Title:
Some new applications of phase information to speech processing
Some new applications of phase information to speech processing
Authors
Li, Kehuang
Authors
Advisors
Lee, Chin-Hui
Advisors
Person
Associated Organizations
Organizational Unit
Organizational Unit
Series
Collections
Supplementary to
Permanent Link
Abstract
With the fast growing of deep neural network models, more and more tasks have been boosted when move on to deep models. Speech processing applications, e.g., speech enhancement, speech bandwidth expansion, dereverberataion, and etc., are also benefited. Most deep models focus more on improving the estimation of the spectral magnitude. However, there are evidences showing that the phase spectra are as well informative. Therefore, this dissertation investigates practical approaches to recover the spectral phase by resolving two inconsistency issues, i.e., frame-length inconsistency and frame-overlap inconsistency, leveraging the success of convex programming and alternating projection, respectively. Furthermore, frameworks to integrate both of the methods are explored. The proposed approaches and frameworks, taking advantage of some speech signal characteristics, have very limited number of assumptions, and therefore can be applied to various speech processing tasks.
Sponsor
Date Issued
2019-01-15
Extent
Resource Type
Text
Resource Subtype
Dissertation