Cellular Response to Surface Wettability Gradient on Microtextured Surfaces

Thumbnail Image
Plaisance, Marc Charles
Boyan, Barbara D.
Associated Organization(s)
Supplementary to
Objective: Topography, chemistry, and energy of titanium (Ti) implants alter cell response through variations in protein adsorption, integrin expression, and downstream cell signaling. However, the contribution of surface energy on cell response is difficult to isolate because altered hydrophilicity can result from changes in surface chemistry or microstructure. Our aim was to examine a unique system of wettability gradients created on microstructured Ti on osteoblast maturation and phenotype. Method: A surface energy gradient was created on sand-blasted/acid-etched (SLA) Ti surfaces. Surfaces were treated with oxygen plasma for 2 minutes, and then allowed to age for 1, 12, 80, or 116 hours to generate a wettability gradient. Surfaces were characterized by contact angle and SEM. MG63 cells were cultured on SLA or experimental SLA surfaces to confluence on TCPS. Osteoblast differentiation (IBSP, RUNX2, ALP, OCN, OPG) and integrin subunits (ITG2, ITGA5, ITGAV, ITGB1) measured by real-time PCR (n=6 surfaces per variable analyzed by ANOVA/Bonferroni’s modified Student’s t-test). Result: After plasma treatment, SLA surface topography was retained. A gradient of wettability was obtained, with contact angles of 32.0° (SLA116), 23.3° (SLA80), 12.5° (SLA12), 7.9° (SLA1). All surfaces were significantly more hydrophilic than the original SLA surface (126.8°). Integrin expression was affected by wettability. ITGA2 was higher on wettable surfaces than on SLA, but was highest on SLA1. ITGAV and ITGB1 were decreased on hydrophilic surfaces, but ITGA5 was not affected. IBSP, RUNX2, and ALP increased and OPG decreased with increasing wettability. OCN decreased with increasing wettability, but levels on the most wettable surface were similar to SLA. Conclusion: Here we elucidated the role of surface energy on cell response using surfaces with the same topography and chemistry. The results show that osteoblastic maturation was regulated in a wettability-dependent manner and suggest that the effects are mediated by integrins.
Date Issued
Resource Type
Resource Subtype
Undergraduate Thesis
Rights Statement
Rights URI