Title:
Fast interconnection analysis of PV systems using vector quantization
Fast interconnection analysis of PV systems using vector quantization
Author(s)
Deboever, Jeremiah
Advisor(s)
Grijalva, Santiago
Editor(s)
Collections
Supplementary to
Permanent Link
Abstract
The objective of the proposed research is to develop fast interconnection analysis to assess solar photovoltaic (PV) system impacts on distribution networks. As emerging technologies, such as solar PV, continue to be installed on the grid, the ways distribution systems are being planned and operated are rapidly changing. Conventional scenario-based simulation may not be sufficient to capture the different impacts that new PV system interconnections introduce, which creates the need for advanced simulation techniques. Quasi-Static Time-Series (QSTS) simulation provides a realistic model of the operation of distribution feeders but its computational burden is impractical. In this work, a fast QSTS algorithm is presented that is capable of reducing the computational time by up to 99% with minimal error. The key contribution of this work is the formulation of an algorithm capable of: (i) drastically reducing the computational time of QSTS simulations, (ii) accurately modeling distribution system voltage-control elements with delays and deadbands, and (iii) efficiently compressing result time series data for post-simulation analysis. Furthermore, significant efforts are dedicated towards the scalability and robustness of the algorithm with the objective to implement it in commercial software such as CYME or OpenDSS.
Sponsor
Date Issued
2018-04-03
Extent
Resource Type
Text
Resource Subtype
Dissertation