Title:
Electro-thermo-mechanical characterization of stress development in AlGaN/GaN HEMTs under RF operating conditions

Thumbnail Image
Author(s)
Jones, Jason Patrick
Authors
Advisor(s)
Graham, Samuel
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Gallium nitride (GaN) based high electron mobility transistors (HEMTs) offer numerous benefits for both direct current (DC) and radio frequency (RF) power technology due to their combination of large band gap, high electrical breakdown field, high peak and saturation carrier velocity, and good stability at high temperatures. In particular, AlGaN/GaN heterostructures are of great interest because of the unique conduction channel that develops as a result of the spontaneous and piezoelectric polarization that occurs in these layers. This channel is a vertically confined plane of free carriers that is often called a 2 dimensional electron gas (or 2DEG). Although these devices have shown an improvement in performance over previous heterostructures, reliability issues are a concern because of the high temperatures and electric fields that develop during operation. Therefore, characterizing electrical and thermal profiles within AlGaN/GaN HEMTs is critical for understanding the various factors that contribute to device failures. Little research has been performed to model and characterize these devices under RF bias conditions, and is therefore of great interest. Under pulsed conditions, a single cycle consists of an “on-state” period where power is supplied to the device and self-heating occurs, followed by an “off-state” period where no power is supplied to the device and the device cools. The percentage of a single cycle in which the device is powered is called the duty cycle. In this work, we present a coupled electro-thermo-mechanical finite-element model for describing the development of temperature, stress, and strain profiles within AlGaN/GaN HEMTs under DC and AC power conditions for various duty cycles. It is found that bias conditions including source-to-drain voltage, source-to-gate voltage, and pulsing frequency directly contribute to the electro-thermo-mechanical response of the device, which is known to effect device performance and reliability. The model is validated by comparing numerical simulations to experimental electrical curves (Ids-Vds) and experimental strain measurements performed using scanning joule expansion microscopy (SJEM). In addition, we show how the operating conditions (bias applied and AC duty cycle) impact the thermal profiles of the device and outline how the stress in the device changes through a pulsed cycle due to the changing thermal and electrical profiles. Qualitatively, the numerical model has good agreement across a broad range of bias conditions, further validating the model as a tool to better understand device performance and reliability.
Sponsor
Date Issued
2015-03-31
Extent
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI