Adaptive Analog VLSI Signal Processing and Neural Networks

Thumbnail Image
Dugger, Jeffery Don
Hasler, Jennifer
Associated Organizations
Supplementary to
Research presented in this thesis provides a substantial leap from the study of interesting device physics to fully adaptive analog networks and lays a solid foundation for future development of large-scale, compact, low-power adaptive parallel analog computation systems. The investigation described here started with observation of this potential learning capability and led to the first derivation and characterization of the floating-gate pFET correlation learning rule. Starting with two synapses sharing the same error signal, we progressed from phase correlation experiments through correlation experiments involving harmonically related sinusoids, culminating in learning the Fourier series coefficients of a square wave cite{kn:Dugger2000}. Extending these earlier two-input node experiments to the general case of correlated inputs required dealing with weight decay naturally exhibited by the learning rule. We introduced a source-follower floating-gate synapse as an improvement over our earlier source-degenerated floating-gate synapse in terms of relative weight decay cite{kn:Dugger2004}. A larger network of source-follower floating-gate synapses was fabricated and an FPGA-controlled testboard was designed and built. This more sophisticated system provides an excellent framework for exploring applications to multi-input, multi-node adaptive filtering applications. Adaptive channel equalization provided a practical test-case illustrating the use of these adaptive systems in solving real-world problems. The same system could easily be applied to noise and echo cancellation in communication systems and system identification tasks in optimal control problems. We envision the commercialization of these adaptive analog VLSI systems as practical products within a couple of years.
Date Issued
1137791 bytes
Resource Type
Resource Subtype
Rights Statement
Rights URI