A New Approach to Integrated Wing Design in Conceptual Synthesis and Optimization

Thumbnail Image
DeLaurentis, Daniel A.
Cesnik, Carlos Eduardo Stolf
Lee, Jae-Moon
Mavris, Dimitri N.
Schrage, Daniel P.
Associated Organizations
Supplementary to
Design-oriented analysis has become increasingly important as more and more problems traditionally solved in isolation are being approached from a multidisciplinary point of view. One such problem is the aeroelastic optimization of supersonic transport wings. Whereas simplified analytical techniques may not be sophisticated enough, and complex numerical models may be too cumbersome, this paper puts forward a new approach to achieving a balance between modeling fidelity and required accuracy. Higher fidelity analysis techniques, usually associated with design stages where key geometric variables have been fixed, are used to model a design space consisting of these important geometric variables. This is accomplished through the combined use of a Design of Experiment/Response Surface Method technique and parametric analysis tools (including an automated finite element grid generation procedure). The result is a prediction method for the structural weight of an aeroelastically optimized wing for use in an Integrated Product and Process Development environment, where cost, performance, and manufacturing trades can be accomplished. The technique is to be demonstrated on the aeroelastic design of a wing for a generic High Speed Civil Transport, based on a select set of planform and airfoil design variables. Finally, a framework for evaluating new technologies within the aeroelastic optimization is outlined.
Date Issued
94284 bytes
Resource Type
Resource Subtype
Rights Statement
Rights URI