world. In this case problem, we show how to 

compile raw data into appropriate format of the proposed approach, and how to perform 

network transformation to avoid flow path crossing. We compare the resulting designs 

with and without flow path crossing constraints. Since the clustering/set partition 

approach is a heuristic, we perform a set of experiments to verify the solution quality of 

the approach based on 12 task sets of the Saline plant. The results show that the largest 

difference from optimality is 3.34%, and the average is 0.98%. More importantly, it 

seems there is no evidence that the difference percentage grows with an increase in the 

number of tasks, based on these experiments.  

7.2 Research Contributions 

Following is a summary of major contributions of this research. 

• The Material Transport System Design Problem 
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To the best of our knowledge, this is the first attempt of studying two 

isolated problems in the literature, the material transport technology selection 

problem and the flow network design problem in such an integrated and detailed 

manner. We consider fixed and variable costs, empty travel, connectivity 

requirements, arc capacities, directionality, working network, I/O definition, and 

distance measures in our formulation. From the perspective of technology 

selection, solving the MTSDP as an integrated problem can make the resulting 

designs more economical and realistic. From the perspective of flow network 

design, this research provides solution approaches that allow multiple 

technologies.  

• A Technology Classification and Decision Framework of the MTSDP 

To simplify the flow network modeling, we provide a technology 

classification that categorizes the commonly used transport technologies in 

manufacturing into six categories. The design decisions involved in the MTSDP 

are also provided and their relationships are discussed. 

• A Compact Formulation for the MTSDP 

A compact mixed integer non-linear formulation is proposed for the 

MTSDP. Some linear approximations techniques are adopted to linearize the 

model: a set of inequalities provides lower and upper bounds for the empty travel 

ratio. 

• Clustering/Set-Partition Approach for the MTSDP 

We also propose a clustering/set partition approach for the MTSDP by 

synthesizing the methodologies of statistical clustering and optimization into an 

integrated solution approach. This approach is a heuristic because we only 
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consider a subset of all possible solutions. The solution quality of this approach is 

validated through a real-world application. 

• A Flow Network Design Formulation for Overhead Trolley Conveyors 

Due to the mechanical requirements, overhead trolley conveyor requires a 

closed trail network structure for its operations. We extend the standard flow 

network formulation to cover this specialized network structure. 

• A Modeling and Network Transformation for Flow Path Crossing Constraints 

To the best of our knowledge, this is the first quantitative method to 

resolve the flow path crossing conflict. In the literature, previous approaches 

usually rely on human expertise to avoid flow path crossing. 

• A Case Problem based on Real World Data 

Through the literature survey in the domain of material transport system 

design, we found that there are very few real world applications. In this 

dissertation, we provide a material transport system design application in the 

FORD Saline plant, including the data preparation for the proposed approaches.  

7.3 Future Research 

Following is a summary of some possible research directions based on this research. 

• Clustering Criteria and Procedures for Task Clustering 

In this research, we propose three clustering criteria as the distance 

measures for some hierarchical clustering procedures. These criteria are used for 

identifying promising task clusters from the perspective of merging, chaining, and 

balancing flows of tasks. More criteria that concern other aspects of task 

clustering might benefit the solution qualities of the CSP approach. The 
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incorporation of other clustering procedures, e.g., K-means or other 

nonhierarchical procedures, may also lead to a more economical MTS design. 

• Alternative Solution Algorithms for Flow Network Design Problem of Overhead 

Trolley Conveyors 

In this research, we solve all flow network design problems by a 

commercial solver. If such a solver is not available, alternative algorithms are 

required to provide flow network designs. Fortunately, some previous researches 

provided such alternatives for some of the flow network design problems, e.g., 

Balakrishnan (1984) and Bakkalbasi (1990). However, the applicability of these 

works to the flow network design problem of overhead trolley conveyors requires 

further investigations. 

• Multimode for the Fulfillment of Transportation Requests 

In this research, we do not consider the situations where an individual 

transportation request can be handled by more than one technology, and thus 

requires a transfer from one mode to another. In some applications, multimode 

travel could be a legitimate option. This extension could be made from the 

proposed approaches by considering possible multimode opportunities for a task 

and some modeling changes. 

