Planning for the new urban climate: interactions of local environmental planning and regional extreme heat

Thumbnail Image
Vargo, Jason Adam
Elliott, Michael
Associated Organization(s)
Organizational Unit
Supplementary to
The Earth's climate is changing and cities are facing a warmer future. As the locus of economic activity and concentrated populations on the planet, cities are both a primary driver of greenhouse gas emissions and places where the human health impacts of climate change are directly felt. Cities increase local temperatures through the conversion of natural land covers to urban uses, and exposures to elevated temperatures represent a serious and growing health threat for urban residents. This work is concerned with understanding the interactions of global trends in climate with local influences tied to urban land covers. First, it examines temperatures during an extended period of extreme heat and asks whether changes in land surface temperatures during a heat wave are consistent in space and time across all land cover types. Second, the influences of land covers on temperatures are considered for normal and extreme summer weather to find out which characteristics of the built environment most influence temperatures during periods of extreme heat. Finally, the distribution of health vulnerabilities related to extreme heat in cities are described and examined for spatial patterns. These topics are investigated using meteorology from the summer of 2006 to identify extremely hot days in the cities of Atlanta, Chicago, Philadelphia, and Phoenix and their surrounding metropolitan regions. Remotely sensed temperature data were examined with physical and social characteristics of the urban environment to answer the questions posed above. The findings confirm that urban land covers consistently exhibit higher temperatures than surrounding rural areas and are much more likely to be among the hottest in the region, during a heat wave specifically. In some cities urban thermal anomalies grew between the beginning and end of a heat wave. The importance of previously recognized built environment thermal influences (impervious cover and tree canopy) were present, and in some cases, emphasized during extreme summer weather. Extreme heat health health vulnerability related to environmental factors coincided spatially with risks related to social status. This finding suggests that populations with fewer resources for coping with extreme heat tend to reside in built environments that increase temperatures, and thus they may be experiencing increased thermal exposures. Physical interventions and policies related to the built environment can help to reduce urban temperatures, especially during periods of extremely hot weather which are predicted to become more frequent with global climate change. In portions of the city where populations with limited adaptive capacity are concentrated, modification of the urban landscape to decrease near surface longwave radiation can reduce the chances of adverse health effects related to extreme heat. The specific programs, policies, and design strategies pursued by cities and regions must be tailored with respect to scale, location, and cultural context. This work concludes with suggestions for such strategies.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI