dQUOB: Managing Large Data Flows by Dynamic Embedded Queries

Thumbnail Image
Plale, Beth
Schwan, Karsten
Associated Organization(s)
Organizational Unit
Supplementary to
The dQUOB System is a compiler and run-time environment used to embed computational entities called Quoblets into high-volume data streams. The data streams we speak of are the flows of data that exist in large-scale visualizations, video streaming to a large number of distributed users, and high volume business transactions. The dQUOB system lets a person specify application-specific queries to control the data flow, that is, queries that examine the data flow and make decisions prior to computations being performed. Through coupling queries and computations, the decision-making of a computational entity is enhanced and more broadly, the scalability of the entire data flow increased. The first goal of the paper is to provide an overview of the dQUOB system focussed on the features that make it useful for data streaming in grid-based computing environments. Our second goal is to establish the strength of the dQUOB system through measurement. By benchmarking an embedded query/computation object, we can determine its overhead cost. By using application specific data and computations, we explore the cases where embedded computation and dynamic changes to the computation make sense from a cost tradeoff point of view. Finally, we demonstrate the ability of queries to reduce end-to-end latency to show that the query itself must be written with care.
Date Issued
297968 bytes
Resource Type
Resource Subtype
Technical Report
Rights Statement
Rights URI