Additively Manufactured RF Components, Packaging, Modules, and Flexible Modular Phased Arrays Enabling Widespread Massively Scalable mmWave/5G Applications

Thumbnail Image
He, Tony
Tentzeris, Emmanouil M.
Associated Organization(s)
Supplementary to
The 5G era is here and with it comes many challenges, particularily facing the high frequency mmWave adoption. This is because of the cost to implement such dense networks is much greater due to the high propagation losses of signals that range from 26 GHz to 40 GHz. Therefore there needs to be a way to utilize a method of fabrication that can change with the various environments that 5G will be deployed in, be it dense urban areas or suburban sprawl. In this research, the focus is on making these RF components utilized for 5G at low cost and modular with a focus on additive manufacturing. Since additive manufacturing is a rapid prototyping technique, the technology can be quickly adjusted and altered to meet certain specifications with negligible overhead. Several areas of research will be explored. Firstly, various RF passive components such as additively manufactured antennas and couplers with a combination hybrid inkjet and 3D printing will be discussed. Passive components are critical for evaluating the process of additive manufacturing for high frequency operation. Secondly, various structures will be evaluated specifically for packaging mmWave ICs, including interconnects, smart packaging and encapsulants for use in single or multichip modules. Thirdly, various antenna fabrication techniques will be explored which enables fully integrated ICs with antennas, called System on Antenna (SoA) which utilizes both inkjet and 3D printing to combine antennas and ICs into modules. These modules, can then be built into arrays in a modular fashion, allowing for large or smaller arrays to be assembled on the fly. Finally, a method of calibrating the arrays is introduced, utilizing inkjet printed sensors. This allows the sensor to actively detect bends and deformations in the array and restore optimal antenna array performance. Built for flexible phased arrays, the sensor is designed for implementation for ubiquitous use, meaning that its can be placed on any surface, which enables widespread use of 5G technologies.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI