Title:
Reconstructing Surfaces by Volumetric Regularization
Reconstructing Surfaces by Volumetric Regularization
Files
Authors
Dinh, Huong Quynh
Turk, Greg
Slabaugh, Gregory G.
Turk, Greg
Slabaugh, Gregory G.
Authors
Person
Advisors
Advisors
Associated Organizations
Organizational Unit
Series
Series
Collections
Supplementary to
Permanent Link
Abstract
We present a new method of surface reconstruction that generates smooth and seamless models from sparse, noisy, and non-uniform range data. Data acquisition techniques from computer vision, such as stereo range images and space carving, produce three dimensional point sets that are imprecise and non-uniform when compared to laser or optical range scanners. Traditional reconstruction algorithms designed for dense and precise data cannot be used on stereo range images and space carved volumes. Our method constructs a three dimensional implicit surface, formulated as a summation of weighted radial basis functions. We achieve three primary advantages over existing algorithms: (1) the implicit functions we construct estimate the surface well in regions where there is little data; (2) the reconstructed surface is insensitive to noise in data acquisition because we can allow the surface to approximate, rather than exactly interpolate, the data; and (3) the reconstructed surface is locally detailed, yet globally smooth, because we use radial basis functions that achieve multiple orders of smoothness.
Sponsor
Date Issued
2000
Extent
898112 bytes
Resource Type
Text
Resource Subtype
Technical Report