Title:
C⁴ : A Real-time Object Detection Framework

Thumbnail Image
Author(s)
Wu, Jianxin
Liu, Nini
Geyer, Christopher
Rehg, James M.
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
A real-time and accurate object detection framework, C⁴, is proposed in this paper. C⁴ achieves 20 fps speed and state-of-the-art detection accuracy, using only one processing thread without resorting to special hardwares like GPU. Real-time accurate object detection is made possible by two contributions. First, we conjecture (with supporting experiments) that contour is what we should capture and signs of comparisons among neighboring pixels are the key information to capture contour cues. Second, we show that the CENTRIST visual descriptor is suitable for contour based object detection, because it encodes the sign information and can implicitly represent the global contour. When CENTRIST and linear classifier are used, we propose a computational method that does not need to explicitly generate feature vectors. It involves no image preprocessing or feature vector normalization, and only requires O(1) steps to test an image patch. C⁴ is also friendly to further hardware acceleration. It has been applied to detect objects such as pedestrians, faces, and cars on benchmark datasets. It has comparable detection accuracy with state-of-the-art methods, and has a clear advantage in detection speed.
Sponsor
Date Issued
2013-10
Extent
Resource Type
Text
Resource Subtype
Article
Rights Statement
Rights URI