AxBench: A Benchmark Suite for Approximate Computing Across the System Stack

Thumbnail Image
Yazdanbakhsh, Amir
Mahajan, Divya
Lotfi-Kamran, Pejman
Esmaeilzadeh, Hadi
Associated Organization(s)
Organizational Unit
Organizational Unit
Supplementary to
As the end of Dennard scaling looms, both the semiconductor industry and the research community are exploring for innovative solutions that allow energy efficiency and performance to continue to scale. Approximation computing has become one of the viable techniques to perpetuate the historical improvements in the computing landscape. As approximate computing attracts more attention in the community, having a general, diverse, and representative set of benchmarks to evaluate different approximation techniques becomes necessary. In this paper, we develop and introduce AxBench, a general, diverse and representative multi-framework set of benchmarks for CPUs, GPUs, and hardware design with the total number of 29 benchmarks. We judiciously select and develop each benchmark to cover a diverse set of domains such as machine learning, scientific computation, signal processing, image processing, robotics, and compression. AxBench comes with the necessary annotations to mark the approximable region of code and the application-specific quality metric to assess the output quality of each application. AxBenchwith these set of annotations facilitate the evaluation of different approximation techniques. To demonstrate its effectiveness, we evaluate three previously proposed approximation techniques using AxBench benchmarks: loop perforation [1] and neural processing units (NPUs) [2–4] on CPUs and GPUs, and Axilog [5] on dedicated hardware. We find that (1) NPUs offer higher performance and energy efficiency as compared to loop perforation on both CPUs and GPUs, (2) while NPUs provide considerable efficiency gains on CPUs, there still remains significant opportunity to be explored by other approximation techniques, (3) Unlike on CPUs, NPUs offer full benefits of approximate computations on GPUs, and (4) considerable opportunity remains to be explored by innovative approximate computation techniques at the hardware level after applying Axilog.
Date Issued
Resource Type
Resource Subtype
Technical Report
Rights Statement
Rights URI