Title:
Statistical Shape Learning for 3D Tracking
Statistical Shape Learning for 3D Tracking
Author(s)
Sandhu, Romeil
Lankton, Shawn
Dambreville, Samuel
Tannenbaum, Allen R.
Lankton, Shawn
Dambreville, Samuel
Tannenbaum, Allen R.
Advisor(s)
Editor(s)
Collections
Supplementary to
Permanent Link
Abstract
In this note, we consider the use of 3D models for visual tracking in controlled active vision. The models are used for a joint 2D segmentation/3D pose estimation procedure in which we automatically couple the two processes under one energy functional. Further, employing principal component analysis from statistical learning, can train our tracker on a catalog of 3D shapes, giving a priori shape information. The segmentation itself is information-based. This allows us to track in uncertain adversarial environments. Our methodology is demonstrated on some real sequences which illustrate its robustness on challenging scenarios.
Sponsor
Date Issued
2009-12
Extent
Resource Type
Text
Resource Subtype
Proceedings