Title:
Effective robot task learning by focusing on task-relevant objects
Effective robot task learning by focusing on task-relevant objects
Authors
Lee, Kyu Hwa
Lee, Jinhan
Thomaz, Andrea L.
Bobick, Aaron F.
Lee, Jinhan
Thomaz, Andrea L.
Bobick, Aaron F.
Authors
Advisors
Advisors
Associated Organizations
Organizational Unit
Organizational Unit
Organizational Unit
Series
Collections
Supplementary to
Permanent Link
Abstract
In a robot learning from demonstration framework involving environments with many objects, one of the key problems is to decide which objects are relevant to a given task. In this paper, we analyze this problem and propose a biologically-inspired computational model that enables the robot to focus on the task-relevant objects. To filter out incompatible task models, we compute a task relevance value (TRV) for each object, which shows a human demonstrator's implicit indication of the relevance to the task. By combining an intentional action representation with `motionese', our model exhibits recognition capabilities compatible with the way that humans demonstrate. We evaluate the system on demonstrations from five different human subjects, showing its ability to correctly focus on the appropriate objects in these demonstrations.
Sponsor
Date Issued
2009-10
Extent
Resource Type
Text
Resource Subtype
Proceedings
Post-print
Post-print