• Robust Material Transport System Design  

In this research, we assume that the information of transport requirements, 

in terms of the quantity and the source/destination of a task, is known with 

certainty. However, demands change, and this can affect the suitability of an 

existing MTS design. How to consider demand uncertainty in the design of 

material transport system is an important research area.  
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APPENDIX A 

COST STRUCTURE 

 

In this section, we provide the cost structure of the technology classes studied in this 

research. The cost components included are directly related to the procurement and the 

uses of a technology to perform transportation services. The costs are measured in a pre-

specified time period. 

Before the detailed discussion of cost structure for each technology class, some 

general notations are defined here. Let xtk be a binary variable with value 1, if task t is 

assigned to cluster k; 0, otherwise. Let yij be a binary variable with value 1, if arc ( ) is 

used; 0, otherwise. Let  be a positive continuous variable denote the number of unit 

flow of task t traversing on arc ( ). 

ji,

t
ijf

ji,

A.1 Cost Structure of Technology Class EVA 

• c1: Purchase price per unit vehicle 

Purchase cost of vehicle = c1× (Number of vehicles) 

• c2: Battery/charger expense per unit vehicle 

Power consumption = c2× (Number of vehicles) 

• c3: Maintenance cost per unit vehicle 

Maintenance cost (vehicle) = c3× (Number of vehicles) 

• c4: Guide path per unit length 

Guide path cost = c4× (length of path segment) 

• c5: Space cost per unit length 

Space consumption = c5× (length of path segment) 
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• c6: Maintenance cost per unit length 

Maintenance cost (Guide path) = c6× (length of path segment) 

• c7: Merges/diverges/connections cost per unit length 

Connection cost = c7× (length of path segment) 

Consider a material transport (sub) system, task-resource combination k, whose 

transport technology belongs to technology class EVA. Denote to be the distance of arc 

( ), 

ijd

ji, µ to be the operating speed of the technology, and  to be the time available of a 

technology for operation in a time period. The number of vehicles required for arc ( ) 

per time period, , can be approximated as follows. 

at

ji,

),( jiΦ

(∑ ∈=Φ )(:),( kTtf
t
d

ji t
ij

a

ij

µ
)  (A.1) 

Let  denotes the cost of unit flow traverse on arc ( ).  and the 

network operating cost of a E

)(VAvcij ji, )(VAvcij

VA system, , can be modeled as follows.. )( VAv EC

st
d

cccVAvc
a

ij
ij )()( 321 ++=  

∑ ∈∈∑= )),(,:)(()( kk
t

ijij
VAv AjiTtfVAvcEC  (A.2) 

Let  denotes the cost of including arc ( ). and the network 

construction cost of an E

)(VAfcij ji, )(VAfcij

VA system, , can be modeled as follows. )( VAf EC

ijij dccccVAfc )()( 7654 +++=  

( )( )∑ ∈= kijij
VAf AjiyVAfcEC ),(:)(  (A.3) 

The cost of control system of an EVA system, , is modeled as the sum of a 

fixed cost , incurred when the control device is purchased, and a incremental cost, 

, increased proportionally with the number of tasks serviced. 

)( VAC EC

1CC

2CC
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Let denote the capital investment of a task-resources combination k and 

 can be modeled as follows: 

)( VAECC

)( VAECC

( )( ) ( )∑ +∑ ∈+++∈Φ= VAC
kijijk

VA ECAjiydcccAjijicECC ),(:)(),(:,)( 7541   

 (A.5) 

Let denote the total cost of a task-resources combination k and  

can be modeled as follows: 

)( VAETC )( VAETC

)()()()( VACVAfVAvVA ECECECETC ++=  (A.6) 

A.2 Cost Structure of Technology Class EVM 

• c1: Purchase price per unit vehicle 

Purchase cost of vehicle = c1× (Number of vehicles) 

• c2: Operating personnel 

Labor cost = c2× (Number of vehicles) 

• c3: Power and/or fuel consumption per unit vehicle 

Power consumption = c3× (Number of vehicles) 

• c4: Maintenance cost per unit vehicle 

Maintenance cost = c4× (length of path segment) 

• c5: Space cost per unit length 

Space consumption = c5× (length of path segment) 

• c6: Maintenance cost per unit length 

Maintenance cost (flow path) = c6× (length of path segment) 
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Consider a material transport (sub) system, task-resource combination k, whose 

transport technology belongs to technology class EVM. The number of vehicles required 

can be obtained by formula (A.1).  

Let  denotes the cost of unit flow traverse on arc ( ). and the 

network operating cost of a E

)(VMvcij ji, )(VMvcij

VM system, , can be modeled as follows. )( VMv EC

µa

ij
ij t

d
ccccVMvc )()( 4321 +++=  

∑ ∈∈∑= )),(),(:)(()( k
t

ijij
VMv AjikTtfVMvcEC  (A.7) 

Let  denotes the cost of including arc ( ). and the network 

construction cost of an E

)(VMfcij ji, )(VMfcij

VM system, , can be modeled as follows. )( VMf EC

ijij dccVMfc )()( 65 +=  

( )( )∑ ∈= kijij
VMf AjiyVMfcEC ),(:)(  (A.8) 

The cost of control system of an EVM system, , is modeled as the sum of 

a fixed cost , incurred when the control device is purchased, and a incremental cost, 

, increased proportionally with the number of tasks serviced. 

)( VMC EC

1CC

2CC
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tk

C
kk
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Let denote the capital investment of a task-resources combination k and 

 can be modeled as follows: 

)( VMECC

)( VMECC

( )( ) (∑ +∑ ∈+∈Φ= VMC
kijijk

VM ECAjiydcAjijicECC ),(:),(:,)( 51 ) (A.10) 

Let denote the total cost of a task-resources combination k and  

can be modeled as follows: 

)( VMETC )( VMETC
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)()()()( VMCVMfVMvVM ECECECETC ++=  (A.11) 

A.3 Cost Structure of Technology Class EC 

• c1: Purchase price per unit length 

Purchase cost of conveyor = c1× (Number of unit length) 

• c2: Power consumption of loaded travel per unit length 

Power consumption (loaded) = c2× (Utilization) 

• c3: Power consumption of empty travel per unit length 

Power consumption = c3× (1 - Utilization) 

• c4: Maintenance cost per unit length 

Maintenance cost = c4× (length of path segment) 

• c5: Space cost per unit length 

Space consumption = c5× (length of path segment) 

• c6: Merges/diverges/connections cost per segment 

Connection cost = c6× (length of path segment) 

Denote l to be the unit length of conveyor e. The number of unit length required 

for arc ( ) can be approximated by ji, ijd
l
1 . The utilization of conveyor e on arc ( ), 

, can be approximated as follows: 

ji,

),( jiU

(∑ ∈= )(:),( kTtf
t
d

jiU t
ij

a

ij

µ
) (A.12) 

Let  denotes the cost of unit flow traverse on arc ( ).  and the 

network operating cost of a E

)(Cvcij ji, )(Cvcij

C system, , can be modeled as follows: )( Cv EC
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Let  denotes the cost of including arc ( ). and the network 

construction cost of an E

)(Cfcij ji, )(Cfcij

C system, , can be modeled as follows. )( Cf EC

ijij dcccc
l

Cfc ⎟
⎠
⎞

⎜
⎝
⎛ +++= 6541
1)(  

( )( )∑ ∈= kijij
Cf AjiyCfcEC ),(:)(  (A.14) 

The cost of control system of an EC system, , is modeled as the sum of a 

fixed cost , incurred when the control device is purchased, and a incremental cost, 

, increased proportionally with the number of tasks serviced. 
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Let denote the capital investment of a task-resources combination k and 

 can be modeled as follows: 

)( CECC

)( CECC

( ) ( )( (∑ +∈++= CC
kijij

ijC ECAjiycdc
l

d
cECC ,:)( 651 ) ) (A.16) 

