Title:
A characterization of the human G protein-coupled receptor, lysophosphatidic acid1 : its intracellular trafficking and signaling consequences on the tumor suppressor, P53

Thumbnail Image
Author(s)
Murph, Mandi Michelle
Authors
Advisor(s)
Radhakrishna, Harish
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Series
Supplementary to
Abstract
Lysophosphatidic acid (LPA) is a mitogenic lipid that enhances cell growth, proliferation and motility through binding and activation of at least four receptors, LPA1/Edg2, LPA2/Edg4, LPA3/Edg7, and PPAR and #947;. Here, we show that LPA stimulation inhibits the cell cycle regulator and tumor suppressor, p53. Ten M LPA reduced the cellular levels of total p53 and p53 phosphorylated at serine 15 by approximately 50% in A549 cells and this effect was sustained for at least 6 h. This resulted in a corresponding decrease in p53-mediated transcription. Transient-transfection of the Edg-family LPA receptors, LPA1-3 in HepG2 cells, which do not respond to LPA, also showed this inhibitory response. The response was specific to LPA receptors since neither Gi-coupled M2 muscarinic acetylcholine receptors, nor a mutant LPA1 receptor (LPA1 R124A), which is unable to bind LPA, inhibited p53 activity. Both transient-transfection of the LPA-degrading lipid phosphate phosphatase-1 (LPP-1), or exogenous addition of phospholipase B, which decreases exogenous lysophosphatidate, reversed the LPA receptor-induced decrease in p53-mediated transcription. Although pertussis toxin did not prevent the inhibition of p53, a mutant LPA1 receptor (LPA1 and #8710;361), which lacks the C-terminal PDZ-binding domain, failed to inhibit p53 function. This establishes LPA-mediated inhibition of p53 function requires an interaction with PDZ-containing proteins. These data establish a novel role for LPA-mediated receptor activation in diminishing p53 activity; which, in addition to LPAs well-characterized effects on growth-promoting signaling pathways, is likely to contribute to the survival and proliferation of cancer cells. Of the Edg-family LPA receptors, the LPA1 receptor is the most widely expressed. In the next study, we investigated the agonist-induced endocytosis of the human LPA1 receptor, bearing an N-terminal FLAG epitope tag, in stably transfected HeLa cells. LPA treatment induced the rapid endocytosis of approximately 40% of surface LPA1 within 15 minutes. Internalization was dose dependent and LPA specific since neither lysophophatidylcholine nor sphingosine-1-phosphate induced LPA1 endocytosis. Removing agonist following incubation resulted in LPA1 recycling back to the surface. LPA1 internalization was strongly inhibited by dominant-inhibitory mutants of both dynamin2 (K44A) and Rab5a (S34N). Finally, our results indicate that LPA1 exhibits basal, LPA-dependent internalization in the presence of serum-containing medium.
Sponsor
Date Issued
2005-04-26
Extent
10292219 bytes
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI