Title:
Selenium as paleo-oceanographic proxy: a first assessmen

Thumbnail Image
Author(s)
Mitchell, Kristen Ann
Authors
Advisor(s)
Van Cappellen, Philippe
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Series
Supplementary to
Abstract
Selenium (Se) is an essential trace element, which, with multiple oxidation states and six stable isotopes, has the potential to be a powerful paleo-environmental proxy. In this study, Se concentrations and isotopic compositions were analyzed in a suite of about 120 samples of fine-grained marine sedimentary rocks and sediments spanning the entire Phanerozoic. While the selenium concentrations vary greatly (0.22 to 72 ppm), the δ82/76Se values fall in a fairly narrow range from -1 to +1 , with the exception of laminated black shales from the New Albany Shale formation (Devonian), which have δ82/76Se values of up to +2.20 . Black Sea sediments (Holocene) and sedimentary rocks from the Alum Shale formation (Late Cambrian) have Se/TOC ratios and δ82/76Se values close to those found in modern marine plankton (1.72x10-6±1.55x10-7 mol/mol and 0.42±0.22 ). (Note: TOC = total organic carbon.) For the other sedimentary sequences, the Se/TOC ratios indicate enrichment in selenium relative to marine plankton. Additional input of isotopically light terrigenous Se (δ82/76Se ≈ -0.42 ) may explain the Se data measured in recent Arabian Sea sediments (Pleistocene). The very high Se concentrations in sedimentary sequences that include the Cenomanian-Turonian Ocean Anoxic Event (OAE) 2 possibly reflect a significantly enhanced input of volcanogenic Se to the oceans. As the latter has an isotopic composition (δ82/76Se ≈ 0 ) not greatly different from marine plankton, the volcanogenic source does not impart a distinct signature to the sedimentary Se isotope record. The lowest δ82/76Se values are observed in the OAE2 samples from Demerara Rise and Cape Verde Basin cores (δ82/76Se = -0.95 to 1.16 ) and are likely due to fractionation associated with microbial or chemical reduction of Se oxyanions in the euxinic water column. In contrast, a limiting availability of seawater Se during periods of increased organic matter burial is thought to be responsible for the elevated δ82/76Se values and low Se/TOC ratios in the black shales of the New Albany Shale formation. Overall, our results suggest that Se data may provide useful information on paleodepositional conditions, when included in a multi-proxy approach.
Sponsor
Date Issued
2011-04-05
Extent
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI