Frustrated Magnetism and Searching For Quantum Spin Liquid Phases in Novel Materials

Thumbnail Image
Bender, Darian Marie
Mourigal, Martin
Associated Organization(s)
Organizational Unit
Organizational Unit
Organizational Unit
Supplementary to
In my research, I wish to classify and identify a possible Quantum Spin-Liquid (QSL) phase on novel quantum materials. Materials of interest include the two triangular lattice materials, Li4CoTeO6 and Li4NiTeO6, in which Ni and Co ions with effective spin-1 and spin-1/2 each occupy a triangular lattice. We performed thermodynamic and magnetization measurements which indicate a possible exotic magnetic ground-state in both materials. We then performed elastic neutron scattering, providing additional evidence for exotic magnetism in these materials. Inelastic neutron scattering measurements are still necessary to probe the nature of the magnetic correlations and to confirm a QSL phase. Another material of interest is the kagomé lattice material, KFe3(OH)6(SO4)2 (known as Fe-Jarosite). This material is a popular QSL.1, 2 Small crystals of Fe-Jarosite have been created by hydrothermal synthesis in Mourigal Lab, and preliminary measurements of magnetization are in good agreement with known values.1, 3 Neutron scattering is required to study this material’s spin-dynamics, however, scattering is weak. Therefore, further synthesis attempts must be performed in order to increase the size of single-crystals of Fe-Jarosite from 2.6 mm to 1.0 cm.
Date Issued
Resource Type
Resource Subtype
Undergraduate Thesis
Rights Statement
Rights URI