Let denote the total cost of a task-resources combination k and  

can be modeled as follows: 

)( CETC )( CETC

)()()()( CCCfCvC ECECECETC ++=  (A.17) 

A.4 Cost Structure of Technology Class EOP and EOT 

• c1: Purchase price per unit carrier 

Purchase cost of carrier = c1× (Number of carriers) 

• c2: Power consumption per unit carrier 

Power consumption = c2× ( Number of carriers) 
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• c3: Maintenance cost per unit vehicle 

Maintenance cost (carrier) = c3× (Number of carriers) 

• c4: Hardware support (track) per unit length 

Guide path cost = c4× (length of path segment) 

• c5: Maintenance cost per unit length 

Maintenance cost (guide path) = c5× (length of path segment) 

• c6: Merges/diverges/connections cost per unit length 

Connection cost (Guide path) = c6× (length of path segment) 

The cost structure of technology class EOP and EOT are the same. For ease of 

illustration, technology class EO is used as representative class. The number of carriers 

required on arc ( ) can be obtained by the formula (A.1).  ji,

Let  denotes the cost of unit flow traverse on arc ( ), and The 

network operating cost of a E

)(Ovcij ji, )(Ovcij

O system, , can be modeled as follows. )( Ov EC

µa

ij
ij t

d
cccOvc )()( 321 ++=  

∑ ∈∈∑= )),(),(:)(()( k
t

ijij
Ov AjikTtfOvcEC  (A.18) 

Let  denotes the cost of including arc ( ).  and the network 

construction cost of an E

)(Ofcij ji, )(Ofcij

O system, , can be modeled as follows: )( Of EC

ijij dcccOfc )()( 654 ++=  

( )( )∑ ∈= kijij
Of AjiyOfcEC ),(:)(  (A.19) 

The cost of control system of an EO system, , is modeled as the sum of a 

fixed cost , incurred when the control device is purchased, and a incremental cost, 

, increased proportionally with the number of tasks serviced. 

)( OC EC

1CC

2CC
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Let denote the capital investment of a task-resources combination k and 

 can be modeled as follows: 

)( OECC

)( OECC

( )( ) ( ) ( )( ) (∑ +∑ ∈++∈Φ= OC
kijijk
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Let denote the total cost of a task-resources combination k and  

can be modeled as follows: 

)( OETC )( OETC

)()()()( OCOfOvO ECECECETC ++=  (A.22) 

A.5 Cost Structure of Technology Class EB 

• c1: Power consumption per unit distance 

Power consumption = c1× (travel distance per time period) 

• c2: Maintenance cost 

• c3: Purchase cost of hoist 

• c4: Hardware support (track) per unit length 

Guide path cost = c4× (length of rectangle) 

• c5: Maintenance cost per unit length 

Maintenance cost (guide path) = c5× (length of rectangle) 

Let  denotes the cost of unit flow traverse on from node i to node j and 

 denotes to be the Chybechev distance between node i and j. and the 

network operating cost of a E

)(Bvcij

( jiL ,∞ ) )(Bvcij

B system, , can be modeled as follows. )( Bv EC

( )jiLcBvcij ,)( 1 ∞=  
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t

ijij
Bv  (A.23) 
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Let  denotes the unit fixed cost of an E)(Bfcij
B system, cost of rectangle with 

length . and the network construction cost of an Eijd )(Bfcij
B system, , can be 

modeled as follows. 

)( Bf EC

54)( ccBfcij +=  

32)()( ccdBfcEC ijij
Bf ++=  (A.24) 

The cost of control system of an EB system, , is modeled as the sum of a 

fixed cost , incurred when the control device is purchased, and a incremental cost, 

, increased proportionally with the number of tasks serviced. 
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Let denote the capital investment of a task-resources combination k and 

 can be modeled as follows: 

)( BECC

)( BECC

( )BC
ij

B ECdcccECC +++= 432)(  (A.26) 

Let denote the total cost of a task-resources combination k and  

can be modeled as follows: 

)( BETC )( BETC

)()()()( BCBfBvB ECECECETC ++=  (A.27) 
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