Cross-scale model validation with aleatory and epistemic uncertainty

Thumbnail Image
Blumer, Joel David
Wang, Yan
McDowell, David L.
Associated Organization(s)
Supplementary to
Nearly every decision must be made with a degree of uncertainty regarding the outcome. Decision making based on modeling and simulation predictions needs to incorporate and aggregate uncertain evidence. To validate multiscale simulation models, it may be necessary to consider evidence collected at a length scale that is different from the one at which a model predicts. In addition, traditional methods of uncertainty analysis do not distinguish between two types of uncertainty: uncertainty due to inherently random inputs, and uncertainty due to lack of information about the inputs. This thesis examines and applies a Bayesian approach for model parameter validation that uses generalized interval probability to separate these two types of uncertainty. A generalized interval Bayes’ rule (GIBR) is used to combine the evidence and update belief in the validity of parameters. The sensitivity of completeness and soundness for interval range estimation in GIBR is investigated. Several approaches to represent complete ignorance of probabilities’ values are tested. The result from the GIBR method is verified using Monte Carlo simulations. The method is first applied to validate the parameter set for a molecular dynamics simulation of defect formation due to radiation. Evidence is supplied by the comparison with physical experiments. Because the simulation includes variables whose effects are not directly observable, an expanded form of GIBR is implemented to incorporate the uncertainty associated with measurement in belief update. In a second example, the proposed method is applied to combining the evidence from two models of crystal plasticity at different length scales.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI