Title:
A Factor Graph Approach To Constrained Optimization

Thumbnail Image
Author(s)
Jimenez Rodriguez, Ivan Dario Dario
Authors
Advisor(s)
Dellaert, Frank
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Supplementary to
Abstract
Several problems in robotics can be solved using constrained optimization. For example, solutions in areas like control and planning frequently use it. Meanwhile, the Georgia Tech Smoothing and Mapping (GTSAM) toolbox provides a straight forward way to represent sparse least-square optimization problems as factor graphs. Factor graphs, are a popular graphical model to represent a factorization of a probability distribution allowing for efficient computations. This paper demonstrates the use of the GTSAM and factor graphs to solve linear and quadratic constrained optimization programs using the active set method. It also includes an implementation of a line search method for sequential quadratic programming that can solve nonlinear equality constrained problems. The result is a constrained optimization framework that allows the user to think of optimization problems as solving a series of factor graphs and is open-source.
Sponsor
Date Issued
2016-12
Extent
Resource Type
Text
Resource Subtype
Undergraduate Thesis
Rights Statement
Rights URI