Title:
Understanding and Designing Interfaces and Defects in Perovskite Solar Cells
Understanding and Designing Interfaces and Defects in Perovskite Solar Cells
Authors
Correa-Baena, Juan-Pablo
Advisors
Collections
Supplementary to
Permanent Link
Abstract
Perovskite solar cells promise to yield efficiencies beyond 30% by further improving the quality of the materials and devices. Electronic defect passivation, and suppression of detrimental charge-carrier recombination at the different device interfaces has been used as a strategy to achieve high performance perovskite solar cells. In this presentation, I will discuss the role of electronic defects and how these can be passivated to improve charge-carrier lifetimes and to achieve high open-circuit voltages. I will discuss the characterization of 2D and 3D defects, such as grain boundaries, crystal surface defects, and precipitate formation within the films, by synchrotron-based techniques. The importance of interfaces and their contribution to detrimental recombination will also be discussed. As a result of these contributions to better understanding 2D and 3D defects, the perovskite solar cell field has been able to improve device performance. Albeit the rapid improvements in performance, there is still a need to improve these defects to push these solar cells beyond the current state-of-the-art.
Sponsor
Date Issued
2020-01-28
Extent
57:28 minutes
Resource Type
Moving Image
Resource Subtype
Lecture